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II-VI quantum dots, such as CdSe and CdTe, are attractive as downconversion materials for 
solid-state lighting, because of their narrow linewidth, tunable emission.  However, for these 
materials to have acceptable quantum yields (QYs) requires that they be coated with a II-VI shell 
material whose valence band offset serves to confine the hole to the core.  Confinement prevents 
the hole from accessing surface traps that lead to nonradiative decay of the exciton.  Examples of 
such hole-confined core/shell QDs include CdTe/CdSe and CdSe/CdS.  Unfortunately, the shell 
can also cause problems due to lattice mismatch, which ranges from 4-6% for systems of 
interest.  This lattice mismatch can create significant interface energies at the heterojunction and 
places the core under radial compression and the shell under tangential tension.  At elevated 
temperatures (~240°C) interfacial diffusion can relax these stresses, as can surface 
reconstruction, which can expose the core, creating hole traps.  But such high temperatures favor 
the hexagonal Wurtzite structure, which has lower QY than the cubic zinc blende structure, 
which can be synthesized at lower temperatures, ~140°C.  In the absence of alloying the 
core/shell structure can become metastable, or even unstable, if the shell is too thick.  This can 
cause result in an irregular shell or even island growth.  But if the shell is too thin thermally-
activated transport of the hole to surface traps can occur.  In our LDRD we have developed a 
fundamental atomistic modeling capability, based on Stillinger-Weber and Bond-Order 
potentials we developed for the entire II-VI class.  These pseudo-potentials have enabled us to 
conduct large-scale atomistic simulations that have led to the computation of phase diagrams of 
II-VI QDs.  These phase diagrams demonstrate that at elevated temperatures the zinc blende 
phase of CdTe with CdSe grown on it epitaxially becomes thermodynamically unstable due to 
alloying.  This is accompanied by a loss of hole confinement and a severe drop in the QY and 
emission lifetime, which is confirmed experimentally for the zinc blende core/shell QDs 
prepared at low temperatures.  These QDs have QYs as high as 95%, which makes them very 
attractive for lighting. Finally, to address strain relaxation in these materials we developed a 
model for misfit dislocation formation that we have validated through atomistic simulations.
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CHAPTER 1: AN ANALYTICAL BOND-ORDER POTENTIAL FOR 
THE CD-TE-SE TERNARY SYSTEM

I. INTRODUCTION

Photoluminescent CdTe quantum dots (QDs) have the potential to replace rare earth 
elements (Y, Eu, Tb, and Ce) for low-cost optoelectronic applications [1]. As QDs do not suffer 
from the defects typically seen in lattice-mismatched films, they can lead to improved solid-state 
lighting devices as compared to the multilayered structures (e.g., InxGa1-xN/GaN). To meet the 
extreme lighting environments, these QDs must have sufficient photo- and thermal stability. 
Increased stability can be achieved by coating the CdTe QD cores with CdSe shells, but these 
lead to stresses that generate compositional and structural defects both at the heterojunctions and 
within the lattice. Such defects serve as nonradioactive recombination centers that greatly reduce 
the quantum yield. To stimulate innovative ideas for new designs of QDs that have both high 
stability and quantum yield, predictive molecular dynamics (MD) simulations are needed for 
exploring effects of atomistic scale characteristics (e.g., core radii, shell thicknesses, and graded 
compositions at the interface) on the stresses and defects. For CdTe/CdS core/shell structures, 
this requires a Cd-Te-Se interatomic potential that is transferrable to a variety of environments 
including Cd, Te, Se elements, CdTe, CdSe, and CdTe1-xSex compounds, other possible solid 
solutions, and various defects.

Specific metrics can be used to determine if an interatomic potential is transferrable. In 
principle, a potential can be confidently said to be transferable when it satisfies simultaneously 
two criteria: it captures property trends of a variety of pre-designated clusters, lattices, defects, 
and surfaces as determined from density function theory (DFT) calculations, and it correctly 
predicts the crystalline growth of ground state structures during high-temperature molecular 
dynamics simulations of growth (e.g., vapor deposition). Note that due to Arrhenius equation, the 
kinetics near the melting temperature can be increased by ten orders of magnitude or more as 
compared to that at temperatures three to four hundred degrees below.  High temperature 
simulations, therefore, can mitigate the effects of the accelerated growth rates that are always 
used in MD deposition simulations due to computational cost.

The deposition simulation criterion is extremely important because by randomly adding 
adatoms on the growth surface, it not only tests a variety of surface configurations that cannot be 
tested in other simulations, but also allows realistic defect configurations to be predicted from 
natural material synthesis without any assumptions. In particular, if a potential prescribes a 
wrong structure to have a lower energy than the equilibrium substrate, wrong configurations are 
likely to be triggered during the deposition simulation resulting in unphysical amorphous growth. 
Unfortunately, deposition simulation tests are not regularly used in past potential developments. 

Developing a “growth simulation enabling” interatomic potential is far more challenging 
than optimizing the potential against known structures because the former is required to address 
unlimited structures not included in the training set. Particularly for higher fidelity potentials that 
are typically more flexible for fitting a variety of structures, there are no obvious ways to ensure 
the lowest energy for the ground state phase as compared to any other configurations not 

1 A. Mandal, J. Saha, and G. De, Opt. Mater., 34, 6 (2011).
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included in the training set. As a result, literature potentials, especially the more advanced ones, 
often fail to predict the crystalline growth [2].

As an exception, Stillinger-Weber potentials [3] are empirically designed to give the lowest 
energy for tetrahedrally bonded structures (e.g., diamond cubic, zinc-blende, or wurtzite crystals) 
and so they can be easily parameterized to enable the crystalline growth of zinc-blende 
semiconductor compounds. Due to this simplicity, SW potential is the most widely used 
semiconductor potential. We found that the key for a multi-element SW potential to correctly 
predict growth is to capture exactly the experimental structures, lattice constants, cohesive 
energies, and bulk moduli of all stoichiometric compounds, the experimental cohesive energies 
for the model elements, and the correct positive heat of mixing for all the non-stoichiometric 
alloys. The literature SW potentials that failed in the growth simulations are likely not fitted to 
these important properties. By fitting these properties, we developed a SW potential for the II-VI 
elements Zn-Cd-Hg-S-Se-Te [4]. This potential is successfully used to simulate the crystalline 
growth of two extremely challenging structures: a (Cd0.28Zn0.68Hg0.04)(Te 0.20Se0.18S0.62) super 
alloyed compound film on ZnS, and a ZnS/CdSe/HgTe compound multilayer on ZnS [4]. This is 
also the only literature potential currently available for studying the Cd-Te-Se system.

Due to their fundamental limitations, SW potentials are not transferrable to many elemental 
structures. This may not be a serious problem under stoichiometric compound conditions where 
no elemental phases can form. To design CdTe/CdS core/shell structures with any compositions, 
an interatomic potential that is more fundamental than SW potential is desired. The analytical 
bond order potentials (BOP) we recently developed for the Cd-Te binary [5] and the Cd-Zn-Te [6]
 ternary systems represent one example of such potentials. This BOP is uniquely attractive 
because it is analytically derived from quantum-mechanical theories [7,8,9,10,11] and is 
therefore fundamentally transferable to environments not explicitly tested. In particular, we 
demonstrated [5,6] that our Cd-Zn-Te BOP captures the property (i.e. atomic energies, atomic 
volumes, elastic constants, and melting temperatures) trends of a variety of structures including 
clusters, bulk lattices, point defects, and surfaces, and can predict crystalline growth of both 
elements and compounds during MD vapor deposition simulations. The potential has also been 
used to capture crystalline growth from melt [12].

BOP is not trivial to develop. The present paper looks to develop a ternary BOP for Cd-Te-
Se. In addition to refining the parameters of the existing Cd-Te binary BOP, we require that our 
Cd-Te-Se BOP additionally captures property trends of a large number of Se, Cd-Se, Te-Se, and 
Cd-Te-Se clusters and lattices as compared with available experiments and density functional 
theory (DFT) data. Most critically, we validate that this Cd-Te-Se BOP correctly predicts the 
crystalline growth of Se element as well as CdSe and CdTe1-xSex compounds, and also correctly 
predicts the growth of the experimentally observed continuous Te1-xSex solid solution [13]. The 
work can have multiple impacts: it will further improve the simulations on CdTe/CdSe quantum 

2 D. K. Ward , X. W. Zhou, B. M. Wong, F. P. Doty, and J. A. Zimmerman, J. Chem. Phys. 134, 244703 (2011).
3 F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).
4 X. W. Zhou, D. K. Ward, J. E. Martin, F. B. van Swol, J. L. Cruz-Campa, and D. Zubia, Phys. Rev. B, 88, 085309 (2013).
5 D. K. Ward, X. W. Zhou, B. M. Wong, F. P. Doty, and J. A. Zimmerman, Phys. Rev. B, 85, 115206 (2012).
6 D. K. Ward, X. W. Zhou, B. M. Wong, F. P. Doty, and J. A. Zimmerman, Phys. Rev. B, 86, 245203 (2012).
7 D. G. Pettifor, M. W. Finnis, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou, and H. N. G. Wadley, Mater. Sci. Eng. A, 365, 2 (2004).
8 D. G. Pettifor, and I. I. Oleinik, Phys. Rev. Lett., 84, 4124 (2000).
9 D. G. Pettifor, and I. I. Oleinik, Phys. Rev. B, 65, 172103 (2002).
10 R. Drautz, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou, H. N. G. Wadley, and D. G. Pettifor, TMS Lett., 1, 31 (2004).
11 R. Drautz, D. A. Murdick, D. Nguyen-Manh, X. W. Zhou, H. N. G. Wadley, and D. G. Pettifor, Phys. Rev. B, 72, 144105 (2005).
12 X. W. Zhou, D. K. Ward, B. M. Wong, and F. P. Doty, Phys. Rev. Lett. 108, 245503 (2012).
13 R. C. Sharma, D. T. Li, and Y. A. Chang, Se-Te (Selenium-Tellurium), Ed. By T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. 

Kacprzak, Binary Alloy Phase Diagrams, p. 3344, 2nd ed., Vol. 3, (ASM International, 1990).
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dots, provide a more fundamental model to compare with the SW potential, and move 
significantly towards developing a first-ever quaternary Cd-Te-Zn-Se BOP in a future effort. 

II. BOND-ORDER POTENTIAL EXPRESSIONS
The BOP has been implemented in public parallel MD code LAMMPS [14,15]. The 

potential formalism is rather complex. For a convenient understanding of the BOP, its 
mathematic formulation is first outlined. In the framework of the BOP [5], the total energy of a 
system containing N atoms (i = 1, 2, … N) is expressed as

      ij

N

i

i

ij
ijijij

N

i

i

ij
ijij
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i
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where ij(rij), ij(rij), and ij(rij) are pair functions, and ij and ij are many-body functions 
corresponding respectively to  and  bond-orders, and the list j = i1, i2, …, iN represents 
neighbors of atom i. ij(rij), ij(rij), and ij(rij) are expressed in a general form as
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where 0,ij, ,0,ij, ,0,ij, mij, and nij are pair (ij) dependent parameters, fij(rij) is a Goodwin-
Skinner-Pettifor (GSP) radial function [16], and fc,ij(rij) is a cutoff function. The GSP and the 
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where r0,ij, rc,ij, nc,ij, r1,ij, rcut,ij are independent pair parameters (in particular, rcut,ij represents the 
cutoff distance of the potential), and ij, and ij are dependent pair parameters defined as 

14 LAMMPS download site: lammps.sandia.gov.
15 S. Plimpton, J. Comp. Phys. 117, 1 (1995).
16 L. Goodwin, A. J. Skinner, and D. G. Pettifor, Europhys. Lett, 9, 701 (1989).
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where 0  f,ij  1 and k,ij are respectively band filling and skewing pair parameters, i
2 , j

2 , 

and R3ij are local variables that can be calculated from atom positions, 2  is a constant, and s,ij 
is a symmetric band-filling function that modifies the half-full valence shell bond-order 
expression  2/1

,ij . s,ij  as a function of  2/1
,ij  can be well described by
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To use Eq. (7), expressions of the half-full bond-order  2/1
,ij , and local variables i

2 , j
2 , 

R3ij, are further needed.  2/1
,ij  is expressed as
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where c,ij is a pair parameter and 1 is a constant. The i
2  and j

2  terms have the same 
formulation except that they are evaluated at the center of atom i and atom j respectively. 
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Considering that Eqs. (7) and (10) use only the product   i
ijij r  2

2
,  , we only give the formula 

for   i
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where jik is the bond angle at atom i spanning atoms j and k, and the three-body angular function 
g,jik(jik) is written as
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where g,jik, b,jik, and u,jik are three-body-dependent parameters. 

Similarly, we give the product of   ijijij Rr ,3
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where k,j=n in the summation indicates that k and j are neighbors. 
The  bond-order ij used in Eq. (1) is expressed as
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where a,ij and c,ij are pair parameters, 3  and 4  are constants, and i
2 , j

2 , 4  are local 

variables. For calculations using Eq. (14), the   i
ijij r  2

2
,   and    4

4
, ijij r  terms are further 

expressed as
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p,i is a species-dependent parameter of the central atom i, and 'kk  is a four-body dihedral 
angle. The dihedral angular terms can be calculated using the relation
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III. PARAMETERIZATION

Our Cd-Te-Se BOP is parameterized first for the elemental Cd, Te, and Se, then for the 
binary Cd-Te, Cd-Se and Te-Se, and finally for the ternary Cd-Te-Se. A complete set of BOP 
parameters for the Cd-Te-Se system are listed in Tables 1-1 to 1-3. Here the 1-4 constants are 
the same as the existing Cd-Zn-Te BOP [5,6] whereas the Cd-Te parameters are slightly 
modified to better capture the lattice constant of the zinc-blende CdTe. The unknown BOP 
parameters then include one point-dependent parameter p for the new element Se, 10 GSP pair 
parameters r0, rc, r1, rcut, nc, m, n, 0, ,0, ,0 and five additional pair parameters c, f, k, c, a  
for each of the three new pairs SeSe, CdSe, TeSe, and three three-body-dependent parameters g0, 
b, u for each of the 12 new three-bodies CdCdSe, TeCdSe, SeCdSe, CdTeSe, TeTeSe, SeTeSe, 
CdSeCd, CdSeTe, CdSeSe, TeSeTe, TeSeSe, SeSeSe. Thus, there are a total of 11 + 153 + 
312 = 82 parameters to be determined. However, many parameters can be determined prior to 
the fitting process. In particular, the characteristic bond lengths r0, rc, r1, rcut are selected as 
shown in Table 1-2 based upon the criteria that r0 approximately scales with the bond length of 
the corresponding atomic pair in the equilibrium structure, rc equals r0, rcut roughly scales with 
r0, and r1 is midway between r0 and rcut. The pair parameters c and a  are set to unity as were 

originally derived for the  bond-order [8,9]. The CdSe zb crystal structure has a half-full 
valence shell and does not make use of the symmetric and asymmetric  bond-order terms; 
therefore, we set f = 0.50 and k = 0 for the Cd-Se bonds. Finally, we set the three-body 
parameter g to be the normalized value of unity for all the triples as shown in Table 1-3. This 
leaves 50 parameters to be determined. 

Table 1-1. Global and point-dependent BOP Parameters.

Symbol ζ1 ζ2 ζ3 ζ4 p,Cd p,Te p,Se

Value 0.00001 0.00001 0.00100 0.00001 0.420000 0.460686 0.927195
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Table 1-2. Pair-dependent BOP parameters.

Symbol CdCd TeTe SeSe CdTe CdSe TeSe
r0 3.1276 3.1626 3.0251 2.9677 2.9201 3.0938
rc 3.1276 3.1626 3.0251 2.9677 2.9201 3.0938
r1 3.7303 3.8046 3.6392 3.8085 3.7475 3.7219
rcut 4.3330 4.4465 4.2532 4.6494 4.5748 4.3498
nc 2.800000 2.799998 2.799998 2.811251 2.399466 2.894572
m 3.263155 2.458846 2.372557 2.388647 2.775084 2.156644
n 1.553883 1.223306 1.189927 1.188381 1.460571 1.135076
0 0.186369 0.876912 0.672666 0.654330 0.539105 0.675052
,0 0.238318 0.782635 0.524928 0.836402 0.779739 1.015496
,0 0.097599 0.531205 0.505465 0.030748 0.108296 0.404592
c 0.561130 1.014809 1.401177 1.196365 0.717742 1.583151
f 0.431863 0.331227 0.446055 0.500000 0.500000 0.305203
k 15.000000 -2.860190 -7.436736 0 0 -7.265823
c 1 1 1 1 1 1

a 1 1 1 1 1 1

Table 1-3. Three-body-dependent BOP parameters.

Cd-centered triples j-Cd-kSymbol
CdCdCd CdCdTe CdCdSe TeCdTe TeCdSe SeCdSe

g0 1 1 1 1 1 1
b 0.762039 0.208810 0.600000 0.200000 0.391552 0.388802
u -0.400000 -0.168759 -0.380000 -0.400000 -0.333334 -0.350000

Te-centered triples j-Te-kSymbol
CdTeCd CdTeTe CdTeSe TeTeTe TeTeSe SeTeSe

g0 1 1 1 1 1 1
b 0.259985 0.807985 0.200000 0.669623 0.600000 0.311637
u -0.400000 0.022436 -0.217561 -0.141521 0.000000 -0.345072

Se-centered triples j-Se-kSymbol
CdSeCd CdSeTe CdSeSe TeSeTe TeSeSe SeSeSe

g0 1 1 1 1 1 1
b 0.325924 0.810916 0.600000 0.427183 0.261943 0.381759
u -0.350000 -0.229874 -0.349551 -0.380000 -0.095495 0.000000

Parameterizing a BOP that is capable of growth simulations can be quite challenging, 
requiring a large number of iterations. For the Cd-Te-Se system, these iterations resulted in the 
following rules: (1) include a particular set of target structures as listed in Appendix A and 
impose appropriate weight factors for these structures in the fitting; (2) apply the particular 
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bounds for the parameters as shown in Appendix B that are motivated by physical intuition and 
parameterization results; (3) apply a two-step optimization algorithm as describe below with the 
key pair parameters first determined by fitting to the nearest-neighbor structures and the 
remaining parameters fitted to more complex structures; and (4) fully optimize the fitting 
functions.

Previous work [5] has proven that for the nearest neighbor structures (i.e., dimer, trimer, 
tetra, dc, sc, fcc, gra, zb, wz, NaCl, etc. where the second nearest neighbor distance is beyond 
cutoff distance of the potential), the following three relations hold:
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where ijbE ,  and ''
,ijbE  are respectively the energy and the second derivative of the energy of the 

nearest neighbor bond in the structure at the equilibrium bond length 0,ijr , ij,  and ij,  the 

equilibrium  and  bond-orders, and subscript ij indicates the species of the pair. Note that 

ij,  and ij,  are constant when the nearest neighbor structures are subject to the hydrostatic 

strain. The first step of, a two-step parameterization, determines the pair-wise GSP parameters 
0, m, n, and nc by fitting Eqs. (19) and (20) to the target values (experimental or DFT data) of 
bond energies (can be converted from cohesive energies) and second derivatives of bond 
energies (can be converted from bulk moduli) of a wide range of nearest-neighbor structures with 
different equilibrium bond lengths. The parameters determined in the first-step enable evaluating 
the right-hand side of Eq. (21) at the target equilibrium bond lengths for different nearest-
neighbor structures. This creates a new set of target values for the combined bond-order term 

ijijijij ,,0,,,0, 22    . These new target values, along with target properties (cohesive 

energies, lattice constants, etc.) of non-nearest-neighbor structures, can then be fitted in a 
second-step to determine the remaining parameters, p, ,0, ,0, c, f, k, b , u. 

With target properties defined, the potential is optimized using a series of computational 
tools [17,18,19,20, 21] as detailed previously [5].  Following each fitting iteration the parameters are 

17 S. Wolfram, The Mathematica Book, 5th ed. (Wolfram Research, Inc., Champaign, IL, 2004), p. 106ff.
18 M. R. Hestenes, and E. Stiefel, J. Res. National Bureau Stand., 49, 409 (1952).
19 D. M. Olsson, and L. S. Nelson, Technometrics, 17, 45 (1975).
20 R. Storn, and K. Price, J. Global Opt., 11, 341 (1997).
21 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science, 220, 671 (1983).
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tested for a larger collection of structures and vapor deposition simulations. If spurious results 
exist (for example, a structure has a lower cohesive energy than the ground-state phase, or vapor 
deposition simulations predict an amorphous growth of the equilibrium phase), the entire process 
is repeated with an appropriate adjustment of target structures, target properties, and parameter 
bounds. The iterations continue until a satisfactory set of potential parameters is obtained. Tables 
1-1 – 1-3 list values of a complete set of BOP parameters thus determined for the Cd-Te-Se 
system including global/point-dependent, pair-dependent, and three-body-dependent parameters, 
respectively.
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IV. EVALUATION OF THE POTENTIAL

Detailed studies [2,5,6] have been performed to compare literature SW [22,23] and Tersoff [24]
 types of Cd-Te potentials with BOP. These studies indicate that the literature SW potential [25,26]
 is sufficiently well parameterized for stoichiometric CdTe compound whereas the literature 
Tersoff-Rockett potential [27] is not sufficiently well parameterized for either Cd and Te 
elements or CdTe compound. The Cd-Te component of our Zn-Cd-Hg-S-Se-Te SW potential [4] 
slightly improves on the overall property trends and significantly improves on the Cd property 
trends over the literature Cd-Te SW potential [28,29]. Hence, the Zn-Cd-Hg-S-Se-Te SW potential 
[4] provides the most stringent standard for the quality of the Cd-Te-Se potential. Extensive 
comparisons are therefore made between the predictions by the Cd-Te-Se BOP and the published 
Zn-Cd-Hg-S-Se-Te SW potentials, the available experimental data, and our high-level DFT 
calculations on properties of a large number of phases. In particular, geometries and energies of 
numerous small clusters; lattice constants and cohesive energies of a variety of lattice structures; 
elastic constants, melting temperature, properties of common point defects (interstitials, 
vacancies, and antisites), and surface reconstructions of the lowest energy zinc-blende 
compounds; heat of formation of Te0.25Se0.75 and Te0.75Se0.25 alloys, and heat of formation of 
CdTe1-xSex alloyed compounds, are all studied. Finally, vapor deposition simulations of a variety 
of possible phases are explored.

IV.1 Small-Cluster Properties
Based on BOP, SW, and DFT, molecular statics energy minimization simulations are used 

to calculate relaxed cohesive energies and geometries of a variety of Cd, Te, Se, CdTe, CdSe, 
and TeSe clusters with different coordination numbers. To provide numerical reference for 
readers, the results of the calculations are summarized in Table 1-C-1 of Appendix C. To better 
examine the trends the data listed in Table 1-C-I are plotted in Fig. 1-1 for cohesive energy per 
atom, and in Fig. 1-2 for atomic volume. Because the volume for clusters is not well defined, we 

simply use hard sphere model to define atomic volume  from bond length r as  = 
3

23
4







 r . It 

should be noted that while the DFT method captures property trends well, it does not necessarily 
reproduce the absolute values of the energies and atomic volumes measured from experiments. 
To realistically compare the results, the DFT data displayed in Figs. 1-1 and 1-2 (as well in Figs. 
1-3 and 1-4) are scaled to the experimental values for the Cd-hcp, Te-A8, Se-A8, CdTe-zb, and 

22 Z. Q. Wang, D. Stroud, and A. J. Markworth, Phys. Rev. B, 40, 3129 (1989).
23 Z. Zhang, A. Chatterjee, C. Grein, A. J. Ciani, and P. W. Chung, J. Elect. Mat. 40, 109, 2011.
24 J. Oh, and C. H. Grein, J. Cryst. Growth, 193, 241 (1998).
25 Z. Q. Wang, D. Stroud, and A. J. Markworth, Phys. Rev. B, 40, 3129 (1989).
26 Z. Zhang, A. Chatterjee, C. Grein, A. J. Ciani, and P. W. Chung, J. Elect. Mat. 40, 109, 2011.
27 J. Oh, and C. H. Grein, J. Cryst. Growth, 193, 241 (1998).
28 Z. Q. Wang, D. Stroud, and A. J. Markworth, Phys. Rev. B, 40, 3129 (1989).
29 Z. Zhang, A. Chatterjee, C. Grein, A. J. Ciani, and P. W. Chung, J. Elect. Mat. 40, 109, 2011.
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CdSe-zb phases (for example, the energies and volumes of all the Cd structures are multiplied 
respectively by a constant energy scaling factor and a constant volume scaling factor so that the 
scaled DFT values match the experimental data for the equilibrium Cd-hcp phase). 

Figure 1-1. Cohesive energies per atom for selected clusters. DFT data are scaled to experimental values of 
observed phases. Note that the data represent discrete structure, and the line is only used to guide eyes 
without implying any continuity of the data. 

Considering that the DFT data shown in Fig. 1-1 is ordered to give a decreasing energies for 
each material systems (Cd, Te, Se, CdTe, CdSe, and TeSe), the BOP does an excellent job 
reproducing the DFT trends from the high (less negative) to low (more negative) energy clusters 
with the only exceptions being TeTeTe-tri and SeSeSe-tri. This improves over the SW potential. 
In addition, the overall BOP trends are much closer to the DFT trends than the SW trends.
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Figure 1-2. Atomic volumes for selected clusters. DFT data are scaled to experimental values of observed phases. 
Note that the data represent discrete structure, and the line is only used to guide eyes without implying any 
continuity of the data.

Fig. 1-2 indicated that the atomic volume trends (refers to relative volume between phases, 
but not the absolute volume) predicted by the BOP match the DFT trends very well except for 
the Cd clusters where opposite trends are seen. It should be noted, however, the bond energy 
specified by Eq. (19) monotonically increases as a function of bond length regardless of the 
parameters. In contrast, the DFT bond energy vs. bond length data is rather scattered. As a result, 
it is necessary that some differences exist between BOP and DFT. This is also true for Tersoff 
potentials (which have a similar bond energy vs. bond length relation) [30], and is even more 
obvious for SW potentials. For example, the angular term vanishes for both the dimer and dc 
structures in SW potentials. This means that the nearest-neighbor structures such as dime and dc 
would have the same bond energy, in contrast with the DFT data. When energies and volumes 
cannot be both captured, a tradeoff is made to capture the more important energies. On the other 
hand, it can be seen that the BOP values are overall closer to the DFT data than the SW 
predictions except for the Cd clusters where the BOP values deviate slightly more. Again, it 
should be noted that DFT does not necessarily represent experiments, and the trends are more 
important to be captured than the absolute values.

30 K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B, 66, 35205 (2002).
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IV.2 Bulk Lattice Structures
Molecular statics energy minimization simulations with flexible volume [31] are also 

performed to determine the relaxed energies and lattice constants of a variety of Cd, Te, Se, 
CdTe, CdSe, TeSe, and  lattices (see, e.g., Appendix A) with coordination numbers 
between four and twelve. For convenience of numerical reference, the calculated results are 
all listed in Table 1-C-2, Appendix C along with the available experimental data [32]. To 
clearly compare the models, the cohesive energies per atom are plotted in Figs. 1-3(a) and 
3(b) for elements and compounds respectively, and the corresponding atomic volumes are 
plotted in Figs. 1-4(a) and 1-4(b). Again DFT data are scaled to the experimental phases.

Figs. 1-3(a) and 1-3(b) indicate that the cohesive energies of both elements and 
compounds as predicted by the BOP follow well the DFT trends for each material Cd, Te, 
Se, CdTe, CdSe, and TeSe. Most phases that deviate from the DFT trends are not the low 
energy phases and hence do not critically affect the potential. In addition, the absolute 
cohesive energies are seen to be close to the scaled DFT values, with almost exact match to 
the experimental energies of the equilibrium phases. Overall, a significant improvement 
over the SW potential is clear.

Figs. 1-4(a) and 1-4(b) indicate that the atomic volume of both elements and 
compounds as predicted by the BOP also follow well the DFT trends. Again the phases that 
deviate the DFT trends are not the low energy phases. The absolute values are also close 
the DFT data. For important low energy phases, the agreement is very good, and exact 
agreement with experimental values is achieved for the lowest energy equilibrium phases. 
Overall, a significant improvement over the SW potential can be clearly identified. 

 

31 M. Parrinello, and A. Rahman, J. Appl. Phys., 52, 7182 (1981).
32 I. Barin, Thermochemical data of pure substances, (VCH, Weinheim, 1993).
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Figure 1-3. Cohesive energies per atom for selected lattices. DFT data are scaled to experimental values of 
observed phases as indicated by the blue stars. Note that the data represent discrete structure, and 
the line is only used to guide eyes without implying any continuity of the data.
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Figure 1-4. Atomic volumes for selected lattices. DFT data are scaled to experimental values of observed 
phases as indicated by the blue stars. Note that the data represent discrete structure, and the line is 
only used to guide eyes without implying any continuity of the data.

For multi-element systems, heat of formation is the most important property 
determining the formation of intermetallic compounds, solid solutions, or separated 
elements. Heat of formation represents the energy difference between an alloy or 
compound and its constituent elements. For an A1-xBx binary alloy, for instance, the heat of 
mixing is defined as Hf = Ec,AB – [(1-x)·Ec,A + x·Ec,B], where Ec,AB is the cohesive energy 
of the alloy or the compound, and Ec,A and Ec,B refer to the cohesive energies of the lowest-
energy structure of elements A and B, respectively. Because our BOP reproduces the 
experimental cohesive energies of the lowest energy elements Cd-hcp, Te-A8, and Se-A8, 
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and lowest energy compounds CdTe-zb, and CdSe-zb, the heat of formation of CdTe-zb 
and CdSe-zb is also exact. This means that the BOP can correctly predict the formation of 
the intermetallic compounds CdTe-zb and CdSe-zb. 

Te-Se forms a continuous solid solution on an A8 lattice [13]. To check this, we 
calculated the heat of formation of two phases Te0.25Se0.75-A8 and Te0.75Se0.25-A8. The 
results are shown in Table 1-4. Table 1-4 indicates that they Te0.25Se0.75-A8 and 
Te0.75Se0.25-A8 significant negative heat of formation, and are therefore stable. We will 
demonstrate below that Te0.50Se0.50-A8 grows into a crystalline film in MD deposition 
simulation, more confidently verifying that Te1-xSex-A8 is stable. 

Table 1-4.  BOP prediction of heat of formation Hf (eV/atom) of various phases.

Phase Te0.25Se0.75-A8 Te0.75Se0.25-A8 Cd4Te3Se Cd4Te2Se2 Cd4TeSe3

Hf -0.12 -0.09 -0.55 -0.61 -0.68

BOP-based energy minimizations are also used to calculate relaxed cohesive energies, 
lattice constants, and heats of formation of three ternary compounds, namely Cd4Te3Se, 
Cd4Te2Se2, and Cd4Te1Se3, with all atoms populate on an initial zb lattice. The results are 
compared in Tables 1-C-2 and 1-C-4. It can be seen that BOP predicts decreasing lattice 
constant and decreasing energy (more negative) with increasing Se content. In addition, 
BOP predicts negative heats of formation for all the three compounds, Table 1-4, correctly 
capturing these compounds as the stable structures.

IV.3 Elastic Constants
SW and BOP models are also used to calculate single crystal elastic constants of the 

CdTe-zb and CdSe-zb phases, and the results are compared with literature experiments [33,34]
 in Table 1-5. It can be seen that overall, the elastic constants predicted by the BOP are 
closer to the experimental values than those predicted by the SW potential.

Table 1-5. Elastic Constants C11, C12, C44 (GPa) and melting temperatures Tm (K) of CdTe-zb and 
CdSe-zb.

SW [4] BOP Exp. [33,34]Structure
C11 C12 C44 Tm C11 C12 C44 Tm C11 C12 C44 Tm

CdTe-zb 63 32 24 1570-
1610

52 29 20 1360-
1400

53 37 20 1365

CdSe-zb 88 37 36 2200-
2300

72 44 24 1780-
1790

67 46 22 1537

33 B. Derby, Phys. Rev. B, 76, 054126 (2007).
34 M. Gaith, and I. Alhayek, Rev. Adv. Mater. Sci., 21, 183 (2009).



28

IV.4 Melting Temperature
Melting temperature simulations test a large number of thermally-activated 

configurations and have implications on modeling thermodynamic properties. Thus, we 
calculated the melting temperature of the two zb phases CdTe and CdSe. Here the melting 
temperature is determined as the temperature at an equilibrated liquid / solid interface 
using the simulation approach developed previously [12]. The results are included in Table 
1-5. It can be seen that the melting temperatures predicted by BOP is significantly closer to 
the experimental values than those predicted by the SW model. In particular, the 
experimental melting temperature for CdTe is within the predicted range. This is an 
extremely good agreement for properties like melting temperature.

IV.5 Point Defects
Studying defect properties in CdTe-zb and CdSe-zb crystals further tests the 

transferability of the Cd-Te-Se BOP potential. Various types of defects can be easily 
introduced in a zb computational crystal. The stoichiometry of the system containing the 
defects, however, does not necessarily equal the stoichiometry of the perfect crystal. 
Following the methodology of Zhang and Northrup [35,36], the defect energy   in an AB 
binary compound is calculated as a function of the chemical potential difference   as

   BAD nnE 5.0' (22)

where An  and Bn  are numbers of A and B atoms in the defective system, '
DE  is an 

intrinsic defect energy at the stoichiometric condition, and   is the chemical potential 
difference characteristic of the stoichiometry of the environment.   is expressed as

   bulk
BB

bulk
AA   (23)

where A  and B  are the chemical potentials of A and B in the AB compound, and bulk
A  

and bulk
B  are the chemical potentials for the lowest energy A and B phases. In our work, all 

chemical potentials are approximated as cohesive energies per atom unit. Under the 
equilibrium condition,   satisfies the condition – fH  <  < fH  where fH  is heat 

of formation [36]. In general,   = 0,   > 0, and   < 0 mean stoichiometric, A-rich, 
and B-rich conditions. 

The intrinsic defect energy can be calculated as

     bulk
B

bulk
ABA

bulk
ABBADD nnnnEE   5.05.0' (24)

35 S. B. Zhang, and J. E. Northrup, Phys. Rev. Lett., 67, 2339 (1991).
36 J. E. Northrup, and S. B. Zhang, Phys. Rev. B, 47, 6791 (1993).
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where DE  is the total energy of the system containing the defect, and bulk
AB  is the chemical 

potential of the lowest energy AB phase. Under the stoichiometric condition,   = 0 and 
'
DE =  . Under the A-rich or B-rich condition, 0  and thus '

DE .
The AB defects considered here include A vacancy (VA), B vacancy (VB), A at B anti-

site (AB), B at A anti-site (BA), A interstitial surrounded by the B and A tetrahedron shells 
(notated as Ai,B and Ai,A respectively), B interstitial surrounded by the A and B tetrahedron 
shells (notated as Bi,A and Bi,B respectively). 

Energy minimization simulations are performed to calculate the total energies DE  of 
the AB-zb systems (with about 512 atoms) containing the corresponding defects. The 
intrinsic defect energies are then calculated using Eq. (24), and the numerical results are 
given in Table 1-C-3 of Appendix C for reference. To facilitate analysis, these results also 
plotted in Figs. 1-5(a) and 1-5(b) for CdTe-zb and CdSe-zb respectively. 
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Figure 1-5. Defect energies obtained from different models for the CdTe-zb and CdSe-zb phases.

Fig. 1-5(a) indicates that under the stoichiometric condition, the lowest energy defect in the 
CdTe-zb crystal, as predicted by the BOP calculations, is the Te vacancy. This agrees with the DFT 
calculations. The SW potential does not predict Te vacancy as the lowest energy defect. The overall 
trends of defect energy predicted by the BOP are also seen to be much closer to the DFT trends than 
those of the SW potential. The only exception is the Te at Cd antisites, where the DFT energy is 
much higher than the BOP energy. It is noted, however, DFT does predict an abnormally high energy 
for the Te at Cd anti-site.

Similar BOP defect energy trends are obtained for CdSe as can be seen in Fig. 1-5(b). Overall, 
it is clear from Fig. 1-5 that BOP is superior to the SW potentials for defect studies.
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IV.6 Surface Reconstructions
 Surface reconfigurations provide additional tests of the transferability of interatomic 

potentials. To further evaluate our BOP, we study the (010) surface reconstructions of CdTe-
zb and CdSe-zb. The (010) surface of a zb crystal exhibits a variety of surface 
reconstructions depending on the environment [37,38]. Fig. 1-6 illustrates six observed and 
postulated reconstructions for three coverage fraction  = 0.5, 1.0, and 1.5. Because in AB 
binary compounds, the surface atoms can be either A or B, Fig. 1-6 can be used to construct 
12 surface reconstructions for binary compounds.

BOP- and SW-based energy minimization simulations are used to calculate total 
energies of the relaxed systems containing various surface reconstructions. The 
computational cell contains a block of zb crystal with ~600 atoms. The simulations employ 
periodic boundary conditions in the x and z directions with two parallel free surfaces created 
in the +/- y directions. The two surfaces are identical except that one is rotated 90° relative to 
the other. Based on the relaxed total energies, Eq. (22) is used to calculate surface energies 
as a function of the chemical potential difference  , Eq. (23), for all the 12 CdTe-zb (010) 
surface reconstructions and the 12 CdSe-zb (010) surface reconstructions. The calculated 
surface energies (per unit of surface cell), are summarized in Figs. 1-7 and 1-8 for BOP and 
SW potential, respectively, where (a) is for CdTe surfaces, and (b) for CdSe surfaces.

Figure 1-6. Possible surface reconstructions on (010) zb surface.

37 R. D. Feldman, R. F. Austin, P. M. Bridenbaugh, A. M. Johnson, W. M. Simpson, B. A. Wilson, C. E. Bonner, J. Appl. Phys., 
64, 1191 (1988).

38 B. Daudin, S. Tatarenko, D. Brun-Le Cunff, Phys. Rev. B, 52, 7822 (1995)
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Fig. 1-7(a) indicates that within the possible range of chemical potential difference between -

fH  and fH , the BOP predicts the preferred CdTe-zb (010) surfaces as Te (12) (coverage  = 

1.0) in the Te-rich environments (   near the - fH  end) and Cd (12) (coverage  = 1.0) in the 

Cd-rich environments (   near the fH  end), in good agreement with experiments. 

Figure 1-7. Surface energy phase diagrams predicted by the BOP.

Fig. 1-7(b) indicates that the BOP predicts the preferred CdSe-zb (010) surfaces as Te (12) 
(coverage  = 1.0) in the Te-rich environments and Cd (12) (coverage  = 1.0) in the Cd-rich 
condition, again in good agreement with the experiments for CdSe. 
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Figure 1-8. Surface energy phase diagrams predicted by the SW potential.

Fig. 1-8(a) and Fig. 1-8(b)… These observations, require that  is strictly constrained 
between - fH  and fH  , which is true under experimental equilibrium condition. However, 

under highly non-equilibrium conditions typically used in MD, the Cd-rich condition may reach 
|| >> |Hf|. Then the DFT calculations would predict Cd (12) (coverage  = 1.0) as the lowest 
energy surface, in agreement with the BOP. These are strong validation of the BOP, especially 
considering that even DFT cannot account for the experimentally observed surface 
reconstructions.

IV.7 Vapor Deposition Simulations
As mentioned above, vapor deposition simulations are extremely important because they test 
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configurations that cannot be tested otherwise. MD vapor deposition simulations have been 
performed to confirm that crystalline growth is achieved for Cd-hcp, Te-A8, and CdTe-zb with the 
present BOP. Detailed results of these simulations will be published separately [39], and hence will 
not be repeated here. Here we perform further MD vapor deposition simulations to validate Te-A8, 
Te0.5Se0.5-A8 alloy, CdSe-zb, and CdTe0.5Se0.5-zb growth. Our computational systems employ 
periodic boundary conditions in the x and z directions, and a free boundary condition in the y 
direction. The growth occurs in the +y direction, with a constant zero pressure maintained during 
simulations to relax the system dimensions.

For Se growth, an initial substrate of an A8 crystal containing 1320 Se atoms with 20 ( 0112 ) 
layers in the x direction, 11 (0003) layers in the y direction, and 12 ( 1010 ) layers in the z direction 
is used, where layers refer to crystallographic planes so that one (0001) layer is equivalent n (000n) 
layers etc. The substrate temperature is set at T = 300 K by assigning velocities to atoms according 
to the Boltzmann distribution. During simulations, the bottom (-y) 3 (0003) layers are held fixed to 
prevent crystal shift upon adatom impact on the top surface. The next 4 (0003) layers are 
isothermally controlled at the substrate temperature. This leaves the top 4 layers free where the 
motion of atoms is solely determined by Newton’s law. Injection of Se adatoms from random 
locations far above the surface simulates the growth. All adatoms have an initial far-field incident 
kinetic energy Ei = 0.1 eV and an incident angle  = 0o (i.e., the moving direction is perpendicular 
to the surface). The adatom injection frequency is chosen to give a deposition rate of R = 3.2 nm/ns. 
To approximately maintain a constant thickness of the free surface region, the isothermal region 
expands upward during simulations. Since surface roughness might develop, the isothermal region 
expands at about 80% of the surface growth rate so that the upper boundary of the isothermal 
region never exceeds the surface even at the valley locations. Fig. 1-9 depicts the resulting 
configuration obtained after 0.42 ns deposition. Note that in Figs. 1-9 to 1-12, the original substrate 
is shaded in yellow. Fig. 1-9 shows that the BOP correctly captures the crystalline growth of the Se.

For Te0.5Se0.5 growth we create an initial substrate of an A8 Te0.25Se0.75 alloyed crystal 
containing 200 Te atoms and 600 Se atoms with 20 ( 0112 ) layers in the x direction, 10 (0003) 
layers in the y direction, and 8 ( 1010 ) layers in the z direction. This vapor deposition simulation 
utilizes the same approach as described above at a substrate temperature T = 300 K, an incident 
energy Ei = 0.1 eV, an incident angle  = 0o, a deposition rate R = 2.5 nm/ns, and a vapor flux ratio 
Te:Se = 1:1 (while randomly chosen, the adatom species will eventually average to approximately 
50% Te and 50% Se). Fig. 1-10 shows the resulting configuration obtained after 1.20 ns deposition. 
It can be seen that the BOP predicts an A8 crystalline growth of the Te0.50Se0.50 alloyed film on a 
Te0.25Se0.75 substrate with a different composition. Experimentally, Te and Se form a continuous 
solid solution with the A8 crystal structure over the entire composition range [13]. This means that 
the alloyed Te0.50Se0.50 A8 crystal is thermodynamically stable. The prediction of the crystalline 
growth of the Te0.50Se0.50 A8 crystal during direct MD simulations strongly validates that our BOP 
captures correctly the thermodynamic behavior of the Te-Se system.

39 D. K. Ward, (2013).
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Figure 1-9. BOP prediction of the Se-A8 structure deposited in the [0001] direction (initial substrate is shaded in yellow).

For CdSe growth, an initial substrate of a zb CdSe crystal containing 648 Cd atoms and 648 
Se atoms with 18 (101) layers in the x direction, 12 (040) layers in the y direction, and 6 ( 011 ) 
layers in the z direction is used. Initially, Cd terminates the top y surface. During simulations, the 
bottom 3 (040) layers are held fixed. To mimic the molecular beam epitaxy (MBE) growth 
condition commonly used for semiconductor growth, we expanded the isothermal region to 
include all atoms above the fixed region. To capture the adatom incident energy effects, however, 
the simulation does not isothermally control the newly added adatoms until they fully incorporate 
into the film and their initial kinetic and potential (latent heat release) energies fully dissipate. The 
growth simulation, has a substrate temperature T = 1200 K, an incident energy Ei = 0.1 eV, an 
incident angle  = 0o, a deposition rate R = 2.8 nm/ns, and a stoichiometric vapor flux ratio Cd:Se 
= 1:1. Fig. 1-11 depicts the system configuration obtained at 1.2 ns deposition time. It is seen 
again that our BOP correctly captures the crystalline growth of the equilibrium CdSe-zb crystal.
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Figure 1-10. BOP prediction of the Te0.50Se0.50-A8 structure deposited in the [0001] direction (initial substrate is shaded in 
yellow).
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Figure 1-11. BOP prediction of the CdSe-zb structure deposited in the [010] direction (initial substrate is shaded 
in yellow).

For CdTe0.5Se0.5 growth, we begin with a zb CdTe substrate containing 648 Cd atoms and 
648 Te atoms with 18 (101) layers in the x direction, 12 (040) layers in the y direction, and 6 
( 011 ) layers in the z direction. Initially, Te atoms terminated the surface. Following the same 
approach used for CdSe, the CdTe0.5Se0.5 growth is simulated at a substrate temperature T = 1200 
K, an incident energy Ei = 0.1 eV, an incident angle  = 0o, a deposition rate R = 2.5 nm/ns, and a 
vapor flux ratio Cd:Te:Se = 2:1:1. Fig. 1-12 shows the configuration obtained at 1.2 ns deposition 
time. It again validates that our BOP correctly captures the crystalline growth of the ternary zb 
CdTe0.5Se0.5 compound commonly achieved in experiments. Note that here we actually simulate a 
more complicated CdTe0.5Se0.5/CdTe multilayer growth.
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Figure 1-12. BOP prediction of the CdTe0.5Se0.5-zb structure deposited in the [010] direction (initial substrate is shaded 
in yellow).

The past successful MD simulations of crystalline growth of equilibrium semiconductor 
crystals are achieved primarily using SW potentials. The problem is that SW potentials only 
stabilize the tetrahedral structure without capturing the property trends of other configurations, and 
as a result they prediction of defect information is relatively inaccurate. Without including growth 
simulation tests in parameterizations, many literature Tersoff potentials do not predict crystalline 
growth [2,24,40]. This work develops Cd-Te-Se ternary BOP that is fundamentally more 
transferrable than Tersoff potentials. More importantly, a significantly iterative parameterization 
scheme is strictly followed to capture property trends of a variety of phases and crystalline growth 
of the equilibrium phases under a variety of chemical conditions. It is the improved property 
trends and crystalline simulation capability that enable our Cd-Te-Se BOP to be confidently 
applied for nano material problems.

40 M. Nakamura, H. Fujioka, K. Ono, M. Takeuchi, T. Mitsui, and M. Oshima, J. Cryst. Growth, 209, 232 (2000).
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V. CONCLUSIONS

We have developed a high-fidelity bond-order potential for the Cd-Te-Se ternary system. 
Unlike many other existing semiconductor potentials, this BOP is derived directly from 
quantum-mechanical theories and hence is fundamentally transferrable to environments that are 
not explicitly tested. In particular, it simultaneously meets two stringent criteria: (a) it 
accurately captures property trends of many configurations including defects and surfaces; and 
more importantly (b) it results in crystalline growth in MD vapor deposition simulations under a 
variety of chemical conditions. We achieved high quality parameterization by considering a 
large number of target structures with coordination ranging from 2 to 12; setting physically 
valid bounds for all parameters; applying the two-step fitting approach; using different 
minimization schemes; and iterating the parameterization with crystalline growth simulation 
tests.

The BOP approach will enable empirical MD simulations of semiconductors to achieve a 
new fidelity level approaching significantly toward the quantum-mechanical methods. As a 
demonstration in a ternary system, our Cd-Te-Se BOP enables accurate study of CdTe/CdSe 
core/shell structures. Equally important, our work builds a foundation for the expansion of BOP 
into other semiconductor compound systems. Currently, this type of BOP is only applied to 
GaAs [41] and CdZnTe [5,6] primarily due to the difficulties in BOP parameterization. 
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APPENDICES

APPENDIX 1-A   Target Structures

To develop complex potentials such as the BOP, it is mandatory to use a larger number of carefully 
selected target lattices to remove all degrees of freedom of the parameters in a physically meaningful way. 
The target structures listed here were determined through extensive trials. Not all the structures are 
necessarily used in the fitting, but they must all be monitored in the iterative parameterization process to 
ensure the lowest energy for the equilibrium phases. The target clusters include dimer (di), trimer (tri), 
square (sq), rhombus (rhom), tetrahedron (tetra), and four-atom-chain (ch) for each of the six elemental 
and binary systems (Cd, Te, Se, Cd-Te, Cd-Se, and Te-Se). Note that in the binary systems studied here, 
the ratio of the two species necessarily does not equal 1:1 for trimers (e.g., Cd2Te, CdTe2, Cd2Se, CdSe2, 
etc.) but is assumed to be 1:1 for all other clusters. The target lattices for the three elemental systems (Cd, 
Te, Se) include diamond-cubic (dc), simple-cubic (sc), body-centered-cubic (bcc), face-centered-cubic 
(fcc), hexagonal-close-packed (hcp), graphene (grap), graphite (gra), face-centered-square (fcs), and γ-Se 
(A8) phases. Here the face-centered-square is essentially one sheet of a (100) fcc plane. The target lattices 
for the two intermetallic binary systems with a species ratio of 1:1 (i.e., CdTe, CdSe) include zinc-blende 
(zb), wurtzite (wz), NaCl (B1), CsCl (B2), binary-graphene (bgrap), binary-graphite (bgra), binary-face-
centered-square (bfcs), AuCu (L10), CuPt (L11), NiAs (B81), CrB (B33), and AlSb (sc16). Here the 
binary-graphene is essentially a graphene sheet with neighboring atoms alternating between the two 
species, and binary-graphite is essentially a stack of binary-graphene sheets. The target lattices for the 
four intermetallic binary systems with an unequal species ratio (namely, Cd2Te, CdTe2, Cd2Se, CdSe2) 
include Ag2O (cP4), and ZrO2. The same target lattices for the intermetallic binary systems are also used 
for TeSe, Te2Se, TeSe2 despite that Te-Se only forms a continuous solid solution with Te and Se atoms 
populated in an A8 lattice [13]. To best capture this solid solution behavior, we also include two 
additional A8 target lattices corresponding respectively to Te0.25Se0.75 and Te0.75Se0.25 solid solutions (with 
Te and Se atoms fully mixed and atom environment highly symmetric). The target lattices for the ternary 
system include alloyed zinc-blende compounds CdTe0.25Se0.75, CdTe0.50Se0.50, and CdTe0.75Se0.25. The 
target defect structures include zinc-blende CdTe and CdSe with various vacancies, antisites, interstitials, 
and surfaces, which are described in more details in sections IV.E and IV.F.
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APPENDIX 1-B Parameter Bounds

Constraining the parameters within physical ranges is necessary for BOP parameterization. Table 1-
B-1 lists these constraints in seven groups representing parameterizations of Cd, Te, Se, Cd-Te, Cd-Se, 
Te-Se, and Cd-Te-Se systems, respectively.

Table 1-B-1. Bounds on BOP parameters.
Elemental Cd
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401.299.18.0  TeTeTeTeTeTe nmn

799998.2, TeTecn

 
   5.1,05.0,

/1expln
ln

,



 l

ll


TeTecnTeTen

142.0 ,  Tep
2

,0,,
2

,0, TeTeTeTeTe p   

80 ,0,  TeTe

80 ,0,  TeTe
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65.30 ,  TeTec
8.02.0 ,  TeTef

1515 ,  TeTek
10 ,  TeTeTeb

2.04.0 ,  TeTeTeu

      2,,,,,
22

,
2

,, 41 TeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTe ubpbpupb  

Elemental Se
401.299.18.0  SeSeSeSeSeSe nmn

799998.2, SeSecn

 
   5.1,05.0,

/1expln
ln

,



 l

ll


SeSecnSeSen

142.0 ,  Sep
2

,0,,
2

,0, SeSeSeSeSe p   

80 ,0,  SeSe

80 ,0,  SeSe

65.30 ,  SeSec
8.02.0 ,  SeSef

1515 ,  SeSek
10 ,  SeSeSeb

0.04.0 ,  SeSeSeu

      2,,,,,
22

,
2

,, 41 SeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSeSe ubpbpupb  

Binary Cd-Te
401.299.11.0  CdTeCdTeCdTe nmn

811251.2, CdTecn

 
   5.1,05.0,

/1expln
ln

,



 l

ll


CdTecnCdTen

2
,0,,

2
,0, CdTeCdCdTe p   

2
,0,,

2
,0, CdTeTeCdTe p   

20 ,0,  CdTe

10 ,0,  CdTe

65.38.0 ,  CdTec
5.0, CdTef
0.0, CdTek

12.0 ,  CdCdTeb
1.04.0 ,  CdCdTeu
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      2,,,,,
22

,
2

,, 41 CdCdTeCdCdTeCdCdTeCdCdTeCdCdTeCdCdTeCdCdTeCdCdTe ubpbpupb  

12.0 ,  TeCdTeb
1.04.0 ,  TeCdTeu

      2,,,,,
22

,
2

,, 41 TeCdTeTeCdTeTeCdTeTeCdTeTeCdTeTeCdTeTeCdTeTeCdTe ubpbpupb  

12.0 ,  CdTeCdb
1.04.0 ,  CdTeCdu

      2,,,,,
22

,
2

,, 41 CdTeCdCdTeCdCdTeCdCdTeCdCdTeCdCdTeCdCdTeCdCdTeCd ubpbpupb  

12.0 ,  CdTeTeb
1.04.0 ,  CdTeTeu

      2,,,,,
22

,
2

,, 41 CdTeTeCdTeTeCdTeTeCdTeTeCdTeTeCdTeTeCdTeTeCdTeTe ubpbpupb  

Binary Cd-Se

41.29.11.0  CdSeCdSeCdSe nmn

0.50 ,  CdSecn

 
   5.1,05.0,

/1expln
ln

,



 l

ll


CdSecnCdSen

2
,0,,

2
,0, CdSeCdCdSe p   

2
,0,,

2
,0, CdSeSeCdSe p   

20 ,0,  CdSe

10 ,0,  CdSe

65.33.0 ,  CdSec
5.0, CdSef
0.0, CdSek

6.01.0 ,  CdCdSeb
0.038.0 ,  CdCdSeu

      2,,,0,,0
22

,
2

,0, 41 CdCdSeCdCdSeCdCdSeCdCdSeCdCdSeCdCdSeCdCdSeCdCdSe ubgbgugb  

6.02.0 ,  SeCdSeb
0.035.0 ,  SeCdSeu

      2,,,0,,0
22

,
2

,0, 41 SeCdSeSeCdSeSeCdSeSeCdSeSeCdSeSeCdSeSeCdSeSeCdSe ubgbgugb  

6.03.0 ,  CdSeCdb
0.035.0 ,  CdSeCdu

      2,,,0,,0
22

,
2

,0, 41 CdSeCdCdSeCdCdSeCdCdSeCdCdSeCdCdSeCdCdSeCdCdSeCd ubgbgugb  

6.02.0 ,  CdSeSeb
0.035.0 ,  CdSeSeu
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      2,,,0,,0
22

,
2

,0, 41 CdSeSeCdSeSeCdSeSeCdSeSeCdSeSeCdSeSeCdSeSeCdSeSe ubgbgugb  

Binary Te-Se
410.290.11.0  TeSeTeSeTeSe nmn

0.50 ,  TeSecn
 

   5.1,05.0,
/1expln

ln
,




 l
ll


TeSecnTeSen

2
,0,,

2
,0, TeSeTeTeSe p   

2
,0,,

2
,0, TeSeSeTeSe p   

20 ,0,  TeSe

10 ,0,  TeSe

65.33.0 ,  TeSec
10 ,  TeSef

2020 ,  TeSek

6.01.0 ,  TeTeSeb
0.038.0 ,  TeTeSeu

      2,,,0,,0
22

,
2

,0, 41 TeTeSeTeTeSeTeTeSeTeTeSeTeTeSeTeTeSeTeTeSeTeTeSe ubgbgugb  

6.01.0 ,  SeTeSeb
0.038.0 ,  SeTeSeu

      2,,,0,,0
22

,
2

,0, 41 SeTeSeSeTeSeSeTeSeSeTeSeSeTeSeSeTeSeSeTeSeSeTeSe ubgbgugb  

6.01.0 ,  TeSeTeb
0.038.0 ,  TeSeTeu

      2,,,0,,0
22

,
2

,0, 41 TeSeTeTeSeTeTeSeTeTeSeTeTeSeTeTeSeTeTeSeTeTeSeTe ubgbgugb  

6.01.0 ,  TeSeSeb
0.038.0 ,  TeSeSeu

      2,,,0,,0
22

,
2

,0, 41 TeSeSeTeSeSeTeSeSeTeSeSeTeSeSeTeSeSeTeSeSeTeSeSe ubgbgugb  

Ternary Cd-Te-Se
12.0 ,  TeCdSeb

1.04.0 ,  TeCdSeu

      2,,,0,,0
22

,
2

,0, 41 TeCdSeTeCdSeTeCdSeTeCdSeTeCdSeTeCdSeTeCdSeTeCdSe ubgbgugb  

12.0 ,  CdTeSeb

1.04.0 ,  CdTeSeu
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      2,,,0,,0
22

,
2

,0, 41 CdTeSeCdTeSeCdTeSeCdTeSeCdTeSeCdTeSeCdTeSeCdTeSe ubgbgugb  

12.0 ,  CdSeTeb
1.04.0 ,  CdSeTeu

      2,,,0,,0
22

,
2

,0, 41 CdSeTeCdSeTeCdSeTeCdSeTeCdSeTeCdSeTeCdSeTeCdSeTe ubgbgugb  

APPENDIX 1-C Complete List of Predicted Properties

Table 1-C-1. Cohesive energies Ec (eV/atom), bond length r (Å), and bond angle  (deg.) for selected Cd, Te, Se, 
CdTe, CdSe, and TeSe clusters as determined from various models.

SW [4] BOP DFTCluster Type
Ec r  Ec r  Ec r 

CdCd-di -0.219 2.870 ----- -0.356 2.751 ----- -0.089 3.456 -----
CdCdCd-tria -0.339 2.983 60 -0.530 2.863 60 -0.183 3.390 60
CdCdCdCd-chb -0.219 4.616

2.870
----- -0.381 2.935

2.828
----- -0.142 3.402

3.426
-----

CdCdCdCd-recc -0.418 2.891
2.891

----- -0.469 2.853
2.853

----- -0.175 3.448
3.437

-----

CdCdCdCd-tetra -0.419 3.061 ----- -0.633 2.932 ----- -0.295 3.340 -----
TeTe-di -0.486 3.167 ----- -1.415 2.737 ----- -1.790 2.597 -----
TeTeTe-tria -0.710 3.340 60 -1.383 3.007 60 -1.969 2.770 60
TeTeTeTe-chb -0.486 5.095

3.167
----- -1.417 4.070

2.738
----- -1.872 3.147

2.602
-----

TeTeTeTe-recc -0.918 3.199
3.199

----- -1.539 3.571
2.738

----- -2.139 3.192
2.585

-----

TeTeTeTe-tetra -0.846 3.455 ----- -1.345 3.158 ----- unstable ----- -----
SeSe-di -0.482 3.019 ----- -1.637 2.435 ----- -1.935 2.196 -----
SeSeSe-tria -0.737 3.148 60 -1.461 2.750 60 -2.171 2.379 60
SeSeSeSe-chb -0.482 4.857

3.019
----- -1.637 4.487

2.435
----- -2.124 3.530

2.195
-----

SeSeSeSe-recc -0.919 3.043
3.043

----- -1.766 3.368
2.435

----- -2.409 2.827
2.188

-----

SeSeSeSe-tetra -0.904 3.235 ----- -1.423 2.905 ----- unstable ----- -----
CdTe-di -0.545 2.805 ----- -0.588 2.771 ----- -0.519 2.613 -----
CdTeCd-tria -0.726 2.805 109.5 -0.733 2.795 113.8 -0.561 2.809 76.4
CdSe-di -0.631 2.620 ----- -0.951 2.456 ----- -0.573 2.388 -----
CdSeCd-tria -0.841 2.620 109.5 -0.979 2.552 113.1 -0.666 2.579 85.8
TeSe-di -0.458 2.711 ----- -1.650 2.386 ----- -1.878 2.394 -----
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a: For ABA trimer clusters, the bond length is between atoms A and B, and the bond angle centers at B.
b: For ABCD chain clusters, the first bond length is between the two middle atoms B and C, and the second bond length is between the two outer atoms A and 

B or C and D.
c: For rectangular clusters, the bigger and smaller bond lengths refer respectively to the longer and shorter edges. Equal bond lengths mean square clusters.

Table 1-C-2. Cohesive energies Ec (eV/atom), lattice constants a, b, c (Å) for selected Cd, Te, Se, CdTe, CdSe, TeSe, 
and CdTeSe lattices as determined from various models.

SW [4] BOP DFT Exp.Structure
Ec a-ca Ec a-ca Ec a-ca Ec [32] a-ca [42]

Cd-grap -0.642 4.989 -0.599 5.098 -0.340 5.314 ----- -----
Cd-dc -0.876 6.627 -0.725 6.871 -0.679 6.595 ----- -----
Cd-gra -0.780 5.016

6.016
-0.671 5.053

5.793
-0.946 4.887

5.308
----- -----

Cd-sc -0.958 3.008 -0.618 3.120 -1.086 2.959 ----- -----
Cd-bcc -1.075 3.559 -1.019 3.539 -1.351 3.613 ----- -----
Cd-hcp -1.133 3.195

5.217
-1.135 3.152

5.124
-1.398 3.122

5.585
-1.133 2.974

5.606
Cd-fcc -1.133 4.518 -1.128 4.452 -1.402 4.605 ----- -----
Te-grap -1.417 5.514 -1.697 5.334 -2.122 5.314 ----- -----
Te-dc -1.945 7.314 -1.943 7.234 -2.272 7.123 ----- -----
Te-gra -1.689 5.553

6.763
-1.873 5.384

6.652
-2.468 5.210

6.063
----- -----

Te-sc -1.983 3.377 -2.163 3.232 -2.765 3.174 ----- -----
Te-bcc -2.131 4.040 -1.941 3.930 -2.551 3.868 ----- -----
Te-hcp -2.169 3.636

5.937
unstable ----- ----- ----- ----- -----

Te-fcc -2.169 5.142 -1.846 4.951 -2.399 4.840 ----- -----
Te-A8 -1.983 4.776

5.849
-2.163 4.572

5.590
-2.798 4.340

6.045
-2.169 4.447

5.915
Se-grap -1.412 5.250 -1.745 4.910 -2.230 4.412 ----- -----
Se-dc -1.930 6.973 -2.034 6.657 -2.306 6.268 ----- -----
Se-gra -1.709 5.281

6.353
-1.942 4.956

6.219
-2.442 4.581

5.524
----- -----

Se-sc -2.079 3.176 -2.414 2.972 -2.728 2.803 ----- -----
Se-bcc -2.310 3.766 -1.902 3.689 -2.300 3.435 ----- -----
Se-hcp -2.414 3.383 unstable ----- ----- ----- ----- -----

42 J. D. H. Donnay, and H. M. Ondik, Crystal data, determinative tables, 3rd ed., Vol. 2 (inorganic compounds) (U. S. Department 
of Commerce, National Bureau of Standards, and Joint Committee on Power Diffraction Standards, U.S.A., 1973).
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5.524
Se-fcc -2.414 4.784 -1.792 4.645 -2.142 4.319 ----- -----
Se-A8 -2.079 4.491

5.501
-2.414 4.208

5.149
-2.861 4.232

5.113
-2.414 4.355

4.950
CdTe2-Ag2O  -1.213 6.715 -1.335 6.538 ----- ----- ----- -----
Cd2Te-Ag2O -1.213 6.715 -1.375 6.517 ----- ----- ----- -----
CdTe2- ZrO2 -1.855 7.453 -1.778 7.113 ----- ----- ----- -----
Cd2Te-ZrO2 -1.628 7.214 -1.617 6.959 ----- ----- ----- -----
CdTe-CsCl -1.776 3.850 -1.664 3.674 -2.006 3.810 ----- -----
CdTe-fcs -1.357 4.344 -1.639 4.090 -1.807 4.103 ----- -----
CdTe-grap -1.559 4.904 -1.627 4.851 -1.916 4.753 ----- -----
CdTe-L10 -1.776 5.445

3.850
-1.664 5.198

3.669
----- ----- ----- -----

CdTe-L11 -1.809 4.433
10.859

-2.055 4.198
10.211

----- ----- ----- -----

CdTe-NiAs -1.811 4.444
7.212

-1.964 4.154
7.067

----- ----- ----- -----

CdTe-CrB -1.827 4.354
4.671
11.290

-1.853 4.131
4.180
15.390

----- ----- ----- -----

CdTe-gra -1.796 4.949
6.832

-2.041 4.990
6.042

-2.162 4.813
6.566

----- -----

CdTe-NaCl -1.809 6.269 -2.056 5.928 -2.287 6.041 ----- -----
CdTe-wz -2.178 4.581

7.480
-2.149 4.585

7.491
-2.279 4.520

7.318
----- -----

CdTe-zb -2.178 6.478 -2.149 6.480 -2.331 6.524 -2.178 6.478
CdSe2-Ag2O -1.368 6.315 -1.628 6.068 ----- ----- ----- -----
Cd2Se-Ag2O -1.368 6.315 -1.532 6.116 ----- ----- ----- -----
CdSe2- ZrO2 -1.982 7.022 -1.999 6.662 ----- ----- ----- -----
Cd2Se-ZrO2 -1.760 6.925 -2.089 6.519 ----- ----- ----- -----
CdSe-CsCl -1.878 3.641 -2.108 3.423 -2.139 3.556 ----- -----
CdSe-fcs -1.471 4.124 -2.015 3.815 -2.051 3.830 ----- -----
CdSe-grap -1.793 4.588 -2.016 4.487 -2.169 4.435 ----- -----
CdSe-L10 -1.878 5.150

3.641
-2.108 4.866

3.414
----- ----- ----- -----

CdSe-L11 -1.786 3.463
14.617

-2.463 3.938
9.537

----- ----- ----- -----

CdSe-NiAs -1.934 4.175
7.066

-2.372 3.874
6.738

----- ----- ----- -----

CdSe-CrB -2.027 4.315 -2.227 3.907 ----- ----- ----- -----



49

4.327
10.591

3.854
13.933

CdSe-gra -1.793 4.589
8.279

-2.016 4.488
8.421

-2.419 4.504
6.023

----- -----

CdSe-NaCl -1.939 5.961 -2.463 5.558 -2.547 5.645 ----- -----
CdSe-wz -2.523 4.278

6.986
-2.523 4.271

6.975
-2.529 4.212

6.838
----- -----

CdSe-zb -2.523 6.050 -2.523 6.044 -2.579 6.108 -2.523 6.050
TeSe2-Ag2O -1.028 6.468 -1.728 6.471 ----- ----- ----- -----
Te2Se-Ag2O -1.028 6.468 -1.515 6.596 ----- ----- ----- -----
TeSe2- ZrO2 -1.727 7.012 -1.926 7.164 ----- ----- ----- -----
Te2Se-ZrO2 -1.721 7.253 -1.656 7.353 ----- ----- ----- -----
TeSe-CsCl -1.695 3.708 -1.691 3.832 -2.481 3.653 ----- -----
TeSe-fcs -1.180 4.145 -2.111 4.183 -2.530 3.989 ----- -----
TeSe-grap -1.313 4.736 -1.897 4.870 -2.227 4.766 ----- -----
TeSe-L10 -1.723 4.759

4.721
-1.865 4.313

6.812
----- ----- ----- -----

TeSe-L11 -1.757 3.498
15.562

-2.340 4.343
10.633

----- ----- ----- -----

TeSe-NiAs -1.757 3.498
10.375

-2.148 4.287
7.565

----- ----- ----- -----

TeSe-gra -1.599 4.744
6.277

-2.071 4.912
5.971

-2.395 4.970
5.698

----- -----

TeSe-NaCl -1.582 5.953 -2.340 6.140 -2.786 5.958 ----- -----
TeSe-wz -1.830 4.427

7.228
-2.072 4.727

7.715
-2.554 4.624

7.866
----- -----

TeSe-zb -1.830 6.260 -2.072 6.681 -2.331 6.665 ----- -----
Te0.75Se0.25-A8 -1.538 4.568

5.595
-2.321 4.440

5.435
----- ----- ----- -----

Te0.25Se0.75-A8 -1.755 4.400
5.389

-2.477 4.222
5.171

----- ----- ----- -----

Cd4Te3Se-zb -2.254 6.371 -2.233 6.371 ----- ----- ----- -----
Cd4Te2Se2-zb -2.335 6.247

6.299
-2.327 6.295

6.214
----- ----- ----- -----

Cd4TeSe3-zb -2.424 6.158 -2.425 6.155 ----- ----- ----- -----
a: One number refers to one lattice constant a, two numbers refer to two lattice constants a and c, three numbers refer to three lattice constants a, b, and c. 
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Table 1-C-3. Intrinsic defect energy '
DE  (eV) obtained from different models for CdTe-zb and CdSe-zb.

CdTe-zb CdSe-zbDefect
C: Cd; A: Te, Se SW [4] BOP DFT SW [4] BOP DFT
VC 1.86 2.68 2.37 3.16 3.02
VA 1.66 1.66 0.95 1.88 1.84
CA 1.58 2.19 2.12 2.22 2.81
AC 1.87 1.90 3.71 3.11 2.33
Ci,A 2.92 2.24 1.40 5.04 1.61
Ai,C 4.09 2.91 2.47 5.82 3.78

ss
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CHAPTER 2: THERMODYNAMIC PROPERTIES OF MODEL 
CDTE/CDSE MIXTURES.

Frank van Swol, Xiaowang W. Zhou, Sivakumar R. Challa2, James E. Martin

Sandia National Laboratories
P.O. Box 5800 Albuquerque, New Mexico 87185

2Chemical and Biological Engineering Department 
The University of New Mexico Albuquerque, NM 87131

November 15, 2014

ABSTRACT

We report on the thermodynamic properties of binary compound mixtures of model group II-
VI semiconductors. We use the recently introduced Stillinger-Weber hamiltonian to model 
binary mixtures of CdTe and CdSe. We use molecular dynamics simulations to calculate the 
volume and enthalpy of mixing as a function of mole fraction. The lattice parameter of the 
mixture closely follows Vegard’s Law: a linear relation. This implies that the excess volume is 
a cubic function of mole fraction. A connection is made with hard sphere models of mixed fcc and 
zincblende structures. The potential energy exhibits a positive deviation from ideal soluton 
behavior; the excess enthalpy is nearly independent of temperatures studied (300K and 533K) 
and is well described by a simple cubic function of the mole fraction. Using a regular solution 
approach (combining nonideal behavior for the enthalpy with ideal solution behavior for the 
entropy of mixing) we arrive at the Gibbs free energy of the mixture. The Gibbs free energy 
results indicate that the CdTe and CdSe mixtures exhibit phase separation. The upper consolute 
temperature is found to be 335K. Finally, we provide the surface energy as a function of 
composition. It roughly follows ideal solution theory, but with a negative deviation (negative 
excess surface energy). This indicates that alloying increases the stability, even for nano-
particles.
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VI. INTRODUCTION

Ternary systems, such as mixtures of CdTe and CdSe, or CdTe1−xSex for short, are 
commonly used in the semiconductor applications to help modify properties such as the lattice 
parameter and the size of the band gap. Our motivation for studying the thermodynamic 
properties of CdTe1−xSex stems from our interest in core/shell quantum dots (QD) such as 
CdTe/CdSe, a nanoparticle consisting of CdTe core surrounded by a shell of CdTe. It is well 
known that the considerable lattice mismatch (about 6%) between these two binary compounds 
can lead to defect formation that is believed to negatively impact the QD luminescence 
efficiency. A potential remedy may be found in alloying the interface (heterojunction) where the 
two phases meet. Without introducing other cations, one can consider the mixing of Te and Se, 
i.e., replacing some of the anions inside the CdTe phase with Se anions and vice versa in the 
CdSe phase. To assess the efficacy of such an alloying strategy one requires the thermodynamic 
mixing properties. In particular, one needs the lattice parameter, the free energy of mixing, and 
the surface energy over the entire range of composition.

Although there are some experimental results for the lattice parameter of CdTe1−xSex, the 
thermo- dynamic mixing properties are not readily available. It is natural then to use a molecular 
simulation approach to determine the basic thermodynamic properties of mixtures of binary II-VI 
compounds such as CdTe and CdSe. To facilitate this program we have recently developed an 
interaction model approach based on the Stillinger-Weber(SW) potential[1, 2]. This potential 
includes both two-body and three-body interactions. It is, of course, an empirical potential, 
originally developed for Si. However, it has been shown to possess a versatile functional form that 
lends itself to a generalization applicable to compounds as well [2].

In a recent paper we introduced a set of two-body and three-body SW potential parameters 
for any combination of the major II-VI elements Zn, Cd, Hg, S, Se, and Te [2]. The goal of 
reference [2] was to enable efficient atomistic simulations of defect mechanisms. The potential’s 
fidelity was achieved by optimizing pertinent model parameters with respect to cohesive energy, 
lattice constants and bulk moduli of all binary compounds. We showed that our intermolecular 
potential correctly predicted crystalline growth of all binary compounds during molecular 
dynamics simulations of vapor deposition. We demonstrated that our potential is applicable to a 
variety of compound configurations involving all the six elements mentioned. We employed the 
potential to demonstrate a successful MD simulation of crystalline growth of alloyed compounds 
(Cd0.28Zn0.68Hg0.04)(Te0.20Se0.18S0.62) onto a ZnS substrate. In addition, it was demonstrated that 
we could capture a variety of defects such as misfit dislocations, stacking faults, and sub-grain 
nucleation during a complex growth simulation of ZnS/CdSe/HgTe multilayers that contained all 
the six elements listed above.

We report on a modeling study of the mixing properties of CdTe1−xSex. As a function of 
composition, x, we determine the lattice parameter, volume per particle, and the potential energy 
(enthalpy), Gibbs free energy as well as the surface energy. We compare the lattice parameter 
results with Vegard’s Law, and make the connection with ideal solution theory.
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Table 2-1. The Stillinger-Weber potential parameters for the ternary CdTe1−xSex.. See Zhou et al. [2]. Also,
Cos0 = 1/3, p = 4 and q = 0.

E[eV] σ[A] a λ[eV] γ A B

Cd-Cd 1.182358 2.663951 1.527956 32.5 1.2 7.9170 0.767446
Cd-Te 1.385284 2.352141 1.810919 32.5 1.2 7.0496 0.886125
Cd-Se 1.352371 2.045165 1.953387 32.5 1.2 7.0496 1.116149
Te-Te 1.849775 2.905254 1.594353 32.5 1.2 7.9170 0.73072
Te-Se 1.295053 2.231716 1.809645 32.5 1.2 7.0496 1.005396
Se-Se 2.400781 2.789002 1.544925 32.5 1.2 7.9170 0.76721
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VII. SIMULATION METHODS
We use molecular dynamics simulations to study the thermodynamic properties of binary 

mixtures. The natural choice is to perform these simulations at constant pressure, p, as this 
corresponds to the typical experimental conditions under which mixtures are most easily studied. 
Thus, we employ the constant pressure, constant temperature ensemble (i.e. NpT ), which we simulate 
using the standard Nose-Hoover algorithm [3]. We use a cubic simulation cell with periodic 
boundary conditions (pbc) applied in all three directions. Most simulations were performed with 
N=1728 atoms (Cd, Te, and Se) arranged in the cubic zincblende structure, which corresponds to 6 
× 6 × 6 = 216 cubic unit cells of 8 atoms (4 cations, 4 anions) each. Typically simulations started by 
generating a pure sample of either CdTe or CdSe. From these samples configurations of 
CdTe1−xSex mixtures were generated by changing the identity of the anions randomly or 

otherwise. All systems were equilibrated over at least 20,000 time steps of 1.32 × 10−15s. 
Averages were taken over runs of 20,000- 40,000 time steps.

To simulate group II-VI semiconductors, we employ the Stillinger-Weber hamiltonian to 
represent the atomic interactions [1]. This is a versatile functional form, originally developed for 
Si, that includes both pair and three-body interactions, viz.,

V  v2
i j
 (rij ) v3

i jk
 (ri, rj, rk )

 v2
i j
 (rij ) hjik

i jk
  hijk  hikj

(1)

and hjik is shorthand for the energy contribution associated with angle jik ,

(2)h(rij, riik, jik )  g(rij )g(rik )(cos jik  cos0 )2
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Figure 2-1. The lattice parameter as a function of composition (mole fraction of Se) for two tem- peratures: 300K 
(solid circles) and 533K (open circles). The lattice parameter for a mixture is calculated from the average volume as 
alatt = (< V > /216)1/3, for a system consisting of 216 unit cells. The typical standard error for each data point is 
0.0014A. Also shown are the perfect linear fits to the data; the mean deviation from the linear fit is 0.0005 A, for both 
temperatures.
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12

Figure 2-2. The volume per particle as a function of composition for two temperatures: 300K (solid circles) and 533K 
(open circles). The mole fraction of Se is denoted by x. The typical standard error for each data point is 0.011 A3. 
The straight lines are the linear relationship that constitutes ideal solution behavior for the volume, i.e., vid(x) = xv2 + (1 
− x)v1. For both temperatures, the simulation data indicate that there is a slight negative deviation from ideality, in 
accordance with the results of figure 1 (see Appendix A).

Here, λ is a constant with units of energy, and θjik the angle subtended at particle i, 
formed by the ij bond and the ik bond. The cosine of θjik expressed in terms of distance vectors is,

(3)cos jik 
rijrik

rijrij

 r̂ijr̂ik

cosθ0 = 1/3, and g(r) is a decay function with a cutoff between the first- and the second-neighbor 
shell. The decay function used by Stillinger and Weber is:

(4)g(r)  exp( / (r  a ))

Finally, the pair-potential contribution is strictly of finite range, a, and is of the form

(5)v2 (r)  A(B( / r)p  ( / r)q )e1/(ra );      r  a
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It has a depth of −E at the minimum, and conveniently has a vanishing slope at r = aσ. In all 
cases, here and below, p = 4 and q = 0.

To extend the Stillinger-Weber approach to atomically mixed systems, such as CdTe, 
CdSe and CdTe1−xSex, Zhou et al.[2] generalized the expressions above, such that the parameters 
reflect the nature of the particular atoms that are involved in the 2- or 3-body interaction. 
Denoting the species with capital indices I, J and K we generalized the three-body term as follows,

(6)hIJK (rij, riik, jik )  IJIK gIJ (rij )gIK (rik )(cos jik  cos0 )2

where

(7)gIJ (r)  exp( IJ IJ / (r  aIJ IJ ))

Similarly, for the pair potential part, the parameters E, A, B, σ and a become dependent on the 
type of atom pair,

(8)vIJ (r)  IJ AIJ (BIJ ( IJ / r)p  ( IJ / r)q )exp( IJ (r  aIJ IJ );      r  aIJ IJ

Earlier, we introduced a potential parameter set for a large range of group II-VI compounds and 
their mixtures (see Zhou et al.[2]). This set of parameters allows for an accurate representation 
of the semiconductor crystals and their alloys. For convenience, we have collected the parameter 
values needed for CdTe1−xSex in Table 2-1.
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VIII. RESULTS

Our simulations are performed at (constant) zero pressure and at (constant) room 
temperature ( T = 300K) and one elevated temperature similar to what QDs would experience in 
applications (i.e., 260◦C, or T = 533K). We start with the lattice parameters of zincblende 
crystals of the compound mixtures, CdTe1−xSex, as a function of composition. To report the 
composition we will use the mole fraction of the Se anion, that is, x ≡ NSe/(NSe + NT e).

We have collected the basic simulation results for the pure compounds in Table 2-2, 
where we list the lattice parameter, volume per particle, potential energy per particle and the 
surface energy per unit area. Below we provide the data for the mixed crystals in the form of 
excess functions of mole fraction x which, when combined with the tabulated data, allow for the 
calculation of all the quantities addressed in this paper.

Table 2-2: Basic simulation results for the structure and energies of the pure compounds CdTe and CdSe, at 
two  temperatures.

T [K] alatt[A] V /N [A3] Upot/N [eV] Us[eV/nm2]

Cd-Te 300 6.491918 34.2002 -2.138597 4.211947
Cd-Te 533 6.503747 34.3875 -2.107696 4.207991
Cd-Se 300 6.063162 27.8617 -2.483526 5.758274
Cd-Se 533 6.073452 28.0038 -2.452310 5.745397

Nearly a century ago Vegard [4] noticed that for several compounds, such as ionic salts, the 
lattice parameter is a near-linear function of x. This relationship is now known as Vegard’s law, 
and it is a widely-used approximation for estimating the lattice parameter of various classes of 
compounds. Thus,

(9)a12 (x)  xa2  (1 x)a1

where aj denotes the lattice parameter of compound j. In figure 1 we plot the lattice parameter 
as a function of composition, x. For both temperatures we observe perfectly linear behavior. The 
linear thermal expansion coefficients is small (4.4 × 10−5A/K at x = 0 and 5.1 × 10−5A/K at x = 
1), as the solid is nearly harmonic.

Ideal solution theory is an alternative mixture theory, with great application in fluid state 
theory [5]. It too is defined by a linear relationship for thermodynamic properties (e.g., enthalpy, free 
energy). For example, the volume per particle, v = V/N , for an ideal solution is given by
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(10)vid
12 (x)  xv2  (1 x)v1

Figure 2-3. The lattice excess volume per particle, vex
12

 ≡ v12 − vid
12, as a function of composition, for a compound 

mixture of CdTe1−xSex.  We show two temperatures, 300K(solid circles) and 533K (open circles). The black curve is 
expression 11, and is indistinguishable for the two temperatures. For more details, see the discussion in appendix A.

The volume per particle is displayed in Fig. 2-2 together with fits based on relationship 10. 
Clearly, the volume per particle as measured for the compound mixture is very close to the ideal 
solution. It shows only a very slight negative deviation. As we used the NpT ensemble the 
volume of the simulation cell fluctuates. The distribution of the instantaneous volume per particle 
over time is characterized by a standard deviation of about 0.03A3.

The fact that the lattice parameter, rather than v, more closely follows linear behavior is 
significant [6]. One can easily convince oneself that perfect linear behavior of the lattice 
parameter (Vegard’s law), and perfect linear behavior for the volume (ideal solution theory) 
cannot both be satisfied at the same time (unless, trivially, a1 = a2 and, hence, v1 = v2). 
Moreover, we can show that Vegard’s law implies a negative deviation from ideal behavior for the 
volume. This deviation grows with the disparity of the lattice parameters of the pure crystals. 
This is demonstrated in Appendix A.

Thermodynamic properties, Y , of nonideal solutions are commonly expressed in terms of 
excess properties, i.e, , to facilitate the development of approximate thermodynamic Y12

ex Y12 Y12
id

models [5]. For the volume the ideal solution value is a linear combination of the pure component 
volumes, Vi, i.e., , and similarly for the energy and enthalpy. Further, the excess volume V id  Vii
equals the volume change of mixing, ∆V , and similarly the excess enthalpy equals the enthalpy 
change of mixing, ∆H.

Given that v12 = V12/N=a3
12 for an 8-atom zincblende unit cell, it follows that

. (11)8v12
ex (x)  xa2  (1 x)a1 3  xa3

2  (1 x)a3
1
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pot

From this we see that, apart from a trivial case (i.e., a2 = a1), . In other words, Vegard’s v12
ex  0

law implies nonideal behavior and, moreover, it leads to an expression for the excess volume that 
is a simple cubic function of x. The results for our compound mixtures, CdTe1−xSex, are shown 
in Fig. 2-3, together with estimations based on expression 11, with the coefficients determined 
by Vegard’s law (see Appendix A). The latter expression provides an excellent approximation, 
reconfirming the accuracy of Vegard’s law for this compound mixture.

There have been other reports in the literature regarding the lattice parameter as a 
function of composition. In particular, Denton and Ashcroft [7] studied binary mixtures of hard 
spheres (HS) of different diameter. They report an adherence to Vegard’s law, but for 
thermodynamic states along the solid-fluid coexistence line, as opposed to keeping both p and T 
constant. In Appendix B we revisit those results and also introduce results for a HS system of 
nonadditive spheres that closely mimics our SW model.

There appears to be only a limited number of reports in the literature on measurements 
of the lattice parameter of ternary compounds, such as CdTe1−xSex. In his review Williams [8] 
cites the work of Ben-dor and Yellin [9] and reports the lattice constant for x= 0.05 (0.6462 nm) and 
x=0.3 (0.6353 nm). Our values are 0.6470 and 0.6363 nm respectively, in excellent agreement.

We now turn to the potential energy, Upot, as a function of x, which we note is related to 
enthalpy, H, by

(12)H / N  3
2

kT Upot / N  pv

where k is Boltzmann’s constant. For our simulations at zero pressure, we find that H/N simply 
differs from Upot/N by a constant equal to 1.5 × 0.025852 eV (T = 300K) or equal to 1.5 × 0.045930 
eV (T = 533K). Given that the simulations are run at constant p and T , and p = 0, the standard 
error in H/N is equal to the standard error in Upot/N , or 0.00005 eV. The results for Upot are 
depicted in Fig. 2-4, showing a nearly linear relationship. More detail is shown in Fig. 2-5, where
we subtracted the ideal solution behavior and plotted the excess value, Uex = ∆H, where the latter
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pot

pot

quantity is the enthalpy of mixing. We notice that ∆Uex    is a very weak function of T . Thus all the
T -dependence of H comes from the ideal gas contribution. We will make use of this observation 
below, when we discuss phase behavior. As was the case in Fig. 2-3 for the excess volume, the 
excess potential energy can be represented accurately by a simple cubic function (see the fits in 
Fig. 2-5).

VIII.1 Phase behavior
To determine the free energy of mixing, ∆G = ∆H − T ∆S, we require the entropy of 

mixing. In principle, one can calculate this quantity from a simulation using a variety of 
thermodynamic integration methods, see for instance reference [10]. Here, however, we will follow 
Hildebrand [11] and estimate the entropy of mixing by assuming ideal mixing, i.e.,

Figure 2-4. The potential energy per particle as a function of composition, for a compound mixture of CdTe1−xSex. Two 
sets of data are shown: T = 300K (solid circles, solid line), and T = 533K (open circles, dashed line). The typical 
standard error for each data point is 0.00005 eV. The straight lines indicate ideal solution behavior. The data indicate 
a positive deviation from ideal solution behavior, see Fig. 2- 5.

−∆Sid/Nk = x lnx + (1 − x) ln(1 − x), (13) 

and we obtain the Gibbs free energy of mixing as

∆G ≈ ∆H − T ∆Sid. (14)

In 1927 Hildebrand [11] coined the phrase “regular solution” for a solution that combines 
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nonideal behavior for the enthalpy with an ideal entropy of mixing. We show the results for the free 
energy of mixing in figure 2-6, where we plotted the dimensionless quantity ∆G/NkT for the two 
temperatures for interest. As we have seen above, the enthalpy of mixing (i.e., the excess potential 
energy, plotted in figure 2-5) is positive, but the entropy term is sufficiently large to make mixing 
favorable [12]. At the high temperature (T = 533K), a single mixed phase is always the stable 
phase and, thus, there exists complete miscibility over the entire range. However, the room 
temperature curve displays two points of inflection, and thus over the mole fraction range 0.298 < x 
< 0.815, a linear combination of two phases is slightly lower in free energy. Thus, in that range 
phase separation might occur. From figure 2-5 we see that the excess potential energy is nearly 
independent of T . If we assume Upot

ex is indeed constant with temperature then it is 
straightforward to determine an upper consolute temperature of T = 335K (or 62◦C). The 
composition at the consolute point is x = 0.575. Within the analysis presented, the two phases 
coexisting below T = 335K are both randomly substituted lattices. One phase is rich in Te, the 
other is rich in Se. Above T = 335K there exists just a single randomly substituted phase. For a 
nanoparticle of CdTe1−xSex, the phase separation we just identified might be suppressed, if the 
associated positive interfacial free energy contribution were to outweigh the free energy gain from 
a phase separation.

VIII.2 Simulations of Finite Samples

As stated, the results presented above concern bulk phase simulations performed in the 
NpT ensemble, using periodic boundary conditions in all three directions. It is of interest to 
investigate the behavior of a finite block of material (see figure 2-7), surrounded by vapor (i.e., 
near vacuum given the low vapor pressure). One question to address concerns whether alloying (the 
replacement of Te atoms by Se atoms) can produce any noticeable effect due to site percolation. For 
example, in lattice models of conductivity, populating a lattice with a certain fraction of filled sites 
can lead to a sudden onset of breakthrough conduction when a certain threshold of site occupancy 
is reached. For the diamond lattice this occurs when the occupancy fraction reaches a threshold of 
0.4299870. In an infinite lattice, above this occupancy threshold there is always at least one cluster 
that spans the entire system, providing conduction across the sample.

According to the data in Table 2-1, replacing one Te atom by Se in a finite sample of 
CdTe reduces the bond lengths around the Se guest atom. Locally, there is a slight contraction 
of the lattice that is resisted by the surrounding CdTe solid. It is conceivable that, as the 
concentration of Se is
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Figure 2-5. The excess potential energy per particle, or enthalpy of mixing (∆H/N ), as a function of composition for 
a compound mixture of CdTe1−xSex. We show two temperatures: T = 300K results are shown by solid circles and a 
solid line, while T = 533K are denoted by open circles and a dashed line. The curves are near perfect cubic fits 

(constrained to pass through (0,0) and (1,0)) to the excess potential energy: the solid line is 0.050645x − 0.038916x
2 − 

0.011729x
3
, the dashed line corresponds to 0.051111x − 0.038149x

2 − 0.012962x
3
.
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Figure 2-6. (a) The excess Gibbs free energy per particle as a function of composition, for a compound mixture of 
CdTe1−xSex. We show two temperatures: T = 300K results are shown by solid circles and a solid line, while T = 
533K are denoted by open circles and a dashed line. The curves represent regular solution theory: combining the 
excess enthalpy with the ideal entropy of mixing. For T = 533K the system is miscible over the entire range. For T = 
300K the presence of the inflection points in ∆G suggest incomplete miscibility: two stable phases exist in the 
composition range 0.298 < x < 0.815, as indicated by the dotted line, which represents the common tangent. 
Assuming a temperature independent excess potential energy (see figure 2-5) allows us to estimate the upper 
consolute temperature as T = 335K. (b) The coexistence composition envelope as a function of temperature. The 
coexisting phases consist of two randomly-substituted lattices, and are determined from the common tangent 
construction indicated in (a). One phase is rich in Te (small values of x), the other is rich in Se (large values of x). 
The consolute temperature is T = 335K and at x = 0.575.
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Figure 2-7. Image of the cubic nanoparticle of CdTe1−xSex, x = 0.2 used in the MD simulation. The edge length is 
approximately 3.83 nm. Cd is shown in red, Te in blue and Se atoms are drawn in yellow. Three (100) faces are 
terminated by Cd while the opposing (100) faces are terminated by a mixture of Te and Se 

increased from zero, a critical mole fraction of Se is reached above which the lattice can no longer 
maintain the CdTe lattice spacing and a marked change in volume occurs. To investigate this 
effect we prepared a cube of CdTe (216 unit cells, 1728 atoms total) surrounded by a vacuum, and 
performed NV T simulations. Because the vapor pressure is negligible, this simulation corresponds 
to simulations at a constant vapor pressure, which happens to be essentially zero. Strictly speaking, 
the volume for the finite-sized relaxed crystalline particle is not well defined, but a good objective 
measure of its size can be obtained from 1) the average next-nearest neighbor distance between 

two Cd atoms, RCdCd, or 2) from the radius of gyration,  of the entire RG  N 1 ri  rcm 
i 2





1/2

cube. Here represents the center of mass position of the cube.rcm  N 1 rii

We present the results for RCdCd in figure 2-8, and the radius of gyration results are 
shown in the inset to that figure. Both constitute linear measures of the structure of the compound 
mixture. The bond length shown is an average over all CdCd pairs in the cube, which necessarily 
includes atoms that are close to the (100) surface where there is some relaxation of the bond 
lengths. Despite this effect the bond length follows a near perfect linear behavior. This is expected 
on the basis of Vegard’s law, and indicates that there is no appreciable mechanical response that can 
be attributed to site-percolation. In a zincblende crystal the Cd-Cd distance is related to the lattice 
parameter, i.e., RCdCd = RT eT e = , and thus the slopes of of the fits shown in figures 2alatt

2-1 and   2-8 are related by a factor of ≈ also. The radius of gyration, RG, of a cube of 2
length L is equal to L/2.

Our cube contains 6 unit cells on the side thus the slope of the fit in the inset to figure 2-8 
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should approximately be  times that of the slope of the fit in figure 8. This is indeed the 6 / 2
case, c.f., 0.1269 nm vs 0.1284 nm, respectively.

We have determined the deviation from linear behavior of the bond length with 
composition by calculating Rex ≡ R − Rid. The dimensionless ratio, Rex/Rid exhibits a maximum 
deviation from zero ≈ 0.1% and occurs near x = 0.5.

Figure 2-8. The bond length RCdCd as a function of composition (i.e., mole fraction of Se). Two temperatures are 
shown: T = 300K (solid circles, solid line) and T = 533K (open circles, dashed line). The straight line corresponds to 
ideal solution behavior for the bond length, i.e., a linear combination of RCdCd in pure CdTe and pure CdSe. The 
inset shows the radius of gyration, RG, as a function of composition for T = 300K. The straight line corresponds to ideal 
solution behavior for the radius of gyration, i.e., a linear combination of RG of a cube of pure CdTe and that of pure 
CdSe.

VIII.3 Surface energy
The results of the previous two sections, the bulk and a finite cubical particle, allow us to 

make an estimate of the surface energy as a function of composition. The cubical particle has six 
(100) faces. Three of these are terminated by Cd atoms, while the remaining three are terminated by 
the anion (Te or Se). The surface energy, Us, is defined as

(15)Us 
N p

Ap

Up / N Ub / N 
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Figure 2-9. The surface energy versus the mole fraction of Se for a cube of edge length ≈ 3.6 nm. We show the 
results for two temperatures: T = 300K (solid circles, solid line) and T = 533K (open circles, dashed line). The typical 
standard error of the data points is 0.005 eV/nm2. The straight line indicates ideal solution behavior for the surface 
energy.

where the subscript “p” denotes a property of the finite particle (e.g., cube), while the subscript “b” 
denotes a bulk property. Ap = Ap(x) denotes the total surface area of the particle. We note that 
Us is not a pure surface quantity, as the particle’s edges and vertices must also make a contribution 
that is included in the difference on the right hand side. In principle, by studying particles of 
different sizes one could potentially extract the edge and vertex contributions. The first scales as 
(Ap)1/2 and the other is constant.

The results for Us as a function of composition are shown in figure 2-9, which shows that the 
surface energy is positive and is mostly a linear function of the mole fraction. Following the 
discussion above, it is natural to apply ideal solution theory and define a surface excess energy as the 
deviation from ideal behavior, viz.,

(16)Us
ex Us Us

id

The results for the excess surface energy are shown in figure 2-10 for T = 300K and T 
= 533K, together with a cubic fit. We see that the excess surface energy is negative over the 
entire range, and appears to be slightly asymmetric. The negative sign indicates that mixing 
inside a nano- particle helps to lower the energy per unit area, and hence the surface free energy 
per unit area. This implies that for CdTe1−xSex the mixed state is stabilized by the presence of free 
surfaces.
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Figure 2 -10.  The excess surface energy versus the mole fraction of Se for a cube of edge length ≈ 3.6 nm. We 
show the results for two temperatures: T = 300K (solid circles, solid line) and T = 533K (open circles, dashed line). The 
data show a negative deviation from ideal solution behavior that increases with temperature. The curves are simple cubic 
fits, constrained to go through (0,0) and (1.0), to the excess surface energy: the solid line is −0.43606x + 0.75778x2 − 
0.321720x3, and the dashed line corresponds to −0.54056x + 0.72157x2 − 0.181010x3.

IX. DISCUSSIONS AND CONCLUSIONS
We have investigated the behavior of mixed crystals of CdTe and CdSe, type II-IV 

compounds. In particular, we have studied CdTe1−xSex over the entire range of x, using molecular 
simulation. We employed our recently developed set of Stillinger-Weber potentials [1, 2], which 
provide an accurate intermolecular model for this kind of study.

Crystals of CdTe1−xSex obey Vegard’s law perfectly. For the two temperatures studied, 
room temperature (300K) and an elevated temperature (260◦C, 533K) that QDs might experience 
during operations, combined with zero pressure, the lattice parameter is a perfect linear function of 
mole fraction. This behavior was first observed for salt crystals by Vegard. We showed that 
perfect linear behavior implies a cubic function of x for the excess volume. We compared the 
observed behavior with that of two simple geometric models, binary hard spheres mixtures and a 
nonadditive hard sphere model of a zincblende mixture. Both these models show deviations of 
Vegard’s law, indicating that simple geometric models cannot explain all the behavior we observe.

We also examined the thermodynamic properties of CdTe1−xSex. In particular, we 
obtain the potential energy (enthalpy) and compare with ideal solution theory. There is a 
positive excess enthalpy that is essentially independent of T over the temperature range studied. By 
combining, a cubic excess enthalpy with an ideal solution entropy of mixing we calculated the 
Gibbs free energy of mixing. We find that at room temperature there is a phase separation into 
two phases, each randomly mixed. For T = 533K there is complete miscibility.

The phase segregation behavior is expected to be even more pronounced when CdTe is 
combined with CdS. This is indicated by an inspection of potential parameters for II-VI elements 
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Zn-Cd-Hg- S-Se-Te [2]. It shows that for a Cd compound the largest difference in lattice parameter 
as well as the potential energy occurs between CdTe and CdS. This most likely will produce a larger 
deviation in nonideality for the enthalpy and a higher upper consulate temperature, predicting 
stronger phase segregation. Similarly, when CdSe is combined with CdS, one has the smallest 
differences in lattice parameter and potential energy, and consequently one would expect their 
mixtures to show most mixing and be most like an ideal solution.

Finally, by performing simulations of finite samples, cubic nanoparticles, we obtained an 
estimate for the surface energy as a function of composition. The excess surface energy is negative, 
indicating that a finite particle is stabilized by a mixed phase.
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APPENDICES
Appendix 2-A

Expanding equation 11 for the excess volume, we obtain a cubic equation in x, viz.,

 (17)8v12
ex (x)  c0  c1x  c2x2  c3x3

where the coefficients ci in terms of a1 and a2 are given by

(18)

c0  0
c1  3a1

2a2  2a1
3  a2

3

c2  3a1 a2
2
2  6a1

2a2 3a1
3

c3  3a1
2a2 3a1 a2

2
2  a2

3  a1
3

vanish for x = 1. Thus,

8v12
ex  c1x  c2x2  (c1  c2 )x3

 c1x 1 c2

c1

x  (1 c2

c1

)x2










(19)

where the last line is included to show that vex   is reduced to the familiar form Ax(1 − x) under
c1. That is, the excess volume of the mixture has a symmetric parabolic conditions where 

. That is, the excess volume of the mixture has a symmetric parabolic form, with an c2  c1

extremum at x = 1/2. This form is often encountered in the description of nonideal liquid mixtures 
[5].

We can also show that vex
12

  is negative (or zero) for all compositions. Thus, Vegard’s law 
implies that the volume of the mixture exhibits negative deviations from ideality. To 
demonstrate this, note that

c1  a1
3 3 a3

a1

 2 (a2

a1

)3








      for  a1, a2  0

Specializing to the case of CdTe1−xSex at T = 300K for which a1 = 6.49192 A and a2 = 6.06316
A at T = 300K, we find that c1=−0.437680 A3, c  = 0.447533 A3 and c = −9.8524 × 10−3˚

3.
For T = 533K the values are very similar, a1 = 6.50375 A and a2 = 6.07345 A, which gives
c  = −0.441614 A3, c =0.451573 A3 and c = −9.9588 × 10−3˚3.
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For both temperatures we conclude that c2 ≈ −c1, and we see that the excess volume is 
indeed nearly a symmetric parabola,

(21)8v12
ex (x)  c1x(1 x)

as is confirmed in figure 2-A-1.

Figure 2-A-1. The lattice parameter as a function of mole fraction for a substitutional fcc crystal of binary 
additive HS mixture, with σ2/σ1 = 0.95(c.f., [7, 10]). The abscissa, x, denotes the mole fraction of species 
2, that is, x ≡ N2/(N1 + N2). We consider two cases: the first measures the lattice parameter at constant p 
and T (solid circles). We observe significant (positive) deviations from Vegard’s law (represented by the 
dotted straight line). A similar conclusion applies to the volume per particle (not shown), thus the excess 
volume is positive. For the second case, following Denton and Ashcroft [7], the open circles show the lattice 
parameter along the solid-fluid coexistence line, using the coexistence data of Kranendonk and Frenkel [10] 
to determine the pressures and compositions. Remarkably, the coexistence data display perfectly linear 
behavior of the lattice parameter.
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Appendix 2-B
In this appendix we explore Vegard’s law for binary and ternary hard sphere 

systems, applying both aditive and nonadditive collision rules. Some years ago, Denton 
and Ashcroft [7] reported on the applicability of Vegard’s law for hard sphere systems. 
In particular, they used density functional theory (DFT) to study substitutional fcc 
crystals of binary hard sphere mixtures. They were motivated to determine if simple 
geometric effects, e.g., the size difference between hard spheres, could play a significant 
role in determining the crystalline structures of alloys, expanding on previous studies of 
solids of binary hard sphere mixtures [10, 13]. The authors chose to make the comparison 
by looking at systems under conditions of solid-fluid coexistence, and concluded that for 
a size ratio σ2/σ1 = 0.95, close to unity, Vegard’s law is a good prediction. Significant 
deviations were observed for size ratios σ2/σ1 deviating more from unity.

Notice that, by choosing to follow the coexistence line, one does not follow a 
constant T and p path. Although a valid choice, it is not clear that this is the appropriate 
condition to use if we seek to make contact with our semi-conductor compounds. 
Therefore, in figure 2-B-1 we deviate from Denton and Ashcroft [7], and return to the 
common approach and show the lattice parameter for constant T and p. We see that the 
data appear fairly linear, but clearly exhibit a positive deviation from

Figure 2-B-1. The lattice parameter as a function of mole fraction for a substitutional zincblende crystal 
of a nonadditive HS mixture where species 2, with σ2/σ1 = 1 is replaced by species 3. The abscissa x 
denotes the mole fraction of species 3, i.e., x ≡ N3/(N2 + N3). We show the results for two size ratios. 
The solid circles correspond to a nonadditive mixture where σ3/σ1 = 0.95, and βpσ3 = 3.0977, while open 
circles are the results for σ3/σ1 = 0.90, and βpσ3 = 4.0481. We observe that for the size ratio closer to unity 
Vegard’s law is obeyed, while for σ3/σ1 = 0.90 there are significant (negative) deviations.

Vegard’s law, to be contrasted with the conclusions of Denton and Ashcroft. The same 
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conclusion applies to the volume per particle (not shown), which also exhibits a positive 
deviation from ideal solution behavior.

As mentioned above, Denton and Ashcroft [7] used DFT to determine fluid-solid 
coexistence. Un- fortunately, the DFT coexistence results are markedly different from 
the molecular simulation prediction of Kranendonk and Frenkel [10] (c.f., figures 1 of 
reference [7] and [10]). Since the latter authors do not supply the lattice parameter, we ran 
our own molecular dynamics simulations to determine the lattice parameter of the solid 
phase. To this end we extracted [14] the coexistence mole fractions and pressure data of 
figure 1 of [10], and ran molecular dynamics calculations for these conditions. The 
resulting coexistence lattice parameter versus x is shown in figure 2-B-1. It clearly 
follows Vegard’s law. Somewhat surprisingly, our simulation lattice parameter coincides 
with the DFT lattice parameter of Denton and Ashcroft [7]. This implies that the DFT and 
simu- lation agree on the packing fraction and mole fraction relationship of the solid phase at 
coexistence, despite large discrepancies in the p − x coexistence diagram.

The compound lattices discussed for CdTe1−xSex differ form the binary HS 
mixtures in that the zincblende structure of CdTe1−xSex, the arrangement of the Cd 
atoms is a constant feature. That is, one of the two fcc sub-lattices that make up the 
zincblende structure is not subject to alloying, only the anion fcc sub-lattice is. To 
investigate whether geometric considerations alone could explain the CdTe1−xSex 
compound adherence to Vegard’s law, we investigate a ternary mixture of non-additive 
hard spheres. A nonadditive HS system is defined by specifying the cross collision 
diameter for spheres of species i colliding with spheres of species j as

(22) ij ij  i  j / 2

From this definition we see that the traditional additive HS mixture is recovered by setting 
αij =
αji = 1 for all {i, j} pairs.

We know that a binary system with αij = 1 if i /= j, and αij = 2 if i = j will result 
in a zincblende structure when the packing fraction is sufficiently big (e.g., for a packing 
fraction [15] η > 0.135, say). This is a direct result of the “charge ordering” that is 
induced by this particular choice of parameters. That is, species 1 prefers to be 
surrounded by species 2, and each species prefers to increase the distance between like 
partners. For other parameter combinations, the NaCl or CsCl structures are found to be 
the stable crystal structures. Thus, even though the non-additive HS model is purely 
repulsive and short-ranged, it shares the charge ordering and crystal structures with the 
ionic systems.

To facilitate the comparison with our CdTe1−xSex simulations we extended the 
binary non-additive HS mixture to a ternary mixture, and performed molecular dynamics 
simulations for a mixture where σ2/σ1 = 1; σ3/σ1 = 0.95 or 0.9. This choice of parameter 
values was combined with the following non-additivity parameters: α12 = α13 = 1 ; αij = 
2 for i = j; and α23 = 2. The latter choice ensures that species 2 and 3 repel each other 
as other like species. We can think of this model as equivalent to a ternary ionic salt 
such as KCl1−xBrx, which is one of the salts originally studied by Vegard [4].
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Results for the lattice parameter of the non-additive ternary model are compiled in 
figure 2-B-1, where we plot the results for two size ratios, i.e., σ3/σ1 = 0.95 and 0.9. We 
observe that for a size ratio of 0.95 the ternary non-additive HS model follows the linear 
Vegard predication, just as it does for CdTe1−xSex.  However, there is a very slight 
negative deviation for the larger mole fractions. This system also closely follows ideal 
solution behavior. In contrast, for a size ratio of 0.9 there is a noticeable (negative) 
deviation from Vegard’s law, as there is from ideal solution behavior. The results 
presented in this appendix illustrate that Vegard’s law is not generally obeyed and, 
moreover, simple geometric models such as binary HS, or ternary non-additive HS are 
not more likely to exhibit linear behavior for the variation lattice parameter with mole 
fraction.
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ABSTRACT

We report on the strain behavior of compound mixtures of model group II-VI 
semiconductors. We use the Stillinger-Weber hamiltonian that we recently introduced, 
specifically developed to model binary mixtures of group II-VI compounds such as CdTe 
and CdSe. We employ molecular dynamics simulations to examine the behavior of thin 
sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two 

compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1◦ deflection 
between neighboring planes. To analyze bilayer bending, we introduce a simple one-
dimensional (1D) model and use energy minimization to find the angle of deflection. The 
analysis is equivalent to a least-squares straight line fit. We consider the effects of 
bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe 
parts. From this we learn that the bending can be subdivided into four kinds depending 
on the compressive/tensile nature of each outer plane of the sheet. We use this approach 
to directly compare our findings with experimental results on the bending of CdTe/CdSe 
rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we 
mix (i.e., alloy) Te and Se, and estimate the strain response.
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X. INTRODUCTION

Semiconductors based on nanocrystalline materials of CdSe/CdTe mixtures have been 
found to have novel electronic and optical properties that could benefit photovoltaic, display, and 
medical imaging technologies [1, 2]. Optoelectronic and photovoltaic behavior of these 
semiconductors can be tuned to specific applications by engineering nanostructures with various 
compositions, shapes, and morphologies. Semiconductor compounds, such as CdTe, CdSe, and 
mixtures thereof (or CdTe1−xSex for short) [2], are often used in configurations that produce 
interfaces (or heterojunc- tions) between the two phases. Effects of strain arising from lattice 
mismatch at heterojunctions in the binary compound mixtures on band structure has been 
studied in crystalline solids and nanocrystals [1, 3, 4, 5, 6, 7, 8]. A compressive or tensile 
stress is understood to lead to an increased or decreased band gap energy, respectively.

A familiar example is that of core/shell quantum dots (QDs) where the core may consist of 
CdTe and the surrounding shell of CdSe. Other examples include rod shaped particles [9] and 
layered materials. Even though the crystal forms of the two phases may be the same (e.g., 
zincblende or the hexagonal form: wurtzite), the lattice mismatch between the two pure phases, 
i.e., the difference in lattice parameter, makes for an interface that displays strain and stress. The 
existence of the strain a nd/or stress is believed to affect the performance of the semiconductor 
materials, for instance through the radiationless recombination of electrons and holes. Strain could 
also lead to a gradual transition from type-I to type-II semiconductor behavior by designing 
carefully controlled heterojunction size/structure or composition [3, 7]. So, it becomes necessary 
to study how lattice mismatch at heterojunctions can lead to structure relaxations and shape 
modifications.

It has been proposed that alloying of the interfacial region may help to relieve some of the 
stress and or strain. Experimentally, it is difficult to measure the stress and strain behavior at the 
nanoscale. Microscopy techniques such as TEM and SEM (tunneling and scanning microscopy) 
can image individual atoms but it is still hard to determine the full 3D structure and the identity 
of each atom. Stress measurements would appear to be even more challenging. At the same time, 
these are situations where simulations can be usefully employed to explore the behavior of 
heterojunctions, and provide a fundamental understanding of the phenomena.

In this paper we report on molecular dynamics (MD) simulations of a thin finite-sized bilayer 
sheet with a heterojunction where CdTe meets CdSe (or, in some cases, CdS). The bilayer sheet 
responds to the lattice mismatch with a pronounced curvature that corresponds to neighboring crystal 

planes to adapting a wedge shape with a 0.5 to 1◦ angle between them. Shim and McDaniel 
[2] have observed bending of the heterojunction of CdTe and CdSe by HAADF-STEM (High 
angle annular dark field scanning transmission electron microscopy imaging). Their high-resolution 
images show that the bending is the result of an actual deflection of the crystal planes. The 
authors call the extent of the deflection surprising. Specifically, the angle of deflection was found 
to be larger than what was expected if the lattice spacing simply varied from the bulk CdSe 
value on one side of the bilayer to the bulk CdTe value on the opposing side. Instead, the crystal 
plane spacing on the outer edge of the CdSe layer was smaller than that in a bulk CdSe phase, 



80

while on the opposing side it was equal to that of bulk CdTe.
We introduce a simple 1D model to help explain the nature of the observed curvature, and 

apply it to predict the angle of deflection. This simple model helps in providing an explanation as 
to why the crystal bending for symmetric bilayers is larger than expected based on the bulk lattice 
parameters. In addition, the 1D model can be used to generalize to the richer class of asymmetric 
bilayers as well as predict bending responses to alloying of the bilayer.

Figure 3 -1. Curved minimum energy configuration of a bilayer sheet of CdSe (left layer) and CdTe (right layer). 
The dimensions of the sheet are approximately 56.5A × 56.5A × 18.8A. Cd, Se and Te, are denoted by red, yellow and 
blue respectively. The dots are not drawn to scale, to highlight the layers. The image presents a side-on view of a 
three-dimensional bilayer zincblende structure (see the inset), highlighting the alternating stacking between layers of Cd 
and layers of Se and Te. Each layer contains 54 atoms. The orange construction lines help to determine the degree of 

bending (here expressed as an angle) for a sheet of 36 layers. The deflection angle between two layers is ∼ 0.54◦.
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XI. RESULTS

To model group II-VI materials we use the three-body potenial we recently developed [10, 
11], which is based on the well-known Stillinger-Weber potential [12]. We performed molecular 
dynamics (MD) simulations of N=1944 particles, arranged in a zincblende structure of 9 by 9 unit 
cells in a sheet of 3 unit cells. Each cubic unit cell contains 8 atoms. Half the group VI atoms 
were Te while the other half were Se (and in some runs S). The sheets consist of 12 atomic (100) 
planes parallel to the heterojunction. Initially, the entire starting sample generated consisted of 
CdTe. All the Te atoms on one side of the sheet were then replaced by Se. MD simulations were 
performed at room temperature, i.e. T = 300K, which is far below the melting point and, hence, 
the sample remains in the crystalline state. The sheet is surrounded by vacuum, and periodic 
boundary conditions were applied in all directions. For some of the samples we use steepest 
descent to obtain energy- minimized structures to facilitate quantifying the degree of bending.

Given that the lattice parameters are significantly different (i.e. 6.46A for CdTe, 6.06A for 
CdSe and 5.84A for CdS) the sheet initially exhibits considerable stress, which is then released by 
pronounced

Figure 3-2. Curved minimum energy configuration of a bilayer sheet of CdSe (left layer) and CdTe (right layer), see 
also caption of figure 1. This image shows the result of performing 800 swaps between Se and Te atoms, thereby 
alloying the heterojunction. This results in a reduction of the sheet’s curvature. The deflection angle between two 
layers is ∼ 0.31◦.

deformation of the sheet. In figure 3-1 we show a typical example of a relaxed bilayer sheet. The 
final appearance of the sheet is a strongly bent bilayer with the CdTe side a convex surface 
(positive radius of curvature) while the CdSe side is concave (a negative radius of curvature), see 
the inset to figure 3-1. The entire sheet is still locally in a zincblende structure, but a highly 
distorted one. In the zincblende structure there are alternating (100) planes of Cd and planes of 
Se/Te atoms. In the figure, the sheet is angled in such a way as to highlight the relative position 
of the planes. We note that all the atoms are still organized in planes, but that neighboring 
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planes exhibit a deflection from the parallel configuration into a wedge-like structure. We quantified 
the bending by
simply measuring the angle of the two outer atomic planes (perpendicular to the heterojunction), as 
indicated in the figure. The angle is found to be ∼ 19◦, which corresponds to a deflection angle of ∼ 
0.54◦ for each neighboring pair of atomic planes.

In figure 3-2 we present the MD results for a slightly alloyed sample, where some Se atoms 
appear to the right of the heterojunction and the same number of Te atoms have moved to the left. 
This was accomplished by performing 800 pair swaps or interchanges, where a pair swap is 
executed by randomly selecting one Se atom and one nearby Te atom, and then swapping their 
positions.

Alloying reduces the curvature. The measured bending angle of the entire sheet is ∼ 11◦, 
which corresponds to a deflection angle of ∼ 0.31◦ for each neighboring pair of planes. By 
symmetry, a fully randomly mixed bilayer has zero bending, of course.

Shim and McDaniel [2] reported on a very similar experimental system involving CdTe 
domains grown beyond the tips of a seed CdSe nanorod. The authors used a HAADF-STEM 
image to illustrate [13] the nonparallel arrangement of the crystal planes, and measured the angles 
of deflection between two neighboring crystal planes. As suggested by the lattice parameters, the 
layers were closer together on the CdSe side of the rod, and wider on the CdTe side. The authors 
noted, however, that the narrowest part of the interlayer distance was noticeably smaller than that in 
pure

Figure 3-3. Sketch of the one-dimensional model used to analyze the crystal plane deflections observed in the 
curved bilayer sheets shown in figures 3-1 and 3-2. We show the Cd atoms in red, Se in yellow, and Te in blue. 
Each Se and Te is connected to a Cd atom. We approximate the interaction potential by a harmonic potential, 
illustrated by a spring. On the left (top) is an unconstrained fully segregated bilayer configuration, whereby each atomic 
pair is at an equilibrium distance of alatt/4, which leads to a larger distance for CdTe. The bottom left diagram illustrates 
the effect of constraining the Se and Te to a crystal plane (as observed in figures 3-1 and 3-2), and minimizing the 
total energy. The result is a deflection of the crystal plane. On the top right we show an alloyed bilayer configuration 
that has two Te atoms swapped for two Se atoms (in a symmetric fashion). The panel on the bottom right shows the 
constrained, energy minimized configuration for the alloyed bilayer, at a reduced slope.

CdSe. However, the widest part was about the same as in pure CdTe. In their figure (i.e., figure 7) 
they label the CdSe side as “in compression” and the CdTe side as “in tension”. The authors further 
reported that there was variation in the results among the different rods, some had larger deviations 
from the bulk spacings.

We will now show that a quantitative treatment for the crystal plane deflection and the size 
of the observed angle can be obtained from a simple model. In addition this approach can be readily 
used to explore the behavior of asymmetric bilayers as well as the effects of alloying. A schematic of 
our model is depicted in figure 3-3. We consider one Cd crystal plane interacting with one crystal 
plane made up of equal amounts of Se and Te (we will consider unequal amounts later in this paper). 
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The left panels show a completely segregated bilayer structure that has all the Se atoms on the left 
hand side and all the Te on the right. Each Se or Te atom interacts with a Cd atom in the layer 
below. We approximate the interaction by a simple harmonic potential, and in the figure we 
illustrate its equilibrium position by the extent of the spring. The Se-Cd equilibrium distance is 
equal to one quarter of the lattice parameter of pure CdSe at T = 300K, i.e, a1 ≡ alatt/4 = 1.51579 A. 
Similarly, the Te-Cd equilibrium distance is denoted a2 ≡ alatt/4 = 1.62298 A. For the horizontal 
spacing we choose a constant distance equal to the average of a1 and a2, so that the thickness of 
the bilayer sheet is equal to that of the simulated structure.

The total energy of the model structure is defined as the sum of the harmonic pair energies, 
i.e.,

(1)U  1
2

i yi  ai 
i1

2 N


2

where index i denotes the pairs, N is the number of Se atoms (equal to the number of Te atoms), 
and ai = a1 for a Se-Cd pair and a2 for a Te-Cd pair. The separation (i.e., extension of the spring) 
of pair i is denoted by yi, the horizontal position of the pair is xi. The strength of the interaction 
of pair i is Ei. For simplicity we set E1 = E2 = 1.

To represent the structures observed in figures 3-1 and 3-2, we require that the positions 
of all the Se and all the Te atoms fall onto one plane. In our one-dimensional model that 
requirement is equivalent to stating all the positions yi fall onto a straight line. The application of 
this constraint is illustrated in the bottom panels of figure 3-3.
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Figure 3-4. One-dimensional model of the layer deflection for a bilayer sheet. In the top panel the bilayer is 
symmetric, 6 planes each (labeled (6,6)), while in the bottom panel we show an asymmetric bilayer (i.e., (4,8)). We plot 
the distance, a (in A), between atoms in neighboring crystal planes. One plane (not shown) consists of 12 Cd atoms, 
the other layer has m Se atoms (on the left) and n Te atoms (on the right). The solid line shows the result of a 
energy minimization which is equivalent to a least-squares fit of a straight line. The slopes correspond to 0.49◦ (top 
panel) and 0.44◦ . For the (6,6) bilayer the left hand side is in compression, while the other end is in tension. In 
contrast, for the (4,8) bilayer both sides are in tension.
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Figure 3-5. The effects of asymmetry in a CdSe/CdTe bilayer. We use the simple 1D model to explore the 
distortion response of segregated (n, m) bilayers, consisting of m planes of CdSe next to n planes of CdTe. We 
have plotted the distortion ∆a = ai − a2, in Angstroms, at the outer edge of the CdTe layer versus the ai − a1 at the 
outer edge of the CdSe layer. The circles, squares and diamonds refer to bilayers composed of a total of 30, 20 
and 12 planes respectively. The dashed line indicates the thickness trend of symmetric films for which m = n. 
The data fall into three of four quadrants.  In quadrant I both deviations are positive indicating that both outer 
edges of the bilayer are in tension, while in III both are in compression. Quandrant II signifies compression of the 
CdSe side combined with tension on the CdTe side (see figure 3-4). No segregated bilayers can end up in quadrant 
IV. However, alloyed bilayers can.
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The equilibrium configuration of our model is defined as the straight-line configuration 
that minimizes the total energy U , see equation 1. Writing yi = b + mxi, the problem then is to 
determine the slope m and intercept b that minimizes U.  This is in fact a very familiar problem, as 
it is identical to performing a least-squares fit of a straight line to 2N measured data points {xi, yi}.
For the latter problem one minimizes the chi-square merit function,

(2)2 (m, b)  ai  bmxi

 i











2

i1

2 N


 

where σi is the uncertainty associated with measurement yi = b + mxi. Thus, setting σi = Ei = 1,
U = χ2/2.

In figure 3-4, top panel, we illustrate the results of the energy minimization of a perfectly 
segregated symmetric bilayer of CdSe and CdTe. This (n,m) bilayer has n = 6 crystal planes 
parallel to the heterojunction containing Se, and m = 6 planes containing Te. The slope of the plane 
(perpendicular to the heterojunction) that minimizes U is 0.008602 and, as pointed out, it can be 
most easily obtained by performing a least-square straight-line fit to the data points shown.

Also indicated in figure 3 - 4 is the result of a linear interpolation between a1 and a2, 
indicated by the dashed line. The slope of this line is a measure of the crystal plane deflection if one 
naively assumes that the plane spacing across the bilayer varies from that of bulk CdSe phase (on 
the outer left of the bilayer) to that of bulk CdTe phase (on the outer right of the bilayer). That 
assumption always leads to an underestimation the angle of deflection between two neighboring 
planes. Instead, the outer side of the CdSe is found to be in compression, while the outer side of 
the CdTe part of the bilayer is in tension, as the solid line ends below the Se atoms on the left and 
above the Te atoms on the right.

Our simple model demonstrates why this has to be the case mathematically. In physical 
terms, given the imposed constraint that the Se and Te atoms must be co-planar, typically none 
of the individual pairs i (Se-Cd or Te-Cd) can adopt their equilibrium distance ai (a1 or a2). 
Instead, for symmetric bilayers, the total energy of the distortion is minimized by over-
compressing the outer Se-Cd pairs and over-stretching the outer Te-Cd pairs, such that the inner 
Se-Cd and Cd-Te pairs can adopt a separation that is closer to the equilibrium distance of the 
isolated pair.

The results of our simple model are quantitatively correct as well. From the slope found in 
figure 3-4, 0.008602 ≡ tan θ, we identify the angle of deflection (between [100] atomic planes of a 
CdSe/CdTe bilayer of 3 unit cells thick) as θ = 0.49◦, in good agreement with the MD value of  

~0.54◦.  Similarly, for a bilayer of CdS/CdTe the MD result is θ ∼ 0.83◦, while our simple model 

predicts θ = 0.76◦.
By restricting ourselves to symmetric bilayers, we have not presented a complete story 

of the bending phenomenon. To explore the richness of bilayer response to lattice mismatch we must 
turn to consider asymmetric bilayers, i.e., n /= m.  The bottom panel of figure 3-4 shows the 
results of a (4,8) bilayer. Here the energy minimization leads to a situation where both outer 
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layers are in tension. Conversely, an (8,4) bilayer has both outer layers in compression. For a given 
number of planes (i.e. bilayer thickness) there are various combinations m and n to be considered. In 
figure 3-5 we have collected results for n + m = 12, 20 and 30. The last set is thought to correspond to 
the rod diameter in the work of Shim and McDaniel [2] while the first set is similar to our MD 
simulations (see figures 3-1 and 3-2). To avoid clutter we generally only plot the data for even 
values of n and m.

We plot the deviations from the bulk crystal plane spacing on the CdTe side (outer edge) 
versus the corresponding deviation on the CdSe side (outer edge). We will start with the results 
of a symmetric (n, n) bilayer. These bilayers all fall onto a straight (dashed) line through the 
origin, with a negative deviation for the CdSe layer (compression) and a positive deviation for the 
CdTe layer (tension), c.f., figure 3-4. It can be shown that the angle of deflection of the symmetric 
bilayers decreases with n, varying as n−1. As we have seen, if we deviate from the symmetric 
layer and consider a (4,8) layer then we obtain positive deviations for both the outer CdSe and 
CdTe layers. Hence this state lies in the first quadrant of figure 3-5. Larger deviations from the 
symmetric case produce states placed farther from the origin in quadrant I; maximum amount of 
strain, therefore, could be expected for severely asymmetric systems. All states in quadrant I 
exhibit tension on both sides of the bilayer.

An (8,4) bilayer produces a state in the third quadrant, which corresponds to compression on 
both sides of the bilayer. By varying the values n and m for constant n + m we trace out an 
envelope of points that populate three of the four quadrants. The data are symmetric around y = −x, 
due to the symmetrical nature of the 1D model. The absence of data in quadrant IV implies that 
the bilayer cannot combine expansion of CdSe side (which has the smaller lattice parameter) with 
compression of CdTe side. We will see later that points in quadrant IV can only result from 
alloying the bilayers.

We now return to the experimental results of Shim and McDaniel who report ∆aCdSe = 
0.09A and ∆aCdTe = 0. This places their state point on the border of quadrant II and III. Note 
that Shim and McDaniel report on the spacings between (111) planes, while we have considered 
(100) planes. Now, the ratio of these two sets of plane spacings is equal to  = 2.31. 4 / 3 / 3 
Thus, the corresponding Shim-McDaniel estimate for the (100) spacing would be 0.04A, which lies 
very close to the envelope of points in the phase diagram of figure 3-5. From the estimated 
thickness, n + m=30. We identify the state point which most closely matches ∆aCdSe = 0.04A 
and ∆aCdTe = 0 as n = 22, m = 8. This is certainly consistent with the information provided in 
figure 3-7 of [2], but that work does not report on the specific values for n and m. In addition, 
we point out that we have used a planar sheet while the experiments were performed with rod-
shaped nanoparticles.

Although they observe ∆aCdTe = 0, Shim and McDaniel label the CdTe as in tension, 
whereas we consider this side to be in a neutral, unstrained state. It is possible that the authors 
simply assumed that if the CdSe side was clearly in compression then the other side had to be in 
tension. 
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Figure 3-6. The displacement per particle as a function of the slope for all possible symmetric permutations of 1, 2, 

and 3 particles swaps; ∆a ≡ (2N )−1 .  The black solid square indicates the perfectly segregated yi  aii
configuration. The green diamonds denote one-particle swaps; the solid black circles denote two-particle swaps; while 
the orange circles are the three-particle swaps. The boxes drawn indicate the range of slope-displacements 
relationship outcomes for a particular number of swaps, and highlight that there is considerable overlap between 2- and 
3-particle swaps, say. There are more permutations than symbols visible in the plot. This is a reflection of degeneracy, the 
occurrence of which increases with the number of swaps. The loci of the points shown form a quartic, i.e., y = 

0.053785+0.13197x−624.17x
2 −11634x

3 
+3.8058×10

6
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Although this may appear as a natural assumption, our discussion here clearly demonstrates 
that bent bilayers can, in fact, exhibit three combinations of tension and compression, as indicated 
by the three quadrants in figure 3-5. Thus, observing the state of one side of a bent bilayer does 
not uniquely determine state of the opposite side.

Finally, we use the simple one-dimensional model to study the effect of alloying, limiting 
ourselves to symmetric bilayers. A schematic of alloying is shown in the one-dimensional 
representation in figure 3-3, which illustrates the effect of swapping two Se atoms with two Te 
atoms. For simplicity we will restrict ourselves to the ’symmetric’ swaps shown in the panels on 
the right hand side of figure 3-3, where we swapped Se positions 2 and 4 with Te positions 2N − 2 
and 2N − 4. For N = 6 one only needs to consider swapping 1, 2, or 3 atoms, as swapping more 
atoms merely results in reversing the identities of the left and right hand side of the bilayer. In 
figure 3-6 we have collected the results of alloying.  We plot the average displacement per 

particle, ∆a ≡ (2N )−1 , versus the slope. We note that all the data fall onto a quartic yi  aii
curve. Alloying reduces the bending of the bilayer (i.e., smaller slope of deflection), while 
increasing the value of ∆a. For our 12 layer sheet, entirely eliminating the bending (i.e., zero 
slope), can be accomplished with certain two- or three-particle swaps, but not with one-particle 
swaps.
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XII. CONCLUSIONS

The MD simulations of thin bilayers of group II - VI compounds, i.e., CdTe/CdSe 
structures, that we have presented show that the lattice mismatch produces pronounced bending of the 
bilayer sheet. The angle of deflection between two neighboring (100) planes is of the order of one 
degree. Alloying the bilayers produces less bending or smaller angles of deflection. We presented a 
simple 1D model to help explore the details of this phenomenon. The energy minimization of the 1D 
model structure is mathematically identical to a simple straight-line least-squares fit, and hence 
easy to interpret. It gives an accurate prediction of the MD simulation result, and we have used it 
to explore more details of the bent bilayer structures. For symmetric (n, n), fully segregated, 

bilayers the angle of deflection scales as n−1. More generally, asymmetric bilayers show a 
variety of outcomes. These are characterized by the distortion on either end of the sheet. Three 
types of outcomes are found: plane separation reductions on both sides produce a bilayer that is in 
compression on both sides. Similarly, plane separation increases lead to bilayers that are in 
tension on both sides.  The last type of outcome consists of compression on the CdSe side and 
tension of the CdTe. The reverse of this latter state is not possible. Finally, all symmetric bilayers 
lie in quadrant II.

We compared our predictions for the deflection angle, and the compression/tension state 
of the bilayer, to experimental findings for bilayer CdSe/CdTe rods, as reported by Shim and 
McDaniel [2] and find good agreement with their high resolution TEM results. Our simple model 
predicts that the parts of the rods used in these measurements had 27% of the diameter consisting 
of CdTe. A refinement of our simple model, which uses weighted points to account for the rod 
shape could potentially produce more accurate results. Our current model also enables a simple 
assessment of the results of alloying around the heterojunction with an eye on reducing the strain 
(i.e., the angle of deflection). The model calculations indicate that at a given mole fraction, guest 
atoms (i.e, Se in CdTe or Te atoms in a CdSe) are most effective in reducing the angle of plane 
deflection if they are located far from the location of the heterojunction.
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ABSTRACT

Recent synthetic advances have made available very monodisperse zincblende CdSe/CdS 
quantum dots having near-unity photoluminescence quantum yields.  Because of the absence of 
nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from 
time-resolved PL measurements.  Radiative lifetimes can also be obtained from the Einstein 
relations, using the static absorption spectra and the relative thermal populations in the angular 
momentum sublevels.  One of the inputs into these calculations is the shell thickness, and it is 
useful to be able to determine shell thickness from spectroscopic measurements.  We use an 
empirically-corrected effective mass model to produce a “map” of exciton wavelength as a 
function of core size and shell thickness.  These calculations use an elastic continuum model and 
the known lattice and elastic constants to include the effect of lattice strain on the band gap 
energy.  The map is in agreement with the known CdSe sizing curve and with the shell 
thicknesses of zincblende core/shell particles obtained from TEM images.  If selenium-sulfur 
diffusion is included and lattice strain is omitted then the resulting map is appropriate for 
wurtzite CdSe/CdS quantum dots synthesized at high temperatures, and this map is very similar 
to one previously reported (Embden, et al., J. Am. Chem. Soc. 2009, 131, 14299).  Radiative 
lifetimes determined from time resolved measurements are compared to values obtained from the 
Einstein relations, and found to be in excellent agreement.  Radiative lifetimes are found to 
decrease with shell thickness, similar to the size dependence of one-component CdSe quantum 
dots and in contrast to the size dependence in type-II quantum dots.  
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XIII. INTRODUCTION

Quantum dots (QDs) are of great interest because of their tunable and intense 
photoluminescence (PL).  Very high PL quantum yields and photostability are often obtained 
from CdSe/CdS core/shell QDs, making them of particular interest.  CdSe/CdS core/shell 
nanocrystals have optical properties that are unique amongst semiconductor QDs and have been 
extensively studied.  Most of these particles are synthesized at high temperatures and have a 
wurtzite crystal structure, which is the most stable form.  Although these core/shell QDs 
typically have high PL quantum yields when shells are thin (a few CdS layers), the quantum 
yields drop with increasing shell thickness.1  Recently Nan et al. reported a low temperature 
synthesis of very high quality zincblende CdSe/CdS core/shell QDs.2  The PL quantum yields of 
these QDs is very high and remains high for relatively thick shells.  The reason for the 
differences in the optical properties is that the “synthetic philosophy” for these particles is 
entirely different than that underlying previous syntheses giving wurtzite particles.  

In most syntheses of wurtzite core/shell particles, shell growth is done using a SILAR 
procedure at fairly high temperatures, > 200 C°.3-5 There are two reasons for this:  first, the high 
temperatures are needed for the reaction of the cadmium and sulfur precursors to proceed at a 
reasonable rate; and second, the higher temperatures permit in-situ particle annealing, resulting 
in better crystallinity.  Successive addition of cadmium and sulfur precursors can produce very 
thick CdS shells, the so-called “giant” nanocrystals.6, 7  The main problem with this approach is 
that there is a 4% lattice mismatch between CdSe and CdS that results in considerable lattice 
strain at the core-shell interface.8  This strain can be relieved by shell surface reconstruction 
which readily proceeds above about 200 °C.  The result is that the shells are typically irregular 
and have many surface defects.9  These defects can act as electron-hole recombination centers, 
lowering the PL quantum yield.  

In contrast, in the recent zincblende synthesis, shell deposition proceeds from a very 
reactive single CdS precursor2 at relatively low temperatures, < 160 °C.  Surface reconstruction 
is an activated process and does not readily occur at such low temperatures.9  The result is that 
the zincblende core/shell particles are metastable with respect to lattice-strain-induced shell 
defects and have much more uniform and closer to defect free shells than the corresponding 
wurtzite particles.  This results in very high PL quantum yields, even for particles with 
comparatively thick shells. The original reports give the PL quantum yields of about 85%.  We 
have optimized this synthesis and get quantum yields of about 95%.  Zincblende CdSe/CdS QDs 
are also quite stable and it seems that these particles hold great promise for applications in 
photovoltaics and especially light emitting diodes.  

Having accurate radiative lifetimes is fundamental to understanding the luminescence of 
any type of QD.  Radiative lifetimes are, in principle, easy to obtain.  One simply measures the 
PL decay kinetics, and in the absence of non-radiative decay pathways, the measured decay time 
is the radiative lifetime.  However, the observed PL QYs of most types of QDs are far below 
unity, indicating that non-radiative processes compete with luminescence and cannot be ignored.  
The observed PL decay rate is the sum of the radiative and non-radiative rates, and different 
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fractions of the sample having different non-radiative rates can make the interpretation of multi-
exponential PL decay kinetics ambiguous and problematic.10  
Radiative rates can also be calculated from absorption spectra using the Einstein relations.11, 12  
Specifically, for a II-VI QD the relation is

A 
8 0.2303C fsn f

3
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where Na is Avogadro’s number, c is the speed of light, ( )  is the molar extinction coefficient (L 
mol-1 cm-1) at frequency ν, f ( f%) is the fluorescence frequency (wavenumber), brackets denote 

an averaged quantity, Cfs is a factor related to the relative populations in the dark and bright fine 
structure levels (discussed below) and na and nf are the refractive indices of the surrounding 
solvent at the absorption and luminescence wavelengths, respectively.  In the case where the 
absorption and luminescence spectra are narrow and there is minimal Stokes shift, the left part of 
equation 1 simplifies to the right part, with n = na = nf.  Alternatively, the radiative rate may be 
given in terms of the oscillator strength of the transition, 
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These expressions ignore local field effects, which enter into expressions for the absorption and 
luminescence in the same way, and therefore cancel.  
Equations 1 – 3 are the usual expressions for the radiative lifetime, except for the inclusion of the 
factor that takes into account thermal populations in the angular momentum fine structure, Cfs.  
This factor is given by10 
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where kB is the Boltzmann constant, Ei and fi are the energy and fraction of the total absorption 
oscillator strength in the i-th transition, respectively.  There are eight thermally accessible 
angular momentum sublevels in the 1Se-1S3/2 exciton.  Rapid equilibration with the population of 
the dark states effectively increases the radiative lifetime compared to the case of a single 
absorbing and emitting oscillator.  This is not a small effect; in the absence of crystal field or 
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shape anisotropy mixing, five of the eight fine structure sublevels are dark.  Following photon 
absorption, rapid relaxation occurs amongst the bright and dark states and luminescence comes 
from a temperature-dependent distribution of states, each having its own radiative rate.  The 
energies and oscillator strengths of these different angular momentum sublevels depend of the 
size, shape and crystal structure of the QD.  These energy separations are comparable to kT at 
room temperature and there is a Boltzmann distribution of populations in these different states, 
complicating the evaluation of Cfs.  Accurate calculation of radiative lifetimes requires that the 
values of the PL energy, the integrated extinction coefficient and Cfs be considered.  

In this paper we examine the radiative lifetimes of a series of CdSe/CdS core/shell 
particles having different shell thicknesses.  These values are obtained directly from time-
resolved measurements and compared to values obtained from static spectra and the evaluation 
of equation 1 or 2.  Agreement between values obtained from these completely different 
approaches is very good, indicating that the factors controlling the radiative lifetime are well 
understood.  

XIV. RESULTS AND DISCUSSION  

Absorption (molar extinction coefficient) and PL spectra of the zincblende CdSe core and 
CdSe/CdS core/shell QDs are shown in figures 4-1 and 4-2.  The extinction coefficient spectra 
shown in figure 4-1 are determined from raw absorption spectra.  
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Figure 4-1.  Absorption spectra of 2.64 nm zincblende CdSe QDs and corresponding core/shell particles having shell 
thicknesses of 0.00, 0.39, 1.10, 1.52, and 2.00 nm, as indicated.  
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Figure 4-2.  Normalized photoluminescence spectra of the same QDs as in figure 4-1. 
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The outline of the procedure for doing this in the absence of direct concentration 
determinations is the following.  We initially determine exciton energy as a function of core size 
and shell thickness, making a “map” of exciton wavelength for CdSe/CdS core/shell particles.  
This is useful because it enables spectroscopic determination of shell thickness for particles for 
which TEM data are not available.  The core diameter and shell thickness results are used along 
with the known bulk CdSe, CdS and solvent absorption coefficients and refractive indices to 
obtain extinction coefficients at a wavelength where quantum confinement effects are negligible, 
in this case, 350 nm.  Knowing the extinction coefficient at this wavelength directly converts an 
absorption spectrum to an extinction coefficient spectrum.  The extinction coefficient spectra are 
then used to obtain absolute oscillator strengths and radiative lifetimes using equations 1 – 4.  

 1.  Exciton energy as a function of core size and shell thickness.
 The size-dependent spectroscopy of wurtzite versus zincblende CdSe particles has not 
been extensively studied, but indications are that the crystal structure makes little difference in 
the effects of quantum confinement.  This is not surprising, as the energetic difference between 
the two forms is very small, 1.4 meV per CdSe.  We therefore assume that size calibration curves 
obtained for wurtzite may also be applied to zincblende particles.  The cores have an absorption 
maximum at 516.6 nm, see figure 4-1.  Using the well-established sizing curve for CdSe 
particles,13 this corresponds to 2.64 nm diameter particles.  A TEM image of the core/shell 
particles having an absorption maximum at 592.4 nm (indicated as CdSe/CdS 4 in figures 4-1 
and 4-2) is shown in figure 4-3.  
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Figure 4-3.  TEM image of the core/shell particles having an absorption maximum at 592.4 nm.  The inset shows a 
typical high resolution image.   

The particles are somewhat non-spherical, having dimensions varying from about 6.2 to 
9.0 nm.  The ensemble average dimension is obtained from the measurement of many particles 
and is found to be 6.6 nm.  With the known core diameter of 2.64 nm, these images indicate that 
for these particles the average shell thickness is 2.0 nm.  The shift of the lowest exciton 
wavelength from 516.6 to 592.4 nm constrains the calculation of any core/shell sizing map.  

The approach used here to generate this map is based on the known CdSe sizing curve 
and calculation of the exciton energies using effective mass approximation (EMA) 
wavefunctions.  Wurtzite and zincblende CdSe have very similar spectroscopic energetic and 
properties and we make the assumption that the wurtzite CdSe sizing curve can also be used for 
zincblende particles.  EMA calculations are known to predict larger quantum confinement effects 
than what is observed.  These errors are minimized by considering the electron and hole moving 
in potentials having finite barriers at the particle surface.  However, even with finite barriers, 
EMA calculations typically over-predict the extent of quantum confinement, and the extent of 
these errors increases with increasing quantum confinement energy.  The fundamental problem is 

that the effective mass is defined as m*   2 2E
k 2








1

, and the plot of E versus k is not quadratic 

at the larger quantum confinement energies of the smaller particles.14, 15  The obvious solution to 
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this problem is to empirically correct the effective masses as a function of quantum confinement 
energy, and that is the approach taken here.  Since most of the quantum confinement is in the 
conduction band electron, this empirical correction is applied only to the electron effective mass.  
Applying a correction to the electron effective mass means that the total quantum confinement 
energy depends on the electron effective mass and vice-versa.  It follows that the correction 
factor to the electron effective mass must be calculated in a way that is self-consistent with the 
calculated quantum confinement energies.  Throughout these calculations, the electron-hole 
coulombic interaction is treated as a perturbation.  We find that the corrected electron effective 
mass may be given by, me

* corrected  me
* bulk  0.36773 2.75634x104 EQC 8.3105x109 EQC

2 , where 

EQC is the electron plus hole quantum confinement energy.  The way this is implemented is to start 
out assuming the low energy (bulk) electron effective mass, calculate electron and hole quantum 
confinement energies, use these quantum confinement energies to get a corrected electron 
effective mass, and so on.  This procedure converges to self-consistent values in a few iterations.  
This empirical correction is chosen so that the EMA calculations very accurately reproduce the 
known CdSe sizing curve for particles having exciton wavelengths of 500 – 650 nm.13  

These calculations are also applied to CdSe/CdS core/shell particles.  This extension is 
non-trivial for two reasons.  First, the presence of core/shell lattice mismatch, and second, the 
possibility of selenium and sulfur interdiffusion.  Diffusion is a strongly activated process and 
appropriate to the low-temperature shell deposition conditions used here, we will initially ignore 
radial diffusion.  The lattice parameter of CdSe is about 4% larger than for CdS, and the core-
shell lattice mismatch results in the core being under isotropic pressure and the shell being under 
radial pressure and tangential tension.16, 17  These strains affect the respective conduction band 
energies, which is taken into account through an elastic continuum calculation using the known 
elastic parameters of each material.18-20  This calculation gives the volumetric strain as a function 
of radial position.  This result, when combined with the volume dependent conduction band 
energy shifts, allows calculation of an accurate conduction band radial potential, as was done in 
reference 21.  The valence band potential is much less affected by strain, and is taken to be bulk 
values.  Electron and hole wavefunctions are calculated using these potentials.  A crucial 
parameter in the electron wavefunction calculation is the zero-strain CdSe-CdS conduction band 
offset, which is estimated to be between 0 and 0.3 eV.22-24  If this is taken to be 0.047eV and the 
same electron effective mass correction factor is applied to the CdS conduction band electron, 
then this EMA calculation also accurately gives the exciton energy of the 6.6 nm core/shell 
particles, see figures 4-1 and 4-3.  This approach has been used to calculate the exciton energies 
of a wide range of cores sizes and shell thicknesses.  A map of the exciton energy as a function 
of core size and shell thickness is shown in figure 4-4 and in the Supporting Information.  The 
elastic continuum model is not a good approximation for very thin shells, (less than a full 
monolayer) and calculations for those particles are omitted.
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Figure 4-4.  Exciton wavelength map assuming no core-shell interdiffusion and core compression calculated with 
bulk elastic parameters.   The calculations assume smooth shells and a coherent core/shell interface.  

The map in figure 4-4 assumes both a coherent core-shell interface and a uniform shell 
thickness, resulting in significant strain-induced spectral shifts.  These are good assumptions for 
the zincblende particles for which the shell has been grown at low temperature.  However, much 
of the lattice strain energy is released upon forming a rough shell and this occurs when thick 
wurtzite shells are grown at high temperatures and/or subsequently annealed.9  In addition to 
relieving much of the lattice strain, high temperature shell deposition and subsequent annealing 
results in significant radial diffusion of the selenium and sulfur across the core-shell interface.  
This diffusion has the effect of changing both the conduction and, especially, valence band radial 
potentials.  Thus, the effect of annealing is that the conduction band potential is altered by the 
graded composition and the loss of volumetric lattice strain.  The valence band potential is not 
greatly affected by volumetric strain, but is affected by the change in composition profile.  
Valence band energies change nonlinearly with composition, a phenomenon referred to as 
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“optical band-bowing,” and this effect is included in the calculation of the valence band radial 
potential.25-27  These considerations are relevant to the results on wurtzite CdSe/CdS particles 
reported in reference 5.  In these studies, the CdS shells were grown at relatively high 
temperature and subsequently annealed at 200 °C.  In contrast, the particles used here are 
zincblende and with the shells grown at much lower temperatures, <160 °C, and do not readily 
undergo surface reconstruction.  They have more uniform shell thicknesses and are metastable 
with respect to release of the lattice strain and shell roughening.  The present zincblende 
core/shell particles may therefore be expected to have somewhat different spectroscopic 
properties than the particles studied in reference 5.  Using the same CdSe and CdS valence and 
conduction band potentials, we have also calculated core/shell exciton wavelengths maps for the 
case of no core compression, with and without radial interdiffusion.  These radial composition 
profiles are obtained by solving the radial diffusion equation, as explained in reference 21.  The 
valence and conduction band potentials are then calculated, considering the effects of band-
bowing.  The resulting maps are significantly different that the low temperature zincblende map 
and are given in the Supporting Information.  The map which includes the effects of radial 
diffusion is most appropriate to high-temperature-synthesized wurtzite core/shell particles of 
reference 5.  We find that if the product of the diffusion coefficient and time is set to 0.03 nm2, 
then the resulting map is very similar to that in reference 5, differing in exciton wavelength by at 
most a few nanometers. Assuming a 1 hour annealing time,5 this corresponds to a Se-S 
interdiffusion coefficient of 5 x 10-4 nm2 min-1, which is the same order magnitude as reported 
for Te-Se interdiffusion reported in reference 21.  It is important to note that the map shown in 
figure 4-4 is not in disagreement with that in reference 5.  The two maps are complementary, 
simply applying to CdSe/CdS particle synthesized under different conditions.  

2.  Exciton oscillator strengths.  
The extinction coefficient spectra in figure 4-1 are obtained from corresponding 

absorption spectra by scaling the absorbance to the extinction coefficient at a wavelength where 
the extinction coefficient can be calculated.  The scaling assumes Beer’s Law, that the 
absorbance is proportional the extinction coefficient throughout each spectrum.  Extinction 
coefficients are calculated at a wavelength that is sufficiently short that quantum confinement 
effects are unimportant, in this case, 350 nm.  In the case of core/shell particles, the measured 
absorption at 350 nm may have a contribution from small, homogeneously nucleated CdS 
particles.  Using the present synthesis, this is typically a small contribution (< 10%) and is 
corrected for by the comparison of the measured absorption and luminescence excitation spectra.  
The 350 nm extinction coefficients are calculated from the known particle volumes and 
compositions, using literature values of the 350 nm optical constants for bulk CdSe and CdS.  
This type of procedure is quite standard and has been shown to give reliable assessments of 
absolute extinction coefficients.10, 28-30  The real and imaginary components of the 350 nm 
complex refractive index for CdSe28, 31 and CdS31 are nCdSe = 2.772, kCdSe = 0.7726, and nCdS = 
2.58, kCdS = 0.70.  The extinction coefficients at λ = 350 nm are given by13
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where rc is the core radius, h is the shell thickness, λ = 350 nm and fLF is the local field factor.  
(Equation 5 uses SI units.)  The local field factor is given by13, 32

 fLF

2


9ns
4

np
2  k p

2  2ns
2  4np

2k p
2

 

where the subscripts p and s refer to the particle and solvent 

respectively.  Evaluation with the CdSe refractive index and chloroform solvent gives a value of 
|fLF|2 = 0.285 at 350 nm.  Equation 5 gives a 350 nm extinction coefficient of 3.57 x 105 l mol-

1cm-1 for the 2.62 nm CdSe core particles.  The core absorption spectrum has a 516.6 nm 
absorbance that is 0.440 that of the 350 nm absorbance, or 1.57 x 105 M-1cm-1.  It is of interest to 
compare this extinction coefficient to that reported in reference 13 for the same size particles, 
which is 1.63 x 105 M-1cm-1.  Reference 13 has all of the lowest exciton absorption peaks 
corrected for inhomogeneous width, to a HWHM of 0.06 eV.  Applying the same correction to 
the spectrum in figure 4-1, we get a 516.6 nm extinction coefficient of 1.68 x 105 M-1cm-1, which 
is in close agreement with the value reported in reference 13.  This is an important check of the 
internal consistency of these calculations, and confirms the validity of this approach.  Using the 
literature values of 350 nm absorbance coefficients, / 0.84CdS CdS CdSe CdSen k n k  , equation 5 can also 
be applied to the core/shell spectra.  In all cases, integrated extinction coefficients to be used in 
the evaluation of equation 1 are obtained from fitting the low energy part of these spectra to a 
superposition of Gaussian peaks and taking the area of the peak corresponding to the 1S3/2-1Se 
transition. 

3.  Radiative lifetime calculation.
The radiative lifetimes of the 2.62 nm core, and several core/shell particles having the 

same CdSe cores and different CdS shell thicknesses have been obtained from time-resolved PL 
measurements.  The PL quantum yields of the core/shell particles are very high (> 80%, and 
usually about 95%) and the PL decays are dominated by a slow component that is taken to be the 
radiative lifetime.  These lifetimes decrease with increasing shell thickness and exciton 
wavelength, as shown in figure 4-5.  The longest decay component for the core particles is also 
shown.  However, the quantum yield of the core particles is low and the radiationless decay may 
shorten this decay, compared to the actual radiative lifetime.  As such, the measured value of 
44.5 ns must be viewed as a lower limit on the actual radiative lifetime.  We note that the 
radiative lifetime decreases with increasing shell thickness and exciton wavelength.  This is 
analogous to what is observed in bare CdSe core particles (where the radiative lifetime decreases 
with particle size), and the opposite of what is observed in type-II QDs, such as CdTe/CdSe.10   
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Figure 4-5.  Radiative lifetime as a function of the wavelength of the lowest energy exciton in CdSe/CdS particles.  
The open circles correspond to radiative lifetimes calculated as described in the text.  The 2.64 nm zincblende cores 
(the 516.6 nm point) have a low QY and the measured lifetime is unreliable.

  It is of interest to use equation 1 to compare the measured radiative lifetimes to values 
calculated from the spectra in figure 4-1.  Although the PL energies and integrated extinction 
coefficients are easily obtained from figure 4-1, obtaining accurate Cfs values is more 
complicated.  Calculation of Cfs amounts to calculating the splittings between the dark and bright 
angular momentum sublevels33 and the thermal populations in these sublevels as a function of 
shell thickness.  This calculation also considers the population in the 1P3/2 hole level, which has 
only a slight effect.10, 34  We take the dark-bright splitting to be dominated by the electron-hole 
exchange interaction, which scales as the reciprocal of the electron-hole separation, 1/r.  The 
electron and hole wave functions calculated to obtain the exciton energy map in figure 4-4 are 
also used to calculate expectation values of 1/r.  These expectation values are obtained by a 
straight-forward numerical integration over the wavefunctions.35  Relative 1/r expectation values 
are used to obtain relative values of Ei compared to those in the core, which are taken from Efros 
et al.33  Equation 1 is readily evaluated by using values of Cfs obtained from equation 4, the 
integrated extinctions coefficients, and the exciton energies.  A plot of these radiative lifetimes is 
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also shown in figure 4-5.  Very good agreement with the measured decays is obtained for all but 
the bare CdSe core particles.  This may be understood in terms of the fact that the core particles 
exhibit a lower QY and the long decay component therefore does not reliably give the radiative 
lifetime.  We note that core radiative lifetime is calculated to be 49 ns, in quantitative agreement 
with the previously reported value for wurtzite QDs.10 
It should be noted that this calculational approach uses only the observed spectra and literature 
data; the calculation of the radiative lifetime has no adjustable parameters.  The integrated 
extinction coefficients of the core/shell particles are obtained directly from the static absorption 
spectra and the known 350 nm optical constants.  The values of Cfs for the appropriate sized core 
particles are from results reported by Efros et al.,33 and values for the core/shell particles are 
calculated using calculated expectation values of 1/r.  All of the calculated results are in good 
agreement with radiative lifetimes obtained from time-correlated photon-counting 
measurements.  The Einstein relations (of course) very accurately predict radiative lifetimes.  
One of the conclusions of this study is very simple: these equations very accurately predict the 
radiative lifetimes, but only when careful measurements are made and all of the appropriate 
quantities are correctly evaluated.  

These results show that the radiative lifetimes decrease with shell thickness, similar to the 
size dependence of one-component CdSe quantum dots.10  This observation is in sharp contrast 
to what is reported in type-II core/shell QDs, such as CdTe/CdSe.21  The difference is primarily a 
result of how the electron-hole overlap varies with shell thickness.  In the present case of 
CdSe/CdS, the band offsets are referred to as type-1½, where the hole is localized in the core and 
the electron is delocalized throughout the core and shell. Despite the electron delocalization, 
there remains considerable electron-hole overlap for even rather thick shells.  For example, the in 

the case of the 2.0 nm thick shells, the electron hole overlap is calculated to be e |h

2
 0.31.  

In type-II QDs such as CdTe/CdSe, the band offsets are such that the hole is localized in the core 
and the electron is localized in the shell.  The result is that increasing shell thickness causes the 
electron-hole overlap to decrease much more rapidly in the type-II, compared to type-1½ QDs.  
This puts less of the oscillator strength in the 1Sh-1Se transition for the type-II QDs, resulting in 
longer radiative lifetimes.  
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XV. EXPERIMENTAL METHODS

XV.1 Optical measurements  
In the time resolved photoluminescence studies, samples were excited with very low 

intensity 410 nm pulses at 1 MHz from a cavity-dumped frequency-doubled Coherent MIRA 
laser. The luminescence was imaged through a ¼ m monochromator with a 150 groove/mm 
grating onto a Micro Photon Devices PDM 50CT SPAD detector.  TCPC decays are 
accumulated using a Becker-Hickle SPC-630 board.  The overall temporal response function of 
the system is about 70 ps. 

Quantum yield measurements were made using the same samples as the time resolved 
luminescence measurements.  The static luminescence spectra were measured on a Jobin-Yvon 
Fluorolog 3 with a CCD detector.  Sample spectra were compared with spectra of R6G (assumed 
to have a 95% QY) taken with the same excitation wavelength and the same absorbance at that 
wavelength.  The wavelength dependence of the CCD detector was taken into account in 
calculating the nanoparticle quantum yield.  This was done by measuring the spectrum of a 
calibrated tungsten lamp and constructing a detector sensitivity curve.

Chemicals.
Cadmium oxide (CdO, 99.5%), octadecylamine (ODA, 90%), oleylamine (technical 

grade, 70%), octylamine (99%), sodium diethyldithiocarbamate trihydrate (NaDDTC·3H2O), 
cadmium acetate dihydrate (Cd(Ac)2·2H2O), tellurium (Te, 99.8%), trioctylphosphine (TOP, 
97%), tributylphosphine (TBP, 97%), octadecene (ODE, 90%), hexane (99.8%), methanol 
(MeOH, 98%), and toluene (99%) were obtained from Aldrich.  Selenium (Se, 99%), oleic acid 
(OA, 90%), n-octane (98+%) and chloroform (CHCl3, 99.8%) were obtained from Alfa Aesar.  
ODA was recrystallized from toluene before use. TOP, TBP, and ODE were purified by vacuum 
distillation.  TOPO was purified by repeated recrystallization from acetonitrile.  Methanol, 
chloroform and toluene were purified by distillation from appropriate drying agents.  All other 
chemicals were used as received.  

XV.2 Synthesis and sample preparation
The zincblende CdSe core nanocrystals are synthesized and purified using slightly 

modified procedures reported by Nan et al.2  Zincblende shell deposition occurs from a 
cadmium-sulfur single precursor, cadmium diethyldithiocarbamate (Cd(DDTC)2), at low 
temperature (140 - 145 °C).  In a typical synthesis, CdO (0.256 g, 0.2 mmol), oleic acid (1 mL) 
and 4 mL ODE were loaded into a 25 mL three-neck flask.  After N2 bubbling for 2 min, the 
flask was heated to 250 °C to form a transparent solution and then cooled to 40 °C.  Se powder 
(0.0079 g, 0.1 mmol) was loaded into the flask. The flask was heated to 240 °C under N2 flow at 
a heating rate of 40 °C/min. Needle tip aliquots were taken for UV−vis and PL measurements to 
monitor the size of zincblende CdSe QDs.  The particles are then purified by repeated extraction.  
In these extractions, tributylphosphine (0.2 mL), octylamine (0.2 mL), hexane (3 mL), and 
methanol (6 mL) were added to the reaction solution at 50 °C and stirred for 2 min. After stirring 
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was turned off, the colorless methanol layer was separated from the top ODE/hexane layer by 
syringe. This extraction procedure was repeated three times, but TBP was added only the first 
time. The remaining hexane in the ODE layer was removed by nitrogen bubbling at about 60 °C.  

Subsequent CdS shell growth requires the synthesis of (Cd(DDTC)2) for use as the single 
cadmium and sulfur precursor.  In this synthesis, Cd(Ac)2·2H2O (10 mmol) was dissolved with 
100 mL of distilled water in a 400 mL beaker.  Into this solution, NaDDTC·3H2O (20 mmol) 
dissolved in 60 mL of distilled water was added dropwise under vigorous stirring.  A white 
precipitate of Cd(DDTC)2 quickly forms.  The mixture was stirred for another 20 min after 
mixing to ensure the reaction was complete.  The white precipitate was separated from the 
solution phase by filtration and washed three times with distilled water.  The final product in 
white powder form was obtained by drying under vacuum overnight.  For each shell growth 
reaction, a 3 mL Cd(DDTC)2-amine-octane solution (0.1 mmol/mL) was prepared by dissolving 
0.1227 g of Cd(DDTC)2 in a mixture of octane (1.5 mL), oleylamine (0.45 mL), and octylamine 
(1.05 mL).  

In a typical CdS shell growth reaction, a mixture of ODE (2.0 mL), ODA (20 mg), and 
oleylamine (1.0 mL) was heated to 60 °C in a three-neck flask under argon flow, and then about 
1.0 mL of purified CdSe core solution (containing about 1 × 10−7 mol of nanocrystals estimated 
by their extinction coefficients) was added to this flask.  The amount of precursor solution for 
each injection was estimated using standard SILAR procedure.  In this reaction cycle, addition of 
the CdS precursor solution is done at 80 °C and growth occurs by heating the solution at a 
targeted temperature (140 °C for typical synthesis) for about 10 min.  This inject-heat-cool cycle 
was repeated until the desired number of CdS monolayers was obtained. The final reaction 
solution is purified by extraction with hexane/methanol (v:v~1:1) twice.  The non-polar layer is 
separated and heated under vacuum to remove the residual hexane and methanol.  The dried 
sample is then dissolved in octadecene and ligand exchanged with excess TBP and ODA at 100 
°C for about an hour.  After ligand exchange, the sample is centrifuged and liquid layer is kept.  
The particles are precipitated by the addition of anhydrous methanol, dried under vacuum then 
dispersed in toluene or chloroform for the spectroscopic measurements.
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ABSTRACT
A new continuum model of misfit dislocation formation that improves over the traditional 

model has been developed. This is achieved by developing a robust molecular dynamics (MD) 
approach that can confidently validate the continuum model. We find that the enabling 
techniques to make this possible are (a) the calculations of time averaged properties using very 
long time MD simulations, which produce significantly more accurate results than molecular 
statics simulations, and (b) the use of dislocation dipole configurations under periodic boundary 
conditions, which allows dislocation energies to be exactly calculated. Using these techniques, 
we are able to accurately determine dislocation core radius and energy without imposing 
continuum boundary conditions that must be assumed in previous MD approaches to avoid the 
effects of truncating long-range dislocation stress fields. The total dislocation energy as a 
function of system sizes and dislocation spacing predicted from the MD is in very good 
agreement with the continuum theory. Detailed study reveals that the traditional misfit 
dislocation model can become inaccurate for systems with large lattice mismatch. We then 
propose improvements of the theory, including a more accurate treatment of dislocation energies, 
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an incorporation of elastic inhomogeneity from the film and the substrate, and an identification 
of precise definitions of dislocation spacing and Burgers vector which were likely incorrectly 
applied in previous work. We show that the prediction from the modified continuum model is 
essentially indistinguishable from the MD results.
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XVI. INTRODUCTION
Control of strain relaxation and misfit dislocation is a key material issue for electronic 

devices [45]. Continuum calculations have been effective in guiding material synthesis 
experiments [46,47,48,49,50,51,52,53]. As modern devices are driven towards smaller 
dimensions, larger lattice mismatches, and lower defect tolerances, the requirement for the 
accuracy of continuum predictions becomes increasingly demanding. Continuum models 
inherently involve a number of approximations. First, most continuum theories neglect 
dislocation cores. While this can be easily corrected, it requires prior knowledge of the 
dislocation core energy, which is often unavailable. Second, the continuum theories are often 
based on linear elasticity, where the elastic constants under tension and compression are assumed 
to be the same. In reality, however, materials tend to exhibit larger elastic constants under 
compression than under tension, especially at large strains. Third, the Burgers vector of a misfit 
(edge) dislocation is essentially associated with the thickness of the half planes removed or 
inserted. However, inserting a half plane to the film is exactly equivalent to removing a half 
plane from the substrate. As a result, ambiguity arises whether the Burgers vector should be 
defined by the film lattice constant or the substrate lattice constant. This problem has not been 
clarified in previous continuum models. Fourth, the conventional continuum misfit dislocation 
theories typically use only the elastic properties of the film but not the substrate. While it is 
possible to incorporate the elastic properties of both film and substrate using more complex 
theories [46], the simple model can still be accurate as long as the effects of the simplification 
are determined and corrected. Finally, the continuum misfit dislocation energy expressions can 
often be significantly simplified through approximations. The construction of an optimum 
continuum model then requires knowing the accuracy of the approximations, which in turn 
requires validation from either experiments or simulations at a more fundamental level.

Molecular dynamics (MD) simulations provide an alternative approach to study strain 
relaxation and misfit dislocation formation. However, practical devices usually have dimensions 
beyond 100 nm. At such dimensions, MD models are not efficient for generating enough 
understanding to impact device design and synthesis. On the other hand, MD models do not 
suffer from the limitations of continuum models. As a result, MD simulations can determine the 
unknown parameters and access the accuracy of various continuum theory approximations. The 
insights gained can then lead to improvements of the continuum models. However, this requires 
that consistent results be achieved from the continuum and MD methods for the same system 
geometries and dimensions.

45 R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, Semicond. Sci. Technol., 27, 024001 (2012).
46 J. W. Matthews, and A. E. Blakeslee, J. Crystal Growth, 27, 118 (1974).
47 W. D. Nix, Metall. Trans. A, 20, 2217 (1989).
48 J. R. Willis, S. C. Jain, and R. Bullough, Phil. Mag. A, 62, 115 (1990).
49 X. Feng, and J. P. Hirth, J. Appl. Phys., 72, 1386 (1992).
50 J. P. Hirth, and X. Feng, J. Appl. Phys., 67, 3343 (1990).
51 S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough, and P. Balk, Solid-State Electron., 35, 1073 (1992).
52 T. J. Gosling, J. R. Willis, R. Bullough, and S. C. Jain, J. Appl. Phys., 73, 8297 (1993).
53 U. Jain, S. C. Jain, J. Nijs, J. R. Willis, R. Bullough, R. P. Mertens, and R. van Overstraeten, Solid-State Electron., 36, 331 (1993).
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 Two obvious issues prevent MD from matching the continuum models. First, dislocation 
energy is essentially the energy difference between a system containing a dislocation and a 
system without a dislocation. In atomistic models, an edge dislocation is created by removing (or 
inserting) extra half planes. This means that systems with and without a misfit dislocation 
necessarily have different numbers of atoms. As a result, the dislocation energy is not simply the 
energy difference between the two systems. Periodic boundary conditions, however, allow for an 
accurate calculation of dislocation energy. Under periodic boundary conditions, every atom in a 
dislocation-free system is equivalent. The energy of the dislocation-free system can then be 
scaled to the same number of atoms in a system containing a dislocation. Unfortunately, the 
periodic boundary conditions prohibit the creation of a single dislocation. This paper seeks to 
address this problem by studying dislocation dipole configurations instead of isolated 
dislocations. Note that the particular dislocation configuration is not important as long as it can 
be studied in both MD and continuum models to enable the connection. The second problem is 
that the conventional atomistic methods typically apply molecular statics (MS) energy 
minimization to calculate the equilibrium properties (e.g., energy) of relaxed systems. As will be 
shown below, MS simulations do not yield unique minimum energy results when the system is 
big and contains dislocations. This is because large systems numerically mitigate the resolution 
for small energy changes while the presence of a dislocation allows the system to relax to many 
different local energy minima. This paper seeks to address this problem by calculating time-
averaged properties using long time MD simulations, which would statistically cancel out 
numerical errors and at the same time allow different energy minima to be sampled. Clearly, 
highly converged results can theoretically always be achieved by increasing the averaging time. 
MD simulations have an additional advantage as they incorporate finite temperatures whereas the 
MS data pertains only to 0 K. 

This work will perform systematic studies to explore the ideas described above to construct 
an MD validated continuum misfit dislocation model. The validated model can then lead to 
improved understanding of strain relaxation and misfit dislocation formation. For simplicity and 
without losing generality, our studies will assume a quasi- two-dimensional (2D) geometry. This 
simply means that the system is under a plane strain condition zz= xz= yz= 0, with the 
film/substrate interface on the x-z plane and film thickness in the y direction. In such systems, 
strain relaxation only occurs in the x direction, where misfit dislocations lie in the z direction and 
periodically form along the x direction.

XVII. DERIVATION OF MISFIT DISLOCATION ENERGY EXPRESSION
The equilibrium energy theory [44,54,55,56] of strain relaxation and misfit dislocation 
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formation was summarized elegantly by Nix [45] in 1989, which was later improved by Willis 
and others [46,57,58]. Here for clarity of illustration, we will use Nix’s model. Applying Nix’s 
equation to the 2D geometry of a lattice mismatched film containing misfit dislocations the 
energy (per unit of interface area) can be expressed as
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where G, , and b are respectively, shear modulus, Poisson’s ratio and magnitude of the Burgers 
vector for a misfit dislocation (the subscript f standing for film), S is the spacing between 
dislocations, h is film thickness,  is a constant, and  is the lattice mismatch parameter that can 
be defined by the lattice constants of film (af) and substrate (as) as  = (as-af)/af. Note that in Eq. 

(1),  f

fG
1

2  represents the apparent Young’s modulus under our plane strain condition xx  0, yy 

 0, zz = xz =yz = 0, and yy = 0. Also note that Eq. (1) differs from Nix expression [45] by a 
factor of two because we assume a 2D problem whereas his problem is three-dimensional (3D). 
To understand the physical origins of the theory that is essential for improving the model, we 
now give a rigorous derivation of Eq. (1).

As in previous continuum models, we assume that the substrate is much thicker than the 
film. In such a case, the substrate is “rigid” whereas a dislocation-free film must be strained by 
exactly  to match the dimension of the substrate. Assume that in a dislocation-free system, nf 
planes of film with plane spacing bf are matched with nf planes of substrate with plane spacing b. 
If the substrate is rigid, then the film is subject to a strain of (nfb-nfbf) /(nfbf) = (b-bf) /bf = (as-
af)/af = . If a half plane is inserted to the film, then the film is subject to a strain of [nfb-(nf+1)bf] 
/[(nf+1)bf] =  - b/Sf, where Sf = (nf+1)bf is the total length of unstrained film per dislocation 
(i.e., dislocation spacing). On the other hand, if a half plane is removed from the substrate, then 
the film is subject to a strain of [(nf-1)b-nfbf] /(nfbf) =  - b/Sf, where Sf = nfbf is again the total 
length of unstrained film per dislocation. This means that regardless if it is viewed as inserting a 
half plane in the film or removing a half plane from the substrate, a dislocation always causes a 
consistent strain of -b/Sf. By comparing to the first term on the right side of Eq. (1), we see that 
Eq. (1) inaccurately defines the magnitude of the Burgers vector to be the film value bf rather 
than the substrate value b, and dislocation spacing to be the system (or substrate) value S rather 
than the film value Sf. When the film and substrate dimensions are close, this may not cause 
significant errors, otherwise Eq. (1) may become inaccurate.

The equilibrium energy theory essentially defines how system energy changes when an 
array of misfit edge dislocations form at the film/substrate interface. Energy expressions 
involving dislocation arrays can be quite difficult to derive directly from stress/strain fields. One 

54 J. H. van der Merwe, J. Appl. Phys., 34, 123 (1963).
55 J. W. Matthews, and A. E. Blakeslee, J. Crystal Growth, 29, 273 (1975).
56 J. W. Matthews, J. Vac. Sci. Technol., 12, 126 (1975).
57 S. C. Jain, T. J. Gosling, J. R. Willis, D. H. J. Totterdell, and R. Bullough, Phil. Mag. A, 65, 1151 (1992).
58 S. C. Jain, A. H. Harker, and R. A. Cowley, Phil. Mag. A, 75, 1461 (1997). 
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easier approach is to write out the energy expression in terms of the work done to move 
dislocations:

dsfEwEE
final

initial sinitialinitialfinal   (2)

where Efinal and Einitial are system energies when dislocations are in the final and initial locations, 
fs is force exerted on dislocations along the direction s in which dislocations are moved, the work 
w is represented by the integration over the entire distance moved. Prior to deriving our model 
for the misfit dislocation energy expression, we first show two examples of employing Eq. (2).

First, let us imagine that one positive and one negative edge dislocations lie exactly on top 
of each other, as shown in Fig. 5-1(a). This is essentially a dislocation-free scenario so that the 
initial energy Einitial equals zero. Now we move the upper dislocation to a distance 2R away as 
shown in Fig. 5-1(b), where R represents the maximum range of the strain field of a dislocation 
so that 2R would mean that the R regions of the two dislocations do not overlap so that they can 
be viewed as isolated dislocations. If the attractive force between the two dislocations is denoted 
as fx, Eq. (2) indicates that the final energy Efinal for moving the two dislocations from separation 

distance x = 0 to x = 2R equals  
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. This energy is consistent with the classical derivation of the total strain energy 

within a distance R from an isolated edge dislocation [61].

Figure 5-1. Illustration of work for separating a pair of opposite dislocations: (a) initial and (b) final dislocation 
locations.

59 D. Hull, and D. J. Bacon, Introduction to dislocations, 4th Ed. (Butterworth-Heinemann, Oxford, 2001).
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In the second example, we imagine that two positive edge dislocations are widely separated 
at r = 2R so that each can be considered as an isolated dislocation with an energy of  = Ec + 
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Following Eq. (2), the final energy Efinal for moving the two dislocations from x = 2R to x = 0 
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that unlike the first case where fx is attractive, here fx is repulsive so that  
0

2 0r
x dxf  = -2Ec. When 

the two positive edge dislocations overlap on top of each other at r = 0, they merge into one 
dislocation with the burgers vector doubled. According to the classical expression [61], 
dislocation energy is proportional to b2. Hence the dislocation energy derived from the work 
again matches the classical theory.

Figure 5-2. Geometry of a dislocation array under a surface.

Now we use Eq. (2) to derive our misfit dislocation model. The geometry of our problem is 
illustrated in Fig. 5-2, where a misfit dislocation array is formed under a surface. In Fig. 5-2, the 
horizontal line indicates the surface, and the orange region below the line represents the film. As 
in common misfit dislocation theory, we assume that the system is elastically homogeneous. 
Unlike the common misfit dislocation theory where the elastic properties of the homogeneous 
system are associated with those of the film, here we do not associate the elastic properties of our 
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system to either the film or the substrate, but rather view these properties as the apparent 
properties of the entire system. An array of edge type of misfit dislocations (i = …, -4, -3, -2, -1, 
0, 1, 2, 3, 4, …) with separation distance Sf are assumed to form at a distance h below the 
surface. Note that according to the discussion above, Sf is the dislocation spacing in an 
unstrained film. In order to mimic a free surface, we can imagine that the system is mirror 
reflected above the surface, where the reflected portion is an image material shown in gray and 
the reflected dislocations (j = …, -4, -3, -2, -1, 0, 1, 2, 3, 4, …) are image dislocations. Note that 
for the geometry shown in Fig. 5-1, there is a non-zero normal stress yy at the surface. As a 
result, the effect of the image edge dislocations is not exactly equivalent to that of a free surface. 
This is different from screw dislocations where the introduction of image dislocations represents 
exactly a free surface because the traction at the surface is zero. A more precise treatment of a 
free surface has been provided by Willis et al [46]. Our main objective here is to compare MD 
and continuum models so that the treatment remains precise, provided we use an MD 
configuration equivalent to the mirror imaged surface (such as the dislocation dipole 
configurations as will be shown below).

Referring to Fig. 5-2, the energy change due to the formation of the dislocation array below 
the surface is half of the work done to separate the two dislocation arrays from 2y = 0 to 2y = 2h. 
Note that the zero initial dislocation separation distance 2y = 0 represents a dislocation-free 
system because positive and negative dislocations lie exactly on top of each other and therefore 
they annihilate. Hence, the initial dislocation energy Einitial = 0. The y component of the attractive 
force between two opposite dislocations i and j offset in the x and y directions by (i-j)Sf and 2y is 
expressed as [61]
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According to Eq. (2), the work to overcome this force for separating dislocations i and j from 2y 
= 0 to 2y = 2h (x separation fixed) is
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Note that when i = j, the x- coordinates of dislocations i and j are the same so that the integration 
cannot be performed from 2y = 0 because the dislocation separation distance is zero leading to 
the overlap of dislocation cores. Instead, integration is performed from 2y = 2r0 to 2y = 2h, and 

the contribution from 2y = 0 to 2y = 2r0 is treated as dislocation core energies 2Ec =   
02

0
2

r

ii yf . 
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The total work done to separate the two dislocations arrays from 2y = 0 to 2y = 2h is 
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(here we use the symmetry of j < 0 and j > 0). We then have
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where coth, sinh (and cosh to be referred below) are hyperbolic functions, and f(x) is defined as

         12ln2sinhln2coth2  xxxxxf  (6)

Note that f(x) approaches exactly 0 when x  0, and f(x)/(4x) approaches exactly 1 when x  
. A more direct comparison of f(x) and 4x is shown in Fig. 5-3, It can be seen from Fig. 5-3(a) 
that f(x) can be pretty well approximated by 4x as the relative difference between f(x) and 4x 
is small. However, this approximation is associated with an absolute difference between f(x) and 
4x that does not reduce with increasing x as can be seen from the finer-scale plot shown in Fig. 
5-3(b). As will be demonstrated below, approximation of f(x) with 4x can introduce errors. 
Regardless, if f(x) is approximated by 4x, we have
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Figure 5-3. Comparison between f(x) and 4x in (a) a rough and (b) a fine scale. 

Assume that the material is subject to a strain of  prior to the formation of misfit 
dislocations to mimic the mismatch. Due to the uniform strain , the initial dislocation-free 

system has a strain energy of E0 = 
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dislocation (the z- dimension is assumed to be unity). It is important to note that here we use the 
film elastic properties Gf and f to replace the apparent elastic properties of the film + substrate. 
This is because the strain energy is clearly caused by the strain in the film whereas dislocation 
energy comes from the strain fields in both film and substrate. The uniform strain also exerts a 
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when the dislocation moves from the surface to a distance of h below the surface. The work 
consumes the system energy, resulting in the reduction of system energy of E = 
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2 . The total system energy per unit of surface area can be defined as 

S
EEEs


 0 , where S is dislocation spacing, which equals surface area per dislocation as 

our z- dimension is unity. It is extremely important to realize that the Sf assumed in our 
derivation is the unstrained length of the film, but here S stands for the dislocation spacing in the 
deformed state (the same as the rigid substrate) so that the energy is normalized by the common 
definition of the surface area. Because S and Sf satisfy S/Sf = 1 + , significant error may occur if 
S is incorrectly used for Sf when  is large.

Based on  defined by Eq. (7), and E0, E as discussed above, the energy per unit of 
surface area can be written as
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G  can be viewed as a correction for the elastic inhomogeneity of the system. 

It can be seen from Eq. (8) that if we ignore the dislocation core energy, and set b = bf,  = 1 and 
Sf = S, Eq. (8) reduces exactly to Eq. (1) where the parameter bf/ can be considered as 
equivalent to r0. For practical applications, the film length Sf is replaced by S/(1+) leading to
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Eqs. (8) and (9) are based on the approximate dislocation energy expression Eq. (7). If we 
use a more accurate dislocation energy expression Eq. (5), Eq. (9) becomes
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where f(x) is defined by Eq. (6). This result is similar to those of Willis et al [46,59,60], although 
subtle difference must exist as our expression is precise for a mirror boundary whereas theirs are 
for a free surface.

Our derivation gives some useful insights. In particular, we find from Eq. (7) that the 

dislocation energy (ignoring the core part) is 
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 is dislocation self-energy because it is equivalent to Eq. (7) in the isolated 

dislocation condition Sf  . The additional term 
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hGb
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2

 then represents the interactive 

energy of dislocations. It can be seen that for a homogeneous material system (i.e., the system 
contains dislocations but the mismatch strain  = 0), Eq. (9) correctly reduces to dislocation 
energy per unit of surface area, i.e., Eq. (7) divided by S. Furthermore, Eq. (9) indicates that the 
energy of the homogeneous system is a summation of dislocation core energy, dislocation self-

energy, and a strain energy of VE d  2

2
1

 , where 



1
2GE  is the apparent Young’s modulus, 

f
d S

b
  is the strain caused by the dislocations, and fShV   is the volume per dislocation. 
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This is consistent with the notion that the overlap of the elastic field of an array of edge 
dislocations essentially leads to a uniform strain d  in the far field.

XVIII. CONTINUUM ENERGY OF DISLOCATION DIPOLES UNDER 
PERIODIC BOUNDARY CONDITIONS

As described above, accurate molecular dynamics simulations of dislocations must be 
performed using dipole configurations under the periodic boundary conditions. To establish a 
link between MD simulations and continuum calculations, we now derive a continuum energy 
expression for dislocation dipoles in a cell with periodic boundary conditions. In this case, the 
dislocation dipoles are essentially an infinite array, as shown in Fig. 5-4(a), where Lx and Ly 
represent, respectively, the periodic length in the x- and y- directions, and d is the dipole 
separation distance. Furthermore we can assume that the dipole separation, d, satisfies 0  d  
Ly because the energy periodically repeats outside this range.
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Figure 5-4. (a) Dislocation dipoles under periodic boundary conditions; (b) interaction of a positive dislocation with all 
the negative dislocations in the same column i = 0; and (c) interaction of the positive dislocation with all the 
negative dislocations in a different column i  0. The unit cell is framed in black.

To derive an energy expression for a dislocation array, we can imagine that initially the 
positive dislocations ( ) lie exactly on top of the negative dislocations ( ). Hence, the 
dislocations annihilate so that the initial energy Einitial is zero. The dislocation energy can then be 
calculated from the work done to move the positive dislocations away from the negative 
dislocations. Because dislocations are identical, we only need to consider the work to move one 
positive dislocation away from the negative dislocation array along the y direction. Since the 
work is linearly additive, we consider separately the interaction between the positive dislocation 
and all the negative dislocations in the same column (i = 0) as shown in Fig. 5-4(b), and the 
interaction between the positive dislocation and all the negative dislocations in a different 
column (i  0) as shown in Fig. 5-4(c). 

According to Eq. (4) and Fig. 5-4(b), the work to separate two opposite dislocations from an 
original separation distance y1 to a final separation dislocation y2 can be calculated as
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Assume that the positive dislocation moves from an initial location at y = 0 to a final location at 
y = d. For the negative dislocation “A” shown in Fig. 5-4(b), the original separation distance 
(with the positive dislocation) is y1 = 0, and the final separation dislocation is y2 = d. For the 
negative dislocation B, the original separation distance is y1 = Ly, and the final separation 
distance is y2 = Ly – d. For other negative dislocations below A, the original separation 
distance is y1 = j· Ly, and the final separation is y2 = j· Ly + d (j = 1, 2, …, ). For other 
negative dislocations above B, the original separation distance is y1 = (j+1)· Ly, and the final 
separation is y2 = (j+1)· Ly – d (j = 1, 2, …, ). Note that for all dislocations below A or above 
B, the work can be calculated normally because the dislocation separation distances will never 
approach zero for 0  d  Ly. For dislocations A and B, the work must exclude the overlapped 
region of dislocation cores (total size of 2r0) whereas the excluded energy is replaced by 
dislocation core energies (total energy of 2Ec for two cores) as described above. Hence, the total 
work to move the positive dislocation against all negative dislocations in the same column (i = 0) 
from an initial position at y = 0 to a final position at y = d can be expressed as
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Because the work increases the energies of both positive and negative dislocations, energy per 
dislocation is half of the work. We then have an energy contribution due to a positive dislocation 
interacting with all negative dislocations in the same column:
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The summation of Eq. (13) has a closed form of

  






















































 


























yy

y

y

y
c L

dGa
L

dL
Ga

rL
dL

r
dGbEE 2lnln

2
ln

2
ln

14 00

2

0 
(14)

where Ga is the Euler gamma function.
According to Eq. (3) and Fig. 5-4(c), the work to separate two opposite dislocations that are 

not in the same column from an initial y- component of separation distance y1 to a final y- 
component of separation distance y2 can be calculated as
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Following the same approach used above, the total work to move the positive dislocation from y 
= 0 to y = d can be expressed as
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The energy contribution per dislocation is half of the work so we have

 

   
   

    
    

 
   

 
   

 
    

 
    
































































































0

22

2

22

2

22

2

22

2

22

22

22

22

2

1

1

1

1
ln

2
1ln

2
1

14 j

yx

x

yx

x

yx

x

yx

x

yx

yx

yx

yx

i

LjLi
Li

dLjLi
Li

LjLi
Li

dLjLi
Li

LjLi

dLjLi

LjLi

dLjLi

GbE


(17)

Eq. (17) has a closed form
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The dislocation energy under the periodic boundary condition is then
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We could not find a closed form for Eq. (19). However, Ei is a positive, rapid decreasing 
monotonic function of i. As a result, Eq. (19) converges well to an accurate value when a 
sufficiently large number of terms are included. 
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XIX. MD GEOMETRY OF STRAIN RELAXATION, AND CALCULATIONS 
OF LATTICE AND ELASTIC CONSTANTS OF OUR MODEL SYSTEM

XIX.1 Geometry of the Strain Relaxation Problem
We first describe the geometry of our strain relaxation problem because it determines the 

relevant lattice and elastic constants impacting the strain relaxation. As a generic example, here 
we use the Cd-Te-S Stillinger-Weber potential [60] in our MD simulations to explore the growth 
of CdTe on a thick (i.e., non-compliant) CdS substrate. Note that, the particular materials are not 
important, not only because we are studying a 2D problem, but also because our objective is to 
compare MD and continuum models. Thus, any lattice mismatched systems will be sufficient. 
The geometry of the periodic system is shown in Fig. 5-5(a), where x-, y-, and z- are aligned 

60 X. W. Zhou, D. K. Ward, J. E. Martin, F. B. van Swol, J. L. Cruz-Campa, and D. Zubia, Phys. Rev. B, 88, 085309 (2013).
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with [101], [010], and [ 011 ] respectively, and the (010) CdTe/CdS interface is parallel to the x-z 
plane. For the 2D case, we assume that the z- dimension of the system is fixed at the equilibrium 
lattice size of CdS, and hence, strain relaxation only occurs in the x- direction. To create misfit 
dislocation dipoles, some atomic planes (with a total thickness of a Burgers magnitude b), as 
indicated by the white line in Fig. 5-5(b), are removed. It can be seen that under the periodic 
boundary conditions, the geometry in Fig. 5-5(b) is exactly the same as that shown in 4(a).

Figure 5-5. (a) MD Geometry of the CdTe on CdS structures where CdS is fixed in the x- and z- directions to the 
equilibrium bulk sizes to mimic a very large CdS thickness. The dotted-dashed line mimics the “mirror” 
surface shown in Fig. 5-2; and (b) creation of misfit dislocation dipoles (dislocation and its image) by 
removing planes within a thickness of Burgers vector magnitude b. Note that geometry shown in (b) is used 
for both inhomogeneous (CdTe/CdS) and homogeneous (pure CdTe and pure CdS) systems. The 
homogeneous systems are for dislocation energy calculations, where only the z- direction is fixed to the 
equilibrium bulk size of CdS and both x- and y- directions are relaxed.

XIX.2 MD Calculations of Lattice Constants
Molecular statics calculations of CdTe and CdS bulk crystals (i.e., apply the periodic 

boundary conditions) indicated that the CdS and CdTe lattice constants at 0 K are 5.835 Å and 
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6.478 Å respectively. Performing MD simulations at 300 K for 4 ns to equilibrate the systems, 
and another 8 ns to calculate average quantities, we found that the CdS and CdTe equilibrium 
lattice constants at 300 K are 5.847 ± 0.000 Å and 6.491 ± 0.000 Å, respectively. Here the 
average lattice constants obtained at various times are used to estimate the statistic deviation of 
the result. It can be seen that the MD results averaged over the 8 ns span gives highly converged 
results (essentially 0 standard error up to at least the third decimal point).

The lattice constants determined above are for the 3D systems. For our 2D case where the 
orientation is shown in Fig. 5-5 and the z- dimension is fixed at the 3D CdS size (i.e., d  011

= 

5.847/ 2  ), the systems may deviate from the cubic symmetry especially for CdTe where the z- 
dimension is now highly compressed. As a result, the x- and y- dimensions may correspond to 
different lattice constants. A second set of MD simulations are performed to calculate the 
equilibrium CdTe and CdS lattice constants in the x- direction under the 2D condition, again 
using an equilibration time of 4 ns and an averaging time of 8 ns. The lattice constant in the y- 
direction is not explored because it is irrelevant to the lattice mismatch. We find that when the z- 
dimension is constrained at the d  011

= 5.847/ 2 , the 300 K CdS and CdTe lattice constants in 

the x- direction (from a = 2 d  101 ) change to 5.769 ± 0.000 Å and 6.557 ± 0.000 Å, 
respectively. This means that under the 2D condition, our CdTe/CdS system corresponds to a 
lattice mismatch of  = (5.769 - 6.557) / 6.557 -12.0177 %.

XIX.3 C. MD Calculations of Young’s Modulus
With the orientation given in Fig. 5-5 and the z-dimension fixed at the 3D CdS size, the 2D 

CdS and CdTe bulk crystals (i.e., apply the periodic boundary conditions) are uniaxially 
deformed in the x- direction to various strains -0.13 < xx < 0.18, where positive strains means 
tension and negative strains indicates compression. Using an equilibration time of 4 ns and an 
averaging time of 8 ns, similar 2D MD simulations as described above are performed to calculate 
strain energy density E of both CdS and CdTe as a function of xx (here the x- dimension is also 
fixed leaving only the strain in the y- direction relaxed). The results are shown in Fig. 5-6, where 
red and blue colors distinguish CdS and CdTe. The dashed lines are fitted to linear elastic theory 
E = ½ E· 2

xx for a small strain range near equilibrium (xx = 0). The solid lines are also fitted to 
E = ½ E· 2

xx  except that the positive and negative strain ranges are fitted with separate Young’s 
modulus E. Fig. 5-6 shows that the strain energy obtained from MD simulations approximately 
satisfies the linear elasticity relation E = ½ E· 2

xx  only within a very small strain range. 
However, if different Young’s moduli are used for tensile and compressive loads, then the E = 
½ E· 2

xx  relation can accurately describe the elastic behavior of the material over a large strain 
range. Because the linear elastic theory is based on a single elastic constant for both tension and 
compression, error may arise. For the 2D case studied here, we find that the CdS Young’s 
modulus is E = 0.4323 eV/ Å3 for positive strains and E = 0.9399 eV/ Å3 for negative strains, and 
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the CdTe Young’s modulus is E = 0.2738 eV/ Å3 for positive strains and E = 0.4358 eV/Å3 for 
negative strains. If a single elastic constant is assumed, then we found E = 0.8724 eV/Å3 for CdS 
and E = 0.3071 eV/Å3 for CdTe.

Figure 5-6. Strain energy density of CdS and CdTe.
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XX. MD CALCULATIONS OF CDTE AND CDS DISLOCATION DIPOLE 
ENERGIES UNDER PERIODIC BOUNDARY CONDITIONS

XX.1 A. Effect of System Size
Based on the orientation shown in Fig. 5-5, it is convenient to use the number of atomic 

planes nx, ny, and nz to represent the dimensions in the three coordinate directions nx =  101/ dLx , 

ny =  100/ dLy , and nz =  101/ dLz , where  101d  and  100d  are the spacing between the 

corresponding atomic planes {hkl}. For the 2D case, only a small dimension in the z- direction is 
needed, and hence we use a constant nz = 6 (Lz ~ 25 Å) throughout our study. With that given, 
we first explore the effect of system size on dislocation dipole energy using CdS as an example. 
Dislocation dipoles are created by removing the corresponding planes as shown in Fig. 5-5(b). 
Two dislocation dipole distances d = 40  100d Å) and d = 60  100d Å) are studied. 

For each dislocation dipole distance, 10 system dimensions corresponding to nxny = 2486, 
2692, 2898, 30104, 32110, 34116, 36122, 38128, 40134, and 42140 are used. Here 
the smallest system nxny = 2486 corresponds to LxLy ~ 100500 Å2, whereas the largest 
system nxny = 42140 corresponds to LxLy ~ 170820 Å2. With the chosen system 
dimensions, Ly and Lx roughly satisfy the relation Ly = 81.7 + 4.24 Lx.

MD simulations are performed at 300 K for 4 ns to equilibrate the systems, and another 16 
ns to calculate average energies of both perfect crystals and crystals containing the dislocation 
dipoles. If the energies for the perfect and the dislocated crystals are denoted as Ep and Ed, 
respectively, then the dislocation line energy is calculated as

z
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p
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d
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2

(20)

where Nd and Np are respectively total number of atoms in the dislocated and perfect systems 
(the ratio Nd/Np scales the perfect energy towards the same number of atoms in the dislocated 
system), and 2·Lz is the total length of the dislocation dipole. The results of the MD simulations 
are shown in Fig. 5-7 as the circular data points, where the lines are calculated using Eq. (19). 
Note that Eq. (19) involves some parameters such as dislocation core radius r0, core energies Ec, 

and the Young’s modulus 



1
2GE . As discovered above, even pure CdS exhibits different 

elastic constants in tensile and compressive regions around the edge dislocation. Hence, the 
Young’s modulus E  is an apparent property not yet known. All three parameters, r0, Ec, and E, 
are not fitted to the MD data in Fig. 5-7, but are rather fitted to independent MD data to be 
described below. Hence, the excellent agreement between the MD data and the line is a strong 
validation of the consistence between the continuum theory and the MD simulations.
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Figure 5-7. CdS dislocation line energy as a function of system dimension.

For the d ~Å case, both the data points and line in Fig. 5-7 indicate a monotonically 
decreasing dislocation line energy with system dimension. Considering that the MD data is 
highly converged and the line represents a continuum model, this monotonic trend is real. 
Additional simulations with an order of magnitude increase in the dimensions confirmed that 
dislocation line energies are significantly lower than the ones shown in Fig. 5-7. Intuitively, 
dislocation energy reaches maximum when opposite dislocations are most widely separated so 
that their elastic fields least overlap (cancel). Under the periodic boundary condition, the widest 
dislocation separation occurs when dislocation dipole distance d reaches Ly/2. When the spacing 
d between a dislocation and one of its neighbor reaches d > Ly/2, the spacing between this 
dislocation and its other neighbor becomes d’ = Ly – d < Ly/2. Based on this recognition, when d 
= 230 Å, the maximum dislocation energy occurs at Ly = 460 Å, which gives Lx = 89 Å 
according to our constraint of the Ly vs. Lx relation. This Lx is lower than the dimension range 
explored in Fig. 5-7, and hence the dislocation energy for the d = 230 Å case is seen to 
monotonically decrease in Fig. 5-7. When d = 350 Å, the maximum dislocation energy occurs at 
Ly = 700 Å, which gives Lx = 146 Å. Indeed, the maximum dislocation energy for the d = 350 Å 
case seems to occur between Lx = 140 Å and Lx = 150 Å.

For comparison, molecular statics simulations are also performed to calculate the 
dislocation energies for the case with dipole distance d = 40  100d Å). We found that the 
MS data is very scattered. Especially at large system dimensions, the scatter is so large that the 
MS data is essentially useless for validating continuum models. We emphasize that we have tried 
various approaches to help more thoroughly minimize the energy in our MS simulations, 
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including many alternating MD and MS steps at various MD temperatures. Hence, it is clear that 
MS simulations cannot lead to unique results for large systems (e.g., the largest system explored 
here involves 140,160 atoms) containing defects. On the other hand, the long time (16 ns) 
averaged MD results are extremely smooth. Without such high quality MD data the present work 
would not have been possible. 

XX.2 B. Effect of Dislocation Dipole Distance
Now we focus on exploring dislocation energy as a function of dipole distance at fixed 

system dimensions of nxny = 32110. The same MD methods as described above are used to 
calculate the dislocation energies of the CdS and CdTe 2D crystals at 10 different dislocation 
dipole spacing of d = 10  100d , 20  100d , 30  100d , 40  100d , 50  100d , 60  100d , 70  100d , 80 

 100d , 90  100d  and 100  100d . The results are shown in Fig. 5-8 using the circular data points. 
The MD data is also used to fit the unknown parameters in the continuum expression, Eq. (19), 
namely, dislocation core radius r0, core energies Ec, and the apparent Young’s modulus E = 

1
2G . The fitted parameters are shown in Table 5-1. Note that Young’s moduli of CdS and CdTe 

have also been determined from independent MD simulation of uniaxial deformation as 
described above. The Young’s moduli from the uniaxial deformation simulations are included in 
Table 5-1. It can be seen that the Young’s modulus derived from the dislocation energy 
simulations is between the compressive and tensile Young’s moduli determined from the 
deformation simulations, confirming the consistence of the calculations. We point out that 
strictly speaking, there are no unique solutions for dislocation core radius and energy. This is 
because by concept, any radius can be taken as the core radius as long as the materials beyond 
this radius follow the linear elastic theory. Obviously a large radius always satisfies this 
condition. Practically, a small core radius is preferred to minimize the effect of ignoring the core 
in the classical elastic theory. Ideally, one would constrain the core radius to progressively 
smaller values and fit the other parameters. The smallest radius that yields a satisfactory fit can 
be taken as the ideal radius. Our core radii from un-constrained fits are acceptable as they are not 
too big, and both our core radii and core energies are consistent with the values typically 
assumed in literature [61]. Most importantly, we do not ignore the core contribution in our model 
so that even a big radius does not really introduce a big error.

The fitted continuum curves are included in Fig. 5-8 using lines. An excellent agreement 
between MD and continuum calculations is obtained. This means that even if the system is 
elastically inhomogeneous, the use of a single elastic constant between the two (tensile and 
compressive) elastic constants can still be extremely accurate. This also means that the 
rigorously derived continuum model incorporates the physics needed to describe the dislocation 
dipole energy under the periodic boundary conditions. Note that the lines in Fig. 5-7 are also 
calculated with the same set of parameters fitted for Fig. 5-8. While the agreement achieved in 

61 E. B. Webb III, J. A. Zimmerman, and S. C. Seel, Math. Mech. Solids, 13, 221 (2008).
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Fig. 5-8 may be partly attributed to the parameter optimization, the agreement achieved in Fig.5-
7 convincingly verifies the transferability of the model.

Figure 5-8. CdS and CdTe dislocation energies as a function of dislocation dipole distance for given system 
dimensions Lx and Ly. 

Table 5-1. Dislocation core radius r0 (Å), core energy Ec (eV/Å), and apparent Young’s modulus E (eV/Å3) 
as derived from MD dislocation energy and MD uniaxial deformation simulations.

dislocation energy simulations Uniaxial deformation simulations
E = 2G/(1-)

material
r0 Ec E = 

2G/(1-) compression tension overall
CdS 9.3141 1.7748 0.6894 0.9399 0.4323 0.8724
CdTe 12.4596 1.2984 0.3921 0.4358 0.2738 0.3071

Fig. 5-8 indicates that dislocation energy as a function of dislocation dipole distance d 
reaches maximum and is symmetric at d = Ly/2. This can be easily understood because under the 
periodic boundary conditions, our dislocation dipole geometry can be described by Fig. 5-4(a). 
Increasing the dipole distance is equivalent to moving the positive dislocation array in the y 
direction while keeping the negative dislocations fixed. Each positive dislocation can be viewed 
as forming two dipoles, one with a negative dislocation below at a distance d, and the other one 
with a negative dislocation above with a distance Ly - d. Hence, the overall energy is symmetric 
with the symmetric point occurs at d = Ly/2.
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XXI. EXAMINATION OF CONTNUUM MISFIT DISLOCATION THEORY 
USING MD SIMULATIONS

Figs. 5-8 show that MD simulations produce exactly the continuum strain energies and 
dislocation energies. If our derivation of the continuum energy expression Eq. (10) of the lattice 
mismatched system is correct, then there are no reasons that Eq. (10) would not match the MD 
simulations. MD simulations are therefore carried out to calculate energies of lattice mismatched 
systems. Using the geometry shown in Fig. 5-5(a), CdS crystals with 32  101  planes in the x- 
direction, 110  010  planes in the y- direction, and 6  011  planes in the z- direction, are created. 

As described above, the x- and z- dimension are fixed at the CdS sizes (i.e.,  101d = 5.769/ 2 , 

and  011d  = 5.847/ 2 ). The middle region of the CdS crystal of various thicknesses, d = 2h = 10 

 010d , 20  010d , 30  010d , 40  010d , 50  010d , and 60  010d , are changed to CdTe. Misfit 
dislocation dipoles are then created by removing extra planes in the CdTe region as shown in 
Fig. 5-5(b). Zero, one, two, and four dislocation dipoles are all simulated. If no dislocation 
dipoles are created, then dislocation spacing S = infinity. If the system contains m dislocation 
dipoles, the dislocation spacing is Lx/m. Hence, creation of 1, 2, and 4 dislocation dipoles give S 
= 32  010d  (130 Å), 16  010d  (65 Å), and 8  010d  (33 Å) respectively. 

MD simulations are performed at 300 K for 8 ns to equilibrate the systems, and another 16 
ns to calculate average energies. The energies obtained from MD simulations include cohesive 
energies of atoms, and extra energies from the CdTe/CdS interfaces. Both energies are not 
included in Eq. (10), and hence need to be removed. Assume that the number of Te and S atoms 
in the system are NTe and NS respectively, then the number of Cd atoms NCd = NTe + NS. If total 
energy of the system is Etot, the cohesive energies (per atom) of CdTe and CdS bulk crystals are 
ECdTe and ECdS respectively, and the interfacial energy is , then the MD version of Eq. (10) 
becomes 

zx

zxCdSSCdTeTetot
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where the factor 2 in the numerator 2LxLz accounts for two interfaces, and the factor 2 in the 
denominator 2LxLz means that we only calculate half of the energy because the MD geometry 
shown in Fig. 5-5(a) includes both the CdTe/CdS system and its mirror image (above the dotted-
dashed line), whereas Eq. (10) does not include the image contribution. In Eq. (21), only the 
interfacial energy, , is unknown. Hence,  is first determined. For convenience of using MD 
data, Eq. (11) is first rewritten as
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where Ef is the compressive Young’s modulus of the film (CdTe) and CdTe is atomic volume of 
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CdTe bulk. For the dislocation-free systems, Eq. (22) becomes
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  (23)

Equating Eqs. (21) and (23), we obtain an interfacial energy of  = 0.01766 eV/Å2 from the MD 
data for the dislocation-free systems.

When dislocations are present, Eq. (22) involves three unknown parameters r0, Ec, . The 
dislocation core radius and core energy determined above are for homogeneous CdTe and CdS 
compounds, and it is reasonable that these parameters changed in the inhomogeneous system.  
reflects the deviation of the apparent elastic properties of the mixed structure as compared to the 
elastic properties of the film (CdTe). As we discussed above, large core radius always satisfies 
linear elastic theory, and hence we set r0 to the core radius of CdTe, r0 = 12.4596 Å, which is 
larger than that of CdS. Under these conditions, only Ec and  are unknown. We now compare 
our modified model, Eq. (22) or equivalently, Eq. (10), and the old model, Eq. (1), in terms of 
matching the MD data.

 The results for the energy as a function of film thickness h at different dislocation spacings, 
as obtained from the MD simulations and the conventional model, are first examined in Fig. 5-
9(a). Note that here the continuum model Eq. (1) is adjusted by including the dislocation core 
energy of CdTe. This improves the agreement of the continuum model with the MD data. It can 
be seen from Fig. 5-9(a) that for the dislocation free systems (S = infinity), and the systems 
where misfit dislocations almost exactly cancel the mismatch strain (i.e., the S = 33Å where the 
energy becomes almost independent of the film thickness h), the agreement between the 
continuum and the MD models are very good. However, for the films that contain dislocations 
but the residual mismatch strain is not zero, the continuum model deviates from the MD model 
pretty significantly.
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Figure 5-9. Comparison between the MD and continuum models: (a) the old continuum model Eq. (1) plus dislocation 
core energy; (b) Eq. (1) with the parameters bf and S replaced by b and Sf, which is equivalent to the 
simplified new model Eq. (8) or (9); (c) modified model Eq. (22) or (10) without any optimization, i.e.,  = 1, 
and Ec = 1.2984 eV/Å (CdTe value); and (d) modified model Eq. (22) or (10) with optimized parameters  = 
0.8956 and Ec = 1.8726 eV/Å.

Step by step, we now replace the Burgers magnitude bf and dislocation spacing S in Eq. (1) 
by b and Sf respectively according to their correct definitions discovered in this work. This is 
essentially the same as the simplified new model as described by Eq. (8) or (9). Similar MD and 
continuum data is shown in Fig. 5-9(b). It can be seen that significant improvement is achieved 
when dislocations are not too close, say S > 65 Å.

Now we examine the more accurate model, Eq. (22) or equivalently Eq. (10). Eq. (22) 
involves two parameters and Ec. We first test the validity of the model without fitting these two 
parameters, i.e., we simply set  = 1 and Ec to be the CdTe value of 1.2984 eV/Å. The results 
obtained from the MD simulations and continuum calculations are shown in Fig. 5-9(c). Clearly, 
the new model further improves over the model shown in Fig. 5-9(b). The good agreement 
achieved at  = 1 partially supports the conventional model which only uses elastic properties of 
the film. From Eq. (22) or (10), the elastic inhomogeneity only affects dislocation energy, but not 
the uniaxial mismatch strain energy in the film. It is therefore not surprising that the results are 
primarily determined by the elastic properties in the film. This problem, however, needs to be 
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further explored because coincidently, Table 5-1 shows that the compressive Young’s modulus 
of CdTe is very close to the tensile Young’s modulus of CdS (in our system, CdTe is subject to 
compression and CdS is subject to tension). This suggests that our system is elastically 
homogeneous. We point out that when calculating dislocation energies of CdS and CdTe in 
section V, we also have an elastic inhomogeneous problem. Edge dislocations always have one 
region in tension and another in compression so that they are subject to different elastic 
properties. The elastic inhomogeneity plays an obvious role because Table 5-1 indicates that the 
apparent Young’s moduli determined from dislocation calculations are somewhere between the 
compressive and tensile Young’s moduli. Yet the moduli are not particularly close to either. 
Nonetheless, the conditions are different as we do not fix the x- dimension of the material there, 
whereas here, we fix the x- dimension of CdS so that the effective thickness of the CdS substrate 
is much larger.

Without fitting any parameters, Fig. 5-9(c) strongly validates our new continuum model. 
Now we fully optimize our model by fitting  and Ec to the MD data. Our optimization leads to  
= 0.8956, and Ec = 1.8726 eV/Å. This fully optimized new continuum model is compared with 
the MD in Fig. 5-9(d). Here the lines calculated from the continuum model are almost 
indistinguishable from the MD data, convincingly validating the legitimacy of making  and Ec 
parameters flexible. In particular, at very small film thickness ~70 Å, the MD energy trends of 
different dislocation spacings are exactly reproduced by the continuum model. This is improved 
over Fig. 5-9(c). Accuracy at small film thickness is important for accurately determining the 
critical film thickness for dislocation formation. For example, Fig. 5-9 indicates that energies of 
the dislocation-containing systems are lower than those of dislocation-free systems even at the 
smallest 2h value explored (~70 Å), indicating that the critical thickness h is below 35 Å.

It is worth noting that the condition used in MD is not exactly the same as that used in the 
continuum model. In particular, in order to mimic the problem of a film on a semi-infinite 
substrate, we do not address the interaction of dislocations in different periodic MD cells along 
the y- direction. At the same time, we effectively mitigate the effect by fixing the MD x- and z- 
dimensions to the CdS sizes to keep the uniaxial strain field from propagating across the CdS 
periodic boundaries. It would be interesting to release the fixed boundary condition while 
significantly increasing the y- length of the CdS substrate (say two orders of magnitude). 
Unfortunately, this would require enormous computing resources. One significant impact of our 
work, however, is the creation of a robust MD approach that can guide the development of a 
continuum model for mismatched nanostructures, where the continuum theories are relatively 
immature, but the MD can more precisely represent the real structures. This means that the future 
continuum models for new misfit structures (e.g., core/shell particles) can be tuned and improved 
as they are being developed, because MD validation can be performed step by step by the same 
group of authors within a time frame much faster than performing experiments.

While being more accurate, our model is just as easy to apply as the old model. In fact, the 
only complexity introduced in Eq. (22) or Eq. (10) as compared to Eq. (1) is the one-argument 
function f(x)/(4x) where x = (1-)h/S. As for the unknown parameter , the condition  = 1 is a 
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reasonable approximation. It simply means that the strain energy is predominantly determined by 
the elastic properties of the film due to the fact that uniaxial strain energy is proportional to the 
square of strain and the strain in the substrate is assumed to be zero. As for the unknown 
parameter core energy Ec, since the old model neglects this term, any reasonable value is likely 
to improve the results. Regardless, the robust MD approach demonstrated here can always be 
used to determine these parameters. In that case, our new continuum model can be made 
indistinguishable from the MD methods. Finally, we emphasize that the studies presented in this 
paper are rigorous only for mirror imaged interfaces rather than true surfaces. We are currently 
applying the same approach as established here to examine the case of free surfaces.

XXII. CONCLUSIONS
A systematic study combining continuum calculations and MD simulations has been 

performed to examine the misfit dislocation formation and strain relaxation problem. The 
numerous new physics discovered are useful for future researches on lattice mismatched systems 
where defect density and strain relaxation critically determine the performance. These are 
summarized below:

1. Time averaged MD simulations can produce much more converged results (essentially zero 
standard deviation considering three decimal points based on an average time of ~10 ns) 
than molecular statics, which is currently the most widely used method to calculate static 
properties of material but is constrained to 0 K temperature, small systems, and defects that 
do not relax to multiple local minimum energy configurations. This enables MD to be 
confidently used to validate continuum theories, which would be otherwise impossible;

2. When separate elastic constants are used for tensile and compressive deformation, the 
“linear elastic theory” can remain accurate for a much larger strain range than if a single 
elastic constant is used for both tensile and compressive deformation;

3. Continuum expressions of energies have been rigorously derived for both lattice 
mismatched systems and dislocation dipole arrays. The physics gained during the derivation 
of the former expression allow the continuum model of misfit dislocation formation to be 
improved. The latter expression allows the dislocation core radius and the core energy to be 
accurately calculated from MD simulations using exactly the same dipole array 
configurations without having to impose the continuum boundary condition – an 
approximation always used in the past to extend the MD length scales;

4. When applying Eq. (1) to homogeneous material (i.e., the system has dislocations but 

mismatch strain  = 0), the energy reduces to     
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confirms that this indeed corresponds to the dislocation energy;
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5. Lattice mismatched systems contain at least two elastic constants from the two materials. 
Even one material may involve two elastic constants if both compressive and tensile stresses 
are encountered (e.g., around an edge dislocation). Our work confirms that the conventional 
continuum theory, which typically uses only one elastic constant, can in fact remain 
accurate if an apparent elastic constant somewhere between the two elastic constants is used;

6. The S distance used in the continuum theory should not be measured in the deformed 
system, but rather measured in the unstrained film. The magnitude of Burgers vector should 
not be measured in the film, but rather measured in the substrate. Misuse of either of these 
parameters causes significantly error when the lattice mismatch of the system is large. Our 
improved model, Eq. (22) or (10), accounts for this effect, as well as dislocation core energy 
and elastic inhomogeneity effects. When a more accurate dislocation energy term is used 
and the parameters optimized, the continuum calculations using Eq. (22) or (10) are 
essentially indistinguishable from the MD simulations; 

7. The robust approach outlined here provides a theoretical means (MD) to quickly validate 
future continuum models for new misfit structures (e.g., core/shell particles). The 
advantages cannot be overstated: the continuum model can be tuned and improved as it is 
being developed because the MD validation can be performed step by step by the same 
group of authors, rather than the publishing a continuum model and then correcting it after 
follow-on experimental data is created.
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