
SANDIA REPORT
SAND2015-7902
Unlimited Release
Printed September 2015

The PANTHER User Experience

Jamie L. Coram
James D. Morrow
David N. Perkins

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: http://www.ntis.gov/search

mailto://reports@osti.gov
http://www.osti.gov/scitech
mailto://orders@ntis.gov
http://www.ntis.gov/search

3

SAND2015-7902
Unlimited Release

Printed September 2015

The PANTHER User Experience

Jamie L. Coram, James D. Morrow, David N. Perkins
5544, 5346, 5541

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS0974

Abstract

This document describes the PANTHER R&D Application, a proof-of-concept user
interface application developed under the PANTHER Grand Challenge LDRD. The
purpose of the application is to explore interaction models for graph analytics, drive
algorithmic improvements from an end-user point of view, and support demonstration
of PANTHER technologies to potential customers. The R&D Application implements
a graph-centric interaction model that exposes analysts to the algorithms contained
within the GeoGraphy graph analytics library. Users define geospatial-temporal
semantic graph queries by constructing search templates based on nodes, edges, and
the constraints among them. Users then analyze the results of the queries using both
geo-spatial and temporal visualizations. Development of this application has made
user experience an explicit driver for project and algorithmic level decisions that will
affect how analysts one day make use of PANTHER technologies.

4

ACKNOWLEDGMENTS

The PANTHER R&D Application development team would like to acknowledge the regular
feedback provided throughout the development process by Kristina Czuchlewski, Randy Brost,
Michelle Carroll, and Susan Stevens-Adams.

5

CONTENTS

1. Introduction...7
Graph Analytics Workflow..7
Technologies..8
Limitations ...9
Future Work...10

2. Background Concepts ...12
Semantic Graphs ..12
Graph Search Types...12
Query Templates..12
Query Results...14

3. System Design and Architecture ..15
GeoGraphy Interface ...15
Stored Graph Exploration ..16
Rendering Query Templates ..17
Saving Query Templates..18
Reusing Roles across Query Templates ..19
Reset Database Utility ...20
Development Environment ..22

4. User Interface Layout ...23
Constructing a Query...25
Running a Query..39
Analyzing Query Results ...42

5. References...53
Distribution ..55

6

FIGURES

Figure 1: Graph analytics workflow ..9
Figure 2: Role node specification ..14
Figure 3: High-level R&D Application architecture ...16
Figure 4: Spatial and Temporal Extent of Graph...17
Figure 5: QueryNode and QueryEdge Rendering ...19
Figure 6: Shallow vs. deep copy for role definitions...21
Figure 7: Reset Database Utility..22
Figure 8: R&D Application editor window ...25
Figure 9: R&D Application map window ...26
Figure 10: Selecting a Stored Graph..27
Figure 11: Query templates ...28
Figure 12: Adding primitive data types to a query template ...29
Figure 13: Adding existing roles to a query template..30
Figure 14: Reusing existing role definitions from previous queries..31
Figure 15: Indicating empty semantic roles in a query template...32
Figure 16: Creating a new query or duplicating an existing query..33
Figure 17: Creating a new role ..34
Figure 18: Viewing node specification details ..35
Figure 19: Viewing node specification as SQL...36
Figure 20: Configuring interrupt nodes ...37
Figure 21: Configuring internal edges ...38
Figure 22: Configuring hub-to-spoke edges ..39
Figure 23: Configuring spoke-to-spoke constraints ..40
Figure 24: Configuring geospatial and temporal bounds ..41
Figure 25: Running a query ...42
Figure 26: Viewing query results ..43
Figure 27: Viewing unsaved vs. saved results...44
Figure 28: Results summary view ...45
Figure 29: Viewing results on the map..46
Figure 30: Selecting a match ...47
Figure 31: Viewing match details on the map ...48
Figure 32: Toggling map layers...49
Figure 33: Sequence of Events view ...50
Figure 34: Patterns view ..51
Figure 35: Trending view ..52
Figure 36: Setting results filters...53
Figure 1. Figure Caption...58

7

 1. INTRODUCTION

The purpose of the PANTHER R&D Application is to explore interaction models for the
construction of geospatial-temporal semantic graph queries as well as visualization techniques to
support analysis of query results. The R&D Application is a proof-of-concept user interface and
is not intended for integration with any specific analyst workflow or deployment environment.

The R&D Application implements a graph-centric interaction model. Users define queries by
constructing search templates based on nodes, edges, and the constraints among them. A query
returns a set of matches that satisfy the search template’s constraints. Users can analyze matches
geo-spatially and temporally. Users can refine and rerun queries or save results and use them as
building blocks in other queries.

Graph Analytics Workflow
The R&D Application supports a query-based workflow that begins with the analyst constructing
a query. The analyst runs the query, analyzes results, and then iteratively refines and reruns the
query until the question has been answered.

This query-based workflow is only one piece of a larger graph-analytics workflow that begins
when new data becomes available. There are several steps that need to take place before an
analyst can make use of that data in a query. These steps – which include classification or
discretization of the data, conditioning the data for graph ingestion, and actually building or
updating the graph – are data source specific, meaning that a different approach might be needed
to support conditioning and ingestion of each new data type into the graph.

Once the data has been ingested into a graph, the analyst is likely still not ready to construct a
query. Graph exploration is an important step to allow the analyst to understand the extent of the
data in the graph and the types of questions the graph will allow the analyst to answer. The
analyst might or might not have a concrete idea of the questions that need to be answered and the
queries that need to be constructed in order to answer them. Graph exploration involves
understanding the geographic and temporal extent of the data, the raw data types available for
querying, and the distribution of the available data in space and time. The analyst might also be
interested in exploring when data was collected and if any gaps in data collection exist that could
impact query results.

The query-based workflow that the R&D Application supports is based on building, running, and
refining a single query. However, there are likely cases where the results of multiple queries
need to be aggregated in order to answer one or more higher-order questions. This workflow
becomes even more complex when multiple analysts need to collaborate to answer a set of
questions.

We chose to begin with the query construction aspect of the workflow because developing that
portion of the user interface addressed a key PANTHER research question of how analysts
should interact with GeoGraphy’s graph algorithms. Development of a query capability also
allowed the PANTHER team to visually demonstrate those algorithmic capabilities to potential

8

customers. However, analysts are unlikely to adopt this technology without appropriate tool
support for the earlier stages of this larger graph analytics workflow.

Figure 1: Graph analytics workflow

Technologies
The R&D Application is implemented using technologies that were chosen based on how well
they supported the need for rapid prototype development. These technologies are not necessarily
the best choices for a deployed system.

We chose to develop the majority of the user interface in Java FX, which is the modern
replacement for Java Swing. Java FX provides a well-stocked toolbox of user interface
components and also provides tools for rapidly developing custom visualizations. Existing
development experience on the PANTHER R&D Application team also made Java FX a good
choice.

We chose NASA World Wind as a GIS alternative because it is open source and integrates easily
with Java. We initially investigated the use of Google Earth (GE) primarily because of its current
level of adoption within potential customer communities. However, GE does not integrate well
with Java, and use of the GE thick client does not adequately support the two-way interaction
model that we envisioned for users (i.e., the GE thick client supports displaying information on
the map, but does not allow users to input information via the map and then pass that information
from GE to another component of the application). Furthermore, the future of the GE thick client
is in flux, and use of the JavaScript GE API would have mandated that we develop a web-based

9

user interface. Lack of experience with web development on the PANTHER team made this a
risky option for rapid prototype development. In the end, we chose NASA World Wind but
implemented a generic map/GIS interface that will support plugging in a different GIS solution
as needed in the future.

We chose Java Native Access (JNA) to support communication between the Java user interface
and GeoGraphy, which is implemented in C++. JNA is a third-party library that simplifies the
use of Java Native Interfaces (JNI). Although JNA provided sufficient capabilities to support
prototype development, it does have shortcomings. Most notable is its limitations in passing
complex objects across the interface. Performance is also a concern. If a C++ to Java interface is
needed for a deployed version of the application, the JNA interface would likely need to be
replaced with something more robust.

Limitations
The R&D Application is a proof-of-concept user interface, and, as such, it has the following key
limitations. Note that this list is not limited to purely user interface issues. To fix several of the
issues mentioned here would require improvements to GeoGraphy as well as to the user interface
code. However, this list is UI-focused and is not intended to be an exhaustive list of
GeoGraphy’s limitations.

Graph-centric interaction model
The R&D Application supports a graph-centric interaction model, which might limit analyst
adoption. Most analysts are not semantic graph experts, and they shouldn’t need to be to make
use of this technology. Thus, additional work is needed to design and implement more intuitive
interaction models, such as query-by-example. Query-by-example is an interaction model that
the PANTHER team has discussed since very early in the project. However, implementation of a
query-by-example interface was out of scope for PANTHER.

Single-user model
The current implementation of both GeoGraphy and the R&D Application supports use by a
single user. GeoGraphy’s underlying data base solution, SQLite, is not set up to support multiple
concurrent users. Multiple users can make use of saved query results if they point to the same
copy of the database. However, there is currently no support for sharing query templates or for
collaboration among a team of analysts.

Long query execution times for large data sets
Queries against large data sets can take a long time to execute. This is partially because the
GeoGraphy code is single-threaded and partially because it is research code that has not been
optimized for performance. Additional work is needed to explore multi-threading, parallelization
of the algorithms, and other optimizations to the search algorithms. Additionally, the user
interface could provide better feedback to the user in terms of expected execution time, progress,
and intermediate results.

R&D Application only supports star-graph search
The R&D Application currently only supports the construction of star-graph query templates,
which define a single hub and a number of spokes. Defining a star-graph template tells

10

GeoGraphy to use a particular search algorithm. GeoGraphy also supports a connected-
components search algorithm which is currently not exposed through the user interface.

No support for larger graph analytics workflow
Query construction and results analysis are key parts of a larger graph analytics workflow that
begins when new data becomes available. The R&D Application workflow begins with query
construction, which again could limit analyst adoption of the technology. Additional work is
needed to support earlier steps in this larger workflow, including examining of data quality,
conditioning of data for graph ingestion, and graph construction and exploration.

Limited support for graph exploration
The purpose of the geospatial-temporal semantic graph is to make it easier for analysts to search
large quantities of disparate data. However, it is unlikely that an analyst is going to be able to
build a graph and immediately begin to construct queries against it. First, the analyst needs to
understand the types of data available in the graph and the parameters and relationships that are
available for search. This exploration step is critical for analyst adoption of this technology.
Although some initial steps have been taken to support graph exploration, additional work is
needed.

Rendering of visualizations is inefficient
The R&D Application is research code. As such, technologies were chosen to support rapid
prototype development, and performance of the code was not a priority. Consequently, rendering
of query results is not as efficient as it could be in a deployed solution. The inefficiency is partly
due to the use of Java Native Access. This third-party library makes Java Native Interfaces easier
to implement, which was an attractive feature for prototype development. However, that ease of
implementation comes with restrictions on capability.

Query templates are not backwards compatible
Any query template created through the user interface is rendered obsolete with significant
changes to the software. Thus, as Geography’s capabilities and the interface between GeoGraphy
and the R&D Application continue to evolve, query templates often need to be recreated from
scratch. This lack of backwards compatibility is clearly an inconvenience. However, a solution is
non-trivial and was not considered a high priority for our research objectives. To accommodate
software testing, we created several “canned” query templates in Java code that can easily be
recreated. A more robust solution would be needed for a deployed system.

Future Work
R&D Application development has had significant impact on PANTHER as a whole. For the
first time, questions about user experience are driving project priorities and decision making.
Still, there is additional work to be done, as illustrated by the limitations outlined above.

Although the user interface exposes many of the intricacies of GeoGraphy’s algorithms in a more
intuitive and accessible manner, the current interaction model is likely too graph-centric to attract
a wide range of users. Use of the R&D Application still requires significant knowledge of graph
analytics and the design of the algorithms. It is best suited for expert users and for
troubleshooting, when more details about the graph are needed to determine what went wrong.

11

To determine the most appropriate interaction model for these capabilities, application
developers need to work closely with experienced analysts. Successful deployment of this
technology will require engagement with specific analyst communities so that we can fully
understand their current tools, capabilities, and workflows and integrate our capabilities
accordingly.

The R&D Application was never intended for deployment into a real-world analyst environment,
and, as a result, it has limitations in terms of performance and scalability. The application
currently runs in a single-user, single-threaded environment. The current database solution does
not support collaboration or sharing of query templates and results. Additional work is needed to
improve query execution time for large data sets, and additional tools are needed to support data
conditioning, graph construction, and graph exploration prior to building the first query.

12

2. BACKGROUND CONCEPTS

The design of the R&D Application is grounded in the following background concepts.

Semantic Graphs
Semantic graphs are made up of nodes and the edges. Each node in the graph is assigned a
semantic label, giving it meaning. A stored graph has a number of nodes derived from land-cover
models and other ingested data sourced. These nodes make up the primitive data types, or raw
material, in the graph. Users can then define higher-level semantic concepts based on those
primitives. For example, land-cover processing might distinguish buildings from grass and
pavement. However, a user might be interested in locating a particular type of building, such as
a Classroom Building. To search for Classroom Buildings, the user defines a semantic concept
(or role) and constrains all building nodes in the graph based on attributes like area, perimeter,
eccentricity, or orientation.

Graph Search Types
A Star Graph Search requires a search template that follows a specific topology – a single hub
node surrounded by zero or more spoke nodes. Each spoke is connected to the hub via an edge.
The hub node is required to have a cardinality of one, while the spoke nodes can have cardinality
of zero to n. Cardinality for spoke nodes is configurable by the user through the user interface. A
maximum cardinality of zero can be used to specify that a particular node should NOT be present
in a match.

The user interface currently only supports the construction of a Star Graph Search. A
Disconnected Star Search is also inherently supported due to the addition of interrupt nodes.
There is no distinction made at the user interface level that two different algorithms are in use. If
the user defines an interruption in the search template, then the Disconnected Star algorithm is
run; if not, then the regular Star Graph Search algorithm is run. GeoGraphy supports a third
search algorithm -- the Connected Component search, which is currently not exposed through the
user interface.

Query Templates
When constructing a query, the user defines a query template, which is a sub-graph of nodes and
edges used to locate marched in a stored graph. Query templates are made up of the following
components.

Role Nodes
A role is a node in the user’s search template that has semantic meaning for that user and that
query. Queries are made up of at least one node, and usually more. A node’s role is a thin
façade that consists of a name, short name, explanation and color. This façade only defines the
appearance of the role when it is visualized. The details of a role’s definition are defined in a
Node Specification.

Once a role is defined, it can be reused in multiple queries. Although the appearance of the role
is reused, the underling Node Specification can be defined differently for each query.

13

…

Node
Role

Node
Specification

Node
Specification

Node
Specification

Constraint #1
Constraint #2

…
Constraint #n

Constraint #1
Constraint #2

…
Constraint #n

Constraint #1
Constraint #2

…
Constraint #n

This is a semantic
concept relevant for a
query.

Name
Short Name
Color
Explanation

D
ee
p

Sh
all
o
w

Figure 2: Role node specification

Node Specifications
A Node Specification defined the details of what it means to be a particular role – e.g., a
Classroom Building or a Football Field. A Node Specification can contain a primitive type (such
as a building, grass/shrub, or dirt) and it can contain a set of saved query results. A single node in
a search template can also be defined by multiple Node Specifications, which are interpreted in
OR fashion. As an example, consider that a parking lot could be either paved or dirt. And thus, a
Parking Lot role in the search graph could be defined by either a paved primitive type or a dirt
primitive type. Each is defined as a separate Node Specification and constrained individually.

Multiple Node Specifications for a role can span multiple data types. Take, for example, a
Hospital role. The user could define a Node Specification based on primitive building nodes and
constrain it to include only buildings of a certain size and perimeter. However, the stored graph
might also include point data that defines the locations of hospitals in a given area. If, for
instance, this point data is known to be incomplete, then the user might define a query that
searches for hospitals using both the point and Building data available in the graph.

Each Node Specification in a search template has a number of attributes that can be used to filter
the data in the graph. The set of available attributes depends on the type of Node Specification.
Regions (such as buildings, grass, and paved areas) have area, perimeter, eccentricity,
orientation, and other attributes suitable for two-dimensional region data. Point data can have
many different attributes based on what information is present in the data files ingested into the
graph.

14

As the user constrains Node Specifications in the search template, the application searches the
database and dynamically updates a node count. This count is displayed next to each Node
Specification in the user interface and provides immediate feedback to the user on how many
results can be expected based on the current parameterization of the Node Specification.

Edges
Nodes in a search template are connected via edges. And, much like nodes, edges can also be
constrained. Edge constraints allow the user to define relationships between two nodes in the
graph based on space and time.

A common edge constrain is the maximum minimum distance between two nodes. Since nodes
in the graph can be regions as well as points, there is not a single “minimum distance” value that
can be defined. However, by specifying a maximum value for the minimum distance between
two nodes, the user can mandate that the two nodes be “close together.”

Interrupt Nodes
An interrupt node in a search template allows the user to specify that two nodes connected by an
edge can optionally be interrupted by another node. For instance, depending on when and how
imagery is collected, a building might have a shadow in any number of locations in the image. If
the user specifies a query in which a building must be within some distance from a parking lot,
the query might fail without the introduction of a shadow interrupt node.

To GeoGraphy, an interrupt node is like any other role node in the search template. At the user
interface level, interrupt nodes are paired with the role node that they interrupt in order to
simplify the rendering of the search template.

Query Results
Once the user is happy with a defined query template, the next step is to run they query. The user
can analyze the query results through the user interface, refine and re-run the query, and
optionally choose to save results back to the database. Queries can be run and results saved
multiple times, which is useful if the underlying data in a stored graph is updated regularly and
the user wishes to compare results of the same query over time. Each set of results is saved with
a timestamp for when the query was run.

A saved set of results can also be used as a building block in a subsequent query. The user can
drag a set of results from the results area back onto the query canvas. The saved results become a
node specification for a role in the template. The user can then configure whether to use the
entire match from the saved results of a subset of the match. For example, a High School search
template might consist of a Classroom Building, a Football Field, and a Parking Lot. The user
can save a set of results where each match contains all three of these roles. When using the High
School saved results in a subsequent search, the user might wish to only make use of the Football
Field nodes from the saved results. This is useful when additional roles are needed to define the
initial matches or narrow results but the item of interest in the follow-on query is a subset of the
overall match.

15

3. SYSTEM DESIGN AND ARCHITECTURE

The R&D Application is a Java application consisting of two key windows. The first window is
an Editor Window and supports query construction, execution, and temporal analysis of results.
The second window is a Map Window, which supports geo-spatial analysis of results.
Communication flows from the Editor Window to the Map Window in both directions.

Figure 1 depicts the high-level architecture of the application. Blue boxes indicate Java code.
Orange boxes indicate C++ code.

GeoGraphy Interface (DLL)

R&D Application

Editor
Window

Map
Window

GeoGraphy Interface

JNA

GeoGraphy

Figure 3: High-level R&D Application architecture

GeoGraphy Interface
The GeoGraphy Interface wraps GeoGraphy’s graph search capabilities (written in C++),
enabling two-way communication between GeoGraphy and the R&D Application. All
invocations of GeoGraphy and database searches from the user interface go through the
GeoGraphy Interface.

The GeoGraphy Interface exposes a subset of GeoGraphy’s capabilities, which are then exposed
through the user interface. To create the interface between the C++ and Java code, the
GeoGraphy code base is first packaged into a DLL. The functionality wrapped in the DLL is
then exposed to Java using Java Native Access (JNA).

Some explicit design decisions were made to minimize the communication with GeoGraphy and
to request data over the interface on demand. For example, when a query completes, minimal
information about each match is passed over the interface to the Java code. It is not until the user
selects to see the results of a particular match that the detailed information about that match is
requested over the interface. This “on demand” architecture is necessary because, although JNA

16

simplified the use of Java Native Interfaces (JNI), that simplification comes with a hit to
performance. Once data is passed over the interface, it is cached on the Java side so that it does
not have to be requested again.

Stored Graph Exploration
The purpose of the geospatial-temporal semantic graph is to make it easier for analysts to search
large quantities of disparate data. However, before constructing a query, the analyst needs to
understand the types of data available in the graph and the parameters and relationships that are
available for search. This exploration step is critical for analyst adoption of this technology.

As an initial step toward this capability, the R&D Application displays for the analyst the
geographic and temporal extents of data in the selected stored graph. The geographic extent is
shown as a shaded rectangle on the map, and the temporal extent is shown on a timeline. This
information allows the analyst to determine the “when” and “where” of the data available in the
stored graph. If the analyst’s questions fall outside of those geographic or temporal bounds, and
the analyst knows immediately that additional data, or a different stored graph, is needed.

Spatial
Bounding Box

Temporal Extent

Figure 4: Spatial and Temporal Extent of Graph

A second step toward this capability allows the user to explore node parameter distributions as
they are constructing queries. Query templates are very flexible, allowing users to enter exact
values or min/max ranges for node parameters, such as the area, perimeter, or eccentricity of a
region. However, it is not always obvious which values should be entered to locate particular
features. What is the perimeter of a warehouse? What is the eccentricity of a football field? To
make this process easier, analysts can view a histogram showing the distribution of parameter
values for all nodes in the stored graph. Users can adjust the min and max values for the
parameter and update the histogram, allowing them to narrow in on parameter value ranges
where they know data exists.

A final step toward this capability allows users to view a dynamic node counter based on the set
of current constraints based on a particular node in the query template. This counter gives
analysts immediate feedback on the number of nodes that obey the constraints. More
importantly, if the counter goes to zero, analysts know immediately when the node has been
over-constrained. Without running the query, they know it will return zero results.

17

These initial features are only small steps toward a full graph exploration capability. Additional
work is needed to determine what information is most useful and how best to overcome
performance issues related to the amount of data in the stored graph.

Rendering Query Templates
Query templates can contain an arbitrary number of nodes and edges. It is important that the user
interface present the template to the user in an understandable fashion. To accomplish this goal,
we have simplified the rendering of nodes and edges on the query canvas.

Query Nodes
A QueryNode is a user interface object that combines a role node, its interrupt node (if present),
and any of the three edges that might be defined among them. These three edges are:

1) A recursive edge from the role node to itself
2) An edge from the role node to the interrupt node
3) A recursive edge from the interrupt node to itself

A recursive edge indicates that more than one instance of node type can take place in succession.

Query Edges
A QueryEdge is a user interface object that combines the up to four edges that might exist
between two QueryNodes:

1) Role A to Role B
2) Role A to Interrupt B
3) Interrupt A to Role B
4) Interrupt A to Interrupt B

In a Star Graph Search, the role node to role node edge always exists (from hub to spoke),
however, the interrupt edges can only exist if the user has defined an interrupt node for that role.
The QueryEdge drawn on the canvas becomes slightly thicker with each edge that is defined
within it, providing an indication to the user of how many edges are hidden within that
QueryEdge definition.

By default, a distance edge constraint of 10m (max) is assigned for the role to role edge. This
constraint is required by GeoGraphy to run the search. The user can update the default value at
any time.

See the figure below for a comparison of the typical rendering of two nodes, two interrupt nodes,
and their respective internal and external edges (left side) vs. the simplified rendering of the
same information as shown in the user interface (right side). A single QueryNode encompassed a
role node, its interrupt node (if present), and the up to three internal edges described above. A
single QueryEdge encompassed the up to four external edges that can exist between two
QueryNodes. The user can click on either a QueryNode or a QueryEdge to view the details of the
hidden information.

18

QueryNode

Role A
Node

Interrupt
A Node

Role B
Node

Interrupt
B Node

Role A
Node

Role B
Node

QueryEdge

Gray ring indicates presence
of interrupt node

Figure 5: QueryNode and QueryEdge Rendering

Given that a search template typically contains many nodes, it is easy to imagine how cluttered
the rendering of search templates might become. Collapsing the multiple edges into a single edge
and the role, interrupt, and the three internal edges into a single node greatly simplifies the
rendering of complex search templates.

Saving Query Templates
The user can save a search template with or without running the query. This capability allows the
user to work on the definition of a complex query template over time, without losing work from
session to session. When a query template is saved, it is written to a file in a directory specific to
the current user.

The file is written and read using Java’s Serialization capability. All classes that are involved in
specifying a query must be Serializable in order for the query can be saved. A disadvantage to
this approach is that any significant change to any of the Serializable classes renders the saved
question unloadable and so it must be re-constructed from scratch in order to be used with the
new version of the code.

Note that saving a query template in this fashion has nothing to do with GeoGraphy or its
database. Saving a query template is performed at the user interface level only. This operation is
different from the concept of saving a set of query results after executing a query. Saving results
will write the information back to GeoGraphy’s database. To keep query templates and query
results in synch, we automatically save the query template any time a set of results from the
template is saved to the database.

19

A side effect of saving query results back to the GeoGraphy database is that the associated query
template is no longer editable. This is necessary to maintain consistency between the saved
results and the template that created them. Otherwise, the user could not be certain if two sets of
results from the same query template are comparable.

Reusing Roles across Query Templates
Even though a query template becomes read-only once results have been saved, it is important to
remember that roles can be reused across multiple queries. Furthermore, the underlying node
specifications can differ for each use of a particular role. This means that a Football Field node
specification, for instance, can be defined completely differently from one query template to
another, even though the appearance of the Football Field role (e.g., name, color, explanation)
remains the same.

Once results are saved for a query template that uses the Football Field role, the Football Field
role becomes read-only – meaning that the name, color, etc. cannot be changed. Likewise, the
underlying node specification for the query template with saved results also becomes read-only.
However, the underlying node specification can still be edited for other query templates that
make use of the Football Field role and do NOT have saved results.

See Figure 3 for a summary of this behavior. There are three queries: Q1, Q2, and Q3. A single
role is reused in all three of them.

Initially, none of the queries have any saved results (Figure 3, top left). Therefore, the façade
information for the role (name, color explanation…) can be modified. If modified, only the
shallow façade information is affected – this is the only information that is shared across all three
query templates. The underlying node specification, or “deep” portion of the definition, evolves
separately for each individual query template. Modifying the node specification in Q1 does not
affect Q2 or Q3.

Once Q1 query results have been saved, the shallow role definition becomes read-only.
However, only Q1’s node specification becomes read-only; the node specifications for Q2 and
Q3 remain editable (Figure 3, middle right).

When Q2 query results are saved, its node specification also becomes read-only (Figure 3,
bottom left).

20

Query Saved
Results

(Shared) Role
Shallow Deep

Q1 0 Variable Variable
Q2 0 Variable Variable
Q3 0 Variable Variable

Query Saved
Results

(Shared) Role
Shallow Deep

Q1 1 Fixed Fixed
Q2 0 Fixed Variable
Q3 0 Fixed Variable

Query Saved
Results

(Shared) Role
Shallow Deep

Q1 1 Fixed Fixed
Q2 1 Fixed Fixed
Q3 0 Fixed Variable

Figure 6: Shallow vs. deep copy for role definitions

One reason why a node’s specification can be changed independently across multiple query
templates is to eliminate unintended interference between queries. If a node’s specification was
shared among multiple query templates, then editing one query could break or modify the second
query unintentionally. The disadvantage of this design decision is that each role node must be
configured independently for each query template that makes use of it. The user interface
attempts to make this easier by indicating to the user when a role is added to a query template if
that role has been configured previously in another template. If so, the user can choose either to
reuse the role with one of its previous configurations or to reuse the role but configure it from
scratch.

Reset Database Utility
The purpose of the Reset Database Utility is a Java tool developed to support software testing. It
facilitates resetting an individual user’s version of the GeoGraphy database back to a known
state. This is useful in two key cases:

1. After executing a series of operations via the UI that modified the data in the database
(e.g., saving query results)

2. After changes to the underlying code base have rendered existing query templates
obsolete

The limitation described in case 2 occurs because questions are saved via serialization of classes.
When those classes change as a course of normal development, the saved questions cannot be re-
read. When this happens and there are saved results associated with the question, the database
must be reset to a known state (e.g. as it was originally built). Otherwise, there would be results
in the database that do not have a reference question.

21

The GeoGraphy database is created and populated during stored graph construction, and the
name of that database is normally StoredGraph_search.db. To prevent contention caused by
multiple users reading from and writing to the same database, the application checks for the
existence of StoredGraph_search_userid.db (where “userid” is the user ID of the person using the
application). If this user-specific file is missing, then the application attempts to copy
StoredGraph_search.db into it. It is this copy of the database that the user modifies as s/he saves
results or creates new roles.

There are a set of “canned” query templates defined for each stored graph that are used for R&D
Application testing. These canned questions are defined in the Java code, and the Reseat
Database Utility writes those questions out to disk. Each user has his/her own questions
directory in the stored graph area, named with their user ID. An individual user’s questions for a
particular stored graph are contained in this area, which prevents different users from corrupting
one another’s questions.

List of defined
stored graphs

Status area where status messages are
displayed as the database operations take place

Figure 7: Reset Database Utility

The Select All Graphs checkbox is a convenience method to select/clear all of the stored graph
checkboxes. Alternatively, the user can select a subset of the stored graphs. All other
commands apply only to the selected stored graphs.

22

The Replace User Database checkbox indicates whether the user’s database
(StoredGraph_search_userid.db) should be overwritten. The default source file that will be
copied into the user-specific database is StoredGraph_search.db.

The Choose database source checkbox is only enabled when the Replace User Database
checkbox is selected. This gives the user the option to select a different source database other
than StoredGraph_search.db when overwriting the user-specific database.

The Clear Saved Questions checkbox gives the user the option to remove saved questions in
their user-specific directory. This would typically be done if the questions no longer load due to
changes in the underlying code base.

The Save Canned Questions checkbox gives the user the option to re-initialize canned questions
for the selected stored graphs

Development Environment
The R&D Application code base is version controlled via a Git repository
(\\coeus\GeoGraphy\Admin\Repositories\UICode.git).

The code base is organized into the following NetBeans projects:

 CoreGUI: Project contains code to implement the graphical user interface.
 EyeTracking: Contains code to interface with the EyeWorks eye tracker to enable eye tracking

analysis of using this interface. This mainly consists of connecting to the EyeWorks over the
network, pinging it periodically (<= 1Hz) to get a timestamp, and writing the application time
and EyeWorks time to a log file. This enables synchronizing of our logs with the eye tracking
data.

 MapInterface: A generic map-independent interface meant to be able to support more than one
map – for example, WorldWind and Google Earth. This was abandoned early in development.

 MapWW: The WorldWind map implementation.
 PrototypeUtilities: Common utilities needed across projects.
 ResetDatabase: A utility to manage the database – see chapter on this.

file://coeus/GeoGraphy/Admin/Repositories/UICode.git

23

4. USER INTERFACE LAYOUT

The user interface consists of two windows: the main editor window and the map window.
Within the editor window, there are two key areas:

1) A query construction area where query templates are constructed and displayed
2) A query results display and filter area

The Query Construction area is where query templates are constructed and displayed. The
spatial-temporal constraint specification area, below the query canvas, allows the user to define
bounding boxes in both space and time against which the query is run. This capability allows the
user to select a portion of the Stored Graph to run the query against.

The Results Display and Filter area is where query results are displayed and where they can be
filtered. There are several temporal views available that highlight different temporal aspects of
the results set. The Filter pane on the right allows the user to apply a range of filters to the
results set to narrow in on patterns and trends of interest in the data.

24

Figure 8: R&D Application editor window

Query results are also displayed geospatially in the map window. The map and query results
displays are synchronized in terms of selection and filtering.

Query Construction

Spatial-Temporal Execution Constraint Configuration

Results Display and Filters

25

Figure 9: R&D Application map window

Constructing a Query
Users construct queries by defining a search template made up of nodes, edges, and constraints.
The first step in constructing a query is to select a stored graph from the drop-down list at the top
of the window. Once a stored graph is selected, saved query templates associated with that stored
graph are displayed in a list on the left. The details of the selected query template are displayed
on the query canvas in the middle of the window.

26

Saved questions
are listed here for
the selected
StoredGraph

Figure 10: Selecting a Stored Graph

Each query template is assigned a top-level role that is unique to this question. In the above
example, the role is “Test Question.” This name also serves as the name for the saved question
(which is written externally to a .qst file).

Currently, the only search graph algorithm exposed through the user interface is the Star Graph
Search. Eventually, other algorithms, such as Connected Component Search, will also be
supported. The two buttons displayed in the query canvas above provide a hook for future
selection of the desired graph algorithm by the user. For now, press the “Star Search” button to
create a new star graph search.

27

Figure 11: Query templates

A star search is made up of a single hub and a variable number of spokes. Each spoke node is
automatically connected to the hub node via an edge.

To define the hub node, drag a primitive type or an existing role from the lists on the right. The
list of available primitive types is determined by the data types that exist in the selected stored
graph. After dragging a primitive type onto the query canvas, the user is prompted to select a
role, or semantic label, for that type.

Active
question is
highlighted
and displayed
on canvas. Star Search is only

supported query type.

28

Figure 12: Adding primitive data types to a query template

Alternatively, the user can drag an existing role onto the query canvas. Existing roles are
displayed in the Existing roles list below the list of primitive types. To conserve space, one list
collapses when the other is expanded. Users can create new roles or edit existing roles using the
buttons below the existing roles list.

Stored Graph
Primitive List

Drag primitive
onto hub.

29

Figure 13: Adding existing roles to a query template

If the existing role has been used in other queries, the user is given the option to reuse the node
specification for that role from another query.

Existing role
list

Create new role or
edit existing role

Drag existing
role onto hub.

30

Figure 14: Reusing existing role definitions from previous queries

Or, the user can choose to use the empty role, in which case the role will be rimmed in red on the
query canvas to remind the user that a node specification is needed. Clicking on a red-ringed
node in the query template displays an empty list of node specifications.

All questions
using this
role are listed
here

Deep role definition for selected question
is displayed here.

31

Figure 15: Indicating empty semantic roles in a query template

Users can create a new query template by pressing the New Query button above the query
template list. Alternatively, users can make a copy of an existing query and then edit it. Right-
click on an existing query template in the list and choose Duplicate to create a copy of the query.

Red ring indicates that this
role has no deep definition –
that it was created empty.

No NodeSpecifications
listed.

32

Figure 16: Creating a new query or duplicating an existing query

The user is prompted to choose a unique role for either a new query or a duplicate. Choose an
existing role from the list or choose to create a new role. To create a new role, enter a unique role
name, a short name (abbreviation), and a brief explanation of the role. Select a color from the
palette to represent the role (e.g., green for grass).

Create new query
or make a copy of
an existing query

33

Figure 17: Creating a new role

The user can click on a node in the query template to view the details about that node’s
configuration. Configuration options include the node’s role, cardinality requirements, and
details about the node, interrupt node, and internal edges between the node and the interrupt. The
Node tab (shown by default) shows the node specifications that define this node’s role. In this
case, the Fatal Accident role is defined by the Fatal Accident primitive type. In some cases, it
makes sense to include more than one node specification in this list (e.g., a parking lot could be
either paved or dirt). A node specification can be either a primitive type or a set of query results
that has been saved back to the database. To add a new node specification to the list, press the
Add primitive or Add saved results buttons and choose from the available list.

Select a node specification in the list to configure its parameters. Parameters for the selected
node specification are shown in the accordion to the right of the list. Expand each parameter in
the accordion to view/edit configuration options.

Create a new role and
assign it to a new or
duplicated query.

34

A node counter for each node specification is shown in the table. This node counter updates
dynamically to reflect the number of nodes of that type in the stored graph that meet the current
set of parameter constraints configured in the accordion.

Figure 18: Viewing node specification details

After configuring a node, the user can view the node specification as SQL. This is useful for
troubleshooting if a query is not running or not producing the expected results. To view the node
specification, right-click on the node and select ‘View specification.’ The specification is display
in a popup window, as shown below.

Click on a node on
the query canvas to
view details in a
popup display.

35

Figure 19: Viewing node specification as SQL

Users can define interrupt nodes for any node in a query template. If a node has an interrupt
defined, it is displayed as a gray outline around the node in the query canvas.

To define an interrupt, click on the node to view the node specification details. Select the
Interrupt tab and add items to the Interrupt node specification list. In this case, the Classroom
Building node has been assigned an Interrupt of primitive type Shadow. Interrupt node
specifications can be configured in the same manner as regular node specifications.

Viewing a node
specification as SQL

36

Figure 20: Configuring interrupt nodes

A single node in a query template can have up to three internal edges, which are managed via a
third tab in the node specification details pane. All nodes have a node-to-node edge. If a node has
an interrupt defined, then there is also a node-to-interrupt edge and an interrupt-to-interrupt edge.
The user can select the checkboxes to include individual edges in the query definition. Define
constraints on the selected edge by clicking on the Add constraint button and choosing a
constraint from the available list. The selected constraint is added to the constraints list for the
selected edge. Select a constraint in the constraints list to view/edit its minimum and maximum
values.

Interrupt nodes are displayed
as gray circles around the
node they pertain to.

Click on the Interrupt tab in
the node details pane to
configure the interrupt node.

37

Figure 21: Configuring internal edges

Users can also constrain hub-to-spoke edges in the query template. These edges are configured in
a similar manner to internal edges.

A hub-to-spoke edge can actually contain up to four individual edges, if both nodes have
interrupts defined. To simplify the query canvas, a single edge is drawn between two nodes.
Click on the edge to view/edit individual edges and their constraints.

Like node parameters, edge constraints can be complex and non-intuitive to define. For some
edge constraints, such as the Directed Center Direction constraints shown below, a graphical
depiction of the constraint makes its purpose more intuitive. In this case, the user can enter aim
angle and angle span values directly into the text fields, or, alternatively, can click and drag the
blue wedge to move and resize it for the desired angle and span.

Select an internal edge
and add constraints

38

Figure 22: Configuring hub-to-spoke edges

Users can also define edges between two spokes in a query template. These edges are called
Spoke-to-Spoke Constraints and are drawn as dotted lines on the query canvas. Click on a spoke-
to-spoke constraint to edit the constraints in the same way as a hub-to-spoke edge. Spoke-to-
spoke constraints are drawn differently on the query canvas to indicate that they behave slightly
differently than hub-to-spoke edges. Spoke-to-spoke constraints are post-processed after a
potential match is found for the rest of the query template.

To add a spoke-to-spoke constraint, right-click on one of the nodes and select the ‘Add spoke-to-
spoke constraint’ option in the menu. Then, click on the second node.

Click on an edge
between two nodes
to view details pane.

Type constraint values
into the text fields, or
click and drag the blue
wedge.

39

Figure 23: Configuring spoke-to-spoke constraints

Running a Query
Once the user is satisfied with the query template, it is time to run the query. The user can
optionally choose to bound the query temporally and/or geospatially before running the query.
Temporal and geospatial bounds are not stored with the query template, but are, instead, optional
filters that can be applied as needed.

To set temporal bounds for a query, click and drag the blue and red tabs in the timeline below the
query canvas. The date/time labels on the left and right indicate the full temporal extent of the
stored graph. The date/time labels above/below the tabs indicate the temporal bounds for the
query.

To set geospatial bounds for a query, select the Geospatial bounds checkbox below the query
canvas and then click and drag on the map to draw a bounding box. Click ‘Clear geospatial
bounds’ to remove the bounds from the query.

To add a spoke-to-spoke
constraint, right-click on a
node, select the menu
option, and then click on the
second node.

40

Figure 24: Configuring geospatial and temporal bounds

Press the ‘Run’ button to run the query. A progress bar and timer are displayed next to the Run
button while the query is running.

Drag the blue and red tabs
on the timeline to limit the
temporal bounds for a query.

Select the Geospatial
bounds check box and then
draw a bounding box on the
map display.

41

Figure 25: Running a query

Analyzing Query Results
When the query is complete, the results are displayed in the Results and Filters area below the
query construction pane. For each query that is run, the results are populated in a separate tab.
Click and drag a tab outside of the main window to “tear it off.” Once torn off, the results
window can be resized to make use of more screen space to analyze the results.

42

Figure 26: Viewing query results

The timestamp for the latest run of this query, plus the match count, are displayed in the ‘Latest
unsaved result’ area in the top left. If the results of any previous runs on this query have been
saved, those timestamps and match counts are listed in the ‘Previously saved results’ table.

To save the latest results, press the ‘Save latest results’ button. Once results have been saved,
they can be reused in a subsequent query. Drag and drop the saved result from the table back
onto the query canvas to create a node that represents those saved results.

Query results are displayed below the
query construction area.

43

Figure 27: Viewing unsaved vs. saved results

Select the latest unsaved results set or any of the saved results set to view details on the right
portion of the display. Several different temporal views are provided to help analyze the results
and isolate patterns of trends of interest.

By default, a Summary table of the results is shown. Each row in the table represents on match to
the query template. Each match is given a unique identifier – a negative integer for unsaved
results and a positive integer for saved results.

The User Confidence column in the table allows the user to set a score for how confident they
are that each match is an example of what they query template represents. By default, the User
Confidence score is set to Unknown for each match. To change the User Confidence score, select
a new value from the drop-down list. Values range from Very Low to Very High confidence. If a
set of results is saved, the User Confidence scores are saved with them. Once the results have
been saved, the User Confidence scores are no longer editable.

The remaining columns in the table represent node counts for each role that was defined in the
query template. These counts give the user an initial indication of the types of matches that were
found.

View the latest unsaved results in addition
to any previous results that have been
saved. Select a set of results on the left to
view details for it on the right.

44

Figure 28: Results summary view

Results are also displayed in the map window. The temporal visualizations and the map display
are synchronized to help the user simultaneously analyze results both temporally and
geospatially. By default, a single placemarker is added to the map for each match in the selected
results set.

Several different temporal
visualizations are provided for results
analysis. By default, a Summary
match table is displayed.

45

Figure 29: Viewing results on the map

Select a row in the Summary table to view details about that match on the map.

The map display is synchronized
with the temporal visualizations in
the main window. By default, a
single placemarker is shown on the
map for each match in the selected
results set.

46

Figure 30: Selecting a match

Selecting a match expands the single placemarker into multiple placemarkers – one for each
node in the match. In the example below, there is one placemarker for the Classroom Building
(red), one for the Football Field (green), one for the Parking Lot (gray), and one for each of the
many Fatal Accidents included in this match (yellow).

Select a match in the Summary table to
view details of that match on the map.

47

Figure 31: Viewing match details on the map

The user can zoom and pan the map using the mouse to view the details of the match.

For the region nodes (Classroom Building, Football Field, Parking Lot), a region of the same
color is overlaid on top of the default optical imagery.

The user can toggle on and off the graph and region overlaid layers to declutter the display. The
user can also expand the node entries in the tree to the bottom left of the map and choose to
overlay available source imagery from the stored graph.

48

Figure 32: Toggling map layers

Back on the main display, click on the Sequence of Events radio button to view a more detailed
depiction of how the nodes in each match are distributed through time. In this view, there is
again one row per match, and the horizontal axis is a timeline. Colors in this view also match the
colors defined for each role in the query template. In the example below, the red line represents
the Classroom Building; the green line represents the Football Field, etc.

The vertical lines represent the start and end times of observations of each node. A solid
horizontal line represents the portion of time when that particular node was known to exist –
based on observations. For durable nodes, such as the Classroom Building, a dotted horizontal
line indicates the assumed existence of that node. If the data set contains no follow-on
observation where that node did NOT exist, then it is assumed to exist in both the past and
future.

For ephemeral point data, such as the Fatal Accidents shown in yellow, the vertical “tick mark”
represents the moment in time when that accident occurred. Depending on the data, ephemeral
nodes can also have non-instantaneous time ranges, which would be displayed in the same
manner as durable nodes (but without the dotted line).

Toggle on/off the graph and
region layers to declutter the
display. The user can also view
source imagery by expanding the
node entries in the tree. Selected
source imagery is georeferenced
and overlaid onto the map.

49

The user can adjust the timeline below the temporal views to zoom in on a smaller portion of
time. Click and drag the blue and red tabs to adjust the time range. The four temporal views,
along with the map display, are all updated to reflect the current time range.

Alternatively, drag the blue and red tabs close together and then press Ctrl+Right-Click on the
blue tab to bind the two tabs into a single draggable piece. Drag the piece through time to “play”
the data. Data on the map is synchronized with the data shown in the four temporal views.

Figure 33: Sequence of Events view

Select the Patterns radio button to view a calendar-based view that highlights temporal patterns
in the data. The rows in the table are divided into 6-hours chunks, and the horizontal axis shows
days of the week. A bar chart, with one bar per node, displays node counts for each cell in the
table, i.e., for each 6-hour chunk of each weekday. This view highlights days of the week and
times of day when certain types of nodes are occur more or less frequently.

The Sequence of
Events view shows the
distribution of nodes
over time.

Adjust the
time range
to zoom in.

50

Figure 34: Patterns view

Select the Trending radio button to view data trends over time. The top portion of the Trending
display is a heat map. Again, there is one row in the table per match, and the columns are binned
based on configuration time frames. To adjust the granularity of the bins, use the Distribution
text field and the dropdown menu. By default, the data is binned by years. Other options include
months, quarters, weeks, and days.

The table cells are colored according to a color gradient. The darker the blue color, the mode
ephemeral nodes that took place within that bin of time. The Total column indicates the total
number of ephemeral nodes that were binned for that match.

Below the heat map, a line chart shows per-node trends for a single match selected in the heat
map table. Again, colors match the role colors defined in the query template.

The Patterns view
highlights patterns in the
data based on days of the
week and times of day.

51

Figure 35: Trending view

The user can adjust the filters on the right side of the display to narrow in further on particular
patterns or trends in the data. Use the filters to limit the roles that are plotted in the temporal
displays and on the map. Or, limit the data based on temporal patterns. For example, only show
data from the selected years, or for all years but only for the selected months, days of week, or
times of day.

52

Figure 36: Setting results filters

Select role and time
filters to affect the data
plotted on all temporal
displays and the map.

53

5. REFERENCES

1. Google Earth, https://www.google.com/earth/, Accessed 21 August 2015.
2. Java FX Oracle Documentation, http://docs.oracle.com/javase/8/javase-

clienttechnologies.htm, Accessed 21 August 2015.
3. Java Native Access (JNA), https://github.com/java-native-access/jna, Accessed 21

August 2015.
4. NASA World Wind, http://worldwind.arc.nasa.gov/java/, Accessed 21 August 2015.

https://www.google.com/earth/
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
http://docs.oracle.com/javase/8/javase-clienttechnologies.htm
https://github.com/java-native-access/jna
http://worldwind.arc.nasa.gov/java/

54

55

DISTRIBUTION

1 MS0899 Technical Library 9536 (electronic copy)
1 MS0359 D. Chavez, LDRD Office 1911

