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II-VI quantum dots, such as CdSe and CdTe, are attractive as downconversion materials for
solid-state lighting, because of their narrow linewidth, tunable emission. However, for these
materials to have acceptable quantum yields (QYSs) requires that they be coated with a II-VI shell
material whose valence band offset serves to confine the hole to the core. Confinement prevents
the hole from accessing surface traps that lead to nonradiative decay of the exciton. Examples of
such hole-confined core/shell QDs include CdTe/CdSe and CdSe/CdS. Unfortunately, the shell
can also cause problems due to lattice mismatch, which ranges from 4-6% for systems of
interest. This lattice mismatch can create significant interface energies at the heterojunction and
places the core under radial compression and the shell under tangential tension. At elevated
temperatures (~240°C) interfacial diffusion can relax these stresses, as can surface
reconstruction, which can expose the core, creating hole traps. But such high temperatures favor
the hexagonal Wurtzite structure, which has lower QY than the cubic zinc blende structure,
which can be synthesized at lower temperatures, ~140°C. In the absence of alloying the
core/shell structure can become metastable, or even unstable, if the shell is too thick. This can
cause result in an irregular shell or even island growth. But if the shell is too thin thermally-
activated transport of the hole to surface traps can occur. In our LDRD we have developed a
fundamental atomistic modeling capability, based on Stillinger-Weber and Bond-Order
potentials we developed for the entire II-VI class. These pseudo-potentials have enabled us to
conduct large-scale atomistic simulations that have led to the computation of phase diagrams of
II-VI QDs. These phase diagrams demonstrate that at elevated temperatures the zinc blende
phase of CdTe with CdSe grown on it epitaxially becomes thermodynamically unstable due to
alloying. This is accompanied by a loss of hole confinement and a severe drop in the QY and
emission lifetime, which is confirmed experimentally for the zinc blende core/shell QDs
prepared at low temperatures. These QDs have QYs as high as 95%, which makes them very
attractive for lighting. Finally, to address strain relaxation in these materials we developed a
model for misfit dislocation formation that we have validated through atomistic simulations.
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CHAPTER 1: AN ANALYTICAL BOND-ORDER POTENTIAL FOR
THE CD-TE-SE TERNARY SYSTEM

.  INTRODUCTION

Photoluminescent CdTe quantum dots (QDs) have the potential to replace rare earth
elements (Y, Eu, Tb, and Ce) for low-cost optoelectronic applications [1]. As QDs do not suffer
from the defects typically seen in lattice-mismatched films, they can lead to improved solid-state
lighting devices as compared to the multilayered structures (e.g., In,Ga; \N/GaN). To meet the
extreme lighting environments, these QDs must have sufficient photo- and thermal stability.
Increased stability can be achieved by coating the CdTe QD cores with CdSe shells, but these
lead to stresses that generate compositional and structural defects both at the heterojunctions and
within the lattice. Such defects serve as nonradioactive recombination centers that greatly reduce
the quantum yield. To stimulate innovative ideas for new designs of QDs that have both high
stability and quantum yield, predictive molecular dynamics (MD) simulations are needed for
exploring effects of atomistic scale characteristics (e.g., core radii, shell thicknesses, and graded
compositions at the interface) on the stresses and defects. For CdTe/CdS core/shell structures,
this requires a Cd-Te-Se interatomic potential that is transferrable to a variety of environments
including Cd, Te, Se elements, CdTe, CdSe, and CdTe;,Se, compounds, other possible solid
solutions, and various defects.

Specific metrics can be used to determine if an interatomic potential is transferrable. In
principle, a potential can be confidently said to be transferable when it satisfies simultaneously
two criteria: it captures property trends of a variety of pre-designated clusters, lattices, defects,
and surfaces as determined from density function theory (DFT) calculations, and it correctly
predicts the crystalline growth of ground state structures during high-temperature molecular
dynamics simulations of growth (e.g., vapor deposition). Note that due to Arrhenius equation, the
kinetics near the melting temperature can be increased by ten orders of magnitude or more as
compared to that at temperatures three to four hundred degrees below. High temperature
simulations, therefore, can mitigate the effects of the accelerated growth rates that are always
used in MD deposition simulations due to computational cost.

The deposition simulation criterion is extremely important because by randomly adding
adatoms on the growth surface, it not only tests a variety of surface configurations that cannot be
tested in other simulations, but also allows realistic defect configurations to be predicted from
natural material synthesis without any assumptions. In particular, if a potential prescribes a
wrong structure to have a lower energy than the equilibrium substrate, wrong configurations are
likely to be triggered during the deposition simulation resulting in unphysical amorphous growth.
Unfortunately, deposition simulation tests are not regularly used in past potential developments.

Developing a “growth simulation enabling” interatomic potential is far more challenging
than optimizing the potential against known structures because the former is required to address
unlimited structures not included in the training set. Particularly for higher fidelity potentials that
are typically more flexible for fitting a variety of structures, there are no obvious ways to ensure
the lowest energy for the ground state phase as compared to any other configurations not

! A. Mandal, J. Saha, and G. De, Opt. Mater., 34, 6 (2011).
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included in the training set. As a result, literature potentials, especially the more advanced ones,
often fail to predict the crystalline growth [2].

As an exception, Stillinger-Weber potentials [3] are empirically designed to give the lowest
energy for tetrahedrally bonded structures (e.g., diamond cubic, zinc-blende, or wurtzite crystals)
and so they can be easily parameterized to enable the crystalline growth of zinc-blende
semiconductor compounds. Due to this simplicity, SW potential is the most widely used
semiconductor potential. We found that the key for a multi-element SW potential to correctly
predict growth is to capture exactly the experimental structures, lattice constants, cohesive
energies, and bulk moduli of all stoichiometric compounds, the experimental cohesive energies
for the model elements, and the correct positive heat of mixing for all the non-stoichiometric
alloys. The literature SW potentials that failed in the growth simulations are likely not fitted to
these important properties. By fitting these properties, we developed a SW potential for the 1I-VI
elements Zn-Cd-Hg-S-Se-Te [4]. This potential is successfully used to simulate the crystalline
growth of two extremely challenging structures: a (Cdg2sZngesHgo.04)(Te 020S€0.1850.62) super
alloyed compound film on ZnS, and a ZnS/CdSe/HgTe compound multilayer on ZnS [4]. This is
also the only literature potential currently available for studying the Cd-Te-Se system.

Due to their fundamental limitations, SW potentials are not transferrable to many elemental
structures. This may not be a serious problem under stoichiometric compound conditions where
no elemental phases can form. To design CdTe/CdS core/shell structures with any compositions,
an interatomic potential that is more fundamental than SW potential is desired. The analytical
bond order potentials (BOP) we recently developed for the Cd-Te binary [5] and the Cd-Zn-Te [6]
ternary systems represent one example of such potentials. This BOP is uniquely attractive
because it is analytically derived from quantum-mechanical theories [7,8,9,10,11] and is
therefore fundamentally transferable to environments not explicitly tested. In particular, we
demonstrated [5,6] that our Cd-Zn-Te BOP captures the property (i.e. atomic energies, atomic
volumes, elastic constants, and melting temperatures) trends of a variety of structures including
clusters, bulk lattices, point defects, and surfaces, and can predict crystalline growth of both
elements and compounds during MD vapor deposition simulations. The potential has also been
used to capture crystalline growth from melt [12].

BOP is not trivial to develop. The present paper looks to develop a ternary BOP for Cd-Te-
Se. In addition to refining the parameters of the existing Cd-Te binary BOP, we require that our
Cd-Te-Se BOP additionally captures property trends of a large number of Se, Cd-Se, Te-Se, and
Cd-Te-Se clusters and lattices as compared with available experiments and density functional
theory (DFT) data. Most critically, we validate that this Cd-Te-Se BOP correctly predicts the
crystalline growth of Se element as well as CdSe and CdTe;.Se, compounds, and also correctly
predicts the growth of the experimentally observed continuous Te;_,Se, solid solution [13]. The
work can have multiple impacts: it will further improve the simulations on CdTe/CdSe quantum

. Ward , X. W. Zhou, B. M. Wong, F. P. Doty, and J. A. Zimmerman, J. Chem. Phys. 134, 244703 (2011).

Stlllmger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

. Zhou, D. K. Ward, J. E. Martin, F. B. van Swol, J. L. Cruz-Campa, and D. Zubia, Phys. Rev. B, 88, 085309 (2013).

. Ward, X. W. Zhou, B. M. Wong, F. P. Doty, and J. A. Zimmerman, Phys. Rev. B, 85, 115206 (2012).

. Ward, X. W. Zhou, B. M. Wong, F. P. Doty, and J. A. Zimmerman, Phys. Rev. B, 86, 245203 (2012).

. Pettifor, M. W. Finnis, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou, and H. N. G. Wadley, Mater. Sci. Eng. A, 365, 2 (2004).

. Pettifor, and I. I. Oleinik, Phys. Rev. Lett., 84, 4124 (2000).

. Pettifor, and I. 1. Oleinik, Phys. Rev. B, 65 172103 (2002).

rautz, D. Nguyen-Manh, D. A. Murdick, X. W. Zhou, H. N. G. Wadley, and D. G. Pettifor, TMS Lett., 1, 31 (2004).

rautz, D. A. Murdick, D. Nguyen-Manh, X. W. Zhou, H. N. G. Wadley, and D. G. Pettifor, Phys. Rev. B, 72, 144105 (2005).

12 X W. Zhou, D. K. Ward, B. M. Wong, and F. P. Doty, Phys. Rev. Lett. 108, 245503 (2012).

13 R. C. Sharma, D. T. Li, and Y. A. Chang, Se-Te (Selenium-Tellurium), Ed. By T. B. Massalski, H. Okamoto, P. R. Subramanian, and L.
Kacprzak, Binary Alloy Phase Diagrams, p. 3344, 2" ed., Vol. 3, (ASM International, 1990).
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dots, provide a more fundamental model to compare with the SW potential, and move
significantly towards developing a first-ever quaternary Cd-Te-Zn-Se BOP in a future effort.

. BOND-ORDER POTENTIAL EXPRESSIONS
The BOP has been implemented in public parallel MD code LAMMPS [14,15]. The
potential formalism is rather complex. For a convenient understanding of the BOP, its
mathematic formulation is first outlined. In the framework of the BOP [5], the total energy of a
system containing N atoms (i =1, 2, ... N) is expressed as

N iy N iy N iy
DTS WAL 3) Y AL ®

i=1 j=i, i=l j=i i=l j=i

where @;(r;), Bsi(r;), and B ;(r;;) are pair functions, and @,; and @,; are many-body functions
corresponding respectively to oand 7 bond-orders, and the list j = i,, i, ..., iy represents
neighbors of atom i. ¢(7;), Bs,i(v;), and B ;(r;) are expressed in a general form as

¢ij Qij ): ¢0,g/ ’ fij Qz/ )11] ’ fczj Qij ) (2)
Boij Qii):ﬁo,&i/ Ji Qz/ ) Sei Q,,) 3)

By (’”y )= B fu@u )ﬁ e Q’u) (4)

where @y, Bso.ii» Proij» My, and n;; are pair (if) dependent parameters, f;;(7;;) is a Goodwin-
Skinner-Pettifor (GSP) radial function [16], and /. ;(7;;) 1s a cutoff function. The GSP and the
cutoff functions are written respectively as

70,5 70,5 e Tij o
Jij Qij ): %exp [ﬂ] - [—]} (5)
ij

c,jj T

c,if

and
expla; -1,/ fexpla, v, i
AN P &y e ij .<r
£ )= 2 7 BRCANCTY (6)
c,ij \ij eXp aij .rl,ij eXp aij . rcut,ij
0’ rij 2 rcut,ij

where 7, ¥¢ijs Neijs 71,ij> Yoy ar€ independent pair parameters (in particular, 7., ; represents the
cutoff distance of the potential), and y;, and «; are dependent pair parameters defined as

14 LAMMPS download site: lammps.sandia.gov.
15 S. Plimpton, J. Comp. Phys. 117, 1 (1995).
16 L. Goodwin, A. J. Skinner, and D. G. Pettifor, Europhys. Lett, 9, 701 (1989).
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Infin(0.99)1n@.01)] , - ~1n(0.99)
Vi = a, —.
) )

The obond-order @; used in Eq. (1) is calculated as

;=0 1/2) ( s 1),{ ﬂo—yQu)Rw,ij

i i ~ j (7)
5,if & o,if 2 q) 32 \r. ) D/
JUQ ) ﬁdlj@u) ; U,UQU) 2U+g2

where 0 < f; < | and k,; are respectively band filling and skewing pair parameters, ©;

20 20’

and R;,,; are local variables that can be calculated from atom positions, ¢, is a constant, and O ;
is a symmetric band-filling function that modifies the half-full valence shell bond-order
expression ©0'2). @, as a function of ®Y'?) can be well described by

(1)), Q0O +S- ol/2)- \/(9 +0,+5-002) 4@5\/1+S2 +0,-0,+5-0,-00/2)

o,y
0, O 5 (8)

where

£=10-10

1 2.087779

1
fo‘,ii A

Joij =7
1

-]

1
@, = 15.737980(5—

1.137622
2 J

S =1.033201-<1- exp[ 22.180680- [

®1 [ fo‘ ST lD

fo‘z]

To use Eq. (7), expressions of the half-full bond-order @S’f), and local variables ®_, ®]_,
R34, are further needed. @S/Uz) 1s expressed as
®(1/.?): ﬂaij@iz‘) (10)
o.,ij A ;
\/ﬂg,y'(ry‘)*'ca,g‘ ag( )q)lza +ﬂ§,ij(rij)q)éa_+ -

where c;; 1s a pair parameter and ¢, is a constant. The @ and @) terms have the same

formulation except that they are evaluated at the center of atom i and atom j respectively.
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Considering that Egs. (7) and (10) use only the product 37 ; (r,/ ) @; _, we only give the formula
for ,Hii/.@,.j)cbga as:

ﬁjl] Qij)(bizfy = igi,ﬂk (gjik)ﬂj,ik (rzk) (11)

k=i,
k#j

where 6y is the bond angle at atom i spanning atoms j and k, and the three-body angular function
Zojik(Gi) 1s written as

_ 2 _
8o, jik (‘9_/[1( ): Q)a,_/ik gO,jik)ucr,jik (go,_/ik + bo—,jik ) Us ik + &o i T ba,‘jik

-cosf ., +
2'(1_”;;1‘/() 2 "
(12)
8o, jik ~ ba,jik + (gO,jik + bo‘,jik ) Us jik
0828,
2 (1 _ué,jik !

where ggjir, Do jit, and u i are three-body-dependent parameters.

Similarly, we give the product of /7, (rl.j)ij as

ﬂjy (”z; ) Ry, ;= ki &8s @jik ) 85 (‘9uk ) gs (Hlkj )ﬂo-,ik (’?k ) :Ba,jk Q’jk ) (13)
ko jen

where k,j=n in the summation indicates that k£ and j are neighbors.
The 7 bond-order ®; used in Eq. (1) is expressed as

o, - 4 Frst)
e PR P e
4y i)

2

—+

(14)

where a,;; and ¢, ;; are pair parameters, ¢, and ¢, are constants, and @), ®] , @, are local
27 27 3 4 2 4z

2z

variables. For calculations using Eq. (14), the /52 Q;j ) @), and f7; (ry) @, terms are further
expressed as

ﬂ;%y (’"ij ) @5, = i E7n,i B (”ik ) sin? ’9jik + (1 +cos? gjik ) Biu (’:’k )] (15)
oy
k#j
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ﬂ;,g(”lj)q)m— Zsm ik ﬂ;k(’?k)"’ ZSln ik ﬂ,k(;k)'F

k =i k Ji
k#j k#i

_z Zsm H/k sin 9;11( ﬁzk(’?k) ﬂzk (”Ik) COS(A'//kk )+

kzk =k+1

k;t]k;tj (16)

Jjy  JN

Z ZSIH elk SlIl ljk ﬁjk (jk)ﬂjk (jk )COS(A Vi )+

1
2 k=jik'=k+1
k#i k'#i

1 i N 1 N

ZZSIH Hk sin’ l]k ﬂ;k (”;k) ﬂjk(jk)cos(Al//kk

k'=i k=j,
k'#j k#i

where
ﬁzi (rik): Py ﬂoz'zk (”ik )_ ﬂj,ik (rik )9 (17)

Priis a species-dependent parameter of the central atom i, and Ay,,. is a four-body dihedral

angle. The dihedral angular terms can be calculated using the relation

2(0050kk cos@lk cosd ﬂk)

sin” @, -sin” @,

for k and k'neighors of ior,

2
cos(Ayy. )= ) ik'- jk (18)

‘ +cosd,, -cosb,
ik [k

—1  fork'neighbor of iand k neighbor of j

s 2 c 2
sin” g, -sin” 6,
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ll. PARAMETERIZATION

Our Cd-Te-Se BOP is parameterized first for the elemental Cd, Te, and Se, then for the
binary Cd-Te, Cd-Se and Te-Se, and finally for the ternary Cd-Te-Se. A complete set of BOP
parameters for the Cd-Te-Se system are listed in Tables 1-1 to 1-3. Here the ¢;-¢; constants are
the same as the existing Cd-Zn-Te BOP [5,6] whereas the Cd-Te parameters are slightly
modified to better capture the lattice constant of the zinc-blende CdTe. The unknown BOP
parameters then include one point-dependent parameter p, for the new element Se, 10 GSP pair

parameters ry, ¥, ¥'1, Feuss Nes M, 1y @y, Poos Pro and five additional pair parameters ¢, fo, ko, Crn @

for each of the three new pairs SeSe, CdSe, TeSe, and three three-body-dependent parameters gy,
b, usfor each of the 12 new three-bodies CdCdSe, TeCdSe, SeCdSe, CdTeSe, TeTeSe, SeTeSe,
CdSeCd, CdSeTe, CdSeSe, TeSeTe, TeSeSe, SeSeSe. Thus, there are a total of 1x1 + 15x3 +
3x12 = 82 parameters to be determined. However, many parameters can be determined prior to
the fitting process. In particular, the characteristic bond lengths ry, 7., r;, 7., are selected as
shown in Table 1-2 based upon the criteria that ry approximately scales with the bond length of
the corresponding atomic pair in the equilibrium structure, r,. equals 7y, r.,, roughly scales with

r9, and r; is midway between ry and r.,,. The pair parameters ¢, and 4, are set to unity as were
originally derived for the 7 bond-order [8,9]. The CdSe zb crystal structure has a half-full
valence shell and does not make use of the symmetric and asymmetric o bond-order terms;
therefore, we set f, = 0.50 and k, = 0 for the Cd-Se bonds. Finally, we set the three-body

parameter g, to be the normalized value of unity for all the triples as shown in Table 1-3. This
leaves 50 parameters to be determined.

Table 1-1. Global and point-dependent BOP Parameters.

Symb()l Cf CZ C3 C4 Prcd Prre PrsSe
Value | 0.00001 | 0.00001 | 0.00100 | 0.00001 | 0.420000 | 0.460686 | 0.927195

17



Table 1-2. Pair-dependent BOP parameters.

Symbol CdCd TeTe SeSe CdTe CdSe TeSe
ry 3.1276 3.1626 3.0251 2.9677 2.9201 3.0938
7. 3.1276 3.1626 3.0251 2.9677 2.9201 3.0938
7 3.7303 3.8046 3.6392 3.8085 3.7475 3.7219
Veut 4.3330 4.4465 4.2532 4.6494 4.5748 4.3498
. 2.800000 | 2.799998 | 2.799998 | 2.811251 | 2.399466 | 2.894572
m 3.263155 | 2.458846 | 2.372557 | 2.388647 | 2.775084 | 2.156644
n 1.553883 | 1.223306 | 1.189927 | 1.188381 | 1.460571 | 1.135076
&y 0.186369 | 0.876912 | 0.672666 | 0.654330 | 0.539105 | 0.675052
Poo 0.238318 | 0.782635 | 0.524928 | 0.836402 | 0.779739 | 1.015496
Bro 0.097599 | 0.531205 | 0.505465 | 0.030748 | 0.108296 | 0.404592
Co 0.561130 | 1.014809 | 1.401177 | 1.196365 | 0.717742 | 1.583151
fo 0.431863 | 0.331227 | 0.446055 | 0.500000 | 0.500000 | 0.305203
ko 15.000000 | -2.860190 | -7.436736 0 0 -7.265823
Cr 1 1 1 1 1 1
a, 1 1 1 1 1 1
Table 1-3. Three-body-dependent BOP parameters.
Symbol Cd-centered triples j-Cd-k
CdCdCd | CdCdTe CdCdSe TeCdTe TeCdSe SeCdSe
g0 1 1 1 1 1 1
b, 0.762039 | 0.208810 | 0.600000 | 0.200000 | 0.391552 | 0.388802
Uy -0.400000 | -0.168759 | -0.380000 | -0.400000 | -0.333334 | -0.350000
Symbol Te-centered triples j-Te-k
CdTeCd CdTeTe CdTeSe TeTeTe TeTeSe SeTeSe
20 1 1 1 1 1 1
b, 0.259985 | 0.807985 | 0.200000 | 0.669623 | 0.600000 | 0.311637
Uy -0.400000 | 0.022436 | -0.217561 | -0.141521 | 0.000000 | -0.345072
Symbol Se-centered triples j-Se-k
CdSeCd CdSeTe CdSeSe TeSeTe TeSeSe SeSeSe
20 1 1 1 1 1 1
by 0.325924 | 0.810916 | 0.600000 | 0.427183 | 0.261943 | 0.381759
Uy -0.350000 | -0.229874 | -0.349551 | -0.380000 | -0.095495 | 0.000000

Parameterizing a BOP that is capable of growth simulations can be quite challenging,
requiring a large number of iterations. For the Cd-Te-Se system, these iterations resulted in the
following rules: (1) include a particular set of target structures as listed in Appendix A and
impose appropriate weight factors for these structures in the fitting; (2) apply the particular
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bounds for the parameters as shown in Appendix B that are motivated by physical intuition and
parameterization results; (3) apply a two-step optimization algorithm as describe below with the
key pair parameters first determined by fitting to the nearest-neighbor structures and the
remaining parameters fitted to more complex structures; and (4) fully optimize the fitting
functions.

Previous work [5] has proven that for the nearest neighbor structures (i.e., dimer, trimer,
tetra, dc, sc, fcc, gra, zb, wz, NaCl, etc. where the second nearest neighbor distance is beyond
cutoff distance of the potential), the following three relations hold:

EbJ'f Gf/,O ): ¢l/ (I/;'j,O )7 ﬂg,g/ (’?j,o) ;ﬁ_)} (’;;:0) (19)
o,ij \ij,0

B 6 ) ) -2) o)

ﬂo‘,ij (’;‘]‘,0 )

o\,
2.ﬂ0',0,ij '®0',ij +2'ﬂ7r,0,ij .®7r,ij = ) j(j’:O) (21)

T o0, )
ﬂa,ij ij,0

where E, ; and E;; are respectively the energy and the second derivative of the energy of the

nearest neighbor bond in the structure at the equilibrium bond length 7, ,, ®,, and © _ the

o.ij
equilibrium o and 7 bond-orders, and subscript ij indicates the species of the pair. Note that
0, and ©_, are constant when the nearest neighbor structures are subject to the hydrostatic

strain. The first step of, a two-step parameterization, determines the pair-wise GSP parameters
@, m, n, and n, by fitting Eqgs. (19) and (20) to the target values (experimental or DFT data) of
bond energies (can be converted from cohesive energies) and second derivatives of bond
energies (can be converted from bulk moduli) of a wide range of nearest-neighbor structures with
different equilibrium bond lengths. The parameters determined in the first-step enable evaluating
the right-hand side of Eq. (21) at the target equilibrium bond lengths for different nearest-
neighbor structures. This creates a new set of target values for the combined bond-order term
28,05 955 T2 B0 O, These new target values, along with target properties (cohesive

energies, lattice constants, etc.) of non-nearest-neighbor structures, can then be fitted in a
second-step to determine the remaining parameters, p,, S0, Sr0» Cor for Ko Do » U

With target properties defined, the potential is optimized using a series of computational
tools [17,18,19.20 211 as detailed previously [5]. Following each fitting iteration the parameters are

17

S. Wolfram, The Mathematica Book, 5th ed. (Wolfram Research, Inc., Champaign, IL, 2004), p. 106ff.
M. R. Hestenes, and E. Stiefel, J. Res. National Bureau Stand., 49, 409 (1952).

19 D. M. Olsson, and L. S. Nelson, Technometrics, 17, 45 (1975).

20 R. Storn, and K. Price, J. Global Opt., 11, 341 (1997).

21 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science, 220, 671 (1983).
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tested for a larger collection of structures and vapor deposition simulations. If spurious results
exist (for example, a structure has a lower cohesive energy than the ground-state phase, or vapor
deposition simulations predict an amorphous growth of the equilibrium phase), the entire process
is repeated with an appropriate adjustment of target structures, target properties, and parameter
bounds. The iterations continue until a satisfactory set of potential parameters is obtained. Tables
1-1 — 1-3 list values of a complete set of BOP parameters thus determined for the Cd-Te-Se
system including global/point-dependent, pair-dependent, and three-body-dependent parameters,
respectively.
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IV. EVALUATION OF THE POTENTIAL

Detailed studies [2,5,6] have been performed to compare literature SW [?2,23] and Tersoff [>4]
types of Cd-Te potentials with BOP. These studies indicate that the literature SW potential [>3,2¢]
is sufficiently well parameterized for stoichiometric CdTe compound whereas the literature
Tersoff-Rockett potential [?’] is not sufficiently well parameterized for either Cd and Te
elements or CdTe compound. The Cd-Te component of our Zn-Cd-Hg-S-Se-Te SW potential [4]
slightly improves on the overall property trends and significantly improves on the Cd property
trends over the literature Cd-Te SW potential [%3,2°]. Hence, the Zn-Cd-Hg-S-Se-Te SW potential
[4] provides the most stringent standard for the quality of the Cd-Te-Se potential. Extensive
comparisons are therefore made between the predictions by the Cd-Te-Se BOP and the published
Zn-Cd-Hg-S-Se-Te SW potentials, the available experimental data, and our high-level DFT
calculations on properties of a large number of phases. In particular, geometries and energies of
numerous small clusters; lattice constants and cohesive energies of a variety of lattice structures;
elastic constants, melting temperature, properties of common point defects (interstitials,
vacancies, and antisites), and surface reconstructions of the lowest energy =zinc-blende
compounds; heat of formation of Te(,5Sey7s and Teg75Seq,s alloys, and heat of formation of
CdTe;<Sey alloyed compounds, are all studied. Finally, vapor deposition simulations of a variety
of possible phases are explored.

IV.1 Small-Cluster Properties

Based on BOP, SW, and DFT, molecular statics energy minimization simulations are used
to calculate relaxed cohesive energies and geometries of a variety of Cd, Te, Se, CdTe, CdSe,
and TeSe clusters with different coordination numbers. To provide numerical reference for
readers, the results of the calculations are summarized in Table 1-C-1 of Appendix C. To better
examine the trends the data listed in Table 1-C-I are plotted in Fig. 1-1 for cohesive energy per
atom, and in Fig. 1-2 for atomic volume. Because the volume for clusters is not well defined, we

3
simply use hard sphere model to define atomic volume Q from bond length r as Q = %ﬂ(gj Ct

should be noted that while the DFT method captures property trends well, it does not necessarily
reproduce the absolute values of the energies and atomic volumes measured from experiments.
To realistically compare the results, the DFT data displayed in Figs. 1-1 and 1-2 (as well in Figs.
1-3 and 1-4) are scaled to the experimental values for the Cd-hcp, Te-A8, Se-A8, CdTe-zb, and

22
23
24

Zhang, A. Chatterjee, C. Grein, A. J. Ciani, and P. W. Chung, J. Elect. Mat. 40, 109, 2011.
Oh, and C. H. Grein, J. Cryst. Growth, 193, 241 (1998).

Wang, D. Stroud, and A. J. Markworth, Phys. Rev. B, 40, 3129 (1989).
Zhang, A. Chatterjee, C. Grein, A. J. Ciani, and P. W. Chung, J. Elect. Mat. 40, 109, 2011.
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Z.Q. Wang, D. Stroud, and A. J. Markworth, Phys. Rev. B, 40, 3129 (1989).
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CdSe-zb phases (for example, the energies and volumes of all the Cd structures are multiplied
respectively by a constant energy scaling factor and a constant volume scaling factor so that the
scaled DFT values match the experimental data for the equilibrium Cd-hcp phase).
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Figure 1-1. Cohesive energies per atom for selected clusters. DFT data are scaled to experimental values of
observed phases. Note that the data represent discrete structure, and the line is only used to guide eyes

without implying any continuity of the data.

Considering that the DFT data shown in Fig. 1-1 is ordered to give a decreasing energies for
each material systems (Cd, Te, Se, CdTe, CdSe, and TeSe), the BOP does an excellent job

reproducing the DFT trends from the high (less negative) to low (more negative) energy clusters
with the only exceptions being TeTeTe-tri and SeSeSe-tri. This improves over the SW potential.
In addition, the overall BOP trends are much closer to the DFT trends than the SW trends.
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Figure 1-2. Atomic volumes for selected clusters. DFT data are scaled to experimental values of observed phases.
Note that the data represent discrete structure, and the line is only used to guide eyes without implying any
continuity of the data.

Fig. 1-2 indicated that the atomic volume trends (refers to relative volume between phases,
but not the absolute volume) predicted by the BOP match the DFT trends very well except for
the Cd clusters where opposite trends are seen. It should be noted, however, the bond energy
specified by Eq. (19) monotonically increases as a function of bond length regardless of the
parameters. In contrast, the DFT bond energy vs. bond length data is rather scattered. As a result,
it is necessary that some differences exist between BOP and DFT. This is also true for Tersoff
potentials (which have a similar bond energy vs. bond length relation) [30], and is even more
obvious for SW potentials. For example, the angular term vanishes for both the dimer and dc
structures in SW potentials. This means that the nearest-neighbor structures such as dime and dc
would have the same bond energy, in contrast with the DFT data. When energies and volumes
cannot be both captured, a tradeoff is made to capture the more important energies. On the other
hand, it can be seen that the BOP values are overall closer to the DFT data than the SW
predictions except for the Cd clusters where the BOP values deviate slightly more. Again, it
should be noted that DFT does not necessarily represent experiments, and the trends are more
important to be captured than the absolute values.

30 K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B, 66, 35205 (2002).
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IV.2 Bulk Lattice Structures

Molecular statics energy minimization simulations with flexible volume [31] are also
performed to determine the relaxed energies and lattice constants of a variety of Cd, Te, Se,
CdTe, CdSe, TeSe, and lattices (see, e.g., Appendix A) with coordination numbers
between four and twelve. For convenience of numerical reference, the calculated results are
all listed in Table 1-C-2, Appendix C along with the available experimental data [32]. To
clearly compare the models, the cohesive energies per atom are plotted in Figs. 1-3(a) and
3(b) for elements and compounds respectively, and the corresponding atomic volumes are
plotted in Figs. 1-4(a) and 1-4(b). Again DFT data are scaled to the experimental phases.

Figs. 1-3(a) and 1-3(b) indicate that the cohesive energies of both elements and
compounds as predicted by the BOP follow well the DFT trends for each material Cd, Te,
Se, CdTe, CdSe, and TeSe. Most phases that deviate from the DFT trends are not the low
energy phases and hence do not critically affect the potential. In addition, the absolute
cohesive energies are seen to be close to the scaled DFT values, with almost exact match to
the experimental energies of the equilibrium phases. Overall, a significant improvement
over the SW potential is clear.

Figs. 1-4(a) and 1-4(b) indicate that the atomic volume of both elements and
compounds as predicted by the BOP also follow well the DFT trends. Again the phases that
deviate the DFT trends are not the low energy phases. The absolute values are also close
the DFT data. For important low energy phases, the agreement is very good, and exact
agreement with experimental values is achieved for the lowest energy equilibrium phases.
Overall, a significant improvement over the SW potential can be clearly identified.

31 M. Parrinello, and A. Rahman, J. Appl. Phys., 52, 7182 (1981).
k2 1. Barin, Thermochemical data of pure substances, (VCH, Weinheim, 1993).
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Figure 1-3. Cohesive energies per atom for selected lattices. DFT data are scaled to experimental values of

observed phases as indicated by the blue stars. Note that the data represent discrete structure, and
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Figure 1-4. Atomic volumes for selected lattices. DFT data are scaled to experimental values of observed
phases as indicated by the blue stars. Note that the data represent discrete structure, and the line is
only used to guide eyes without implying any continuity of the data.

For multi-element systems, heat of formation is the most important property
determining the formation of intermetallic compounds, solid solutions, or separated
elements. Heat of formation represents the energy difference between an alloy or
compound and its constituent elements. For an 4,8, binary alloy, for instance, the heat of
mixing is defined as AH; = E 45 — [(1-x)E. 4 + x'E. 5], where E. 45 is the cohesive energy
of the alloy or the compound, and E. 4 and E_ g refer to the cohesive energies of the lowest-
energy structure of elements 4 and B, respectively. Because our BOP reproduces the
experimental cohesive energies of the lowest energy elements Cd-hcp, Te-AS, and Se-AS,
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and lowest energy compounds CdTe-zb, and CdSe-zb, the heat of formation of CdTe-zb
and CdSe-zb is also exact. This means that the BOP can correctly predict the formation of
the intermetallic compounds CdTe-zb and CdSe-zb.

Te-Se forms a continuous solid solution on an A8 lattice [13]. To check this, we
calculated the heat of formation of two phases Teg,5Se75-A8 and Tey755¢€p25-A8. The
results are shown in Table 1-4. Table 1-4 indicates that they Tep,5Sep75-A8 and
Te755¢€0.25-A8 significant negative heat of formation, and are therefore stable. We will
demonstrate below that Tegs0Segs0-A8 grows into a crystalline film in MD deposition
simulation, more confidently verifying that Te; ,Se,-AS is stable.

Table 1-4. BOP prediction of heat of formation AH; (eV/atom) of various phases.

Phase Teolzss€0_75-A8 Te().75se().25-A8 Cd4T€3S€ Cd4T€28€2 Cd4T€S€3

-0.12 -0.09 -0.55 -0.61 -0.68

AHg

BOP-based energy minimizations are also used to calculate relaxed cohesive energies,
lattice constants, and heats of formation of three ternary compounds, namely Cd,Te;Se,
Cd,;Te;,Se,, and CdyTe;Ses, with all atoms populate on an initial zb lattice. The results are
compared in Tables 1-C-2 and 1-C-4. It can be seen that BOP predicts decreasing lattice
constant and decreasing energy (more negative) with increasing Se content. In addition,
BOP predicts negative heats of formation for all the three compounds, Table 1-4, correctly
capturing these compounds as the stable structures.

IV.3 Elastic Constants

SW and BOP models are also used to calculate single crystal elastic constants of the
CdTe-zb and CdSe-zb phases, and the results are compared with literature experiments [33,34]
in Table 1-5. It can be seen that overall, the elastic constants predicted by the BOP are
closer to the experimental values than those predicted by the SW potential.

Table 1-5. Elastic Constants Cy4, C15, Cas (GPa) and melting temperatures T,, (K) of CdTe-zb and

CdSe-zb.
Structure SW [4] BOP Exp. [33,34]
Ci1 ] Cip ]| Cyy Th Cii ] Cin| Cy Th Cii]Cip|Cu| Ty
CdTe-zb | 63 | 32 | 24 1570- 52 129 | 20 1360- 53 | 37 | 20 | 1365
1610 1400
CdSe-zb | 88 | 37 | 36 2200- 72 | 44 | 24 1780- 67 | 46 | 22 | 1537
2300 1790
3 B. Derby, Phys. Rev. B, 76, 054126 (2007).
34 M. Gaith, and I. Alhayek, Rev. Adv. Mater. Sci., 21, 183 (2009).
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IV.4 Melting Temperature

Melting temperature simulations test a large number of thermally-activated
configurations and have implications on modeling thermodynamic properties. Thus, we
calculated the melting temperature of the two zb phases CdTe and CdSe. Here the melting
temperature is determined as the temperature at an equilibrated liquid / solid interface
using the simulation approach developed previously [12]. The results are included in Table
1-5. It can be seen that the melting temperatures predicted by BOP is significantly closer to
the experimental values than those predicted by the SW model. In particular, the
experimental melting temperature for CdTe is within the predicted range. This is an
extremely good agreement for properties like melting temperature.

IV.5 Point Defects
Studying defect properties in CdTe-zb and CdSe-zb crystals further tests the
transferability of the Cd-Te-Se BOP potential. Various types of defects can be easily
introduced in a zb computational crystal. The stoichiometry of the system containing the
defects, however, does not necessarily equal the stoichiometry of the perfect crystal.
Following the methodology of Zhang and Northrup [35,36], the defect energy I in an AB
binary compound is calculated as a function of the chemical potential difference Ay as

C=E,-05(0n,—n,) Au (22)

where n, and n, are numbers of A and B atoms in the defective system, E}, is an
intrinsic defect energy at the stoichiometric condition, and Az is the chemical potential

difference characteristic of the stoichiometry of the environment. Az is expressed as

A=ty = ™ Ity = ™) (23)
bulk

where x4, and g, are the chemical potentials of A and B in the AB compound, and

and ,uf;"lk are the chemical potentials for the lowest energy A and B phases. In our work, all
chemical potentials are approximated as cohesive energies per atom unit. Under the
equilibrium condition, Ay satisfies the condition ~AH , < Au< AH , where AH , is heat
of formation [36]. In general, A =0, Ax >0, and A < 0 mean stoichiometric, A-rich,

and B-rich conditions.
The intrinsic defect energy can be calculated as

v bulk bulk bulk
E,=E, _O'S(nA +n3)' Hyp _O'S(nA _nB)' QIA —Hp ) (24)
35 S. B. Zhang, and J. E. Northrup, Phys. Rev. Lett., 67, 2339 (1991).
36 J. E. Northrup, and S. B. Zhang, Phys. Rev. B, 47, 6791 (1993).
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where E, is the total energy of the system containing the defect, and 25" is the chemical

potential of the lowest energy AB phase. Under the stoichiometric condition, Az =0 and

E, =T . Under the A-rich or B-rich condition, Az # 0 and thus E, #T.

The AB defects considered here include A vacancy (V,), B vacancy (Vg), A at B anti-
site (Ag), B at A anti-site (B,), A interstitial surrounded by the B and A tetrahedron shells
(notated as A; g and A 5 respectively), B interstitial surrounded by the A and B tetrahedron
shells (notated as B; 4 and B, g respectively).

Energy minimization simulations are performed to calculate the total energies E, of
the AB-zb systems (with about 512 atoms) containing the corresponding defects. The
intrinsic defect energies are then calculated using Eq. (24), and the numerical results are
given in Table 1-C-3 of Appendix C for reference. To facilitate analysis, these results also
plotted in Figs. 1-5(a) and 1-5(b) for CdTe-zb and CdSe-zb respectively.
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Figure 1-5. Defect energies obtained from different models for the CdTe-zb and CdSe-zb phases.

Fig. 1-5(a) indicates that under the stoichiometric condition, the lowest energy defect in the
CdTe-zb crystal, as predicted by the BOP calculations, is the Te vacancy. This agrees with the DFT
calculations. The SW potential does not predict Te vacancy as the lowest energy defect. The overall
trends of defect energy predicted by the BOP are also seen to be much closer to the DFT trends than
those of the SW potential. The only exception is the Te at Cd antisites, where the DFT energy is
much higher than the BOP energy. It is noted, however, DFT does predict an abnormally high energy
for the Te at Cd anti-site.

Similar BOP defect energy trends are obtained for CdSe as can be seen in Fig. 1-5(b). Overall,
it is clear from Fig. 1-5 that BOP is superior to the SW potentials for defect studies.
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IV.6 Surface Reconstructions
Surface reconfigurations provide additional tests of the transferability of interatomic

potentials. To further evaluate our BOP, we study the (010) surface reconstructions of CdTe-
zb and CdSe-zb. The (010) surface of a zb crystal exhibits a variety of surface
reconstructions depending on the environment [37,38]. Fig. 1-6 illustrates six observed and
postulated reconstructions for three coverage fraction § = 0.5, 1.0, and 1.5. Because in AB
binary compounds, the surface atoms can be either A or B, Fig. 1-6 can be used to construct
12 surface reconstructions for binary compounds.

BOP- and SW-based energy minimization simulations are used to calculate total
energies of the relaxed systems containing various surface reconstructions. The
computational cell contains a block of zb crystal with ~600 atoms. The simulations employ
periodic boundary conditions in the x and z directions with two parallel free surfaces created
in the +/- y directions. The two surfaces are identical except that one is rotated 90° relative to
the other. Based on the relaxed total energies, Eq. (22) is used to calculate surface energies
as a function of the chemical potential difference Ay, Eq. (23), for all the 12 CdTe-zb (010)
surface reconstructions and the 12 CdSe-zb (010) surface reconstructions. The calculated
surface energies (per unit of surface cell), are summarized in Figs. 1-7 and 1-8 for BOP and
SW potential, respectively, where (a) is for CdTe surfaces, and (b) for CdSe surfaces.

| z 0o x [101] —
(E=0.5) (2x1) (E=1.0) (2x1) (E=1.5) (2x1)
o—@—o—@—0
2
(€ =0.5) c(2x2) (&= 1.0) c(2x2) (& = 1.5) c(2x2)
| g
® y[010] o @® (O —[010]surface

Figure 1-6. Possible surface reconstructions on (010) zb surface.

37 R. D. Feldman, R. F. Austin, P. M. Bridenbaugh, A. M. Johnson, W. M. Simpson, B. A. Wilson, C. E. Bonner, J. Appl. Phys.,
64, 1191 (1988).
38 B. Daudin, S. Tatarenko, D. Brun-Le Cunff, Phys. Rev. B, 52, 7822 (1995)

32



Fig. 1-7(a) indicates that within the possible range of chemical potential difference between -
AH , and AH ,, the BOP predicts the preferred CdTe-zb (010) surfaces as Te (1x2) (coverage £ =

1.0) in the Te-rich environments (A near the - AH ; end) and Cd (1x2) (coverage & = 1.0) in the

Cd-rich environments (A near the AH , end), in good agreement with experiments.
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Figure 1-7. Surface energy phase diagrams predicted by the BOP.

Fig. 1-7(b) indicates that the BOP predicts the preferred CdSe-zb (010) surfaces as Te (1x2)
(coverage & = 1.0) in the Te-rich environments and Cd (1x2) (coverage & = 1.0) in the Cd-rich
condition, again in good agreement with the experiments for CdSe.
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Figure 1-8. Surface energy phase diagrams predicted by the SW potential.

Fig. 1-8(a) and Fig. 1-8(b)... These observations, require that Ap is strictly constrained

between -AH , and AH , , which is true under experimental equilibrium condition. However,

under highly non-equilibrium conditions typically used in MD, the Cd-rich condition may reach
|Apn| >> |AHg. Then the DFT calculations would predict Cd (1x2) (coverage & = 1.0) as the lowest
energy surface, in agreement with the BOP. These are strong validation of the BOP, especially

considering that even DFT cannot
reconstructions.

IV.7 Vapor Deposition Simulations

account for the experimentally observed surface

As mentioned above, vapor deposition simulations are extremely important because they test
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configurations that cannot be tested otherwise. MD vapor deposition simulations have been
performed to confirm that crystalline growth is achieved for Cd-hcp, Te-A8, and CdTe-zb with the
present BOP. Detailed results of these simulations will be published separately [39], and hence will
not be repeated here. Here we perform further MD vapor deposition simulations to validate Te-AS,
TeosSeps-A8 alloy, CdSe-zb, and CdTe(sSeys-zb growth. Our computational systems employ
periodic boundary conditions in the x and z directions, and a free boundary condition in the y
direction. The growth occurs in the +y direction, with a constant zero pressure maintained during
simulations to relax the system dimensions.

For Se growth, an initial substrate of an A8 crystal containing 1320 Se atoms with 20 (2110)

layers in the x direction, 11 (0003) layers in the y direction, and 12 (0110 ) layers in the z direction
is used, where layers refer to crystallographic planes so that one (0001) layer is equivalent n (000n)
layers etc. The substrate temperature is set at T = 300 K by assigning velocities to atoms according
to the Boltzmann distribution. During simulations, the bottom (-y) 3 (0003) layers are held fixed to
prevent crystal shift upon adatom impact on the top surface. The next 4 (0003) layers are
isothermally controlled at the substrate temperature. This leaves the top 4 layers free where the
motion of atoms is solely determined by Newton’s law. Injection of Se adatoms from random
locations far above the surface simulates the growth. All adatoms have an initial far-field incident
kinetic energy E; = 0.1 eV and an incident angle 6 = 0° (i.e., the moving direction is perpendicular
to the surface). The adatom injection frequency is chosen to give a deposition rate of R = 3.2 nm/ns.
To approximately maintain a constant thickness of the free surface region, the isothermal region
expands upward during simulations. Since surface roughness might develop, the isothermal region
expands at about 80% of the surface growth rate so that the upper boundary of the isothermal
region never exceeds the surface even at the valley locations. Fig. 1-9 depicts the resulting
configuration obtained after 0.42 ns deposition. Note that in Figs. 1-9 to 1-12, the original substrate
is shaded in yellow. Fig. 1-9 shows that the BOP correctly captures the crystalline growth of the Se.

For TeysSeps growth we create an initial substrate of an A8 Te,5Sey 75 alloyed crystal
containing 200 Te atoms and 600 Se atoms with 20 (21 10) layers in the x direction, 10 (0003)

layers in the y direction, and 8 (0110) layers in the z direction. This vapor deposition simulation
utilizes the same approach as described above at a substrate temperature T = 300 K, an incident
energy E; = 0.1 eV, an incident angle 0 = 0°, a deposition rate R = 2.5 nm/ns, and a vapor flux ratio
Te:Se = 1:1 (while randomly chosen, the adatom species will eventually average to approximately
50% Te and 50% Se). Fig. 1-10 shows the resulting configuration obtained after 1.20 ns deposition.
It can be seen that the BOP predicts an A8 crystalline growth of the Te 50Seg 50 alloyed film on a
Teoos5Se 75 substrate with a different composition. Experimentally, Te and Se form a continuous
solid solution with the A8 crystal structure over the entire composition range [13]. This means that
the alloyed TegsoSeqso A8 crystal is thermodynamically stable. The prediction of the crystalline
growth of the Teg 50Seqso A8 crystal during direct MD simulations strongly validates that our BOP
captures correctly the thermodynamic behavior of the Te-Se system.

£ D. K. Ward, (2013).
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Figure 1-9. BOP prediction of the Se-A8 structure deposited in the [0001] direction (initial substrate is shaded in yellow).

For CdSe growth, an initial substrate of a zb CdSe crystal containing 648 Cd atoms and 648
Se atoms with 18 (101) layers in the x direction, 12 (040) layers in the y direction, and 6 (101)
layers in the z direction is used. Initially, Cd terminates the top y surface. During simulations, the
bottom 3 (040) layers are held fixed. To mimic the molecular beam epitaxy (MBE) growth

condition commonly used for semiconductor growth, we

expanded the isothermal region to

include all atoms above the fixed region. To capture the adatom incident energy effects, however,
the simulation does not isothermally control the newly added adatoms until they fully incorporate
into the film and their initial kinetic and potential (latent heat release) energies fully dissipate. The
growth simulation, has a substrate temperature T = 1200 K, an incident energy E; = 0.1 eV, an
incident angle 6 = 0°, a deposition rate R = 2.8 nm/ns, and a stoichiometric vapor flux ratio Cd:Se

= 1:1. Fig. 1-11 depicts the system configuration obtained

at 1.2 ns deposition time. It is seen

again that our BOP correctly captures the crystalline growth of the equilibrium CdSe-zb crystal.

36



SRR AR K IR RIS YOKIIIITI KK XK XK XX
U170 J8780 070, /0 10 0 107070 1010, 7070 0 10T 0T 074
NS R K 0K I Y XTI ISR XX X K X X X X
n TR R X TSI IEIAIANK LA KK X DL X XK

NRARN U XX VKR X N AR KRR =X A XK

CITONIRIRFEITHRAAX KKK XXX X XXX

1
2.5 nm/ns

0.1 eV
t=1.2 ns

Se=1
T=300K

- O FOC I AR RE LR BB KR KX XL XX KSR
= o D R T SRR SN L KX
K AR A N R R B o DL X XX
SO O A BT LR DR

K K ACIEN A LI SRPIH NS K .
¢ X RRRIRIK IR RASLIICRA AR NN X KR
7 V‘n’u.‘%’.ws KOO TR R OCYORDRN S XK % TR
QIR IR SO O IOR RIKIRA AR R XK R
Qsm\\w ORI OO OL LS L LR NXR
R

= S A S W S v v iw®y, v

X STH LN K LR YLK NGO SKAR DL XK X
rf»/dﬂ;’ﬂxb%’%.V‘M‘%@”Q%O%‘WO%O;M.%‘%’%WVN@N‘%@ R R NN
S A LRI LI IR LK R L A X =

"

&
A

y [0001]

37

Figure 1-10. BOP prediction of the Teq 50Seq 50-A8 structure deposited in the [0001] direction (initial substrate is shaded in
yellow).
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Figure 1-11. BOP prediction of the CdSe-zb structure deposited in the [010] direction (initial substrate is shaded
in yellow).

For CdTe(5Se s growth, we begin with a zb CdTe substrate containing 648 Cd atoms and
648 Te atoms with 18 (101) layers in the x direction, 12 (040) layers in the y direction, and 6
(101) layers in the z direction. Initially, Te atoms terminated the surface. Following the same
approach used for CdSe, the CdTe(5Sey s growth is simulated at a substrate temperature T = 1200
K, an incident energy E; = 0.1 eV, an incident angle 6 = 0°, a deposition rate R = 2.5 nm/ns, and a
vapor flux ratio Cd:Te:Se = 2:1:1. Fig. 1-12 shows the configuration obtained at 1.2 ns deposition
time. It again validates that our BOP correctly captures the crystalline growth of the ternary zb
CdTe(sSep s compound commonly achieved in experiments. Note that here we actually simulate a
more complicated CdTe, sSe( s/CdTe multilayer growth.
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Figure 1-12. BOP prediction of the CdTeq5Seq5-zb structure deposited in the [010] direction (initial substrate is shaded

in yellow).

The past successful MD simulations of crystalline growth of equilibrium semiconductor
crystals are achieved primarily using SW potentials. The problem is that SW potentials only
stabilize the tetrahedral structure without capturing the property trends of other configurations, and
as a result they prediction of defect information is relatively inaccurate. Without including growth
simulation tests in parameterizations, many literature Tersoff potentials do not predict crystalline
growth [2,24,40]. This work develops Cd-Te-Se ternary BOP that is fundamentally more
transferrable than Tersoff potentials. More importantly, a significantly iterative parameterization
scheme is strictly followed to capture property trends of a variety of phases and crystalline growth
of the equilibrium phases under a variety of chemical conditions. It is the improved property
trends and crystalline simulation capability that enable our Cd-Te-Se BOP to be confidently
applied for nano material problems.

40 M. Nakamura, H. Fujioka, K. Ono, M. Takeuchi, T. Mitsui, and M. Oshima, J. Cryst. Growth, 209, 232 (2000).
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V. CONCLUSIONS

We have developed a high-fidelity bond-order potential for the Cd-Te-Se ternary system.
Unlike many other existing semiconductor potentials, this BOP is derived directly from
quantum-mechanical theories and hence is fundamentally transferrable to environments that are
not explicitly tested. In particular, it simultancously meets two stringent criteria: (a) it
accurately captures property trends of many configurations including defects and surfaces; and
more importantly (b) it results in crystalline growth in MD vapor deposition simulations under a
variety of chemical conditions. We achieved high quality parameterization by considering a
large number of target structures with coordination ranging from 2 to 12; setting physically
valid bounds for all parameters; applying the two-step fitting approach; using different
minimization schemes; and iterating the parameterization with crystalline growth simulation
tests.

The BOP approach will enable empirical MD simulations of semiconductors to achieve a
new fidelity level approaching significantly toward the quantum-mechanical methods. As a
demonstration in a ternary system, our Cd-Te-Se BOP enables accurate study of CdTe/CdSe
core/shell structures. Equally important, our work builds a foundation for the expansion of BOP
into other semiconductor compound systems. Currently, this type of BOP is only applied to
GaAs [41] and CdZnTe [5,6] primarily due to the difficulties in BOP parameterization.
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APPENDICES

APPENDIX 1-A Target Structures

To develop complex potentials such as the BOP, it is mandatory to use a larger number of carefully
selected target lattices to remove all degrees of freedom of the parameters in a physically meaningful way.
The target structures listed here were determined through extensive trials. Not all the structures are
necessarily used in the fitting, but they must all be monitored in the iterative parameterization process to
ensure the lowest energy for the equilibrium phases. The target clusters include dimer (di), trimer (tri),
square (sq), rhombus (rhom), tetrahedron (tetra), and four-atom-chain (ch) for each of the six elemental
and binary systems (Cd, Te, Se, Cd-Te, Cd-Se, and Te-Se). Note that in the binary systems studied here,
the ratio of the two species necessarily does not equal 1:1 for trimers (e.g., Cd,Te, CdTe,, Cd,;Se, CdSe,,
etc.) but is assumed to be 1:1 for all other clusters. The target lattices for the three elemental systems (Cd,
Te, Se) include diamond-cubic (dc), simple-cubic (sc), body-centered-cubic (bec), face-centered-cubic
(fce), hexagonal-close-packed (hcp), graphene (grap), graphite (gra), face-centered-square (fcs), and y-Se
(A8) phases. Here the face-centered-square is essentially one sheet of a (100) fcc plane. The target lattices
for the two intermetallic binary systems with a species ratio of 1:1 (i.e., CdTe, CdSe) include zinc-blende
(zb), wurtzite (wz), NaCl (B1), CsCl (B2), binary-graphene (bgrap), binary-graphite (bgra), binary-face-
centered-square (bfcs), AuCu (L1y), CuPt (L1,), NiAs (B8;), CrB (B33), and AISb (sc16). Here the
binary-graphene is essentially a graphene sheet with neighboring atoms alternating between the two
species, and binary-graphite is essentially a stack of binary-graphene sheets. The target lattices for the
four intermetallic binary systems with an unequal species ratio (namely, Cd,Te, CdTe,, Cd,Se, CdSe,)
include Ag,O (cP4), and ZrO,. The same target lattices for the intermetallic binary systems are also used
for TeSe, Te,Se, TeSe, despite that Te-Se only forms a continuous solid solution with Te and Se atoms
populated in an A8 lattice [13]. To best capture this solid solution behavior, we also include two
additional A8 target lattices corresponding respectively to Teg,sSeq 75 and Teg 755€.25 solid solutions (with
Te and Se atoms fully mixed and atom environment highly symmetric). The target lattices for the ternary
system include alloyed zinc-blende compounds CdTeg,5S¢e075, CdTes0Seps0, and CdTeg75S¢e,5. The
target defect structures include zinc-blende CdTe and CdSe with various vacancies, antisites, interstitials,
and surfaces, which are described in more details in sections IV.E and IV.F.
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APPENDIX 1-B Parameter Bounds
Constraining the parameters within physical ranges is necessary for BOP parameterization. Table 1-
B-1 lists these constraints in seven groups representing parameterizations of Cd, Te, Se, Cd-Te, Cd-Se,

Te-Se, and Cd-Te-Se systems, respectively.

Table 1-B-1. Bounds on BOP parameters.

Flemental Cd

1.0<2.1 ncycy <megeq <2.2-npycy <4

nC’CdCd < 28

In) _ ~
nedacd > ln[exp(l—l e oo )I ],f =0.02,1 =1.5

042<p, oy <1

B o.caca < Pr.ca Pao.caca
0<fso.cica <8
0<f:0,cica <8

0<c, cacy <3.65

02< £, cacy <08

15 <k cgeq <15

0<b, cucaca <1

~0.4 <ty cacaca <02

2
@o‘,CdCdCd + Po,cdcdcd } (’icr,CdCdCd - 1) > 4&70,CdCdCd ~ Yo,CdCdCd + (DO',CdCdCd + ba,CdCdCd )tO',CdCdCd}

Elemental Te

0.8<1.99np,7, < My, <2.01 17,7, <4
Mo rege = 2.799998

In(¢) 0051 -
Nrere > lnlg:xp(l—l nerr )/| J,f =0.05,1 =1.5

0.42< p, 7, <1

2 .2
ﬂ/z,O,TeTe < p/r,Te ﬂJ,O,TeTe

0< ﬁo‘,O,TeTe <8

0< ﬂﬂ',O,TeTe <8
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0< ¢y rup <3.65

0.2< 3 rore <0.8

15 <ky poge <15

0< bcr,TeTeTe <1

~0.4 <ty porer, <0.2

2
@U,TeTeTe + po‘,TeTeTe}Q‘o‘,TeTeTe - 1} > 4&70,TeTeTe - bG,TeTeTe + (pJ,TeTeTe + bo‘,TeTeTe )ﬂf,TeTeTe}

Elemental Se

0.8 <1.99 ng,q, < mg,g, <2.01 ng,q, <4

Mo sese = 2.799998

In(¢) Cnnet
NgeSe > 1n|9xp(1—| . )/I J,f =0.05,1 =1.5

042< p, g <1

2 .2
IBﬁ,O,SeSe aS pﬂ',Se ﬂa,O,SeSe

0< B0 5ese <8

0< B, 0,505 <8

0=y sus0 <365

0.2< £, 5050 <0.8

15 <ky go50 <15

0< ba,SeSeSe <1

0.4 <, g5050 < 0.0

2
@J,SeSeSe +p o,SeSeSe 7 @a,SeSeSe - 1) > 4&70',S9SeSe -b o,SeSeSe + (pa,SeSeSe + bo‘,SeSeSe )G,SeSeSe}

Binary Cd-Te

0.1<1.99neyp, <meyp, <2.01-neyp, <4

nC’CdTe = 2.81 1251

In(£) _ _
Neare > ln[exp(l—l ”c,cm)/| ],§ =0.051 =1.5

2 . 32
ﬁ;r,O,Ca’Te S Prcd IBO',O,CdTe

2 .72
ﬂzz,O,CdTe SPrrte ﬂo-,O,CdTe

0< By 0.care <2

0< 8, 0.care <1

0.8< ¢, cyre < 3.65

fo‘,CdTe =0.5

ko‘,CdTe =0.0

0.2<b, cacare <1

-04< uo.’CdCdTe <0.1
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2
@G,CdCdTe + po-,CdCdTe } Q’a,CdCdTe - 1) 2 4&70,CdCdTe ~Yo,CdCdTe + @a,CdCdTe + ba,CdCdTe )G,CdCdTe}

02< bo‘,TeCdTe <1

-04< uo.,TeCdTe <0.1

2
@o‘,TeCdTe + po‘,TeCdTe ) (’ta,TeCdTe - 1) 2 4&0‘,TeCdTe - bJ,TeCdTe + (pa,TeCdTe + bo‘,TeCdTe )U,TeCdTe}

0.2<b, careca <1

2
@G,CdTeCd + pa,CdTeCd } Q‘G,CdTeCd - 1) 2 4[UG,CdT€Cd “Yo,CdTeCd + (UO',CdTeCd + bcr,CdTeCd }U,CdTeCd}

02< bcr,CdTeTe <1

_0.4 S uo-’CdTeTe S 0.1

2 _ _
@a,CdTeTe + Do, catere ) @a,CdTeTe 17 2 4ka,CdTeTe be carere + Q’a,CdTeTe +b, carere )’a,CdTeTe}

Binary Cd-Se

01 < 19 ‘ I’lCdSe < mCdSe < 21 : nCdSe < 4

0<n,cys. <50

In(¢) 005
Ncase > lnl_exp(l— | nawe)/l J,§ =0.05,1 =1.5

2 .32
BZo.case < Pr.ca * Poo,case

2 . R2
Bro.cise < Pr.se By o.case

0< ﬂo‘,O,CdSe <2

0< B, 0,case <1

0.3 S CG,CdSe S 3.65

fcr,CdSe =0.5

kcr,CdSe =0.0

0-1 S bo-’cdcdse S 0.6

2 _ _
@a’,CdCdSe + &o,cacdse 7 @o-,CdCdSe 1) 2 4[g0,CdCdSe by cacase + @O,CdCdSe + b, cacdse )‘a,CdCdSe}

0.2 <by, sucase < 0.6

~0.35 <ty gocuse < 0.0

2 _ _
Q’o—,seCdSe +8 O,SeCdSe}@o-,SeCdSe 1) 2 4[_g0,SeCdSe bs secase + (go,SeCdSe +by secase )‘a,SeCdSe]Z

0.3 < by caseca < 0.6

-0.35< uo.’cdsecd <0.0

2
Q’G,CdSeCd + 8o,cdsecd 7 @a,CdSeCd - 1) 2 4|-So,CdSeCd =bg caseca + (go,CdSeCd +bg caseca )%',CdSeCd }

0.2 < by, casese < 0.6

_0.35 S uo‘,CdSeSe S OO
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2
Q)O',CdSeSe + 8o,cdsese )Z Q’a,CdSeSe - 1) 2 4[g0,CdSeSe = by casese + (go,CdSeSe + b, Casese )‘a,CdSeSe}

Binary Te-Se

0.1<1.90-n,,, <my <2.10-n,,, <4

0<n, s <50

In() ~ ~
Nese > T e T J,g =0.05,1 =1.5

2 .32
ﬂﬁ,O,TeSe < pﬂ',Te ﬂo‘,O,TeSe

2 .12
ﬂﬂ',O,TeSe < pﬂ,Se ﬂo‘,O,TeSe

0< ﬂU,O,TeSe <2

0< ﬂﬁ,O,TeSe <1

0.3< ¢, 15, <3.65

0< fo‘,TeSe <1

20 < ky pse <20

0.1<b, s < 0.6

—0.38 <t 75 < 0.0

2
@G,TeTeSe + gO,TeTeSe y (’ta,TeTeSe - 1) 2 4[g0,TeTeSe - bo‘,TeTeSe + (gO,TeTeSe + bo,TeTeSe )lo,TeTeSe]Z

0.1<b, 4750 < 0.6

~038<u, 415, <0.0

2
Q)a,SeTeSe + gO,SeTeSe 7 @a,SeTeSe - 17 2 4EO,SeTeSe - bo‘,SeTeSe + @O,SeTeSe + bo‘,SeTeSe )J,SeTeSe}

0.1<b, sy < 0.6

—0.38 <t g7 < 0.0

2 _ _
Q’a,TeSeTe + 80, TeseTe 7 @o,TeSeTe 1) 2 4[g0,TeSeTe be esere (gO,TeSeTe +by resere )lo',TeSeTe}

0.1< b, 55 < 0.6

—038 <1, 5,5, < 0.0

2
@o‘,TeSeSe + gO,TeSeSe } Q’o’,TeSeSe - 1} >4 %O,TeSeSe - bo‘,TeSeSe + @O,TeSeSe + ba,TeSeSe )’o‘,TeSeSe }

Ternary Cd-Te-Se

02 < ba,TeCdSe < 1

0.4 <u, 1,50 < 0.1

2
Q’J,Tecaise +8 O,TeCdSey@U,TeCdSe - 1) 2 4[g0,TeCdSe = bg recase + (%’o,TeCdSe + by recse )’a,TeCdSe}

0.2<b, curese <1

—0.4 <u_ g <0.1
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2
Q)O',CdTeSe + gO,CdTeSe } Q’O‘,CdT@SE - l) 24 [gO,CdTeSe - bo‘,CdTeSe + %O,CdTeSe + bo‘,CdTeSe )G,CdTeSe ]Z

02< ba,CdSeTe <1

0.4 <ty cysere < 0.1

2
@G,CdSeTe + &o,cdsere } (’a,CdSeTe - 1) 2 4[gO,CdSeTe —bg cisere + (go,CdSeTe + b, casere )‘a,CdSeTe}

APPENDIX 1-C Complete List of Predicted Properties

Table 1-C-1. Cohesive energies E. (eV/atom), bond length r (A), and bond angle 6 (deg.) for selected Cd, Te, Se,
CdTe, CdSe, and TeSe clusters as determined from various models.

Cluster Type SW [4] BOP DFT
E, r 0 E, r 0 E. r 0
CdCd-di -0.219 | 2.870 | ----- -0.356 | 2.751 | ----- -0.089 | 3.456 | -----
CdCdCd-tri? -0.339 | 2.983 | 60 -0.530 | 2.863 | 60 -0.183 | 3.390 | 60
CdCdCdCd-ch® | -0.219 | 4.616 | ----- -0.381 | 2.935 | ----- -0.142 | 3.402 | -----
2.870 2.828 3.426
CdCdCdCd-recc | -0.418 | 2.891 | ----- -0.469 | 2.853 | ----- -0.175 | 3.448 | -----
2.891 2.853 3.437
CdCdCdCd-tetra | -0.419 | 3.061 | ----- -0.633 | 2.932 | ----- -0.295 | 3.340 | -----
TeTe-di -0.486 | 3.167 | ----- -1.415|2.737 | ----- -1.790 | 2.597 | -----
TeTeTe-tri? -0.710 | 3.340 | 60 -1.383 | 3.007 | 60 -1.969 | 2.770 | 60
TeTeTeTe-chb -0.486 | 5.095 | ----- -1.417 | 4.070 | --—--- -1.872 | 3.147 | -----
3.167 2.738 2.602
TeTeTeTe-recc | -0.918 | 3.199 | ----- -1.539 | 3.571 | ----- -2.139 | 3.192 | -----
3.199 2.738 2.585
TeTeTeTe-tetra | -0.846 | 3.455 | ----- -1.345 | 3.158 | -—--- unstable | ----- | -----
SeSe-di -0.482 | 3.019 | ----- -1.637 | 2.435 | ----- -1.935 | 2.196 | -----
SeSeSe-tri? -0.737 | 3.148 | 60 -1.461 | 2.750 | 60 2,171 1 2.379 | 60
SeSeSeSe-chP -0.482 | 4.857 | ----- -1.637 | 4.487 | ----- -2.124 | 3.530 | -----
3.019 2.435 2.195
SeSeSeSe-rec® -0.919 | 3.043 | ----- -1.766 | 3.368 | ----- -2.409 | 2.827 | -----
3.043 2.435 2.188
SeSeSeSe-tetra | -0.904 | 3.235 | --—-- -1.423 | 2.905 | ----- unstable | ----- | -----
CdTe-di -0.545 | 2.805 | ----- -0.588 | 2.771 | -—--- -0.519 | 2.613 | -----
CdTeCd-tri? -0.726 | 2.805 | 109.5 | -0.733 | 2.795 | 113.8 | -0.561 | 2.809 | 76.4
CdSe-di -0.631 | 2.620 | ----- -0.951 | 2.456 | ----- -0.573 | 2.388 | -----
CdSeCd-tri? -0.841 | 2.620 | 109.5 | -0.979 | 2.552 | 113.1 | -0.666 | 2.579 | 85.8
TeSe-di -0.458 | 2.711 | ----- -1.650 | 2.386 | ----- -1.878 | 2.394 | -----

46



% For ABA trimer clusters, the bond length is between atoms A and B, and the bond angle centers at B.

* For ABCD chain clusters, the first bond length is between the two middle atoms B and C, and the second bond length is between the two outer atoms A and
B or C and D.

¢ For rectangular clusters, the bigger and smaller bond lengths refer respectively to the longer and shorter edges. Equal bond lengths mean square clusters.

Table 1-C-2. Cohesive energies E. (eV/atom), lattice constants a, b, c () for selected Cd, Te, Se, CdTe, CdSe, TeSe,
and CdTeSe lattices as determined from various models.

Structure SW [4] BOP DFT Exp.
E. a-c? E. a-c? E. a-c® | E.[32] | a-c?[42]
Cd-grap -0.642 {4989 |-0.599 |5.098 |-0.340 5314 |-—- |-
Cd-dc -0.876 | 6.627 |-0.725 |6.871 |-0.679 | 6.595 | ----- | -----
Cd-gra -0.780 | 5.016 |-0.671 5.053 |-0.946 | 4.887 | ----- | -----
6.016 5.793 5.308
Cd-sc -0.958 | 3.008 |-0.618 |3.120 |-1.086|2.959 | ----—- | -—---
Cd-bee -1.075 | 3.559 |-1.019 |3.539 |-1.351|3.613|-—-- |-
Cd-hep -1.133 | 3.195 |-1.135 |3.152 |-1.398 |3.122 | -1.133 [ 2.974
5.217 5.124 5.585 5.606
Cd-fec -1.133 | 4518 |-1.128 |4.452 |-1402|4.605 | ----- | --—--
Te-grap -1.417 | 5.514 | -1.697 |5.334 |-2.122|5314 | - | -—---
Te-dc -1.945 | 7314 |-1.943 | 7.234 |-2.272|7.123 | ---—- | -—---
Te-gra -1.689 [5.553 |-1.873 |5384 |-2.468|5210|--—-- |---—-
6.763 6.652 6.063
Te-sc -1.983 (3377 |-2.163 |3.232 |-2.765|3.174 | ----- | -
Te-bce -2.131 | 4.040 | -1.941 3.930 |-2.551|3.868 | ----- | -----
Te-hep -2.169 | 3.636 | unstable
5.937
Te-fcc -2.169 [ 5.142 | -1.846 |4.951 |-2.399 4840 | -—-- |-
Te-A8 -1.983 [4.776 |-2.163 |4.572 |-2.798 | 4340 | -2.169 | 4.447
5.849 5.590 6.045 5915
Se-grap -1.412 | 5250 |-1.745 | 4910 |-2.230|4.412 | --—-- | --—---
Se-dc -1.930 | 6.973 |-2.034 |6.657 |-2.306|6.268 | ---—- | -----
Se-gra -1.709 [ 5.281 |-1.942 |4.956 |-2.442|4.581 |--—-- |-
6.353 6.219 5.524
Se-sc -2.079 [ 3.176 |-2.414 2972 |-2.728 |2.803 | ----- | -----
Se-bce -2.310 | 3.766 |-1902 |3.689 |-2.300|3.435 | --—- |--—---
Se-hep -2.414 | 3.383 | unstable
# J. D. H. Donnay, and H. M. Ondik, Crystal data, determinative tables, 3" ed., Vol. 2 (inorganic compounds) (U. S. Department

of Commerce, National Bureau of Standards, and Joint Committee on Power Diffraction Standards, U.S.A., 1973).
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5.524

Se-fcc 2414 |1 4.784 | -1.792 | 4.645 |-2.142 4319 | - | -—---
Se-A8 -2.079 | 4.491 |-2.414 |4.208 |-2.861|4.232|-2.414 |4.355
5.501 5.149 5.113 4.950
CdTe,-Ag,0 -1.213 1 6.715 | -1.335 | 6.538
Cd,Te-Ag,0O | -1.213 | 6.715 |-1.375 |6.517
CdTe,- ZrO, |-1.855 | 7.453 |-1.778 | 7.113
Cd,Te-ZrO, -1.628 | 7.214 | -1.617 | 6.959
CdTe-CsCl -1.776 | 3.850 |-1.664 |3.674 |-2.006|3.810 | ----—- | -—---
CdTe-fcs -1.357 (4344 |-1.639 |4.090 |-1.807|4.103 | ----- | ---—--
CdTe-grap -1.559 (4904 |-1.627 |4.851 |-1916|4.753 | -—-- | ---—-
CdTe-L10 -1.776 |5.445 | -1.664 |5.198
3.850 3.669
CdTe-L11 -1.809 | 4.433 |-2.055 |4.198
10.859 10.211
CdTe-NiAs -1.811 | 4.444 | -1964 |4.154
7.212 7.067
CdTe-CrB -1.827 | 4.354 | -1.853 |4.131
4.671 4.180
11.290 15.390
CdTe-gra -1.796 | 4949 |-2.041 |4.990 |-2.162|4.813 | --—- |--—---
6.832 6.042 6.566
CdTe-NaCl -1.809 [ 6.269 |-2.056 |5.928 |-2.287|6.041 | -—-- |-
CdTe-wz -2.178 [ 4.581 |-2.149 |4.585 |-2.279 |4.520 | -—--- | -
7.480 7.491 7.318
CdTe-zb -2.178 | 6478 |-2.149 | 6.480 |-2.331]6.524|-2.178 | 6.478
CdSe,-Ag,0O | -1.368 | 6.315 |-1.628 | 6.068
Cd,Se-Ag,O | -1.368 | 6.315 | -1.532 | 6.116
CdSe,- ZrO, | -1.982 | 7.022 |-1.999 | 6.662
Cd,Se-ZrO, -1.760 | 6.925 |-2.089 |6.519
CdSe-CsCl -1.878 | 3.641 |-2.108 |3.423 |-2.139|3.556 | ----—- | -—---
CdSe-fcs -1.471 | 4.124 |-2.015 |3.815 |-2.051|3.830 | ----—- | --—---
CdSe-grap -1.793 [ 4.588 |-2.016 |4.487 |-2.169 |4.435 | -—- |-
CdSe-L10 -1.878 | 5.150 |-2.108 | 4.866
3.641 3.414
CdSe-L11 -1.786 | 3.463 |-2.463 | 3.938
14.617 9.537
CdSe-NiAs -1.934 | 4.175 |-2372 |3.874
7.066 6.738
CdSe-CrB -2.027 (4315 |-2.227 |3.907
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4.327 3.854

10.591 13.933

CdSe-gra -1.793 | 4589 |-2.016 |4.488 |-2.419|4.504 | - | --—---
8.279 8.421 6.023

CdSe-NaCl -1.939 (5961 |-2.463 |5.558 |-2.547|5.645|-—- |-

CdSe-wz -2.523 (4278 |-2.523 | 4271 |-2.529 | 4212 | - |-
6.986 6.975 6.838

CdSe-zb -2.523 1 6.050 |-2.523 |6.044 |-2.579|6.108 | -2.523 | 6.050

TeSe,-Ag,O -1.028 | 6.468 |-1.728 | 6.471
Te,Se-Ag,O -1.028 | 6.468 | -1.515 | 6.596
TeSe;- ZrO, -1.727 | 7.012 | -1.926 |7.164
Te,Se-ZrO, -1.721 | 7.253 | -1.656 | 7.353

TeSe-CsCl -1.695 | 3.708 |-1.691 |3.832 |-2.481|3.653 | - |--—---
TeSe-fcs -1.180 | 4.145 |-2.111 |4.183 |-2.530|3.989 | ----—- | -—---
TeSe-grap -1.313 | 4736 |-1.897 |4.870 |-2.227|4.766 | ----—- | --—---
TeSe-L10 -1.723 | 4.759 |-1.865 |4.313
4.721 6.812
TeSe-L11 -1.757 | 3.498 |-2.340 | 4.343
15.562 10.633
TeSe-NiAs -1.757 | 3.498 |-2.148 | 4.287
10.375 7.565
TeSe-gra -1.599 (4.744 | -2.071 |4912 |-2.395|4970 | -—-- | ---—-
6.277 5.971 5.698
TeSe-NaCl -1.582 (5953 |-2.340 |6.140 |-2.786 | 5958 | ----- | -----
TeSe-wz -1.830 | 4.427 |-2.072 | 4.727 |-2.554|4.624 | ---—- | -—---
7.228 7.715 7.866
TeSe-zb -1.830 | 6.260 |-2.072 | 6.681 |-2.331]|6.665 | ----—- | --—---
Tep75Se025-A8 | -1.538 | 4.568 | -2.321 | 4.440
5.595 5.435
Tep25Sep75-A8 | -1.755 | 4.400 | -2.477 | 4.222
5.389 5.171

CdsTesSe-zb | -2.254 | 6.371 | -2.233 | 6.371
CdyTe,Sey-zb | -2.335 | 6.247 | -2.327 | 6.295
6.299 6.214
CdsTeSe;-zb | -2.424 | 6.158 | -2.425 | 6.155

& One number refers to one lattice constant a, two numbers refer to two lattice constants a and c, three numbers refer to three lattice constants a, b, and c.
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Table 1-C-3. Intrinsic defect energy E;) (eV) obtained from different models for CdTe-zb and CdSe-zb.

Defect CdTe-zb CdSe-zb

C: Cd; A: Te, Se | SW [4] | BOP | DFT | SW [4] | BOP | DFT
Ve 1.86 |2.68 |2.37 [3.16 |3.02

Va 1.66 1.66 | 0.95 | 1.88 1.84

Ca 1.58 219 {212 [222 |28l

Ac 1.87 1.90 | 3.71 | 3.11 2.33

Cia 292 | 224 | 1.40 | 5.04 1.61

Aic 409 |291 |247 (58 |3.78
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CHAPTER 2: THERMODYNAMIC PROPERTIES OF MODEL
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ABSTRACT

We report on the thermodynamic properties of binary compound mixtures of model group II-
VI semiconductors. We use the recently introduced Stillinger-Weber hamiltonian to model
binary mixtures of CdTe and CdSe. We use molecular dynamics simulations to calculate the
volume and enthalpy of mixing as a function of mole fraction. The lattice parameter of the
mixture closely follows Vegard’s Law: a linear relation. This implies that the excess volume is
a cubic function of mole fraction. A connection is made with hard sphere models of mixed fcc and
zincblende structures. The potential energy exhibits a positive deviation from ideal soluton
behavior; the excess enthalpy is nearly independent of temperatures studied (300K and 533K)
and is well described by a simple cubic function of the mole fraction. Using a regular solution
approach (combining nonideal behavior for the enthalpy with ideal solution behavior for the
entropy of mixing) we arrive at the Gibbs free energy of the mixture. The Gibbs free energy
results indicate that the CdTe and CdSe mixtures exhibit phase separation. The upper consolute
temperature is found to be 335K. Finally, we provide the surface energy as a function of
composition. It roughly follows ideal solution theory, but with a negative deviation (negative
excess surface energy). This indicates that alloying increases the stability, even for nano-
particles.
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VI. INTRODUCTION

Ternary systems, such as mixtures of CdTe and CdSe, or CdTe, ,Se, for short, are
commonly used in the semiconductor applications to help modify properties such as the lattice
parameter and the size of the band gap. Our motivation for studying the thermodynamic
properties of CdTe,_ Se, stems from our interest in core/shell quantum dots (QD) such as
CdTe/CdSe, a nanoparticle consisting of CdTe core surrounded by a shell of CdTe. It is well
known that the considerable lattice mismatch (about 6%) between these two binary compounds
can lead to defect formation that is believed to negatively impact the QD luminescence
efficiency. A potential remedy may be found in alloying the interface (heterojunction) where the
two phases meet. Without introducing other cations, one can consider the mixing of Te and Se,
i.e., replacing some of the anions inside the CdTe phase with Se anions and vice versa in the
CdSe phase. To assess the efficacy of such an alloying strategy one requires the thermodynamic
mixing properties. In particular, one needs the lattice parameter, the free energy of mixing, and
the surface energy over the entire range of composition.

Although there are some experimental results for the lattice parameter of CdTe;—Se, the
thermo- dynamic mixing properties are not readily available. It is natural then to use a molecular
simulation approach to determine the basic thermodynamic properties of mixtures of binary II-VI
compounds such as CdTe and CdSe. To facilitate this program we have recently developed an
interaction model approach based on the Stillinger-Weber(SW) potential[1, 2]. This potential
includes both two-body and three-body interactions. It is, of course, an empirical potential,
originally developed for Si. However, it has been shown to possess a versatile functional form that
lends itself to a generalization applicable to compounds as well [2].

In a recent paper we introduced a set of two-body and three-body SW potential parameters
for any combination of the major II-VI elements Zn, Cd, Hg, S, Se, and Te [2]. The goal of
reference [2] was to enable efficient atomistic simulations of defect mechanisms. The potential’s
fidelity was achieved by optimizing pertinent model parameters with respect to cohesive energy,
lattice constants and bulk moduli of all binary compounds. We showed that our intermolecular
potential correctly predicted crystalline growth of all binary compounds during molecular
dynamics simulations of vapor deposition. We demonstrated that our potential is applicable to a
variety of compound configurations involving all the six elements mentioned. We employed the
potential to demonstrate a successful MD simulation of crystalline growth of alloyed compounds
(Cdo.28Zno.68Hgo.04)(Teo.20S€0.18S0.62) onto a ZnS substrate. In addition, it was demonstrated that
we could capture a variety of defects such as misfit dislocations, stacking faults, and sub-grain
nucleation during a complex growth simulation of ZnS/CdSe/HgTe multilayers that contained all
the six elements listed above.

We report on a modeling study of the mixing properties of CdTe1-.Se.. As a function of
composition, x, we determine the lattice parameter, volume per particle, and the potential energy
(enthalpy), Gibbs free energy as well as the surface energy. We compare the lattice parameter
results with Vegard’s Law, and make the connection with ideal solution theory.
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Table 2-1. The Stillinger-Weber potential parameters for the ternary CdTe;-xSex.. See Zhou et al. [2]. Also,
Coséh=173,p=4and g=0.

EeV] o[A] a eVl y A B

Cd-Cd [1.182358 [2.663951 [1.527956 [32.5 [.2 [7.9170 [0.767446
Cd-Te |1.385284 [2.352141 [1.810919 [32.5 (1.2 [7.0496 |0.886125
Cd-Se [1.352371 [2.045165 [1.953387 32.5 [1.2 [7.0496 [1.116149
Te-Te |1.849775 [2.905254 [1.594353 132.5 1.2 [7.9170 [0.73072
Te-Se [1.295053 [2.231716 [1.809645 [32.5 (1.2 [7.0496 [1.005396
Se-Se  [2.400781 [2.780002 [1.544925 [32.5 [1.2 [7.0170 [0.76721
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VII. SIMULATION METHODS

We use molecular dynamics simulations to study the thermodynamic properties of binary
mixtures. The natural choice is to perform these simulations at constant pressure, p, as this
corresponds to the typical experimental conditions under which mixtures are most easily studied.
Thus, we employ the constant pressure, constant temperature ensemble (i.e. NpT'), which we simulate
using the standard Nose-Hoover algorithm [3]. We use a cubic simulation cell with periodic
boundary conditions (pbc) applied in all three directions. Most simulations were performed with
N=1728 atoms (Cd, Te, and Se) arranged in the cubic zincblende structure, which corresponds to 6
X6 X6 =216 cubic unit cells of 8 atoms (4 cations, 4 anions) each. Typically simulations started by
generating a pure sample of either CdTe or CdSe. From these samples configurations of
CdTel—xSex mixtures were generated by changing the identity of the anions randomly or

otherwise. All systems were equilibrated over at least 20,000 time steps of 1.32 x 10~ s,
Averages were taken over runs of 20,000- 40,000 time steps.

To simulate group II-VI semiconductors, we employ the Stillinger-Weber hamiltonian to
represent the atomic interactions [1]. This is a versatile functional form, originally developed for
Si, that includes both pair and three-body interactions, viz.,

V=2 w0+ 2 v(n.r.n) @

i<j i<j<k

= 2005+ 2 et by +
i<j

i<j<k

and £ is shorthand for the energy contribution associated with angle 0y,

h(rz‘ﬂ Fiks ejik) = /lg(’;’j )g(7r; )(cos ejik —cos6), )2 (2)
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Figure 2-1. The lattice parameter as a function of composition (mole fraction of Se) for two tem- peratures: 300K
(solid circles) and 533K (open circles). The lattice parameter for a mixture is calculated from the average volume as
alatt = (< V >/216)1/3’, for a system consisting of 216 unit cells. The typical standard error for each data point is
0.0014A. Also shown are the perfect linear fits to the data; the mean deviation from the linear fit is 0.0005 A, for both
temperatures.
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Figure 2-2. The volume per particle as a function of composition for two temperatures: 300K (solid circles) and 533K
(open circles). The mole fraction of Se is denoted by x. The typical standard error for each data point is 0.011 A3,
The straight lines are the linear relationship that constitutes ideal solution behavior for the volume, i.e., v’d(x) =xv, + (1
- Xx)v,. For both temperatures, the simulation data in '&cate that there is a slight negative deviation from ideality, in
accordance with the results of figure 1 (see Appendix A).

Here, A is a constant with units of energy, and 6jjk the angle subtended at particle i,

formed by the ij bond and the ik bond. The cosine of 6jik expressed in terms of distance vectors is,

r.r
(3)

cosf,, = o

cosO, = 1/3, and g(r) is a decay function with a cutoff between the first- and the second-neighbor

shell. The decay function used by Stillinger and Weber is:

g(r)=exp(yo /(r-ao)) (4)

Finally, the pair-potential contribution is strictly of finite range, a, and is of the form

v,(r)=gA(B(c/r)’ —(c/r)? Ye'" . y<aoc (5)

57



It has a depth of —F at the minimum, and conveniently has a vanishing slope at » = ao. In all
cases, here and below, p=4 and ¢ =0.

To extend the Stillinger-Weber approach to atomically mixed systems, such as CdTe,
CdSe and CdTe,_,Se,, Zhou et al.[2] generalized the expressions above, such that the parameters
reflect the nature of the particular atoms that are involved in the 2- or 3-body interaction.
Denoting the species with capital indices 7,J and K we generalized the three-body term as follows,

hix (rg'/s Tiiks e_/ik) =V Ak & (”l, )& (73 )(cos ‘9jik —cos6, )2 (6)
where
g, (r)=exp(y,0,/(r-a,0,)) (7)

Similarly, for the pair potential part, the parameters E, 4, B, ¢ and a become dependent on the
type of atom pair,

vy (r)=¢,4,(B,(c,/r)’ (o, /r))exp(o,(r-a,0,); r<a,o, (8)

Earlier, we introduced a potential parameter set for a large range of group II-VI compounds and
their mixtures (see Zhou et al.[2]). This set of parameters allows for an accurate representation
of the semiconductor crystals and their alloys. For convenience, we have collected the parameter
values needed for CdTel—xSex in Table 2-1.
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VIIl. RESULTS

Our simulations are performed at (constant) zero pressure and at (constant) room
temperature ( 7 = 300K) and one elevated temperature similar to what QDs would experience in

applications (i.e., 260°C, or T = 533K). We start with the lattice parameters of zincblende
crystals of the compound mixtures, CdTel—xSex, as a function of composition. To report the
composition we will use the mole fraction of the Se anion, that is, x = NSe/(NSe + NTe).

We have collected the basic simulation results for the pure compounds in Table 2-2,
where we list the lattice parameter, volume per particle, potential energy per particle and the
surface energy per unit area. Below we provide the data for the mixed crystals in the form of
excess functions of mole fraction x which, when combined with the tabulated data, allow for the
calculation of all the quantities addressed in this paper.

Table 2-2: Basic simulation results for the structure and energies of the pure compounds CdTe and CdSe, at
two temperatures.

TK] |aalAl  VN[A®]  Up/N[eV]  |Us[eV/nm?]

Cd-Te |[300 [6.491918 |34.2002 |-2.138597 |4.211947
Cd-Te 533 6.503747 [34.3875 [2.107696  4.207991
Cd-Se |[300 [6.063162 [27.8617 [-2.483526 |5.758274
Cd-Se [|533 16.073452 [28.0038 [2.452310 |5.745397

Nearly a century ago Vegard [4] noticed that for several compounds, such as ionic salts, the
lattice parameter is a near-linear function of x. This relationship is now known as Vegard’s law,
and it is a widely-used approximation for estimating the lattice parameter of various classes of
compounds. Thus,

a,(x)=xa, +(1-x)q, (9)

where aj denotes the lattice parameter of compound j. In figure 1 we plot the lattice parameter
as a function of composition, x. For both temperatures we observe perfectly linear behavior. The
linear thermal expansion coefficients is small (4.4 x 107°A/K at x =0 and 5.1 x 107°A/K at x =
1), as the solid is nearly harmonic.

Ideal solution theory is an alternative mixture theory, with great application in fluid state
theory [5]. It too is defined by a linear relationship for thermodynamic properties (e.g., enthalpy, free
energy). For example, the volume per particle, v= V/N, for an ideal solution is given by
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Vlé (x)=xv, +(1-x)v, (10)
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Figure 2-3. The lattice excess volume per particle, Vex12 =V, —vid12, as a function of composition, for a compound
mixture of CdTe1-xSex. We show two temperatures, 300K(solid circles) and 533K (open circles). The black curve is
expression 11, and is indistinguishable for the two temperatures. For more details, see the discussion in appendix A.

The volume per particle is displayed in Fig. 2-2 together with fits based on relationship 10.
Clearly, the volume per particle as measured for the compound mixture is very close to the ideal
solution. It shows only a very slight negative deviation. As we used the NpT ensemble the
volume of the simulation cell fluctuates. The distribution of the instantaneous volume per particle
over time is characterized by a standard deviation of about 0.03A3.

The fact that the lattice parameter, rather than v, more closely follows linear behavior is
significant [6]. One can easily convince oneself that perfect linear behavior of the lattice
parameter (Vegard’s law), and perfect linear behavior for the volume (ideal solution theory)
cannot both be satisfied at the same time (unless, trivially, @, = a, and, hence, v, = v,).
Moreover, we can show that Vegard’s law implies a negative deviation from ideal behavior for the
volume. This deviation grows with the disparity of the lattice parameters of the pure crystals.
This is demonstrated in Appendix A.

Thermodynamic properties, Y, of nonideal solutions are commonly expressed in terms of
excess properties, i.e, Y5 =Y, -YY, to facilitate the development of approximate thermodynamic
models [5]. For the volume the ideal solution value is a linear combination of the pure component
volumes, V,, i.e., V* =ZiVi, and similarly for the energy and enthalpy. Further, the excess volume

equals the volume change of mixing, AV, and similarly the excess enthalpy equals the enthalpy

change of mixing, AH.
Given that v, = V,,/N=a’;, for an 8-atom zincblende unit cell, it follows that

8vi; (x) = [xa, +(1-x)a, ]3 —xa; —(1-x)a; . (11)
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From this we see that, apart from a trivial case (i.e., a, = @), v}, #0. In other words, Vegard’s
law implies nonideal behavior and, moreover, it leads to an expression for the excess volume that
is a simple cubic function of x. The results for our compound mixtures, CdTe,_,Se,, are shown
in Fig. 2-3, together with estimations based on expression 11, with the coefficients determined
by Vegard’s law (see Appendix A). The latter expression provides an excellent approximation,
reconfirming the accuracy of Vegard’s law for this compound mixture.

There have been other reports in the literature regarding the lattice parameter as a
function of composition. In particular, Denton and Ashcroft [7] studied binary mixtures of hard
spheres (HS) of different diameter. They report an adherence to Vegard’s law, but for
thermodynamic states along the solid-fluid coexistence line, as opposed to keeping both p and T
constant. In Appendix B we revisit those results and also introduce results for a HS system of
nonadditive spheres that closely mimics our SW model.

There appears to be only a limited number of reports in the literature on measurements
of the lattice parameter of ternary compounds, such as CdTel—xSex. In his review Williams [8]
cites the work of Ben-dor and Yellin [9] and reports the lattice constant for x= 0.05 (0.6462 nm) and
x=0.3 (0.6353 nm). Our values are 0.6470 and 0.6363 nm respectively, in excellent agreement.

We now turn to the potential energy, Upot, as a function of x, which we note is related to
enthalpy, H, by

H/N=§kT+Upm/N+pv (12)

where k is Boltzmann’s constant. For our simulations at zero pressure, we find that H/N simply
differs from U,,/N by a constant equal to 1.5 x0.025852 eV (T = 300K) or equal to 1.5 x0.045930
eV (T = 533K). Given that the simulations are run at constant p and 7, and p = 0, the standard
error in H/N is equal to the standard error in Upot#/N, or 0.00005 eV. The results for Upor are
depicted in Fig. 2-4, showing a nearly linear relationship. More detail is shown in Fig. 2-5, where

we subtracted the ideal solution behavior and plotted the excess value, U?*,, = AH, where the latter
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quantity is the enthalpy of mixing. We notice that AU@;()I is a very weak function of 7. Thus all the
T'-dependence of H comes from the ideal gas contribution. We will make use of this observation
below, when we discuss phase behavior. As was the case in Fig. 2-3 for the excess volume, the

excess potential energy can be represented accurately by a simple cubic function (see the fits in
Fig. 2-5).

VIiil.1 Phase behavior

To determine the free energy of mixing, AG = AH — TAS, we require the entropy of
mixing. In principle, one can calculate this quantity from a simulation using a variety of
thermodynamic integration methods, see for instance reference [10]. Here, however, we will follow
Hildebrand [11] and estimate the entropy of mixing by assuming ideal mixing, i.e.,

-2.1 T T T
2.15
-2.2

= -2.25

2,

=z -23

~|I|\""-o—i

=
o -2.35

-2.45

-2.5

Figure 24. The potential energy per particle as a function of composition, for a compound mixture of CdTe,_Se,. Two
sets of data are shown: T = 300K (solid circles, solid line), and T = 533K (open circles, dashed line). The typical
standard error for each data point is 0.00005 eV. The straight lines indicate ideal solution behavior. The data indicate

a positive deviation from ideal solution behavior, see Fig. 2- 5.

-ASNk = x Inx + (1 = x) In(1 —x), (13)
and we obtain the Gibbs free energy of mixing as
AG = AH - TAS™. (14)

In 1927 Hildebrand [11] coined the phrase “regular solution” for a solution that combines
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nonideal behavior for the enthalpy with an ideal entropy of mixing. We show the results for the free
energy of mixing in figure 2-6, where we plotted the dimensionless quantity AG/NkT for the two
temperatures for interest. As we have seen above, the enthalpy of mixing (i.e., the excess potential
energy, plotted in figure 2-5) is positive, but the entropy term is sufficiently large to make mixing
favorable [12]. At the high temperature (7 = 533K), a single mixed phase is always the stable
phase and, thus, there exists complete miscibility over the entire range. However, the room
temperature curve displays two points of inflection, and thus over the mole fraction range 0.298 <x
< 0.815, a linear combination of two phases is slightly lower in free energy. Thus, in that range
phase separation might occur. From figure 2-5 we see that the excess potential energy is nearly

independent of T . If we assume U,,“* is indeed constant with temperature then it is

straightforward to determine an upper consolute temperature of 7 = 335K (or 62°C). The
composition at the consolute point is x = 0.575. Within the analysis presented, the two phases
coexisting below 7' = 335K are both randomly substituted lattices. One phase is rich in Te, the
other is rich in Se. Above 7' = 335K there exists just a single randomly substituted phase. For a
nanoparticle of CdTe,_,Se,, the phase separation we just identified might be suppressed, if the
associated positive interfacial free energy contribution were to outweigh the free energy gain from
a phase separation.

VIil.2 Simulations of Finite Samples

As stated, the results presented above concern bulk phase simulations performed in the
NpT ensemble, using periodic boundary conditions in all three directions. It is of interest to
investigate the behavior of a finite block of material (see figure 2-7), surrounded by vapor (i.e.,
near vacuum given the low vapor pressure). One question to address concerns whether alloying (the
replacement of Te atoms by Se atoms) can produce any noticeable effect due to site percolation. For
example, in lattice models of conductivity, populating a lattice with a certain fraction of filled sites
can lead to a sudden onset of breakthrough conduction when a certain threshold of site occupancy
is reached. For the diamond lattice this occurs when the occupancy fraction reaches a threshold of
0.4299870. In an infinite lattice, above this occupancy threshold there is always at least one cluster
that spans the entire system, providing conduction across the sample.

According to the data in Table 2-1, replacing one Te atom by Se in a finite sample of
CdTe reduces the bond lengths around the Se guest atom. Locally, there is a slight contraction
of the lattice that is resisted by the surrounding CdTe solid. It is conceivable that, as the
concentration of Se is
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Figure 2-5. The excess potential energy per particle, or enthalpy of mixing (AH/N), as a function of composition for
a compound mixture of CdTe,_Se, We show two temperatures: T = 300K results are shown by solid circles and a
solid line, while T = 533K are denoted by open circles and a dashed line. The curves are near perfect cubic fits

(constrained to pass through (0,0) and (1,0)) to the excess potential energy: the solid line is 0.050645x—0.038916x2 -
0.011729x, the dashed line corresponds to 0.051111x-0.038149x —0.012962x .
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Figure 2-6. (a) The excess Gibbs free energy per particle as a function of composition, for a compound mixture of
CdTe,_Se, We show two temperatures: T = 300K results are shown by solid circles and a solid line, while T =
533K are denoted by open circles and a dashed line. The curves represent regular solution theory: combining the
excess enthalpy with the ideal entropy of mixing. For T = 533K the system is miscible over the entire range. For T =
300K the presence of the inflection points in AG suggest incomplete miscibility: two stable phases exist in the
composition range 0.298 < x < 0.815, as indicated by the dotted line, which represents the common tangent.
Assuming a temperature independent excess potential energy (see figure 2-5) allows us to estimate the upper
consolute temperature as T = 335K. (b) The coexistence composition envelope as a function of temperature. The
coexisting phases consist of two randomly-substituted lattices, and are determined from the common tangent
construction indicated in (a). One phase is rich in Te (small values of x), the other is rich in Se (large values of x).
The consolute temperature is T = 335K and at x = 0.575.

65



Figure 2-7. Image of the cubic nanoparticle of CdTe,_Se,, x = 0.2 used in the MD simulation. The edge length is
approximately 3.83 nm. Cd is shown in red, Te in blue and Se atoms are drawn in yellow. Three (100) faces are
terminated by Cd while the opposing (100) faces are terminated by a mixture of Te and Se

increased from zero, a critical mole fraction of Se is reached above which the lattice can no longer
maintain the CdTe lattice spacing and a marked change in volume occurs. To investigate this
effect we prepared a cube of CdTe (216 unit cells, 1728 atoms total) surrounded by a vacuum, and
performed NV T simulations. Because the vapor pressure is negligible, this simulation corresponds
to simulations at a constant vapor pressure, which happens to be essentially zero. Strictly speaking,
the volume for the finite-sized relaxed crystalline particle is not well defined, but a good objective
measure of its size can be obtained from 1) the average next-nearest neighbor distance between

1/2
two Cd atoms, RCd4(Cd, or 2) from the radius of gyration, R, :[N 7124(13_1}»1 )2} of the entire

cube. Here r,, =N -122 represents the center of mass position of the cube.

We present the results for RC4Cqd in figure 2-8, and the radius of gyration results are
shown in the inset to that figure. Both constitute linear measures of the structure of the compound
mixture. The bond length shown is an average over all CdCd pairs in the cube, which necessarily
includes atoms that are close to the (100) surface where there is some relaxation of the bond
lengths. Despite this effect the bond length follows a near perfect linear behavior. This is expected
on the basis of Vegard’s law, and indicates that there is no appreciable mechanical response that can
be attributed to site-percolation. In a zincblende crystal the Cd-Cd distance is related to the lattice

parameter, i.e., RCdCd = RTeTe =x/§ahm, and thus the slopes of of the fits shown in figures

2-1 and 2-8 are related by a factor of = V2 also. The radius of gyration, RG, of a cube of
length L is equal to L/2.

Our cube contains 6 unit cells on the side thus the slope of the fit in the inset to figure 2-8
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should approximately be 6/ J2 times that of the slope of the fit in figure 8. This is indeed the
case, c.f., 0.1269 nm vs 0.1284 nm, respectively.
We have determined the deviation from linear behavior of the bond length with

composition by calculating R* =R — R The dimensionless ratio, R/R™ exhibits a maximum
deviation from zero = 0.1% and occurs near x = 0.5.
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Figure 2-8. The bond length RCcgCd as a function of composition (i.e., mole fraction of Se). Two temperatures are

shown: T = 300K (solid circles, solid line) and T = 533K (open circles, dashed line). The straight line corresponds to
ideal solution behavior for the bond length, i.e., a linear combination of RCdCqd in pure CdTe and pure CdSe. The
inset shows the radius of gyration, RG, as a function of composition for T = 300K. The straight line corresponds to ideal
solution behavior for the radius of gyration, i.e., a linear combination of RG of a cube of pure CdTe and that of pure
CdSe.

VIIL.3 Surface energy

The results of the previous two sections, the bulk and a finite cubical particle, allow us to
make an estimate of the surface energy as a function of composition. The cubical particle has six
(100) faces. Three of these are terminated by Cd atoms, while the remaining three are terminated by
the anion (Te or Se). The surface energy, Us, is defined as

N
UY:A—’](UP/N—U,,/N) (15)

p
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Figure 2-9. The surface energy versus the mole fraction of Se for a cube of edge length = 3.6 nm. We show the
results for two temperatures: T = 300K (solid circles, solid line) and T = 533K (open circles, dashed line). The typical

standard error of the data points is 0.005 eV/an. The straight line indicates ideal solution behavior for the surface

energy.

where the subscript “p” denotes a property of the finite particle (e.g., cube), while the subscript “b”
denotes a bulk property. Ap = Ap(x) denotes the total surface area of the particle. We note that
Us is not a pure surface quantity, as the particle’s edges and vertices must also make a contribution
that is included in the difference on the right hand side. In principle, by studying particles of
different sizes one could potentially extract the edge and vertex contributions. The first scales as
(Ap)l/ 2 and the other is constant.

The results for Us as a function of composition are shown in figure 2-9, which shows that the
surface energy is positive and is mostly a linear function of the mole fraction. Following the
discussion above, it is natural to apply ideal solution theory and define a surface excess energy as the
deviation from ideal behavior, viz.,

Us=U,-UY (16)

The results for the excess surface energy are shown in figure 2-10 for 7 = 300K and T
= 533K, together with a cubic fit. We see that the excess surface energy is negative over the
entire range, and appears to be slightly asymmetric. The negative sign indicates that mixing
inside a nano- particle helps to lower the energy per unit area, and hence the surface free energy
per unit area. This implies that for CdTe,_,Se, the mixed state is stabilized by the presence of free

surfaces.
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Figure 2-10. The excess surface energy versus the mole fraction of Se for a cube of edge length =3.6 nm. We
show the results for two temperatures: T = 300K (solid circles, solid line) and T = 533K (open circles, dashed line). The
data show a negative deviation from ideal solution behavior that increases with temperature. The curves are simple cubic
fits, constrained to go through (0,0) and (1.0), to the excess surface energy: the solid line is —0.43606x + 0.75778x> —
0.321720x°, and the dashed line corresponds to —0.54056x+ 0.72157x* —0.181010x".

IX. DISCUSSIONS AND CONCLUSIONS

We have investigated the behavior of mixed crystals of CdTe and CdSe, type II-IV
compounds. In particular, we have studied CdTe1—xSex over the entire range of x, using molecular
simulation. We employed our recently developed set of Stillinger-Weber potentials [1, 2], which
provide an accurate intermolecular model for this kind of study.

Crystals of CdTel—xSex obey Vegard’s law perfectly. For the two temperatures studied,
room temperature (300K) and an elevated temperature (260°C, 533K) that QDs might experience
during operations, combined with zero pressure, the lattice parameter is a perfect linear function of
mole fraction. This behavior was first observed for salt crystals by Vegard. We showed that
perfect linear behavior implies a cubic function of x for the excess volume. We compared the
observed behavior with that of two simple geometric models, binary hard spheres mixtures and a
nonadditive hard sphere model of a zincblende mixture. Both these models show deviations of
Vegard’s law, indicating that simple geometric models cannot explain all the behavior we observe.

We also examined the thermodynamic properties of CdTel—xSex. In particular, we
obtain the potential energy (enthalpy) and compare with ideal solution theory. There is a
positive excess enthalpy that is essentially independent of 7 over the temperature range studied. By
combining, a cubic excess enthalpy with an ideal solution entropy of mixing we calculated the
Gibbs free energy of mixing. We find that at room temperature there is a phase separation into
two phases, each randomly mixed. For 7= 533K there is complete miscibility.

The phase segregation behavior is expected to be even more pronounced when CdTe is
combined with CdS. This is indicated by an inspection of potential parameters for II-VI elements
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Zn-Cd-Hg- S-Se-Te [2]. It shows that for a Cd compound the largest difference in lattice parameter
as well as the potential energy occurs between CdTe and CdS. This most likely will produce a larger
deviation in nonideality for the enthalpy and a higher upper consulate temperature, predicting
stronger phase segregation. Similarly, when CdSe is combined with CdS, one has the smallest
differences in lattice parameter and potential energy, and consequently one would expect their
mixtures to show most mixing and be most like an ideal solution.

Finally, by performing simulations of finite samples, cubic nanoparticles, we obtained an
estimate for the surface energy as a function of composition. The excess surface energy is negative,
indicating that a finite particle is stabilized by a mixed phase.
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APPENDICES
Appendix 2-A

Expanding equation 11 for the excess volume, we obtain a cubic equation in x, viz.,

85 (x)=c, +ex+e,x” +ex’ (17)

where the coefficients ¢j in terms of al and a2 are given by

¢, =0
¢, =3ala,-2a —a,
2 2 3 (18)
¢, =3a,a;—6a;a, +3aq,
c,=3a’a,-3a,a;+a,—a;
vanish for x=1. Thus,
8V =cx+c,x’ — (¢ +c,)x’
(19)
c c
=cx| 1+ 2 x—(1+2)x’
G G

where the last line is included to show that v** 3s reduced to the familiar form 4x(1 —x) under
c1. That is, the excess volume of the mixture has a symmetric parabolic conditions where

¢, ®—c,. That is, the excess volume of the mixture has a symmetric parabolic form, with an
extremum at x = 1/2. This form is often encountered in the description of nonideal liquid mixtures
[5].

We can also show that v®*, is negative (or zero) for all compositions. Thus, Vegard’s law
implies that the volume of the mixture exhibits negative deviations from ideality. To
demonstrate this, note that

clza{3ﬁ—2—(&)3} for a,a, >0

a a

Specializing to the case of CdTe,-.Se, at T = 300K for which a, = 6.49192 A and a, = 6.06316
A at T=300K, we find that ¢;=—0.437680 A°, ¢ =0.447533 4"  and c5= —9.8524 x 1074
For T = 533K the values are very similar, a, = 6.50375 A and a, = 6.07345 A, which gives

c £-0.441614 4’, c =0.451573 4" and c5=—9.9588 x 102"
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For both temperatures we conclude that ¢, = —c;, and we see that the excess volume is
indeed nearly a symmetric parabola,

8vj, (x) = ¢, x(1-x) (21)

as is confirmed in figure 2-A-1.

1.5

1.48 L L L I

Figure 2-A-1. The lattice parameter as a function of mole fraction for a substitutional fcc crystal of binary
additive HS mixture, with g2/01 = 0.95(c.f., [7, 10]). The abscissa, x, denotes the mole fraction of species
2, that is, x = No/(N1 + N.). We consider two cases: the first measures the lattice parameter at constant p
and T (solid circles). We observe significant (positive) deviations from Vegard’s law (represented by the
dotted straight line). A similar conclusion applies to the volume per particle (not shown), thus the excess
volume is positive. For the second case, following Denton and Ashcroft [7], the open circles show the lattice
parameter along the solid-fluid coexistence line, using the coexistence data of Kranendonk and Frenkel [10]
to determine the pressures and compositions. Remarkably, the coexistence data display perfectly linear
behavior of the lattice parameter.
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Appendix 2-B

In this appendix we explore Vegard’s law for binary and ternary hard sphere
systems, applying both aditive and nonadditive collision rules. Some years ago, Denton
and Ashcroft [7] reported on the applicability of Vegard’s law for hard sphere systems.
In particular, they used density functional theory (DFT) to study substitutional fcc
crystals of binary hard sphere mixtures. They were motivated to determine if simple
geometric effects, e.g., the size difference between hard spheres, could play a significant
role in determining the crystalline structures of alloys, expanding on previous studies of
solids of binary hard sphere mixtures [10, 13]. The authors chose to make the comparison
by looking at systems under conditions of solid-fluid coexistence, and concluded that for
a size ratio ooy, = 0.95, close to unity, Vegard’s law is a good prediction. Significant
deviations were observed for size ratios »/0, deviating more from unity.

Notice that, by choosing to follow the coexistence line, one does not follow a
constant 7" and p path. Although a valid choice, it is not clear that this is the appropriate
condition to use if we seek to make contact with our semi-conductor compounds.
Therefore, in figure 2-B-1 we deviate from Denton and Ashcroft [7], and return to the
common approach and show the lattice parameter for constant 7" and p. We see that the
data appear fairly linear, but clearly exhibit a positive deviation from

3.08

3.06

©  3.04

3.02

2.98 L I I I

Figure 2-B-1. The lattice parameter as a function of mole fraction for a substitutional zincblende crystal
of a nonadditive HS mixture where species 2, with 0»/01 = 1 is replaced by species 3. The abscissa x
denotes the mole fraction of species 3, i.e.,, x = N3/(N> + N3). We show the results for two size ratios.
The solid circles correspond to a nonadditive mixture where os/0q = 0.95, and Bpo® = 3.0977, while open
circles are the results for o3/01 = 0.90, and Bpo” = 4.0481. We observe that for the size ratio closer to unity
Vegard's law is obeyed, while for o3/01 = 0.90 there are significant (negative) deviations.

Vegard’s law, to be contrasted with the conclusions of Denton and Ashcroft. The same
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conclusion applies to the volume per particle (not shown), which also exhibits a positive
deviation from ideal solution behavior.

As mentioned above, Denton and Ashcroft [7] used DFT to determine fluid-solid
coexistence. Un- fortunately, the DFT coexistence results are markedly different from
the molecular simulation prediction of Kranendonk and Frenkel [10] (c.f., figures 1 of
reference [7] and [10]). Since the latter authors do not supply the lattice parameter, we ran
our own molecular dynamics simulations to determine the lattice parameter of the solid
phase. To this end we extracted [14] the coexistence mole fractions and pressure data of
figure 1 of [10], and ran molecular dynamics calculations for these conditions. The
resulting coexistence lattice parameter versus x is shown in figure 2-B-1. It clearly
follows Vegard’s law. Somewhat surprisingly, our simulation lattice parameter coincides
with the DFT lattice parameter of Denton and Ashcroft [7]. This implies that the DFT and
simu- lation agree on the packing fraction and mole fraction relationship of the solid phase at
coexistence, despite large discrepancies in the p —x coexistence diagram.

The compound lattices discussed for CdTel—xSex differ form the binary HS
mixtures in that the zincblende structure of CdTel—xSex, the arrangement of the Cd
atoms is a constant feature. That is, one of the two fcc sub-lattices that make up the
zincblende structure is not subject to alloying, only the anion fcc sub-lattice is. To
investigate whether geometric considerations alone could explain the CdTel—xSex
compound adherence to Vegard’s law, we investigate a ternary mixture of non-additive
hard spheres. A nonadditive HS system is defined by specifying the cross collision
diameter for spheres of species i colliding with spheres of species j as

o, =q (0',. + aj)/ 2 (22)

From this definition we see that the traditional additive HS mixture is recovered by setting
a; =
aj-,- =1 for all {i,j} pairs.

We know that a binary system with a; = 1 if i /=j, and a; = 2 if i = will result
in a zincblende structure when the packing fraction is sufficiently big (e.g., for a packing
fraction [15] # > 0.135, say). This is a direct result of the “charge ordering” that is
induced by this particular choice of parameters. That is, species 1 prefers to be
surrounded by species 2, and each species prefers to increase the distance between like
partners. For other parameter combinations, the NaCl or CsCl structures are found to be
the stable crystal structures. Thus, even though the non-additive HS model is purely
repulsive and short-ranged, it shares the charge ordering and crystal structures with the
ionic systems.

To facilitate the comparison with our CdTel—xSex simulations we extended the
binary non-additive HS mixture to a ternary mixture, and performed molecular dynamics
simulations for a mixture where o,/0, = 1; o3/, = 0.95 or 0.9. This choice of parameter
values was combined with the following non-additivity parameters: o, = a;3 = 1 ; a; =
2 for i = j; and a,; = 2. The latter choice ensures that species 2 and 3 repel each other
as other like species. We can think of this model as equivalent to a ternary ionic salt
such as KCl,_ Br,, which is one of the salts originally studied by Vegard [4].
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Results for the lattice parameter of the non-additive ternary model are compiled in
figure 2-B-1, where we plot the results for two size ratios, i.e., g;/g, = 0.95 and 0.9. We
observe that for a size ratio of 0.95 the ternary non-additive HS model follows the linear
Vegard predication, just as it does for CdTel—xSex. However, there is a very slight
negative deviation for the larger mole fractions. This system also closely follows ideal
solution behavior. In contrast, for a size ratio of 0.9 there is a noticeable (negative)
deviation from Vegard’s law, as there is from ideal solution behavior. The results
presented in this appendix illustrate that Vegard’s law is not generally obeyed and,
moreover, simple geometric models such as binary HS, or ternary non-additive HS are
not more likely to exhibit linear behavior for the variation lattice parameter with mole
fraction.

! Stillinger, F.H., and Weber, T. A., Computer simulation of local order in condensed phases of silicon , Phys. Rev. B., 31, 5262 (1985)

2 Zhou,X., Ward,D. K., Martin, J. E., van Swol, F. B. , Cruz-Campa,J. L. , and Zubia, D. Stillinger-Weber potential for the II-
VIelements Zn-Cd-Hg-S-Se-Te, Phys.Rev. B., 88,085309 (2013)

3 Allen, M.P., and Tildesley, D.J., Computer simulation of Liquids , Clarendon Press, Ox- ford(1987)

4 Vegard, L., Die Konstitution der Mischkristalle und die Raumfllung der Atome, Zeitschrift fur Physik 5 1726 (1921)

5 Hildebrand, J.H., and Scott, R. L. Regular Solutions, Prentice Hall, (1962); Prausnitz, .M., Molecular Thermodynamics of Phase-
Equilibria, 3rd Edition, Prentice Hall (1998)

6 It is interesting to note that Vegard [4], analyzing the results for mixed crystals of KBr and KCI, commented on the fact that the
lattice parameter follows the linear relationship more closely than the volume.

7 Denton, A.R., and Ashcroft, N. W., Vegard’s law, Phys. Rev. A., 43, 3161 (1991)

8 Williams, D.J., in”Properties of Narrow Gap Cadmium-based Compounds, Emis DataReviews Series, The Institution of Engineering and
Technology, Ed., Clapper, P. (1994).

® Ben-dor, L., and Yellin, N. Vertical unseeded vapor growth and characterization of Cd(.95Zn(.05Te Crystals, J. Cryst. Growth, 71,
519-524 (1985)

10 Kranendonk, W.G. T., and Frenkel, D., Computer simulation of solid-liquid coexistence in binary hard sphere mixtures, Mol.
Phys., 72, 679-697 (1991)

I Hildebrand, J. H., Nature, 168, 868 (1951), Proc. US Nat. Acad. Sci., 13, 267 (1927)

12 Small changes in volume will produce small changes in the entropy. These can be calculated through thermodynamic integration of
the Maxwell relation (8S/0V), = (0p/0T),, see [11]. For our system, the largest correction in AS/Nk is small enough to be neglected: -
0.0085 at x=0.5.

13 Jackson., G., van Swol, F., And Rowlinson, J.S., J. Phys. Chem., 91, 4907 (1987)

' The fluid(f) and solid(s) coexistence data of figure 1 of reference [10] can conveniently be fitted by simple cubic expressions: p,
= 13.635 —0.09461x—3.2366x> + 1.3976x° and ps = 13.635—0.2585x— 1.8775x2 +0.19629x°
15 The packing fraction is given by 7= (72'/6)21}N10'13 v

75



76



CHAPTER 3: HETEROJUNCTIONS of MODEL CdTe/CdSe
MIXTURES.

Frank van Swol, Xiaowang W. Zhou, Sivakumar R. Challa?, James E. Martin

Sandia National Laboratories
P.O. Box 5800 Albuquerque, New Mexico 87185

2Chemical and Biological Engineering Department
The University of New Mexico Albuquerque, NM 87106

December 11, 2014

ABSTRACT

We report on the strain behavior of compound mixtures of model group II-VI
semiconductors. We use the Stillinger-Weber hamiltonian that we recently introduced,
specifically developed to model binary mixtures of group II-VI compounds such as CdTe
and CdSe. We employ molecular dynamics simulations to examine the behavior of thin
sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two

compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1° deflection
between neighboring planes. To analyze bilayer bending, we introduce a simple one-
dimensional (1D) model and use energy minimization to find the angle of deflection. The
analysis is equivalent to a least-squares straight line fit. We consider the effects of
bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe
parts. From this we learn that the bending can be subdivided into four kinds depending
on the compressive/tensile nature of each outer plane of the sheet. We use this approach
to directly compare our findings with experimental results on the bending of CdTe/CdSe
rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we
mix (i.e., alloy) Te and Se, and estimate the strain response.
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X. INTRODUCTION

Semiconductors based on nanocrystalline materials of CdSe/CdTe mixtures have been
found to have novel electronic and optical properties that could benefit photovoltaic, display, and
medical imaging technologies [1, 2]. Optoelectronic and photovoltaic behavior of these
semiconductors can be tuned to specific applications by engineering nanostructures with various
compositions, shapes, and morphologies. Semiconductor compounds, such as CdTe, CdSe, and
mixtures thereof (or CdTe;-xSex for short) [2], are often used in configurations that produce
interfaces (or heterojunc- tions) between the two phases. Effects of strain arising from lattice
mismatch at heterojunctions in the binary compound mixtures on band structure has been
studied in crystalline solids and nanocrystals [1, 3, 4, 5, 6, 7, 8]. A compressive or tensile
stress is understood to lead to an increased or decreased band gap energy, respectively.

A familiar example is that of core/shell quantum dots (QDs) where the core may consist of
CdTe and the surrounding shell of CdSe. Other examples include rod shaped particles [9] and
layered materials. Even though the crystal forms of the two phases may be the same (e.g.,
zincblende or the hexagonal form: wurtzite), the lattice mismatch between the two pure phases,
i.e., the difference in lattice parameter, makes for an interface that displays strain and stress. The
existence of the strain a nd/or stress is believed to affect the performance of the semiconductor
materials, for instance through the radiationless recombination of electrons and holes. Strain could
also lead to a gradual transition from type-I to type-II semiconductor behavior by designing
carefully controlled heterojunction size/structure or composition [3, 7]. So, it becomes necessary
to study how lattice mismatch at heterojunctions can lead to structure relaxations and shape
modifications.

It has been proposed that alloying of the interfacial region may help to relieve some of the
stress and or strain. Experimentally, it is difficult to measure the stress and strain behavior at the
nanoscale. Microscopy techniques such as TEM and SEM (tunneling and scanning microscopy)
can image individual atoms but it is still hard to determine the full 3D structure and the identity
of each atom. Stress measurements would appear to be even more challenging. At the same time,
these are situations where simulations can be usefully employed to explore the behavior of
heterojunctions, and provide a fundamental understanding of the phenomena.

In this paper we report on molecular dynamics (MD) simulations of a thin finite-sized bilayer
sheet with a heterojunction where CdTe meets CdSe (or, in some cases, CdS). The bilayer sheet
responds to the lattice mismatch with a pronounced curvature that corresponds to neighboring crystal

planes to adapting a wedge shape with a 0.5 to 1° angle between them. Shim and McDaniel
[2] have observed bending of the heterojunction of CdTe and CdSe by HAADF-STEM (High
angle annular dark field scanning transmission electron microscopy imaging). Their high-resolution
images show that the bending is the result of an actual deflection of the crystal planes. The
authors call the extent of the deflection surprising. Specifically, the angle of deflection was found
to be larger than what was expected if the lattice spacing simply varied from the bulk CdSe
value on one side of the bilayer to the bulk CdTe value on the opposing side. Instead, the crystal
plane spacing on the outer edge of the CdSe layer was smaller than that in a bulk CdSe phase,
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while on the opposing side it was equal to that of bulk CdTe.

We introduce a simple 1D model to help explain the nature of the observed curvature, and
apply it to predict the angle of deflection. This simple model helps in providing an explanation as
to why the crystal bending for symmetric bilayers is larger than expected based on the bulk lattice
parameters. In addition, the 1D model can be used to generalize to the richer class of asymmetric
bilayers as well as predict bending responses to alloying of the bilayer.

Figure 3-1. Curved minimum energy configuration of a bilayer sheet of CdSe (left layer) and CdTe (right layer).

The dimensions of the sheet are approximately 56.5A x56.5A x18.8A. Cd, Se and Te, are denoted by red, yellow and
blue respectively. The dots are not drawn to scale, to highlight the layers. The image presents a side-on view of a
three-dimensional bilayer zincblende structure (see the inset), highlighting the alternating stacking between layers of Cd
and layers of Se and Te. Each layer contains 54 atoms. The orange construction lines help to determine the degree of

bending (here expressed as an angle) for a sheet of 36 layers. The deflection angle between two layers is ~0.54°.
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Xl. RESULTS

To model group II-VI materials we use the three-body potenial we recently developed [10,
11], which 1is based on the well-known Stillinger-Weber potential [12]. We performed molecular
dynamics (MD) simulations of N=1944 particles, arranged in a zincblende structure of 9 by 9 unit
cells in a sheet of 3 unit cells. Each cubic unit cell contains 8 atoms. Half the group VI atoms
were Te while the other half were Se (and in some runs S). The sheets consist of 12 atomic (100)
planes parallel to the heterojunction. Initially, the entire starting sample generated consisted of
CdTe. All the Te atoms on one side of the sheet were then replaced by Se. MD simulations were
performed at room temperature, i.e. 7 = 300K, which is far below the melting point and, hence,
the sample remains in the crystalline state. The sheet is surrounded by vacuum, and periodic
boundary conditions were applied in all directions. For some of the samples we use steepest
descent to obtain energy- minimized structures to facilitate quantifying the degree of bending.

Given that the lattice parameters are significantly different (i.e. 6.46A for CdTe, 6.06A for

CdSe and 5.84A for CdS) the sheet initially exhibits considerable stress, which is then released by
pronounced

Figure 3-2. Curved minimum energy configuration of a bilayer sheet of CdSe (left layer) and CdTe (right layer), see
also caption of figure 1. This image shows the result of performing 800 swaps between Se and Te atoms, thereby
alloying the heterojunction. This results in a reduction of the sheet’s curvature. The deflection angle between two

layers is ~0.31°.

deformation of the sheet. In figure 3-1 we show a typical example of a relaxed bilayer sheet. The
final appearance of the sheet is a strongly bent bilayer with the CdTe side a convex surface
(positive radius of curvature) while the CdSe side is concave (a negative radius of curvature), see
the inset to figure 3-1. The entire sheet is still locally in a zincblende structure, but a highly
distorted one. In the zincblende structure there are alternating (100) planes of Cd and planes of
Se/Te atoms. In the figure, the sheet is angled in such a way as to highlight the relative position
of the planes. We note that all the atoms are still organized in planes, but that neighboring
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planes exhibit a deflection from the parallel configuration into a wedge-like structure. We quantified
the bending by
simply measuring the angle of the two outer atomic planes (perpendicular to the heterojunction), as

indicated in the figure. The angle is found to be ~19°, which corresponds to a deflection angle of ~

0.54° for each neighboring pair of atomic planes.

In figure 3-2 we present the MD results for a slightly alloyed sample, where some Se atoms
appear to the right of the heterojunction and the same number of Te atoms have moved to the left.
This was accomplished by performing 800 pair swaps or interchanges, where a pair swap is
executed by randomly selecting one Se atom and one nearby Te atom, and then swapping their
positions.

Alloying reduces the curvature. The measured bending angle of the entire sheet is ~ 11e,
which corresponds to a deflection angle of ~ 0.31c for each neighboring pair of planes. By
symmetry, a fully randomly mixed bilayer has zero bending, of course.

Shim and McDaniel [2] reported on a very similar experimental system involving CdTe
domains grown beyond the tips of a seed CdSe nanorod. The authors used a HAADF-STEM
image to illustrate [13] the nonparallel arrangement of the crystal planes, and measured the angles
of deflection between two neighboring crystal planes. As suggested by the lattice parameters, the
layers were closer together on the CdSe side of the rod, and wider on the CdTe side. The authors
noted, however, that the narrowest part of the interlayer distance was noticeably smaller than that in

- A -
s st

Figure 3-3. Sketch of the one-dimensional model used to analyze the crystal plane deflections observed in the
curved bilayer sheets shown in figures 3-1 and 3-2. We show the Cd atoms in red, Se in yellow, and Te in blue.
Each Se and Te is connected to a Cd atom. We approximate the interaction potential by a harmonic potential,
illustrated by a spring. On the left (top) is an unconstrained fully segregated bilayer configuration, whereby each atomic
pair is at an equilibrium distance of a/att/4, which leads to a larger distance for CdTe. The bottom left diagram illustrates
the effect of constraining the Se and Te to a crystal plane (as observed in figures 3-1 and 3-2), and minimizing the
total energy. The result is a deflection of the crystal plane. On the top right we show an alloyed bilayer configuration
that has two Te atoms swapped for two Se atoms (in a symmetric fashion). The panel on the bottom right shows the
constrained, energy minimized configuration for the alloyed bilayer, at a reduced slope.

CdSe. However, the widest part was about the same as in pure CdTe. In their figure (i.e., figure 7)
they label the CdSe side as “in compression” and the CdTe side as “in tension”. The authors further
reported that there was variation in the results among the different rods, some had larger deviations
from the bulk spacings.

We will now show that a quantitative treatment for the crystal plane deflection and the size
of the observed angle can be obtained from a simple model. In addition this approach can be readily
used to explore the behavior of asymmetric bilayers as well as the effects of alloying. A schematic of
our model is depicted in figure 3-3. We consider one Cd crystal plane interacting with one crystal
plane made up of equal amounts of Se and Te (we will consider unequal amounts later in this paper).
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The left panels show a completely segregated bilayer structure that has all the Se atoms on the left
hand side and all the Te on the right. Each Se or Te atom interacts with a Cd atom in the layer
below. We approximate the interaction by a simple harmonic potential, and in the figure we
illustrate its equilibrium position by the extent of the spring. The Se-Cd equilibrium distance is

equal to one quarter of the lattice parameter of pure CdSe at 7=300K, i.e, a; =ajatt/4 =1.51579 A.

Similarly, the Te-Cd equilibrium distance is denoted a, = ajgst/4 = 1.62298 A. For the horizontal
spacing we choose a constant distance equal to the average of a;, and a,, so that the thickness of
the bilayer sheet is equal to that of the simulated structure.

The total energy of the model structure is defined as the sum of the harmonic pair energies,
ie.,

12 2
Uzzzgi(yi_ai) ()
i=1

where index i denotes the pairs, N is the number of Se atoms (equal to the number of Te atoms),
and a; = a, for a Se-Cd pair and a, for a Te-Cd pair. The separation (i.e., extension of the spring)
of pair i is denoted by y;, the horizontal position of the pair is xi. The strength of the interaction
of pair i is E,. For simplicity we set £, = E, = 1.

To represent the structures observed in figures 3-1 and 3-2, we require that the positions
of all the Se and all the Te atoms fall onto one plane. In our one-dimensional model that
requirement is equivalent to stating all the positions y; fall onto a straight line. The application of
this constraint is illustrated in the bottom panels of figure 3-3.
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Figure 3-4. One-dimensional model of the layer deflection for a bilayer sheet. In the top panel the bilayer is
symmetric, 6 planes each (labeled (6,6)), while in the bottom panel we show an asymmetric bilayer (i.e., (4,8)). We plot
the distance, a (in A), between atoms in neighboring crystal planes. One plane (not shown) consists of 12 Cd atoms,
the other layer has m Se atoms (on the left) and n Te atoms (on the right). The solid line shows the result of a
energy minimization which is equivalent to a least-squares fit of a straight line. The slopes correspond to 0.49° (top
panel) and 0.44° . For the (6,6) bilayer the left hand side is in compression, while the other end is in tension. In
contrast, for the (4,8) bilayer both sides are in tension.

84



0‘04 T T T T T

Il
" @ ' .%.. | ] & I
0021 X (i) *w ]
a e
% (2,28)
: T
o] | |
S 002 e i
004 ® i
&
006L ® .
| |
-0.08 | o (28,2) .
1l v
-0.1 I 1 I I 1
-0.04-0.02 0 0.02 0.04 0.06 0.08 0.1
Aa
CdSe

Figure 3-5. The effects of asymmetry in a CdSe/CdTe bilayer. We use the simple 1D model to explore the
distortion response of segregated (n, m) bilayers, consisting of m planes of CdSe next to n planes of CdTe. We
have plotted the distortion Aa = a; —a,, in Angstroms, at the outer edge of the CdTe layer versus the a; —a, at the
outer edge of the CdSe layer. The circles, squares and diamonds refer to bilayers composed of a total of 30, 20
and 12 planes respectively. The dashed line indicates the thickness trend of symmetric films for which m = n.
The data fall into three of four quadrants. In quadrant | both deviations are positive indicating that both outer
edges of the bilayer are in tension, while in Ill both are in compression. Quandrant |l signifies compression of the
CdSe side combined with tension on the CdTe side (see figure 3-4). No segregated bilayers can end up in quadrant
IV. However, alloyed bilayers can.
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The equilibrium configuration of our model is defined as the straight-line configuration
that minimizes the total energy U , see equation 1. Writing y; = b + mx;, the problem then is to
determine the slope m and intercept b that minimizes U. This is in fact a very familiar problem, as
it is identical to performing a least-squares fit of a straight line to 2N measured data points {x;, yi}.
For the latter problem one minimizes the chi-square merit function,

X2 (m, b)= Z[—“ _’; - ’”xfj )

where o; is the uncertainty associated with measurement y; = b + mx;. Thus, setting ; = E; = 1,
U =2/2.

In figure 34, top panel, we illustrate the results of the energy minimization of a perfectly
segregated symmetric bilayer of CdSe and CdTe. This (n,m) bilayer has n = 6 crystal planes
parallel to the heterojunction containing Se, and m = 6 planes containing Te. The slope of the plane
(perpendicular to the heterojunction) that minimizes U is 0.008602 and, as pointed out, it can be
most easily obtained by performing a least-square straight-line fit to the data points shown.

Also indicated in figure 3-4 is the result of a linear interpolation between ai and a»,
indicated by the dashed line. The slope of this line is a measure of the crystal plane deflection if one
naively assumes that the plane spacing across the bilayer varies from that of bulk CdSe phase (on
the outer left of the bilayer) to that of bulk CdTe phase (on the outer right of the bilayer). That
assumption always leads to an underestimation the angle of deflection between two neighboring
planes. Instead, the outer side of the CdSe is found to be in compression, while the outer side of
the CdTe part of the bilayer is in tension, as the solid line ends below the Se atoms on the left and
above the Te atoms on the right.

Our simple model demonstrates why this has to be the case mathematically. In physical
terms, given the imposed constraint that the Se and Te atoms must be co-planar, typically none
of the individual pairs i (Se-Cd or Te-Cd) can adopt their equilibrium distance a; (a1 or a2).
Instead, for symmetric bilayers, the total energy of the distortion is minimized by over-
compressing the outer Se-Cd pairs and over-stretching the outer Te-Cd pairs, such that the inner
Se-Cd and Cd-Te pairs can adopt a separation that is closer to the equilibrium distance of the
isolated pair.

The results of our simple model are quantitatively correct as well. From the slope found in
figure 3-4, 0.008602 = tan 0, we identify the angle of deflection (between [100] atomic planes of a
CdSe/CdTe bilayer of 3 unit cells thick) as 6 = 0.49°, in good agreement with the MD value of

~0.54¢. Similarly, for a bilayer of CdS/CdTe the MD result is 6 ~0.83°, while our simple model

predicts 6=0.76".

By restricting ourselves to symmetric bilayers, we have not presented a complete story
of the bending phenomenon. To explore the richness of bilayer response to lattice mismatch we must
turn to consider asymmetric bilayers, i.e., n /= m. The bottom panel of figure 3-4 shows the
results of a (4,8) bilayer. Here the energy minimization leads to a situation where both outer
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layers are in tension. Conversely, an (8,4) bilayer has both outer layers in compression. For a given
number of planes (i.e. bilayer thickness) there are various combinations m and # to be considered. In
figure 3-5 we have collected results for n+m = 12,20 and 30. The last set is thought to correspond to
the rod diameter in the work of Shim and McDaniel [2] while the first set is similar to our MD
simulations (see figures 3-1 and 3-2). To avoid clutter we generally only plot the data for even
values of n and m.

We plot the deviations from the bulk crystal plane spacing on the CdTe side (outer edge)
versus the corresponding deviation on the CdSe side (outer edge). We will start with the results
of a symmetric (n, n) bilayer. These bilayers all fall onto a straight (dashed) line through the
origin, with a negative deviation for the CdSe layer (compression) and a positive deviation for the
CdTe layer (tension), c.f., figure 3-4. It can be shown that the angle of deflection of the symmetric
bilayers decreases with n, varying as n~!. As we have seen, if we deviate from the symmetric
layer and consider a (4,8) layer then we obtain positive deviations for both the outer CdSe and
CdTe layers. Hence this state lies in the first quadrant of figure 3-5. Larger deviations from the
symmetric case produce states placed farther from the origin in quadrant I; maximum amount of
strain, therefore, could be expected for severely asymmetric systems. All states in quadrant |
exhibit tension on both sides of the bilayer.

An (8,4) bilayer produces a state in the third quadrant, which corresponds to compression on
both sides of the bilayer. By varying the values n and m for constant n + m we trace out an
envelope of points that populate three of the four quadrants. The data are symmetric around y = —x,
due to the symmetrical nature of the 1D model. The absence of data in quadrant IV implies that
the bilayer cannot combine expansion of CdSe side (which has the smaller lattice parameter) with
compression of CdTe side. We will see later that points in quadrant IV can only result from
alloying the bilayers.

We now return to the experimental results of Shim and McDaniel who report AaCdSe =

0.09A and AaCdTe = 0. This places their state point on the border of quadrant IT and III. Note
that Shim and McDaniel report on the spacings between (111) planes, while we have considered
(100) planes. Now, the ratio of these two sets of plane spacings is equal to 4/ (\/5 /3) = 2.31.

Thus, the corresponding Shim-McDaniel estimate for the (100) spacing would be 0.04A, which lies
very close to the envelope of points in the phase diagram of figure 3-5. From the estimated
thickness, n + m=30. We identify the state point which most closely matches AaCdSe = 0.04A
and AaCdTe = 0 as n = 22, m = 8. This is certainly consistent with the information provided in
figure 3-7 of [2], but that work does not report on the specific values for » and m. In addition,
we point out that we have used a planar sheet while the experiments were performed with rod-
shaped nanoparticles.

Although they observe AaCdTe = 0, Shim and McDaniel label the CdTe as in tension,
whereas we consider this side to be in a neutral, unstrained state. It is possible that the authors
simply assumed that if the CdSe side was clearly in compression then the other side had to be in
tension.
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Figure 3-6. The displacement per particle as a function of the slope for all possible symmetric permutations of 1, 2,
and 3 particles swaps; Aa = (2N )_1Z_|y,.—al.|. The black solid square indicates the perfectly segregated

configuration. The green diamonds denote one-particle swaps; the solid black circles denote two-particle swaps; while
the orange circles are the three-particle swaps. The boxes drawn indicate the range of slope-displacements
relationship outcomes for a particular number of swaps, and highlight that there is considerable overlap between 2- and
3-particle swaps, say. There are more permutations than symbols visible in the plot. This is a reflection of degeneracy, the
occurrence of which increases with the number of swaps. The loci of the points shown form a quartic, i.e., y =

0.053785+0.13197x-624.17x" -11634x +3.8058 x10°x"
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Although this may appear as a natural assumption, our discussion here clearly demonstrates
that bent bilayers can, in fact, exhibit three combinations of tension and compression, as indicated
by the three quadrants in figure 3-5. Thus, observing the state of one side of a bent bilayer does
not uniquely determine state of the opposite side.

Finally, we use the simple one-dimensional model to study the effect of alloying, limiting
ourselves to symmetric bilayers. A schematic of alloying is shown in the one-dimensional
representation in figure 3-3, which illustrates the effect of swapping two Se atoms with two Te
atoms. For simplicity we will restrict ourselves to the symmetric’ swaps shown in the panels on
the right hand side of figure 3-3, where we swapped Se positions 2 and 4 with Te positions 2N —2
and 2N —4. For N = 6 one only needs to consider swapping 1, 2, or 3 atoms, as swapping more
atoms merely results in reversing the identities of the left and right hand side of the bilayer. In
figure 3-6 we have collected the results of alloying. We plot the average displacement per

particle, Aa = (2N) ™ Zi|yl. —a,

curve. Alloying reduces the bending of the bilayer (i.e., smaller slope of deflection), while
increasing the value of Aa. For our 12 layer sheet, entirely eliminating the bending (i.e., zero
slope), can be accomplished with certain two- or three-particle swaps, but not with one-particle
swaps.

, versus the slope. We note that all the data fall onto a quartic
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Xll.  CONCLUSIONS

The MD simulations of thin bilayers of group II - VI compounds, i.e., CdTe/CdSe
structures, that we have presented show that the lattice mismatch produces pronounced bending of the
bilayer sheet. The angle of deflection between two neighboring (100) planes is of the order of one
degree. Alloying the bilayers produces less bending or smaller angles of deflection. We presented a
simple 1D model to help explore the details of this phenomenon. The energy minimization of the 1D
model structure is mathematically identical to a simple straight-line least-squares fit, and hence
easy to interpret. It gives an accurate prediction of the MD simulation result, and we have used it
to explore more details of the bent bilayer structures. For symmetric (n, n), fully segregated,

bilayers the angle of deflection scales as n~1. More generally, asymmetric bilayers show a

variety of outcomes. These are characterized by the distortion on either end of the sheet. Three
types of outcomes are found: plane separation reductions on both sides produce a bilayer that is in
compression on both sides. Similarly, plane separation increases lead to bilayers that are in
tension on both sides. The last type of outcome consists of compression on the CdSe side and
tension of the CdTe. The reverse of this latter state is not possible. Finally, all symmetric bilayers
lie in quadrant II.

We compared our predictions for the deflection angle, and the compression/tension state
of the bilayer, to experimental findings for bilayer CdSe/CdTe rods, as reported by Shim and
McDaniel [2] and find good agreement with their high resolution TEM results. Our simple model
predicts that the parts of the rods used in these measurements had 27% of the diameter consisting
of CdTe. A refinement of our simple model, which uses weighted points to account for the rod
shape could potentially produce more accurate results. Our current model also enables a simple
assessment of the results of alloying around the heterojunction with an eye on reducing the strain
(i.e., the angle of deflection). The model calculations indicate that at a given mole fraction, guest
atoms (i.e, Se in CdTe or Te atoms in a CdSe) are most effective in reducing the angle of plane
deflection if they are located far from the location of the heterojunction.
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ABSTRACT

Recent synthetic advances have made available very monodisperse zincblende CdSe/CdS
quantum dots having near-unity photoluminescence quantum yields. Because of the absence of
nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from
time-resolved PL measurements. Radiative lifetimes can also be obtained from the Einstein
relations, using the static absorption spectra and the relative thermal populations in the angular
momentum sublevels. One of the inputs into these calculations is the shell thickness, and it is
useful to be able to determine shell thickness from spectroscopic measurements. We use an
empirically-corrected effective mass model to produce a “map” of exciton wavelength as a
function of core size and shell thickness. These calculations use an elastic continuum model and
the known lattice and elastic constants to include the effect of lattice strain on the band gap
energy. The map is in agreement with the known CdSe sizing curve and with the shell
thicknesses of zincblende core/shell particles obtained from TEM images. If selenium-sulfur
diffusion is included and lattice strain is omitted then the resulting map is appropriate for
wurtzite CdSe/CdS quantum dots synthesized at high temperatures, and this map is very similar
to one previously reported (Embden, et al., J. Am. Chem. Soc. 2009, 131, 14299). Radiative
lifetimes determined from time resolved measurements are compared to values obtained from the
Einstein relations, and found to be in excellent agreement. Radiative lifetimes are found to
decrease with shell thickness, similar to the size dependence of one-component CdSe quantum
dots and in contrast to the size dependence in type-II quantum dots.
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Xlll.  INTRODUCTION

Quantum dots (QDs) are of great interest because of their tunable and intense
photoluminescence (PL). Very high PL quantum yields and photostability are often obtained
from CdSe/CdS core/shell QDs, making them of particular interest. CdSe/CdS core/shell
nanocrystals have optical properties that are unique amongst semiconductor QDs and have been
extensively studied. Most of these particles are synthesized at high temperatures and have a
wurtzite crystal structure, which is the most stable form. Although these core/shell QDs
typically have high PL quantum yields when shells are thin (a few CdS layers), the quantum
yields drop with increasing shell thickness.! Recently Nan et al. reported a low temperature
synthesis of very high quality zincblende CdSe/CdS core/shell QDs.> The PL quantum yields of
these QDs is very high and remains high for relatively thick shells. The reason for the
differences in the optical properties is that the “synthetic philosophy” for these particles is
entirely different than that underlying previous syntheses giving wurtzite particles.

In most syntheses of wurtzite core/shell particles, shell growth is done using a SILAR
procedure at fairly high temperatures, > 200 C°.3-> There are two reasons for this: first, the high
temperatures are needed for the reaction of the cadmium and sulfur precursors to proceed at a
reasonable rate; and second, the higher temperatures permit in-situ particle annealing, resulting
in better crystallinity. Successive addition of cadmium and sulfur precursors can produce very
thick CdS shells, the so-called “giant” nanocrystals.® 7 The main problem with this approach is
that there is a 4% lattice mismatch between CdSe and CdS that results in considerable lattice
strain at the core-shell interface.® This strain can be relieved by shell surface reconstruction
which readily proceeds above about 200 °C. The result is that the shells are typically irregular
and have many surface defects.” These defects can act as electron-hole recombination centers,
lowering the PL quantum yield.

In contrast, in the recent zincblende synthesis, shell deposition proceeds from a very
reactive single CdS precursor? at relatively low temperatures, < 160 °C. Surface reconstruction
is an activated process and does not readily occur at such low temperatures.® The result is that
the zincblende core/shell particles are metastable with respect to lattice-strain-induced shell
defects and have much more uniform and closer to defect free shells than the corresponding
wurtzite particles. This results in very high PL quantum yields, even for particles with
comparatively thick shells. The original reports give the PL quantum yields of about 85%. We
have optimized this synthesis and get quantum yields of about 95%. Zincblende CdSe/CdS QDs
are also quite stable and it seems that these particles hold great promise for applications in
photovoltaics and especially light emitting diodes.

Having accurate radiative lifetimes is fundamental to understanding the luminescence of
any type of QD. Radiative lifetimes are, in principle, easy to obtain. One simply measures the
PL decay kinetics, and in the absence of non-radiative decay pathways, the measured decay time
is the radiative lifetime. However, the observed PL QYs of most types of QDs are far below
unity, indicating that non-radiative processes compete with luminescence and cannot be ignored.
The observed PL decay rate is the sum of the radiative and non-radiative rates, and different
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fractions of the sample having different non-radiative rates can make the interpretation of multi-
exponential PL decay kinetics ambiguous and problematic.'”

Radiative rates can also be calculated from absorption spectra using the Einstein relations.!!: 12
Specifically, for a II-VI QD the relation is

A= %<Vf>_l.[?dvz 2.88x107C n* (B} a(Bab 1
c'n ‘

where N, is Avogadro’s number, c is the speed of light, ¢(v)is the molar extinction coefficient (L

mol! cm!) at frequency v, v (%) 1s the fluorescence frequency (wavenumber), brackets denote

an averaged quantity, Cy is a factor related to the relative populations in the dark and bright fine
structure levels (discussed below) and n, and 7, are the refractive indices of the surrounding
solvent at the absorption and luminescence wavelengths, respectively. In the case where the
absorption and luminescence spectra are narrow and there is minimal Stokes shift, the left part of
equation 1 simplifies to the right part, with n = n, = n. Alternatively, the radiative rate may be
given in terms of the oscillator strength of the transition,
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These expressions ignore local field effects, which enter into expressions for the absorption and
luminescence in the same way, and therefore cancel.

Equations 1 — 3 are the usual expressions for the radiative lifetime, except for the inclusion of the
factor that takes into account thermal populations in the angular momentum fine structure, Cj.
This factor is given by!?

c - z[fl. exp(=E, / k,T) (4)
BTN exp(—E, 1 k,T)

where kg is the Boltzmann constant, E; and f; are the energy and fraction of the total absorption
oscillator strength in the i-th transition, respectively. There are eight thermally accessible
angular momentum sublevels in the 1S.-1S;/, exciton. Rapid equilibration with the population of
the dark states effectively increases the radiative lifetime compared to the case of a single
absorbing and emitting oscillator. This is not a small effect; in the absence of crystal field or
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shape anisotropy mixing, five of the eight fine structure sublevels are dark. Following photon
absorption, rapid relaxation occurs amongst the bright and dark states and luminescence comes
from a temperature-dependent distribution of states, each having its own radiative rate. The
energies and oscillator strengths of these different angular momentum sublevels depend of the
size, shape and crystal structure of the QD. These energy separations are comparable to k7 at
room temperature and there is a Boltzmann distribution of populations in these different states,
complicating the evaluation of Cg. Accurate calculation of radiative lifetimes requires that the
values of the PL energy, the integrated extinction coefficient and Cy be considered.

In this paper we examine the radiative lifetimes of a series of CdSe/CdS core/shell
particles having different shell thicknesses. These values are obtained directly from time-
resolved measurements and compared to values obtained from static spectra and the evaluation
of equation 1 or 2. Agreement between values obtained from these completely different
approaches is very good, indicating that the factors controlling the radiative lifetime are well
understood.

XIV. RESULTS AND DISCUSSION

Absorption (molar extinction coefficient) and PL spectra of the zincblende CdSe core and
CdSe/CdS core/shell QDs are shown in figures 4-1 and 4-2. The extinction coefficient spectra
shown in figure 4-1 are determined from raw absorption spectra.
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Figure 4-1. Absorption spectra of 2.64 nm zincblende CdSe QDs and corresponding core/shell particles having shell
thicknesses of 0.00, 0.39, 1.10, 1.52, and 2.00 nm, as indicated.
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Figure 4-2. Normalized photoluminescence spectra of the same QDs as in figure 4-1.
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The outline of the procedure for doing this in the absence of direct concentration
determinations is the following. We initially determine exciton energy as a function of core size
and shell thickness, making a “map” of exciton wavelength for CdSe/CdS core/shell particles.
This is useful because it enables spectroscopic determination of shell thickness for particles for
which TEM data are not available. The core diameter and shell thickness results are used along
with the known bulk CdSe, CdS and solvent absorption coefficients and refractive indices to
obtain extinction coefficients at a wavelength where quantum confinement effects are negligible,
in this case, 350 nm. Knowing the extinction coefficient at this wavelength directly converts an
absorption spectrum to an extinction coefficient spectrum. The extinction coefficient spectra are
then used to obtain absolute oscillator strengths and radiative lifetimes using equations 1 — 4.

1. Exciton energy as a function of core size and shell thickness.

The size-dependent spectroscopy of wurtzite versus zincblende CdSe particles has not
been extensively studied, but indications are that the crystal structure makes little difference in
the effects of quantum confinement. This is not surprising, as the energetic difference between
the two forms is very small, 1.4 meV per CdSe. We therefore assume that size calibration curves
obtained for wurtzite may also be applied to zincblende particles. The cores have an absorption

maximum at 516.6 nm, see figure 4-1. Using the well-established sizing curve for CdSe
particles,'3 this corresponds to 2.64 nm diameter particles. A TEM image of the core/shell
particles having an absorption maximum at 592.4 nm (indicated as CdSe/CdS 4 in figures 4-1
and 4-2) is shown in figure 4-3.

99



kY

F——— 10 nm

Figure 4-3. TEM image of the core/shell particles having an absorption maximum at 592.4 nm. The inset shows a
typical high resolution image.

The particles are somewhat non-spherical, having dimensions varying from about 6.2 to
9.0 nm. The ensemble average dimension is obtained from the measurement of many particles
and is found to be 6.6 nm. With the known core diameter of 2.64 nm, these images indicate that
for these particles the average shell thickness is 2.0 nm. The shift of the lowest exciton
wavelength from 516.6 to 592.4 nm constrains the calculation of any core/shell sizing map.

The approach used here to generate this map is based on the known CdSe sizing curve
and calculation of the exciton energies using effective mass approximation (EMA)
wavefunctions. Wurtzite and zincblende CdSe have very similar spectroscopic energetic and
properties and we make the assumption that the wurtzite CdSe sizing curve can also be used for
zincblende particles. EMA calculations are known to predict larger quantum confinement effects
than what is observed. These errors are minimized by considering the electron and hole moving
in potentials having finite barriers at the particle surface. However, even with finite barriers,
EMA calculations typically over-predict the extent of quantum confinement, and the extent of
these errors increases with increasing quantum confinement energy. The fundamental problem is

(o°E)"
that the effective mass is defined as m* =107 L 8k2J , and the plot of E versus £ is not quadratic

at the larger quantum confinement energies of the smaller particles.'* !> The obvious solution to
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this problem is to empirically correct the effective masses as a function of quantum confinement
energy, and that is the approach taken here. Since most of the quantum confinement is in the
conduction band electron, this empirical correction is applied only to the electron effective mass.
Applying a correction to the electron effective mass means that the total quantum confinement
energy depends on the electron effective mass and vice-versa. It follows that the correction
factor to the electron effective mass must be calculated in a way that is self-consistent with the
calculated quantum confinement energies. Throughout these calculations, the electron-hole
coulombic interaction is treated as a perturbation. We find that the corrected electron effective
mass may be given by, m’ (corrected )=m; (bulk Y0.36773+2.75634x10 E,,. ~8.3105x10” £}, ), where
Eyc is the electron plus hole quantum confinement energy. The way this is implemented is to start
out assuming the low energy (bulk) electron effective mass, calculate electron and hole quantum
confinement energies, use these quantum confinement energies to get a corrected electron
effective mass, and so on. This procedure converges to self-consistent values in a few iterations.
This empirical correction is chosen so that the EMA calculations very accurately reproduce the
known CdSe sizing curve for particles having exciton wavelengths of 500 — 650 nm. '3

These calculations are also applied to CdSe/CdS core/shell particles. This extension is
non-trivial for two reasons. First, the presence of core/shell lattice mismatch, and second, the
possibility of selenium and sulfur interdiffusion. Diffusion is a strongly activated process and
appropriate to the low-temperature shell deposition conditions used here, we will initially ignore
radial diffusion. The lattice parameter of CdSe is about 4% larger than for CdS, and the core-
shell lattice mismatch results in the core being under isotropic pressure and the shell being under
radial pressure and tangential tension.!® !7 These strains affect the respective conduction band
energies, which is taken into account through an elastic continuum calculation using the known
elastic parameters of each material.'®2° This calculation gives the volumetric strain as a function
of radial position. This result, when combined with the volume dependent conduction band
energy shifts, allows calculation of an accurate conduction band radial potential, as was done in
reference 21. The valence band potential is much less affected by strain, and is taken to be bulk
values. Electron and hole wavefunctions are calculated using these potentials. A crucial
parameter in the electron wavefunction calculation is the zero-strain CdSe-CdS conduction band
offset, which is estimated to be between 0 and 0.3 eV.2224 If this is taken to be 0.047eV and the
same electron effective mass correction factor is applied to the CdS conduction band electron,
then this EMA calculation also accurately gives the exciton energy of the 6.6 nm core/shell
particles, see figures 4-1 and 4-3. This approach has been used to calculate the exciton energies
of a wide range of cores sizes and shell thicknesses. A map of the exciton energy as a function
of core size and shell thickness is shown in figure 4-4 and in the Supporting Information. The
elastic continuum model is not a good approximation for very thin shells, (less than a full
monolayer) and calculations for those particles are omitted.
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Figure 4-4. Exciton wavelength map assuming no core-shell interdiffusion and core compression calculated with
bulk elastic parameters. The calculations assume smooth shells and a coherent core/shell interface.

The map in figure 4-4 assumes both a coherent core-shell interface and a uniform shell
thickness, resulting in significant strain-induced spectral shifts. These are good assumptions for
the zincblende particles for which the shell has been grown at low temperature. However, much
of the lattice strain energy is released upon forming a rough shell and this occurs when thick
wurtzite shells are grown at high temperatures and/or subsequently annealed.® In addition to
relieving much of the lattice strain, high temperature shell deposition and subsequent annealing
results in significant radial diffusion of the selenium and sulfur across the core-shell interface.
This diffusion has the effect of changing both the conduction and, especially, valence band radial
potentials. Thus, the effect of annealing is that the conduction band potential is altered by the
graded composition and the loss of volumetric lattice strain. The valence band potential is not
greatly affected by volumetric strain, but is affected by the change in composition profile.
Valence band energies change nonlinearly with composition, a phenomenon referred to as
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“optical band-bowing,” and this effect is included in the calculation of the valence band radial
potential.>>-?7 These considerations are relevant to the results on wurtzite CdSe/CdS particles
reported in reference 5. In these studies, the CdS shells were grown at relatively high
temperature and subsequently annealed at 200 °C. In contrast, the particles used here are
zincblende and with the shells grown at much lower temperatures, <160 °C, and do not readily
undergo surface reconstruction. They have more uniform shell thicknesses and are metastable
with respect to release of the lattice strain and shell roughening. The present zincblende
core/shell particles may therefore be expected to have somewhat different spectroscopic
properties than the particles studied in reference 5. Using the same CdSe and CdS valence and
conduction band potentials, we have also calculated core/shell exciton wavelengths maps for the
case of no core compression, with and without radial interdiffusion. These radial composition
profiles are obtained by solving the radial diffusion equation, as explained in reference 21. The
valence and conduction band potentials are then calculated, considering the effects of band-
bowing. The resulting maps are significantly different that the low temperature zincblende map
and are given in the Supporting Information. The map which includes the effects of radial
diffusion is most appropriate to high-temperature-synthesized wurtzite core/shell particles of
reference 5. We find that if the product of the diffusion coefficient and time is set to 0.03 nm?,
then the resulting map is very similar to that in reference 5, differing in exciton wavelength by at
most a few nanometers. Assuming a 1 hour annealing time,> this corresponds to a Se-S
interdiffusion coefficient of 5 x 10 nm? min!, which is the same order magnitude as reported
for Te-Se interdiffusion reported in reference 21. It is important to note that the map shown in
figure 4-4 is not in disagreement with that in reference 5. The two maps are complementary,
simply applying to CdSe/CdS particle synthesized under different conditions.

2. Exciton oscillator strengths.

The extinction coefficient spectra in figure 4-1 are obtained from corresponding
absorption spectra by scaling the absorbance to the extinction coefficient at a wavelength where
the extinction coefficient can be calculated. The scaling assumes Beer’s Law, that the
absorbance is proportional the extinction coefficient throughout each spectrum. Extinction
coefficients are calculated at a wavelength that is sufficiently short that quantum confinement
effects are unimportant, in this case, 350 nm. In the case of core/shell particles, the measured
absorption at 350 nm may have a contribution from small, homogeneously nucleated CdS
particles. Using the present synthesis, this is typically a small contribution (< 10%) and is
corrected for by the comparison of the measured absorption and luminescence excitation spectra.
The 350 nm extinction coefficients are calculated from the known particle volumes and
compositions, using literature values of the 350 nm optical constants for bulk CdSe and CdS.
This type of procedure is quite standard and has been shown to give reliable assessments of
absolute extinction coefficients.!?% 2830  The real and imaginary components of the 350 nm
complex refractive index for CdSe?® 3! and CdS3! are ncys, = 2.772, kcgse = 0.7726, and ncys =
2.58, kcas= 0.70. The extinction coefficients at A = 350 nm are given by!'3
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where r. is the core radius, / is the shell thickness, A = 350 nm and f;r is the local field factor.
(Equation 5 uses SI units.) The local field factor is given by!3: 32
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respectively. Evaluation with the CdSe refractive index and chloroform solvent gives a value of
|fz7]? = 0.285 at 350 nm. Equation 5 gives a 350 nm extinction coefficient of 3.57 x 10° 1 mol-
Ilem'! for the 2.62 nm CdSe core particles. The core absorption spectrum has a 516.6 nm
absorbance that is 0.440 that of the 350 nm absorbance, or 1.57 x 103 M-'cm!. It is of interest to
compare this extinction coefficient to that reported in reference 13 for the same size particles,
which is 1.63 x 10° M-'cm!. Reference 13 has all of the lowest exciton absorption peaks
corrected for inhomogeneous width, to a HWHM of 0.06 eV. Applying the same correction to
the spectrum in figure 4-1, we get a 516.6 nm extinction coefficient of 1.68 x 10° M-lcm-!, which
is in close agreement with the value reported in reference 13. This is an important check of the
internal consistency of these calculations, and confirms the validity of this approach. Using the

literature values of 350 nm absorbance coefficients, n_ k., / noy5.kcus = 0-84, €quation 5 can also

where the subscripts p and s refer to the particle and solvent

be applied to the core/shell spectra. In all cases, integrated extinction coefficients to be used in
the evaluation of equation 1 are obtained from fitting the low energy part of these spectra to a
superposition of Gaussian peaks and taking the area of the peak corresponding to the 1S;,-1S,
transition.

3. Radiative lifetime calculation.
The radiative lifetimes of the 2.62 nm core, and several core/shell particles having the
same CdSe cores and different CdS shell thicknesses have been obtained from time-resolved PL

measurements. The PL quantum yields of the core/shell particles are very high (> 80%, and
usually about 95%) and the PL decays are dominated by a slow component that is taken to be the
radiative lifetime. These lifetimes decrease with increasing shell thickness and exciton
wavelength, as shown in figure 4-5. The longest decay component for the core particles is also
shown. However, the quantum yield of the core particles is low and the radiationless decay may
shorten this decay, compared to the actual radiative lifetime. As such, the measured value of
44.5 ns must be viewed as a lower limit on the actual radiative lifetime. We note that the
radiative lifetime decreases with increasing shell thickness and exciton wavelength. This is
analogous to what is observed in bare CdSe core particles (where the radiative lifetime decreases
with particle size), and the opposite of what is observed in type-II QDs, such as CdTe/CdSe.!°
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Figure 4-5. Radiative lifetime as a function of the wavelength of the lowest energy exciton in CdSe/CdS particles.
The open circles correspond to radiative lifetimes calculated as described in the text. The 2.64 nm zincblende cores
(the 516.6 nm point) have a low QY and the measured lifetime is unreliable.

It is of interest to use equation 1 to compare the measured radiative lifetimes to values
calculated from the spectra in figure 4-1. Although the PL energies and integrated extinction
coefficients are easily obtained from figure 4-1, obtaining accurate Cj values is more
complicated. Calculation of Cj amounts to calculating the splittings between the dark and bright
angular momentum sublevels3? and the thermal populations in these sublevels as a function of
shell thickness. This calculation also considers the population in the 1P5/, hole level, which has
only a slight effect.!% 34 We take the dark-bright splitting to be dominated by the electron-hole
exchange interaction, which scales as the reciprocal of the electron-hole separation, 1/r. The
electron and hole wave functions calculated to obtain the exciton energy map in figure 4-4 are
also used to calculate expectation values of 1/r. These expectation values are obtained by a
straight-forward numerical integration over the wavefunctions.?> Relative 1/r expectation values
are used to obtain relative values of E; compared to those in the core, which are taken from Efros
et al.>* Equation 1 is readily evaluated by using values of Cj obtained from equation 4, the
integrated extinctions coefficients, and the exciton energies. A plot of these radiative lifetimes is
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also shown in figure 4-5. Very good agreement with the measured decays is obtained for all but
the bare CdSe core particles. This may be understood in terms of the fact that the core particles
exhibit a lower QY and the long decay component therefore does not reliably give the radiative
lifetime. We note that core radiative lifetime is calculated to be 49 ns, in quantitative agreement
with the previously reported value for wurtzite QDs. !0

It should be noted that this calculational approach uses only the observed spectra and literature
data; the calculation of the radiative lifetime has no adjustable parameters. The integrated
extinction coefficients of the core/shell particles are obtained directly from the static absorption
spectra and the known 350 nm optical constants. The values of Cy for the appropriate sized core
particles are from results reported by Efros et al.,’* and values for the core/shell particles are
calculated using calculated expectation values of 1/r. All of the calculated results are in good
agreement with radiative lifetimes obtained from time-correlated photon-counting
measurements. The Einstein relations (of course) very accurately predict radiative lifetimes.
One of the conclusions of this study is very simple: these equations very accurately predict the
radiative lifetimes, but only when careful measurements are made and all of the appropriate
quantities are correctly evaluated.

These results show that the radiative lifetimes decrease with shell thickness, similar to the
size dependence of one-component CdSe quantum dots.!? This observation is in sharp contrast
to what is reported in type-II core/shell QDs, such as CdTe/CdSe.?! The difference is primarily a
result of how the electron-hole overlap varies with shell thickness. In the present case of
CdSe/CdS, the band offsets are referred to as type-1'%, where the hole is localized in the core and
the electron is delocalized throughout the core and shell. Despite the electron delocalization,
there remains considerable electron-hole overlap for even rather thick shells. For example, the in

the case of the 2.0 nm thick shells, the electron hole overlap is calculated to be K‘Pe ¥ h>r =0.31.

In type-II QDs such as CdTe/CdSe, the band offsets are such that the hole is localized in the core
and the electron is localized in the shell. The result is that increasing shell thickness causes the
electron-hole overlap to decrease much more rapidly in the type-1I, compared to type-1'2 QDs.
This puts less of the oscillator strength in the 1S,-1S, transition for the type-II QDs, resulting in
longer radiative lifetimes.
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XV. EXPERIMENTAL METHODS

XV.1 Optical measurements
In the time resolved photoluminescence studies, samples were excited with very low

intensity 410 nm pulses at 1 MHz from a cavity-dumped frequency-doubled Coherent MIRA
laser. The luminescence was imaged through a 4 m monochromator with a 150 groove/mm
grating onto a Micro Photon Devices PDM 50CT SPAD detector. TCPC decays are
accumulated using a Becker-Hickle SPC-630 board. The overall temporal response function of
the system is about 70 ps.

Quantum yield measurements were made using the same samples as the time resolved
luminescence measurements. The static luminescence spectra were measured on a Jobin-Yvon
Fluorolog 3 with a CCD detector. Sample spectra were compared with spectra of R6G (assumed
to have a 95% QY) taken with the same excitation wavelength and the same absorbance at that
wavelength. The wavelength dependence of the CCD detector was taken into account in
calculating the nanoparticle quantum yield. This was done by measuring the spectrum of a
calibrated tungsten lamp and constructing a detector sensitivity curve.

Chemicals.

Cadmium oxide (CdO, 99.5%), octadecylamine (ODA, 90%), oleylamine (technical
grade, 70%), octylamine (99%), sodium diethyldithiocarbamate trihydrate (NaDDTC-3H,0),
cadmium acetate dihydrate (Cd(Ac),-2H,0), tellurium (Te, 99.8%), trioctylphosphine (TOP,
97%), tributylphosphine (TBP, 97%), octadecene (ODE, 90%), hexane (99.8%), methanol
(MeOH, 98%), and toluene (99%) were obtained from Aldrich. Selenium (Se, 99%), oleic acid
(OA, 90%), n-octane (98+%) and chloroform (CHCl;, 99.8%) were obtained from Alfa Aesar.
ODA was recrystallized from toluene before use. TOP, TBP, and ODE were purified by vacuum
distillation. TOPO was purified by repeated recrystallization from acetonitrile. Methanol,
chloroform and toluene were purified by distillation from appropriate drying agents. All other
chemicals were used as received.

XV.2 Synthesis and sample preparation
The zincblende CdSe core nanocrystals are synthesized and purified using slightly

modified procedures reported by Nan et al.> Zincblende shell deposition occurs from a
cadmium-sulfur single precursor, cadmium diethyldithiocarbamate (Cd(DDTC),), at low
temperature (140 - 145 °C). In a typical synthesis, CdO (0.256 g, 0.2 mmol), oleic acid (1 mL)
and 4 mL ODE were loaded into a 25 mL three-neck flask. After N, bubbling for 2 min, the
flask was heated to 250 °C to form a transparent solution and then cooled to 40 °C. Se powder
(0.0079 g, 0.1 mmol) was loaded into the flask. The flask was heated to 240 °C under N, flow at
a heating rate of 40 °C/min. Needle tip aliquots were taken for UV—vis and PL measurements to
monitor the size of zincblende CdSe QDs. The particles are then purified by repeated extraction.
In these extractions, tributylphosphine (0.2 mL), octylamine (0.2 mL), hexane (3 mL), and
methanol (6 mL) were added to the reaction solution at 50 °C and stirred for 2 min. After stirring
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was turned off, the colorless methanol layer was separated from the top ODE/hexane layer by
syringe. This extraction procedure was repeated three times, but TBP was added only the first
time. The remaining hexane in the ODE layer was removed by nitrogen bubbling at about 60 °C.

Subsequent CdS shell growth requires the synthesis of (Cd(DDTC),) for use as the single
cadmium and sulfur precursor. In this synthesis, Cd(Ac),:2H,0O (10 mmol) was dissolved with
100 mL of distilled water in a 400 mL beaker. Into this solution, NaDDTC-3H,0 (20 mmol)
dissolved in 60 mL of distilled water was added dropwise under vigorous stirring. A white
precipitate of Cd(DDTC), quickly forms. The mixture was stirred for another 20 min after
mixing to ensure the reaction was complete. The white precipitate was separated from the
solution phase by filtration and washed three times with distilled water. The final product in
white powder form was obtained by drying under vacuum overnight. For each shell growth
reaction, a 3 mL Cd(DDTC),-amine-octane solution (0.1 mmol/mL) was prepared by dissolving
0.1227 g of Cd(DDTC); in a mixture of octane (1.5 mL), oleylamine (0.45 mL), and octylamine
(1.05 mL).

In a typical CdS shell growth reaction, a mixture of ODE (2.0 mL), ODA (20 mg), and
oleylamine (1.0 mL) was heated to 60 °C in a three-neck flask under argon flow, and then about
1.0 mL of purified CdSe core solution (containing about 1 x 1077 mol of nanocrystals estimated
by their extinction coefficients) was added to this flask. The amount of precursor solution for
each injection was estimated using standard SILAR procedure. In this reaction cycle, addition of
the CdS precursor solution is done at 80 °C and growth occurs by heating the solution at a
targeted temperature (140 °C for typical synthesis) for about 10 min. This inject-heat-cool cycle
was repeated until the desired number of CdS monolayers was obtained. The final reaction
solution is purified by extraction with hexane/methanol (v:v~1:1) twice. The non-polar layer is
separated and heated under vacuum to remove the residual hexane and methanol. The dried
sample is then dissolved in octadecene and ligand exchanged with excess TBP and ODA at 100
°C for about an hour. After ligand exchange, the sample is centrifuged and liquid layer is kept.
The particles are precipitated by the addition of anhydrous methanol, dried under vacuum then
dispersed in toluene or chloroform for the spectroscopic measurements.

! Ghosh, Y.; Mangum, B. D.; Casson, J. L.; Williams, D. J.; Htoon, H.; Hollingsworth, J. A., New Insights into the Complexities of Shell Growth
and the Strong Influence of Particle Volume in Nonblinking “Giant” Core/Shell Nanocrystal Quantum Dots. J. 4m. Chem. Soc. 2012, 134,
9634-9643.

2Nan, W.; Niu, Y.; Qin, H.; Cui, F.; Yang, Y.; Lai, R.; Lin, W.; Peng, X., Crystal Structure Control of Zinc-Blende CdSe/CdS Core/Shell
Nanocrystals: Synthesis and Structure-Dependent Optical Properties. J. Am. Chem. Soc. 2012, 134, 19685—19693.

3 Embden, J.; Jasieniak, J.; Gomez, D. E.; Mulvaney, P.; Giersig, M., Review of the Synthetic Chemistry Involved in the Production of Core/Shell
Semiconductor Nanocrystals. Aust. J. Chem. 2007 60, 457

4 Li, J. J; Wang, Y. A,; Guo, W.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X., Large-Scale Synthesis of Nearly Monodisperse
CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive lon Layer Adsorption and Reaction. J. Am. Chem. Soc. 2003, 125,
12567.

> Embden, J. v.; Jasieniak, J.; Mulvaney, P., Mapping the Optical Properties of CdSe/CdS Heterostructure Nanocrystals: The Effects of Core Size
and Shell Thickness. J. Am. Chem. Soc. 2009, 131, 14299.

¢ Garcia-Santamaria, F.; Chen, Y.; Vela, J.; Schaller, R. D.; Hollingsworth, J. A.; Klimov, V. L., Suppressed Auger Recombination in “Giant”
Nanocrystals Boosts Optical Gain Performance. Nano Lett. 2009, 2, 3482.

7Guo, Y.; Marchuk, K.; Sampat, S.; Abraham, R.; Fang, N.; Malko, A. V.; Vela, J., Unique Challenges Accompany Thick-Shell CdSe/nCdS (n >
10) Nanocrystal Synthesis. J. Phys. Chem. C 2012, 116, 2791-2800.

8 Smith, A. M.; Mohs, A. M.; Nie, S., Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nature
Nanotechnology 2009, 4, 56 - 63.

? Gong, K.; Kelley, D. F., A Predictive Model of Shell Morphology in CdSe/CdS Core/Shell Quantum Dots. J. Chem. Phys. 2014, in press.

108



10 Gong, K.; Zeng, Y.; Kelley, D. F., Extinction Coefficients, Oscillator Strengths, and Radiative Lifetimes of CdSe, CdTe, and CdTe/CdSe
Nanocrystals. J. Phys. Chem. C 2013, 117, 20268-20279.

1 Kelley, A. M., Condensed-Phase Molecular Spectroscopy and Photophysics. Wiley: Hoboken, NJ, 2013.

12 Strickler, S. J.; Berg, R. A., Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. J. Chem. Phys. 1962, 37, 814 -
822.

13 Jasieniak, J.; Smith, L.; Embden, J. v.; Mulvaney, P.; Califano, M., Re-examination of the Size-Dependent Absorption Properties of CdSe
Quantum Dots. J. Phys. Chem. C 2009, 113, 19468 - 19474.

4 Yu, P. Y.; Cardona, M., Fundamentals of Semiconductors. third ed.; Springer: Berlin, 2001.

15 Norris, D. J., Electronic Structure in Semiconductor Nanocrystals: Optical Experiment. In Nanocrystal Quantum Dots, 2'd ed.; Klimov, V. L,
Ed. CRC Press: 2010.

16 Saada, A. S., Elasticity Theory and Applications. Permagon Press: New York, 1974.

17 Rockenberger, J.; Troger, L.; Rogach, A. L.; Tischer, M.; Grundmann, M.; Eychmuller, A.; Weller, H., The contribution of particle core and
surface to strain, disorder and vibrations in thiol-capped CdTe nanocrystals. J. Chem. Phys. 1998, 108, (18), 7807-7815.

18 West, A. R., Basic Solid State Chemistry. Wiley Chichester, 1988.

19 Shan, W.; Walukiewicz, W.; Ager, J. W., IlI; Yu, K. M.; Wu, J.; Haller, E. E., Pressure dependence of the fundamental band-gap energy of
CdSe. Appl. Phys. Lett. 2004, 84, (1), 67-69.

20 San-Miguel, A.; Polian, A.; Itie, J. P.; Marbuef, A.; Triboulet, R., Zinc Telluride Under High Pressure: An X-Ray Absorption Study. High
Pressure Research 1992, 10, 412.

21 Cai, X.; Mirafzal, H.; Nguyen, K.; Leppert, V.; Kelley, D. F., The Spectroscopy of CdTe/CdSe type-II Nanostructures: Morphology, Lattice
Mismatch and Band-Bowing Effects. J. Phys. Chem. C 2012, 116, 8118 - 8127.

22 Talapin, D. V.; Koeppe, R.; Gtzinger, S.; Kornowski, A.; Lupton, J. M.; Rogach, A. L.; Benson, O.; Feldmann, J.; Weller, H., Highly Emissive
Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality. Nano Letters 2003, 3, 1677.

23 Steiner, D.; Dorfs, D.; Banin, U.; Della Sala, F.; Manna, L.; Millo, O., Determination of Band Offsets in Heterostructured Colloidal Nanorods
Using Scanning Tunneling Spectroscopy. Nano Lett. 2008, 8, 2954.

2% Wu, K.; Rodriguez-Cordoba, W. E.; Liu, Z.; Zhu, H.; Lian, T., Beyond Band Alignment: Hole Localization Driven Formation of Three
Spatially Separated Long-Lived Exciton States in CdSe/CdS Nanorods. ACS Nano 2013, 7, 7173.

2 Bailey, R. E.; Nie, S., Alloyed Semiconductor Quantum Dots: Tuning the Optical Properties without Changing the Particle Size. J. Am. Chem.
Soc. 2003, 125, 7100.

26 Regulacio, M. D.; Han, M.-Y., Composition-Tunable Alloyed Semiconductor Nanocrystals. Acc. Chem. Res. 2010, 43, 621-630.

27Wei, S.-H.; Zhang, S. B.; Zunger, A., First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their
alloys. J. Appl. Phys 2000, 87, 1304.

28 Leatherdale, C. A.; Woo, W.-K.; Mikulec, F. V.; Bawendi, M. G., On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots J.
Phys. Chem. B. 2002, 106, 7619 - 7622.

2 Capek, R. K.; Moreels, I.; Lambert, K.; Muynck, D. D.; Zhao, Q.; Tomme, A. V.; Vanhaecke, F.; Hens, Z., Optical Properties of Zincblende
Cadmium Selenide Quantum Dots. J. Phys. Chem. C 2010, 114, 6371 - 6376.

30 de Mello Donega, C.; Koole, R., Size Dependence of the Spontaneous Emission Rate and Absorption Cross Section of CdSe and CdTe
Quantum Dots. J. Phys. Chem. C 2009, 113, 6511 - 6520.

31 Palik, E. D., Handbook of Optical Constants of Solids. Academic Press: 1998; Vol. II.

32 Ricard, D.; Chanassi, M.; Schanne-Klein, M., Dielectric confinement and the linear and nonlinear optical properties of semiconductor-doped
glasses. Opt. Commun. 1996, 108, 311.

3 Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M., Band-edge exciton in quantum dots of semiconductors with a
degenerate valence band: Dark and bright exciton states. Phys. Rev. B 1996, 54, 4843 - 4856.

3 Efros, A. L.; Rosen, M., Quantum size level structure of narrow-gap semiconductor nanocrystals: Effect of band coupling. Phys. Rev. B 1998,
58,7120 - 7135.

33 Jackson, Classical Electrodynamics. 2'd ed.; Wiley: New York, 1975.

109



110



CHAPTER 5: AN ATOMISTICALLY VALIDATED CONTINUUM
MODEL FOR STRAIN RELAXATION AND MISFIT DISLOCATION
FORMATION

X. W. Zhou!, D. K. Ward?, J. A. Zimmerman', J. L. Cruz-Campa?, and D. Zubia*, J. E. Martin’,
and F. B. van Swol®

'Mechanics of Materials Department
Sandia National Laboratories
Livermore, California 94550, USA

2Radiation and Nuclear Detection Materials and Analysis Department
Sandia National Laboratories
Livermore, California 94550, USA

3MEMS Technologies Department
Sandia National Laboratories
Albuquerque, New Mexico 87185, USA

“Department of Electrical Engineering
University of Texas at El Paso
El Paso, Texas 79968, USA

SNanoscale Sciences Department
Sandia National Laboratories
Albuquerque, New Mexico 87185, USA

6 Computational Materials and Data Science Department
Sandia National Laboratories
Albuquerque, New Mexico 87185, USA

ABSTRACT

A new continuum model of misfit dislocation formation that improves over the traditional
model has been developed. This is achieved by developing a robust molecular dynamics (MD)
approach that can confidently validate the continuum model. We find that the enabling
techniques to make this possible are (a) the calculations of time averaged properties using very
long time MD simulations, which produce significantly more accurate results than molecular
statics simulations, and (b) the use of dislocation dipole configurations under periodic boundary
conditions, which allows dislocation energies to be exactly calculated. Using these techniques,
we are able to accurately determine dislocation core radius and energy without imposing
continuum boundary conditions that must be assumed in previous MD approaches to avoid the
effects of truncating long-range dislocation stress fields. The total dislocation energy as a
function of system sizes and dislocation spacing predicted from the MD is in very good
agreement with the continuum theory. Detailed study reveals that the traditional misfit
dislocation model can become inaccurate for systems with large lattice mismatch. We then
propose improvements of the theory, including a more accurate treatment of dislocation energies,
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an incorporation of elastic inhomogeneity from the film and the substrate, and an identification
of precise definitions of dislocation spacing and Burgers vector which were likely incorrectly
applied in previous work. We show that the prediction from the modified continuum model is
essentially indistinguishable from the MD results.
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XVI. INTRODUCTION

Control of strain relaxation and misfit dislocation is a key material issue for electronic
devices [45]. Continuum calculations have been effective in guiding material synthesis
experiments [46,47,48,49,50,51,52,53]. As modern devices are driven towards smaller
dimensions, larger lattice mismatches, and lower defect tolerances, the requirement for the
accuracy of continuum predictions becomes increasingly demanding. Continuum models
inherently involve a number of approximations. First, most continuum theories neglect
dislocation cores. While this can be easily corrected, it requires prior knowledge of the
dislocation core energy, which is often unavailable. Second, the continuum theories are often
based on linear elasticity, where the elastic constants under tension and compression are assumed
to be the same. In reality, however, materials tend to exhibit larger elastic constants under
compression than under tension, especially at large strains. Third, the Burgers vector of a misfit
(edge) dislocation is essentially associated with the thickness of the half planes removed or
inserted. However, inserting a half plane to the film is exactly equivalent to removing a half
plane from the substrate. As a result, ambiguity arises whether the Burgers vector should be
defined by the film lattice constant or the substrate lattice constant. This problem has not been
clarified in previous continuum models. Fourth, the conventional continuum misfit dislocation
theories typically use only the elastic properties of the film but not the substrate. While it is
possible to incorporate the elastic properties of both film and substrate using more complex
theories [46], the simple model can still be accurate as long as the effects of the simplification
are determined and corrected. Finally, the continuum misfit dislocation energy expressions can
often be significantly simplified through approximations. The construction of an optimum
continuum model then requires knowing the accuracy of the approximations, which in turn
requires validation from either experiments or simulations at a more fundamental level.

Molecular dynamics (MD) simulations provide an alternative approach to study strain
relaxation and misfit dislocation formation. However, practical devices usually have dimensions
beyond 100 nm. At such dimensions, MD models are not efficient for generating enough
understanding to impact device design and synthesis. On the other hand, MD models do not
suffer from the limitations of continuum models. As a result, MD simulations can determine the
unknown parameters and access the accuracy of various continuum theory approximations. The
insights gained can then lead to improvements of the continuum models. However, this requires
that consistent results be achieved from the continuum and MD methods for the same system
geometries and dimensions.
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Two obvious issues prevent MD from matching the continuum models. First, dislocation
energy is essentially the energy difference between a system containing a dislocation and a
system without a dislocation. In atomistic models, an edge dislocation is created by removing (or
inserting) extra half planes. This means that systems with and without a misfit dislocation
necessarily have different numbers of atoms. As a result, the dislocation energy is not simply the
energy difference between the two systems. Periodic boundary conditions, however, allow for an
accurate calculation of dislocation energy. Under periodic boundary conditions, every atom in a
dislocation-free system is equivalent. The energy of the dislocation-free system can then be
scaled to the same number of atoms in a system containing a dislocation. Unfortunately, the
periodic boundary conditions prohibit the creation of a single dislocation. This paper seeks to
address this problem by studying dislocation dipole configurations instead of isolated
dislocations. Note that the particular dislocation configuration is not important as long as it can
be studied in both MD and continuum models to enable the connection. The second problem is
that the conventional atomistic methods typically apply molecular statics (MS) energy
minimization to calculate the equilibrium properties (e.g., energy) of relaxed systems. As will be
shown below, MS simulations do not yield unique minimum energy results when the system is
big and contains dislocations. This is because large systems numerically mitigate the resolution
for small energy changes while the presence of a dislocation allows the system to relax to many
different local energy minima. This paper seeks to address this problem by calculating time-
averaged properties using long time MD simulations, which would statistically cancel out
numerical errors and at the same time allow different energy minima to be sampled. Clearly,
highly converged results can theoretically always be achieved by increasing the averaging time.
MD simulations have an additional advantage as they incorporate finite temperatures whereas the
MS data pertains only to 0 K.

This work will perform systematic studies to explore the ideas described above to construct
an MD validated continuum misfit dislocation model. The validated model can then lead to
improved understanding of strain relaxation and misfit dislocation formation. For simplicity and
without losing generality, our studies will assume a quasi- two-dimensional (2D) geometry. This
simply means that the system is under a plane strain condition [,,[1= [],,[1= [1,,[1= 0, with the
film/substrate interface on the x-z plane and film thickness in the y direction. In such systems,
strain relaxation only occurs in the x direction, where misfit dislocations lie in the z direction and
periodically form along the x direction.

XVIl. DERIVATION OF MISFIT DISLOCATION ENERGY EXPRESSION
The equilibrium energy theory [44,54,55,56] of strain relaxation and misfit dislocation
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formation was summarized elegantly by Nix [45] in 1989, which was later improved by Willis
and others [46,57,58]. Here for clarity of illustration, we will use Nix’s model. Applying Nix’s
equation to the 2D geometry of a lattice mismatched film containing misfit dislocations the
energy (per unit of interface area) can be expressed as

512G .(g_ﬁf Gybj lln[ﬂ’hJ (1)

5 _E -V S " 47ZQ —‘Vf )S bf

where G, [, and b are respectively, shear modulus, Poisson’s ratio and magnitude of the Burgers
vector for a misfit dislocation (the subscript f standing for film), S is the spacing between
dislocations, h is film thickness, [ is a constant, and [ is the lattice mismatch parameter that can
be defined by the lattice constants of film (as) and substrate (a5) as [| = (as-as)/as. Note that in Eq.

(1), 2G; represents the apparent Young’s modulus under our plane strain condition gy # 0, €y
#0, €, = Yx. = Yy, = 0, and o,y = 0. Also note that Eq. (1) differs from Nix expression [45] by a
factor of two because we assume a 2D problem whereas his problem is three-dimensional (3D).
To understand the physical origins of the theory that is essential for improving the model, we
now give a rigorous derivation of Eq. (1).

As in previous continuum models, we assume that the substrate is much thicker than the
film. In such a case, the substrate is “rigid” whereas a dislocation-free film must be strained by
exactly [ to match the dimension of the substrate. Assume that in a dislocation-free system, n¢
planes of film with plane spacing by are matched with n¢ planes of substrate with plane spacing b.
If the substrate is rigid, then the film is subject to a strain of (nb-ngy) /(ndy) = (b-by) /b = (as-
ag)/as = €. If a half plane is inserted to the film, then the film is subject to a strain of [nb-(ng+1)bg]
/[(ng+1)bg] = € - b/Sg, where S¢ = (ngt1)by is the total length of unstrained film per dislocation
(i.e., dislocation spacing). On the other hand, if a half plane is removed from the substrate, then
the film is subject to a strain of [(ng~-1)b-ngy] /(nbg) = € - b/Sg, where S¢ = n¢by is again the total
length of unstrained film per dislocation. This means that regardless if it is viewed as inserting a
half plane in the film or removing a half plane from the substrate, a dislocation always causes a
consistent strain of -b/S;. By comparing to the first term on the right side of Eq. (1), we see that
Eq. (1) inaccurately defines the magnitude of the Burgers vector to be the film value by rather
than the substrate value b, and dislocation spacing to be the system (or substrate) value S rather
than the film value S;. When the film and substrate dimensions are close, this may not cause
significant errors, otherwise Eq. (1) may become inaccurate.

The equilibrium energy theory essentially defines how system energy changes when an
array of misfit edge dislocations form at the film/substrate interface. Energy expressions
involving dislocation arrays can be quite difficult to derive directly from stress/strain fields. One
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easier approach is to write out the energy expression in terms of the work done to move
dislocations:

E E

fina
tW=E, +I lfs -ds (2)

final — initial nitial
where Egn. and E; i, are system energies when dislocations are in the final and initial locations,
f; is force exerted on dislocations along the direction s in which dislocations are moved, the work
w is represented by the integration over the entire distance moved. Prior to deriving our model
for the misfit dislocation energy expression, we first show two examples of employing Eq. (2).
First, let us imagine that one positive and one negative edge dislocations lie exactly on top
of each other, as shown in Fig. 5-1(a). This is essentially a dislocation-free scenario so that the
initial energy Eia €quals zero. Now we move the upper dislocation to a distance 2R away as
shown in Fig. 5-1(b), where R represents the maximum range of the strain field of a dislocation
so that 2R would mean that the R regions of the two dislocations do not overlap so that they can
be viewed as isolated dislocations. If the attractive force between the two dislocations is denoted

as fy, Eq. (2) indicates that the final energy Eg,,; for moving the two dislocations from separation

. 27 2 . .
distance x = 0 to x = 2R equals E il :J- ! fo-dx+ I : f.-dxs where 1, represents dislocation
ina 0 X 21, X

core radius so that x > 2r, would mean that dislocation cores do not overlap. In classical

continuum theory, J'zr" f. -dx represents core energies of two dislocations so that I 2 foedx =
0 * 0 X
2E., where E. is core energy per dislocation. For x > 2r,, the attractive force f, equals

2 2 2
_ G0 1 159]. Hence, Bgpt = 2B + [*—90 L 4 2B+ 90" [ R) Consider
2z(1-v) x 2 2x(1-v) x 2z(1-v)

Ty
that Eg,, accounts for energies of two dislocations, each dislocation gets an energy of ['y = E; +

2
Lln[ﬁj. This energy is consistent with the classical derivation of the total strain energy
4z(l-v) \n

within a distance R from an isolated edge dislocation [61].

(a) initial location (b) final location

X X

x=0 x =2R

Figure 5-1. lllustration of work for separating a pair of opposite dislocations: (a) initial and (b) final dislocation
locations.

B D. Hull, and D. J. Bacon, Introduction to dislocations, 4th Ed. (Butterworth-Heinemann, Oxford, 2001).
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In the second example, we imagine that two positive edge dislocations are widely separated
at r = 2R so that each can be considered as an isolated dislocation with an energy of I'y = E, +

2
Gb 1n[£] as demonstrated above. In this case, the initial energy Eij. = 2[00 = 2E. +
4z(l-v) \n

2 2
Lln E . The repulsive force between the two dislocations is f = Ll
2r(1-v) g 2r(l-v) x

Following Eq. (2), the final energy Eg,, for moving the two dislocations from x = 2R to x = 0

2 . 2
equals Egna = 2B, + Lln R|_ I S R SN f.-dv =4E. + Gb’ m[ﬁ]. Note
27(1-v) % 2R 27(1-v) x 27, z(d1-v) \r

that unlike the first case where f; is attractive, here f; is repulsive so that ‘[0 f.-dv =-2E.. When
2,*0‘ X

the two positive edge dislocations overlap on top of each other at r = 0, they merge into one
dislocation with the burgers vector doubled. According to the classical expression [61],
dislocation energy is proportional to b%. Hence the dislocation energy derived from the work
again matches the classical theory.

—_
(S
= w
B

|

h
T T T T T T T@i T surface
o 1 253 4

Figure 5-2. Geometry of a dislocation array under a surface.

Now we use Eq. (2) to derive our misfit dislocation model. The geometry of our problem is
illustrated in Fig. 5-2, where a misfit dislocation array is formed under a surface. In Fig. 5-2, the
horizontal line indicates the surface, and the orange region below the line represents the film. As
in common misfit dislocation theory, we assume that the system is elastically homogeneous.
Unlike the common misfit dislocation theory where the elastic properties of the homogeneous
system are associated with those of the film, here we do not associate the elastic properties of our
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system to either the film or the substrate, but rather view these properties as the apparent
properties of the entire system. An array of edge type of misfit dislocations (i= ..., -4, -3, -2, -1,
0, 1, 2, 3, 4, ...) with separation distance Sy are assumed to form at a distance h below the
surface. Note that according to the discussion above, S; is the dislocation spacing in an
unstrained film. In order to mimic a free surface, we can imagine that the system is mirror
reflected above the surface, where the reflected portion is an image material shown in gray and
the reflected dislocations (j = ..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...) are image dislocations. Note that
for the geometry shown in Fig. 5-1, there is a non-zero normal stress oy, at the surface. As a
result, the effect of the image edge dislocations is not exactly equivalent to that of a free surface.
This is different from screw dislocations where the introduction of image dislocations represents
exactly a free surface because the traction at the surface is zero. A more precise treatment of a
free surface has been provided by Willis ef a/ [46]. Our main objective here is to compare MD
and continuum models so that the treatment remains precise, provided we use an MD
configuration equivalent to the mirror imaged surface (such as the dislocation dipole
configurations as will be shown below).

Referring to Fig. 5-2, the energy change due to the formation of the dislocation array below
the surface is half of the work done to separate the two dislocation arrays from 2y = 0 to 2y = 2h.
Note that the zero initial dislocation separation distance 2y = 0 represents a dislocation-free
system because positive and negative dislocations lie exactly on top of each other and therefore
they annihilate. Hence, the initial dislocation energy Ei,ia = 0. The y component of the attractive
force between two opposite dislocations 1 and j offset in the x and y directions by (i-))S¢ and 2y is
expressed as [61]

Gy )Rl 1+ @) ) ©
22-v) fi- ), ]+@v)}

According to Eq. (2), the work to overcome this force for separating dislocations i and j from 2y

T

= 0 to 2y = 2h (x separation fixed) is

2E, + %ln(rﬁ} i=]
w=[saC0={ {1 h{[(i_ j)gf]+(2h)2]+ o, } » @)
22(0-v) ]2 -, 1 - ), [+@nry [

Note that when 1 = j, the x- coordinates of dislocations 1 and j are the same so that the integration
cannot be performed from 2y = 0 because the dislocation separation distance is zero leading to
the overlap of dislocation cores. Instead, integration is performed from 2y = 2r, to 2y = 2h, and

the contribution from 2y = 0 to 2y = 2r is treated as dislocation core energies 2E. = '[Ozr“ fa .(2 y).
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The total work done to separate the two dislocations arrays from 2y = 0 to 2y = 2h is i iwij .

=00 j=—00

The work done between a given dislocation in the i array (say i = 0) and all dislocations in the j

array is then w = iwoj‘ . Only half of the work converts to the energy of the dislocation i = 0

J=—©

| =

. . . . . - _
(other half goes to the image dislocation in the j array), and hence, I = > Zwoj =

o0
Woo + D Wy,
J=l

(here we use the symmetry of j <0andj > 0). We then have

R ERCr e V)Z{ {QS gs,- 7 } ) e } -
E, + %{h{f—o} + 27zSifcoth[27z S%} - h{sinh[z;z S%H - 11{27[ S%J - 1} = )
g SoRE)

where coth, sinh (and cosh to be referred below) are hyperbolic functions, and f(x) is defined as

f(x)= 27-x- coth(27z . x)+ 1n[sinh(27z . x)]— 1n(27r . x)—l (6)

Note that f(x) approaches exactly 0 when x — 0, and f(x)/(4nx) approaches exactly 1 when x —
o0. A more direct comparison of f(x) and 4nx is shown in Fig. 5-3, It can be seen from Fig. 5-3(a)
that f(x) can be pretty well approximated by 4nx as the relative difference between f(x) and 4nx
is small. However, this approximation is associated with an absolute difference between f(x) and
4nx that does not reduce with increasing x as can be seen from the finer-scale plot shown in Fig.
5-3(b). As will be demonstrated below, approximation of f(x) with 4nx can introduce errors.
Regardless, if f(x) is approximated by 4nx, we have
2 2
r=E +——— (hJ Gb” I (7)

7z( —V) (1 v) S
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(a) on a rough scale (b) on a fine scale

12000 T T T T 60

t4mx 4mx
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8000 b 40
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6000 b
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4000 7 20

2000 b 10

0 200 400 600 800 1000 0 1 2 3 4 5

Figure 5-3. Comparison between f(x) and 4(1x in (a) a rough and (b) a fine scale.

Assume that the material is subject to a strain of € prior to the formation of misfit
dislocations to mimic the mismatch. Due to the uniform strain €, the initial dislocation-free

system has a strain energy of Ey = 1 2G,
2 il -V, )

dislocation (the z- dimension is assumed to be unity). It is important to note that here we use the

&2 S, h in the material volume containing one

film elastic properties G¢ and vy to replace the apparent elastic properties of the film + substrate.
This is because the strain energy is clearly caused by the strain in the film whereas dislocation
energy comes from the strain fields in both film and substrate. The uniform strain also exerts a

force of _29r <-b on the dislocation in the y direction, which does a work of w, = 26, c-b-h
6 —Vr ) 6 ~Vr )

when the dislocation moves from the surface to a distance of h below the surface. The work
consumes the system energy, resulting in the reduction of system energy of AE, =

_ 26, ¢-b-h- The total system energy per unit of surface area can be defined as
il -V, )
E =m, where S is dislocation spacing, which equals surface area per dislocation as

’ S

our z- dimension is unity. It is extremely important to realize that the S; assumed in our
derivation is the unstrained length of the film, but here S stands for the dislocation spacing in the
deformed state (the same as the rigid substrate) so that the energy is normalized by the common
definition of the surface area. Because S and S¢ satisfy S/S¢=1 + ¢, significant error may occur if
S is incorrectly used for Sy when ¢ is large.

Based on I' defined by Eq. (7), and E,, AE; as discussed above, the energy per unit of
surface area can be written as
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G b Gh | .S
=L, % Zm[ﬁj +ﬂ£ LS _@} (8)
S 47zi1 -V, )s 7, l-v, ) S,S S S

where y = & Q(_ f)) can be viewed as a correction for the elastic inhomogeneity of the system.
G, (-v
S

It can be seen from Eq. (8) that if we ignore the dislocation core energy, and set b = by, y =1 and
S¢ = S, Eq. (8) reduces exactly to Eq. (1) where the parameter by can be considered as
equivalent to ry. For practical applications, the film length Sy is replaced by S/(1+¢) leading to

E. Gb y (h) Gh £ 2
E =2¢ Zln| = [+ L 2 Q4e)r-2_ 222 )
s 47z11—v, )s \n ) (-v,) yS +0) l+e S

Egs. (8) and (9) are based on the approximate dislocation energy expression Eq. (7). If we
use a more accurate dislocation energy expression Eq. (5), Eq. (9) becomes

f(1+ghj

E G, b’ G h 2

ES: c 4 f lln(ﬁj_i_ (1+ S & _ng (10)
S 4zl-v,)S \n il— f)

1 +
4 ( +ghj l+¢ S
S

where f(x) is defined by Eq. (6). This result is similar to those of Willis et al [46,59,60], although
subtle difference must exist as our expression is precise for a mirror boundary whereas theirs are
for a free surface.

Our derivation gives some useful insights. In particular, we find from Eq. (7) that the

2 2
dislocation energy (ignoring the core part) is Lln h Gb Clearly
47r(l—v) ( - v)
Gb* Y. . . o . : .
mln — | is dislocation self-energy because it is equivalent to Eq. (7) in the isolated
T\l—-v 4

Gb’
(—V)

energy of dislocations. It can be seen that for a homogeneous material system (i.e., the system

dislocation condition S¢ — oo. The additional term — then represents the interactive

contains dislocations but the mismatch strain € = 0), Eq. (9) correctly reduces to dislocation
energy per unit of surface area, i.e., Eq. (7) divided by S. Furthermore, Eq. (9) indicates that the
energy of the homogeneous system is a summation of dislocation core energy, dislocation self-

. 1 2G .
energy, and a strain energy of E-E-gﬁ -V, where E:l— is the apparent Young’s modulus,
-V

&, = is the strain caused by the dislocations, and V' =/%-S, is the volume per dislocation.
S
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This is consistent with the notion that the overlap of the elastic field of an array of edge
dislocations essentially leads to a uniform strain ¢, in the far field.

XVIIl. CONTINUUM ENERGY OF DISLOCATION DIPOLES UNDER
PERIODIC BOUNDARY CONDITIONS

As described above, accurate molecular dynamics simulations of dislocations must be
performed using dipole configurations under the periodic boundary conditions. To establish a
link between MD simulations and continuum calculations, we now derive a continuum energy
expression for dislocation dipoles in a cell with periodic boundary conditions. In this case, the
dislocation dipoles are essentially an infinite array, as shown in Fig. 5-4(a), where L, and L,
represent, respectively, the periodic length in the x- and y- directions, and d is the dipole
separation distance. Furthermore we can assume that the dipole separation, d, satisfies 0 [ d [
L, because the energy periodically repeats outside this range.
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(a) full dislocation arrays (b)) i=0 (c)i=0
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Figure 5-4. (a) Dislocation dipoles under periodic boundary conditions; (b) interaction of a positive dislocation with all
the negative dislocations in the same column i = 0; and (c) interaction of the positive dislocation with all the
negative dislocations in a different column i [1 0. The unit cell is framed in black.

To derive an energy expression for a dislocation array, we can imagine that initially the
positive dislocations (L) lie exactly on top of the negative dislocations (T). Hence, the
dislocations annihilate so that the initial energy E;,i, is zero. The dislocation energy can then be
calculated from the work done to move the positive dislocations away from the negative
dislocations. Because dislocations are identical, we only need to consider the work to move one
positive dislocation away from the negative dislocation array along the y direction. Since the
work is linearly additive, we consider separately the interaction between the positive dislocation
and all the negative dislocations in the same column (i = 0) as shown in Fig. 5-4(b), and the
interaction between the positive dislocation and all the negative dislocations in a different
column (i # 0) as shown in Fig. 5-4(c).

According to Eq. (4) and Fig. 5-4(b), the work to separate two opposite dislocations from an
original separation distance Ay, to a final separation dislocation Ay, can be calculated as

Gb* Ay,
P S P 3 11
Y pai 27[(1 - V) n( Ay, ] ( )
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Assume that the positive dislocation moves from an initial location at y = 0 to a final location at
y = d. For the negative dislocation “A” shown in Fig. 5-4(b), the original separation distance
(with the positive dislocation) is [1y; = 0, and the final separation dislocation is [y, = d. For the
negative dislocation B, the original separation distance is [y; = L, and the final separation
distance is [y, = Ly — d. For other negative dislocations below A, the original separation
distance is [1y; = j- Ly, and the final separation is [y, =j- Ly, +d (G =1, 2, ..., [J). For other
negative dislocations above B, the original separation distance is [ly; = (j+1)- L, and the final
separation is [y, = (j+1)- Ly —d (G =1, 2, ..., [I). Note that for all dislocations below A or above
B, the work can be calculated normally because the dislocation separation distances will never
approach zero for 0 [ d [J L,. For dislocations A and B, the work must exclude the overlapped
region of dislocation cores (total size of 2r;) whereas the excluded energy is replaced by
dislocation core energies (total energy of 2E. for two cores) as described above. Hence, the total
work to move the positive dislocation against all negative dislocations in the same column (i = 0)
from an initial position at y = 0 to a final position at y = d can be expressed as

WzE%)M;j (Ly Jz[ (f“d} ((’J?SL dﬂ} a2

Because the work increases the energies of both positive and negative dislocations, energy per
dislocation is half of the work. We then have an energy contribution due to a positive dislocation
interacting with all negative dislocations in the same column:

E0=EC+%{ln(ziroj+ [Ly }i{ (’ L +d}+1n(("zil+)§2ydﬂ} (13)

The summation of Eq. (13) has a closed form of

E,=E +G—b2{1 [ d J+ ln{L—dJ —ln[Gc{Ly * d]] —h{Ga(z —iﬂ} (14)
“an(-v)| \2n L,-2r, L, L

where Ga is the Euler gamma function.
According to Eq. (3) and Fig. 5-4(c), the work to separate two opposite dislocations that are
not in the same column from an initial y- component of separation distance Ay, to a final y-

component of separation distance Ay, can be calculated as

b’ {I{GL)ZMyz} GLy ., G@LY } (15)

wpa,r—m G-LY+Aav7 | GLY+A2 G-L Y +Ay7

Following the same approach used above, the total work to move the positive dislocation from y
=0toy =d can be expressed as
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b2 G-L) G-L) G-L.)
iZﬂG(l V)Z L L L

CLY+Gr+d) Ly +GnY Cry+lene-a’
(LY
(i'Lx)2+Kj+1)'Ly}

The energy contribution per dislocation is half of the work so we have

T e

PR 3 (-L.) (L) G-L.)
ST OD =1 (A0 e (ARr) B N (7 R V0 ) Ry Y

G-L)
G-LY+)G+1)yL, |

Eq. (17) has a closed form

Gb’
E=—"——<
" 4x(-v)

2r-i-L, - Coth[

L, -Coshl 7 E |1 - Cos

Ly LJ’
lln Cos* ﬂ + Coth? oL, - Sin® ”—d
2 L, L, L

The dislocation energy under the periodic boundary condition is then

T=E,+ ZE +ZE E0+2ZE

(16)

(17)

(18)

(19)

We could not find a closed form for Eq. (19). However, E; is a positive, rapid decreasing

monotonic function of i. As a result, Eq. (19) converges well to an accurate value when a
sufficiently large number of terms are included.
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XIX. MD GEOMETRY OF STRAIN RELAXATION, AND CALCULATIONS
OF LATTICE AND ELASTIC CONSTANTS OF OUR MODEL SYSTEM

XiX.1 Geometry of the Strain Relaxation Problem

We first describe the geometry of our strain relaxation problem because it determines the
relevant lattice and elastic constants impacting the strain relaxation. As a generic example, here
we use the Cd-Te-S Stillinger-Weber potential [60] in our MD simulations to explore the growth
of CdTe on a thick (i.e., non-compliant) CdS substrate. Note that, the particular materials are not
important, not only because we are studying a 2D problem, but also because our objective is to
compare MD and continuum models. Thus, any lattice mismatched systems will be sufficient.
The geometry of the periodic system is shown in Fig. 5-5(a), where x-, y-, and z- are aligned

60 X. W. Zhou, D. K. Ward, J. E. Martin, F. B. van Swol, J. L. Cruz-Campa, and D. Zubia, Phys. Rev. B, 88, 085309 (2013).
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with [101], [010], and [ 101] respectively, and the (010) CdTe/CdS interface is parallel to the x-z
plane. For the 2D case, we assume that the z- dimension of the system is fixed at the equilibrium
lattice size of CdS, and hence, strain relaxation only occurs in the x- direction. To create misfit
dislocation dipoles, some atomic planes (with a total thickness of a Burgers magnitude b), as
indicated by the white line in Fig. 5-5(b), are removed. It can be seen that under the periodic
boundary conditions, the geometry in Fig. 5-5(b) is exactly the same as that shown in 4(a).

(a) CdTe/CdS geometry (b) dislocation creation
$y [010] ﬁ/xed (bulk) t v [010]

missing
planes

mirror
imaged
surface

R T T e

S
—_—

ol 7 o1 Z [101] x [101]
fixed (bulk)

z0

Figure 5-5. (a) MD Geometry of the CdTe on CdS structures where CdS is fixed in the x- and z- directions to the
equilibrium bulk sizes to mimic a very large CdS thickness. The dotted-dashed line mimics the “mirror”
surface shown in Fig. 5-2; and (b) creation of misfit dislocation dipoles (dislocation and its image) by
removing planes within a thickness of Burgers vector magnitude b. Note that geometry shown in (b) is used
for both inhomogeneous (CdTe/CdS) and homogeneous (pure CdTe and pure CdS) systems. The
homogeneous systems are for dislocation energy calculations, where only the z- direction is fixed to the
equilibrium bulk size of CdS and both x- and y- directions are relaxed.

XIX.2 MD Calculations of Lattice Constants
Molecular statics calculations of CdTe and CdS bulk crystals (i.e., apply the periodic

boundary conditions) indicated that the CdS and CdTe lattice constants at 0 K are 5.835 A and
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6.478 A respectively. Performing MD simulations at 300 K for 4 ns to equilibrate the systems,
and another 8 ns to calculate average quantities, we found that the CdS and CdTe equilibrium
lattice constants at 300 K are 5.847 + 0.000 A and 6.491 + 0.000 A, respectively. Here the
average lattice constants obtained at various times are used to estimate the statistic deviation of
the result. It can be seen that the MD results averaged over the 8 ns span gives highly converged
results (essentially 0 standard error up to at least the third decimal point).

The lattice constants determined above are for the 3D systems. For our 2D case where the
orientation is shown in Fig. 5-5 and the z- dimension is fixed at the 3D CdS size (i.e., dGm):

5.847/42 ), the systems may deviate from the cubic symmetry especially for CdTe where the z-
dimension is now highly compressed. As a result, the x- and y- dimensions may correspond to
different lattice constants. A second set of MD simulations are performed to calculate the
equilibrium CdTe and CdS lattice constants in the x- direction under the 2D condition, again
using an equilibration time of 4 ns and an averaging time of 8 ns. The lattice constant in the y-
direction is not explored because it is irrelevant to the lattice mismatch. We find that when the z-

dimension is constrained at the d . \= 5.847/+/2 , the 300 K CdS and CdTe lattice constants in
(or)
(o)) change to 5.769 & 0.000 A and 6.557 + 0.000 A,

respectively. This means that under the 2D condition, our CdTe/CdS system corresponds to a
lattice mismatch of € = (5.769 - 6.557) / 6.557~ -12.0177 %.

the x- direction (from a = 2d

XIX.3 C. MD Calculations of Young’s Modulus
With the orientation given in Fig. 5-5 and the z-dimension fixed at the 3D CdS size, the 2D

CdS and CdTe bulk crystals (i.e., apply the periodic boundary conditions) are uniaxially
deformed in the x- direction to various strains -0.13 < g,, < 0.18, where positive strains means
tension and negative strains indicates compression. Using an equilibration time of 4 ns and an
averaging time of 8 ns, similar 2D MD simulations as described above are performed to calculate
strain energy density E, of both CdS and CdTe as a function of &, (here the x- dimension is also
fixed leaving only the strain in the y- direction relaxed). The results are shown in Fig. 5-6, where
red and blue colors distinguish CdS and CdTe. The dashed lines are fitted to linear elastic theory
E. =" E- &2 for a small strain range near equilibrium (g, = 0). The solid lines are also fitted to
E. = % E- ¢}, except that the positive and negative strain ranges are fitted with separate Young’s
modulus E. Fig. 5-6 shows that the strain energy obtained from MD simulations approximately
satisfies the linear elasticity relation E; = % E-&’ only within a very small strain range.
However, if different Young’s moduli are used for tensile and compressive loads, then the E, =
Y% E- &2 relation can accurately describe the elastic behavior of the material over a large strain

range. Because the linear elastic theory is based on a single elastic constant for both tension and
compression, error may arise. For the 2D case studied here, we find that the CdS Young’s
modulus is E = 0.4323 eV/ A3 for positive strains and E = 0.9399 eV/ A3 for negative strains, and
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the CdTe Young’s modulus is E = 0.2738 eV/ A3 for positive strains and E = 0.4358 eV/A? for
negative strains. If a single elastic constant is assumed, then we found E = 0.8724 eV/A? for CdS
and E = 0.3071 eV/A3 for CdTe.

Figure 5-6. Strain energy density of CdS and CdTe.
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XX. MD CALCULATIONS OF CDTE AND CDS DISLOCATION DIPOLE
ENERGIES UNDER PERIODIC BOUNDARY CONDITIONS

XX.1 A. Effect of System Size

Based on the orientation shown in Fig. 5-5, it is convenient to use the number of atomic
planes ny, ny, and n, to represent the dimensions in the three coordinate directions ny = L, /dyg3,

ny = L,/dyyy, and n, = L. /dgo, where dy,, and dy,, are the spacing between the

corresponding atomic planes {hkl}. For the 2D case, only a small dimension in the z- direction is
needed, and hence we use a constant n, = 6 (L, ~ 25 A) throughout our study. With that given,
we first explore the effect of system size on dislocation dipole energy using CdS as an example.
Dislocation dipoles are created by removing the corresponding planes as shown in Fig. 5-5(b).
Two dislocation dipole distances d =40 dy, (~230 A) and d = 60 d4y (~ 350 A) are studied.

For each dislocation dipole distance, 10 system dimensions corresponding to nyxn, = 24x86,
26x92, 28x98, 30x104, 32x110, 34x116, 36x122, 38x128, 40x134, and 42x140 are used. Here
the smallest system n,xn, = 24x86 corresponds to LyxL, ~ 100x500 A2 whereas the largest
system nyxn, = 42x140 corresponds to L,xL, ~ 170x820 A2 With the chosen system
dimensions, Ly and L, roughly satisfy the relation L, = 81.7 + 4.24 L,.

MBD simulations are performed at 300 K for 4 ns to equilibrate the systems, and another 16
ns to calculate average energies of both perfect crystals and crystals containing the dislocation
dipoles. If the energies for the perfect and the dislocated crystals are denoted as E, and Eq,
respectively, then the dislocation line energy is calculated as

E, —%- E,

A 20

where Ny and N,, are respectively total number of atoms in the dislocated and perfect systems
(the ratio N¢/N,, scales the perfect energy towards the same number of atoms in the dislocated
system), and 2-L, is the total length of the dislocation dipole. The results of the MD simulations
are shown in Fig. 5-7 as the circular data points, where the lines are calculated using Eq. (19).
Note that Eq. (19) involves some parameters such as dislocation core radius r, core energies E,

and the Young’s modulus Ezﬁ. As discovered above, even pure CdS exhibits different
-V

elastic constants in tensile and compressive regions around the edge dislocation. Hence, the
Young’s modulus E is an apparent property not yet known. All three parameters, 1, E., and E,
are not fitted to the MD data in Fig. 5-7, but are rather fitted to independent MD data to be
described below. Hence, the excellent agreement between the MD data and the line is a strong
validation of the consistence between the continuum theory and the MD simulations.

132



o)
o

N
o

<
>
L
—
E 4.0
E continuum model
L 30r E
Q
R
(=] L i
2.0
2 ® :d~230A,MD
m 9
3 -d~350 A, MD
E 1.0 _
o)
O‘O 1 1 1 1 1 1 1 1

90 100 110 120 130 140 150 160 170 180
system x- dimension Ly (A)
system y- dimension Ly = 81.7 + 4.24 Ly

Figure 5-7. CdS dislocation line energy as a function of system dimension.

For the d ~230 A case, both the data points and line in Fig. 5-7 indicate a monotonically
decreasing dislocation line energy with system dimension. Considering that the MD data is
highly converged and the line represents a continuum model, this monotonic trend is real.
Additional simulations with an order of magnitude increase in the dimensions confirmed that
dislocation line energies are significantly lower than the ones shown in Fig. 5-7. Intuitively,
dislocation energy reaches maximum when opposite dislocations are most widely separated so
that their elastic fields least overlap (cancel). Under the periodic boundary condition, the widest
dislocation separation occurs when dislocation dipole distance d reaches L,/2. When the spacing
d between a dislocation and one of its neighbor reaches d > L,/2, the spacing between this
dislocation and its other neighbor becomes d” = L, — d < L,/2. Based on this recognition, when d
= 230 A, the maximum dislocation energy occurs at L, = 460 A, which gives L, = 89 A
according to our constraint of the L, vs. Ly relation. This L, is lower than the dimension range
explored in Fig. 5-7, and hence the dislocation energy for the d = 230 A case is seen to
monotonically decrease in Fig. 5-7. When d = 350 A, the maximum dislocation energy occurs at
L, =700 A, which gives L, = 146 A. Indeed, the maximum dislocation energy for the d = 350 A
case seems to occur between L, = 140 A and L, = 150 A.

For comparison, molecular statics simulations are also performed to calculate the
dislocation energies for the case with dipole distance d = 40 d g, (~ 230 A). We found that the

MS data is very scattered. Especially at large system dimensions, the scatter is so large that the
MS data is essentially useless for validating continuum models. We emphasize that we have tried
various approaches to help more thoroughly minimize the energy in our MS simulations,
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including many alternating MD and MS steps at various MD temperatures. Hence, it is clear that
MS simulations cannot lead to unique results for large systems (e.g., the largest system explored
here involves 140,160 atoms) containing defects. On the other hand, the long time (16 ns)
averaged MD results are extremely smooth. Without such high quality MD data the present work
would not have been possible.

XX.2 B. Effect of Dislocation Dipole Distance

Now we focus on exploring dislocation energy as a function of dipole distance at fixed
system dimensions of nyxny = 32x110. The same MD methods as described above are used to
calculate the dislocation energies of the CdS and CdTe 2D crystals at 10 different dislocation
dipole spacing of d = 10 dygg1, 20 dggy, 30 dygoy, 40 dygeys SO digoy> 60 dygor, 70 dgooy, 80
dgoor> 90 dygoy and 100 dyopr. The results are shown in Fig. 5-8 using the circular data points.

The MD data is also used to fit the unknown parameters in the continuum expression, Eq. (19),
namely, dislocation core radius rj, core energies E., and the apparent Young’s modulus E =
2G

-V

. The fitted parameters are shown in Table 5-1. Note that Young’s moduli of CdS and CdTe

have also been determined from independent MD simulation of uniaxial deformation as
described above. The Young’s moduli from the uniaxial deformation simulations are included in
Table 5-1. It can be seen that the Young’s modulus derived from the dislocation energy
simulations is between the compressive and tensile Young’s moduli determined from the
deformation simulations, confirming the consistence of the calculations. We point out that
strictly speaking, there are no unique solutions for dislocation core radius and energy. This is
because by concept, any radius can be taken as the core radius as long as the materials beyond
this radius follow the linear elastic theory. Obviously a large radius always satisfies this
condition. Practically, a small core radius is preferred to minimize the effect of ignoring the core
in the classical elastic theory. Ideally, one would constrain the core radius to progressively
smaller values and fit the other parameters. The smallest radius that yields a satisfactory fit can
be taken as the ideal radius. Our core radii from un-constrained fits are acceptable as they are not
too big, and both our core radii and core energies are consistent with the values typically
assumed in literature [61]. Most importantly, we do not ignore the core contribution in our model
so that even a big radius does not really introduce a big error.

The fitted continuum curves are included in Fig. 5-8 using lines. An excellent agreement
between MD and continuum calculations is obtained. This means that even if the system is
elastically inhomogeneous, the use of a single elastic constant between the two (tensile and
compressive) elastic constants can still be extremely accurate. This also means that the
rigorously derived continuum model incorporates the physics needed to describe the dislocation
dipole energy under the periodic boundary conditions. Note that the lines in Fig. 5-7 are also
calculated with the same set of parameters fitted for Fig. 5-8. While the agreement achieved in

o1 E. B. Webb 111, J. A. Zimmerman, and S. C. Seel, Math. Mech. Solids, 13, 221 (2008).
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Fig. 5-8 may be partly attributed to the parameter optimization, the agreement achieved in Fig.5-
7 convincingly verifies the transferability of the model.
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Figure 5-8. CdS and CdTe dislocation energies as a function of dislocation dipole distance for given system
dimensions L, and L,.

Table 5-1. Dislocation core radius r, (A), core energy E. (eV/A), and apparent Young’s modulus E (eV/A3)
as derived from MD dislocation energy and MD uniaxial deformation simulations.

material dislocation energy simulations Uniaxial deformation simulations
To E. E= E =2G/(1-v)

2G/(1-v) | compression | tension overall

CdS 9.3141 | 1.7748 0.6894 0.9399 0.4323 0.8724

CdTe 12.4596 | 1.2984 0.3921 0.4358 0.2738 0.3071

Fig. 5-8 indicates that dislocation energy as a function of dislocation dipole distance d
reaches maximum and is symmetric at d = L,/2. This can be easily understood because under the
periodic boundary conditions, our dislocation dipole geometry can be described by Fig. 5-4(a).
Increasing the dipole distance is equivalent to moving the positive dislocation array in the y
direction while keeping the negative dislocations fixed. Each positive dislocation can be viewed
as forming two dipoles, one with a negative dislocation below at a distance d, and the other one
with a negative dislocation above with a distance L, - d. Hence, the overall energy is symmetric
with the symmetric point occurs at d = L,/2.

135



XXI. EXAMINATION OF CONTNUUM MISFIT DISLOCATION THEORY
USING MD SIMULATIONS

Figs. 5-8 show that MD simulations produce exactly the continuum strain energies and
dislocation energies. If our derivation of the continuum energy expression Eq. (10) of the lattice
mismatched system is correct, then there are no reasons that Eq. (10) would not match the MD
simulations. MD simulations are therefore carried out to calculate energies of lattice mismatched
systems. Using the geometry shown in Fig. 5-5(a), CdS crystals with 32 (101) planes in the x-

direction, 110 (010) planes in the y- direction, and 6 (TOI] planes in the z- direction, are created.
As described above, the x- and z- dimension are fixed at the CdS sizes (i.e., do)= 5.769/ V2,
and dor) = 5.847/4/2 ). The middle region of the CdS crystal of various thicknesses, d =2h = 10
doio)» 20 dio), 30 digy, 40 dig), SO0 dig), and 60 dy, ), are changed to CdTe. Misfit

dislocation dipoles are then created by removing extra planes in the CdTe region as shown in
Fig. 5-5(b). Zero, one, two, and four dislocation dipoles are all simulated. If no dislocation
dipoles are created, then dislocation spacing S = infinity. If the system contains m dislocation
dipoles, the dislocation spacing is Ly/m. Hence, creation of 1, 2, and 4 dislocation dipoles give S
=32 di) (130 A), 16 dy,0) (65 A), and 8 d(y,0) (33 A) respectively.

MD simulations are performed at 300 K for 8 ns to equilibrate the systems, and another 16
ns to calculate average energies. The energies obtained from MD simulations include cohesive
energies of atoms, and extra energies from the CdTe/CdS interfaces. Both energies are not
included in Eq. (10), and hence need to be removed. Assume that the number of Te and S atoms
in the system are Nt. and Ng respectively, then the number of Cd atoms N¢g = Nt + Ns. If total
energy of the system is E, the cohesive energies (per atom) of CdTe and CdS bulk crystals are
Ecare and Ecgs respectively, and the interfacial energy is p, then the MD version of Eq. (10)
becomes
E = E\ =2NpEcyr, =2NgEcys —2L.L.p (21)

- 2L L,

where the factor 2 in the numerator 2L,L, accounts for two interfaces, and the factor 2 in the
denominator 2L.,L, means that we only calculate half of the energy because the MD geometry
shown in Fig. 5-5(a) includes both the CdTe/CdS system and its mirror image (above the dotted-
dashed line), whereas Eq. (10) does not include the image contribution. In Eq. (21), only the
interfacial energy, p, is unknown. Hence, p is first determined. For convenience of using MD
data, Eq. (11) is first rewritten as

f(l +e h}
G.b —
gofe, GF » h{ h j+ 1 , 2N, |, ( by NS ) 260(1+8)| (9
S 47[‘1 -V, )S \rn) 2 2L L, (1 +é& hj S
S

where E¢ is the compressive Young’s modulus of the film (CdTe) and Qcgyre is atomic volume of
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CdTe bulk. For the dislocation-free systems, Eq. (22) becomes

B =Bt 2 nan (23)

Equating Egs. (21) and (23), we obtain an interfacial energy of p = 0.01766 eV/A2 from the MD
data for the dislocation-free systems.

When dislocations are present, Eq. (22) involves three unknown parameters ry, E., y. The
dislocation core radius and core energy determined above are for homogeneous CdTe and CdS
compounds, and it is reasonable that these parameters changed in the inhomogeneous system. y
reflects the deviation of the apparent elastic properties of the mixed structure as compared to the
elastic properties of the film (CdTe). As we discussed above, large core radius always satisfies
linear elastic theory, and hence we set r, to the core radius of CdTe, 1y = 12.4596 A, which is
larger than that of CdS. Under these conditions, only E; and y are unknown. We now compare
our modified model, Eq. (22) or equivalently, Eq. (10), and the old model, Eq. (1), in terms of
matching the MD data.

The results for the energy as a function of film thickness h at different dislocation spacings,
as obtained from the MD simulations and the conventional model, are first examined in Fig. 5-
9(a). Note that here the continuum model Eq. (1) is adjusted by including the dislocation core
energy of CdTe. This improves the agreement of the continuum model with the MD data. It can
be seen from Fig. 5-9(a) that for the dislocation free systems (S = infinity), and the systems
where misfit dislocations almost exactly cancel the mismatch strain (i.e., the S = 33A where the
energy becomes almost independent of the film thickness h), the agreement between the
continuum and the MD models are very good. However, for the films that contain dislocations
but the residual mismatch strain is not zero, the continuum model deviates from the MD model
pretty significantly.
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Figure 5-9. Comparison between the MD and continuum models: (a) the old continuum model Eq. (1) plus dislocation
core energy; (b) Eq. (1) with the parameters b; and S replaced by b and Sy, which is equivalent to the
simplified new model Eq. (8) or (9); (c) modified model Eq. (22) or (10) without any optimization, i.e., [1 = 1,
and E, = 1.2984 eV/A (CdTe value); and (d) modified model Eq. (22) or (10) with optimized parameters [ =
0.8956 and E, = 1.8726 eV/A.

Step by step, we now replace the Burgers magnitude b and dislocation spacing S in Eq. (1)
by b and S; respectively according to their correct definitions discovered in this work. This is
essentially the same as the simplified new model as described by Eq. (8) or (9). Similar MD and
continuum data is shown in Fig. 5-9(b). It can be seen that significant improvement is achieved
when dislocations are not too close, say S > 65 A.

Now we examine the more accurate model, Eq. (22) or equivalently Eq. (10). Eq. (22)
involves two parameters y and E.. We first test the validity of the model without fitting these two
parameters, i.e., we simply set y = 1 and E, to be the CdTe value of 1.2984 eV/A. The results
obtained from the MD simulations and continuum calculations are shown in Fig. 5-9(c). Clearly,
the new model further improves over the model shown in Fig. 5-9(b). The good agreement
achieved at y = 1 partially supports the conventional model which only uses elastic properties of
the film. From Eq. (22) or (10), the elastic inhomogeneity only affects dislocation energy, but not
the uniaxial mismatch strain energy in the film. It is therefore not surprising that the results are
primarily determined by the elastic properties in the film. This problem, however, needs to be
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further explored because coincidently, Table 5-1 shows that the compressive Young’s modulus
of CdTe is very close to the tensile Young’s modulus of CdS (in our system, CdTe is subject to
compression and CdS is subject to tension). This suggests that our system is elastically
homogeneous. We point out that when calculating dislocation energies of CdS and CdTe in
section V, we also have an elastic inhomogeneous problem. Edge dislocations always have one
region in tension and another in compression so that they are subject to different elastic
properties. The elastic inhomogeneity plays an obvious role because Table 5-1 indicates that the
apparent Young’s moduli determined from dislocation calculations are somewhere between the
compressive and tensile Young’s moduli. Yet the moduli are not particularly close to either.
Nonetheless, the conditions are different as we do not fix the x- dimension of the material there,
whereas here, we fix the x- dimension of CdS so that the effective thickness of the CdS substrate
is much larger.

Without fitting any parameters, Fig. 5-9(c) strongly validates our new continuum model.
Now we fully optimize our model by fitting y and E, to the MD data. Our optimization leads to y
= 0.8956, and E, = 1.8726 eV/A. This fully optimized new continuum model is compared with
the MD in Fig. 5-9(d). Here the lines calculated from the continuum model are almost
indistinguishable from the MD data, convincingly validating the legitimacy of making y and E,
parameters flexible. In particular, at very small film thickness ~70 A, the MD energy trends of
different dislocation spacings are exactly reproduced by the continuum model. This is improved
over Fig. 5-9(c). Accuracy at small film thickness is important for accurately determining the
critical film thickness for dislocation formation. For example, Fig. 5-9 indicates that energies of
the dislocation-containing systems are lower than those of dislocation-free systems even at the
smallest 2h value explored (~70 A), indicating that the critical thickness h is below 35 A.

It is worth noting that the condition used in MD is not exactly the same as that used in the
continuum model. In particular, in order to mimic the problem of a film on a semi-infinite
substrate, we do not address the interaction of dislocations in different periodic MD cells along
the y- direction. At the same time, we effectively mitigate the effect by fixing the MD x- and z-
dimensions to the CdS sizes to keep the uniaxial strain field from propagating across the CdS
periodic boundaries. It would be interesting to release the fixed boundary condition while
significantly increasing the y- length of the CdS substrate (say two orders of magnitude).
Unfortunately, this would require enormous computing resources. One significant impact of our
work, however, is the creation of a robust MD approach that can guide the development of a
continuum model for mismatched nanostructures, where the continuum theories are relatively
immature, but the MD can more precisely represent the real structures. This means that the future
continuum models for new misfit structures (e.g., core/shell particles) can be tuned and improved
as they are being developed, because MD validation can be performed step by step by the same
group of authors within a time frame much faster than performing experiments.

While being more accurate, our model is just as easy to apply as the old model. In fact, the
only complexity introduced in Eq. (22) or Eq. (10) as compared to Eq. (1) is the one-argument
function f(x)/(4nx) where x = (1-€)h/S. As for the unknown parameter vy, the condition y =1 is a
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reasonable approximation. It simply means that the strain energy is predominantly determined by
the elastic properties of the film due to the fact that uniaxial strain energy is proportional to the
square of strain and the strain in the substrate is assumed to be zero. As for the unknown
parameter core energy E., since the old model neglects this term, any reasonable value is likely
to improve the results. Regardless, the robust MD approach demonstrated here can always be
used to determine these parameters. In that case, our new continuum model can be made
indistinguishable from the MD methods. Finally, we emphasize that the studies presented in this
paper are rigorous only for mirror imaged interfaces rather than true surfaces. We are currently
applying the same approach as established here to examine the case of free surfaces.

XXIl. CONCLUSIONS

A systematic study combining continuum calculations and MD simulations has been
performed to examine the misfit dislocation formation and strain relaxation problem. The
numerous new physics discovered are useful for future researches on lattice mismatched systems
where defect density and strain relaxation critically determine the performance. These are
summarized below:

1. Time averaged MD simulations can produce much more converged results (essentially zero
standard deviation considering three decimal points based on an average time of ~10 ns)
than molecular statics, which is currently the most widely used method to calculate static
properties of material but is constrained to 0 K temperature, small systems, and defects that
do not relax to multiple local minimum energy configurations. This enables MD to be
confidently used to validate continuum theories, which would be otherwise impossible;

2. When separate elastic constants are used for tensile and compressive deformation, the
“linear elastic theory” can remain accurate for a much larger strain range than if a single
elastic constant is used for both tensile and compressive deformation;

3. Continuum expressions of energies have been rigorously derived for both lattice
mismatched systems and dislocation dipole arrays. The physics gained during the derivation
of the former expression allow the continuum model of misfit dislocation formation to be
improved. The latter expression allows the dislocation core radius and the core energy to be
accurately calculated from MD simulations using exactly the same dipole array
configurations without having to impose the continuum boundary condition — an
approximation always used in the past to extend the MD length scales;

4. When applying Eq. (1) to homogeneous material (i.e., the system has dislocations but

2G:h (b G ,b>
mismatch strain € = 0), the energy reduces to ——~ f £2r Ll AR Our work
ii—v, ) 47ZQ vf)S by

confirms that this indeed corresponds to the dislocation energy;
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Lattice mismatched systems contain at least two elastic constants from the two materials.
Even one material may involve two elastic constants if both compressive and tensile stresses
are encountered (e.g., around an edge dislocation). Our work confirms that the conventional
continuum theory, which typically uses only one elastic constant, can in fact remain
accurate if an apparent elastic constant somewhere between the two elastic constants is used;

The S distance used in the continuum theory should not be measured in the deformed
system, but rather measured in the unstrained film. The magnitude of Burgers vector should
not be measured in the film, but rather measured in the substrate. Misuse of either of these
parameters causes significantly error when the lattice mismatch of the system is large. Our
improved model, Eq. (22) or (10), accounts for this effect, as well as dislocation core energy
and elastic inhomogeneity effects. When a more accurate dislocation energy term is used
and the parameters optimized, the continuum calculations using Eq. (22) or (10) are
essentially indistinguishable from the MD simulations;

The robust approach outlined here provides a theoretical means (MD) to quickly validate
future continuum models for new misfit structures (e.g., core/shell particles). The
advantages cannot be overstated: the continuum model can be tuned and improved as it is
being developed because the MD validation can be performed step by step by the same
group of authors, rather than the publishing a continuum model and then correcting it after
follow-on experimental data is created.
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