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ABSTRACT:	
   
Performing rigorous predictive simulation necessitates that all available data be incorporated into 
the modeling process in order to accurately quantify uncertainties in predictions of the model. 
Statistical Bayesian inference is the most commonly used approach for incorporating data into 
uncertainty estimates. Statistical Bayesian inference uses data and an assumed error model to 
inform posterior distributions of model input variables and model discrepancies. An explicit 
characterization of the posterior distribution is not formed, but rather methods such as Markov 
chain Monte-Carlo (MCMC) are used to draw samples from the posterior. These samples are 
then used to evaluate statistics, such as integrals, of predicted quantities of interest (QoI).  
Recently the authors have developed an alternative reformulation of Bayesian inference based 
upon a measure-theoretic inversion technique. Unlike traditional statistical Bayesian inference, 
this reformulation allows us to directly interrogate the posterior distribution and, consequently, to 
generate samples from the posterior without MCMC.  In this work we use forward propagation 
uncertainty quantification techniques to reduce the cost of approximating the posterior 
distribution. Specifically we investigate goal-oriented adaptive sparse grid approximation 
methods. These adaptive methods concentrate high-fidelity model evaluations in regions of the 
parameter space that both significantly contribute to the uncertainty in specified QoI and are 
informed by the available data.  Numerical results are presented to compare our approach with 
the standard statistical Bayesian approach and to demonstrate the effectiveness of the goal-
oriented adaptivity. 	
  

	
  
INTRODUCTION:  
Inverse problems are ubiquitous in computational science and engineering.  Often, parameters of 
interest cannot be measured directly and must be inferred from observable data.  The mapping 
between these parameters and the measureable data is often referred to as the forward model and 
the goal is to use this forward model to gain knowledge about the parameters, i.e., to invert the 
forward map.  Deterministic inverse problems are often posed as: given deterministic data, 
determine the set of parameters that, when propagated through a computational model, will 
reproduce the data as closely as possible.  Such problems are often solved using optimization 
techniques and may involve regularization to guarantee a unique solution.  Stochastic inverse 
problems, on the other hand, are often posed as: given a distribution on the data, determine the 
distribution of the parameters that, when propagated through a computational model, will 
reproduce the distribution on the data.  While optimization-based approaches do exist for the 
stochastic inverse problem, the pervasive approach in the literature is to perform statistical 
Bayesian inference to compute a posterior distribution that is conditional on the data distribution 
and a user-defined prior distribution on the input parameters.  This prior distribution is meant to 
encompass any additional information (prior knowledge) regarding the distribution on the 
parameters.   
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Most methods for solving the Bayesian inverse problem require an assumed 
statistical error model (usually additive noise) to transform a deterministic forward model into a 
stochastic model.  In addition, some form on Markov Chain Monte Carlo (MCMC) sampling is 
usually required to generate samples from the posterior [Brooks 2011].  While tremendous 
advances have been in recent years to develop scalable and efficient MCMC sampling 
algorithms, this often represents the computational bottleneck of the statistical Bayesian 
approach.  In many practical applications, MCMC requires an infeasible number of model 
evaluations and in certain cases can fail to converge to the true posterior distribution. 
 
An alternative perspective, based on measure theory, has emerged in recent years as a different 
approach for stochastic inversion [Breidt 2012, Butler 2012].  The measure-theoretic approach 
aims to construct a distribution on the parameters by directly inverting the forward model.  This 
approach requires only a volume measure on the parameter space rather than a prior distribution 
on the input parameters.  The main drawback to this approach is the requirement that the input 
and output spaces be decomposed into measureable subsets, such as hyper-cubes, which becomes 
impractical in high-dimensional spaces.   
 
The goal of this paper is to bridge the gap between the Bayesian and measure-theoretic 
approaches by utilizing Bayesian concepts within the measure-theoretic framework.  The 
resulting approach provides a means to approximate the posterior distribution in a manner that is 
consistent with the measure-theoretic approach, but is not restricted to set-based approximations.  
Moreover, this new approach for stochastic inversion has the following attractive features: 

• Has a solid mathematical foundation,  
• Does not rely on MCMC sampling to generate samples of the posterior distribution, 
• Does not require a statistical assumption on the model error, 
• Leverages the adaptive response surface approximations techniques that have been 

developed at Sandia under the Dakota project for forward uncertainty propagation, 
• Easily incorporates multiple sources of correlated data. 

In this paper, we compare our new approach with the statistical Bayesian approach by using both 
approaches to generate samples from the posterior distribution.  We also develop a goal-oriented 
adaptive approach for response surface approximations of the forward map with the specific 
objective of accurately and efficiently approximating the posterior distribution.  
 
 
DETAILED DESCRIPTION OF EXPERIMENT/METHOD:  
We let 𝑚 ∈ 𝛬 ⊆   ℝ! denote the parameters and 𝑑 ∈ 𝐷 ⊆ ℝ! denote the observed data.  We 
assume that both 𝛬 and 𝐷 are bounded.  Let 𝐹(𝑚) denote the mapping between parameter space 
and the output space defined by a high-fidelity computational forward model.  We assume that 
the forward model is deterministic in the sense that repeated evaluations for a given 𝑚   ∈   𝛬 will 
give the same results.  In general, 𝐹(𝑚) should be replaced by a discretized model and the effect 
of numerical discretization errors should be incorporated into the analysis [Jakeman 2015].  
However, this is beyond the scope of this paper and we will focus on the stochastic inference 
algorithms.   
 
 
 



	
  
	
  

	
  
	
  
	
  
	
  
	
  

 
The Statistical Bayesian Approach 
Following [Marzouk 2009a], we let 𝜌!,!"#$"(𝑚) denote the prior probability density on the input 
parameters and we use Bayes rule to define the posterior distribution: 
 

𝜌!,!"#$ 𝑚 =   
𝜌 𝑑 𝑚   𝜌!,!"#$"(𝑚)
𝜌 𝑑 𝑚 𝜌!,!"#$" 𝑚   𝑑𝑚

 

 
Where 𝜌 𝑑 𝑚   denotes the likelihood function.  We define a likelihood function by combining 
the deterministic model with a statistical model for the measurement error: 
 

𝑑 = 𝐹 𝑚 +   𝜀 
 
If the density of 𝜀 is given by 𝜌!(𝜀), then the likelihood function can be written as 
 

𝜌 𝑑 𝑚 =   𝜌! 𝑑 − 𝐹 𝑚 . 
 
The standard approach for approximating the posterior distribution is to generate samples from 
the posterior using an MCMC method.  A wide variety of MCMC approaches exist [Brooks 
2012] and a complete survey is beyond the scope of this paper.  The main drawback for all of 
these approaches is that they tend to require a very large number of evaluations of the forward 
model.  This computational cost can be partially mitigated by using a relatively small number of 
evaluations of the forward model to construct an emulator model and to then perform MCMC 
using the emulator [Marzouk 2009a, Marzouk2009b, Dakota].  
 
Approaches that use surrogates for statistical inference can be classified into two main 
categories: (1) methods that approximate F(m); and (2) methods that approximate the negative of 
the log likelihood function. For each class adaptively building surrogates can result in significant 
gains in efficiency over building the surrogate isotropically [Conrad 2015, Li 2014, Pflueger 
2010, Zhang 2013]. 
 
The Measure Theoretic Approach 
While a full description of the theoretical aspects of the measure-theoretic approach is beyond 
the scope of this paper, we provide an overview of the computational aspects of this approach 
and direct the interested reader to [Breidt 2012, Butler 2012] for more details. 
 
The measure-theoretic approach is based on the observation that deterministic inverse problems 
often have set-valued solutions (see Figure 1 (left)) and a unique solution only exist in an 
equivalence class of transverse parameterizations that run orthogonally to the contours of the 
forward map.  An analogous argument can be made for stochastic inverse problems: solutions 
only exist in a set-valued sense.  However, a unique solution to the stochastic inverse problem 
can be determined by utilizing concepts from measure theory and a given volume measure in the 
parameter space. 
 
 
 



	
  
	
  

	
  
	
  
	
  
	
  
	
  

 

	
  
Figure	
  1:	
  The	
  set-­‐valued	
  inverse	
  of	
  a	
  single	
  output	
  value	
  (left).	
  	
  The	
  invertible	
  map	
  between	
  the	
  set	
  of	
  equivalence	
  
classes	
  of	
  transverse	
  parameterizations,	
  L	
  (middle).	
  	
  The	
  unique	
  inverse	
  distribution	
  in	
  L	
  (right).	
  	
  Sourse	
  Butler	
  
2012. 

 

Following [Breidt 2012, Butler 2012], we assume we are given a probability density on the 
output space, 𝜌!"#(𝑑) representing observations and a volume measure, 𝜇!(𝑚), on the input 
parameter space.  We partition both the input parameter space and output space into measurable 
subsets, 𝐵! !!!

!  and 𝐷! !!!
!

, respectively.  We use the Law of Total Probability to write 

𝑃 𝐵! =    𝑃 𝐵! 𝐷!]  𝑃!"#[𝐷!]
!

!!!

 

In [Breidt 2012, Butler 2012], the authors use 𝐴! to denote the inverse image of 𝐷! in the 
parameter space obtained by inverting the forward model.  We calculate the probability of 𝐵! 
given 𝐷𝑗 as:  

𝑃 𝐵!   𝐷!] =   
𝜇!(𝐵!   ∩   𝐴!)
𝜇!(𝐴!)

 

 
which represents the ratio of the volume of 𝐵! ∩   𝐴! and the volume of 𝐴!.  Of course, this 
calculation requires that we can approximate the volume measure of 𝐴!, which is a nonlocal 
calculation, i.e., the inverse image of 𝐷! may be a rather large and complicated (non-convex with 
multiple disconnected sub-regions) portion of the input parameter space.  Thus, this calculation 
requires an approximation of the forward map.  The approach in [Breidt 2012, Butler 2012] 
utilizes a piecewise linear polynomial approximation defined by evaluating the forward model 
and its gradient via an adjoint-based approach at the centroid of each cell in the partition of the 
parameter space.  This approach works well in low-dimensional spaces but is not practical in 
high-dimensions.  
 
We can also use the Law of Total Probability and the ratio-of-volumes calculation to construct of 
piecewise constant approximation (called a simple function approximation in [Breidt 2012, 
Butler 2012]) of the inverse distribution in the input parameter space: 

Stochastic inverse problem 5

of set-valued solutions. While this is a significant restriction, practical experience with contour
maps demonstrates that the space of generalized contours is nonetheless very useful.

Finally, a σ−algebra BL on L can be generated using inverse images of a collection of
Borel sets in BD and the volume measure µD induces a volume measure on L,

µL(A) =

∫

A
dµL =

∫

Q(A)
dµD,

for A ∈ BL. We obtain a measure space (L,BL, µL).
Next, we introduce a stochastic version of the previous inverse problem. Namely, we

assume that a probability measure PD is given on D as a probability density ρD with respect
to µD. The inverse problem is to compute the induced probability measure PL described as a
probability density ρL on L with respect to µL,

PL(A) =

∫

A
ρLdµL =

∫

Q(A)
ρDdµD = PD(Q(A)),

for A ∈ BL. In other words, we carry out probability computations in a space (L,BL, PL)
whose points consist of generalized contours. We illustrate in Fig. 2.1.

Λ

Q(λ)

D

L
L

Λ Λ

Figure 2.1. Illustrations of several inverse problems for an inverted quadratic “bowl”. Left: The set-valued
inverse of a single output value. Middle: There is an invertible map between the set of equivalence classes
L and the range D. We show a partition of Λ by a set of contour equivalence classes. Right: A probability
distribution on the range D gives a unique inverse distribution on the set of equivalence classes L. We show
contours corresponding to a sample drawn on the distribution on D. Figures are adapted from [2].

Under our assumptions, the equivalence relation on Λ determined by Q−1 is a measur-
able map from Λ to L. The induced σ−algebra CΛ on Λ can be generated from the set of
equivalence classes of a set of generating events for BL. We note that CΛ is a proper subset
of BΛ in general and we call events in CΛ “contour events”, see Fig. 2.2. The induced proba-
bility measure PΛ,CΛ is defined PΛ,CΛ(A) = PL(EA) = PD(Q(A)), where EA is the event in L
corresponding to the equivalence class of A.

In the second and third inverse problems, we have used all the information that is possible
to obtain from inversion of the map Q. Yet, the third inverse problem does not match the third
forward problem. In the third forward problem, we can distinguish the individual probabilities
of distinct events in the original σ−algebra BΛ. However, in the third inverse problem, we
can only distinguish the individual probabilities of distinct events in the contour σ−algebra



	
  
	
  

	
  
	
  
	
  
	
  
	
  

𝜌! 𝑚 ≈   
𝜇!(𝐴! ∩ 𝐵!)
𝜇!(𝐴!)

𝑃!"#[𝐷!]
1!!

𝜇!(𝐵!)

!

!!!

!

!!!

 

 
where 1!! denotes the function that is 1 on 𝐵! and 0 elsewhere. 
 
A Bayesian Version of the Measure Theoretic Approach 
Here,	
  we	
  assume	
  we	
  are	
  given	
  a	
  prior	
  probability	
  density	
  on	
  the	
  input	
  parameter	
  space,	
  𝜌!"#$"(𝑚).	
  	
  
We	
  use	
  the	
  partitions	
  of	
  the	
  input	
  parameter	
  space	
  and	
  the	
  output	
  space	
  defined	
  in	
  the	
  previous	
  
section	
  and	
  the	
  Law	
  of	
  Total	
  Probability	
  to	
  write 

𝑃 𝐵! =    𝑃 𝐵! 𝐷!]  𝑃!"#[𝐷!]
!

!!!

 

As described in the previous section, the measure-theoretic approach calculates 𝑃 𝐵!   𝐷!] using 
the ratio of the volume of 𝐵! ∩   𝐴! and the volume of 𝐴!.  Our approach differs in that we utilize 
Bayes rule for measurable sets: 

𝑃 𝐵!   𝐷!] =   
𝑃!"#$% 𝐷! 𝐵!   𝑃!"#$"[𝐵!]

𝑃!"#$%[𝐷!]
 

where 𝑃!"#$%  [𝐷!] denotes the probability of 𝐷!   obtained by propagating the prior probability 
distribution through the forward model.  This set-based Bayesian perspective still requires an 
approximation of the forward propagation of uncertainty, but it does avoid approximating the 
inverse image of 𝐷! (which can be challenging in high-dimensions).  We can also use the set-
based Bayesian approach to construct a simple function approximation of the posterior 
distribution in the input parameter space: 

𝜌!,!"#$ 𝑚 ≈   
𝑃!"#$% 𝐷! 𝐵!   𝑃!"#$"[𝐵!]

𝑃!"#$%[𝐷!]
𝑃!"#[𝐷!]

1!!
𝜇!(𝐵!)

!

!!!

!

!!!

  

Importantly, the set-based Bayesian approach also allows us to consider the limit as the two 
partitions are refined, leading to the following expression for the posterior distribution defined 
point-wise in the parameter space: 

𝜌!,!"#$ 𝑚 =   𝜌!,!"#$"(𝑚)
𝜌!,!"#(𝐹(𝑚))
𝜌!,!"#$%(𝐹 𝑚 ) 

This result implies that the posterior is equal to the prior times a factor that depends on the ratio 
of the observed distribution on the data and the model’s prediction of the distribution on the data. 
Both the prior distribution on the input parameters and the observed distribution on the outputs 
are given (or at least assumed), so we only need to compute distribution on the outputs 
corresponding to the forward propagation of the prior distribution on the input parameters 



	
  
	
  

	
  
	
  
	
  
	
  
	
  

through the forward model. We note that if the propagation of the prior 
distribution through the model matches the data, then the posterior is equal to the prior. 
However, we emphasize that this is not the same as the statistical Bayesian approach since we 
utilize the propagation of the prior to compute a likelihood function rather than a statistical error 
model. 

Being able to directly approximate the posterior density at any point in the parameter space, 
means that we can generate samples of the posterior without relying on MCMC techniques. 
Instead we can just use rejection sampling to draw samples from the posterior. Unlike MCMC 
rejection sampling is not conditional on previously sampled points. Consequently rejection 
sampling will is able to handle multi-modal distributions more easily than MCMC methods and 
is also embarrassingly parallel. 

In contrast to traditional statistical Bayesian inference, our approach does not require a statistical 
error model to be specified. Rather we require a distribution on the observational data. There 
appears to be a close connection between statistical error models and densities on the 
observations, however as yet we have been unable to form this connection. 

Adaptive sparse grids 
Our measure theoretic Bayesian inference approach requires an approximation of the distribution 
in the data space corresponding to a forward propagation of the prior distribution on the 
parameters.  Approximating the density can be infeasible when the simulation model is 
expensive. One way to reduce the computational cost for high-fidelity computational models is 
to utilize a response surface approximation for the forward propagation of the prior. 
 
Many recent research efforts have focused on developing scalable and adaptive techniques to 
utilize response surface approximations (also referred to as surrogates or emulators) for forward 
propagations of uncertainty. The accuracy of the probabilistic predictions (probability density 
functions, mean, variance, probability of failure, etc.) obtained by sampling a surrogate depends 
directly on the accuracy of the approximation.  Consequently, it is important that the samples 
used to build the surrogate are chosen judiciously. Numerous adaptive techniques, such as sparse 
grids, and Gaussian processes, have been used successfully to build surrogates for the forward 
propagation of uncertainties through a model.  
 
In this report we will leverage response surface techniques for forward propagation of 
uncertainty to reduce the cost of forming density estimates of   𝜌!,!"#. Specifically we will utilize 
locally adapted sparse to develop adaptive response surface approximations that target regions of 
high posterior density. 
 
Sparse grids represent a function f as a linear combination of multivariate basis functions. 

𝑓 = 𝑣!,!𝜑!,!(𝑥)
!∈!!∈!

 

where I and L are sets of multidimensional index functions that can be used to control the 
resolution of the sparse grid. Specifically the approximation is defined on a set of anisotropic 
grids, which are the tensor product of one-dimensional meshes. The multi-index l denotes the 
level of refinement of the grid in each dimension. The multi-index i denotes the position of a 



	
  
	
  

	
  
	
  
	
  
	
  
	
  

node within each one-dimensional grid. Here we use multivariate basis 
functions which are the tensor products of compact one-dimensional piecewise polynomial basis 
functions defined on equidistant meshes [Jakeman 2013]. Sparse grids are built hierarchically. 
The coefficients v are referred to as the hierarchical surplus and are the difference between the 
function value and the sparse grid at each point before it is added to the grid.  
 
Two main approaches are used for adapting a sparse grid: local refinement [Pflueger 2010,Ma 
2009, Jakeman 2013]; and dimension [Hegland 2003, Gerstner 2003, Ganapathysubramanian 
2007] refinement. In this paper we will focus on local refinement.  Local adaptivity refines a 
sparse grid one point at a time. At any stage of the algorithm we have two sets of points, those 
points that have been refined previously, and points that have not been refined. We refer to the 
latter set of points as the active set. Refinement of the sparse grid proceeds by identifying the 
point in the active set with the largest error indicator and removing it from the active set. The 
children of this point are then created and added to the active set. Any single point will have at 
most 2d children and can be found by traversing a multi-dimensional binary tree [Ma 2009]. 
 
The effectiveness of sparse grid adaptivity is dependent on the quality of the error indicator used 
to prioritize each point in the active set. The hierarchical surplus is a natural error indicator and 
has been used extensively to efficiently approximate higher-dimensional functions, such as the 
log-likelihood function [Pflueger 2010, Zhang 2013]. In this paper we will compare adaptive 
sparse grids built using a hierarchical surplus based error indicator, with an error indicator that 
estimates the error in the posterior density estimated by our measure-theoretic approach. 
 
 
RESULTS:  
In this paper, we focus on the following numerical demonstrations: 

1. A comparison of the samples of the posterior generated by the proposed Bayesian 
approach with a statistical Bayesian approach using a DiffeRential	
  Evolution	
  Adaptive	
  
Metropolis	
  (DREAM)	
  algorithm	
  as	
  the	
  MCMC	
  sampler. 

2. A demonstration of the gains in accuracy and/or efficiency that can be achieved by 
employing a locally adaptive sparse grid approximation with refinement indicators that 
incorporate both the prior and the posterior distributions. 

We use two very simple model problems to perform the numerical demonstrations.  Both model 
problems have two parameters and one quantity of interest to facilitate a variety of comparisons.  
Higher-dimensional problems and multiple 
(correlated) quantities of interest have also been 
examined, but not as a part of this LDRD project and 
will not be discussed here.  
 
The first problem we consider is a 2-component 
nonlinear system of equations with two parameters 
introduced in [Breidt 2012]: 
 

𝜆!𝑥!! +   𝑥!! = 1 
 

𝑥!! −   𝜆!𝑥!! = 1 
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Fig. 4.1. Left: Uncertainty of output is modeled as a random variable with a normal distribu-
tion. Right: A plot of the map q : Λ → R.
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Fig. 4.2. Illustration of an application of Algorithm 1. Left: We determine which contours are
contained in an event A ⊂ Λ and how much of each contour is inside the event. Right: We estimate
the probabilities of small cells contained in the event and use an inner and outer estimate to obtain
an approximation of the probability of the event A.

In order to create an interesting example, we chooseΛ = [.79, .99]×[1−4.5
√
0.1, 1+

4.5
√
0.1] based on a sensitivity analysis of the forward problem in [23]. We use six-

uniformly spaced mesh points in both the λ1 and λ2 directions of Λ to create cells
{Bi}25i=1 that partition Λ. We use the centroid of each cell as the reference parame-
ter µi = (µ1,i, µ2,i)T in that cell and solve the forward problem to obtain reference
solutions yi = (y1,i, y2,i)T at these points, and then solve for the generalized Green’s
vector φi = (φ1,i,φ2,i)T at the reference point (µi, yi). According to (3.5), we obtain
a global piecewise-linear approximation q̂ to q defined as

q̂(λ) :=
25∑

i=1

(
y2,i + (λ− µi)

T

(
y21,i 0
0 −y22,i

)
φi

)
1Bi(λ).

We assume that the output data is a random variable with normal distribution on
the data space defined by q̂(Λ) (Figure 4.1). We assume µΛ is the Lebesgue measure.
We implement Algorithm 1 to calculate P (bi) for small cells for each fine partition of
Λ and determine the probabilities of events A ⊂ Λ. We plot the results in Figure 4.2.
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  2:	
  Quantity	
  of	
  interest	
  from	
  the	
  2-­‐
component	
  nonlinear	
  system.	
  



	
  
	
  

	
  
	
  
	
  
	
  
	
  

 
The quantity of interest is the second component.  The parameter ranges are given by 𝜆! ∈
[0.79, 0.99] and 𝜆! ∈ [1− 4.5 0.1, 1+ 4.5 0.1] which are chosen as in [Breidt 2012] to induce 
an interesting variation in the quantity of interest.  The quantity of interest as a function of the 
parameters over the given ranges is provided in Figure 2. 
 
The second problem we consider is a 1-component 
function of two parameters, 𝜆! ∈ [0,1] and 
𝜆! ∈ 0,1 ,  given by a sum of four Gaussian peaks: 
 
 
 
 
 
 
 
 
The function is shown in Figure 3. 
 
Comparison with Statistical Bayesian with 
DREAM MCMC 
Our first objective is to use the posterior distribution computed using the new Bayesian approach 
to generate a set of samples from the posterior and to compare these samples with those 
generated using a statistical Bayesian approach with an advanced MCMC algorithm, namely 
DREAM.  All of the numerical results in this section were generated using DAKOTA [Dakota].  
The numerical implementation of the new Bayesian approach in DAKOTA is called WASABI 
(Weighted Adaptive Surrogate Approximations for Bayesian Inference) and currently requires a 
surrogate approximation in order to efficiently propagate the prior distribution through the 
forward model.  A non-surrogate approach has also been developed, but will not be discussed in 
this paper.   
 
The surrogate model used in this section is a Gaussian process emulator constructed using 100 
evaluations of the forward model with a quadratic trend function.  Given the surrogate model, the 
propagation of the prior though the forward model is estimated using a large number (typically 
10,000) samples of the surrogate model.  Of course, utilizing a surrogate model in this manner 
introduces an additional error due to the interpolation of the surrogate rather than the evaluation 
of the true forward model.  The effect of this error on probabilistic quantities of interest has been 
investigated by the authors in previous work [Jakeman 2015] and understanding how these errors 
affect the posterior distribution will be the subject of future work. 
 
For our first demonstration, we consider the 2-component nonlinear system and assume that the 
observed distribution on quantity of interest is a normal distribution with mean 0.3 a standard 
deviation of 0.1.  Assuming a Gaussian distribution is not required for WASABI, but the 
assumption does facilitate an easier comparison with the statistical Bayesian model with an 
additive Gaussian noise model.  We assume a uniform prior distribution on the input parameters.	
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Figure	
  4:	
  The	
  approximation	
  of	
  the	
  posterior	
  distribution	
  (left),	
  the	
  samples	
  from	
  the	
  posterior	
  generated	
  by	
  
WASABI	
  (middle),	
  and	
  the	
  samples	
  from	
  the	
  posterior	
  generated	
  by	
  MCMC-­‐DREAM	
  (right). 

 
Using WASABI, we directly construct the posterior 
distribution on a uniform grid of points in the input 
parameters space and plot this in Figure 4 (left).  Since 
we can directly interrogate/approximate the posterior 
distribution, we can easily generate samples from the 
posterior using rejection sampling. Specifically	
  we	
  
sample	
  a	
  point	
  from	
  a	
  proposal	
  distribution	
  then	
  if	
  
the	
  value	
  of	
  the	
  posterior	
  at	
  that	
  point	
  is	
  greater	
  than	
  
a	
  random	
  uniform	
  number	
  in	
  U(0,1)	
  we	
  reject	
  the	
  
point	
  otherwise	
  we	
  accept	
  it.	
  	
  The samples from the 
posterior distribution using WASABI are given in Figure 
4 (middle).  For comparison, the samples from the 
posterior distribution using MCMC/DREAM are given in 
Figure 4 (right)  For this example, the samples from the 
posterior are fairly consistent.   

 
For our second demonstration, we consider the Gaussian 
peaks function and assume the observed distribution on 
the quantity of interest is Gaussian with mean 2.3 and a 
standard deviation of 0.2.  This distribution is shown in 
Figure 5 along with 50 samples from the distribution.  In 
Figure 6, we plot the generalized contours associated 
with each of these samples.  The posterior distribution 
computed using the new Bayesian approach with a 
uniform prior distribution is given in Figure 7 (left).  We 
see that the support of the posterior is consistent with the 
density of the generalized contours in Figure 6.  In 
Figures 7, we show the samples from the posterior 
computed using the new Bayesian approach (middle) the 
statistical Bayesian approach (right).  This particular 
example is more challenging for MCMC due to the multi-modal nature of the posterior 
distribution.  The DREAM algorithm addresses this challenge by running multiple concurrent 
MCMC chains.  Here, we utilize three chains with inter-chain mixing every ten samples.  This 

Figure	
  5:	
  The	
  observed	
  Gaussian	
  
distribution	
  on	
  the	
  output.	
  	
  The	
  mean	
  is	
  
given	
  in	
  red	
  and	
  samples	
  from	
  the	
  
distribution	
  are	
  given	
  in	
  black. 

Figure	
  6:	
  Generalized	
  contours	
  
corresponding	
  to	
  the	
  mean	
  of	
  observed	
  
data	
  (red)	
  and	
  the	
  samples	
  from	
  the	
  
observed	
  distribution	
  (black). 



	
  
	
  

	
  
	
  
	
  
	
  
	
  

appeared to be sufficient for MCMC to identify the three disconnected modes 
of the posterior.  We note that WASABI also needs to explore the space in order to locate all of 
the modes of the posterior, but since we do not rely on MCMC we do not run the risk of getting 
trapped within one of the modes. 

	
  
Figure	
  7:	
  The	
  approximation	
  of	
  the	
  posterior	
  distribution	
  (left),	
  the	
  samples	
  from	
  the	
  posterior	
  using	
  WASABI	
  
(middle),	
  and	
  the	
  sample	
  from	
  the	
  posterior	
  using	
  MCMC-­‐DREAM	
  (right).	
   

 
Locally Adaptive Sparse Grids 
Next, we demonstrate how incorporating an approximation of the posterior distribution into an 
adaptive refinement critieria can reduce the computational cost required to approximate the 
posterior to a chosen tolerance.   
 
We demonstrate this adaptive approach on the Gaussian peaks problem introduced in the 
previous section.  We start from an initial grid with a relatively small number of points and 
explore the effect of various refinement indicators on the accuracy of the posterior distribution.  
The reference posterior distribution was computed using a high-order tensor product quadrature 
rule with the aforementioned surrogate-free version of the new Bayesian approach.  The 
computational cost associated with this reference posterior is quite high, but it is free from 
surrogate approximation errors which is the focus of this demonstration.   
 
In Figure 8, we show the convergence of the L2-norm of the posterior using the following 
refinement criteria 

𝛼𝜌!,!"#$" + 1− 𝛼 𝜌!,!"#$ 𝑣 𝑣𝑜𝑙(𝑣) 
Here the hierarchical surplus v, and the densities 𝜌!,!"#$" and 𝜌!,!"#$ are estimated when a point 
is first built and added to the active set. By varing 0 ≤ 𝛼 ≤ 1 we can balance the need to resolve 
non-local effects of the model f on the posterior and the need to concentrate samples in regions 
of high-posterior probability.  
 
Specifically we consider the following forms of refinement 

• Isotropic refinement  
• Standard surplus-based refinement with weights based on the prior (𝛼 = 1) 
• Surplus-based refinement with weights based only on the posterior (𝛼 = 0) 
• Surplus-based refinement with weights based on a convex combination of the prior and 

posterior. (𝛼 = 0.1,𝛼 = 0.5) 
We see that the isotropic refinement criteria (dashed black line) converges linearly as one would 
expect considering we are using linear basis functions.  We also see that the standard approach 



	
  
	
  

	
  
	
  
	
  
	
  
	
  

using the heirarchical surplus weighted by the prior distribution as a 
refinement indicator (green line) performs better than the isotropic case.  We observe that using 
the hierarchical surplus weighted by the posterior distribution does not converge very well.  
There are two reasons that this refinment indicator does not perform well. Firstly the initial grid 
that is used to initiate adaptivity is to coarse to resolve the local minima of the posterior and so 
refinement stops prematurely in these regions. Secondly, even when the initial grid is 
sufficienctly fine, the 𝛼 = 0 indicator does not refine outside the regions of non-zero posterior 
density and thus does not capture the non-local effects of these uncaptured regions on the 
posterior. This is despite the fact that the initial grid was sufficiently fine to locate all three 
modes of the posterior. In other words, simply approximating the forward map in regions where 
the posterior has non-zero support is insufficient to actually approximate the posterior since the 
values of the posterior depend on the full forward propagation of the prior.   

	
  
Figure	
  8:	
  Convergence	
  of	
  the	
  posterior	
  for	
  a	
  variety	
  of	
  adaptive	
  approaches.	
  

To balance nonlocal effect due to the forward propagation of the prior with the local effect of the 
approximation of the posterior, we considered various convex combinations of prior and 
posterior density estimates. The results of the balanced approach for two different mixing 
parameters are also given in Figure 8.   We see that a mixing parameter of α=0.5 tends to 
consistently perform better than the prior weighted case (α=1.0), but that the case of α=0.1 tends 
to perform the best at the higher-number of model evaluations.  This is due to the fact that once 
the nonlocal effects have been sufficiently resolved, it is better to spend the computational effort 
on the posterior refinement indicator. 
 
DISCUSSION:  
 
Despite significant recent progress, the effectiveness of state-of-the-art methods for statistical 
Bayesian inference is still greatly limited by high numbers of model parameters. In high-
dimensional parameter spaces, sufficient exploration and maintaining a minimum acceptance 



	
  
	
  

	
  
	
  
	
  
	
  
	
  

rate has proven challenging for even the most adaptive MCMC schemes 
[Liebermann 2010]. In addition to the challenges posed by high-dimension, MCMC can have 
difficult exploring complex posterior surfaces that contain multiple regions of attraction and 
numerous local optima. Recently a few algorithms have been developed to address these 
limitations. Specifically dimension reduction algorithms have been used to increase the 
acceptance rate of MCMC in high dimensions [Cui 2014] and multiple chains have been used to 
address the issues of multi-modality in the posterior [Vrugt 2011]. 
 
In contrast to traditional statistical Bayesian inference, which typically employs MCMC, our 
Bayesian inference approach does not require MCMC to draw samples from the posterior. 
Because our method can directly interrogate the posterior we can simply use rejection sampling 
to draw samples from the posterior. Provided the support of the proposal distribution 
encompasses (with high probability) the posterior, the rejection rate of our approach is 
proportional to volume of the non-zero support of the posterior relative to the support of the 
proposal distribution. The ability to draw samples from the posterior, however, is not dependent 
of the number of local optima (modes) in the posterior. More over rejection sampling is 
embarrassingly parallel and so, unlike MCMC, we can obtain all the samples of the posterior 
simultaneously. 
 
The number of samples required by our inference approach is equal to the number of samples 
from the prior propagated through the forward model plus the number of samples used to 
interrogate the posterior. The accuracy of the estimates of the posterior density however is only 
dependent on the number of prior samples used. The prior samples are used to evaluate the 
model and form a density estimate of the response QoI and thus a large number of samples are 
needed for an accurate estimate of this density. Specifically because we need to form a density 
estimate of the response QoI, the accuracy of our algorithm will have a Monte Carlo type 
convergence rate with respect to the number of prior samples. We also remark that the number of 
samples used to interrogate the posterior may be small if one simply wants to evaluate the 
density at a few selected points, or large if one wants to generate a large number of samples of 
the posterior using rejection sampling. 
 
To overcome the slow rate of convergence of Monte-Carlo, we built a surrogate of the forward 
model that is used in place of the expensive simulation model when propagating prior samples 
through the forward model. Provided the number of function evaluations required to build the 
surrogate of sufficient accuracy is less than the number of prior+posterior samples then the using 
a surrogate is warranted. A similar approach is often used for MCMC based statistical inference, 
where the MCMC chain is built on a low-cost surrogate. 
 
The accuracy of our estimate of the posterior density is dependent on the accuracy of the 
surrogate of the forward model. Numerically we have shown that as the error in the surrogate 
tends to zero the estimate of the posterior density will converge to the posterior density formed 
without the surrogate, for a fixed set of prior samples. Future work is needed to provide 
theoretical justification for this result.  
 
Surrogates of the forward model can be built isotropically by treating all dimensions and regions 
of parameter space equally. However we demonstrated that a reduction in the number of 



	
  
	
  

	
  
	
  
	
  
	
  
	
  

simulation runs can be achieved with the use of adaptivity. Specifically we 
used local sparse grid adaptivity with a number of error criterion used to control refinement. It 
was found that simply refining in regions where the error in the surrogate was high is effective, 
however by also including estimates of the error in the posterior, further gains can be made. We 
presented a problem with 3 modes of high-posterior probability and localized support. This 
problem presents a pathological challenge for adaptive refinement of sparse grids or any 
surrogate. However it must be noted this is not a limitation of the non-surrogate based inference 
method. The localized nature of the posterior meant that if adaptivity is started before the local 
non-zero features have been identified then refinement will stop prematurely or continue in 
regions of parameter space that are not informed by data and thus degrading the accuracy of the 
estimated posterior. We believe that adaptivity will be much more effective when the support of 
the posterior is more global. Future work is needed to test this hypothesis. 
	
  
ANTICIPATED IMPACT:  
Future research 
The use of surrogates with our Measure theoretic Bayesian inference approach appears very 
promising. Future work could explore additional means of reducing the cost of inference, other 
than sparse grid collocation which is limited to moderate dimensional problems. Future areas of 
research include: (1) dimension reduction techniques, such as active subspaces, which identify 
the regions of parameter space that are important for data informed prediction; and (2) multi-
fidelity approaches that combine the increased predictive strengths of high-fidelity models with 
the reduced computational cost of lower fidelity models to enable more extensive exploration of 
model uncertainties -probability subspaces. 
 
This project developed a formulation of Bayesian inference that is able to rigorously leverage the 
strengths of forward UQ whilst still constraining prior assumptions of uncertainty using 
observational data. This concept is a fundamental concept of a DOE early career award pre-
proposal submitted by John Jakeman and entitled “Goal-oriented data-informed prediction for 
large-scale systems subject to uncertainty.  The goal of the project is to develop new 
mathematical and numerical inference methods for quantifying uncertainty in predictions 
obtained from large-scale physical models. Specifically to develop algorithms that drastically 
reduce the number of high-fidelity simulations (cost) required to quantify uncertainty whilst 
attempting to maintain the deterministic prediction accuracy of the high-fidelity model.  
 
The pre-proposal outlined novel mathematical formulations, including but not limited to the 
work presented here, that integrate inverse and forward propagation of uncertainty, which 
leverage data and drive computational effort in a manner dictated by the requirements of 
prediction. The goal-oriented algorithms proposed are based on a reformulation of the sequential 
inverse-forward UQ problem as a set of purely forward UQ problems. This reformulation allows 
the methods developed to leverage the strengths of forward UQ methods, such as high-order 
convergence, and the ability to utilize adjoint information such as gradients and error estimates. 
 
The capabilities developed in this project will be further investigated in an ASC V&V project led 
by T. Wildey in FY16.  The objective of this project will be to pursue goal-oriented adaptive 
response surface approximations within Dakota for the purposes of stochastic inversion and for 
inversion for prediction.  We will also seek to develop the set-based version of the new Bayesian 



	
  
	
  

	
  
	
  
	
  
	
  
	
  

approach utilizing the recently developed Voronoi capabilities in DAKOTA.  
This set-based version will provide a stronger connection with the measure-theoretic approach in 
the literature. 
 
Software 
The methods developed here will be made available to the DOE community via deployment with 
the software package Dakota. Dakota is an optimization and uncertainty quantification tool that 
is widely used throughout the laboratory and by many external research and industrial partners. 
As such, deployment of our algorithm in Dakota will impact a wide range of customers that have 
a direct or indirect impact on Sandia’s mission. 
 
With the help of this funding, a prototype of our approach has been implemented in Dakota that 
uses un-adapted surrogates, polynomial chaos expansions and Gaussian process models. With 
future funding from ASC V&V, we will extend this prototype so use the dimension-adaptive 
sparse grids in the Dakota package Pecos. Any advances made from future research are also 
candidates for inclusion in Dakota.  
 
Programmatic impact 
The work outlined in this report will assist engineers working on a broad range of applications of 
interest to the Sandia National Laboratories, to understand and quantify the uncertainties in their 
predictive models. Example of classes of models that are particularly relevant to this report are: 

• Models of fluid structure interactions, important for modeling of nuclear reactor systems,  
• Random field flow models, used to predict sea level rise due to ice-sheet melt and model 

sub-surface flows.  
• Shock-hydrodynamic models, which are critical to ensure the safety and reliability of the 

nuclear weapon stockpile. 
• Multi-scale material models, which are required to characterize the structural integrity of 

components built using additive manufacturing processes. 
All of these classes of models have existing either robust or prototype Trilinos-based solvers 
(Drekar, Albany, MILO) that can be utilized by this project with minimal start-up time and are 
built upon components that have demonstrated scalability on O(100,000) cores.  
 
 
CONCLUSION: 
In this paper we have described a recently developed approach for Bayesian inference based on a 
measure theoretic perspective.  We compared the new approach the standard statistical Bayesian 
approach and demonstrated that the new approach can easily generate comparable sets of 
samples from the posterior distribution without relying on MCMC.  We also discussed and 
presented numerical results for a new approach for adaptive refinement of a sparse grid surrogate 
model based on both the prior and the posterior distributions.  We believe that this new approach 
provides a promising alternative to both the measure-theoretic and statistical Bayesian 
approaches and there are still a number of interesting questions left to be addressed by future 
work. 
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