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Abstract

A model for incorporating solid solutions into reactive transport equations is presented based
on an end-member representation. In this approach reactive transport equations are solved
directly for the composition and bulk concentration of the solid solution. Reactions of a
solid solution with an aqueous solution are formulated in terms of an overall stoichiometric
reaction with a time-varying composition and exchange reactions, related to an end-member
description of the solid solution. Reaction rates are treated kinetically using a transition state
rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The
composition of the solid solution at the onset of precipitation is assumed to correspond to the
least soluble composition, equivalent to the composition at equilibrium. The stoichiometric
saturation determines if the solid solution is super-saturated with respect to the aqueous
solution. The method is implemented for a simple prototype batch reactor using Mathematica
for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant
for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase
with an undersaturated aqueous solution.
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Nomenclature

Aj aqueous primary species
A aqueous species
B aqueous species
amα activity of αth end-member and mth solid solution
C aqueous species
Cj aqueous concentration of jth primary species
Ci aqueous concentration of ith secondary species
D aqueous diffusion coefficient
i subscript for ith secondary species
j subscript for jth primary species

J j flux of jth primary species
J i flux of ith secondary species
Ki equilibrium constant of ith primary species
Km
α equilibrium constant for αth end-member and mth solid solution
km rate constant for mth solid solution
kmα equilibrium constant for exchange reaction for mth solid solution
kbαm backward rate constant for exchange reaction
kfαm forward rate constant for exchange reaction
Mm mth solid solution
Mm

α αth end-member of mth solid solution
mj molality of jth primary species
Nc number of primary species
NM number of solid solutions
Nm number of end-members for mth solid solution
nmα number of moles of αth end-member of mth solid solution
nm number of moles of mth solid solution
Qm
α activity product for αth end-member and mth solid solution
q Darcy velocity
r position vector

Sjκ sensitivity matrix for jth primary species and κth parameter
Smακ sensitivity matrix for αth end-member and κth parameter
SIm saturation index of the mth solid solution
t time

∆t time step
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V volume of REV
V m molar volume of mth solid solution

V
m

α molar volume of αth end-member of mth solid solution
xmα mole fraction of αth end-member for mth solid solution
νmjα stoichiometric coefficient
νji stoichiometric coefficients for homogeneous aqueous reactions
ϕ porosity
φm volume fraction of mth solid solution
χmα concentration of αth end-member of mth solid solution
χm bulk concentration of mth solid solution
Ψj total concentration of jth primary species
Ωj total flux of jth primary species
Γmα reaction rate of αth end-member of mth solid solution
Γm reaction rate for mth solid solution

Γmα0α
exchange reaction rate of mth solid solution

γj activity coefficient of jth primary species
σκ parameter for sensitivity calculation
τ tortuosity
ζm reaction index for mth solid solution
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Chapter 1

Introduction

Implementing solid solution models into reactive transport equations has languished be-
hind incorporating other types of reactions in part because of the inherent complexity of
solid solutions and the necessity to account for changes both in bulk concentration as well
as compositional changes. Bruno et al. (2007) provide a comprehensive review of solid
solutions applied to nuclear waste management including a discussion of multicomponent
systems, order-disorder, miscibility, reciprocal solid solutions and other properties. Unlike
other formulations, e.g. Nourtier-Mazauric et al. (2005), the approach proposed here is
based on a kinetic framework accounting for simultaneous compositional and bulk changes
in the solid solution.

In contrast to the work of Lichtner and Carey (2006) in which a discrete representation of
the solid solution composition was implemented which resulted in an extremely large number
of solid compositions that rapidly became impractical for solid solutions with more than a few
components, in this approach the solid solution composition and bulk concentration follow
directly from the solution of mass conservation equations describing the interaction with an
aqueous solution. Besides the usual primary species needed to represent the aqueous solution
composition, new variables providing the concentration of each end-member are added to
the set of unknowns with an equal number of equations. This formulation provides direct
calculation of the composition and bulk concentration of each solid solution as a function
of time and space. This is in contrast to the treatment of a stoichiometric mineral which
involves only a single variable providing its bulk concentration.

In what follows, first a general presentation of the method is given based on end-member
components which may serve as a prototype for extension to more complex solid solutions,
not considered here, including multicomponent systems, mixing of atoms on crystallographic
sites or sublattices, reciprocal solutions, order-disorder and other properties combined with
advective-diffusive-dispersive transport processes. The approach is applied to a binary solid
solution and implemented numerically for a batch reactor using Mathematica (Wolfram Re-
search, 2010). Finally, the sensitivity of the binary solid solution to the kinetic rate constant
is investigated.
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Chapter 2

Methodology

The formulation which follows applies to solid solutions that can be represented by a
complete set of end-members. This treatment omits more general classes of solid solutions
that do not fit into this framework, but the approach should be relatively easy to extend to
more complex cases.

2.1 Composition Variables

For a multicomponent solid solution Mm described by Nm independent end-members
Mm

α , reactions representing interaction of the solid solution with an aqueous solution can be
written in the general form

Nc∑
j=1

νmjαAj 
 Mm
α , (α = 1, . . . , Nm), (2.1.1)

with Nc aqueous primary species Aj and stoichiometric coefficients νmjα (Lichtner and Carey,
2006; Sack and Lichtner, 2009). It is assumed that there are NM possible solid solutions
giving a total of NM×Nm unknown quantities to represent all solid solutions in the system
under consideration. In what follows greek subscripts (α, β, . . .) are used to denote end-
members and latin subscripts (i, j, . . .) aqueous species. The index m is reserved for the
mth solid solution.

The solid solution is defined by its bulk amount and its composition. Order-disorder
effects are not taken into account in this formulation although future work will attempt
to account for such processes. For a representative elemental volume (REV) at position
r and time t, there are nmα (r, t) moles of the αth end-member in the mth solid solution.
The solid solution bulk concentration and composition is determined by χmα (r, t) giving the
concentration of the αth end-member defined by

χmα (r, t) =
nmα (r, t)

V
, (2.1.2)

with REV volume V . The bulk concentration of the mth solid solution is represented by the
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quantity χm defined by

χm(r, t) =
nm(r, t)

V
=

1

V

Nm∑
α=1

nmα (r, t), (2.1.3a)

=
Nm∑
α=1

χmα (r, t), (2.1.3b)

equal to the sum over the individual end-member concentrations with

nm(r, t) =
∑
α

nmα (r, t). (2.1.4)

The solid solution composition is determined by Nm−1 independent end-member mole
fractions xmα defined by

xmα (r, t) =
nmα (r, t)

nm(r, t)
=

χmα (r, t)

χm(r, t)
=

χmα (r, t)∑
β

χmβ (r, t)
, (2.1.5)

and satisfying
Nm∑
α=1

xmα (r, t) = 1. (2.1.6)

The set of composition variables xmα is denoted by {x} = {xmα1
, . . . , xmαNm

}.

The volume fraction φm(r, t) of the solid solution is related to its bulk concentration
through the solid solution molar volume V m

φm(r, t) =
Vm(r, t)

V (r)
=

Vm(r, t)

nm(r, t)

nm(r, t)

V
= V mχm(r, t). (2.1.7)

The solid solution molar volume is in general a function of the solid solution composition
according to the relation

V m =
∑
α

xmα V
m

α , (2.1.8)

where V
m

α denotes the partial molar volume of the αth end-member. From the solid solution
volume fraction the porosity of the porous medium can be obtained directly as

ϕ(r, t) = 1−
∑
m

φm(r, t), (2.1.9a)

= 1−
∑
m

V mχm(r, t). (2.1.9b)

In terms of φm and xmα the end-member concentration can be expressed as

χmα = V
−1

m xmα φm. (2.1.10)
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Complete specification of the solid solution bulk concentration and composition is spec-
ified by the variables {χmα }, or equivalently {xm1 , . . . , xmNm−1, χm}. Alternatively, one can
replace one of the end-member concentrations with the total concentration and use instead
the set of variables {χm1 , . . . , χmNm−1, χm}.

2.2 Reactive Transport Equations

Solid solutions can occur either as primary minerals with a fixed composition or as
secondary minerals with variable composition resulting from precipitation. In the case of
a secondary solid solution, at the onset of precipitation the composition with the greatest
saturation index is assumed to form. A further complication is that a solid solution may
precipitate in layers with the consequence that the entire mineral grain or rock fragment
may not react with the fluid. However, these complications are not considered further in
this work.

The end-member reactions given in Eqn.(2.1.1) can be written in alternative forms by
performing various linear combinations of the original reactions. Multiplying the αth end-
member reaction by xmα and summing over all end-members gives the overall reaction∑

jα

xmα ν
m
jαAj 


∑
α

xmαMm
α , (2.2.1)

corresponding to composition {x}. In addition, a set of exchange reactions can be derived
by choosing one of the end-members as a reference end-member denoted by Mα0

, and sub-
tracting the reference end-member reaction from the remaining reactions to give

m∑
j

νmjα1
Aj +Mm

α0



∑
j

νmjα0
Aj +Mm

α1
, (2.2.2a)

m∑
j

νmjα2
Aj +Mm

α0



∑
j

νmjα0
Aj +Mm

α2
, (2.2.2b)

. . .
m∑
j

νmjαNm−1
Aj +Mm

α0



∑
j

νmjα0
Aj +Mm

αNm−1
, (2.2.2c)

providing Nm−1 linear independent exchange reactions. Combined with the overall reaction
corresponding to composition {x}, gives a total of Nm reactions equivalent to the original
set of end-member reactions.

For simplicity a fully saturated porous medium is considered with constant porosity ϕ.
Based on the two equivalent sets of end-member reactions the reactive transport equations
for an aqueous fluid reacting with a set of solid solutions can be written in the following

15



alternate forms for the jth primary species

∂

∂t
ϕΨj + ∇ ·Ωj = −

∑
mα

νmjαΓmα , (2.2.3a)

= −
∑
mα

xmα ν
m
jαΓm({x}) +

∑
m,α 6=α0

(
νmjα0
− νmjα

)
Γmα0α

, (2.2.3b)

where Eqn.(2.2.3a) corresponds to end-member reactions as written in Eqn.(2.1.1) with asso-
ciated rates Γmα , and Eqn.(2.2.3b) corresponds to reactions given in Eqns.(2.2.1) and (2.2.2)
with rates Γm and Γmα0α

, respectively. On the left-hand side of these equations the quantities
Ψj and Ωj denote the total concentration and flux of the jth primary species. The total
concentration is given by

Ψj = Cj +
∑
i

νjiCi, (2.2.4)

with primary species concentration Cj and secondary species concentration Ci. The sec-
ondary species incorporate the homogeneous equilibrium reactions∑

j

νjiAj 
 Ai, (2.2.5)

with stoichiometric reaction coefficients νji, relating the concentration of primary and sec-
ondary species Aj, Ai, respectively, through the corresponding mass action equations (Licht-
ner, 1985, 1996)

Ci =
Ki

γi

∏
j

(
γjCj

)νji . (2.2.6)

The total flux Ωj is likewise given by the sum of primary and secondary species as

Ωj = J j +
∑
i

νjiJ i, (2.2.7)

where the flux for the kth species Jk consists of contributions from advection and diffusion
for primary and secondary species

Jk = qCk − ϕτD∇Ck, (2.2.8)

with Darcy velocity q, tortuosity τ , and diffusion coefficient D assumed to be species-
independent. From this latter assumption it follows that the total flux can be written in
terms of the total concentration according to

Ωj =
(
q − ϕτD∇

)
Ψj. (2.2.9)

The solid solution concentration χmα is determined from the equations

∂χmα0

∂t
= Γmα0

, (2.2.10a)

= xmα0
Γm({x})−

∑
α 6=α0

Γmα0α
, (2.2.10b)
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for reference end-member Mα0
, and

∂χmα
∂t

= Γmα , (2.2.11a)

= xmα Γm({x}) + Γmα0α
, (2.2.11b)

for all other end-members Mα. These equations together with the primary species so-
lute transport equations provide Nc+Nm×NM equations in an equal number of unknowns
({Cj}, {χmα }). The solid solution mole fraction xmα is related to the solid solution concentra-
tion through Eqn.(2.1.5).

It follows from the above equations that the reaction rates for the different forms of
reactions are related by the expressions

Γmα0
= xmα0

Γm({x})−
∑
α 6=α0

Γmα0α
, (2.2.12)

Γmα = xmα Γm({x}) + Γmα0α
, (2.2.13)

and conversely

Γm({x}) =
∑
α

Γmα , (2.2.14)

Γmα0α
= Γmα − xmα

∑
β

Γmβ . (2.2.15)

Thus if simple forms for the kinetic reaction rates are chosen for one set of reactions, e.g. as
argued below if the transition state rate law is chosen for the overall reaction corresponding
to composition {x} and elementary rate expressions are used for exchange reactions, then
the end-member reaction rates become linear combinations of these rate laws.

Adding the equations for the end-member concentrations the exchange rate terms cancel
resulting in the following equation for the bulk solid solution concentration χm

∂χm
∂t

=
∑
α

Γmα = Γm. (2.2.16)

Note that the rate of change of the bulk solid solution concentration is independent of the
exchange reaction rates. In terms of the solid solution volume fraction φm assuming constant
molar volume V m, the mineral mass transfer equation can be written as

∂φm
∂t

= V mΓm. (2.2.17a)

In either formulation of the end-member reactions, the reaction rates can be eliminated
from the primary species transport equations enabling these equations to be written in the
equivalent form

∂

∂t

(
ϕΨj +

∑
mα

νmjαχ
m
α

)
+ ∇ ·Ωj = 0. (2.2.18)
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In this form of the transport equations the end-members reaction rates Imα , or Im and Imα0α

for the overall and exchange reactions, are eliminated from the primary species transport
equations and can be replaced by appropriate algebraic mass action relations, if desired,
thereby imposing local equilibrium constraints on the solution.

2.3 Kinetic Rate Laws

Constitutive relations for the kinetic rate laws must be provided to complete the set of
equations. There are several different approaches that could be used. For example, one
approach could associate a rate expression with each end-member reaction, perhaps based
on the usual transition state rate law or a pseudo-kinetic rate law derived from elemen-
tary reactions. In the approach used here, the overall reaction is associated with a typical
transition state theory based-rate law, whereas exchange reactions are associated with a
pseudo-kinetic rate law based on the difference between forward and backward rates. This
approach is consistent with applying the conventional transition state rate law to stoichiomet-
ric solids including dissolution of a primary solid solution of fixed composition. Ultimately,
experimentally-based rate laws are required which may be difficult to achieve in practice.

Some justification for this assignment is provided in the compilation of kinetic rate con-
stants by Palandri and Kharaka (2004) for solid solutions with varying composition. Al-
though data is limited, rate constants for solid solutions oligoclase, andesine, labradorite,
bytownite, anorthite, K-feldspar, and forsterite are included.

Equilibrium of a solid solution is determined by simultaneous equilibrium of each end-
member as given by the Nm mass action equations

Km
α Q

m
α = amα , (2.3.1)

corresponding to the reactions given in Eqn.(2.1.1). In this expression Km
α refers to the

equilibrium constant, Qm
α denotes the ion activity product, and the activity of the αth end-

member for the mth solid solution is denoted by amα . The activity amα is related to the mole
fraction xmα through the activity coefficient λmα

amα = λmα x
m
α . (2.3.2)

The ion activity product Qm
α is defined by

Qm
α =

Nc∏
j=1

(
γjmj

)νmjα , (2.3.3)

with molality mj of the jth primary species and aqueous activity coefficient γj. Equilibrium
of the overall reaction corresponding to composition {x} given by Eqn.(2.2.1) is defined by
the relation ∏

α

(
Km
α Q

m
α

)xmα =
∏
α

(
amα
)xmα , (2.3.4)
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or alternatively ∏
α

(Km
α Q

m
α

amα

)xmα
= 1. (2.3.5)

This relation provides a constraint among the aqueous primary species for each solid solution
Mm that is present in the system under conditions of local equilibrium.

The reaction rate corresponding to the overall reaction for the solid solution with com-
position {x} given in Eqn.(2.2.1) is assumed to have the following form based on transition
state theory

Γm({x}) = −kmAm
(
1− SIm({x})

)
ζm({x}), (2.3.6)

with the saturation index SIm({x}) defined by

SIm =
∏
α

(Km
α Q

m
α

amα

)
, (2.3.7)

and with kinetic rate constant km, in general a function of temperature and pressure, in
addition to pH and other solution composition variables, and specific surface area Am. The
expression for the reaction rate is qualified by the presence or absence of the solid solution
through the factor ζm which takes the value 1 if the solid solution is present or supersaturated,
and zero otherwise

ζm =

{
1, χm > 0, or SIm > 1
0, otherwise

. (2.3.8)

For exchange reactions a pseudo-kinetic rate law is assumed of the form

Γmα0α
= kfα0m

amα0
Qm
α − kbαmamαQm

α0
, (2.3.9)

with effective forward and backward rate constants kfα0m
and kbαm, respectively, related to

the equilibrium constant for the exchange reaction by

Km
α0α

=
kmα
kmα0

=
kfα0m

kbαm
, (2.3.10)

where the (non-unique) constants kmα are introduced for simplicity (see below).

From the above analysis precipitation commences when SIm> 1 at the composition de-
termined by the exchange reactions. There has been considerable discussion in the literature
of the role played by stoichiometric saturation SIm=1 (Glynn et al., 1990). Clearly, equilib-
rium of the solid solution requires that all end-members be in simultaneous equilibrium, and
stoichiometric equilibrium is only a necessary but not sufficient condition. Nevertheless, the
condition SIm>1 for precipitation is both necessary and sufficient.

2.4 Equilibrium Exchange Relations

Contrary to a description of ion exchange, for which for equilibrium conditions an isotherm
defining the sorbed concentration exists, solid solution exchange equilibrium relations do not

19



define isotherm relations for the solid solution end-member concentrations, i.e. it is not pos-
sible to obtain a functional relationship between the end-member concentrations and the
concentrations of the aqueous primary species without solving the complete set of reactive
transport equations. This is similar to a stoichiometric solid for which an isotherm for the
solid concentration also does not exist. However, equilibrium isotherms do exist for the mole
fraction xmα .

The exchange reactions determine the solid solution composition in equilibrium with a
given fluid composition irrespective of χm, the bulk solid solution concentration, or whether
or not the solid solution is under- or super-saturated. Exchange equilibrium implies the
Nm−1 relations

kmα
kmα0

Qm
α

Qm
α0

=
amα
amα0

, (α 6= α0). (2.4.1)

For an ideal solid solution these relations reduce to
kmα
kmα0

Qm
α

Qm
α0

=
xmα
xmα0

, (2.4.2)

with the explicit solution (see Appendix A for derivation for ideal and non-ideal cases)

xmα =
kmα Q

m
α∑

β

kmβ Q
m
β

. (2.4.3)

For the non-ideal case these equations can be written in the implicit form

xmα =
kmα Q

m
α /λ

m
α∑

β

kmβ Q
m
β /λ

m
β

. (2.4.4)

Since λmα is also a function of the composition xmα , this latter equation represents a coupled
system of nonlinear equations for xmα . It follows from the relation χmα = xmα χm that

χmα =
kmα Q

m
α /λ

m
α∑

β

kmβ Q
m
β /λ

m
β

χm. (2.4.5)

This expression is analogous to the Langmuir isotherm derived from ion-exchange (see
Eqn.(B-9)) with the bulk solid solution concentration replacing the exchange site density
or cation exchange capacity (See Appendix B). It is clear from this relation that because χm
cannot be represented by an isotherm, neither can χmα . However, the mole fraction xmα can
be represented by an isotherm according to Eqn.(2.4.4).

It further follows that the sum appearing in Eqn.(2.2.18) can be broken up into contri-
butions from the bulk concentration and solid solution composition according to∑

mα

νmjαχ
m
α =

∑
m

χm
∑
α

νmjαx
m
α . (2.4.6)

The composition {x} under conditions of equilibrium is related to the aqueous primary
species concentrations through an isotherm; however, the bulk concentration can only be
obtained through solving the reactive transport equations.
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2.5 Numerical Implementation

To solve the governing equations numerically it is not possible to split the conservation
equations for end-member concentrations from the aqueous primary species conservation
equations as is the case with stoichiometric solids (Lichtner, 1988). This is because the
reaction rates depend on the solid solution composition and bulk concentration.

The solid solution volume fraction and composition can be obtained from an explicit
finite difference formulation. Noting that

χmα = V
−1

m φmx
m
α , (2.5.1)

the explicit finite difference form of the solid phase mass transfer equations have the form(
V
−1

m φmx
m
α

)
t+∆t

=
(
V
−1

m φmx
m
α

)
t
+ ∆tΓmα (t). (2.5.2)

Summing this equation over all end-members yields an equation for the solid solution volume
fraction (

V
−1

m φm
)
t+∆t

=
(
V
−1

m φm
)
t
+ ∆t

∑
α

Γmα (t). (2.5.3)

For the special case of constant molar volume V m these expressions simplify to(
φmx

m
α

)
t+∆t

=
(
φmx

m
α

)
t
+ ∆t V mΓmα (t), (2.5.4)

and

φm(t+ ∆t) = φm(t) + ∆t V m

∑
α

Γmα (t), (2.5.5a)

= φm(t) + ∆t V mΓm({x}, t). (2.5.5b)

With this result it is then possible to solve for the end-member mole fraction at the new
time step from Eqn.(2.5.4) to give

xmα (t+ ∆t) =

(
φmx

m
α

)
t
+ ∆t V mΓmα (t)

φt+∆t
m

, (2.5.6a)

=

(
φmx

m
α

)
t
+ ∆t V mΓmα (t)

φm(t) + ∆t V mΓm({x}, t)
. (2.5.6b)

Note that if at time t ∑
α

xmα (t) = 1, (2.5.7)

then it follows directly from Eqn.(2.5.6) that at time t+∆t∑
α

xmα (t+∆t) = 1. (2.5.8)
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Calculating the effects of dissolution is straightforward in that the solid solution dis-
solves at a fixed composition. However, in the case of precipitation the situation is more
complicated. At the onset of precipitation it is necessary to specify the composition of the
precipitating solid solution. Generally it is expected that a range of compositions could be
supersaturated. The assumption made is that the composition with the largest saturation
index will form, equivalent to the equilibrium composition given in Eqn.(A-19). As the sys-
tem evolves over time, both the composition and the bulk concentration of the solid solution
will change.
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Chapter 3

Binary Solid Solution Batch Reactor

In this section the general formulation presented above is applied to a binary solid so-
lution. Dissolution of a stoichiometric solid with fixed composition and precipitation of a
variable composition phase is considered.

3.1 Solid Solution Batch Reactor Differential Equa-

tions

Consider a closed batch reactor that contains the primary solid solution Ax0B1−x0C with
fixed composition x0. The solid solution is presumed to be undersaturated with respect
to the initial fluid in the reactor and dissolves irreversibly. As it dissolves, eventually a
secondary solid solution with composition AxB1−xC begins to precipitate. A schematic
illustration of these processes is shown in Figure Figure 3.1. The aqueous composition and
bulk concentration of the primary solid χ0, and composition x and bulk concentration χ of
the secondary solid (or equivalently χ1 and χ2), vary with time until the system ultimately
comes to equilibrium.

Primary'mineral:'
Ax0B1-x0C&

Secondary'mineral:'
AxB1-xC&

Figure 3.1: Schematic illustration of dissolution of the stoichiometric mineral Ax0
B1−x0C and

precipitation of a secondary solid with composition AxB1−xC.

Irreversible dissolution of an initial stoichiometric solid takes place according to the re-
action

x0A + (1− x0)B + C← Ax0B1−x0C, (3.1.1)
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with fixed composition x0. In addition, allowance is made for formation of a binary solid
solution with composition x(t) and total concentration χ(t) that must be determined by
solving mass conservation equations. The solid solution is described by the end-member
reactions

A + C 
 AC, (3.1.2a)

B + C 
 BC, (3.1.2b)

with equilibrium constants K1 and K2, and end-member activities denoted by a1 and a2.
It is convenient to recast these reaction is the form of an overall reaction with variable
composition x and an exchange reaction

xA + (1− x)B + C 
 xAC + (1− x)BC 
 AxB1−xC, (3.1.3a)

A + BC 
 B + AC. (3.1.3b)

This leads to the system of nonlinear ordinary differential equations

dCA

dt
= −x0Γ(x0)− xΓ(x)− Γex, (3.1.4a)

dCB

dt
= −(1− x0)Γ(x0)− (1− x)Γ(x) + Γex, (3.1.4b)

dCC

dt
= −Γ(x0)− Γ(x), (3.1.4c)

for the concentration of aqueous species A, B, and C, and

dχ0

dt
= Γ(x0), (3.1.5a)

dχ1

dt
= xΓ(x) + Γex, (3.1.5b)

dχ2

dt
= (1− x)Γ(x)− Γex, (3.1.5c)

for solid concentrations for the stoichiometric solid Ax0B1−x0C (χ0), and end-members AC
and BC (χ1, χ2) of the solid solution. The reaction rate Γ(x) is assumed to have the form

Γ = −k
(

1−K(x)Q(x)
)
ζ(x), (3.1.6)

derived from transition state theory, with effective rate constant k, activity product Q defined
as

Q(x) = Cx
AC

1−x
B CC, (3.1.7)

and equilibrium constant K(x) given by

K(x) =

(
K1

a1(x)

)x(
K2

a2(x)

)1−x

. (3.1.8)

The factor ζ has the value zero or one depending on the saturation state of the solid

ζ(x) =

{
1, χ > 0 or K(x)Q(x) > 1
0, otherwise

, (3.1.9)
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where χ refers to the total solid solution concentration

χ(t) = χ1(t) + χ2(t). (3.1.10)

The solid composition x(t) is obtained from χ1 and χ2 as

x(t) =
χ1(t)

χ(t)
. (3.1.11)

Thus the rate vanishes if the fluid is undersaturated with respect to the solid (KQ < 1) and
the solid is not present (χ = 0). This provision allows for the solid to be absent initially
(secondary mineral), and to completely dissolve at later times. When the solid solution
first appears it must be assigned an initial composition xinit. This value is assumed to be
determined by the maximum saturation index, given by

xinit(t) =
K1CA

K1CA +K2CB

, (3.1.12)

which also corresponds to the solid composition in equilibrium with the fluid (see Appendix
A).

The exchange rate Γex is assumed to have the form of an elementary reaction written as
the difference between forward and backward rates

Γex = kfaAa2 − kbaBa1, (3.1.13)

= −kbaBa1

(
1− K1aAaC/a1

K2aBaC/a2

)
, (3.1.14)

= −kbaBa1

(
1− SI1

SI2

)
, (3.1.15)

with forward kf and backward kb rate constants satisfying

kf
kb

=
K1

K2

. (3.1.16)

Eqns.(3.1.4)–(3.1.5) are subject to the initial conditions

CA(0) = C0
A, (3.1.17a)

CB(0) = C0
B, (3.1.17b)

CC(0) = C0
C, (3.1.17c)

and

χ0(0) = χ0
0, (3.1.17d)

χ1(0) = 0, (3.1.17e)

χ2(0) = 0. (3.1.17f)
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Because the reaction rate Γ is a nonlinear function of the solute concentrations, the set of
ordinary differential equations describing the time evolution of the system is also nonlinear.

An example problem for the binary solid solution AxB1−xC is presented for a batch
reactor involving reaction with the stoichiometric solid Ax0

B1−x0C. The ordinary differential
equations Eqns.(3.1.4)-(3.1.5) for solute and solid solution concentrations subject to the
initial conditions given in Eqn.(3.1.17) are solved using Mathematica (Wolfram Research
(2010), see Appendix C). The initial conditions and values for various parameters used in
the simulation are listed in Table Table 3.1.

Table 3.1: Model parameters for binary solid solution AxB1−xC.

K1 1.3333
K2 2
kss 5× 10−7 mol/m3/s
kex 0.6667
kf 5× 10−8

kb 3.3333× 10−8

C0
A 5× 10−7 mol/kg-H2O

C0
B 2× 10−6

C0
C C0

A + C0
B

x0 0.25 —
χ0 2 —

ϕ0 0.8 —
V ss 0.1 m3/mol

The results are shown in Figure Figure 3.2 for aqueous species A, B, C, primary stoi-
chiometric solid χ0, and secondary solid solution concentrations χ1 and χ2 as functions of
time. As can be seen from the figure, the stoichiometric solid completely dissolves after
approximately 7× 108 s have elapsed. The secondary solid solution begins to precipitate at
approximately 2× 106 s (see Figure Figure 3.3).

Figure Figure 3.3 shows the composition x(t) of the secondary phase Ax(t)B1−x(t)C as a
function of time comparing the equilibrium composition with the kinetically evolved com-
position.

3.2 Parameter Sensitivity

The sensitivity of the solution on the various parameters σκ (k, K, x, C0
A, C

0
B, C

0
C, χ

0
0)

may be defined by the partial derivatives scaled by the parameter as

Sjκ = σκ
∂Cj
∂σκ

, (3.2.1)
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Figure 3.2: Aqueous (top) and solid solution concentration (bottom) plotted as a function
of time [CA (red), CB (green), CC (blue), χ0 (red), χ1 (green), χ2 (blue)].
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Figure 3.3: Secondary solid solution composition x plotted as a function of time showing xeq

(green) and xinit (red).

or in finite difference form

Sjκ = σκ lim
∆σκ→0

[
Cj(σκ + ∆σκ)− Cj(σκ)

∆σκ

]
, (3.2.2)

and similarly for the solid solution concentration

Smακ = σκ
∂χα
∂σκ

. (3.2.3)

The sensitivity matrices Sjκ and Smακ provide a measure of how the solution changes in
response to a change in the parameter σκ.

As an example, the sensitivity matrix for the solute concentration and primary and sec-
ondary solid solution composition on the kinetic rate constant is shown in Figure Figure 3.4
and Figure Figure 3.5, respectively. For long times the sensitivity to the rate constant ap-
proaches zero as the fluid comes to equilibrium with respect to the solid solution and becomes
independent of k. A large peak followed by a smaller peak is visible in the sensitivity of the
solute concentration with a change in sign for species B. Similar although slightly different
behavior of the sensitivity is can be seen for χ1 and χ2, whereas the opposite behavior is
obtained for χ0 with a sharp initial dip in the sensitivity.
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Figure 3.4: Sensitivity in the aqueous concentration k∂Ci/∂k plotted as a function of time
[A (red), B (green), C (blue)].
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Figure 3.5: Primary and secondary solid solution sensitivity k∂χi/∂k plotted as a function
of time [χ0 (red), χ1 (green) and χ2 (blue)].

29



This page intentionally left blank.



Chapter 4

Conclusion

A new mathematical formulation for incorporating a kinetic description of solid solution
reactions into reactive transport equations was presented. Although the treatment given here
was based on the end-member formulation of solid solutions, it is hoped that a similar ap-
proach applies to more general formulations. Mass conservation equations for a batch reactor
involving an ideal solid solution were developed based on overall and exchange reactions.

Future work will generalize these results to non-ideal solid solutions accounting for im-
miscibility and include complex multicomponent solids with multiple exchange sites and
order-disorder phenomena (Lichtner and Carey, 2006; Sack and Lichtner, 2009). The model
will also be extended to include advective, diffusive and dispersive transport.
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Appendix A: Maximum Saturation
Index

The saturation index corresponding to the mth solid solution is defined as the product
over end-members as

SIm =
∏
α

(
Km
α Q

m
α

amα

)xmα
, (A-1)

or in log form

ln SIm =
∑
α

xmα ln

[
Km
α Q

m
α

amα

]
. (A-2)

The maximum saturation index is obtained by maximizing the function

fm =
∑
α

xmα ln
Km
α Q

m
α

xmα
, (A-3)

subject to the constraint ∑
α

xmα = 1. (A-4)

This is accomplished by introducing the Lagrange multiplier Λm and maximizing the function

fm =
∑
α

xmα ln
Km
α Q

m
α

xmα
+ Λm

(∑
α

xmα − 1
)
, (A-5)

leading to the requirement

∂fm
∂xmα

= ln
Km
α Q

m
α

xmα
− 1 + Λm = 0, (A-6)

or

ln
Km
α Q

m
α

xmα
= 1− Λm. (A-7)

Solving for xmα yields

xmα = eΛm−1Km
α Q

m
α . (A-8)

Summing over α and using the constraint condition given in Eqn.(A-4), yields the following
expression for Λm

eΛm−1 =
1∑

α

Km
α Q

m
α

. (A-9)
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Thus for an ideal solid solution (amα = xmα ) with fixed ion activity product Qm
α , the maximum

saturation occurs for the composition

xmα =
Km
α Q

m
α∑

β

Km
β Q

m
β

. (A-10)

For a non-ideal solid solution the activity coefficients λmα must be taken into account.
According to the Gibbs-Duhem equation∑

α

xmα dµ
m
α = 0, (A-11)

with chemical potential
µmα = µm−◦α +RT ln amα , (A-12)

where µm−◦α denotes the standard state potential corresponding to amα = 1. In this case the
function

fm =
∑
α

xmα ln
Km
α Q

m
α

λmα x
m
α

+ Λm

(∑
α

xmα − 1
)
, (A-13)

must be maximized, yielding the requirement that the partial derivatives vanish

∂fm
∂xα

= ln
Km
α Q

m
α

λmα x
m
α

− 1−
∑
β

xmβ
∂ lnλmβ
∂xmα

+ Λm = 0. (A-14)

Noting that ∑
β

xmβ
∂ lnλmβ
∂xmα

= 0, (A-15)

as follows from the Gibbs-Duhem equation, it follows that

∂fm
∂xα

= ln
Km
α Q

m
α

λmα x
m
α

− 1 + Λm = 0. (A-16)

and consequently

xmα =
Km
α Q

m
α

λmα
e−(Λm−1), (A-17)

from which it follows by summing over α that

eΛm−1 =
∑
α

Km
α Q

m
α

λmα
. (A-18)

Hence

xmα =

Km
α Q

m
α

λmα∑
β

Km
β Q

m
β

λmβ

. (A-19)
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Eqn.(A-19) implicitly defines xmα which must be solved numerically. With this result the
maximum value of the saturation index is obtained as

SIm =
∑
α

Km
α Q

m
α

λmα
, (A-20)

which in general is not equal to unity. Consequently, it is apparent that as expected, exchange
equilibrium does not imply equilibrium of the overall solid solution reaction with composition
{x}. Furthermore, Eqn.(A-19) also corresponds to the equilibrium composition derived from
the exchange reactions, and thus the equilibrium and maximum saturation index coincide.
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Appendix B: Ion Exchange

Ion exchange is a surface sorption process that involves exchange of cations on surface
sites, keeping the number of available sites constant. The exchange reaction can be written
in terms of a reference cation Aj0 as

zjA
zj0

+

j0
+ zj0 [X

−
zj
Azj+j ] 
 zj0A

zj+

j + zj[X
−
zj0
A
zj0

+

j0
], (B-1)

with sorbed cations [X−zjA
zj+

j ] and [X−zj0
A
zj0

+

j0
] with X− representing a sorption site. In the

presence of exchange reactions the primary species transport equations have the form

∂

∂t
ϕΨj0

+ ∇ ·Ωj0
= −

∑
j

zjΓj0j, (B-2a)

∂

∂t
ϕΨj + ∇ ·Ωj = zj0Γj0j, (B-2b)

and for sorbed species

∂χj0
∂t

=
∑
j

zjΓj0j, (B-3a)

∂χj
∂t

= −zj0Γj0j. (B-3b)

It follows from the latter two equations for the sorbed concentration that the number of
sorption sites is conserved. The total number of sites is equal to

ω =
∑
j

zjχj. (B-4)

The site concentration ω is related to the cation exchange capacity Q = Nsites/Ms, where
Ms represents the mass of solid phase, by

ω =
Nsites

V
, (B-5a)

=
Nsites

Ms

Ms

Vs

Vs
V
, (B-5b)

= ρs(1− ϕ)Q, (B-5c)
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where ρs = Ms/Vs refers to the solid grain density. It then follows from the sorbed concen-
tration equations

∂ω

∂t
=
∑
j

∂

∂t
zjχj, (B-6a)

=
∂

∂t
zj0χj0 +

∑
j 6=j0

∂

∂t
zjχj, (B-6b)

= zj0

∑
j

zjΓj0j +
∑
j

zj
(
− zj0Γj0j

)
, (B-6c)

= 0. (B-6d)

Note that charge is rigorously conserved∑
j

zj

[
∂

∂t
ϕΨj + ∇ ·Ωj

]
= −

∑
j

(
zj0zj − zjzj0

)
Γj0j = 0. (B-7)

From the mass action equations corresponding to the ion-exchange reactions (B-1)

Kj0j =
K
zj
j0

K
zj0
j

=

(
χj0
aj0

)zj (aj
χj

)zj0
, (B-8)

with selectivity coefficients Kj0j, or equivalently coefficients Kj0 , Kj, and the site conserva-
tion given by Eqn.(B-4), for conditions of local equilibrium and monovalent exchange the
Langmuir isotherm follows

χj =
ωKjaj∑
l

Klal
. (B-9)

This equation can be compared with Eqn.(2.4.5) in the text for the end-member concentra-
tion.
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Appendix C: Mathematica Program
for Batch Reactor with Binary Solid
Solution

In this appendix a Mathematica (Wolfram Research, 2010) implementation of reaction of a
solid solution in a batch reactor is presented. Initially, a solid solution with fixed composition
represented by Ax0B1−x0C dissolves and eventually becomes supersaturated with the solid
solution AxB1−xC with variable composition x which replaces the initial solid. Mathematica
provides a numerical solution using NDSolve for the aqueous concentrations a[t], b[t] and
c[t], and solid concentrations χ0[t], χ1[t] and χ2[t]. The composition of the precipitating
solid solution is obtained as x[t] = χ1[t]/(χ1[t] + χ2[t]). See text for further explanation.

Explanation of Symbols:

a, b, c aqueous concentrations
χ0, χ1, χ2 solid concentrations for initial solid solution with fixed compo-

sition x0 and end-member concentrations, respectively
si saturation index
rate0 rate law for solid solution with fixed composition x0 and rate

constant k
ratess solid solution kinetic rate law for variable composition with rate

constant k: ratess = −k[1−K(x)Q(x)]ζ(x)
ratess1, ratess2 ratess1 = x · ratess, ratess2 = (1− x) · ratess
ratex exchange reaction rate law: ratex = kfaχ2 − kbbχ1

xeq initial composition of solid solution to precipitate at equilibrium
k rate constant
kf , kb forward and backward exchange rate constants
k1, k2 end-member equilibrium constants
t, tf time, final time of simulation

si[a_ , b_ , c_ , x_] := (k1 a/x)^x (k2 b/(1 - x))^(1 - x) c;

rate0[a_ , b_ , c_, chi_ , k_, x_] := If[si[a, b, c, x] > 1 ||

chi > 0, -k (1 - (a k1/x)^x (b k2/(1 - x))^(1 - x) c ), 0];

xeq[a_ , b_] := k1 a/(k1 a + k2 b);

ratess[a_, b_, c_ , chi1_ , chi2_ , k_] := Module [{},

If[chi1 + chi2 > 0, -k (1 - (k1 a/(chi1/(chi1 + chi2 )))^( chi1/(chi1 +

chi2)) (k2 b/(chi2/(chi1 + chi2 )))^( chi2/(chi1 + chi2)) c),

If[chi1 + chi2 <= 0 &&

41



si[a, b, c, xeq[a, b]] > 1, -k (1 - (k1 a/xeq[a, b])^ xeq[a, b]

(k2 b/(1 - xeq[a, b]))^(1 - xeq[a, b]) c), 0]]];

ratess1[a_ , b_ , c_ , chi1_ , chi2_ , k_] := Module [{},

If[chi1 + chi2 > 0, -k chi1/(chi1 + chi2) (1 - (

k1 a/(chi1/(chi1 + chi2 )))^( chi1/(chi1 + chi2)) (

k2 b/(chi2/(chi1 + chi2 )))^( chi2/(chi1 + chi2)) c),

If[chi1 + chi2 <= 0 &&

si[a, b, c, xeq[a, b]] > 1, -k xeq[a, b]

(1 - (a k1/xeq[a, b])^ xeq[a, b]

(b k2/(1 - xeq[a, b]))^(1 - xeq[a, b]) c), 0]]];

ratess2[a_ , b_ , c_ , chi1_ , chi2_ , k_] := Module [{},

If[chi1 + chi2 > 0, -k (chi2/(chi1 + chi2)) (1 - (

k1 a/(chi1/(chi1 + chi2 )))^( chi1/(chi1 + chi2)) (

k2 b/(chi2/(chi1 + chi2 )))^(1 - chi1/(chi1 + chi2)) c),

If[chi1 + chi2 <= 0 &&

si[a, b, c, xeq[a, b]] > 1, -k (1 - xeq[a, b])

(1 - (k1 a/xeq[a, b])^ xeq[a, b]

(k2 b /(1 - xeq[a, b]))^(1 - xeq[a, b]) c), 0]]];

ratex[a_ , b_ , chi1_ , chi2_] := kf a chi2 - kb b chi1;

conc = NDSolve [{

a’[t] == -x0 rate0[a[t], b[t], c[t], chi0[t], k0 , x0] -

ratess1[a[t], b[t], c[t], chi1[t], chi2[t], k0] -

ratex[a[t], b[t], chi1[t], chi2[t]],

b’[t] == -(1 - x0) rate0[a[t], b[t], c[t], chi0[t], k0 , x0] -

ratess2[a[t], b[t], c[t], chi1[t], chi2[t], k0] +

ratex[a[t], b[t], chi1[t], chi2[t]],

c’[t] == -rate0[a[t], b[t], c[t], chi0[t], k0 , x0] -

ratess[a[t], b[t], c[t], chi1[t], chi2[t], k0],

chi0 ’[t] == rate0[a[t], b[t], c[t], chi0[t], k0 , x0],

chi1 ’[t] == ratex[a[t], b[t], chi1[t], chi2[t]] +

ratess1[a[t], b[t], c[t], chi1[t], chi2[t], k0],

chi2 ’[t] == -ratex[a[t], b[t], chi1[t], chi2[t]] +

ratess2[a[t], b[t], c[t], chi1[t], chi2[t], k0],

a[0] == a0, b[0] == b0, c[0] == c0, chi0 [0] == chi00 ,

chi1 [0] == 0, chi2 [0] == 0},

{a, b, c, chi0 , chi1 , chi2}, {t, 0, tf}, MaxSteps -> 10000]
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