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Abstract

Upcoming weapon programs require an aggressive increase in Application Specific 
Integrated Circuit (ASIC) production at Sandia National Laboratories (SNL).  SNL 
has developed unique modeling and optimization tools that have been instrumental in 
improving ASIC production productivity and efficiency, identifying optimal 
operational and tactical execution plans under resource constraints, and providing 
confidence in successful mission execution.  With ten products and unprecedented 
levels of demand, a single set of shared resources, highly variable processes, and the 
need for external supplier task synchronization, scheduling is an integral part of 
successful manufacturing.  The scheduler uses an iterative multi-objective genetic 
algorithm and a multi-dimensional performance evaluator.  Schedule feasibility is 
assessed using a discrete event simulation (DES) that incorporates operational 
uncertainty, variability, and resource availability.  The tools provide rapid scenario 
assessments and responses to variances in the operational environment, and have been 
used to inform major equipment investments and workforce planning decisions in 
multiple SNL facilities.
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1.  INTRODUCTION

The upcoming weapon programs require an aggressive increase in production demands within 
the Nuclear Security Enterprise (NSE).  In addition, there is a significant portion of development 
work that causes substantial variability, unbalanced and unstable resource utilization, reactive 
resource planning, and frequent reshuffling of priorities without quantifying and forecasting 
impact.  A multi-disciplinary team has designed, developed and applied unique modeling, 
simulation, and optimization tools to support the long-term sustainment and stewardship of the 
NSE capabilities and resources to ensure successful mission execution.  These analytic 
capabilities have been instrumental in improving Sandia National Laboratories’ (SNL) 
component production productivity and efficiency, identifying optimal operational and tactical 
execution plans under tight resource constraints, optimizing schedule margin for component 
availability, and providing confidence in SNL’s capability to deliver.  This paper discusses the 
application of this analytic capability to the production of Application Specific Integrated 
Circuits (ASIC) at SNL.  With ten products that have highly variable demand profiles and 
processes, a single set of shared resources, and the need for external supplier task 
synchronization, scheduling quickly became an integral part of successful manufacturing.  A 
generalized automated scheduling application, Schedule Management Optimization (SMO), has 
been developed using an iterative multi-objective genetic algorithm and a multi-dimensional 
performance evaluator.  SMO identifies production, inventory, and resource utilization profiles, 
as well as external supplier delivery plans required to meet customer demand with level-loaded 
and stable resource utilization while maintaining safety stock and schedule margin.  Schedule 
feasibility is assessed using a stochastic representation of processes in a discrete event simulation 
(DES) that incorporates operational uncertainty, variability, and resource reliability.  Planned-
versus-actuals assessments determine when recovery is necessary and are iterated with SMO and 
the DES for recovery identification.  The suite of tools is easily tailored to many resource-
constrained scheduling problems and provides rapid scenario assessments and responses to 
variances in the operational environment.  This analytic capability has been used to inform major 
equipment investments and workforce planning decisions made in multiple SNL facilities to 
ensure production readiness and stability.



8



9

2.  DESCRIPTION OF THE PRODUCTION PROCESS

This section will give a brief description of the ASIC post-fab production process, so that the 
reader will be able to better understand the constraints under which the problem is formulated.

2.1. Packaging

The first phase of post-fab production is packaging.  This starts after wafers are fabricated and 
includes a series of tasks, tests, and analysis, including a month of processing at an external 
vendor.  Because external vendors are resource constrained and can process a limited number of 
wafer lots at a time, packaging activities must be carefully scheduled to ensure sufficient 
packaged parts are available onsite before the testing phase of production begins.  At the end of 
the package and assembly process, one lot of wafers is split into sublots of hundreds or 
thousands (depending on the product type) of individually packaged die.  After package and 
assembly, the physical construction of a packaged ASIC is complete, and the ASICs are ready to 
begin the next phase.

2.2. Testing

In the next phase, the ASICs undergo electrical and stress testing to identify die that do not meet 
specification requirements and to decrease infant mortality.  Tasks in this phase include electrical 
testing, dynamic burn-in, environmental stress screening, visual inspections, and quality review.  
Parts recirculate through electrical testing more than once, pre and post burn-in.  In this phase, a 
group of several hundred ASICs progress through the production line as a sublot.  The sublot 
quantities are optimized for a given demand profile, rolled throughput yields, availability of 
resources, and span times for a particular product type.  Typically a sublot quantity is much less 
than the size of a packaging lot due to the constraints of resources that all 10 products are 
competing for.  A sublot must finish testing before it can begin the next phase, qualification.  In 
qualification, samples from the sublot are further tested according to requirements dependent 
upon the pedigree of the delivery.  As with packaging, testing activities must be carefully 
scheduled to begin only when packaged parts are available, and finish in time for these scheduled 
qualification tasks.

2.3. Qualification

This phase consists of a series of tasks that qualifies tested ASICs for final delivery.  These tests 
conduct accelerated-life testing on a sample of components from one or more wafer lots thereby 
consuming the sampled parts.  Qualification must complete before parts can be delivered but can 
start no earlier than the required sample size is available in tested parts inventory.  Qualification 
requirements vary based on the pedigree of the delivery, Process Prove-In (PPI), Qualification 
Evaluation (QE), or War Reserve (WR).  The PPI delivery lots do not require qualification.  QE 
delivery lots, on the other hand, require a relatively large sample size of parts, and WR delivery 
lots require a smaller sample size.  In addition, there are quality reviews performed throughout 
the production process as well as independent product acceptance tasks to objectively review 
quality evidence before product is delivered to customers.
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3.  SCHEDULE MANAGEMENT OPTIMIZATION (SMO)

3.1. Background and Motivation

In this section, we describe a heuristic to optimize ASIC production schedules using a genetic 
algorithm (GA).  The production of ASICs requires synchronizing packaging, production, and 
qualification activities in order to satisfy scheduled product deliveries.  That these activities 
dynamically utilize multiple resources simultaneously makes optimally scheduling ASIC 
production a generalization of the classic job shop problem and NP-Hard.  The application of 
traditional heuristics, such as the Shifting-Bottleneck Heuristic (Pinedo 2012), is problematic as 
production activities can recirculate amongst the same resource multiple times.  The optimization 
is further complicated by feasibility considerations of intermediate production inventories and 
yield losses.  Mixed-integer linear programming (MILP) approaches have been formulated for 
multi-stage flow shop models of chemical production processes with constraints for availability 
of intermediate reagents and yield loss (Floudas and Lin 2004, Floudas and Lin 2005).  However, 
these MILP approaches require large-scale problem formulations due to requirements imposed 
by either the a priori discretization of time intervals or the auxiliary variables associated with 
continuous-time formulations.

To develop a tractable optimization approach that can easily incorporate ASIC production 
business rules, we propose a GA-based scheduling heuristic.  The heuristic utilizes Technology 
Management Optimization (TMO) software, a GA optimization suite developed at Sandia 
National Laboratories, to specify a set of decision variables that is used to construct a schedule.  
These variables are passed from TMO to an external scheduler evaluator, which employs a 
deterministic algorithm that constructs a feasible schedule.  The evaluator assesses the schedule’s 
performance with respect to two objectives and returns the performance values to TMO.  Figure 
1 provides a high-level depiction of a single iteration of the heuristic.  In the next section we 
describe the algorithm for constructing schedules in detail.

Figure 1. Depiction of a single iteration of the schedule-optimization heuristic.
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3.2. Schedule Evaluator Algorithm

Here we describe in detail how schedules are constructed by the schedule evaluator.  The 
schedule evaluator employs a deterministic algorithm to obtain a feasible schedule using decision 
variables provided by the GA.  A key element of this approach is identifying decision variables 
that are sufficient to characterize an entire production schedule.  An important consideration is 
that packaging, testing, and qualification tasks must be scheduled such that the inventories of 
each product’s packaged and tested parts remain positive.  A schedule is considered inventory 
infeasible if a testing task starts when the packaged-parts inventory is less than the test batch 
quantity, or a qualification task starts when the tested-parts inventory is less than the 
qualification requirement.  Simply defining decision variables to denote the start time of each 
task is problematic in this approach because it is highly improbable that the GA will ever 
produce an inventory-feasible solution.

To ensure inventory feasibility, we define decision variables that represent a sequence of test-
batch sizes for each product.  Let  denote the quantity of the th batch of the th 𝑋𝑖𝑗 ∈ {0,𝑏1,𝑏2,…,𝑏𝑀} 𝑖 𝑗

ASIC product tested and  denote the th batch size, where ,  , and .  𝑏𝑘 𝑘 𝑖 = 1,2,…𝑁 𝑗 = 1,2,…10 𝑀,𝑁 ≥ 0 

We refer to  as a task and its  possible states as modes.  The purpose of including mode 0 𝑋𝑖𝑗 𝑀 + 1

is to temporarily suspend a product’s testing to free resources for other products.  If , then 𝑋𝑖𝑗 = 0

task   cannot begin until a one-month period has elapsed.  Note that due to yield losses, the 𝑋𝑖 + 1,𝑗

quantity of packaged parts entering a testing task is less than the quantity of tested parts 
produced.  However, for illustrative purposes, we will omit consideration of yield losses from 
testing in the discussion that follows.

Once the sequence of test-batch sizes is known for a given ASIC, the associated packaging tasks 
to support that test sequence can immediately be determined from the expected number of parts 
yielded by each packaging task, denoted , .  To illustrate how packaging tasks are 𝑌(𝑗)

𝑝 𝑗 = 1,2,…,10

derived from a sequence of testing tasks, consider an example where , , and the 𝑌(𝑗)
𝑝 = 300 𝑁 = 6

following sequence of testing-batch sizes: =100, =300, =200, =300, =100, =200. 𝑋1𝑗 𝑋2𝑗 𝑋3𝑗 𝑋4𝑗 𝑋5𝑗  𝑋6𝑗

Figure 2 illustrates the process by which packaging tasks are determined.  Let  denote the 𝑄(1)
𝑖𝑗

quantity of packaged parts in inventory for ASIC type just before the th testing task.  If 𝑗 𝑖

, then a packaging task is required before the th testing task can start.  To ensure the 𝑄(1)
𝑖𝑗 < 𝑋𝑖𝑗 𝑖

required packaging task completes before the associated testing task begins, we impose a strict 
precedence relationship between the task pair.  With this approach, we can guarantee feasibility 
of packaged inventory.
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Figure 2. Assigning packaging and qualification tasks to a test-batch sequence.

Maintaining feasibility of tested-parts inventories is more complicated owing to the different 
pedigrees of product deliveries and their associated qualification requirements.  In particular, the 
qualification task associated with a QE delivery requires a substantial quantity of tested-parts 
inventory, and the tested-parts obtained from a single packaging task may not be sufficient.  WR 
qualification tasks, on the other hand, require substantially less tested parts.  Additionally, 
qualification tasks should be completed as soon as possible to ensure there are enough qualified 
inventories to meet deliveries.  To balance the requirements of sufficient tested-parts inventories 
with timely completion of qualification tasks, we employ a scheme to associate qualification 
tasks with both packaging and testing tasks.  In the case of a QE qualification, we identify the 
last packaging lot that contributes parts to the QE delivery by computing when the cumulative 
quantity of packaged-parts exceeds the quantity of parts consumed by PPI deliveries, QE 
deliveries, QE qualification, and expected yield losses during testing. Once the packaging task 
for the final contributing lot is identified, the first testing task following it is made a precedent of 
the QE qualification task.  WR qualification tasks are assigned precedents in a similar manner.  
For every packaging lot that contributes strictly to a WR delivery, the first testing task following 
it is made precedent of the WR qualification task.  Figure 2 illustrates the assignment of QE and 
WR qualification tasks.  Note that this scheme of assigning precedence relationships to 
qualification tasks ameliorates, but does not guarantee, feasibility of tested-parts inventory.  If an 
insufficiently large test-batch size is selected following a packaging task, there may not be 
enough tested-parts inventory to conduct the subsequent qualification task.  To prevent schedules 
in which such shortages occur, the objective function includes a penalty term for violations of 
tested-parts inventory and will be further discussed in a subsequent section.

In addition to inventory feasible, the schedule must also be resource feasible.  That is, the 
demands on a resource at a given time must not exceed the resource quantity available.  The 
packaging, testing, and qualification tasks dynamically require multiple resources throughout 
their durations.  We represent the dynamic use of resources using right-continuous, piecewise-
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constant functions termed profiles.  Figure 3 provides an example task in which an operator 
performs setup and shutdown on two machines.

Figure 3. Example profiles of dynamic resource use.

When a task is scheduled, the resource profiles are translated by the task start time. Summing the 
translated profiles of all scheduled tasks provides a profile of the resource’s overall use.  
Maintaining resource feasibility is straightforward.  When a start time is considered for 
scheduling a task, the translated profile of each task resource is added to the profile of the 
corresponding resource’s overall use given the tasks previously scheduled.  If a resource’s use 
exceeds the quantity available, the start time is infeasible.  In this case, the next start time 
considered is the first time after the infeasible start time in which a change occurs in the overall 
use profile of that resource.  Scheduling tasks sequentially in this manner will always maintain 
resource feasibility, but it does not guarantee precedence relationships are satisfied.

To maintain the precedence relationships between the packaging, production, and qualification 
tasks, each product’s tasks are ordered with respect to their position in the hierarchy of 
precedence relationships.  This ordering is obtained by creating a directed network in which the 
tasks are represented by nodes.  We denote by  the precedence requirement of task  on task , 𝑖→𝑗 𝑖 𝑗

where  and is the total number of tasks.  A directed arc,  connects all node pairs 𝑖,𝑗 ∈ {1,2,…𝑊} 𝑊 𝐴𝑖𝑗,

for which  holds,  and is given unit length.  Applying the Critical Path Method 𝑖→𝑗 𝑖,𝑗 ∈ {1,2,…𝑊}
(CPM) algorithm to this network yields the maximum distance to each node, and the 
corresponding tasks are ordered by increasing maximum distance.  Where ties occur, tasks are 
further ordered by decreasing duration.  Figure 4 provides an example where .𝑊 = 4
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Figure 4. Assigning orders to tasks for scheduling.

When tasks are scheduled in order according to the critical path, all the precedent tasks of a 
given task are already scheduled when the task is considered for inclusion in the schedule.  
Maintaining precedence relationships merely requires ensuring the task starts no earlier than the 
latest completion time of all its precedents.  There are no precedence relationships between the 
tasks of different product types, so the ordered task lists of the products are combined into a 
single list.  To maintain determinism of the scheduling algorithm, tasks from different products 
of equal order are further ordered by their corresponding product indices.  Figure 5 summarizes 
the algorithm for creating an ordered task list for each product, and Figure 6 summarizes the 
algorithm for scheduling all products’ tasks from the combined list.  The next section discusses 
the optimization objectives and fitness functions.

Figure 5. Summary of algorithm to create ordered task lists.
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Figure 6. Summary of algorithm to schedule tasks.

3.3. Optimization Objectives and Schedule Fitness

The multi-objective optimization seeks schedules that maximize performance with respect to two 
key characteristics: (1) inventory performance and (2) resource utilization.  We employ separate 
nonnegative performance functions for each characteristic.  The functions return a value of zero 
for schedules with the best possible performance and, we seek schedules that minimize each 
performance function.  The result of the multi-objective optimization is a set of Pareto-optimal 
solutions with respect to both functions.  We now discuss each function in turn.

The inventory performance function penalizes shortages in qualified-parts inventory, 
corresponding to unmet demands, shortages in tested-parts inventory, corresponding to inventory 
infeasibility, and terminal inventories above required the safety stock, corresponding to 
overproduction.  Because a schedule with a negative tested-parts inventory is physically 
impossible to execute, the penalty coefficient for tested-part shortages is substantially larger than 
the coefficients associated with unmet demands and excess production. Likewise, overproduction 
is preferred to missed demands, so the penalty coefficient for overproduction is less than that for 
unmet demand.  Let , where the  is the th demand quantity of product , and 

𝐷𝑗 = {𝑑1𝑗,𝑑2𝑗,…,𝑑𝛽𝑗𝑗} 𝑑𝑖𝑗 𝑖 𝑗

let , where  is the th demand time of product , , , 
𝑇(𝐷)

𝑗 = {𝑡(𝐷)
1𝑗 ,𝑡(𝐷)

2𝑗 ,…,𝑡(𝐷)
𝛽𝑗𝑗} 𝑡(𝐷)

𝑖𝑗 𝑖 𝑗  𝑖 = 1,2,…,𝛽𝑗 𝑗 = 1,2,…,10

and .  To denote inventory levels, let  and  be functions of tested-parts and 𝛽𝑗 ≥ 0 𝑄(2)
𝑗 (𝑡) 𝑄(3)

𝑗 (𝑡)

qualified-parts inventories of product , respectively, over time, and let and  be the set of 𝑗 𝑇(2)
𝑗 𝑇(3)

𝑗

times at which these functions change values, .  The required terminal safety stock of 𝑗 = 1,2,…,10

product  is denoted , , and the duration of the entire schedule is denoted by .  The 𝑗 𝜔𝑗 𝑗 = 1,2,…,10 𝑇̅ 

inventory performance function, denoted , is as follows:𝑃𝐼

,

𝑃𝐼 = 𝛾1

10

∑
𝑗 = 1

(𝑄(3)
𝑗 (𝑇̅) ‒ 𝜔𝑗) + + 𝛾2

10

∑
𝑗 = 1

𝛽𝑗

∑
𝑖 = 1

(𝑑𝑖𝑗 ‒ 𝑄(3)
𝑗 (𝑡)) + + 𝛾3

10

∑
𝑗 = 1

∑
𝑡 ∈ 𝑇(2)

𝑗

( ‒ 𝑄(2)
𝑗 (𝑡)) +
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where  and  for .𝛾3 ≫ 𝛾2 > 𝛾1 > 0 𝑦 + ≡ max {0,𝑦} 𝑦 ∈ 𝑅

The resource utilization function is used to assess the degree to which resource use varies over 
the schedule duration.  Schedules that impose less variation in resource use are favored.  To 
reconcile the differences between the magnitudes of each resource quantity, the performance 
function utilizes a concept analogous to the notion of coefficient-of-variation for a random 
variable.  Let  be a function for the overall use of resource  at time , , where  is 𝑈𝑖(𝑡) 𝑖 𝑡 𝑖 = 1,2,….,𝑅 𝑅

the total number of resources.   The resource-use performance function, denoted , is as 𝑃𝑅

follows:

, where
𝑃𝑅 =

𝑅

∑
𝑖 = 1

(𝑉[𝑈𝑖(𝑡)])1/2

𝐸[𝑈𝑖(𝑡)]

   and    .
𝐸[𝑈𝑖(𝑡)] ≡ 𝑇̅ ‒ 1

𝑇̅

∫
0

𝑈𝑖(𝑡)𝑑𝑡 𝑉[𝑈𝑖(𝑡)] ≡ 𝑇̅ ‒ 1
𝑇̅

∫
0

[𝑈𝑖(𝑡)]2𝑑𝑡 ‒ 𝐸[𝑈𝑖(𝑡)]2
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4.  DISCRETE EVENT SIMULATION & RECOVERY IDENTIFICATION

4.1. Discrete Event Simulation

This section describes the DES model that is used in conjunction with the SMO from Section 3.  
In general, the ASIC DES model is a detailed stochastic representation of the production 
processes, resources, and operational business rules such as Military Standards and rework.  To 
complement the scheduler, which is based on a deterministic algorithm, the DES incorporates 
uncertainty and variability.  The stochastic processes and events that play a significant role in 
tactical execution planning, such as parts failing a test, lower than expected yields, or equipment 
breaking down, are modeled.

The schedules identified with the SMO are input into the DES and include the packaging, 
testing, and qualification tasks.  Other inputs, such as process flows, times and quantities, 
required resources, yields, failure modes, and scheduled maintenance, are read in from the same 
database the scheduler reads from.  A single replication of the model runs through the 9 year 
production program.

Statistics are collected, via multiple replications, on schedule performance, resource utilization 
and state profiles, and span times by product and functional area.  Sensitivity analyses are 
conducted to quantify the impact of operational uncertainty, variability, and resource reliability 
on schedule performance.  Multiple runs of the stochastic simulation identify schedule risk and 
resource constraints and are used to inform resource investment and acquisition decisions.  
Resource utilization profiles identify opportunities for scheduled maintenance activities with the 
least disrupt to operations.  The DES provides a means of dynamically tracking ASICs through 
production, identifying schedule margin, projecting downstream workload and requirements, and 
proactive operational planning.

4.2. Recovery Identification

When catastrophic sublot failures and unexpected delays occur, or factors beyond the scope of 
the model affect production in unforeseen ways, recovery and re-planning may be necessary.  
Planned-versus-actuals assessments are used to determine when re-planning is necessary and 
actuals are iterated with the scheduler for recovery identification.  The scheduler provides rapid 
scenario assessments and responses to variances in the operational environment.  When new 
schedules have been identified, they are run through the DES as before to determine the 
effectiveness of the recovery options.  Figure 7 provides a high level depiction of the iterative 
analysis cycle.
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Figure 7. Iterative Analysis Cycle.
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5.  CONCLUSION

This analytic capability provides model-based decision support and proactive operational and 
resource planning for Sandia’s upcoming production peak and out year ASIC demand profiles.  
The tools enable Sandia to examine the trade space for the best improvement opportunities to 
operate optimally and with increased efficiency and productivity, and generate confidence in the 
ability to deliver.  They have been used to inform major, multi-million dollar equipment 
investments, inform suppliers of expected peaks in production rates, inform workforce planning 
decisions to include hiring, and have played a vital role in ensuring production readiness and 
stability.
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