National Nuclear Security Administration
Knowledge Base Contributor’s Guide

Dorthe Carr

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.
Abstract

The National Nuclear Security Administration is creating a Knowledge Base to store technical information to support the United States nuclear explosion monitoring mission. This guide is intended to be used by researchers who wish to contribute their work to the Knowledge Base. It provides definitions of the kinds of data sets or research products in the Knowledge Base, acceptable data formats, and templates to complete to facilitate the documentation necessary for the Knowledge Base.
Acknowledgements

We wish to thank all the past contributors to the Knowledge Base. Your contributions have helped NNSA make high quality deliveries of the Knowledge Base to the Air Force Technical Applications Center and refine the guidance for Contributors who are working to have their data or other research products included in future Knowledge Base releases.

Special thanks to Dave Harris at Lawrence Livermore National Laboratory for his revisions that improved the flow of the text.

In addition, we thank the following people who reviewed this document: Leslie Casey, Mark Harris, Chris Young, Lisa Wilkening, David Gallegos, plus various Scientific Integrators and Product Integrators from four of the Department of Energy (DOE) National Laboratories: Sandia (SNL), Los Alamos (LANL), Lawrence Livermore (LLNL) and Pacific Northwest (PNNL). These organizations are part of the Nuclear Explosion Monitoring Research & Engineering Program (NEM R&E) http://www.nemre.nn.doe.gov sponsored by the National Nuclear Security Administration’s Office of Nonproliferation Research & Engineering (NA-22).

This work was supported by the United States Department of Energy under Contract DE-AC04-94AL8500. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.
Table of Contents

Abstract .. 3

Acknowledgements ... 4

1.0 Introduction ... 6

2.0 Product Integrator ... 7

3.0 Data Formats ... 8
 Event Data ... 8
 Parametric Grid Data ... 9
 Contextual Data .. 9
 Supporting Information ... 11
 Research Tools ... 11

4.0 Documentation and Metadata .. 12

5.0 Summary ... 14

6.0 References ... 15

7.0 Glossary of Terms .. 16

Appendix .. 18
1.0 Introduction

The National Nuclear Security Administration is creating a Knowledge Base (see Glossary, section seven) to store technical information to support the United States nuclear explosion monitoring mission. While the NNSA conducts a substantial research effort through its national laboratories (Los Alamos National Laboratory, Lawrence Livermore National Laboratory, Pacific Northwest National Laboratory and Sandia National Laboratories) supporting the monitoring mission, it recognizes that significant monitoring and relevant basic geophysical research is conducted by other USG departments, and by academic and private sector researchers. In order to develop the best possible product, the NNSA would like to draw upon the results of the wider research community in addition to those of the national laboratories. This guide was written to assist all who might wish to contribute to the national monitoring effort by providing data and research results for inclusion into the Knowledge Base.

NNSA has developed a formal process to facilitate the incorporation of data and research results into the Knowledge Base. Specific individuals, termed Product Integrators have been designated to assist Contributors with submission of their contributions. Recognizing that researchers produce results in a wide variety of formats, NNSA is making an effort to be as flexible as possible, and can accept data in a large number of commonly used formats. If a Contributor’s preferred format currently is not supported, the contributor can work with the Product Integrator to see if that format can be supported or if some arrangement can be made to reformat the data.

Including this Introduction, this guide has eight sections. Section two describes the role of the Product Integrator with whom the Contributors coordinate. The types of information in the Knowledge Base are described in section three, along with the currently supported formats for research products. Section four lists questions the Product Integrator will need to have answered in order to prepare the appropriate documentation, including metadata, required for any completed research product. A summary of this document is in section five, references are in section six, and a small Glossary of Terms is in section seven. The last section is an Appendix - “Contributor’s Research Product Summary for Product Integrators”. The items to be addressed in the summary are available as a template from the electronic version of this report. If you are reading a hardcopy of this report, you can find an electronic version at http://www.nemre.nn.doe.gov/nemre/kbase_info.html. Comments about this guide should be referred to the author (dbcarr@sandia.gov).
2.0 Product Integrator

The Product Integrator is a scientist who has a good overall understanding of the Knowledge Base, its structure, content and use. The primary function of the Product Integrator is to assist Contributors in submitting data and research results for incorporation into the Knowledge Base. The Product Integrator’s duty is to ensure that the information is formatted in a supported format and contains sufficient metadata and other supporting information to be usable in the Knowledge Base.

A Contributor can facilitate integration either by providing information in established formats for the Knowledge Base, or providing it in such a way that the Product Integrator can get the information into the correct format. This guide is intended to be used in consultation with a Product Integrator to provide the necessary information to clarify and expedite the process.

The name of the Product Integrator for a specific contract can be obtained from the Coordination web page, http://www.nemre.nn.doe.gov/coordination, which lists NNSA sponsored ground-based NEM sponsored R&E monitoring research contracts/awards as well as relevant contracts/awards funded by other sponsors.
3.0 Data Formats

Research products that are considered for inclusion in the Knowledge Base may consist of one or more data sets. A data set is a collection of data, usually all of the same kind. There are five broad categories of data sets in the Knowledge Base: event data, parametric grid data, contextual data, supporting information and research tools. In this section we will define each broad category, and provide information on supported formats.

3.1 Event Data

Event data covers research products that provide information about previous events recorded by a given monitoring technology or mix of technologies. They include information such as when and where the event took place, what caused the event, and often include the raw sensor waveforms for the event. These events may be used as a reference for comparison with a current event. They may also provide well understood ground truth for further processing tasks. The event data is not complete without its associated network/station information. Network/station information describes the sensor stations that recorded the event and ideally, provides long-term average information about the station performance and its background noise environment.

In the Knowledge Base, this information is stored in Oracle database tables following the schema posted on the web site http://www.nemre.nn.doe.gov/nemre/kbase_info.html. More information about these tables can be obtained from Product Integrators.

Event data can be provided in a number of ways. The preferred way is to provide the data as an export of the Oracle database tables, but comma or space delimited ASCII text files that include all the information in the table can be loaded into the database. The following bulletin formats currently are supported for submission of event data.

CSS3.0 from tables, flatfiles or a combination of the two
Harvard CMT catalog format
NORSAR EXP catalogs format
Nordic bulletin format
HYPO bulletin format (includes hypoinverse, hypo71, hypoellipse)
GSE2.0 bulletin format
ISC bulletin format
USGS bulletin formats (HDF, EHDF, EDR)
International Data Center Reviewed Event Bulletin (REB) format

In addition to the database tables, event data may also include flat files of waveform data and flat files for instrument response. The formats supported for waveform data are:

SAC Binary (Header version 6)
SEED/MINISEED
GSE2.0 types (INT, CM6, CM8)
CSS3.0 types (e1, e2, i2, g2, s3, t4, f4, s4, i4, t8, f8)
The formats supported for instrument response files are:

IRIS RESP formats
CSS instrument and sensor flat files referencing any kind of response type (fap or pole-zero).

For any other formats, the Contributor should contact their Product Integrator to see if the Contributor’s preferred format can be supported or if some arrangement can be made to reformat the data.

3.2 Parametric Grid Data

Parametric grid data are data associated with particular geographic locations, which can be interpolated onto grids of arbitrary geographic positions. Examples of types of data which could be used to generate parametric grids are travel-time corrections, surface wave group velocities and amplitude corrections. Ultimately for NNSA software, the interpolation is done using kriging based on geostatistical analysis of observed data, and to facilitate this the data and parameters for the kriging are stored in a custom format designed by the NNSA researchers.

Contributors do not need to use or conform to the custom format, however; they need only ensure that their observation data (travel times, amplitudes, etc.) can be provided to the Product Integrator in an ASCII electronic file. Each observation should include a measured value, an error associated with that measurement, and a tie to a ground truth location. Also, the ground truth location must be provided, and it should include hypocentral parameters as well as error estimates for those parameters. The Product Integrator will use the NNSA software to perform the geostatistical analysis of the Contributor’s data and to create the properly formatted files for use as part of the Knowledge Base.

3.3 Contextual Data

Contextual data is a “reference bookshelf” of information intended to provide a context in which to research and evaluate events. It is the broadest ranging of the categories of information providing geographic, geophysical and geopolitical knowledge. Examples include coastlines and political boundaries, mining activity information, crustal depth, locations of sensor network components, and the average speed of sound in the ocean for a given location. Contextual data commonly has a spatial component which ties attribute information of a data set feature to a known location on the surface of the Earth. Spatial relationships may be found to exist between events and contextual information, which can facilitate the evaluation of an event.

The GNEM R&E program employs geographic information system (GIS) software applications developed by ESRI (Environmental Systems Research Institute, Inc.) for the purposes of processing, organizing, and viewing Knowledge Base Contextual Data. These applications include ArcView GIS and Map Objects Java Edition. ESRI software supports ESRI file formats (i.e. shapefiles) as well as other data formats commonly used within the spatial data community. Following is a list of formats for use with the GNEM R&E GIS applications. If necessary, Contributors are encouraged to contact the Product Integrator to discuss alternatives.
If a *Contributor* is providing imagery data, ArcView GIS supports the following standard formats:

- ARC Digitized Raster Graphics (ADRG) (requires ArcView's ADRG Image Support extension)
- BMP
- BSQ, BIL and BIP
- Compressed ARC Digitized Raster Graphics (CADRG) (requires ArcView's CADRG Image Support extension)
- Controlled Image Base (CIB) (requires ArcView's CIB Image Support extension)
- ERDAS GRID (ESRI proprietary data format)
- IMAGINE (requires ArcView’s IMAGINE image extension)
- IMPELL Bitmaps (Run-length compressed files)
- Image catalogs
- JPEG (requires ArcView’s JPEG image extension)
- MrSID (requires ArcView’s MrSID image extension)
- National Image Transfer Format (NITF) (requires ArcView's NITF Image Support extension)
- Sun rasterfiles
- TIFF/GeoTIFF
- TIFF/LZW compressed (requires optional software library for viewing)

ArcView GIS supports the use of vector and raster data in any of the following formats:

- ArcView shapefiles (.shp)
- ARC/INFO coverages
- ARC/INFO interchange files (.e00)
- ARC/INFO grids
- USGS Digital Elevation Model (DEM) raster files
- ASCII raster files
- Binary raster files
- CAD drawings
- ArcSDE data
- TINs (Requires purchase of the 3D Analyst extension)
- Vector Product Format data (NIMA data format)

ArcView also supports access to tabular information:

- ARC/INFO INFO tables
- Oracle (or other database server) tables (export format or flat files)
- dBASE III and dBASE IV files
- Comma- or tab-separated text files

1 Also supported by Map Objects Java Edition
3.4 Supporting Information

Supporting information are models, algorithms or papers that are available for reference event data, parametric grid data or contextual data. Some examples of these kinds of supporting information are travel time tables, velocity models, dispersion tables, attenuation tables, parameter files, discrimination routines, magnitude formulas, attenuation formulas, meteorological models and propagation models.

Since the formats for supplemental information can be variable, the Contributor needs to coordinate with their Product Integrator on the best format to use. In general, files written in Word, Word Perfect or Framemaker, plus ASCII text files are supported.

3.5 Research Tools

Research Tools are used to help create and access research products in the Knowledge Base. They force consistency in research products from a variety of Contributors, and promote better testing of the research products by the Product Integrators in their Scientific Integrator role, KB Integrators and the KB customer.

A research tool can be written in the language of the Contributor’s choice. Contributors are encouraged to develop any research tools in an environment similar to the Product Integrator’s. All the files needed to compile the program need to be packaged together, along with the instructions for compiling the program and a user’s manual for the tool. In addition, the Product Integrator will need to know the environment under which the tool was developed. This includes the required hardware and required software: OS, OpenGL, compilers, etc.
4.0 Documentation and Metadata

Every Contributor of a research product will need to provide documentation on their product. This documentation will be used by the Product Integrator to write the research product documentation and metadata necessary if the research product is included in the Knowledge Base.

Metadata answers the questions who, what, when, where, why and how about every facet of the research product that is being documented. It describes the origins of the research product and tracks any changes that are made to it. For example, the legend of a map is considered pure metadata. The legend describes who published the map, when it was published, what kind of map it is and what it describes, where the information is (i.e. spatial reference), and how the map was compiled (scale and accuracy). The same kind of descriptive information is needed for all research products. The metadata for the Knowledge Base is based on the “Content Standards for Digital Geospatial Metadata”, the standard developed by the Federal Geographic Data Committee (FGDC) in 1998, which can be found at http://www.fgdc.gov/metadata/contstan.html. The FGDC document is the standard for metadata that Federal agencies are instructed to use to document new geospatial data. A committee at Sandia National Laboratories (SNL) went through the FGDC standard and chose the pieces of metadata necessary to adequately describe the data sets expected in the Knowledge Base.

For a Product Integrator to be able to write both the necessary documentation and enter the metadata into the Knowledge Base Catalog, a Contributor must answer the following questions, and give an electronic copy to the Product Integrator. Please consult with your Product Integrator on the level of useful detail for each product summary (e.g. one for each map or one for the overall research product). You will need to use one of the following word processors: Word, Word Perfect or Framemaker. Templates can be found in the Appendix.

1. Information on the Contributor - name, organization, address, phone, fax and email
2. Name and Version of the research product
3. If there is an associated document or report, provide its title in full bibliographic citation form
4. Provide the research contract number and name of the sponsoring organization
5. Provide a short paragraph with a high level description of the research product.
6. List any guidelines or warnings about the research product the user needs to be aware of (caveats).
7. List any information the user needs to be aware of to use the research product in a proper manner (dependencies).
8. If appropriate for the research product, list one or more geographic names (e.g. North America, Mexico) that describe the location covered by the research product.
9. List one or more common words or phrases that can be used to describe the subject of the research product.
10. If appropriate for the research product, list the geographic bounding coordinates (upper and lower bounds)
11. If appropriate for the research product, list the latitude and longitudes resolution.
12. If appropriate for the research product, indicate the vertical frame of reference (depth or elevation), the units used and the resolution.
13. For a \textit{research product} that is event data and/or parametric grid data, indicate the time frame in which the events occurred. For example, if the \textit{research product} is a set of amplitude measurements on events that occurred between January 1, 1995 and October 15, 1997, please list the time frame as start date = 1/1/95 and end date = 10/15/97.

14. For a \textit{research product} that is contextual data, supplemental information or research tools, provide the publication/release date.

15. List any people and/or organizations that contributed to the \textit{research product}.

16. Describe the processing environment within which the \textit{research product} was produced. This should include the hardware, the version of the operating system and versions of software.

17. Define the system of objects used to represent space in the \textit{research product} as point, vector or raster.

18. List all the sources (title, originator, date, publication, if any) used in developing this \textit{research product}. These sources should include the raw data, computer source code and methodology papers. Consider this to be the “Data” portion of a “Data and Methods” section in a paper.

19. Describe the steps that were taken to go from the raw data to the finished product. Consider this to be the “Methods” portion of a “Data and Methods” section in a paper.

20. Discuss the tests and results obtained for determining the accuracy of the values in the \textit{research product}.

21. Provide information about omissions, selection criteria, generalizations, definitions used and any other rules used to derive the \textit{research product}.

22. List all the electronic files that make up the \textit{research product}.

In addition to answering the questions, if there is a report on the \textit{research product}, the \textit{Contributor} should also provide an electronic (if possible) copy to the \textit{Product Integrator}.
5.0 Summary

The Knowledge Base Contributor’s Guide is intended to facilitate getting high quality input from the Contributor to the Product Integrator. Key points that a reader should get by reading this guide are:

1. The Product Integrator is the point of contact for a Contributor. (Section 2.0)

2. There are five broad categories of data sets that are included in the Knowledge Base: event data, parametric grid data, contextual data, supporting information and research tools. A research product consists of one or more data sets. There are standard formats for the different categories of data sets. (Section 3.0)

3. In order for the Product Integrator to complete the required documentation and metadata for a research product, there are specific questions about the research product and how it was produced that must be answered by the Contributor. The Contributor can use one of the templates provided in this document to provide the answers to the questions. (Section 4.0, Appendix).
6.0 References

7.0 Glossary of Terms

The Knowledge Base is among other things, an internally consistent construct for which we have chosen to use specialized definitions of words or phrases (highlighted with italics). This glossary provides definitions for these, and it should be referred to as needed by the reader when an italized term is encountered in the guide. A more extensive glossary of terms associated with integration of research products into the Knowledge Base can be found in Gallegos et al. (2002).

Contributor

An individual or a group of individuals creating data sets and incorporating them into research products for delivery to a Product Integrator. A Contributor may be from a NNSA or DOE laboratory, a university or from the private sector.

data set

A data set is a collection of data usually all of the same kind. The five broad categories of data sets are event data, parametric grid data, contextual data, supporting information and research tools. A collection of data sets frequently makes up a research product.

Knowledge Base

An NNSA-sponsored integrated, organized collection of research products and Information Products used for automated regionalization and analyst efforts delivered to the USNDC.

KB Coordinator

An individual or group responsible for the oversight and integration of data sets and research products into Information Product deliveries for potential KB population. The KB Coordinator works closely with and provides Information Products to the KB Integrator. For the definition of the KB Coordinator’s duties, see Gallegos et al. (2002).

KB Integrator

Individuals who combine the Information Products into the KB product. SNL acts as the KB Integrator. For the definition of the KB Integrator’s duties, see Gallegos et al. (2002).

metadata

Information that describe the content, quality, condition and other characteristics of data, especially geospatial data. The metadata for the Knowledge Base is based on the “Content Standard for Digital Geospatial Metadata”, http://www.fgdc.gov/metadata/contstan.html.

Product Integrator

A scientist assigned by the NNSA to be responsible for coordinating with specific research and development contractors, particularly those not funded by NNSA. The Product Integra-
tor’s responsibility is to determine whether the contract’s results and products could or should be considered for incorporation into the Knowledge Base and to facilitate transfer of the information through a KB Coordinator. For the definition of the Product Integrator’s duties, see Gallegos et al. (2002).

research product

A product of contracted research. A research product frequently consists of one or more data sets and associated software. Each research product must have corresponding metadata. Typically, several research products go into a single Information Product.
Appendix - Contributor’s Research Product Summary for Product Integrators

For a Product Integrator to be able to write both the necessary documentation and enter the meta-data into the Knowledge Base Catalog, a Contributor needs to answer the following questions, and give an electronic copy to their Product Integrator. There are three different templates that can be used: Microsoft Word, Word Perfect and Framemaker.

1. Provide the following information:
 - Contributor’s Name:
 - Organization:
 - Mailing Address (including mail code if applicable):
 - Phone:
 - Fax:
 - Email:

2. Provide the name and version of the research product:

3. If there is also an associated documentation report, provide its title in full bibliographic citation form.

4. Provide the research contract number and name the sponsoring organization for the research product.

5. Provide a short paragraph with a high level description of the research product.

6. Please list any guidelines or warnings about the research product the user needs to be aware of (i.e. caveats):
7. Please list any information the user needs to be aware of to use the research product in a proper manner (i.e. dependencies):

8. If appropriate for the research product, list one or more geographic names (e.g. North America, Mexico) that describe the location addressed by the research product:

9. List one or more common words or phrases that can be used to describe the subject of the research product:

10. If appropriate for the research product, list the geographic bounding coordinates. (0 to +90 for northern latitude, 0 to -90 for southern latitudes; 0 to +180 for eastern longitudes, 0 to -180 for western longitudes):
 - Upper Bound Latitude Coordinate:
 - Lower Bound Latitude Coordinate:
 - Eastern Most Longitude Coordinate:
 - Western Most Longitude Coordinate:

11. If appropriate for the research product, list the latitude and longitudes resolution:
 - Latitude resolution:
 - Longitude resolution:

12. If appropriate for the research product, indicate the vertical frame of reference (depth or elevation), the units used and the resolution:
 - Frame of reference:
 - Units used (km, m, etc.):
 - Resolution:

13. For a research product that is event data and/or parametric grid data, indicate the time frame in which the events occurred. For example, if the research product is a set of amplitude measurements on events that occurred between January 1, 1995 and October 15, 1997, please list the time frame as start date = 1/1/95 and end date = 10/15/97.
 - Start date:
 - End date:

14. For a research product that is contextual data, supplemental information or research tools, provide the publication/release date:
 - Publication date:
15. List any people and/or organizations that contributed to the research product:

16. Describe the processing environment within which the research product was produced. This should include the hardware, the version of the operating system and versions of software.

17. Define the system of objects used to represent space in the research product as point, vector or raster:

18. List all the sources (title, originator, date, publication, if any) used in developing this research product. These sources should include the raw data, computer source code and methodology papers. Consider this to be the “Data” portion of a “Data and Methods” section in a paper.

19. Describe the steps that were taken to go from the raw data to the finished product. Consider this to be the “Methods” portion of a “Data and Methods” section in a paper.
20. Discuss the tests and results obtained for determining the accuracy of the values in the research product:

21. Provide information about omissions, selection criteria, generalizations, definitions used and any other rules used to derive the research product:

22. Please list all the electronic files that make up the research product.
Knowledge Base Contributor’s Guide

Distribution

Sandia National Laboratories Internal:
110 MS1138 Dorthe Carr, 6533
1 MS9018 Central Tech Files, 8945-1
2 MS0899 Technical Library, 9616
1 MS0612 Review & Approval Desk, 9612