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ABSTRACT

Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient 

wedge-like flows, focusing on the stagnation point limit.   While the self-similar model provides a useful 

gross flow field estimate this approach must be combined with a near wall model is to determine skin 

friction and by Reynolds analogy the heat transfer coefficient.   The combined approach is developed in 

detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are 

obtained.   Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement.   

Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides 

a reasonable model for overall cylinder and sphere heat transfer.   The enhancement effect of free stream 

turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow.   

Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar 

flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior.   

Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high 

levels, e.g. 5% of free stream turbulence.   Finally the blunt body turbulent stagnation results are shown to 

provide realistic heat transfer results for turbulent jet impingement problems.
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Symbols

a Dimensionless model constant

B Stagnation point inviscid flow constant; U=Bx

c Locally defined constant

D Cylinder/sphere diameter

Cf Skin friction 2

2
U

C w
f 




Cf_0 Undisturbed free-stream skin friction

const Constant

f Dependent similarity variable

I  Turbulence intensity (absolute value)

K Clauser turbulent viscosity constant

L Streamwise length scale

Llam Streamwise location extent of laminar stagnation point

m Similarity/Faulkner-Skan model coefficient

M Free-stream Mach number

Nu Nusselt Number

Pr Prandtl number

Re Reynolds number
Rex Streamwise flat plate Reynolds number

Rex_t Transition Reynolds number

Reδ Boundary layer thickness R

Reθ Momentum thickness Reynolds number

St Stanton number

t time

u Streamwise turbulent mean flow

U Free stream turbulent mean flow velocity

u’ Root Mean Square (RMS) streamwise velocity fluctuation amplitude

W Local turbulent velocity scale

x Streamwise spatial coordinate

x* x/δ
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y Cross-stream spatial coordinate

y* y/δ

Greek

α Turbulence power law constant

ξ y/δ

δ Boundary layer thickness

δ0 Dimensionless constant for boundary layer thickness approximation δ=δ0x

δ* Displacement thickness

δ+ Boundary layer thickness inner law length scale 
w

v



*



η Local scaled similarity

 κ Von Karman constant κ=0.41

Pulsatile flow modified Von Karman constant~

ν Kinematic viscosity

ω Frequency

ω0 Dimensionless frequency 
U
 0

Φ Power Spectral Density, i.e. spectra

ρ Density

τ Shear stress

τ Auto-correlation time separation

θ Momentum thickness

Subscripts/Superscripts

inc Incompressible

FT Fully Turbulent

max Maximum

os Laminar-turbulent pressure “over-shoot”
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pp Pressure PSD

rms Root Mean Square (RMS)

s Steady

turb Turbulent

t, tran Transition

T Turbulent

vehicle Reentry vehicle

w Wall

∞ Steady free-stream constant
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I. INTRODUCTION 

Estimating heat transfer near the nose or leading edge of aerodynamic bodies is a classical and essential 

problem for aerodynamic vehicle design, White (2006).   Stagnation point flows are necessarily laminar at 

the exact stagnation location.   However, free stream turbulence can significantly modify the laminar flow 

with a corresponding increase in skin friction and heat transfer.   The enhancement of the laminar heat 

transfer by free stream turbulence is a very well know problem.   The classical analysis by Smith and 

Kuethe (1966) and the detailed discussions by Hoshizaki et. al. (1975) provide an excellent overview of 

the problem.  Additional well established computational studies such as Traci and Wilcox (1975) and 

Ibrahim (1987) demonstrate successful numerical modeling approaches for the enhanced laminar 

problem.

While certainly stagnation point flows are usually laminar at the stagnation location, rapid transition to 

turbulent behavior is possible (due to roughness and free-stream turbulence).  A coarse estimate of the 

transition behavior near a stagnation zone can be ascertained by the flat plate model of Van Driest and 

Blumen (1963): (here the turbulence intensity I is reported as a fraction as 2

2
2/1
_ 2.39

11325001Re
I

I
trx




opposed to a percent).  Considering an actual flight (Reidel and Sitzmann (1998)) with a high free-stream 

turbulence (cloud encounter), i.e. turbulence intensity I≈0.05 and flight speed on the order of 93 m/s (180 

kn) one can estimate the transition Reynolds number to be on the order of 3x104 which suggests that for 

the flight speed 93 m/s (180 kn) that the extent of the laminar zone may be on the order of 

which is small indeed.   Using a more traditional transition Reynolds number, cm
E

ELlam 3.0
51)93(

43


say Rex_tr=5E5 (I<<1) one would expect a laminar zone for this flight condition on the order of 5cm.

This discussion suggests that for some cases, a turbulent stagnation point model may be of use.   The most 

well-known closed form analytical (but implicit) model for turbulent stagnation point flow associated 

with blunt body behavior is Van Driest (1958)). Indeed, when most studies need to estimate a turbulent 

stagnation point behavior (skin friction or heat transfer) the Van Driest study is mentioned.   Additional 

studies regarding the quantities for blunt body turbulent stagnation flow are less available.   The related 
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problem associated with jet impingement has a broader study basis.   The review by Jambunathan et. al. 

(1992) provides a comprehensive assessment.

Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient 

wedge-like flows, focusing on the stagnation point limit.   While the self-similar model provides a useful 

gross flow field estimate this approach must be combined with a near wall model is to determine skin 

friction and by Reynolds analogy the heat transfer coefficient.   The combined approach is developed in 

detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are 

obtained.   Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement.   

Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides 

grossly adequate model for overall cylinder and sphere heat transfer.   The enhancement effect of free 

stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent 

flow.   Examination of free stream enhanced laminar flow is then suggests that the rather than 

enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent 

stagnation point behavior.   Excellent agreement is shown between enhanced laminar flow and turbulent 

flow behavior for high levels, e.g. 5% of free stream turbulence.   Finally the blunt body turbulent 

stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement 

problems.

II. ANALYSIS/RESULTS

A. Self-Similar Flow Model

Consider the turbulent boundary layer equation:

     (1)





























y
u

ydx
dUU

y
uv

x
uu T

where νT is a simple turbulent viscosity expression that we will define subsequently.  Assuming that 

 and introducing the linearization   we can write the reduced expression:
y
uv

x
uu








x
uU

x
uu








     (2)

























y
w

uydx
dUU

x
uU T
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The appropriateness of the linearization assumption is ultimately determined as we compare analytical 

results to experimental/empirical approaches.

To proceed, let’s examine the turbulent viscosity model.   We suggest that the appropriate length scale 

spans the boundary layer thickness δ and the displacement thickness δ*.   We approximate the appropriate 

length scale as 2 δ* .   Following Clauser et. al (see White (2005)) and using our length scale we can 

approximate:

     (3) KUCUT  *2

where δ* and δ are the displacement thickness and boundary layer thickness, respectively.  Thus we have: 

     (4)2

2

y
uK

dx
dU

x
u






 

Let’s examine the possibility of a similarity solution for equation (4).   We let  .   


 y
U
uf  ;)(

Here l(x) is a (currently) unspecified length scale.  Using these variables we can readily formulate:

     (5)0)1(2

2














 f

dx
dU

Ud
df

dx
d

d
fdK 






For a self-similar solution we require that:

     (6)

2

1

const
dx
dU

U

const
dx
d









Let’s introduce a model for the boundary layer thickness as:   Using  and assuming that x0  x0 

.   In a similar manner we analyze:  and write:01 const 2const
dx
dU

U




     (7)20
1 const

dx
dU

U
x 

To proceed we need to impose a definition for U(x).   Consider the traditional power-law expression: 

which then gives: .   Obviously this expression for U(x) is directly related to the mAxU  mconst 02 

classical “Faulkner-Skan power-law parameter” (See White 2006).   Using this value equation (5) then 

can be written:

     (8)0)1(2

2

 fm
d
df

d
fd





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where we have introduced the change of variables: .   Boundary conditions for  2/12/1
0 )(  K

equation (8) are f(0)=0 and f(∞)=1.   Though a linear expression, equation (8) can be rather difficult to 

solve in closed form for arbitrary values of m.   A simple solution which corresponds to the stagnation 

point flow  to equation (8) follows for m=1 whereby:BxU 

     (9))
2
1exp(1)

2
(1

2
2

1  






  erffm

analogous solutions are possible for m=0,1,2,3,..  Solutions are also possible in terms of Bessel functions 

for m=n/2 with n=1,3,5,...  However, for m=1/3 (say) solutions are not readily available analytically or are 

(at minimum) only possible in terms of rather more exotic special functions, e.g. Kummer’s function.

Since it is our intention to use these models for engineering purposes access to simpler, approximate 

solution would be of value.   A particularly simple solution is found for m=0 (which is a simple flat plate 

approximation) whereby .   Let’s consider the use of this solution as a trial function )
2
2(0 erffm 

for a traditional Galerkin approximation as: where C is an unknown parameter.   The )( aerff t 

traditional Galerkin approach computes a residual by substituting the trial function into the governing 

equation and computing a residual (Fletcher, 1984).   The residual is that integrated over the full domain 

of the problem and an expression for the parameter “a” can be computed.   Using this procedure we arrive 

at the solution for “a” as: . We will have particular use for the wall 1
2
2;)(  maaerff 

derivative which is found to be: .   We emphasize that m<<1 the flat plate result 12)0('  mf


yields:  whereas the stagnation point result gives: 798.02)0(' 


f 128.12)0(' 


f

Since we have several exact solutions to the exact linear problem we can readily determine the viability of 

this approximation.  Let’s examine the solution
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(b) U≈x (b) U≈x1/2

Figure 1.  Comparison between approximate Galerkin solution and exact analytical solutions to equation 
(8) for (a) m=1 and (b) m=1/2.

Remarkably, modifying the “m” value to  provides a better fit over much of the curve.   The near 
2
mm 

wall behavior, however, is better represented by the original closure approach since the exact solution: 

; the Galerkin approximation: ; and the modified solution, 253.1)0(
1


md

df


128.1)0(
1


md

df


: .
2
mm  977.0)0(

1


md

df


B. Mean Profiles, Skin Friction and Stanton Number

With access to a flow field solution one can readily estimate overall quantities.  Let’s focus on m=1 which 

supports the stagnation point problem.  Using equation (9) we explicitly write the velocity model as:

     (10)















  )
2
1exp(1)

2
(1

2
2 erfUu

or using the Galerkin solution:

     (11))(Uerfu 
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Equation (10) (or the more approximate form, equation (11) is of direct interest since it directly applies to 

turbulent stagnation point flow behavior.

To utilize a result such as equation (11) it is necessary to estimate the constants that have been introduced 

into the formulation.   Specifically we need to determine the turbulence and length scale constants.   A 

plausible supposition for K is that it is directly related to the Clauser constant, i.e. C=0.016 and   
8
1*





so that .   We further need to estimate δ0 and c where  Let’s 004.0)016.0(
8
2

8
2

 CK x0 

examine equation (11).   For η=2.05 we find that u/U=1 implying that y=δ so that:

     (12)0168.0)05.2()(05.2 2
0

2/12/1
0   KK 




which is virtually the Clauser constant i.e. C=0.016.  Note, that if we used equation (10) (the exact result) 

the value for η would be slightly modified as η=2.3 introducing a small variation in the value for 

.0212.00 

The expression for the boundary layer thickness is of interest since it can be broadly compared to the 

boundary layer growth achieved for a flat plate boundary layer with  with our result 7/6Re16.0Re x

taking the form: .   Plotting these two results yields:xRe017.0Re 
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Figure 2. Comparison between linear boundary layer thickness model and classical flat plate result..

Comparison between linear boundary layer thickness model   and classical flat plate xRe017.0Re 

result .  With appropriate constants available we turn to estimate the stagnation point 7/6Re16.0Re x

skin friction and through the Reynolds analogy the Stanton number.   Using a simple turbulence model 

based upon “outer” flow behavior, the preceding model has provided a useful estimate for the boundary 

layer thickness.  It will, not, however, be directly applicable to the near wall problem that governs the skin 

friction.   To solve this problem we will need to introduce a near wall turbulence model.  

By definition the boundary layer approximation for the skin friction:

     (13)2
0

2

2

2
1

/
U

y
u

U

y
T









Using the estimate the near wall turbulent viscosity as:  *2*22 )2)(2()( 


 WW
dy
duyT 








where κ is the Von Karman constant with κ=0.41 and the displacement thickness is estimated in terms of 

the boundary layer thickness .   The velocity scale W cannot be simply the outer scale U but 
8
1* 
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must include viscous information.   We choose it as  (geometric average results) where U0 
2/1

0 )( UUW 

is a viscous velocity scale based upon  .  Using the near wall effective viscosity model: and BU 0

the change of variables: so that we can write :






 d
dK

yd
d

d
d

y
1)( 2/12/1

0









2

2
1

/

U
C f




(14)  ))0('())0('()(2
1

2
2/12/1

02

2

f
U
WfUK

U

W
C f







 

where .   Evaluation of f’(0) is trivial as: for the exact 2
4/

0 
C

C
K


25.1
2

))0('
2/1








f

solution and using the Galerkin approximation.  Using the Galerkin approximation we then 13.1))0(' f

can write the skin friction as:

     (15)4/14/1

2

Re
19.0

)(
13.1

x
f

xBx
C 















Where we have used and  with .    Subsequently we will relate B to 2/1
0 )(BvU  BxU  2/1

0 )( UUW 

a freestream velocity and an appropriate length scale.

The same formalism that was used to for the stagnation flow result may as well be applicable for a 

broader range of external flow fields.   For example the velocity scale in the turbulence model can be 

generalized as  and we expect that 0<α<1.   For the stagnation point  ))(()( 2/)1( m

a
xU

a
UW 



problem we have m=1 and α=1/2.  An obvious and important special case is the flat plate boundary layer 

with m=0.   However, the skin friction result will imply a constant value for the skin ))0('(
2

f
U
WC f




friction a result which is simply not consistent with observation.

To capture anticipated skin friction result we propose that we apply a simple, semi-empirical ansantz 

where we modify the coefficient and exponent associated with equation (15).   Consider modifying the 

exponent as: and the coefficient as: .   This very simple 
28

43
7
1)

7
1

4
1( 


mm

7
16

7
1)

7
11( 


mm
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modification then gives: .   Obviously for “m”=1 we simply recapitulate 7/128/3Re
19.0

7
16




 m

x
f

mC

equation (15).   Of rather more interest for “m”=0 we have which (likely by 7/17/1_ Re
0271.0

Re
19.0

7
1

xx
platefC 

serendipity since this extension is so crude) is almost exactly the same as classical power law model 

(White 2006) is written as: .7/1_ Re
027.0

x
platefC 

With the skin friction available to us we can readily use the Reynolds analogy to estimate the Stanton 

number and thereby the Nusselt number as:

     (16)
3/14/3

3/24/1
4/1

3/23/2

PrRe095.0RePr

PrRe095.0
Re

19.0(Pr)
2
1(Pr)

2
1

xx

x
x

f

StNu

CSt



 

Data is available to compare to the expressions represented for the skin friction and the Nusselt numbers. 

A convenient way to compare between experimental data sets and implicit analytical models is to perform 

regressions (curve fits) for the results that can then directly compared to equations (15) or (16).  Classical 

analytical results have been computed by Van Driest (1958).  The models are implicit in the skin friction 

variable and are presented graphically.   A simple curve fit for the 2-d Van Driest skin friction (cylinder) 

results yields:

     (17)0184
_ Re072.0  xVDfC

Analogous experimental measurements have been performed by Nagamatsu and Duffy (1984).    A 

regression for their measurements (cylinder) as:

     (18)191.0
_ Re092.0  xNDfC

There is value in pointing out equation (18) was actually obtained from Nusselt number measurements 

and recovered using .   The Nagamatsu and Duffy (1984) measurements are NuStC xf
13/2 RePr

2
1  

of particular interest in that they clearly demonstrate transition to turbulent stagnation point behavior for 

Rex=5x104.  Figure 2. provides comparisons between equation (15) and the regressions (17) and (18):
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Figure 3. Comparison between current analytical model, the Van Driest analytical model represented by a 
regression and Nagamatsu and Duffy (1984) measurements also represented by the regression.

Figure 3 provides a comparison between current analytical model: , Van Driest 25.0Re188.0  xfC

analytical model represented by regression: and Nagamatsu and Duffy (1984) 0184
_ Re072.0  xVfC

measurements represented by the regression: .  Examination of figure 2 or the 191.0
_ Re092.0  xNfC

power law model exponents suggests broad agreement between the models, though certainly the ¼ 

exponent associated with the current analytical model is 30% too large.   From figure 2, however, it is 

apparent that this deficiency is of limited concern for the Reynolds number regime spanned by: 

5x105<Rex<5x106 where the current model tends to be consistent with both of the regression expressions.

Consistency with other modeling approaches is suggested by power-law variation inherent to the 

Reshotko and Tucker boundary layer integral model applied to a fully-turbulent stagnation point.   From 

their report we glean that a 2-d Stanton number estimate varies with  which is 22.0
_ Re StC Nf

similar to the analytical model.
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C. Application: Heat Transfer for 2-d and 3-d Blunt Bodies 

Application of this model is typically focused on heat transfer from cylinders (and by extension spherical 

bodies).   For a cylinder one approximates the local velocity using:  .   We note, 
D
UB

a
xUU 

 
42

however that the classical inviscid solution for flow over a sphere is not experimentally recovered (White 

(2006)) and is to first order: whereby     For a sphere we have: 
a
xUU  81.1

D
UB 

62.3

 . The overall stagnation heat transfer for a cylinder is typically written in terms 
D
UB

a
xUU 

 
3

2
3

of a Reynolds number based on diameter as opposed to the local Reynolds number result that has been 

previously.   To estimate an overall heat transfer behavior a typical approximation is evaluate the local 

result for “x’ is some fraction of the diameter D.   We choose x=a/2 or x=D/4 for x=D so as to give 

 for a cylinder, while a sphere yieldsDcylx
DUDx Re905.0905.0)

4
(Re _  



. Dspherex

DUDx Re
4
34

3
)

4
(Re _ 





The preceding results can then be used to estimate overall cylinder heat transfer near the stagnation point.   

Though the difference between cylinder and sphere stagnation point heat transfer are small, we 

nonetheless can write:

     (19)

3/14/33/14/3
_

3/14/3
_

PrRe095.0PrRe
4
5076.0

PrRe088.0

DDsphereD

DcylD

Nu

Nu











To ascertain the viability of equation (22) for zero turbulence intensity we can compare to the classical 

empirical expression by Hilpert (see Incropera and DeWitt (1981)) which for high Reynolds number is 

written as:

     (20)








400000Re40000805.0027.0
40000Re4000618.0193.0

PrRe 3/1
_

D

Dm
DcylD mC

mC
CNu
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We note reasonable trend agreement between the basic solution and (in particular) the higher Reynolds 

number regime.   McAdams (1954)  gives the sphere to gas (Pr=1) heat transfer result:

     (21)6.0
_ Re37.0 DsphereDNu 

Let’s plot these results for a range of Reynolds numbers.

Figure 4. Mean/average Nusselt number estimates for spheres and cones using equation (19) and classical 
correlations for cylinders (Hilpert) and sphere (McAdams).  While it is not expected that the stagnation 

model will capture the overall heat transfer

Though figure 4 suggests only gross comparison between equation (19) and the referenced correlations 

we note, that the correlations estimate mean or overall heat transfer for cylinders and spheres in cross 

flow includes separation behavior and is unlikely to be adequately modeled by the stagnation point 

expressions alone.

A well know effect associated with stagnation point heat transfer is the enhancement of the basic laminar 

flow heat transfer by free-stream turbulence where the free-stream turbulence is characterized by the 

turbulence intensity.   The analysis and measurements suggested by Smith and Kuethe (1966) and the 

review by Hoshizaki et. al. (1975) suggests that the laminar Nusselt number result, i.e.  is 2/1ReDlamNu 

enhanced according to:

     (22))Re,(1
Re 2/1 D

lam IfNu




21

Where the turbulence intensity and .  A typical (semi-empirical) result is written:



U
uI '


DU

D
Re

     (23)DD
D

lam IxINu Re1099.3Re0348.0945.0
Re

242/1
2/1



where we emphasize that I is reported as a fraction.  A similar (linear) result follows from Smith and 

Kuethe (1966) which would be approximately  .   It is important to note that 2/1
2/1 Re0348.01

Re D
D

lam INu


maximum turbulence enhancement occurs for  or .  Remarkably this 6.43Re 2/1 DI 2
1901Re

ID 

expression has a similar form to the by-pass transition Reynolds number of Schmid and Henningson 

(2001) who find that  with K≈1301 and I measure in percent, though clearly, the maximum 2

2

_Re
I
K

trx 

laminar turbulence enhancement Reynolds number is much larger (two orders of magnitude) than the 

transition Reynolds number value. 

There is value in examining this result to better understand the modeling approach utilized by Smith and 

Kuethe for laminar flow heat transfer enhancement by free-stream turbulence.   The appropriate 

modification follows from the skin friction whereby we can approximately write: 

but replace the laminar viscosity with so 2
0

2

2

2
1

/
U

y
u

U
C y

f







 )'1()'1(





 uconstyu

eff 

one can approximate:

     (24)1
2_ Re

)Re'1(












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 



U
U

U
U
uconst

C lamf

For a laminar stagnation point flow, the boundary layer thickness Reynolds number is  and 2/1Re xx


we can approximate: so that we can write:)1(O
U

U


     (25)2/12/1
_ Re)Re'1( 



 xxlamf U
uconstC
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Ignoring constants, Prandtl number effects, and using   we can dddxxx StNuStNu RePrRePr 

write:

     (26)

)Re1(
Re

Re)Re1(

2/1
2/1

2/12/1

IconstNu

IconstNu

d
d

d

ddd





Obviously, the result  mimics the equation (20) for I<<1 and suggests the )Re1(
Re

2/1
2/1 IconstNu

d
d

d 

formalism used to include the effect of the free-stream turbulence.

Freestream turbulence will also be important as it enhances turbulent flow behavior.  The preceding 

analysis can be readily modified where the effective viscosity fluctuation scale is modified as:

.   Using the same length scale, closure approximations used to achieve equation 





  

 UIU
dy
duy

(15), the cylinder Reynolds number approximation and the Reynolds analogy the Nusselt number 

expression is found to be:

     (27)





  4/13/14/3 Re

8
51PrRe088.0RePr DDDDD IStNu

Equation (27) provides an estimate of the turbulent Nusselt number with enhancement caused by free-

stream turbulence effects.   Notice that as compared to the laminar flow enhancement term which grows 

as ReD
1/2 (this is the actual growth rate of the basic laminar Nusselt number itself), the turbulent 

enhancement term grows relatively slowly as ReD
1/4.   The dichotomy between enhanced laminar 

stagnation point heat transfer and the turbulent stagnation point behavior suggests that while laminar 

enhancement is provides a lower Reynolds number heat transfer prediction mechanism, at higher 

Reynolds numbers, the heat transfer process is effectively turbulent and should be modeled using fully 

turbulent values.

Let’s examine this hypothesis.   Let’s utilize the classical Smith and Kuethe (1966) which would be 

approximately  and then compare to the unenhanced turbulence DDenhancedlam INu Re0348.0Re 2/1
_ 

expression, i.e. equation (19) for several free stream turbulence intensities.
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Figure 5. Comparison between free stream turbulence enhanced laminar heat transfer coefficient using 
Smith and Kuethe (1966) approximation with turbulence intensities I=2.5% and 5.0% and the fully 

turbulent Nusselt number approximation, equation (19).

Figure 5. is a comparison between free stream turbulence enhanced laminar heat transfer coefficient using 

Smith and Kuethe (1966) approximation: turbulence intensities I=2.5% and 2/1
2/1 Re0348.01

Re D
D

lam INu


5.0% and the fully turbulent Nusselt number approximation, equation (19).  Figure 4. suggests that a free 

stream turbulence enhanced laminar stagnation point flow heat transfer coefficient estimate with a 

sufficiently high Reynolds number may actually be full turbulent and is equivalently or better modeled 

using a fully turbulent heat transfer expression.   Further, we note that Reynolds number at which the 

stronger I=5% free stream disturbance heat transfer is equivalent to the fully turbulent model is 

approximately ReD=5.7x104 which is similar to the transition behavior Reynolds number noted by 

Nagamatsu and Duffy (1984). Nagamatsu and Duffy (1984) state that:

“Indications are that the level of observed turbulence intensity is not sufficient

to explain the high measured heat transfer.”

A turbulent heat transfer model or even a free stream enhanced turbulence expression such as equation 

(27), might better explain this observed higher heat transfer behavior.
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Our discussion has been concentrated on external flow blunt body heat transfer behavior, however, an 

important class of stagnation problems follows from circular jet impingement problems.   An excellent 

review of heat transfer behavior for this problem is provided by Jambunathan et. al. (1992).   A 

particularly relevant class of jet impingement problem is found for jets positioned a large distance, e.g. 

z/D>10 from the impingement plate whereby the entire flow field is turbulent.   The heat transfer 

behavior for this configuration can be modeled via:

     (28)a
DD KNu Re

Where for z/D=10 and x/D=0 ( X/D is the distance from stagnation point).   Under these conditions 

measurements suggest that K=0.075 while a=0.75.   Obviously, these values are in reasonable agreement 

with the spherical model in equation (19) suggesting the current analysis 3/14/3
_ PrRe095.0 DsphereDNu 

may be useful for the fully turbulent jet impingement problem.

 
III. CONCLUSIONS

.

The focus of this report was to derive an approximate turbulent self-similar model for a class of favorable 

pressure gradient wedge-like flows, focusing on the stagnation point limit.   Mean profiles were recovered 

by the self-similar model while a near wall model was utilized to determine skin friction and by Reynolds 

analogy the heat transfer coefficient.   Comparison to the classical Van Driest (1958) result suggests 

overall reasonable agreement for turbulent skin friction and Stanton number estimates.  Though the model 

is only valid near the  positive pressure gradient stagnation region of cylinders and spheres it nonetheless 

provides a reasonable model for overall cylinder and sphere heat transfer.   The enhancement effect of 

free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for 

turbulent flow.   Examination of free stream enhanced laminar flow suggests that the rather than 

enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent 

stagnation point behavior.   Excellent agreement is shown between enhanced laminar flow and turbulent 

flow behavior for high levels, e.g. 5% of free stream turbulence implying that the the fully turbulent 

model developed here may be appropriate.   Finally, consistent with experimental observation the blunt 

body turbulent stagnation results were shown to provide realistic heat transfer results for turbulent jet 

impingement problems.
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