Final Report on Testing of ACONF Technology for the US Coast Guard National Distress Systems

A Study for the DOE Energy Storage Systems Program

Garth P. Corey, Jerry W. Ginn, Tom M. Byrd, Leanne M. Storey, Aaron T. Murray, and Philip C. Symons

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.
Abstract

This report documents the results of a six month test program of an Alternative Configuration (ACONF) power management system design for a typical United States Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded work was performed at Sandia National Laboratories to evaluate the effect of a Sandia developed battery management technology known as ACONF on the performance of energy storage systems at NDS sites. This report demonstrates the savings of propane gas, and the improvement of battery performance when utilizing the new ACONF designs. The fuel savings and battery performance improvements resulting from ACONF use would be applicable to all current NDS sites in the field. The inherent savings realized when using the ACONF battery management design was found to be significant when compared to battery replacement and propane refueling at the remote NDS sites.
Preface
United States Coast Guard, Maintenance and Logistics Command Pacific, Electronics Division maintains the National Distress System (NDS) throughout the coastal waters of Alaska. NDS ensures that mariners in need of assistance can communicate with rescue officials via a VHF-FM network. Due to the nature of the service NDS provides, it is crucial that the system always be online.

NDS consists of several remote VHF-FM communications sites typically located atop mountains in coastal Alaska. The sites are highly susceptible to the unpredictable and harsh winter weather conditions, which make it impossible to perform maintenance or fuel the majority of the sites from mid-October through mid-March.

Because of their remote locations and the critical functions they perform, NDS communications sites are expensive to operate and maintain. The primary costs associated with the continued operation of the VHF-FM sites are propane fuel to run the generators and sealed Valve Regulated Lead Acid (VRLA) batteries to store and discharge energy.

As a result of the study performed at Sandia National Laboratories, documented evidence supports the installation of an ACONF unit at an existing NDS site in the near future. The addition of an ACONF unit is predicted to reduce propane fuel consumption by over 25% and improve battery health (and life) at the site. Pending the sustained successful performance of ACONF at the selected NDS site, ACONF units would be installed at all applicable remote NDS sites. Assuming ACONF performs in the field as expected, propane fuel savings alone would be in the hundreds of thousands of dollars over the first few years after installation. Additionally, the ability to predict when the batteries are at end of life significantly reduces the probability of random battery failures and allows for the optimal replacement of batteries. Overall, the addition of ACONF units at remote hybrid NDS sites would reduce both site downtime and operational costs.

LT Zachary Weiss
United States Coast Guard
Maintenance & Logistics Command Pacific
Electronics Division
Table of Contents

EXECUTIVE SUMMARY .. 6
INTRODUCTION .. 7
TEST SETUPS ... 7
 REFERENCE SYSTEM .. 10
 ACONF SYSTEM .. 11
 ACONF OPERATION ... 13
RESULTS AND DISCUSSION .. 17
 RESULTS OF GENERATOR OPERATIONS FOR FIRST PERIOD OF TESTING ... 18
 RESULTS OF GENERATOR OPERATIONS FOR SECOND PERIOD OF TESTING ... 20
 RESULTS OF CAPACITY TESTS .. 22
CONCLUSIONS AND RECOMMENDATIONS .. 25

Table of Figures

FIGURE 1 REFERENCE AND ACONF BATTERY SYSTEMS ... 8
FIGURE 2 ACONF CONTROLLER AND MONITOR .. 7
FIGURE 3 ACONF CONTROLLER .. 9
FIGURE 4 ONE 24-V NOMINAL BATTERY STRING ... 8
FIGURE 5 MECHRON GENERATORS .. 9
FIGURE 6 MECHRON CONTROLLERS ... 8
FIGURE 7 REF SYSTEM SETUP ... 11
FIGURE 8 ACONF SYSTEM SETUP .. 12
FIGURE 9 DETAILS OF ACONF UNIT ... 12
FIGURE 10 SIMPLIFIED ACONF SYSTEM OPERATION DIAGRAM .. 13
FIGURE 11 DISCHARGE ALL .. 14
FIGURE 12 CHARGE ALL .. 14
FIGURE 13 FINISH CHARGE STRING A ... 15
FIGURE 14 FINISH CHARGE STRING B ... 16
FIGURE 15 USCG ACONF SYSTEM STRING VOLTAGES AND CURRENTS MAY 5, 2004 16
FIGURE 16 FIRST PERIOD FUEL USAGE .. 20
FIGURE 17 SECOND PERIOD FUEL USAGE ... 22

Table of Tables

TABLE 1 DETL DAS SIGNAL LIST ... 9
TABLE 2 ACONF DAS DATA POINTS .. 13
TABLE 3 REF SYSTEM FIRST PERIOD DATA SUMMARY ... 18
TABLE 4 ACONF SYSTEM FIRST PERIOD DATA SUMMARY .. 19
TABLE 5 REF SYSTEM SECOND PERIOD DATA SUMMARY ... 21
TABLE 6 ACONF SYSTEM SECOND DATA SUMMARY ... 21
TABLE 7 CAPACITY TEST RESULTS AT C/20 RATE .. ERROR! BOOKMARK NOT DEFINED.
TABLE 8 CELL VOLTAGES DURING CAPACITY TEST .. 24
TABLE 9 CAPACITY DISCHARGED FROM BATTERIES DURING ENTIRE PERIOD OF TEST 24
Executive Summary
For the past several years, the DOE and Sandia National Laboratories have been involved in testing a new controller that is specifically designed to improve the efficiency of off-grid hybrid power systems that use renewable energy, battery energy storage, and an engine generator. Since the United States Coast Guard (USCG) National Distress System (NDS) system uses just such a power source, a project was developed with USCG and USDOE funding to compare two identical NDS power systems. One of them operated under the control of the Sandia-developed ACONF system controller while the second operated under the Mechron© controller currently in use at all remote NDS sites. A testing strategy was developed which would put the two systems through their paces in much the same seasonal environment as is experienced at a selected NDS site. Testing was segmented in such a way as to run the systems in a winter, spring/fall, and summer season to get a good comparison of the operations based on the availability of the photovoltaic resource typical of the selected site.

Following a lengthy acquisition and system assembly process, testing of both units commenced on March 19, 2004. Loads and power sources were identical for the two systems. Extreme care was taken to ensure the two systems followed the same load and photovoltaic generation patterns. The primary difference in the way the systems were operated is that the generator start command and battery charge management in one of the systems was controlled exclusively by an ACONF controller. The Mechron field controller was not utilized to make generator start and stop decisions in the ACONF controlled system. Both systems ran smoothly until May 23, 2004 when one of the Mechron generators failed. Both generators were returned to the manufacturer for repair where it was found that a bearing had been improperly aligned in the equipment originally delivered. After the generators were returned to Sandia on September 23, 2004 they were immediately installed and operations reinitiated.

Because at the time of the generator bearing failure the test was very near the halfway point, analyses of the results-to-date were conducted. Details of the analyses are available in this report; however, one very important result was determined. The system operating under the ACONF control strategy consumed approximately 20% less propane fuel for the same amount of power generated by each system at the mid-point of the test program.

After completing the mid-point capacity test, both systems resumed operations for the spring operating environment followed immediately by the summer operating environment. During this second part of the test, an ACONF solar optimization strategy was implemented. This had been available before the first part of the test but had not been implemented then for a variety of reasons. The test project was completed on January 20, 2005 and both systems were capacity tested and final analysis was initiated. As expected, the fuel savings were even better for the spring/summer period with savings noted in the 30% range. This report contains the details of the test work and a performance analysis of both systems for the full six months of testing, together with a discussion of the results.
Introduction
The United States Coast Guard (USCG) and the DOE Energy Storage Systems Program are funding work at Sandia National Laboratories to evaluate the effect of a battery management technology known as ACONF1 on the performance of energy storage systems at National Distress System (NDS) sites. Two systems were configured to replicate an actual NDS site in Alaska. The two systems were identical except that one included an ACONF controller. This report summarizes the results at the end of six-month test program that simulated a year of actual use, during which the two systems were operated in a way that is similar to an NDS site. The key performance metric is the comparison of fuel consumption for the two NDS propane generators each operating under their respective control philosophies.

Test Setups
The two systems under test are located at the Distributed Energy Technologies Laboratory (DETL) of Sandia National Laboratories in Albuquerque, NM. Both systems are housed in a portable, air-conditioned building. Heat generating components such as the generators and the loads are mounted outside, but adjacent to, the portable building. Several views of the two setups, and of the ancillary equipment, are shown in the photos displayed as Figures 1 to 6.

![Figure 1 Reference and ACONF battery systems](image1)

![Figure 2 ACONF controller and monitor](image2)

A Data Acquisition System (DAS) based on National Instruments Lab View™ acquires and stores measurements from both systems. The DAS continuously scans the channels listed in Table 1 at a rate of 1000 samples per second and digitizes them using a 16-bit digitizer. The DAS computes an average for each signal over a one minute time period. It saves these averages, the single-point maximum and minimum values observed during the one-minute period, and a time stamp.

1 US Patent 6,353,304 B1; Atcitty et al. March 5, 2002
The data files are backed up to a server on a LAN every night. A user-selectable subset of these signals is displayed on a dedicated monitor along with information on the status of the system. The time interval over which the displayed signals are averaged is adjustable so that signals can be displayed graphically much faster than once per minute. The DAS can be viewed and controlled both locally within DETL and over a secure network.

The two setups, described in the next sub-sections, are identical except that in the ACONF system, an ACONF solar hybrid/battery system management controller has been interposed between the battery and the rest of the system.
<table>
<thead>
<tr>
<th>Channel Name</th>
<th>Channel Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACONF Temp</td>
<td>Analog Input</td>
<td>ACONF MOSFET heat sink temperature</td>
</tr>
<tr>
<td>Ambient Temp</td>
<td>Analog Input</td>
<td>Ambient temperature at TP384</td>
</tr>
<tr>
<td>BAT1 Ias</td>
<td>Analog Input</td>
<td>Battery 1 current in ACONF system</td>
</tr>
<tr>
<td>BAT1 Irs</td>
<td>Analog Input</td>
<td>Battery 1 current in Reference system</td>
</tr>
<tr>
<td>BAT1 Vas</td>
<td>Analog Input</td>
<td>Battery 1 voltage in ACONF system</td>
</tr>
<tr>
<td>BAT1 Vrs</td>
<td>Analog Input</td>
<td>Battery 1 voltage in Reference system</td>
</tr>
<tr>
<td>BAT2 Ias</td>
<td>Analog Input</td>
<td>Battery 2 current in ACONF system</td>
</tr>
<tr>
<td>BAT2 Irs</td>
<td>Analog Input</td>
<td>Battery 2 current in Reference system</td>
</tr>
<tr>
<td>BAT2 Vas</td>
<td>Analog Input</td>
<td>Battery 2 voltage in ACONF system</td>
</tr>
<tr>
<td>BAT2 Vrs</td>
<td>Analog Input</td>
<td>Battery 2 voltage in Reference system</td>
</tr>
<tr>
<td>Bat1 Tas</td>
<td>Analog Input</td>
<td>Battery 1 temperature in ACONF system</td>
</tr>
<tr>
<td>Bat2 Tas</td>
<td>Analog Input</td>
<td>Battery 2 temperature in ACONF system</td>
</tr>
<tr>
<td>Bat1 Trs</td>
<td>Analog Input</td>
<td>Battery 1 temperature in Reference system</td>
</tr>
<tr>
<td>Bat2 Trs</td>
<td>Analog Input</td>
<td>Battery 2 temperature in Reference system</td>
</tr>
<tr>
<td>Gen FRas</td>
<td>Analog Input</td>
<td>Generator fuel mass flow rate in ACONF system</td>
</tr>
<tr>
<td>Gen FRrs</td>
<td>Analog Input</td>
<td>Generator fuel mass flow rate in Reference system</td>
</tr>
<tr>
<td>Gen Ias</td>
<td>Analog Input</td>
<td>Generator current in ACONF system</td>
</tr>
<tr>
<td>Gen Irs</td>
<td>Analog Input</td>
<td>Generator current in Reference System</td>
</tr>
<tr>
<td>Gen SRas</td>
<td>Analog Input</td>
<td>Generator start-request in ACONF system</td>
</tr>
<tr>
<td>Gen SRrs</td>
<td>Analog Input</td>
<td>Generator start-request in Reference system</td>
</tr>
<tr>
<td>Load Ias</td>
<td>Analog Input</td>
<td>Load current in ACONF system</td>
</tr>
<tr>
<td>Load Irs</td>
<td>Analog Input</td>
<td>Load current in Reference system</td>
</tr>
<tr>
<td>Load Vas</td>
<td>Analog Input</td>
<td>Load voltage in ACONF system</td>
</tr>
<tr>
<td>Load Vrs</td>
<td>Analog Input</td>
<td>Load voltage in Reference system</td>
</tr>
<tr>
<td>PV C1as</td>
<td>Analog Output</td>
<td>Control current for PV-Simulator in ACONF system</td>
</tr>
<tr>
<td>PV C1rs</td>
<td>Analog Output</td>
<td>Control current for PV-Simulator in Reference system</td>
</tr>
<tr>
<td>PV C2as</td>
<td>Analog Output</td>
<td>Control voltage for PV-Simulator in ACONF system</td>
</tr>
<tr>
<td>PV C2rs</td>
<td>Analog Output</td>
<td>Control voltage for PV-Simulator in Reference system</td>
</tr>
<tr>
<td>PV Ias</td>
<td>Analog Input</td>
<td>PV-Simulator current in ACONF system</td>
</tr>
<tr>
<td>PV Irs</td>
<td>Analog Input</td>
<td>PV-Simulator current in Reference system</td>
</tr>
<tr>
<td>PV Vas</td>
<td>Analog Input</td>
<td>PV-Simulator voltage in ACONF system</td>
</tr>
<tr>
<td>PV Vrs</td>
<td>Analog Input</td>
<td>PV-Simulator voltage in Reference system</td>
</tr>
</tbody>
</table>

Table 1 DETL DAS Signal List
Reference System

The Reference System (REF) is meant to represent a mountaintop solar hybrid power system as currently implemented by the USCG. As shown in Figure 7, the REF system consists of:

- A two-string, 24V battery, with 12 GNB 1000Ah VRLA cells in each string
- A Mechron© 7kW generator, with a 160amp, 30VDC battery charger/controller
- A DC power supply and appropriate software to simulate a 2.88-kW solar photovoltaic (PV) array
- A bank of power resistors to represent the load at a typical USCG site. At the nominal battery voltage, these resistors draw a load current of about 20amps.

For clarity Figure 7 does not show circuit protection devices such as switches and disconnects or sensing devices such as current shunts, voltage probes and thermocouples.

Except in case of a malfunction, the load is continuously connected to the battery bus. The voltage of the battery varies throughout each charge and discharge, so the current, and thereby the power delivered to the load varies over time. This variation was judged to be acceptable because the reliability of passive resistive loads was desirable over the long duration of the test and because short-duration time resolution of the load power was not significant in evaluating the effect of the ACONF. The load value was selected based on analyses of average NDS site load data.²

Identical solar inputs to each system are provided by programmable power supplies controlled with a sub-routine running on the DAS. The power profile corresponds to the solar power that might be expected from the type of array used at an actual USCG site on a mountaintop close to Sitka, Alaska. Input data for solar irradiance was obtained from publicly available hourly Typical Meteorological Year (TMY) measurements taken at Juneau, Alaska.³

NDS sites include PV charge controllers that prevent overcharging the batteries. The USCG has different charge controller models at different sites. The effect of the charge controller is simulated in the current test by limiting power supply voltage to no more than 27.6V. The effect of this limit is to reduce the simulated PV current to zero whenever the generator has charged the battery to 27.6V. For these tests the simulated PV was reduced to zero whenever the generator was running to avoid control instabilities that were observed when setting up the systems.

As is the case at the NDS sites, the generator is started and stopped by the Mechron© charge controller. A generator start is initiated if the battery voltage falls below 23.76V (1.98V/cell) at the battery bus. When the battery voltage during charge reaches the control level, the charge current is reduced (tapered) so as to ensure that the battery voltage (measured at the battery bus) does not exceed 28.6V. When the battery current falls below 40amps, the Mechron© controller instructs the generator to stop. The REF system is continuously cycled to simulate NDS site operations.

ACONF System

The ACONF system, shown schematically in Figure 8, is very similar to the REF system, except for the addition of an ACONF controller unit between the positive terminal of each battery string and the positive bus of the power system. Thus, the ACONF systems has two parallel 24V strings of battery cells, an engine/generator and charger controller, a PV simulator, and a resistive load bank, that are identically specified and provided by the same manufacturers as in the case of the REF system.
Details of the ACONF unit that is interposed between the battery strings and the positive bus of the power system are shown in Figure 9. The ACONF unit includes both control circuitry and data acquisition. The control circuitry is dispatched on the basis of data acquired, as described in the ACONF Operating section. The data acquisition portion of the ACONF unit consists of a “PC104 stack”, with a PC104 embedded computer, a video card, and a 16-bit, 8 differential channel data acquisition card.

Table 2 lists the data acquired by the ACONF DAS. The ACONF needs only five data points in order to accomplish the required control functions, which minimizes costs and data storage requirements. Data is acquired several hundred times per second, averaged over a two second period, displayed on a monitor connected to the video card, further averaged over a one minute period, then stored with a time stamp. Data is stored locally...
on a Compact Flash “fixed disk” and is downloaded periodically (once or twice a week depending on personnel availability) via a serial port for archiving to a LAN at DETL. Copies of the ACONF data are also sent to Symons/EECI for further analysis.

<table>
<thead>
<tr>
<th>Data Point</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time Stamp for ACONF system</td>
</tr>
<tr>
<td>StrA Volts</td>
<td>Battery 1 voltage for ACONF system</td>
</tr>
<tr>
<td>StrB Volts</td>
<td>Battery 2 voltage for ACONF system</td>
</tr>
<tr>
<td>StrA Amps</td>
<td>Battery 1 current for ACONF system</td>
</tr>
<tr>
<td>StrB Amps</td>
<td>Battery 2 current for ACONF system</td>
</tr>
</tbody>
</table>

Table 2 ACONF DAS Data Points

ACONF Operation

Unlike the REF system, dispatch of the generator is controlled by the ACONF, rather than by the Mechron© charger controller. Using the PC104 based data acquisition sub-system, the ACONF monitors each of the two parallel battery strings individually to optimize system performance. Figures 10 through 14 illustrate the ACONF operation. Figure 10 is a simplified diagram of the ACONF system, showing placement of the ACONF controller with respect to the rest of the system.

In the “Discharge All” operating mode, energy is drawn from the two parallel strings to power the loads (Figure 11). The generator is started and a charge is initiated when the voltage reaches the lower “generator cut-in” point (1.98 V/cell) or when 60% of the nominal amp-hr capacity of the battery (sum of amp-hrs discharged from the two strings) has been discharged, whichever point is reached first. In the subsequent “Charge All” mode (Figure 12) both strings are charged by the generator at a constant current of 140A (70 A/string). This “bulk charge” returns approximately 90% of the capacities of the batteries.

![Figure 10 Simplified ACONF System Operation Diagram](image-url)
The bulk charge continues until the ACONF controller determines, using an internal resistance algorithm, that the battery voltage at the nominal charge current (140 amps) has reached the equivalent of 28.6 V. The word equivalent is used since the Mechron© charger may cause the charge current to taper somewhat before the cut-off voltage is reached. In practice, the amount of tapering that occurs is quite small, so battery charges with the generator are terminated at a much higher current with the ACONF than for the REF system. It is this earlier charge termination and minimal current tapering that leads to the major savings in generator run time and fuel consumption that are predicted for the ACONF and is the primary reason for which the USCG testing is being performed.
In order to ensure the charging of the batteries is completed on a consistent basis, each string of the ACONF system is “finish charged” every other cycle (Figure 13). This is accomplished using the MOSFET switches and the upverter shown in Figure 9, under the control of the ACONF software running on the PC104 computer. Essentially, on completion of a bulk charge with the generator, one of the two strings is disconnected from the positive bus and is reconnected to the ACONF system via the upverter. In this way, the string still connected as normal provides the power for discharge to the load and also, via the upverter, provides power to finish charge the other string. In order to maintain the correct charging voltage on the string being finish charged, the ACONF reduces (tapers) the charge current coming from battery string A to finish charge battery string B. This process continues until the ACONF determines that the string being finish charged has been returned to virtually 100% of its original capacity. At that time, the two strings are again connected in parallel and the system returns to “Discharge All” mode.

On completion of the next bulk charge with the generator (Charge All mode), the ACONF proceeds to finish charge the other string, as shown in Figure 14.

<table>
<thead>
<tr>
<th>State</th>
<th>String A</th>
<th>String B</th>
<th>What ends state</th>
</tr>
</thead>
<tbody>
<tr>
<td>finish charge</td>
<td>voltage regulated</td>
<td>discharging</td>
<td>String A current tapers to some value</td>
</tr>
<tr>
<td></td>
<td>finish charge</td>
<td></td>
<td>OR Ah exceeds 120% of last disch Ah</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR time exceeds some value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OR string B can’t keep up (string B voltage too low)</td>
</tr>
</tbody>
</table>

Figure 13 Finish Charge String A
To illustrate the previous discussion, we show in Figure 15 a plot of the voltages and currents for the two strings (identified as String A and String B) of the USCG ACONF system for May 5, 2004, a day on which a charge with the generator and a finish charge took place. Note the charge with the generator started at about 3AM, and that during most the charge the currents in the two strings were approximately the same. It can be seen that the voltage of the battery increased monotonically throughout the charge.

There was a small amount of current tapering towards the very end of the charge period, just before the ACONF software determined that the charge should be terminated. After the generator had been turned off at about 10:20, the MOSFET switches in the ACONF Unit were reconfigured so that String A provided the power for discharge and also provided power to finish charge String B. Note that the current for String B continues...
negative (charge) and tapers throughout the finish charge period, while the current for String B is positive (discharge) and declines in this time as the charging current in String B tapers. The finish charge was terminated at 15:20.

In addition to the basic operation described here, the ACONF provides some more subtle operational capabilities to enhance system performance. The most important of these for the USCG sites, optimization of battery charge scheduling that can lead to further fuel savings, was only tested during the second part of the testing. The results with and without this enhancement will be discussed later in this report.

Results and Discussion
Automated cycling of the REF and the ACONF systems was initiated on March 19 2004. Cycling continued until the generator of the REF system failed totally on May 23. Both generators were returned to Mechron© to be rebuilt shortly after this. Upon their return, cycling recommenced and continued through to completion of the ACONF testing period on January 20, 2005.

The schedule of testing initially planned for the two systems was as follows:
1. Capacity test to establish baseline characteristics of batteries for both systems
2. Eight weeks of cycling with solar inputs corresponding to period from November 23 to January 18, i.e., centered on the shortest day of sunshine, 12/21
3. Four weeks of cycling with solar inputs corresponding to period from February 21 to March 21, i.e., leading up to the Spring equinox
4. Capacity test to determine if cycling had any impact on characteristics of batteries for both systems
5. Four weeks of cycling with solar inputs corresponding to period from March 22 to April 18, i.e., immediately following the Spring equinox
6. Eight weeks of cycling with solar inputs corresponding to period from May 23 to July 19, i.e., centered on the longest day of sunshine, 6/21
7. Final Capacity test to determine if cycling had any impact on characteristics of batteries for both systems

The schedule was designed so that a projection could be reasonably made for entire year of cycling with only 24 weeks of testing.

As mentioned above, the generator for the REF system failed on 5/23/04, i.e., ~10 weeks into the test. Thus, test operations were eleven days into the 56-day Spring total (Item 3 of the test schedule) when testing was forced to be suspended. It was decided, therefore, to complete the second capacity test (Item 4) early so that time could be saved later in the testing, after the repaired generator had been returned.

After the generators were returned in late September, 2004, testing was resumed at the point at which testing had been previously shut-down. At this point, slightly less than 14 weeks remained for the test, which was in fact resumed on the twelfth day of the spring
simulation. During this Second Period of testing, the solar optimization function of the ACONF (see above) was invoked, this not having been done during the First Period of testing. Cycling was continued under automated control until the end of the test in early January, except for a two week break for the Holiday Season. In this Second Period of testing, the remainder of item 3 along with items 5 and 6 were completed. The final capacity test (Item 7) was performed after the end of the automated cycle testing.

Two aspects of the results obtained will be described in this section: results related to operation of the generators and results obtained from measurements of the capacity of the batteries in the two systems under test. The results related to operation of the generators will be described and discussed in two parts, corresponding to the First and the Second Periods of testing.

Results of Generator Operations for First Period of Testing

Summaries of the results of the cycle testing are shown in Table 3 for the REF system and in Table 4 for the ACONF system. It can be seen from Table 3 for the REF system that a total of 13 charges were completed and one was partially completed during the first period before the generator failed. Thus, 14 discharges were completed after the test sequence was started with a discharge.

<table>
<thead>
<tr>
<th>REF</th>
<th>Winter Cycle</th>
<th>First Period Reference Cycle Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fuel Consumed (Gallons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.61</td>
</tr>
</tbody>
</table>

Table 3 REF System First Period Data Summary
First Period ACONF Cycle Data

<table>
<thead>
<tr>
<th></th>
<th>Fuel Consumed (Gallons)</th>
<th>Cumulative Gallons Consumed</th>
<th>Generator Run Time (minutes)</th>
<th>Cumulative Generator Run (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter Cycle</td>
<td>6.06</td>
<td>6.06</td>
<td>423</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>9.7</td>
<td>15.76</td>
<td>503</td>
<td>926</td>
</tr>
<tr>
<td></td>
<td>8.13</td>
<td>23.89</td>
<td>426</td>
<td>1352</td>
</tr>
<tr>
<td></td>
<td>8.93</td>
<td>32.82</td>
<td>473</td>
<td>1825</td>
</tr>
<tr>
<td></td>
<td>6.73</td>
<td>39.55</td>
<td>362</td>
<td>2187</td>
</tr>
<tr>
<td></td>
<td>8.14</td>
<td>47.69</td>
<td>417</td>
<td>2604</td>
</tr>
<tr>
<td></td>
<td>7.67</td>
<td>55.36</td>
<td>380</td>
<td>2984</td>
</tr>
<tr>
<td></td>
<td>7.56</td>
<td>62.92</td>
<td>392</td>
<td>3376</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>71.72</td>
<td>456</td>
<td>3832</td>
</tr>
<tr>
<td></td>
<td>8.19</td>
<td>79.91</td>
<td>421</td>
<td>4253</td>
</tr>
<tr>
<td></td>
<td>8.23</td>
<td>88.14</td>
<td>428</td>
<td>4681</td>
</tr>
<tr>
<td></td>
<td>7.61</td>
<td>95.75</td>
<td>405</td>
<td>5086</td>
</tr>
<tr>
<td></td>
<td>8.45</td>
<td>104.2</td>
<td>433</td>
<td>5519</td>
</tr>
<tr>
<td></td>
<td>8.42</td>
<td>112.62</td>
<td>435</td>
<td>5954</td>
</tr>
<tr>
<td></td>
<td>9.19</td>
<td>121.81</td>
<td>475</td>
<td>6429</td>
</tr>
<tr>
<td></td>
<td>9.28</td>
<td>131.09</td>
<td>480</td>
<td>6909</td>
</tr>
<tr>
<td></td>
<td>8.35</td>
<td>139.44</td>
<td>423</td>
<td>7332</td>
</tr>
<tr>
<td>Spring Cycle</td>
<td>8.86</td>
<td>148.3</td>
<td>456</td>
<td>7788</td>
</tr>
<tr>
<td></td>
<td>8.47</td>
<td>156.77</td>
<td>434</td>
<td>8222</td>
</tr>
</tbody>
</table>

Table 4 ACONF System First Period Data Summary

For the ACONF system during the first period of testing, see Table 4, a total of 19 discharges and charges were completed before the testing was suspended because of the failure of the REF system generator.

Thus, the generator started somewhat more frequently for the ACONF system as compared to the REF system. However, it should be noted that one of the more subtle features of the ACONF technology, a solar optimization function that automatically schedules generator start times in coordination with sunrise and sunset, was not turned on during the First Period of testing. In order to test the efficacy of the solar optimization function to reduce generator start times, but also to evaluate the possible fuel saving that could result, the solar optimization function was implemented during the Second Period of testing.

In contrast to the frequency of generator starts, Tables 4 and 5 show that, as expected, the generator run-time for the ACONF system is significantly less for the ACONF system than for the REF system. This indicates that for the ACONF system, generator life should be extended somewhat and that generator maintenance requirements should be somewhat lower as compared to the REF system.

The advantage of the ACONF technology becomes even clearer when the fuel consumption measurements made during the first part of the Coast Guard testing are
analyzed. This is not apparent directly from the fuel consumption data in Tables 4 and 5, but can be clearly seen when these data are normalized to the energy delivered to the load for the two systems, as shown in Figure 16. The reason for adopting this metric to compare the fuel consumption for the two systems lies in the fact that there were interruptions in the continuous cycling process because of minor component malfunctions.

To construct Figure 16, the energy delivered to the load was computed by summing the integrands of the product of the voltage and the current for each sting from the beginning of the test to the point at which each charge with a generator was completed. Note that the fuel consumption for the last charge on the REF system is omitted since this charge was not completed due to generator failure.

Once the fuel consumption data is normalized as shown in Figure 10, it becomes quite clear that the fuel consumption by the ACONF system is significantly less than that for the REF system. From the data used to construct Figure 10 it can be calculated that the specific fuel consumption for the REF system was 0.28 gallons of propane consumed per kWh of energy delivered to the load over the entire first period, whereas the corresponding value for the ACONF system was 0.22 gallon/kWh. Thus the fuel consumption with the ACONF battery management controller was approximately 20% less than for the REF system.

![Fuel Usage First Period](image)

Figure 16 First Period Fuel Usage

Results of Generator Operations for Second Period of Testing

Table 5 shows a summary of the results of the cycle testing of the REF system during the Second Period of testing, i.e., for mid and late spring and for four weeks on each side of Midsummer. Analogous results for the ACONF system are shown in Table 6.
From Tables 5 and 6, it can be seen that the same number of charges (9) were completed for both the REF system and for the ACONF system during the Second Period of testing. However, looking at the tables in more detail shows 5 charges during the spring season for the REF system versus 6 for the ACONF system. Also there were 4 charges for the REF system and 3 for the ACONF system during the summer season. From these results in comparison to those for the Winter and early-Spring periods cited above, it is clear from implementation of the solar optimization function did indeed reduce the number of generator starts for the ACONF system, as expected. In addition, the cumulative generator run time for the ACONF system was less than 2/3rds that for the REF system, offering further to the expectation that generator maintenance should be less costly for an NDS site with an ACONF system than with the current implementation.
In a similar fashion to the First Period of testing, we show in Figure 17 a plot of the propane consumed by the generator as a function of the kWh of electrical energy delivered to the load.

From examination of Figure 17, it is once again apparent that there are significant savings in fuel when using the ACONF in comparison with the REF system. Indeed, at the end of the test, it can be calculated that the ACONF system required 32% less fuel to operate than the REF system for the same amount of energy (kWh) delivered to the load.

Some part of the increased fuel savings in the Second Period compared to the First Period (32% versus 20%) can be attributed to the differing seasons (late Spring and Summer rather than Winter and early Spring) but some part of the increased savings are thought to be due to the implementation of the solar optimization function in the ACONF for the Second Period of testing. The relative importance of these factors can only be determined by further testing.

The slope of the lines in Figure 17 is the specific fuel consumption, i.e., the number of gallons of fuel consumed per kWh of energy delivered to the load. Close examination of Figure 17 indicates a change in the slope of the lines part way through the cycling, this corresponding to increased energy input from the (emulated) PV arrays.

Results of Capacity Tests

The results from the capacity tests that were performed before cycle testing started (Item 1 of Test Schedule), after the REF generator failed (modified Item 4 of Test Schedule), and of two capacity tests performed after the entire six month test had been completed (Item 7 done twice) are shown in Table 7. The average temperatures of all the battery strings being used at the time of the capacity test are also shown in Table 7.
Capacity (Ah to 1.85V/cell at C/20 discharge rate)

<table>
<thead>
<tr>
<th>Date</th>
<th>ACONF 1</th>
<th>ACONF 2</th>
<th>REF 1</th>
<th>REF 2</th>
<th>Avg. Battery Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/4/2004</td>
<td>897</td>
<td>895</td>
<td>879</td>
<td>902</td>
<td>21.9</td>
</tr>
<tr>
<td>6/17/2004</td>
<td>968</td>
<td>974</td>
<td>936</td>
<td>978</td>
<td>31.1</td>
</tr>
<tr>
<td>1/25/2005</td>
<td>849</td>
<td>848</td>
<td>791</td>
<td>861</td>
<td>15.7</td>
</tr>
<tr>
<td>2/21/2005</td>
<td>933</td>
<td>922</td>
<td>836</td>
<td>930</td>
<td>13.4</td>
</tr>
</tbody>
</table>

Table 7: Capacity Test Results at C/20 Rate

It can be seen from Table 7 that there is an increased capacity for the batteries of both the REF and the ACONF systems from the first to the second tests. This probably results mostly from the higher battery temperature at the time of the second test, but could also result in part from further formation of the plates in the cells. The latter effect might have in turn resulted from the cycling that was performed, since this is an effect that is almost invariably seen in the initial cycling of lead acid batteries.

The apparent drop in capacity from the second to the third test was at first thought to be due to the difference in the temperature of the batteries between the times of the two tests. However, when the test was repeated on 2/21/05, the capacity was significantly higher for all the strings except REF1, as discussed separately below. It is thought that higher capacities were recorded for the last test because all the strings were on a trickle charge for a longer period of time than they were for the test on 1/25. This probably indicates that finish charges to a lower current are desirable for the Absolyte IIP batteries being used, and that perhaps an occasional equalize might be necessary. This could have been managed by the ACONF unit utilized in the test, but this was not done because we wanted to keep the operating conditions for the REF and the ACONF systems as closely alike as possible. We hope to validate this hypothesis in future testing.

As mentioned above, there is a clear indication that one of the cells in the REF1 battery is not performing as well as all the rest of the cells, and that it may in fact have a manufacturing defect. This can be seen by examination of Table 8, which shows the voltages of each of the cells of the REF battery towards the end of the two latest capacity tests. The Item 7 capacity test was repeated, in part, because it was observed that the string with the poorly performing cell did not give the same capacity as any of the rest of the strings. It can be seen from Table 8 that the voltage of Cell 10 of REF String 1 is quite a lot lower than the other cells of the REF battery string towards the end of discharge, this being an indication that the low-voltage cell might have a manufacturing defect. A close watch will be kept on this cell in any future testing that might be performed, and it could be replaced if it shows indications of imminent failure.
REF Cell Voltages	ACONF Cell Voltages
REF String 1 | ACONF String 1 | ACONF String 2
Cell | Voltage | Cell | Voltage | Cell | Voltage | Cell | Voltage
1 | 1.956 | 1 | 1.945 | 1 | 1.945 | 1 | 1.943
2 | 1.954 | 2 | 1.949 | 2 | 1.949 | 2 | 1.947
3 | 1.954 | 3 | 1.949 | 3 | 1.946 | 3 | 1.943
4 | 1.938 | 4 | 1.938 | 4 | 1.942 | 4 | 1.95
5 | 1.954 | 5 | 1.941 | 5 | 1.956 | 5 | 1.952
6 | 1.954 | 6 | 1.947 | 6 | 1.947 | 6 | 1.955
7 | 1.951 | 7 | 1.944 | 7 | 1.945 | 7 | 1.955
8 | 1.952 | 8 | 1.94 | 8 | 1.956 | 8 | 1.932
9 | 1.934 | 9 | 1.947 | 9 | 1.95 | 9 | 1.946
10 | 1.882 | 10 | 1.944 | 10 | 1.948 | 10 | 1.954
11 | 1.934 | 11 | 1.938 | 11 | 1.951 | 11 | 1.949
12 | 1.956 | 12 | 1.942 | 12 | 1.947 | 12 | 1.942

Table 8 Cell Voltages during Capacity Test

At this point in the test program, it is very early in the life of the lead acid (VRLA) batteries being used, and little difference in capacity between the two systems would be expected at this point. To illustrate this point, Table 9 shows the actual amp-hrs of discharge that have been passed from each of the strings of the REF and ACONF batteries during the testing that has been performed.

<table>
<thead>
<tr>
<th>Total Ah of discharge for each battery string</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACONF 1</td>
</tr>
<tr>
<td>25038</td>
</tr>
</tbody>
</table>

Table 9 Capacity Discharged from Batteries during Entire period of Test

The expected life of the Absolyte IIP cells being used in the current tests (currently at NDS sites) is about 1250 cycles at 80% depth of discharge. Since the cells have a capacity of (approximately) 1000 Ah, cycling at less than 80% DOD (as is done at NDS sites) would be expected to yield a total discharge capacity of at least 1250 cycles * 80% DOD * 1000Ah = one million Ah, because cycling at a more shallow depths generally leads to more total Ah of discharge in lead acid cells. Currently, only about 2.5% of expected total Ah have been discharged from the ACONF test strings and only 2% from the REF test strings, so we are only very early in the expected life of the cells. However, it should be noted that given the discharge rate for NDS sites of 10 amps per string, one million Ah of discharge corresponds to 100,000 hours (11 years) of discharge time, so NDS batteries may need to be replaced because of their age before the potential Ah capacity can be discharged from them.

Table 8 also contains some interesting results in the comparison of the operational strategies of the two systems. Note that the total Ah delivered for the ACONF system is approximately 20% higher than the REF system. The reason for this disparity is that one
ACONF string is used to finish charge the other which requires additional Ah beyond that discharged by the REF strings.

Conclusions and Recommendations

A six-month parallel test of two hybrid power systems that imitate those used at USCG NDS sites, one configured similarly to those currently implemented and the other with an ACONF battery management unit, has been successfully conducted. The hybrid power systems that were tested included a propane-fueled generator, a power supply that emulated the solar PV array in eight-week periods around mid-Winter, the Spring Equinox, and mid-Summer, and a 24V battery comprised of two parallel strings each with twelve 1000Ah cells in series. A fixed resistor was used in each of the two systems to emulate the loads at an NDS site.

During testing that emulated solar inputs for the eight weeks around mid-Winter and for three weeks in early-Spring, the test system with the ACONF unit consumed ~20% less fuel than the one without the ACONF. The run time for the generator was significantly less for the ACONF system that for the system configured as currently at NDS sites, but the number of generator starts was somewhat more for the ACONF system for the other, for the Winter and early-Spring testing. For this part of the testing, it would be expected that generator maintenance requirements would perhaps be reduced because of the reduced run time.

For testing with solar inputs that emulated mid-Spring and for the eight weeks around mid-Summer, the hybrid system with the ACONF consumed almost a third less fuel than the other system. This more-favorable reduction in fuel consumption was partly a result of the higher solar inputs for the Spring/Summer period as compared to the Winter/Spring period, but also resulted in part from implementation of a solar optimization function in the ACONF during the later testing. This solar optimization function also contributed to the still lower generator run and to the reduced number of generator starts, as compared to the reference system.

The beneficial results regarding fuel consumption and generator run time obtained in this work have led the USCG to ask that more work be performed on utilizing the ACONF technology for their NDS sites. Although it is early in the life of the batteries being used in the test, it is projected that the ACONF technology can be of further value to the Coast Guard by allowing a deferral of battery replacements at NDS sites. Thus, the ACONF technology is thought to be capable of providing battery life enhancement, and additionally, ACONF units track battery usage thereby allowing a more reliable method for determining when a battery replacement will be required.

We recommend that two related but separate tasks be performed to advance the ACONF technology for the USCG NDS application. First, we recommend that further testing be performed on the reference and the ACONF systems used in the current work, to further evaluate fuel savings and generator run time, and to determine if indications of battery longevity enhancement can be observed at a relatively early stage of battery life. This extended period of testing will also permit extended evaluation of the reliability of the
ACONF units. Second, we recommend that an ACONF unit be deployed at a working NDS site, as selected by the USCG. This will allow the USCG to become more familiar with the technology and with the benefits such units can provide, so that ACONF units might ultimately be deployed at all NDS sites with remote hybrid power supplies.
DISTRIBUTION

K.M. Abraham
E-KEM Sciences
PO Box 920401
Needham, MA 02492

Dutch Achenbach
Kauai Island Utility Cooperative
4463 Pahe'e Street, Suite 202
Lihue
Kauai, HI 96766

Tom Anyos
The Technology Group, Inc.
63 Linden Avenue
Atherton, CA 94027-2161

Haukur Asgeirsson
The Detroit Edison Company
2000 2nd Avenue, '435 SB
Detroit, MI 48226-1279

Charles E. Bakis
The Pennsylvania State University
212 Earth & Energy Sciences Building
University Park, PA 16802

Samuel F. Baldwin
U.S. Department of Energy
1000 Independence Avenue, SW
EE-11, FORS
Washington, DC 20585-0121

Robert O. Bartlett
AFS Trinity Power Corporation
7617 Irongate Lane
Frederick, MD 21702

Richard Baxter
Ardour Capital Investments, LLC
127 Mt. Auburn St., Suite 17
Cambridge, MA 2138
Edward Beardsworth
UFTO
951 Lincoln Avenue
Palo Alto, CA 94301-3041

Markus Becker
RWE North America
555 12th Street, Suite 630
Washington, DC 20004

André Bélanger
Institut de recherche d'Hydro-Quebec
1800 Boul. Lionel Boulet
Varennes, Quebec J3x 1S1
Canada

Ken Belfer
Innovative Power Sources
1419 Via Jon Jose Road
Alamo, CA 94507

Donald A. Bender
AFS Trinity Power
6724D Preston Avenue
Livermore, CA 94550

Michael Benke
Xantrex Technology, Inc.
161-G South Vasco Road
Livermore, CA 94550

Michael L. Bergey
Bergey Windpower
2001 Priestley Avenue
Norman, OK 73069

David Bertagnolli
ISO New England
One Sullivan Road
Holyoak, MA 01040-2841
William Capp
Beacon Power Corporation
234 Ballardvale Street
Wilmington, MA 01887

Gerald P. Ceasar
U.S. Department of Commerce
NIST
100 Bureau Drive, MS 4720
Gaithersburg, MD 20899-4720

Guy Chagnon
Saft America, Inc.
107 Beaver Court
Cockeysville, MD 21030

Steve Chapel
Electric Power Research Institute
PO Box 10412
Palo Alto, CA 94303-0813

Jerome F. Cole
International Lead Zinc Research Organization, Inc.
PO Box 12036
Research Triangle Park, NC 27709-2036

John Cooley
Chugach Elec. Association, Inc.
5601 Minnesota Drive
PO Box 196300
Anchorage, AK 99519-6300

Peter Crimp
Alaska Energy Authority/AIDEA
813 West Northern Lights Boulevard
Anchorage, AK 99503

Mariesa L. Crow
University of Missouri-Rolla
School of Materials, Energy & Earth Resources
1870 Miner Circle
Rolla, MO 65409-0810
Chantal Robillard
Avestor
1560 de Coulomb
Boucherville, QC J4B 7Z7
Canada

Jim Drizos
Trojan Battery Company
12380 Clark Street
Santa Fe Springs, CA 90670

Paul Grems Duncan
Airak, Inc.
21641 Beaumeade Circle, Ste. 300
Ashburn, VA 20147

James P. Dunlop
Florida Solar Energy Center
1679 Clearlake Road
Cocoa, FL 32922-5703

Tien Q. Duong
U.S. Department of Energy
1000 Independence Avenue, SW
EE-2G, FORS
Washington, DC 20585

Steven Eckroad
EPRI
1300 West WT Harris Blvd.
Charlotte, NC 28262

Katsuji Emura
Sumitomo Electric USA, Inc
21221 S. Western Avenue, Suite 200
Torrance, CA 90501

William Erdman
Distributed Utility Associates
114 Lucille Way
Orinda, CA 94563
Michael Eskra
ElectroEnergy, Inc.
30 Shelter Rock Road
Danbury, CT 06810

Joseph H. Eto
Lawrence Berkeley National Laboratory
1 Cyclotron Road, MS 90-4000
Berkeley, CA 94720

Ndeye K. Fall
Energetics, Inc.
901 D Street SW, Suite 100
Washington, DC 20024

Mindi J. Farber de Anda
SAIC
8301 Greenboro Dr. E-5-7
McLean, VA 22102

Dave Feder
Electrochemical Energy Storage Systems, Inc.
35 Ridgedale Avenue
Madison, NJ 07940

Jim Fiske
Magtube, Inc.
5735-B Hollister Ave.
Goleta, CA 93117

Roy Forey
British Embassy
3100 Massachusetts Avenue, NW
Washington, DC 20008-3600

Imelda G. Francis
Just Do IT
21658 W. Ravine
Lake Zurich, IL 60047
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven Haagensen</td>
<td>Golden Valley Elec. Assoc., Inc. 758 Illinois Street PO Box 71249 Fairbanks, AK 99701</td>
<td>Scott Hassell</td>
<td>RAND Corporation 1200 South Hayes Street Arlington, VA 22202-5050</td>
</tr>
<tr>
<td>William V. Hassenzahl</td>
<td>Advanced Energy Analysis 1020 Rose Avenue Piedmont, CA 94611</td>
<td>Deborah A. Haught</td>
<td>U.S. Department of Energy 1000 Independence Avenue, SW EE-2D FORS Washington, DC 20585</td>
</tr>
<tr>
<td>Herbert Hayden</td>
<td>Arizona Public Service 400 North 5th Street PO Box 53999, MS8931 Phoenix, AZ 85004</td>
<td>John Herbst</td>
<td>University of Texas - Austin, CEM 1 University Station, R7000 Austin, TX 78712</td>
</tr>
<tr>
<td>Joseph Hoagland</td>
<td>TVA/Public Power Institute PO Box 1010, MS PPI-1A Muscle Shoals, AL 35662-1010</td>
<td>Ray Hobbs</td>
<td>Arizona Public Service 400 North 5th Street PO Box 5399, MS8931 Phoenix, AZ 85072-3999</td>
</tr>
</tbody>
</table>
Albert R. Landgrebe
International Electrochemical Sys & Technology
B14 Sussex Lane
Long Neck, DE 19966

Michael A. Lankford
Detroit Edison
15600 19 Mile Road
Clinton Township, MI 48038

Leonard Lansing
Satcon Power Systems
835 Harrington Court
Burlington, Ontario L7N 3P3
Canada

Bob Lasseter
University of Wisconsin
1415 Engineering Dr.
Madison, WI 53706

Matthew L. Lazarewicz
Beacon Power Corporation
234 Ballardvale Street
Wilmington, MA 01887-1032

Peter Lex
ZBB Technologies, Inc.
N93 W14475 Whittaker Way
Menomonee Falls, WI 53051

Bor Yann Liaw
University of Hawaii
1680 East West Road, Post 112A
Honolulu, HI 96822

Eric M. Lightner
U.S. Department of Energy
1000 Independence Avenue, SW
TD-2 FORS
Washington, DC 20585
Jagoron Mukherjee
MPR Associates, Inc.
320 King Street
Alexandria, VA 22311

Ron Myers
Imperial Oil Research Centre
3535 Research Road NW 2E-123
Calgary, Alberta T2L 2K8
Canada

Clyde Nagata
Hawaii Electric Light Co.
PO Box 1027
Hilo, HI 96720

Jerry Neal
Public Service Co. of New Mexico
Alvarado Square MS-BA52
Albuquerque, NM 87158

Greg Nelson
ZBB Technologies, Inc.
N93 W14475 Whittaker Way
Menomonee Falls, WI 53051-1653

David Nichols
AEP
4001 Bixby Road
Groveport, OH 43125

Benjamin Norris
Norris Energy Consulting Company
758 Illinois Street
Fairbanks, AK 99701

Ali Nourai
AEP
1 Riverside Plaza, 20th Floor
Columbus, OH 43215
Rusi Patel
Xenergy/KEMA consulting
3 Burlington Woods
Burlington, MA 01803

Kae Kawana Pohe
Nevarest Research
443 Nevada Highway
Boulder City, NV 89005

Anthony Price
Swanbarton Limited
Barton House, Swan
Malmesbury, Wiltshire SN160 0LJ
United Kingdom

Satish J. Ranade
New Mexico State University
Klish School of ECE
Box 3001, Dept. 3-O
Las Cruces, NM 88003

James E. Rannels
U.S. Department of Energy
1000 Independence Avenue, SW
EE-2J, FORS
Washington, DC 20585

Melissa Reading
Trinity Flywheel
6745D Preston Avenue
Livermore, CA 94550

James T. Reilly
Reilly Associates
PO Box 838
Red Bank, NJ 07701

Gregg Renkes
Reliable Power Inc.
2300 Clarendon Boulevard, Suite 401
Arlington, VA 22201
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradford Roberts</td>
<td>S&C Electric Company</td>
<td>5251 W. Franklin Drive, Franklin, WI 53132</td>
</tr>
<tr>
<td>Burkhard Römhold</td>
<td>ALSTOM Power, Inc.</td>
<td>2800 Waterford Lake Drive, Midlothian, VA 23112-3981</td>
</tr>
<tr>
<td>Bill Ropenecker</td>
<td>Trace Engineering Division</td>
<td>5916 195th Northeast, Arlington, WA 98223</td>
</tr>
<tr>
<td>Andrew L. Rosenthal</td>
<td>New Mexico State University</td>
<td>Box 30001/Dept. 3SOL, Las Cruces, NM 88003-8001</td>
</tr>
<tr>
<td>Neil P. Rossmeissl</td>
<td>U.S. Department of Energy</td>
<td>1000 Independence Avenue, SW EE-2E, FORS Washington, DC 20585</td>
</tr>
<tr>
<td>Alfred Rufer</td>
<td>Ecole Polytechnique Federale de Lausanne</td>
<td>STI - LEI, Station 11, Lausanne, VD CH1015 Switzerland</td>
</tr>
<tr>
<td>Michael C. Saft</td>
<td>Saft America, Inc.</td>
<td>107 Beaver Court, Cockeysville, MD 21030</td>
</tr>
</tbody>
</table>
Christian Sasse
ALSTOM Research & Technology Centre
PO Box 30, Lichfield Road
Stafford, ST17 4LN
United Kingdom

John Sawarin
McKenzie Bay International Ltd.
143 Windsor Avenue
London, Ontario N6C 2A1
Canada

Tony Schaffhauser
National Renewable Energy Laboratory
1617 Cole Boulevard, MS 6000
Golden, CO 80401

Robert B. Schainker
EPRI
3412 Hillview Avenue
PO Box 10412
Palo Alto, CA 94062

Rich Scheer
Energetics, Inc.
901 D Street SW, Suite 100
Washington, DC 20024

Robert Schmitt
GNB Industrial Power
3950 Sussex Avenue
Aurora, IL 60504

Susan M. Schoenung
Longitude 122 West, Inc.
1010 Doyle Street, Suite 10
Menlo Park, CA 94025

Fred H. Schwartz
Intellergy Corporation
6801 Sherwick Drive
Berkeley, CA 94705-1744
Mohammad Shahidehpour
Illinois Institute of Technology
3301 S. Dearborn
Chicago, IL 60616

Amit Singhal
NEI Corporation
201 Circle Drive, Suite 102/103
Piscataway, NJ 08854

Zachary Weiss
USCG MLCPAC(t)
1301 Clay Street, Suite 700N
Oakland, CA 94612-5023

Edward Skolnik
Energetics A Subsidiary of VSE Corporation
901 D Street SW, Suite 100
Washington, DC 20024

Copies: 20

Mark Skowronski
Electric Power Group
201 South Lake Avenue, Suite 400
Pasadena, CA 91101

R. B. Sloan
Energy United
PO Box 1831
Statesville, NC 28687

Daniel P. Smith
General Electric Global Research
PO Box 8, ES-142
Schenectady, NY 12301

J. Ray Smith
Lawrence Livermore National Laboratory
7000 East Avenue
PO Box 808
Livermore, CA 94551
Stan Sostrom
Power Engineers, Inc.
PO Box 777
3870 US Hwy 16
Newcastle, WY 82701

Stephen J. Steffel
Conectiv
Mail Stop Code 79NC58
Newark, DE 19714-9239

Larry Stoddard
Black & Veatch
11401 Lamar Avenue
Overland Park, KS 66214

John Stoval
Oak Ridge National Laboratory
PO Box 2008, Bldg. 3147, MS-6070
Oak Ridge, TN 37831-6070

Terry Surles
Electricity Innovation Institute (E2I)
3412 Hillview Avenue
PO Box 10412
Palo Alto, CA 94303-0813

Philip C. Symons
EECI
16534 W. Cibola Lane
Surprise, AZ 85387

Toyoo Ted Takayama
NGK Insulators, LTD
2-56 Suda-Cho
Mizuho-Ku, Nagoya-Shi 467-8530
Japan

Lewis Taylor
Mega-C Power Corporation
100 Caster Avenue
Vaughan, ON L4L 5Y9
Canada
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Address</th>
<th>City, State, Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne Taylor</td>
<td>U.S. Navy</td>
<td>Code 83B000D, NAWS</td>
<td>China Lake, CA 93555</td>
</tr>
<tr>
<td>Gerard H.C.M. Thijssen</td>
<td>KEMA Consulting Europe (KCE)</td>
<td>PO Box 9035</td>
<td>Arnhem, 6800ET</td>
</tr>
<tr>
<td>Dan T. Ton</td>
<td>U.S. Department of Energy</td>
<td>1000 Independence Avenue, SW</td>
<td>Washington, DC 20585</td>
</tr>
<tr>
<td>Edward Torrero</td>
<td>NRECA Cooperative Research Network</td>
<td>4301 Wilson Boulevard, SS9-204</td>
<td>Arlington, VA 22203-1860</td>
</tr>
<tr>
<td>Victor E. Udo</td>
<td>Conectiv</td>
<td>401 Eagle Run Road</td>
<td>Newark, DE 19714</td>
</tr>
<tr>
<td>Septimus van der Linden</td>
<td>Brulin Associates, L.L.C.</td>
<td>14418 Old Bond Street</td>
<td>Chesterfield, VA 23832</td>
</tr>
<tr>
<td>John P. Venners</td>
<td>Reliable Power, Inc.</td>
<td>2300 Clarendon Boulevard, Suite 401</td>
<td>Arlington, VA 22201</td>
</tr>
<tr>
<td>Rosalind Volpe</td>
<td>International Lead Zinc Research</td>
<td>Organization, Inc.</td>
<td>PO Box 12036</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Triangle Park, NC 27709-2036</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Company</td>
<td>Address</td>
<td>City, State, Zip</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Gerry Woolf</td>
<td>BEST Magazine</td>
<td>17 West Meston Ave. Rottingdean, East Sussex</td>
<td>Rottingdean, East Sussex BN2 8AL United Kingdom</td>
</tr>
<tr>
<td>Yoshiyasu Yamamoto</td>
<td>YC Consulting</td>
<td>6102 Shelby Street</td>
<td>Indianapolis, IN 46227</td>
</tr>
<tr>
<td>Henry Zaininger</td>
<td>Zaininger Engineering Co.</td>
<td>9959 Granite Crest Court Granite Bay, CA</td>
<td>Granite Bay, CA 95746</td>
</tr>
<tr>
<td>Warren Ziegler</td>
<td>Acumentrics Corporation</td>
<td>20 Southwest Park</td>
<td>Westwood, MA 02090</td>
</tr>
<tr>
<td>Bob Zrebiec</td>
<td>GE Industrial & Pwr. Services</td>
<td>640 Freesom Business Center King of Prussia, PA</td>
<td>19046</td>
</tr>
<tr>
<td>Copy</td>
<td>Mail Stop</td>
<td>Contact</td>
<td>Department</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>0614</td>
<td>Stan Atcitty</td>
<td>02522</td>
</tr>
<tr>
<td>1</td>
<td>0613</td>
<td>Robert W. Bickes, Jr.</td>
<td>02520</td>
</tr>
<tr>
<td>1</td>
<td>0512</td>
<td>Thomas E. Blejwas</td>
<td>02500</td>
</tr>
<tr>
<td>1</td>
<td>0753</td>
<td>Ward I.Bower</td>
<td>06218</td>
</tr>
<tr>
<td>5</td>
<td>0710</td>
<td>John D. Boyes</td>
<td>06251</td>
</tr>
<tr>
<td>1</td>
<td>0889</td>
<td>Jeffrey W. Braithwaite</td>
<td>01861</td>
</tr>
<tr>
<td>1</td>
<td>0614</td>
<td>Paul C. Butler</td>
<td>02522</td>
</tr>
<tr>
<td>1</td>
<td>0741</td>
<td>Christopher P. Cameron</td>
<td>06200</td>
</tr>
<tr>
<td>1</td>
<td>0521</td>
<td>Wendy Cieslak</td>
<td>01110</td>
</tr>
<tr>
<td>1</td>
<td>0614</td>
<td>Nancy H. Clark</td>
<td>02522</td>
</tr>
<tr>
<td>1</td>
<td>0710</td>
<td>Garth Corey</td>
<td>06251</td>
</tr>
<tr>
<td>1</td>
<td>0613</td>
<td>Daniel H. Doughty</td>
<td>02521</td>
</tr>
<tr>
<td>1</td>
<td>0614</td>
<td>Thomas D. Hund</td>
<td>02522</td>
</tr>
<tr>
<td>1</td>
<td>0613</td>
<td>Rudolph G. Jungst</td>
<td>02523</td>
</tr>
<tr>
<td>1</td>
<td>0753</td>
<td>Paul C. Klimas</td>
<td>06200</td>
</tr>
<tr>
<td>1</td>
<td>0521</td>
<td>Michael Prairie</td>
<td>02520</td>
</tr>
<tr>
<td>1</td>
<td>0710</td>
<td>John Stevens</td>
<td>06251</td>
</tr>
<tr>
<td>1</td>
<td>0741</td>
<td>Marjorie L. Tatro</td>
<td>06200</td>
</tr>
<tr>
<td>1</td>
<td>9018</td>
<td>Central Technical Files</td>
<td>8945-1</td>
</tr>
<tr>
<td>2</td>
<td>0899</td>
<td>Technical Library</td>
<td>09616</td>
</tr>
</tbody>
</table>