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Abstract 

 

Participating media radiation (PMR) in weapon safety calculations for abnormal 

thermal environments are too costly to do routinely.  This cost may be substantially 

reduced by applying reduced order modeling (ROM) techniques.  The application of 

ROM to PMR is a new and unique approach for this class of problems.  This 

approach was investigated by the authors and shown to provide significant reductions 

in the computational expense associated with typical PMR simulations.  Once this 

technology is migrated into production heat transfer analysis codes this capability will 

enable the routine use of PMR heat transfer in higher-fidelity simulations of weapon 

response in fire environments. 
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NOMENCLATURE 
 

 radiative intensity 

 Angular intensity at quadrature point n 

 Macroscopic total cross section or extinction coefficient 

 Quadrature weight 

 Macroscopic scattering cross section or scattering coefficient 

 Macroscopic absorption cross section or absorption coefficient 

 Stefan-Boltzmann constant 

 Material temperature 

 Black-body intensity,  

 Unit vector pointing in the ordinate direction corresponding to quadrature point i 

 Surface emissivity 

 Surface normal unit vector 

 Reduced basis 



9 

1.  INTRODUCTION 
 

 

Numerical modeling for the assessment of weapon safety in abnormal thermal environments 

plays an extremely important role in assuring the safety of both the existing stockpile and 

ongoing LEPs.  To this point, the inclusion of participating media radiation in full system 

simulations has been prohibitively computationally expensive.  The methods developed here 

have potential value to thermal-mechanical analyses associated with SNL satellite programs and 

thermal-mechanical analyses of interest to LANL, thus creating the potential for new markets for 

SNL/ASC code capabilities. 

 

In assessment of abnormal thermal environments, radiation heat transfer can be a dominant and 

important energy transfer mechanism.  Radiation heat transfer can often dominate computational 

resource requirements (by several orders of magnitude) in these studies.  Such analyses are 

impractical, even with current high performance computing (HPC) resources.  Consequently, 

analysts have often ignored dynamic boundaries and participating media or applied approximate 

models and other simplifications in these analyses to reduce the computational expense to an 

acceptable level at the expense of severely compromising the underlying physics considered.  

The goal of this work is to make accurate modeling of radiative heat transfer with participating 

media tractable in the modern HPC environment.  To this end, we investigate a novel approach 

to improve the computational efficiency of higher fidelity radiative heat transfer formulations 

which involves applying parametric model reduction to problems which include participating 

media radiation (PMR) heat transfer. 

 

1.1. Participating Media Radiation 
 

The steady-state gray radiation transport equation (RTE) with isotropic scattering is given by 

 

      
4

S
T bI I I I d


 


             (1) 

 

The   boundary conditions for Eq. (1) are Dirichlet; they specify the outgoing intensity at a 

surface to be equal to the sum of the surface emission and the reflected intensity.  This equation 

defines the radiative intensity in terms of position and direction of travel,  , which results in a 

function of 5 independent variables: 3 in space and 2 in angle.  The inputs that parameterize this 

equation are the absorption and scattering coefficients and the emission source (or alternatively 

the temperature).  The intensities in different directions are only coupled through the right-most 

(in-scattering) term in Eq. (1) and reflective boundary conditions.   

Model-reduction techniques are useful for decreasing the computational cost of many-query 

problems and are increasingly popular in the areas of optimal design, optimal control, 

uncertainty quantification, and inverse problems.  At first glance, the solution of the RTE does 

not appear to belong to this class of problems.  However, if the angular discretization is 

performed according to the discrete ordinates method, the angular coordinates may be viewed as 

independent parameters that must be sampled in much the same way as the parameters in the 

previously mentioned applications.  This observation is the central concept that allows for the 
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application of parametric model reduction to the problem of simulating participating media 

radiation. 

 

 

1.1.1. Discrete Ordinates Method 
 

The discrete ordinates method is a common approach for representing the angular dependence of 

the radiative intensity.  In the discrete ordinates method, the RTE is satisfied along a set of 

discrete directions and a quadrature rule is used to evaluate integrals over angle.  An effective 

choice of quadrature rule is somewhat problem dependent and there are many options available 

[1-12].  The choice of quadrature rule defines a set of N directions, i   and weights, iw   

i=1,2,⋯, N.  Eq. (1) is then approximated as a set of N first-order PDEs in only the three spatial 

dimensions. 

 

 1,2, ,i i T iI I S i N          (2) 

 

The source, S is generally the sum of the emission and in-scattering terms.  For systems with 

scattering, this couples the solution in each ordinate direction with that in every other ordinate 

direction.  This added complexity may be avoided by the use of scattering source iteration [7, 13] 

in which Eq. (2) is solved repeatedly with different source distributions via fixed point iteration.   

 

 n n n

i i T iI I S           (3) 

 

With the source at the nth iteration given by 

 

 1

4

n nS
b k k

k

S I w I





         (4) 

 

The solution to Eq. (2) is then approached as n approaches infinity. For highly scattering media, 

n of several tens may be necessary but for most problems n <10 is sufficient. 

 

For a given source distribution S, Eq. (2) may be solved independently for each ordinate 

direction.  These solutions are all similar, varying only in the direction parameter, i .  For 1D 

slab geometry problems, this parameter space is one-dimensional as only the component of the 

direction of travel aligned with the spatial dimension enters into the governing equation.  For 2D 

and 3D problems, this parameter space is two-dimensional.  Any point on the unit sphere (or 

hemisphere in the 2D case) may be described by two variables such as the azimuthal and 

circumferential angles. 
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2.  MODEL REDUCTION STRATEGY 
 

 

The goal of the parameterized model reduction strategy used is to generate a reduced basis for 

possible solution vectors (i.e. intensity distributions) across the parameter (angular) space.  The 

first step is to discretize Eq. (2).  In the results to follow, the spatial discretization is 

accomplished through linear finite elements.  The discrete problem is given by 

 

    K I S          (5) 

 

where K  is an m m  matrix where m  is the number of nodes in the spatial mesh.  Eq. (5) is 

linear with respect to both the unknown intensity as well as the directional parameter.  The 

existence of this reduced basis may be confirmed by sampling the parameter space and 

computing the dimensionality of the span of the solution vectors generated.  For a fixed source 

distribution, for several values of the directional parameter, 1 2, , K    the solution vector 

1 2, , KI I I   is computed.  These solution vectors are then concatenated to construct the global 

m K  basis matrix. 

 

 
1 2, , KM I I I           (6) 

 

If a large number of samples K are taken, it is likely that the column rank of M  is less than K.  

To address this situation, the singular value decomposition (SVD) of M  is generated [15] 

yielding 3 matrices U , S , and V  where
T

M U SV .  S  is a diagonal matrix containing the 

singular values and U  is a full matrix containing the modes as its columns.  The presence of a 

reduced basis may be confirmed by examining the decay of these singular values. In the 1D 

example cases, 99.9999% of the energy is captured by the first 5 or 6 modes depending on the 

source distribution.  In the 2D example cases, capturing the same fraction of the total energy 

requires between 10 and 35 modes depending on the source distribution. 

 

Fig. 1 shows the decay for a number of different cases.  The precise behavior of the singular 

values is problem dependent, however, the qualitative behavior appears to be similar for 

problems of the same spatial dimension.  The rapid decay in singular values suggests that a 

relatively small number of modes is likely to be sufficient to capture the vast majority of the 

solution behavior.  Hence the necessary condition of the existence of a low-dimensional solution 

space is satisfied. 
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Figure 1.  Decay of singular values demonstrates the presence of a reduced order basis 
for the intensity solution for several source distributions.  (a) 20 modes are sufficient to 

capture all behavior in the 1D geometry.  (b) 50 modes would capture a very large 
percentage of the solution behavior in the 2D geometry. 

 

As a result, only the primary modes of M  corresponding to the first k<K columns of U  are 

used.  These k columns define the reduced basis, 
1 2, , , kU U U      through proper orthogonal 

decomposition (POD).  The discretized intensity in any direction is then approximated as 

 

  I x          (7) 

 

Where x  is a k-dimensional vector and   is a tall skinny m k  matrix with k m .  The 

reduced order model (ROM) is then given by substituting Eq. (7) into the full-order model 

(FOM) given by Eq. (5). 

 

   K x S          (8) 
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Eq. (8) is over-determined, i.e., a solution may not exist.  Instead, a unique solution can be 

computed by enforcing the Galerkin orthogonality condition or by applying least-squares Petrov-

Galerkin projection [29], which minimizes the residual and solves 

 

         
T T

K K x K S           (9) 

 

Eq. (9) is a k k  dense linear system whereas Eq. (5) is a m m  sparse linear system.  Provided 

that k m , finding the solution of Eq. (9) is much less computationally expensive than finding 

the solution of Eq. (5).  Because the discrete ordinates method requires many solutions to Eq. (5) 

a significant reduction in computational cost may be realized by replacing a significant fraction 

of those solutions with solutions to Eq. (9) instead.   

 

2.1. Sampling Methods 
 

The most straight-forward way to integrate over the angular parameter space is using an 

established quadrature rule.  The nodes of this quadrature rule correspond to the values of   for 

which either Eq. (5) or Eq. (9) must be evaluated.  Traditionally, Eq. (5) is used at all points and 

by necessity a low-order quadrature is used (due to computational constraints).  Using Eq. (9) 

instead allows for the use of a significantly higher order quadrature and, as will be shown in 

subsequent sections, a significantly more accurate solution.  The question remains if using Eq. 

(9) how best to determine the reduced basis,  .  This is a question of sampling.   

 

The most intuitive sampling method is to simply sample at the nodes of a low-order quadrature 

rule.  This insures that sample points are reasonably well-distributed throughout the angular 

domain.  Additionally, this approach provides a convenient assessment of the accuracy gained by 

incorporating a ROM.  To be more precise, the full-order model is evaluated for a low-order 

quadrature just as one would typically do when a high-order quadrature is either impractical or 

unnecessary.  This yields a set of angular intensities in the given ordinate directions 1 2, , KI I I  

where K is the number of nodes in the low-order quadrature rule.  Important angularly-integrated 

quantities such as the angle-integrated intensity (scalar flux) may then be computed using the 

quadrature rule. 

 

 
1

K
LOM

i i

i

G w I


         (10) 

 

This is the classical approach to the DOM and is referred to as the low-order model (LOM).  In 

order to apply parametric model reduction to this problem, the intensities 1 2, , KI I I  might 

instead be viewed as samples for generating a reduced basis,  .  This basis defines a ROM 

which may be queried inexpensively.  We may define a high-order quadrature with L K  

nodes.  Solving Eq. (9) for each of these nodes results in a large set of approximate intensities 

1 2
, ,

L

ROM ROM ROMI I I .  These approximate intensities may then be used in combination with the 

high-order quadrature weights to produce a different estimate of the angle-integrated intensity. 



14 

 

 
1

i

L
ROM ROM

i

i

G w I


        (11) 

 

The accuracy of these two different estimates to the angle-integrated intensity may be compared.  

It is observed that ROMG  is significantly more accurate than LOMG  provided K is sufficiently 

large.  However, it is also observed that this benefit is greatly reduced for large K due to the 

inefficiencies associated with using many popular quadrature rules as a sampling method.  

Quadrature rules tend to possess a high degree of symmetry which necessitates the presence of 

many samples in directions where the angular intensity is not changing rapidly resulting in a high 

degree of redundancy.  Additionally, high-order level-symmetric quadratures tend to place many 

samples near the coordinate axes causing these regions of the angular space to be over-sampled 

relative to the rest of the space. 

 

These difficulties are overcome by adopting a more efficient sampling strategy such as a greedy 

search algorithm [17 - 20].  In the greedy search algorithm, samples are chosen adaptively by 

placing the new sample point at the location where the estimated error in the ROM prediction is 

maximum.  This process bears some similarity to previously developed adaptive quadrature 

methods [21-27].  However, it is fundamentally different from those techniques, which seek to 

enrich a low order quadrature through local refinement.  In the proposed method, a ROM is 

constructed to represent a very high order quadrature and the ROM training points (ordinate 

directions) are chosen adaptively. 

 

As has been exploited in ROM error modeling methods [30], the ROM residual for a given 

direction is closely related to the ROM error for that direction and the residual is selected as an 

effective error indicator.  The ROM residual tends to be a highly oscillatory function of the angle 

with many local minima and maxima making the continuous optimization problem inherent to 

each step of the greedy algorithm difficult.  To avoid this difficulty, a discrete optimization 

problem is solved instead where the sample points are constrained to belong to a high order 

quadrature. 
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Figure 2.  Distribution of sample points generated through greedy search algorithm for a 

radial temperature distribution T(r)=300+400r2 colored by the ROM residual.  Circles 
correspond to points in the high-order quadrature.  White circles correspond to points 

used to train the ROM. 

 

Fig 2 shows the distribution of sample points resulting from one such greedy search after 440 

sample points have been selected.  The filled white circles show the locations of the sample 

points while the open black circles show the locations of nodes of the high-order quadrature not 

selected by the greedy search algorithm.  The greedy search algorithm preferentially places 

sample points in the directions with large directional intensity values.  In this case, those are 

directions pointing back towards the origin (lower left octant in Fig 2).  In practice, acceptable 

levels of accuracy may be reached with far fewer sample points than are shown in Fig 2. 

 

The greedy search algorithm is inherently suboptimal so there is little value added by finding the 

exact location of the maximum error at each step.  Significant time savings may be achieved by 

choosing the maximum of as few as 10 randomly selected points and only evaluating the ROM 

residual at these points and then sampling at the point with the largest residual norm.  This 

greatly reduces the number of ROM evaluations required.  Although a ROM evaluation is 

significantly less expensive than a FOM evaluation, evaluating the ROM for every quadrature 

point of the HOM prior to generating each sample can become expensive.  Additional 

computational savings may be had by seeding the ROM with a number of predetermined sample 

points prior to initiating the greedy search algorithm reducing the number of steps required for a 

given number of samples. 
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3.  RESULTS 
 

 

The parametric reduced order modeling approach described in section 2 provides significant 

reductions in the computational effort required to generate solutions to PMR problems using the 

DOM.  The algorithm also provides analysts with enhanced control over solution accuracy and 

increased confidence in simulation results through the use of robust error estimators to be 

described in detail in section 4.  The computational cost benefits of this algorithm are 

demonstrated for a set of 1D, 2D, and 3D example problems.  The 1D and 2D problems make 

use of structured grids.  The 3D problems are solved using an unstructured tetrahedral mesh. 

 

3.1. 1-D Example 
 

Consider the 1D case of a purely absorbing slab surrounded by black walls.  The temperature 

profile is assumed quadratic,   2300 700T x x  .  For 1D geometries, the Gauss-Legendre 

quadrature rules are typically employed.  Consider the angle-integrated intensity generated by 

the Gauss-Legendre quadrature with 6 directions (S6).  The error in the angle-integrated intensity 

in this case is approximately 2%.  Contrast this with the distribution generated by the Legendre-

Gauss quadrature with 200 directions (S200) which has an expected error of about 0.001%.  The 

S6 model will be referred to as the low-order model (LOM).  The S200 model will be referred to 

as the high-order model (HOM).  The intensities from the S6, LOM solution may be used to 

generate a ROM capable of predicting intensities in any arbitrary direction.  If this ROM is then 

used to generate intensities for the S200 quadrature, the resulting error in the angle-integrated 

intensity is less than 0.3%.  The convergence of the LOM and ROM solutions as the LOM 

quadrature order is increased is plotted in Fig 3a.  
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Figure 3.  Convergence of angle-integrated intensity distributions for quadratic 

temperature profile with increasing LOM quadrature order. 

 

The results in Fig 3a do not tell the whole story since the ROM is both more accurate and 

necessarily more expensive than the LOM with the same number of quadrature points.  Fig 3b 

shows the comparison of execution time and accuracy for each method.  The trends in Fig 3b are 

only valid for sufficiently large problems ( m k ) otherwise model reduction provides little 

advantage.  Often it is possible in 1D problems to get away with an extremely coarse mesh such 

that this condition is not satisfied.  However, this condition is almost always true for any 

practical 2D or 3D problem.   
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Figure 4.  Convergence of angle-integrated intensity distributions for quadratic 

temperature profile with greedy sampling method. 

 

The inefficiencies associated with using a Gauss-Legendre quadrature to generate sample points 

is apparent as the number of quadrature points in the LOM, K becomes large (see Fig 3).  The 

rapid convergence of the ROM solution slows to approximately the same rate as that of the LOM 

solution.  Alternatively, the greedy sampling approach may be used.  The results of this approach 

are shown in Fig 4.  The ROM solution is seen to converge rapidly to machine precision after 

approximately 20 samples.  This is consistent with the decay of singular values shown in Fig 1a.  

These results show a great deal of promise for ROMs to reduce the computational expense and 

increase the accuracy of discrete ordinates simulations in 1D. 

 

3.2. 2-D Examples 
 

To demonstrate this solution methodology in higher dimensional geometries, consider the case of 

a square surrounded by black walls and filled with a purely absorbing medium with opacity 

equal to the inverse of the side length of the square.  Consideration of a purely absorbing 

medium is sufficient for demonstrating the validity of this approach as this is mathematically 

equivalent to considering any individual source iteration step for a scattering problem.  The 

LOM considered here is the 14th order PNTN quadrature [9] which still contains 112 ordinate 

directions.  The HOM is the 32nd order quadrature of the same type which contains 544 ordinate 

directions.  The PNTN quadrature rule is defined by using the Gauss-Legendre quadrature set to 

define the levels along the z-axis as well as the total weight for each level.  The azimuthal angles 

for each level are set equal to the roots of the Chebyshev polynomials. 
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Figure 5.  Normalized heat flux predictions q”(x,1) for (a) a discontinuous temperature 
profile T(x,y)=1-H(y) and (b) a linear temperature profile T(x,y)=300+700(1-y) for the 14th 
order PNTN quadrature, 32nd order PNTN quadrature, and the ROM derived from the 14th 

order quadrature solutions but evaluated at the 32nd order quadrature points. 

 

Fig 5 shows the heat flux evaluated at the top (y=1) surface for a pair of temperature 

distributions.  Both the accuracy of the solution and the improvement provided by the ROM 

relative to the LOM are seen to depend strongly on the source distribution, the order of the LOM, 

and the mesh resolution.  However, in all cases a rapid increase in accuracy was observed once 

the LOM achieved a sufficient order. 
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Figure 6.  (a) Convergence of LOM and corresponding ROM for a temperature distribution 
of 300+700(1-y) for various spatial mesh resolutions (b) Reduction in error provided by 

the ROM relative to the low-order model for various spatial mesh resolutions.  This is the 
L2 error of the ROM solution divided by the L2 error of the low-order model solution. 

 

Fig 6a shows the convergence of the LOM and corresponding ROM as the quadrature order of 

the LOM is increased for a temperature distribution of 300+700(1-y).  We do not observe the 

same type of stagnation as was seen in the 1D example.  This is due to the more long-tailed 

decay of the singular values in the 2D case as seen in Fig 1.  Fig 6b shows the reduction in error 

in the angularly integrated intensity distribution relative to the LOM for a variety of source 

distributions and mesh resolutions.  In all of these cases a regular rectangular grid is used.  The 
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relative improvement is seen to be more pronounced for the linear temperature profile than for 

the discontinuous temperature profile.  This is related to the fact that the LOM error tends to be 

smaller for the linear temperature profile.  The number of ordinate directions required in the 

LOM to sufficiently inform the ROM and achieve the greatly enhanced accuracy is observed to 

increase with mesh refinement.  This is likely due to the reduction in false scattering with 

increasing mesh resolution. 

 

3.3. 3-D Examples 
 

We now move on to 3D applications.  Consider a purely absorbing cube with an optical side-

length of one surrounded by black walls.  Figure 7 shows the relatively slow decay of the 

singular values for this geometry for several temperature distributions.  Fig 7 implies that the 

methodology is significantly less efficient for the 3D problem than was demonstrated for the 2D 

problem.  Between 711 and 1284 modes are required to capture 99.9999% of the energy 

depending on the source distribution while between 42 and 296 are required to capture even 

99.9% of the energy.  This is partially due to reduced symmetry and partially due to the mesh 

size.  The same quadrature includes twice as many angles in 3D as it does in the 2D case.  Also, 

the number of degrees of freedom in the 3D simulation is significantly greater than the number in 

the 2D simulation.  The end result is that the LOM may be required to be impractically large in 

order to adequately inform the ROM and achieve significant accuracy gains. 

 

 
 

Figure 7.  Decay of singular values demonstrates that many additional modes are 
required to capture the behavior of the fully 3D problem. 

 

However, this obstacle is not insurmountable.  The failure of the previously described sampling 

technique is largely due to inefficient sampling of the angular parameter space.  This difficulty 

may once again be overcome by employing an adaptive sampling method such as a greedy 

search.  In the examples to follow, the greedy sampling method is used and the ROM is seeded 

with 48 sample points analogous to the P6-T6 quadrature. 

 

The HOM is chosen to be the 40th order PN-TN quadrature (P40-T40) which includes 1680 

ordinate directions.  This number of ordinate directions has been shown to be sufficient to 

eliminate ray effects from the solution for the spatial mesh resolutions considered here [28].  The 
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adaptive ROM performs better as the mesh is refined.  This is because the cost of FOM 

evaluations increases much faster than the cost of ROM evaluations as mesh size increases since 

the size of the ROM linear system does not increase with the size of the mesh. 

 

 
 

Figure 8.  Accuracy as a function of cumulative solution time for a discontinuous 
temperature distribution T(x,y,z)=100 if y=0, 0 else. 

 

Fig 8 shows the results of a timing study for a 3D example problem.  Because the adaptive ROM 

yields a much more accurate solution than the LOM when given the same number of FOM 

evaluations but is slower because the adaptive ROM evaluates the ROM a large number of times 

in addition to the set number of FOM evaluations, it makes sense to compare the two approaches 

on the basis of error and solution time.   

 

The error in the adaptive ROM may be (inexpensively) estimated at any time and used as a 

stopping criterion for the greedy search algorithm.  The timings shown in Fig 8 include this error 
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estimation although a maximum number of FOM evaluations was used as the stopping criteria 

rather than a predetermined error level.  There is presently no analogous technique for estimating 

the error incurred by the discrete ordinates method if too small a quadrature set is used as the 

LOM.  Instead, an understanding of the magnitude of the error is typically obtained by 

performing multiple LOM evaluations with increasing quadrature orders.  For example, one 

might evaluate the LOM using the P6-T6, P8-T8, and P10-T10 quadratures which include 48, 80, 

and 120 ordinate directions respectively and use the differences between the solutions to infer an 

approximate level of accuracy for the P10-T10 solution.  If the inferred level of accuracy is 

inadequate, successively higher order quadratures may be invoked until the accuracy is 

acceptable.   

 

 
 

Figure 9.  Accuracy as a function of cumulative solution time for a linear temperature 
distribution, T(x,y,z)=300+700(1-y). 
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For this reason, the cumulative solution time is used in Figs 8, 9, and 10 which demonstrate the 

effect of spatial mesh resolution on the convergence behavior for three different temperature 

profiles.  It is shown in all three figures that seeding the adaptive ROM with 48 ordinate 

directions and applying no refinement (the first data point) is both more accurate than the P10-

T10 solution and significantly faster than evaluating the 3 LOMs listed above.  This initial speed 

advantage increases with spatial mesh resolution. 

 

 
 

Figure 10.  Accuracy as a function of cumulative solution time for a radially quadratic 
temperature distribution T(x,y,z) = 300+400(x2+y2+z2). 

 

These conclusions hold true for a wide variety of temperature distributions.  The series of meshes 

used in this set of example problems included approximately 3.4k, 12.2k, 36.5k, and 111.8k 

nodes.  In all cases, the medium is purely absorbing and the walls are black.  The wall 

temperature is equivalent to the temperature of the adjacent medium. 
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4.  ERROR ESTIMATION 
 

 

The adaptive ROM error may be estimated at any time by constructing a relationship between 

the ROM residual and the ROM error.  At each step in the greedy search algorithm, both of these 

quantities are known for what will become the next sample point.  The form of the relationship 

between the residual norm and the error norm is roughly a power law as shown in Fig 11.  The 

training data in Fig 11 represents the residual norm – error norm pairs that are known from 

previous iterations of the greedy search algorithm.  These errors are the L2 errors in the 

directional intensity.  The prediction data are the errors calculated for all quadrature points in the 

HOM not included in the adaptive quadrature.  The training data are used to generate a curve fit 

that allows for the approximation of the error at any point for which the ROM residual norm is 

known; this can be interpreted as a reduced-order model error surrogate (ROMES) model [30]. 

 
Figure 11.  Example of construction of ROM error estimate from training data acquired 

during the greedy search algorithm for a linear temperature distribution, 
T(x,y,z)=300+700(1-y). 
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This process provides an estimated distribution of the ROM error over the angular space.  The 

resulting error in angularly integrated quantities may then be estimated as well.  Fig 12 shows the 

convergence of one such quantity. 
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Figure 12.  Convergence of adaptive ROM and associated error estimate of an angularly 
integrated quantity for a linear temperature distribution, T(x,y,z)=300+700(1-y). 

 

As seen in Fig 12, the deterministic estimate of the error derived from this process is quite 

accurate and is easily sufficient for use as a stopping criteria.  However, for the purposes of 

uncertainty quantification (UQ) it is often desired not only to know the approximate error level 
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but also the degree of consequence in the prediction of that error level.  Toward this end, we can 

use the available residual/error data shown in Fig 11 to generate a stochastic rather than a 

deterministic model of the relationship between the residual and the error using a Gaussian 

process (GP).  Fig 13 shows one example of this.  The mean of the GP is very similar to the 

deterministic estimate as one would expect given how well the deterministic estimate predicts 

the average behavior. 

 

 
 
Figure 13.  Comparison of deterministic and Gaussian process estimates of the L2 error 

in the angular intensity. 

 

The difference is in the extra information contained in the GP.  Rather than only being able to 

predict the average error, the GP is also able to predict the variability in the error or rather the 

uncertainty in the error prediction.  In Fig 13, the GP is trained using the residual norm – error 

norm pairs generated during the greedy search process.  This is far from the only option.  

Assuming that the solutions to all of the FOM evaluations performed over the course of the 

greedy search process are retained, the GP ROMES may be generated to assess the model-form 

uncertainty at any point, even after the conclusion of the simulation. 
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Given a set of FOM solutions, it remains to be determined how best to generate a ROMES.  This 

generally comes down to a question of how to allocate the available FOM solutions to train the 

ROM, ROMES, or both.  Given n FOM solutions to be used as training points, some number 

m n  of solutions are used to inform the ROM.  This ROM is referred to as the prediction ROM 

and has basis dimension pd  where pd m .  It is this ROM that is used to make the final 

prediction and it is the error of this ROM that the ROMES seeks to reproduce.  Residual norm – 

error norm pairs or “ROMES training couples” are required to train the ROMES.  These are 

generated by evaluating one or more training ROMs at points where the FOM solution is known.  

The training ROMs are generated using p n  FOM solutions and are of dimension td p .  

There is no requirement that t pd d .  Different training ROMs may be generated using different 

FOM solutions for training points and/or different values of td .  

 

In the following subsections, 9 potential options are examined.  

 

1. Decouple the training of the ROM and the ROMES.  Set m p n   and  t pd d  

2. Distinct training sets with variable truncation.  Set m p n   and  

 , 1, 2t p p pd d d d    

3. Concurrent training sets.  Set m p n   and t pd d  

4. Concurrent training sets with variable truncation.  Set m p n   and 1,t pd d    

5. k-fold cross validation.  Set m n , p n k  , and t pd d n k      

6. k-fold cross validation with variable truncation.  Set m n , p n k  , and 

 , 1, 2t p p pd d d d    

7. Fixed dimension greedy search.  t pd d  but ROM training set is gradually 

expanded in same order as greedy search.  One ROMES training couple generated at each 

step in greedy search process for which pm d   

8. Lagged dimension greedy search.  Similar to the fixed dimension greedy search 

except  , 5, 10t p p pd d d d    

9. Constant energy greedy search.  ROM training points are added sequentially 

through the greedy search process.  The prediction ROM dimension, pd  is set so as to 

capture a certain fraction of the statistical energy in the full training set.  At each step td  

is set so as to capture the same fraction of the statistical energy of the subset of the 

training set thus far explored by the greedy search process. 

 

In the examples to follow a training set of size 200n   is reused.  This training set is used to 

generated both a ROM and a corresponding ROMES using each of the 9 options enumerated 

above.  The performance of the ROMES is then assessed by evaluating both the ROM and the 

FOM at an additional 4000 points in the parameter space and comparing the actual difference 

between the ROM and FOM solutions with the ROMES prediction. 
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4.1. Decoupled 
 

The ROM and ROMES trainings are completely decoupled.  The prediction ROM is only trained 

on a subset of the available data points.  The training ROM is generated using the same subset.  

The unused data points are used to train the ROMES.  The training and prediction ROMs are of 

the same dimension.  Since they are generated with the same data points, this means that both 

ROMs are identical.  ½ of the available 200 training points will be used to generate the ROM.  

The ROM is then evaluated at the remaining 100 data points to generate 100 ROMES training 

couples.  The resulting error surrogate is then evaluated against the validation data.  Fig 14 

shows how well the ROMES predicts the ROM error.   

 

 
Figure 14.  (a) Observed frequencies from above table (b) Empirical CDFs of validation 

data normalized by GP mean and standard deviation compared with normal CDF. 

 

This approach to building the error surrogate works reasonably well for a wide range of ROM 

basis dimensions.  However, it is limited in two ways.  First, the total number of ROMES 

training couples is limited to a fraction of the number of available data points.  Second, the 

prediction ROM does not utilize all of the available data and is thus less accurate than is possible 

given all the data.  This may result in insufficient training data for either the ROM, the ROMES 

or both. 

 

The appropriateness of the Gaussian Process estimate may be assessed using the Kolmogorov-

Smirnov statistic, Dn which is the maximum difference between the empirical CDFs shown in 

Fig 16 and the CDF corresponding to the standard normal distribution.  If the validation data 

comes from the distribution described by the GP, then Dn will converge to 0 almost surely as the 

number of validation points goes to infinity. 

 

The CDFs in Fig 14b match the standard normal distribution reasonably well with KS statistics 

ranging from 0.08 to 0.18, but it’s difficult to tell how valid the assumption of normality is for 
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this data.  With only 100 ROMES training couples, it is difficult to determine if the underlying 

distribution is significantly non-normal or if the ROMES has been insufficiently trained.  To 

answer this question, the number of ROMES training couples is greatly expanded to 10,000.  For 

the same prediction ROM of basis dimension 100 the experiment is repeated with the larger 

ROMES training set.  This results in the CDF in Fig 15.  The KS statistic of 0.04 represents an 

approximate lower bound for this combination of ROM training points and ROM basis 

dimension. 

 

 
 

Figure 15.  Empirical CDF of expanded validation data normalized by GP mean and 
standard deviation compared with normal CDF for prediction ROM of basis 75 trained 

generated with first 100 FOM solutions. 

 

What this lower bound is varies with the number of ROM training points, m, and the prediction 

ROM basis dimension, pd .  The KS statistic tend to generally decrease with increasing m and 

pd  as shown in Fig 16. 
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Figure 16.  Variation of Kolmogorov-Smirnov Statistic with number of ROM training 
points and ROM basis dimension. 

 

This is consistent with the error behavior becoming more Gaussian as the quality of the 

prediction ROM improves.  The one exception to this rule is that the KS statistic tends to 

increase significantly as pd m .  This is likely due to the prediction ROM becoming too 

closely linked to the specific ROM training points used. 

 

4.2. Decoupled with Variable Truncation 
 

In this case, the first limitation of the decoupled approach is addressed.  Additional ROMES 

training couples are generated by varying the training ROM dimension.  The prediction ROM 

dimension will be fixed at 75.  The training ROMs will be of dimension 73, 74, and 75.    This 

triples the number of ROMES training couples. 

 

This results in a slight increase in the Kolmogorov-Smirnov statistic from 0.1063 to 0.1197.  

This is a marginal reduction in accuracy.  There is a trade-off here.  If the original training set 

available by the decoupled method examined is too small, the ROMES may be improved by 

enlarging that set to include data from training ROMs of different dimensions.  However, if the 
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training set is already sufficiently large to inform the ROMES, the additional training couples 

serve only to pollute the training set and result in a net reduction in accuracy. 

 

In this case, the effect is small but due to the already large size of the training set (100 training 

couples) the net effect is negative.  The effect is primarily due to including the training ROM of 

dimension 73.  Most of the couples from the training ROM of dimension 74 are nearly 

coincident with couples from either 75 or 73 as shown in Fig 17. 

 
Figure 17.  ROMES training couples generated from training ROMs of varying dimension 

compared with validation data for prediction ROM of dimension 75. 

 

This approach shows promise, but like the decoupled approach, the prediction ROM is less 

accurate than is desirable given the number of available data points.  This issue is addressed by 

some of the other approaches. 

 

4.3. Concurrent Training Sets 
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Use all data from the training set to inform both the prediction and training ROM(s).  In this 

case, there is only one training ROM and the prediction ROM and the training ROM are 

equivalent (since the basis dimension for both is fixed to the same value) and may be referred to 

simply as “the ROM”.  The ROM is evaluated at every point in the training set and the residual 

norm / error norm pairs are recorded and used to train the ROMES.  This provides 1 ROMES 

training couple for every point in the training set (a total of 200). 

 

 
Figure 18.  Empirical CDFs of validation data for ROMES generated using concurrent 

training sets normalized by the GP mean and standard deviation. 

 

This process works reasonably well for highly truncated ROMs but begins to perform poorly for 

ROMs with basis dimension more than about 100 as seen in Figs 18 and 19.  The requirement for 

this method to work appears to be that the ROM must do a poor enough job reproducing its own 

training data that the error at the training points is comparable to the error at the validation 

points. 
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Figure 19.  Variation of Kolmogorov-Smirnov statistic with ROM basis dimension for 
ROMES generated using concurrent training sets. 

 

In these examples, the GP is not expected to perfectly match the true distribution and so the 

Kolmogorov-Smirnov statistic is expected to converge to some constant value as the size of the 

validation set approaches infinity.  The 4000 points in the validation set are enough that the K-S 

statistic plotted in Fig 19 accurately represents the difference between the GP distribution and the 

true distribution. 

 

4.4. Concurrent Training Sets with Variable Truncation 
 

Use all data from the training set to inform both the prediction and training ROMs.  The basis 

dimension of the prediction ROM is fixed.  The basis dimension of the training ROMs is varied.  

This provides 200 ROMES training couples for every basis dimension considered. 
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Figure 20.  ROMES generated using concurrent training sets with variable truncation 
along with the ROMES training couples used. 

 

Training ROMs of basis dimension 50, 75, 100, 125, 150, 175, and 200 were considered 

resulting in the 14,000 ROMES training couples plotted in Fig 20.  ROMs of basis dimension 

less than 50 were not included.  The ROMES generated from these 14,000 couples is also shown.  

This ROMES model may then be applied to the prediction ROM.  Fig 21 shows the ROMES 

model overlaid onto the validation data for various prediction ROM dimensions.  Notice the 

significant bias error introduced as pd  increases. 
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Figure 21.  ROMES generated using concurrent training sets with variable truncation 
along with the ROMES training couples used. 
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Fig 22 shows the CDFs and corresponding KS statistics for this method.  This method works best 

for highly truncated ROMs but does not work particularly well in any case.  Note especially the 

large bias introduced at larger prediction ROM dimensions.  This is born out in the large KS 

statistic values in Fig 22b. 

 

 
 
Figure 22.  (a) Empirical CDFs normalized by the GP mean and standard deviation and (b) 
Kolmogorov-Smirnov statistics for ROMES generated using concurrent training sets with 

variable truncation. 

 

The use of concurrent training sets with variable truncation to generate ROMES training couples 

is not recommended.  The distribution of training couples sampled by this method is not the 

same as – and for many cases does not even approximate – the distribution of errors generated by 

the prediction ROM. 

 

4.5. k-fold Cross Validation 
 

In the previous two methods all of the available data was used to inform the training ROM(s).  It 

is expected that the ROMs will perform differently (better) at points within their training set than 

at points outside their training set.  This caused a discrepancy between the ROMES training 

couples and the validation data resulting in poor behavior of the error surrogate.  This is in 

contrast to the first 2 methods in which some of the available data is used to inform the training 

ROM(s) while other data is used to generated the ROMES training couples.  This latter scenario 

was observed to result in a good approximation to the distribution of the validation data but often 

required an unfeasible number of FOM evaluations to provide a sufficient number of ROMES 

training couples.  Furthermore, the decoupled methods are undesirable because a significant 

fraction of the costly FOM evaluations are used exclusively to train the ROMES.  This yields a 

less accurate ROM than would otherwise be possible. 

 

Both of these types of deficiencies are addressed through k-fold cross validation.  The simplest 

implementation of this is Leave-One-Out Cross-Validation (LOOCV).  In LOOCV, the available 

data (n=200 points) is split into two parts.  n-1 points are used to construct a training ROM.  The 

training ROM is then evaluated at the remaining point providing a ROMES training couple.  This 

process is repeated n times, leaving a different data point out each time.  This provides 1 
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ROMES training couple for every point in the training set (a total of 200).  This produces good 

agreement between the resulting ROMES and the validation data as seen in Fig 23.  The KS 

statistic for the empirical CDFs in Fig 23 range from 0.06 to 0.11.  The KS statistic is below 0.08 

for all basis dimensions besides 25pd  .  Initially, the training and prediction ROMs will be 

required to have the same basis dimension.  In the next section this requirement will be relaxed. 

 

 
 

Figure 23.  Empirical CDFs of validation data for ROMES generated using LOOCV 
normalized by the GP mean and standard deviation. 

 

LOOCV is a special case of k-fold cross-validation.  In k-fold CV the available data is divided 

into k groups or folds.  All but one of the folds is used to construct the training ROM which is 

then evaluated on the k points of the other fold.  This provides k ROMES training couples per 

training ROM.  The same number of total training couples is generated regardless of k but fewer 

training ROMs must be constructed for larger values of k. 

 



42 

 
 

Figure 24.  Kolmogorov-Smirnov statistics for ROMES generated using k-fold cross 
validation. 

 

k-fold CV works well for a wide range of k and ROM dimension as shown in Fig 24.  However, 

there are tradeoffs.  As seen in Fig 16, the error behavior is less Gaussian for ROMs below a 

certain dimension.  Outside of this limit, for cases where the ROM dimension is small relative to 

the number of sample points used to build it, larger values of k result in lower variance as the 

individual training ROMs are less correlated.  However, for higher ROM dimensions, larger 

values of k yield a faster evaluation time at the cost of accuracy.  In these cases, the training 

ROMs become increasingly sensitive to their individual training sets and less closely resemble 

the prediction ROM.  What sort of accuracy is required and how much computational expense is 

affordable will be application dependent. 

 

4.6. k-fold Cross Validation with Variable Truncation 
 

Regardless of the value of k chosen, k-fold CV has the drawback of only producing 1 ROMES 

training couple for each available data point.  This limits the total number of ROMES training 

couples available.  This isn’t an issue when a sufficiently large number of data points is available 

as in the case above but may be significant when smaller numbers of data points are available.  

We can seek to augment the number of ROMES training couples by varying the dimension of the 
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training ROM.  The results in the following two tables were generated by taking the training 

ROM dimension, dt to be three different values based on the prediction ROM dimension, dp.   

 , 1, 2t p p pd d d d   .  Two different values of k are used, 1 and 5. 

 
 

Figure 25.  Kolmogorov-Smirnov statistics for ROMES generated using k-fold cross 
validation with variable truncation with 200 FOM evaluations. 

 

This works reasonably well.  There is a little degradation of performance relative to the case 

where dt=dp for some combinations of k and dt but also some improvement for other 

combinations.  Overall, the results in Fig 24 and 25 are very similar.  However, the true test is if 

this provides a benefit when the number of available data points is small.  Next, we limit 

ourselves to LOOCV (k=1) and only use the first 50 available data points.  We will examine 

prediction ROMs of basis dimension pd =25, 35, and 45. 
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Figure 26.  Kolmogorov-Smirnov statistics for ROMES generated using k-fold cross 
validation with variable truncation with 50 FOM evaluations. 

 

 The results in Fig 26 show that for this few data points it is possible to improve the solution by 

utilizing multiple training ROMs.  However, more is not always better.  Training ROMs below a 

certain dimension (about 15 for this data set) appear to behave differently enough from higher 

dimensional ROMs that including these couples degrades the accuracy of the ROMES.  An 

example of this is in Figs 27 and 28.   

 

Consider the training couples generated using higher order training ROMs.  They all agree 

reasonably well with the validation data as shown in Figure 27 and the ROMES prediction 

accuracy increases as more ROMs within this range are included.  However, the ROMES 

prediction accuracy is diminished if too many low order training ROMs are included.  This is 

because training ROMs below a certain order do not approximate the behavior of the prediction 

ROM.  The point at which this occurs is dependent upon the prediction ROM dimension as well 

as the number of data points available. 

 

The training couples generated from training ROMs of dimension 5, 10, and 15 bear no 

resemblance to the validation data.  However, some of the couples from the training ROMs of 

dimension 20 and 25 (especially those within the range of the residual norm for which the 



45 

ROMES will be evaluated) likely contain useful information.  This is reflected in the fact that the 

best ROMES performance for 45pd   is achieved by including couples from 30 training ROMs 

of dimension 16-45.  

 

 
 

Figure 27.  Training couples compared with validation data shows good overall 
agreement for sufficiently large training ROM dimensions. 

 

Furthermore, it is noted that exploring every possible ROM dimension is expensive and 

generates a much larger number of training couples than is reasonably required.  Many of these 

training couples are redundant.  The information yielded by a training ROM of dimension 45 and 

a training ROM of dimension 44 are very similar.  This redundancy may be reduced by using 

only a subset of the available training ROMs.  Intervals of 5 are observed to work well. 
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Figure 28.  Training couples compared with validation data shows poor agreement for 
low dimensional training ROMs. 

 

4.7. Fixed Dimension Greedy Search 
 

We’ve found that an efficient way to sample the angular space is through a greedy search.  In 

this process, a small number of samples are initially taken to generate a ROM.  Additional 

samples are then taken to refine the ROM basis one at a time.  Each successive sample is chosen 

such that it maximizes the residual norm of the ROM generated using all previous samples.  At 

each step in the process, the ROM residual norm (for the previous iteration’s ROM) and the 

corresponding error are known.  This generates a series of potential ROMES training couples. 

 

In this case, the ROM dimension (both training and prediction) is fixed.  The same 200 sample 

points used throughout this document are reused here.  The first pd  sample points are used for 

training the initial ROM.  The remaining 200 pd  sample points are then added to refine the 
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ROM basis in the order given by the greedy search algorithm producing 200 pd  ROMES 

training couples.  The ROMES generated from these training couples is then validated against 

the validation data.  The result is shown in Fig 29. 

 

 
 
Figure 29.  (a) Empirical CDFs normalized by the GP mean and standard deviation and (b) 

Kolmogorov-Smirnov statistics for ROMES generated using a fixed dimension greedy 
search. 

 

This seems to work somewhat, especially for moderate ROM basis dimensions, but it has a 

couple of significant drawbacks.  1) The ROM basis dimension must be specified beforehand 

without any knowledge of the true dimensionality of the problem and 2) For a fixed number of 

training points, there is a tradeoff between the ROM dimension and the number of available 

ROMES training couples.  The training couples closely match the validation data for the larger 

ROM dimensions but the small number of training couples limits the ROMES accuracy. 

 

4.8. Lagged Dimension Greedy Search 
 

We attempt to increase the number of available ROMES training couples by varying the 

dimension of the training ROM.  In this case, we triple the number of available ROMES training 

couples by using   . 
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Figure 30.  Kolmogorov-Smirnov statistics for ROMES generated using a lagged 
dimension greedy search. 

 

This improves the performance relative to the results of the fixed dimension greedy search for 

prediction ROMs of basis dimension 75 and 100 but degrades performance for the cases of either 

high or low prediction ROM basis dimension.  For the prediction ROM of dimension 50 two 

things are true.  1) The 150 ROMES training couples found using only the training ROM of the 

same dimension as the prediction ROM is already sufficient to train the ROMES and 2) The 

ROMES training couples generated with the training ROM of dimension 40 do not necessarily 

all follow the same distribution as the training couples generated with higher dimensional 
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training ROMs causing the resulting ROMES to be overly conservative.  This results in the large 

decrease in accuracy for the ROM basis dimension seen in Fig 30.  For large ROM basis 

dimension, the accuracy is again seen to be a trade-off between an increased number of ROMES 

training couples and a decreased average quality of those training couples. 

 

4.9. Constant Energy Greedy Search 
 

With the constant energy greedy search, we tackle the first problem with the fixed dimension 

greedy search: the requirement that the prediction ROM dimension be specified before the start 

of the simulation.  In this approach, the ROM dimension is allowed to vary.  At each step in the 

greedy search process, the ROM dimension is set such that the ROM captures 99.999% of the 

statistical energy.  This causes the ROM dimension to increase with the number of samples taken 

until it reaches a plateau due to the underlying dimensionality of the problem. 

 

The greedy search algorithm is seeded with a number of initial samples, randomly chosen, to 

generate the first ROM.  Figure 31 shows the impact of varying this number of initial samples.  

Reducing the number of initial samples means more steps in the greedy search algorithm before 

the 200 available data points are exhausted and more ROMES training couples generated.  

Unfortunately, these additional ROMES training couples are necessarily generated with a low-

dimensional training ROM.  This could potentially lead to problems as we have seen.  However, 

the results below are not bad, comparable to or better than the lagged dimension greedy search in 

most cases. 

 

The explanation for this behavior is that although the low-dimensional ROMs perform 

differently than the prediction ROM, these differences are most pronounced at smaller values of 

the residual.  The constant energy greedy search approach only includes as a ROMES training 

couple the point with the maximum residual value. 

 

The constant energy greedy search approach has one additional advantage.  It is the cheapest of 

all the methods to evaluate as the ROMES training couples may be generated online at no 

additional cost.  The ROMES training couples used by the constant energy greedy search are the 

same as those used by the previously described deterministic approach. 
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Figure 31.  Kolmogorov-Smirnov statistics for ROMES generated using a constant energy 
greedy search. 
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5.  CONCLUSIONS 
 

The discrete ordinates method is shown to be amenable for reduced order modeling.  For 1D and 

2D problems, any sufficiently large sampling of ordinate directions results in adequate sampling 

of the angular domain to construct a highly accurate reduced order model.  For 3D problems 

more care must be taken to sample the angular domain efficiently.  Efficient sampling also 

results in benefits in the 1D and 2D cases.  A greedy sampling approach is proposed using the 

ROM residual as an error indicator.  Timing studies show this to be highly effective relative to 

successively increasing the angular quadrature order.  The advantages of this approach increase 

with increasing mesh resolution since the cost of additional ROM evaluations is only weakly 

related to the mesh size (unlike the cost of additional FOM evaluations).  Additionally, an error 

estimate is proposed that closely matches the actual error for the problems considered.  This error 

estimate is inexpensive to generate and evaluate and may be easily used as a stopping criteria for 

the greedy search algorithm. 

 

Although the deterministic error model presented performs well in predicting the mean behavior, 

additional utility is possible through the use of stochastic error models which provide a 

distribution of error estimates.  Stochastic ROMES models may be effectively trained using the 

same FOM solutions used to generate the prediction ROM.  This may either be done online as 

part of the simulation or offline at a later date.  ROMES training methods vary in accuracy and 

computational cost.  Nine potential options were examined with k-fold cross validation providing 

the most robustly accurate results at a reasonable computational cost.  The constant energy 

greedy search result which uses does not require the retention of any FOM solutions or any 

subsequent ROM evaluations is the most computationally expedient.  However, this approach 

tends to produce a lower quality ROMES than would be possible through k-fold cross validation.  

The use of concurrent training sets to generate ROMES data by varying the training ROM 

dimension was observed to result in large bias errors and an inaccurate ROMES. 

 

The utility of the parametric model reduction approach has been demonstrated for the discrete 

ordinate method for accurately simulating systems involving PMR.  The next logical step is 

implementation in the SIERRA suite of codes.  
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