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Abstract

A cooperative research and development agreement was made between Linde, LLC and
Sandia to develop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the
necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. A three-
stage heat exchanger will be used to cool gaseous hydrogen using liquid nitrogen, gaseous
helium, and liquid helium. A cryogenic line from the heat exchanger into the lab will allow
high-fidelity diagnostics already in place in the lab to be applied to cold hydrogen jets. Data
from these experiments will be used to develop and validate models that inform codes and stan-
dards which specify protection criteria for unintended releases from liquid hydrogen storage,
transport, and delivery infrastructure.
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1 Introduction

The Turbulent Combustion Laboratory (TCL) at Sandia National Laboratories in Livermore, CA,
has been used to develop and validate models for high-pressure gaseous releases of hydrogen,
utilizing high-fidelity diagnostics with well-controlled laboratory experiments [5, 8–10]. These
physical models are used in quantitative risk assessment (QRA) models, and can be used to gen-
erate risk-informed separation distances [6]. Separation distances are specified in in safety codes
and standards, such as the Hydrogen Technologies Code (NFPA 2) from the National Fire Pro-
tection Agency (NFPA), that govern the allowable distances between hydrogen sources and other
objects (e.g., flammable liquids, building openings or air intakes) [7]. Authorities having juris-
diction use these separation distances to qualify and approve designs that have hydrogen on site,
such as a fueling station for hydrogen fuel cell vehicles. While the current requirements for bulk
gaseous storage (862 bar, 100 kg) require at most 24 feet of separation (between the bulk storage
and lot lines and building openings/air intakes), 75 ft of separation is required between a bulk liq-
uid storage container (3,500-15,000 gallons) and a building opening or public assembly area [4,
7]. Discussions with members of the NFPA code committee have elucidated that the separation
distances in NFPA 2 for liquid hydrogen are based on expert opinion rather than risk-informed,
and may be overly conservative [2]. In this work, we describe our plans to modify the TCL to
generate data, analogous to the data used to validate models for high-pressure gaseous releases of
hydrogen, to validate (and develop, as necessary), models that can be used in QRA to revise the
separation distances in the safety codes and standards that govern liquid hydrogen.

The cryogenic hydrogen release experiment in the TCL has been designed by staff at Sandia
working with staff at Linde, through a cooperative research and development agreement (CRADA).
This CRADA has allowed Linde, experts in working with cryogenic hydrogen, to assist in devel-
oping a TCL modification plan to ensure that these cryogenic hydrogen release experiments are
performed safely and at relevant conditions. A weekly teleconference and several visits from
Linde to Sandia facilitated discussions on design plans. This CRADA has led to a design plan that
will lead to safe experiments that can generate important validation data for releases from liquid
hydrogen systems.
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2 Experimental Design

Liquid hydrogen tanks store hydrogen at fairly low pressure (< 10 bar), at the saturated liquid tem-
perature (32 K at 10 bar), therefore the targeted experiments are designed for a maximum pressure
of 10 bar and as close to the saturation temperature as possible. Control of the flows/pressure is an
important consideration for experimental design. The design of the experiment in the TCL is very
similar to an experiment that was run at the Karlsruhe Institute of Technology (KIT) [3], where
room temperature hydrogen was controlled/monitored, followed by cooling in a series of heat ex-
changers. This allows the pressure and temperatures to be varied independently, rather than using
liquid hydrogen directly. Unlike the KIT experiment, where the gaseous hydrogen was cooled by
liquid hydrogen in the final stage, the experiment at Sandia will cool the atmospheric temperature
hydrogen using liquid helium. The experiment we are installing also uses the cold gaseous effluent
from the final stage to additionally cool the hydrogen. The KIT design only had two stages of
cooling. A sketch of the experimental design is shown in Fig. 1.

As shown in Fig. 1, compressed hydrogen flows into the laboratory where flow control occurs.
Flow control is achieved using a Tescom 44-3200 series pressure regulator, controlled electroni-
cally from the feedback of two pressure transducers flowing hydrogen across a critical flow orifice.
The hydrogen then flows back outside the lab and into a three-stage heat exchanger. A long coil
bathed in liquid nitrogen will cool the hydrogen to around 80 K. The cold hydrogen then flows
through a counter-flow tube-in-tube heat exchanger where the hydrogen is further cooled to ap-
proximately 40 K using the cold helium gas. Finally, the cold hydrogen flows through a liquid
helium bath where it is cooled to the saturation temperature (which is dependent on the experi-
mental pressure, 32 K at 10 bar). This saturated hydrogen flows through a vacuum jacketed line
into the laboratory. A silicon diode temperature sensor and a pressure tap near the exit will be
used to monitor the exit gas conditions, and the hydrogen will be released in the lab through small
orifices, around 1 mm diameter.

Schematically, the flow system is shown in Fig. 2. In stage 1, the temperature of the coolant
(liquid nitrogen) can be considered a constant, and heat is extracted from the heat of vaporization
of the fluid. Mathematically,

Q1 =−
∫ TH2,1

300
ṁH2cp,H2dTH2 = hfg,N2ṁN2,

where Q is the heat flow, the hydrogen is assumed to be at 300 K initially, T is the temperature, ṁ
is the mass flow rate, cp is the heat capacity, and hfg is the heat of vaporization. For stage 2, the
heat balance can be written as

Q2 =−
∫ TH2,2

TH2,1

ṁH2cp,H2dTH2 =
∫ THe,exit

THe,sat

ṁHecp,HedTHe.

Stage 3 is similar to stage 1, and the heat balance can be written as

Q3 =−
∫ TH2,exit

TH2,2

ṁH2cp,H2dTH2 = hfg,HeṁHe.
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Figure 1. Sketch of the laboratory setup for the cryogenic hy-
drogen release experiments. Gaseous hydrogen is cooled in three
stages–first using liquid nitrogen followed by gaseous helium, and
finally by liquid helium.

Figure 2. Schematic diagram of flows for three-stage heat ex-
changer.
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Table 1. Normal (at atmospheric pressure) boiling and freezing
points for select substances.

gas boiling
point (K)

freezing
point (K)

oxygen 90.2 55
nitrogen 77.4 63
hydrogen 20.3 14
helium 4.2 N/A

Assuming a volumetric flow rate of 1000 SLPM hydrogen (or a mass flow rate of 1.5 g/s), using
CoolProp [1] to calculate the heat capacity (which is a slight function of temperature), assuming
that TH2,1 is 82.3 K (5 K above the liquid nitrogen saturation temperature) and TH2,exit is 31.4 K
(the saturation temperature), the first stage will exchange 4.3 kW of heat, and stages 2 and 3 will
transfer 1.0 kW of heat. The heat of vaporization for liquid nitrogen is 199.1 kJ/kg, therefore, the
utilization rate of liquid nitrogen will be 21.6 g/s, or 96 liquid liters/hr. The heat of vaporization
for liquid helium is 20.6 kJ/kg. Assuming that the coolant helium gas is heated to the temperature
of the liquid nitrogen by the end of stage 2 (77.3 K, or in other words, within 5 K of the hydrogen
inlet temperature to stage 2), the utilization rate of helium will be 2.5 g/s, or 71 liquid liters/hr.

Although this heat exchanger is designed for liquid helium coolant, liquid hydrogen could also
be used. In this case, the heat transfered will be equivalent in stages 2 and 3, but the utilization rate
of liquid hydrogen would be slightly less than for helium, requiring only 1 g/s, or 48 liquid liters/hr.
The availability and reduced safety concerns associated with liquid helium over liquid hydrogen
caused us to design for helium as the coolant. However, should the costs for liquid helium increase
significantly, or the availability be reduced, we can utilize liquid hydrogen in this heat exchanger.

As compared to the KIT design, the additional gas-gas stage 2 heat exchanger reduces the
utilization rate of the liquid coolant significantly. For a given flow rate of gaseous hydrogen, helium
utilization would be nearly 20 times greater without stage 2. If hydrogen were used as the coolant
for stages 2 and 3, the utilization rate would still increase, but only by 2.4 times the utilization rate
with stage 2. In addition, venting either helium or hydrogen at the low, saturation temperature that
will be the exhaust of stage 3 (and the coolant exhaust, should stage 2 not exist) could lead to air
freezing, since this exhaust would be below the freezing point of oxygen and nitrogen (see Table 1).
Even with the current design, air condensation to liquid is possible, which poses a safety concern
(albeit less than solidified air), since the boiling point of oxygen is higher than nitrogen, which
causes an oxygen enriched fluid to form. For this reason, the heat exchanger will be located outside
on inert concrete rather than asphalt, which can combust in an oxygen enriched environment. The
3-stage heat exchanger is also designed within a single vacuum insulated enclosure, with stage 3
located within stage 2, which is within stage 1. This minimizes the heat leakage and coolant waste
heat flow to the environment.

Figure 1 also includes a three-way solenoid valve that can switch the supply gas from hydrogen
to helium. This valve is included for safety reasons. Should hydrogen be detected by one of several
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flammable gas sensors in the laboratory, this solenoid valve will switch, flowing helium rather than
hydrogen through the heat exchanger, vacuum jacketed line, and nozzle. This will prevent the
back-flow and freezing of air in the cold lines under an alarm condition.

Within the laboratory, similar experiments as have been performed on high-pressure gaseous
hydrogen releases [5, 8–10] will be performed on these releases of cold hydrogen plumes. These
include schlieren imaging to observe density gradients, planar laser Rayleigh scattering imaging to
quantify hydrogen concentrations, and laser spark ignition to quantify the flammable boundaries
of these cold jets. The diagnostics are already in place in the laboratory, although there will be
additional challenges for quantifying the Rayleigh scattering images, associated with the combined
temperature and concentration gradients of these cold jets.
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3 Conclusion

The Office of Energy Efficiency and Renewable Energy, Fossil Energy, and the Office of Science
are working to lower the cost and energy use of the hydrogen delivery infrastructure. Results from
the cryogenic hydrogen experiments, made possible by the laboratory modifications described in
this report, will inform revisions to codes and standards associated with siting cryogenic hydro-
gen at fueling stations. This should enable cryogenic hydrogen to be located at more hydrogen
refueling sites, leading to lowered costs due to the economic benefits of cryogenic storage over
compressed gas storage. These codes and standards revisions will also help companies, such as
Linde, to build more refueling stations that store hydrogen as a liquid, their preferred and a more
economical approach. The science-based codes and standards revisions will allow consumers to
have a safe and positive experience refueling their hydrogen fuel cell vehicles.
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