Practical Approximations to a Troposkien by Straight-Line and Circular-Arc Segments

G. E. Reis, B. F. Blackwell
Issued by Sandia Laboratories, operated for the United States Atomic Energy Commission by Sandia Corporation.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

SF 1004-DP(2-74)
PRACTICAL APPROXIMATIONS TO A TROPOSKIEN
BY STRAIGHT-LINE AND CIRCULAR-ARC SEGMENTS

G. E. Reis
Aeroballistics Division 5625
B. F. Blackwell
Reentry Vehicle Aerothermodynamics Division 5628
Sandia Laboratories, Albuquerque, NM 87115

ABSTRACT
Curves made up of circular arcs and straight lines which approximate
troposkien of interest in the design of crosswind-axis wind turbines have
been calculated for a variety of constraints. These curves were fitted to
the troposkien by numerical iteration by using both a least-squares and a
least-maximum fit. Curves produced with the least-maximum spacing criteria
approximate the troposkien more closely than curves developed with the
least-squares goodness-of-fit criteria.
ACKNOWLEDGMENTS

The authors would like to thank Louis V. Feltz, 5623, for the original suggestion of approximating the troposkien with a circular arc and a straight line; Peter C. Kaestner, 5625, for programming assistance; and Walton E. Williamson, 5625, for assistance with the minimization techniques.
CONTENTS

List of Symbols ... 5
Introduction .. 7
Fitting Procedure ... 9
Results and Comments ... 12
APPENDIX A -- Derivation of the Equations 23
APPENDIX B -- Sequence of Calculations Used in the Computer
Code MAXDIF ... 31
References ... 33

ILLUSTRATIONS

Figure

1. Artist's conception of a Darrieus-type vertical-axis
 wind turbine ... 7
2. Coordinate system used to describe the troposkien and the
 fitted curve ... 8
3. Comparison of troposkien and fitted curve: \(\beta = 0.99458568, \)
 \(Z_m = 1, R_m = \beta, \) equal \(r \) increments, minimax spacing 17
4. Comparison of troposkien and fitted curve: \(\beta = 0.99458568, \)
 \(Z_m = 1, R_m = \beta, \) equal \(r \) increments, least-square spacing 17
5. Comparison of troposkien and fitted curve: \(\beta = 0.99458568, \)
 \(Z_m = 1, R_m = \beta, \) equal-angle increments, least-square spacing 18
6. Comparison of troposkien and fitted curve: \(\beta = 0.99458568, \)
 \(Z_m = 1, R_m \) unconstrained, equal-angle increments,
 minimax spacing ... 18
7. Comparison of troposkien and fitted curve: \(\beta = 0.99458568, \)
 \(Z_m \) unconstrained, \(R_m = \beta, \) equal-angle increments, minimax spacing .. 19
8. Comparison of troposkien and fitted curve: \(\beta = 0.99458568, \)
 \(Z_m \) unconstrained, \(R_m \) unconstrained, equal-angle increments,
 minimax spacing ... 19
9. Comparison of troposkien and fitted curve: \(\beta = 0.8 - 1.2, \)
 \(Z_m \) unconstrained, \(R_m \) unconstrained, equal-angle increments,
 minimax spacing ... 20
ILLUSTRATIONS
(cont)

Figure Page
10. Plot of the calculated values of Z_m, R_m, Z_j, R_j, R, and the minimax spacing between the normalized troposkien and the fitted curves as a function of β for $0.8 \leq \beta \leq 1.2$ 20

TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Coordinates of the Normalized Troposkien of Maximum Swept Area for a Given Arc Length Between the Points of Attachment</td>
<td>13</td>
</tr>
<tr>
<td>II</td>
<td>Tabulation of the Calculated Results for a Normalized Troposkien of Maximum Swept Area for a Given Arc Length Between the Points of Attachment</td>
<td>14</td>
</tr>
<tr>
<td>III</td>
<td>Tabulation of the Parameters R, R_m, Z_m, Maximum d, R_j and Z_j for Curves Fitted to Normalized Troposkien With β's of 0.8, 0.9, 1.0, 1.1, 1.2, and 0.99458568</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\(a \) - Half the distance between the points of attachment of a troposkien on the axis of rotation; normalizing constant

\(a_R, b_R \) - Constants in the equation for the straight-line portion of the fitted curve

\(a_n, b_n \) - Constants in the equation for the straight line normal to a troposkien

\(b \) - Maximum deflection of the troposkien from the axis of rotation

\(d \) - Distance between the normalized troposkien and the normalized fitted curve measured normal to the troposkien

\(F(\phi, k) \) - Elliptic integral of the first kind with argument \(\phi \) and parameter \(k \)

\(k \) - Parameter in the elliptic integral (see Eq. (A.34))

\(m_t \) - Slope of the normalized troposkien in the first quadrant

\(r, z \) - Normalized coordinates used to describe the troposkien (see Figure 2)

\(r_c, z_c \) - \(r \) and \(z \) coordinates of the circular-arc portion of the fitted curve

\(r_L, z_L \) - \(r \) and \(z \) coordinates of the straight-line portion of the fitted curve

\(r_n, z_n \) - \(r \) and \(z \) coordinates of a line normal to the troposkien

\(r_t, z_t \) - \(r \) and \(z \) coordinates of the troposkien

\(R \) - \(r \) coordinate of the center of the circular-arc portion of the fitted curve

\(R_i, Z_i \) - \(r \) and \(z \) coordinates of the point at which a line normal to the troposkien intersects the fitted curve

\(R_j, Z_j \) - \(r \) and \(z \) coordinates of the point at which the circular-arc and straight-line segments of the fitted curve meet

\(R_m \) - \(r \) coordinate of the point at which the fitted curve meets the \(r \) axis
\(R_{t',t} \) - \(r \) and \(z \) coordinates of the point at which the troposkien normal intersects the troposkien

\(Z_m \) - \(z \) coordinate of the point at which the fitted curve intersects the \(z \) axis

\(\beta \) - \(b/a \)
Introduction

A troposkien,\(^1,2\) the shape assumed by a perfectly flexible uniform cable when attached at two points on a vertical axis and then spun about this axis in the absence of aerodynamic and gravitational forces, has practical application in the design of the Darrieus type\(^3,4\) of crosswind-axis wind turbine. The blades, if fabricated with a troposkien profile, will theoretically be free of bending stress caused by centrifugal loads. Any appreciable deviation from the troposkien shape will induce bending stresses, and practical experience has shown that these bending stresses can be large enough to cause blade yield. An artist's conception of the Darrieus wind turbine is shown in Figure 1.

![Figure 1. Artist's conception of a Darrieus-type vertical-axis wind turbine](image)

Mathematically, the troposkien shape can be expressed in terms of elliptic integrals.\(^1\) However, fabrication of the troposkien shape may not be economically practical because the use of numerically controlled machining techniques would
probably be required. Therefore, it may be advantageous to approximate the troposkien shape with a shape or combination of shapes which are simpler to fabricate. One approximation is the parabola proposed by Templin\(^3\) for an analytic study of the aerodynamic performance of the Darrieus wind turbine. However, the problems connected with the manufacturing of a parabolic wind turbine blade are no simpler than those associated with a troposkien blade. As an alternative it has been suggested\(^4\) that the troposkien be approximated by two straight lines joined to a circular arc, two shapes which are reasonably simple to manufacture. This type of approximation is shown in Figure 2, where all lengths have been normalized by \(a\), half the distance between the attachment points on the axis of rotation.

![Diagram of Coordinate System and Approximations](image)

Figure 2. Coordinate system used to describe the troposkien and the fitted curve

The purpose of this report is to explore mathematically several straight-line/circular-arc approximations to troposkiens. As was shown in Reference 2, these troposkiens lie in the range of \(\beta\)'s between 0.8 and 1.2, where \(\beta\) is the ratio of the maximum blade displacement from the axis of rotation to one-half the spacing between the attachment points on the axis of rotation. The troposkien of maximum swept
area* for a given blade length between the points of attachment on the axis of rotation occurs at $\beta = 0.99458568$. This maximum swept area troposkien is used as the reference troposkien in the present study; however, troposkiens with β's of 0.8, 0.9, 1.0, 1.1, and 1.2 are also examined.

Fitting Procedure

Figure 2 presents a schematic of a troposkien and its straight-line/circular-arc approximation. The axis of rotation is the z-axis and, because the troposkien is symmetric about the r axis, the center of the circular portion of the fitted curve lies on the r axis. In this figure, the troposkien is shown as a solid line and the fitted curve as a broken line. Also, in order to keep the present analysis somewhat general, all lengths used in the following discussion have been normalized by a, the distance between the origin in the r,z coordinate system and the point at which the troposkien intersects the z axis. If the maximum displacement of the troposkien from the z axis, which occurs at $z=0$, is labeled b, it is possible to characterize any particular troposkien by means of the ratio

$$\beta = \frac{b}{a}. \quad (1)$$

With regard to the fitted curve, the center of the circular arc lies on the r axis at a distance R from the origin of the r,z coordinate system, and the intersections of the fitted curve with the r and z axes occur at distances of R_m and Z_m along the respective axes. In addition, it is assumed that the slope of the fitted curve is continuous at the point where the circular arc and the straight line meet.

Several criteria can be used as tests for "goodness-of-fit" between the troposkien and the fitted curve. Two of the more common, the ones considered here, are (1) the least-maximum difference between the two curves (the so-called minimax) and (2) the least root-mean-square of the spacings between the two curves, where the spacings are calculated at selected points along the troposkien. The word "difference"

*The swept area is the area common to the volume swept out by a rotating flexible cable (which gives rise to the troposkien shape) and a plane containing the axis of rotation. This area is 4 times the area between the r and z axes and the troposkien in Figure 2.
as used here is not clearly defined and could in fact refer to the differences in either the z coordinates or the r coordinates of the two curves or to some combination of them. The one difference which appears to best describe the closeness of the two curves is the magnitude of the separation between them measured normal to the troposkien; this difference is used in this study. In terms of the notation in Figure 2, this last difference, d, is

$$d = \left[\left(Z_i - Z_t \right)^2 + \left(R_i - R_t \right)^2 \right]^{1/2},$$

where the subscripts t and i refer to the troposkien and to the fitted curve, respectively. The point (Z_i, R_i) is the point of intersection of the fitted curve and the line normal to the troposkien which passes through the point (Z_t, R_t) on the troposkien. The fitted curve intersects the z axis at $Z_m, 0$ and the r axis at $0, R_m$.

Because the center of the circular-arc segment of the fitted curve lies on the r-axis, the two parameters R and R_m uniquely determine the circle which produces the circular portion of the fitted curve. Also, the point $(Z_m, 0)$ and one additional point are sufficient for determining the straight-line portion of the fitted curve. The relationship obtained by applying the condition that the slope must be continuous at the circular-arc/straight-line junction permits this second point (specifically, the point of juncture between the circular arc and the straight line) to be expressed in terms of R, Z_m, and R_m. Consequently, the three parameters R, Z_m, and R_m uniquely determine a line made up of a circular arc and a straight line whose slopes are equal at their junction.

In these equations, β is assumed to be given; in the various computer runs, Z_m and R_m are either to be determined by the numerical calculations or are to be constrained so that the fitted curve intersects the troposkien at the point where the troposkien crosses the z and r axes, respectively. In all cases the numerical values of Z_j, R_j, and R are to be determined by the calculations.

The equations used in the computer program for determining the best fit (derived in Appendix A) are listed below for convenience.

Troposkien equations:

$$\beta = \frac{b}{a} = \frac{2k}{\left(1 - k^2\right)F\left(\frac{z}{2k}\right)}$$

(3)
Fitted curve:

\[
Z_t = 1 - \frac{F\left(\sin^{-1}\left(\frac{R_t}{\beta}\right);k\right)}{\sqrt{\pi / 2}k}
\]

(4)

\[
\frac{dx_t}{dz_t} \bigg|_{R_t} = -\frac{2k}{1 - k^2}\left[\left(\frac{R_t^2}{\beta^2} - 1\right)\left(\frac{R_t^2k^2}{\beta^2} - 1\right)\right]^{1/2} = m_t
\]

(5)

Circular-arc segment:

\[
Z_j = \left[\frac{Z_m(R_m - R)}{R^2 + Z_m^2}\right] \left\{ 1 + \left(\frac{R^2 + Z_m^2}{Z_m^2(R_m - R)^2}\right)^{1/2} \right\}
\]

(6)

\[
R_j = R + \left[\frac{Z_mZ_j - (R_m - R)^2}{R}\right]
\]

(7)

Straight-line segment:

\[
r_c = \left[\left(R_m - R\right)^2 - z_c^2\right]^{1/2} + R
\]

(8)

Troposkien normal-fitted curve intercepts:

When the troposkien normal intercepts the circular arc segment:

\[
Z_i = \left[\frac{Z_t + m_t(R_t - R)}{1 + m_t^2}\right] \left\{ 1 + m_t \left(1 + m_t^2\right)\left[\frac{R_m - R}{Z_t + m_t(R_t - R)}\right]^2 - 1\right\}^{1/2}
\]

(10)
When the troposkien normal intercepts the straight line segment:

\[R_i = R_t - \left(\frac{Z_i - Z_m}{m_t} \right) \] (11)

When the troposkien normal intercepts the straight line segment:

\[Z_i = \left[\frac{(Z_m - Z_t - m_t R_t)(R_j - R)}{m_t Z_j - (R_j - R)} \right] + Z_m \] (12)

\[R_i = \left[\frac{Z_j(Z_m - Z_i)}{R_j - R} \right] \] (13)

Troposkien-fitted curve spacings:

\[d = \left((Z_i - Z_t)^2 + (R_i - R_t)^2 \right)^{1/2} \] (14)

The details of the logic used to calculate the various quantities are given in Appendix B.

Results and Comments

Values of \(R \), \(Z_m \), and \(R_m \) that satisfy the least-squares and/or least-maximum-spacing goodness-of-fit criteria have been determined for several \(\beta \)'s between 0.8 and 1.2 and for a variety of constraints on \(Z_m \) and \(R_m \). The calculations were performed on a CDC-6600 computer by means of the code MAXDIF.

The numerical results of these calculations are listed in Tables I through III. Table I gives the coordinates for the normalized troposkien of maximum swept area for a fixed blade length at 100 points along the curve. For this case \(\beta = 0.99458568 \). Table II presents the geometrical characteristics of the straight-line/circular-arc combination which approximates the normalized troposkien of \(\beta = 0.99458568 \). These data were calculated at either 100 or 1000 points along the curve by using a least-maximum separation or a least-squares goodness-of-fit criterion and various constraints on \(Z_m \) and \(R_m \). Parameters calculated for circular-arc/straight-line approximations to troposkien with \(\beta \)'s between 0.8 and 1.2, using a minimax goodness-of-fit criterion, are listed in Table III.
<table>
<thead>
<tr>
<th>z</th>
<th>x</th>
<th>z</th>
<th>x</th>
<th>z</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>0.000000</td>
<td>0.6775324</td>
<td>0.5196696</td>
<td>0.3270547</td>
<td>0.8861823</td>
</tr>
<tr>
<td>0.990935</td>
<td>0.0156223</td>
<td>0.6680150</td>
<td>0.5329257</td>
<td>0.3164786</td>
<td>0.8931654</td>
</tr>
<tr>
<td>0.9818699</td>
<td>0.017407</td>
<td>0.6584729</td>
<td>0.5460502</td>
<td>0.3058728</td>
<td>0.8999280</td>
</tr>
<tr>
<td>0.9728031</td>
<td>0.0198514</td>
<td>0.6489053</td>
<td>0.5590401</td>
<td>0.2952376</td>
<td>0.9056686</td>
</tr>
<tr>
<td>0.9637339</td>
<td>0.0224506</td>
<td>0.6393119</td>
<td>0.5718920</td>
<td>0.2845738</td>
<td>0.9127856</td>
</tr>
<tr>
<td>0.9546619</td>
<td>0.0250343</td>
<td>0.6296920</td>
<td>0.5846024</td>
<td>0.2738183</td>
<td>0.9188774</td>
</tr>
<tr>
<td>0.9455861</td>
<td>0.0275988</td>
<td>0.6200451</td>
<td>0.5971694</td>
<td>0.2631623</td>
<td>0.9247424</td>
</tr>
<tr>
<td>0.9365059</td>
<td>0.0301402</td>
<td>0.6103708</td>
<td>0.6095086</td>
<td>0.2524160</td>
<td>0.9303792</td>
</tr>
<tr>
<td>0.9274204</td>
<td>0.0326546</td>
<td>0.6006686</td>
<td>0.6218574</td>
<td>0.2416436</td>
<td>0.9357665</td>
</tr>
<tr>
<td>0.9183291</td>
<td>0.0351383</td>
<td>0.5909380</td>
<td>0.6339724</td>
<td>0.2308458</td>
<td>0.9409629</td>
</tr>
<tr>
<td>0.9092311</td>
<td>0.1555875</td>
<td>0.5811786</td>
<td>0.6459317</td>
<td>0.2200235</td>
<td>0.9459072</td>
</tr>
<tr>
<td>0.9001258</td>
<td>0.1670942</td>
<td>0.5713899</td>
<td>0.6577313</td>
<td>0.2091775</td>
<td>0.9506180</td>
</tr>
<tr>
<td>0.8910123</td>
<td>0.1786668</td>
<td>0.5615716</td>
<td>0.6693698</td>
<td>0.1983087</td>
<td>0.9550943</td>
</tr>
<tr>
<td>0.8818900</td>
<td>0.2016893</td>
<td>0.5517233</td>
<td>0.6808407</td>
<td>0.1874180</td>
<td>0.9593350</td>
</tr>
<tr>
<td>0.8727501</td>
<td>0.219621</td>
<td>0.5418446</td>
<td>0.6921446</td>
<td>0.1765064</td>
<td>0.9633899</td>
</tr>
<tr>
<td>0.8636159</td>
<td>0.2321814</td>
<td>0.5319353</td>
<td>0.7032783</td>
<td>0.1655749</td>
<td>0.9671052</td>
</tr>
<tr>
<td>0.8544626</td>
<td>0.2473434</td>
<td>0.5219949</td>
<td>0.7142381</td>
<td>0.1546245</td>
<td>0.9706328</td>
</tr>
<tr>
<td>0.8452977</td>
<td>0.2624444</td>
<td>0.5120233</td>
<td>0.7250218</td>
<td>0.1436564</td>
<td>0.9739210</td>
</tr>
<tr>
<td>0.8361203</td>
<td>0.2774806</td>
<td>0.5020202</td>
<td>0.7356265</td>
<td>0.1326717</td>
<td>0.9769688</td>
</tr>
<tr>
<td>0.8269297</td>
<td>0.2924463</td>
<td>0.4919853</td>
<td>0.7460497</td>
<td>0.1216714</td>
<td>0.9797756</td>
</tr>
<tr>
<td>0.8177253</td>
<td>0.3073439</td>
<td>0.4819185</td>
<td>0.7562889</td>
<td>0.1106560</td>
<td>0.9823407</td>
</tr>
<tr>
<td>0.8085063</td>
<td>0.3221636</td>
<td>0.4718195</td>
<td>0.7663414</td>
<td>0.0996291</td>
<td>0.9846634</td>
</tr>
<tr>
<td>0.7992720</td>
<td>0.3369039</td>
<td>0.4616884</td>
<td>0.7762049</td>
<td>0.0885895</td>
<td>0.9867431</td>
</tr>
<tr>
<td>0.7900218</td>
<td>0.3515610</td>
<td>0.4515249</td>
<td>0.7858769</td>
<td>0.0775393</td>
<td>0.9885793</td>
</tr>
<tr>
<td>0.7807550</td>
<td>0.3661314</td>
<td>0.4413291</td>
<td>0.7953549</td>
<td>0.0664798</td>
<td>0.9901717</td>
</tr>
<tr>
<td>0.7714708</td>
<td>0.3806115</td>
<td>0.4311008</td>
<td>0.8046367</td>
<td>0.0554122</td>
<td>0.9915197</td>
</tr>
<tr>
<td>0.7621687</td>
<td>0.3949976</td>
<td>0.4208401</td>
<td>0.8137200</td>
<td>0.0443378</td>
<td>0.9926231</td>
</tr>
<tr>
<td>0.7528479</td>
<td>0.4092803</td>
<td>0.4105470</td>
<td>0.8226025</td>
<td>0.0332581</td>
<td>0.9934816</td>
</tr>
<tr>
<td>0.7435077</td>
<td>0.4234740</td>
<td>0.4002216</td>
<td>0.8312828</td>
<td>0.0221743</td>
<td>0.9940949</td>
</tr>
<tr>
<td>0.7341476</td>
<td>0.4375572</td>
<td>0.3898641</td>
<td>0.8397565</td>
<td>0.0110879</td>
<td>0.9946630</td>
</tr>
<tr>
<td>0.7247669</td>
<td>0.4515324</td>
<td>0.3794745</td>
<td>0.8480237</td>
<td>0.0000000</td>
<td>0.9945857</td>
</tr>
<tr>
<td>0.7153650</td>
<td>0.4653963</td>
<td>0.3690531</td>
<td>0.8560817</td>
<td>0.0000000</td>
<td>0.9945857</td>
</tr>
<tr>
<td>0.7059411</td>
<td>0.4791453</td>
<td>0.3586001</td>
<td>0.8639285</td>
<td>0.0000000</td>
<td>0.9945857</td>
</tr>
<tr>
<td>0.6964948</td>
<td>0.4927761</td>
<td>0.3481159</td>
<td>0.8715621</td>
<td>0.0000000</td>
<td>0.9945857</td>
</tr>
<tr>
<td>0.6870254</td>
<td>0.5062853</td>
<td>0.3376006</td>
<td>0.8789806</td>
<td>0.0000000</td>
<td>0.9945857</td>
</tr>
</tbody>
</table>

TABLE I

Coordinates of the Normalized Troposkien of Maximum Swept Area for a Given Arc Length Between the Points of Attachment.
TABLE II

Tabulation of the Calculated Results for a Normalized Troposkien of Maximum Swept Area for a Given Arc Length Between the Points of Attachment

<table>
<thead>
<tr>
<th>RUN NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMER OF</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>SAMPLING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POINTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EQUAL</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>SAMPLING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INCREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASED ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOODNESS</td>
<td>MINIMUM</td>
<td>MINIMUM</td>
<td>LEAST</td>
<td>LEAST</td>
<td>MINIMUM</td>
<td>MINIMUM</td>
<td>LEAST</td>
</tr>
<tr>
<td>OF FIT</td>
<td>SPACING</td>
<td>SPACING</td>
<td>SQUARES</td>
<td>SQUARES</td>
<td>SPACING</td>
<td>SPACING</td>
<td>SQUARES</td>
</tr>
<tr>
<td>CRITERION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIXED POINTS</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
</tr>
<tr>
<td>ON FITTED</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
</tr>
<tr>
<td>CURVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZJ</td>
<td>0.5304448</td>
<td>0.5369453</td>
<td>0.5539320</td>
<td>0.5539320</td>
<td>0.539985</td>
<td>0.5369441</td>
<td>0.5439907</td>
</tr>
<tr>
<td>RJ</td>
<td>0.704771</td>
<td>0.704771</td>
<td>0.694776</td>
<td>0.694776</td>
<td>0.704614</td>
<td>0.704614</td>
<td>0.699773</td>
</tr>
<tr>
<td>R</td>
<td>0.352149</td>
<td>0.352149</td>
<td>0.352149</td>
<td>0.352149</td>
<td>0.352149</td>
<td>0.352149</td>
<td>0.352149</td>
</tr>
<tr>
<td>RM</td>
<td>0.9945857</td>
<td>0.9945857</td>
<td>0.9945857</td>
<td>0.9945857</td>
<td>0.9945857</td>
<td>0.9945857</td>
<td>0.9945857</td>
</tr>
<tr>
<td>ZM</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>VALUE OF</td>
<td>0.0181516</td>
<td>0.0181516</td>
<td>0.0181516</td>
<td>0.0181516</td>
<td>0.0181516</td>
<td>0.0181516</td>
<td>0.0181516</td>
</tr>
<tr>
<td>GOODNESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OF FIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRITERION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COORDINATES</td>
<td>Z*=0.7473323</td>
<td>Z*=0.7505736</td>
<td>Z*=0.417293</td>
<td>Z*=0.416569</td>
<td>Z*=0.752949</td>
<td>Z*=0.750679</td>
<td>Z*=0.402216</td>
</tr>
<tr>
<td>OF POINTS</td>
<td>R*=0.4177260</td>
<td>R*=0.417531</td>
<td>R*=0.817249</td>
<td>R*=0.816494</td>
<td>R*=0.415534</td>
<td>R*=0.415534</td>
<td>R*=0.415534</td>
</tr>
<tr>
<td>ON TROPOSKIEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT MAXIMUM</td>
<td>Z*=0.3951606</td>
<td>Z*=0.3963739</td>
<td>Z*=0.3964574</td>
<td>Z*=0.3964574</td>
<td>Z*=0.3964574</td>
<td>Z*=0.3964574</td>
<td>Z*=0.3964574</td>
</tr>
<tr>
<td>SEPARATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COORDINATES</td>
<td>Z*=0.7321199</td>
<td>Z*=0.7352428</td>
<td>Z*=0.4311349</td>
<td>Z*=0.4307953</td>
<td>Z*=0.7376939</td>
<td>Z*=0.7376939</td>
<td>Z*=0.437709</td>
</tr>
<tr>
<td>OF POINTS</td>
<td>R*=0.4077100</td>
<td>R*=0.407749</td>
<td>R*=0.8022173</td>
<td>R*=0.8022173</td>
<td>R*=0.8022173</td>
<td>R*=0.8022173</td>
<td>R*=0.8022173</td>
</tr>
<tr>
<td>ON FITTED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CURVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT MAXIMUM</td>
<td>Z*=0.4066198</td>
<td>Z*=0.4078513</td>
<td>Z*=0.4078513</td>
<td>Z*=0.4078513</td>
<td>Z*=0.4078513</td>
<td>Z*=0.4078513</td>
<td>Z*=0.4078513</td>
</tr>
<tr>
<td>SEPARATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>0.0181516</td>
<td>0.0181516</td>
<td>0.0220222</td>
<td>0.0220222</td>
<td>0.0181473</td>
<td>0.0181536</td>
<td>0.0197208</td>
</tr>
<tr>
<td>SEPARATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COORDINATES</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
<td>Z*=1.0000000</td>
</tr>
<tr>
<td>OF TROPOSKIEN</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
<td>R*=0.0000000</td>
</tr>
<tr>
<td>AND THE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FITTED</td>
<td>Z*=0.5559893</td>
<td>Z*=0.5559893</td>
<td>Z*=0.5559893</td>
<td>Z*=0.5559893</td>
<td>Z*=0.5559893</td>
<td>Z*=0.5559893</td>
<td>Z*=0.5559893</td>
</tr>
<tr>
<td>CURVE</td>
<td>R*=0.6757549</td>
<td>R*=0.6757549</td>
<td>R*=0.6757549</td>
<td>R*=0.6757549</td>
<td>R*=0.6757549</td>
<td>R*=0.6757549</td>
<td>R*=0.6757549</td>
</tr>
<tr>
<td>Z*=0.0000000</td>
<td>Z*=0.0000000</td>
<td>Z*=0.0000000</td>
<td>Z*=0.0000000</td>
<td>Z*=0.0000000</td>
<td>Z*=0.0000000</td>
<td>Z*=0.0000000</td>
<td></td>
</tr>
<tr>
<td>R*=0.9945857</td>
<td>R*=0.9945857</td>
<td>R*=0.9945857</td>
<td>R*=0.9945857</td>
<td>R*=0.9945857</td>
<td>R*=0.9945857</td>
<td>R*=0.9945857</td>
<td></td>
</tr>
</tbody>
</table>

Machine computer printout; symbols used in the table are those available on the printer.
<table>
<thead>
<tr>
<th>RUN NUMBER</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO. OF SAMPLING POINTS</td>
<td>1000</td>
<td>100</td>
<td>1000</td>
<td>100</td>
<td>1000</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>EQUAL SAMPLING INCREMENTS BASED ON ANGLE</td>
<td>CENTRAL ANGLE</td>
</tr>
<tr>
<td>GOODNESS OF FIT CRITERION</td>
<td>LEAST SQUARES</td>
<td>MINIMUM SPACING</td>
<td>MINIMUM SPACING</td>
<td>MINIMUM SPACING</td>
<td>MINIMUM SPACING</td>
<td>MINIMUM SPACING</td>
<td>MINIMUM SPACING</td>
</tr>
<tr>
<td>FIXED POINTS ON FITTED CURVE</td>
<td>Z=1.0000000</td>
<td>Z=1.0000000</td>
<td>Z=1.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>(NONE)</td>
<td>(NONE)</td>
</tr>
<tr>
<td>ZI</td>
<td>0.5433925</td>
<td>0.5653837</td>
<td>0.5654058</td>
<td>0.5182856</td>
<td>0.5182969</td>
<td>0.5463593</td>
<td>0.5463594</td>
</tr>
<tr>
<td>RJ</td>
<td>0.6977282</td>
<td>0.6721323</td>
<td>0.6721338</td>
<td>0.7230063</td>
<td>0.7230063</td>
<td>0.6912090</td>
<td>0.6920882</td>
</tr>
<tr>
<td>R</td>
<td>0.3452874</td>
<td>0.3065280</td>
<td>0.3065285</td>
<td>0.3642354</td>
<td>0.3642354</td>
<td>0.3218568</td>
<td>0.3218413</td>
</tr>
<tr>
<td>HQ</td>
<td>0.9945857</td>
<td>0.9798174</td>
<td>0.9798183</td>
<td>0.9945857</td>
<td>0.9945857</td>
<td>0.9818343</td>
<td>0.9818397</td>
</tr>
<tr>
<td>ZW</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0187841</td>
<td>1.0187872</td>
<td>1.0153576</td>
<td>1.0153619</td>
</tr>
<tr>
<td>VALUE OF GOODNESS OF FIT CRITERION</td>
<td>0.0126804</td>
<td>0.0147983</td>
<td>0.0147179</td>
<td>0.0154910</td>
<td>0.0154936</td>
<td>0.0127424</td>
<td>0.0127460</td>
</tr>
<tr>
<td>COORDINATES OF POINTS ON THE TROPPOSKIEN AT MAXIMUM SEPARATION</td>
<td>Z=0.0000000</td>
<td>Z=-0.7668220</td>
<td>Z=1.0000000</td>
<td>Z=1.0000000</td>
<td>Z=1.0000000</td>
<td>Z=1.0000000</td>
<td>Z=1.0000000</td>
</tr>
<tr>
<td></td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
</tr>
<tr>
<td></td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
</tr>
<tr>
<td></td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
</tr>
<tr>
<td></td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
</tr>
<tr>
<td></td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
</tr>
<tr>
<td></td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
</tr>
<tr>
<td></td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
</tr>
<tr>
<td>MAXIMUM SEPARATION</td>
<td>0.0147307</td>
<td>0.0147683</td>
<td>0.0147719</td>
<td>0.0154910</td>
<td>0.0154936</td>
<td>0.0127424</td>
<td>0.0127460</td>
</tr>
<tr>
<td>COORDINATES OF THE INTERSECTION OF THE TROPPOSKIEN AND THE FITTED CURVE</td>
<td>Z=1.0000000</td>
<td>Z=1.0000000</td>
<td>Z=1.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
</tr>
<tr>
<td></td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
<td>R=0.0000000</td>
</tr>
<tr>
<td></td>
<td>Z=0.5866667</td>
<td>Z=0.5866667</td>
<td>Z=0.5866667</td>
<td>Z=0.539139</td>
<td>Z=0.539139</td>
<td>Z=0.5625119</td>
<td>Z=0.5625063</td>
</tr>
<tr>
<td></td>
<td>R=0.8577278</td>
<td>R=0.8577278</td>
<td>R=0.8577278</td>
<td>R=0.8577278</td>
<td>R=0.8577278</td>
<td>R=0.8577278</td>
<td>R=0.8577278</td>
</tr>
<tr>
<td></td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
<td>Z=0.0000000</td>
</tr>
<tr>
<td></td>
<td>R=0.9945857</td>
<td>R=0.9945857</td>
<td>R=0.9945857</td>
<td>R=0.9945857</td>
<td>R=0.9945857</td>
<td>R=0.9945857</td>
<td>R=0.9945857</td>
</tr>
</tbody>
</table>
TABLE III

Tabulation of the Parameters R, Rm, Zm, Maximum d, Rj and Zj for Curves Fitted to Normalized Troposkiens With β's of 0.8, 0.9, 1.0, 1.1, 1.2, and 0.99458568 by Use of 100 Points, the Least-Maximum-Spacing Criterion, and Equal Central Angle Increments

<table>
<thead>
<tr>
<th>β</th>
<th>R</th>
<th>Zm</th>
<th>Rm</th>
<th>Least-Maximum Spacing</th>
<th>Zj</th>
<th>Rj</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td>0.0475462109</td>
<td>1.0124650764</td>
<td>0.7904565415</td>
<td>0.0095434596</td>
<td>0.5676283964</td>
<td>0.5268308475</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1937760100</td>
<td>1.0139410840</td>
<td>0.8888200630</td>
<td>0.0111799383</td>
<td>0.5561208918</td>
<td>0.6106882182</td>
</tr>
<tr>
<td>0.9945</td>
<td>0.3218585935</td>
<td>1.0153575500</td>
<td>0.9818432850</td>
<td>0.0127424055</td>
<td>0.5463538774</td>
<td>0.6920982090</td>
</tr>
<tr>
<td>1.0</td>
<td>0.3289571819</td>
<td>1.0154365990</td>
<td>0.9871677470</td>
<td>0.0128322546</td>
<td>0.5458240196</td>
<td>0.6968121617</td>
</tr>
<tr>
<td>1.1</td>
<td>0.4563082750</td>
<td>1.0169705559</td>
<td>1.0855132120</td>
<td>0.0144867693</td>
<td>0.5366786056</td>
<td>0.7847515003</td>
</tr>
<tr>
<td>1.2</td>
<td>0.5780035445</td>
<td>1.0184325500</td>
<td>1.1838771380</td>
<td>0.0161226862</td>
<td>0.5285395660</td>
<td>0.8741939198</td>
</tr>
</tbody>
</table>

Locations of the points on the troposkien at which the separation d was calculated were selected in two ways. In the first the sampling points were equally spaced along the r axis. In the second the points were distributed along the troposkien in such a way that all angles between lines drawn from any two adjacent sampling points to the (r,Z) origin were equal.

Figures 3 through 8 have been plotted from the data of Table I and from circular-arc/straight-line approximation curves computed with constants listed in Runs No. 1, 3, 7, 9, 11, and 13 in Table II for 100 points along the troposkien arc. The corresponding runs, Nos. 2, 4, 8, 10, 12, and 14, respectively, which used 1000 calculated points along the troposkien arc, produced plots which could not be distinguished from the plots made from 100 points and are therefore not presented. Also, the plots for Runs No. 5 and 6 could not be distinguished from the plot of Run No. 1; consequently, these two runs are not plotted.

Figure 9 is a plot of the troposkiens and fitted curves for β's of 0.8, 0.9, 1.0, 1.1, and 1.2 with the end points of the fitted curves not constrained. Figure 10 is a plot of the parameters listed in Table III as a function of β.
Figure 3. Comparison of troposkien and fitted curve:
\[\beta = 0.99458568, \quad Z_m = 1, \quad R_m = \beta, \quad \text{equal } r \text{ increments, minimax spacing} \]

Figure 4. Comparison of troposkien and fitted curve:
\[\beta = 0.99458568, \quad Z_m = 1, \quad R_m = \beta, \quad \text{equal } r \text{ increments, least-square spacing} \]
Figure 5. Comparison of troposkien and fitted curve:
$\beta = 0.99458568$, $Z_m = 1$, $R_m = \beta$, equal-angle increments, least-square spacing

Figure 6. Comparison of troposkien and fitted curve:
$\beta = 0.99458568$, $Z_m = 1$, R_m unconstrained, equal-angle increments, minimax spacing
Figure 7. Comparison of troposkien and fitted curve:
\(\beta = 0.99458568 \), \(Z_m \) unconstrained, \(R_m = \beta \), equal-angle increments, minimax spacing

Figure 8. Comparison of troposkien and fitted curve:
\(\beta = 0.99458568 \), \(Z_m \) unconstrained, \(R_m = \beta \), equal-angle increments, minimax spacing
In the calculations whose results are reported here, all input data have been entered to no less than eight significant figures, and the convergence criterion in the MAXDIF code was set so that the differences in the final two iterated values of each of the quantities R, R_m, and Z_m, when not fixed by the constraints of the particular case under consideration, were less than 10^{-10}. This was done in order to ensure that the results reported here are reliable to the listed seven decimal places. The maximum difference between the final two iterated values of the quantity used as a test for convergence was always $\leq 3 \times 10^{-10}$. The variable used to test for convergence was either the maximum separation between the troposkien and the fitted curve or the least sum of the squares of the calculated distances between the troposkien and the fitted curve.

The results of the present investigation indicate that, when the least-maximum difference is used as the goodness-of-fit criterion, the troposkien of maximum area for a given arc length between the points of attachment ($\beta = 0.99458568$) can be approximated by means of a curve made up of a circular arc and a straight line so that the separation between the curves is less than 1.3 percent of half the distance between the troposkien attachment points if the end points of the fitted curve are not constrained. If the fitted curve is constrained to be coincident with the troposkien only at the r-axis intercept, the separation can be held to less than 1.55 percent; if
constrained to be coincident only at the z-axis intercept, this separation can be held to less than 1.48 percent. If the ends of the fitted curve are constrained to be coincident with the troposkien at both the r and the z axis intercepts, this separation can be held to less than 1.82 percent.

If the least-squares fit is used as the criterion for goodness-of-fit, these spacings increase by less than 0.5 percent for the four cases investigated.

After examining the calculated results for the cases in which $\beta = 0.99458568$, it was felt that 100 equal-angle sampling points were adequate and that the least-maximum spacing criterion was the better of the two goodness-of-fit criteria considered.

Figure 10 shows the dependence of the various parameters on β in the vicinity of $\beta = 1.0$ when using 100 sampling points with equal central angle spacings, when using the minimax goodness-of-fit criterion and when neither R_m nor Z_m is constrained. These data indicate that Z_m, R_m, R_j, R, and the least-maximum spacing increase with increasing β and that Z_j decreases with increasing β.

![Figure 10](image-url)

Figure 10. Plot of the calculated values of Z_m, R_m, Z_j, R_j, R, and the minimax spacing between the normalized troposkien and the fitted curves as a function of β for $0.8 \leq \beta \leq 1.2$
From this investigation, it appears that troposkien shapes of interest in the design of crosswind-axis wind turbines can be approximated closely with a line made up of a circular arc and a straight line. However, before any decision is made as to which approximation should be used to define the shape of the blades in a Darrieus-type of wind turbine, the magnitude of the bending stresses introduced by the various approximations should be determined.
APPENDIX A

DERIVATION OF THE EQUATIONS

In the following analysis the coordinate system and notation shown in Figure 2 are used. Where normalized quantities are used, the normalizing constant is a.

Let the subscript t refer to the troposkien, c to the circular-arc portion of the fitted curve, l to the straight-line portion of the fitted curve, n to the line normal to the troposkien, and j to the junction between the circular arc and the straight line. Also, let R be the normalized distance along the r-axis between the center of the circular-arc segment of the fitted curve and the origin of the (r,z) coordinate system, Z_m the normalized value of z at the point where the fitted curve meets the z-axis, and R_m the normalized value of r at the point where the fitted curve meets the r-axis. The normalized coordinates of the junction between the fitted curve's circular-arc and straight-line segments are designated Z_j and R_j.

From this notation and the coordinate system of Figure 2, the equation for the fitted-curve circular arc can be written as

$$\left(r_c - R \right)^2 = \left(R_m - R \right)^2 - z_c^2,$$ \hspace{1cm} (A.1)

which has the slope

$$\frac{dr_c}{dz_c} = -\left(\frac{z_c}{r_c - R} \right).$$ \hspace{1cm} (A.2)

The minus sign in front of the right-hand side of Eq. (A.2) is necessary because the slope of the troposkien, the curve to be approximated, is negative in the first quadrant.

The equation for the straight-line section of the fitted curve is

$$r_l = a_l + b_l z_l,$$ \hspace{1cm} (A.3)
whose slope is

\[\frac{dr_\lambda}{dz_\lambda} = b_\lambda . \]

(A.4)

At the point where the straight-line section intersects the z-axis, \(r_\lambda = 0 \) and \(z_\lambda = Z_m \). Substituting \(Z_m \) for those values in Eq. (A.3) gives

\[a_\lambda = - b_\lambda Z_m . \]

(A.5)

The term \(a_\lambda \) in Eq. (A.3) can be eliminated by use of Eq. (A.5); substitution yields

\[r_\lambda = - b_\lambda (Z_m - Z_\lambda) . \]

(A.6)

In that the coordinates of the circular arc and the straight line are equal at the point \((Z_j, R_j) \) where they meet,

\[z_c = z_\lambda = Z_j \]

(A.7)

and

\[r_c = r_\lambda = R_j . \]

(A.8)

Substituting Eqs. (A.7) and (A.8) into Eqs. (A.1) and (A.6) gives

\[(R_j - R)^2 = (R_m - R)^2 - Z_j^2 \]

(A.9)

and

\[R_j = - b_\lambda (Z_m - Z_j) . \]

(A.10)

The slope \(b_\lambda \) in Eq. (A.10) can be eliminated by applying the condition that the slope at the junction is continuous. Equating the slopes as given by Eqs. (A.2) and (A.4) and substituting from (A.7) and (A.8) gives

\[\left. \frac{dr}{dz} \right|_{Z_j, R_j} \bigg|_{Z_j, R_j} = \left. \frac{dr_\lambda}{dz_\lambda} \right|_{Z_j, R_j} = b_\lambda = - \frac{Z_j}{R_j - R} . \]

(A.11)

Eliminating the term \(b_\lambda \) in Eq. (A.10) by use of Eq. (A.11) yields
Equations (A.9) and (A.12) give two independent equations in \(Z_j \) and \(R_j \), whose solution can be found as follows. Subtract \(R \) from both sides of Eq. (A.12) and multiply the result by \((R_j - R)\) to get

\[
(R_j - R)^2 = Z_j(Z_m - Z_j) - R(R_j - R) .
\]

(A.13)

Substitute for \((R_j - R)^2\) from Eq. (A.9) into Eq. (A.13). This yields

\[
R_j - R = \frac{1}{R} \left[Z_m^2 j - (R_m - R)^2 \right] .
\]

(A.14)

By squaring both sides of this equation and substituting from Eq. (A.9) for the resulting term \((R_j - R)^2\), a quadratic equation for \(Z_j \) can be obtained:

\[
Z_j^2 - 2 \left[\frac{Z_m(R - R_m)^2}{R^2 + Z_m^2} \right] Z_j + \left[\frac{R_m^2 - R^2(R_m - R)^2}{R^2 + Z_m^2} \right] = 0 .
\]

(A.15)

The two solutions to the above equation are

\[
Z_j = \left\{ \frac{Z_m(R_m - R)}{R^2 + Z_m^2} \right\} \left[1 \pm \left(\frac{R^2 + Z_m^2}{Z_m(R_m - R)} \right)^{1/2} \right] .
\]

(A.16)

The sign to be used in front of the radical in Eq. (A.16) can be determined to be positive by incorporating known numbers into Eq. (A.16). It is known that, when \(Z_m = 1.0 \) and \(R_m = 0.99458568 \) and if \(R = 0.3 \), there will be two points at which the straight line will be tangent to the circular part of the fitted curve, one in the first and another in the fourth quadrant. When the above values of \(Z_m, R_m, \) and \(R \) are substituted into Eqs. (A.14) and (A.16), the plus sign yields

\[
Z_j = 0.5916, \quad R_j = 0.6639 ,
\]

(A.17)
whereas the minus sign yields

$$Z_j = 0.2936, \quad R_j = -0.3295.$$ \hspace{1cm} (A.18)

Therefore, because the present analysis is restricted to the first quadrant, both Z_j and R_j must be positive; consequently, the plus sign must be used in Eq. (A.16).

Before the separation d between the troposkien and the fitted curve as given by Eq. (2) in the body of the paper can be calculated, it is necessary to determine Z_i and R_i. These are the coordinates of the point of intersection of the fitted curve and the normal to the troposkien that passes through the point (Z_t, R_t) on the troposkien. The point (Z_i, R_i) depends not only upon Z_t, R_t, R_i, Z_m, and R_m but also upon whether the troposkien normal intersects the circular-arc or straight-line portion of the fitted curve. First, consider the case where the troposkien normal intersects the straight-line segment of the fitted curve. In this case the equation for the troposkien normal can be written as

$$r_n = a_{n} + b_{n} z_n ,$$ \hspace{1cm} (A.19)

where the constants a_n and b_n depend upon the location of the point of interest (Z_t, R_t) along the troposkien. The slope of this line is the negative reciprocal of the slope of the troposkien at the point (Z_t, R_t) where the normal intersects the troposkien. Consequently,

$$\frac{dr}{dz}_n = b_n = - \frac{1}{\frac{dr}{dz}_t} = - \frac{1}{m_t} .$$ \hspace{1cm} (A.20)

Elimination of the term b_n in Eq. (A.19) by use of Eq. (A.20) yields

$$r_n = a_n - \frac{z_n}{m_t} .$$ \hspace{1cm} (A.21)

At the point where the normal meets the troposkien, their coordinates must be equal, which requires that if (Z_t, R_t) is the point on the troposkien under consideration,

$$z_n = Z_t \quad \text{and} \quad r_n = R_t .$$ \hspace{1cm} (A.22)
Substituting these values into Eq. (A.21) gives

\[a_n = R_t + \frac{Z_t}{m_t}. \]

(A.23)

Eliminating \(a_n \) between Eqs. (A.21) and (A.23),

\[r_n = R_t - \left[\frac{z_n - Z_t}{m_t} \right]. \]

(A.24)

An equation for the linear portion of the fitted curve can be obtained by substituting for \(b_z \) from Eq. (A.11) into Eq. (A.6), so that

\[r_z = \left(\frac{Z_j}{R_j - R} \right) (z_z - Z_m). \]

(A.25)

Equations (A.24) and (A.25) may both be evaluated at the point \((Z_i, R_i)\) to yield

\[R_i = R_t - \left(\frac{Z_i - Z_m}{m_t} \right), \]

(A.26)

and

\[R_i = - \left(\frac{Z_j}{R_j - R} \right) (Z_i - Z_m). \]

(A.27)

Equating these last two equations produces an equation for \(Z_i \),

\[Z_i - Z_m = \frac{(Z_m - Z_t - m_t R_t)(R_i - R)}{m_t Z_j - (R_j - R)}. \]

(A.28)

Once \(Z_i \) is known, \(R_i \) can be determined from either Eq. (A.26) or (A.27).

Consider now the case in which the troposkien normal intersects the circular-arc portion of the fitted curve. The equation describing the circular-arc segment is Eq. (A.1), which when evaluated at the point \((Z_i, R_i)\) is

\[(R_i - R)^2 = (R_m - R)^2 - Z_i^2. \]

(A.29)
Equation (A.26) is valid at all points on the troposkien and when combined with Eq. (A.29) can be used to determine \(Z_i \) for the circular segment as follows:

Subtract \(R \) from both sides of Eq. (A.26) and square the result to get

\[
(R_i - R)^2 = (R_t - R)^2 - \frac{2}{m_t}(R_t - R)(Z_i - Z_t) + \frac{1}{m_t^2}(Z_i - Z_t)^2 .
\]

(A.30)

Equating the right-hand side of Eqs. (A.29) and (A.30) yields the following equation:

\[
Z_i^2 - \left(\frac{2}{1 + m_t^2} \right) \left(Z_t + m_t(R_t - R) \right) Z_i
+ \frac{(Z_t + m_t(R_t - R))^2}{(1 + m_t^2)} - \frac{m_t^2(R_m - R)^2}{(1 + m_t^2)} = 0 .
\]

(A.31)

This is a quadratic equation in \(Z_i \) whose two solutions are

\[
Z_i = \left[\frac{Z_t + m_t(R_t - R)}{1 + m_t^2} \right] \left\{ 1 \pm m_t \left[\frac{R_m - R}{Z_t + m_t(R_t - R)} \right]^2 - 1 \right\}^{1/2} .
\]

(A.32)

By using the same procedure as was used in connection with the sign in Eq. (A.16), it can be shown that the plus sign is applicable in Eq. (A.32). Once \(Z_i \) is known, \(R_i \) can be calculated from Eq. (A.26).

In these derivations, the slope \(m_t \) of the troposkien as given by Eq. (A.20) is assumed to be known. An expression for \(m_t \), derived in Reference 2, is

\[
\frac{dr_t}{dz_t} = - \frac{2k}{\sqrt{1 - k^2}} \left[\frac{r_t^2}{\beta^2} - 1 \right]^{1/2} \left(\frac{r_t^2 k^2}{\beta^2} - 1 \right) ,
\]

(A.33)

where \(\beta \) is the ratio of the maximum blade deflection of the troposkien to one-half the spacing between the attachment points on the axis of rotation. The two parameters \(\beta \)
and k are not independent but, rather, are connected by the equation

$$\beta = \frac{2k}{\left(1 - k^2\right)} F\left(\frac{\pi}{2}; k\right),$$

(A.34)

where $F(\pi/2; k)$ is the complete elliptic integral of the first kind with parameter k.
The actual fitting procedure was started by assuming a value for R and then computing values of Z and m corresponding to a series of values of R by means of Eqs. (3) - (5). Two methods were used to select the values of R. In the first method, the various R's were assumed to be equally spaced along the r-axis between the origin and the point at which the troposkien intercepts the r-axis. In the second method, the R's were distributed along the r-axis in such a way that angles formed by lines drawn from the origin to points on the troposkien defined by any two adjacent values of R were equal.

Values of R, R, and Z were then assumed, and values of Z and R were calculated by means of Eqs. (6) and (7).

Equations (10) and (12) were then used to compute Z and R for each value of R. For cases in which R > R, d was calculated from Eq. (14) for each value of R greater than R; Z and R, given by Eqs. (10) and (11), were used in these calculations. For cases in which R < R, d was calculated from Eq. (14) for each value of R less than R; Z and R given by Eqs. (12) and (13) were used in these calculations. It should be noted that Eq. (14) gives the magnitude of the separation between the troposkien and the fitted curve.

At this point, a choice of the goodness-of-fit criterion was made. When the least-maximum-difference criterion was used, the maximum value of d was stored as the maximum error; when the root-mean-square was used, the sum of the squares of the d's computed at each R was stored as the maximum error.

The process was continued by assuming a second value for R, with R and Z fixed, and by repeating the above sequence of calculations to obtain a second value of the maximum error. These two values of the error were compared, and from them an estimate of a new value of R which gives the minimum maximum error was calculated and used to calculate a third estimate of R. This process was continued until the difference between two succeeding values of the maximum error was less than 10^{-10}.
After convergence was obtained for R, then R_m and Z_m (if not fixed by constraints) were varied in the same manner. This operation produced the values of R, R_m, and Z_m listed in the data presented here.
References

DISTRIBUTION (cont):

R. Camarero
Faculty of Applied Science
University of Sherbrooke
Sherbrooke, Quebec
Canada J1K 2R1

American Wind Energy Association
21243 Grand River
Detroit, MI 48219

E. E. Anderson
Department of Mechanical Engineering
South Dakota School of Mines and Technology
Rapid City, SD 57701

M. Snyder
Aero Engineering Department
Wichita State University
Wichita, KS 67208

R. A. Parmelee
Department of Civil Engineering
Northwestern University
Evanston, IL 60201

Ralph Beckman
Research and Design Institute
P. O. Box 307
Providence, RI 02901

Binx Selby
5595 E. Arapaho
Boulder, CO 80302

J. Park
Helion
Box 4301
Sylmar, CA 91342

W. F. Foshag
Aerophysics Co.
3500 Connecticut Ave., NW
Washington, DC 20008

W. L. Harris
Aero/Astro Department
MIT
Cambridge, MA 02139

K. Bergey
Aero Engineering Department
University of Oklahoma
Norman, OK

J. Fischer
F. L. Smidt & Co A/S
Vigerslevalle'77
2500 Valby
Denmark

H. M. Busey
DMA, Safety and Facilities A-364
ERDA Headquarters
Washington, DC 20545

O. Krauss
Division of Engineering Research
Michigan State University
East Lansing, MI 48823

1544 L. I. Weingarten
4700 D. B. Shuster
Attn: 4734 V. L. Dugan

5000 A. Narath
5600 A. Y. Pope
Attn: 5620 R. C. Maydew

5623 E. C. Rightley
Attn: 5623 L. V. Feltz

5625 G. E. Reis (10)
5628 S. McAlees, Jr.
5628 B. F. Blackwell (100)

5640 K. J. Touryan
5700 J. H. Scott
Attn: 5710 G. E. Brandvold

5712 R. H. Braasch (2)
Attn: E. G. Kadlec
J. A. Leonard
A. F. Veneruso

5717 R. F. Stromberg (2)
Attn: D. E. Randall
B. W. Marshall

5844 B. L. Butler
8000 T. B. Cook, Jr.
8100 L. Gutierrez
Attn: 8110 A. N. Blackwell

9480 J. E. Stiegler
9483 W. V. Hereford

9483 T. C. Looney
8266 E. A. Aas (2)
3141 L. S. Ostrander (5)

3151 W. F. Carstens (3)
For ERDA/TIC (Unlimited Release)