SAND2015- 7121R

@ Sandia National Laboratories

Operated for the U.S. Department of Energy by
Sandia Corporation

Albuquerque, New Mexico 87185

date: August 24, 2015

to: Distribution
from: Dan Rohe, Org. 1522, MS-0557

subject: Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D
Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer

This memo describes two scripts that were written by the author to aid in setting up a
Polytec 3D Scanning Laser Doppler Vibrometer.

1 Introduction

Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler
Vibrometer for vibration measurement. This device has proven to be a very nice tool for
making vibration measurements, and has a number of advantages over traditional sensors
such as accelerometers. The non-contact nature of the laser vibrometer means there is no
mass loading due to measuring the response. Additionally, the laser scanning heads can
position the laser spot much more quickly and accurately than placing an accelerometer or
performing a roving hammer impact. The disadvantage of the system is that a significant
amount of time must be invested to align the lasers with each other and the part so that
the laser spots can be accurately positioned. The Polytec software includes a number of nice
tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec
software is readily extensible by programming macros for the system, so tedious portions of
the procedure can be made easier by automating the process.

The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to
run macros written in that programming language. The author, however, is much more
proficient in Python, and the latter also has a much larger set of libraries that can be used

\ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
) Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Exceptional Service in the National Interest

Distribution —2- August 24, 2015

to create very complex macros, while taking advantage of Python’s inherent readability and
maintainability.

2 Python and the Polytec System

The author knows very little about how the computer that shipped with the laser system
is configured in terms of system registry and drivers, so a conservative approach was taken
when selecting the Python distribution to install. Vanilla Python [1], available from www.
python.org has an installation procedure that modifies the system registry and changes
environment variables such as PATH. The author thinks it would be possible that registry
changes and environment variable could interfere with the behavior of the laser system.
Though unlikely, without knowing the details of how Polytec drives its lasers, it seems to be
not worth the risk, especially when better options are available.

2.1 WinPython

WinPython [2] is a Python distribution for Windows that includes the vanilla Python avail-
able from the Python website but also includes a number of other nice tools and libraries.
Additionally, WinPython does not ‘install’ itself on the computer, it simply unpacks into a
folder. Therefore it is much less likely! to cause issues by modifying system information.
Another advantage is it contains 64-bit libraries whereas other Python distributions only
carry 32-bit libraries.

WinPython comes with many tools that are helpful when programming in Python. It in-
cludes an integrated development environment (IDE) called Spyder that can be configured to
mirror the MATLAB graphical user interface (GUI) if the user desires. This may be helpful
in migrating to Python from MATLAB. WinPython also includes a special command prompt
that can be used to run Python scripts, called winPython Command Prompt.exe. Since WinPython
does not modify the operating system environment, Python is not on the system path and
therefore cannot be called from the command prompt by simply typing in python. To get
around this, WinPython includes this command prompt in which all of the paths are set cor-
rectly. These and a number of other tools are located in the main folder in which WinPython
was unpacked. The author suggests pinning Spyder.exe and WinPython Command Prompt.exe to
the start menu for easy access, as he uses these two tools most often.

2.2 Interfacing WinPython with the Polytec Software

The Polytec Acquisition software has a Component Object Model (COM) interface that can
be used to interact with the software using external tools. The win32com module included

!'Note that the author does not provide any warranty or guarantee that WinPython will not cause harm to
the computer or laser system. Polytec mentions in their manual that installing other software may disrupt
function of the laser and is not advised, therefore we are going slightly contrary to their instructions here.
Python is a programming language, and by using it improperly, a user can delete files, modify the system,
and do other harm to the operating system if not careful. As with any tool downloaded from the Internet,
one should perform the usual anti-virus scans to ensure the file is clean.

www.python.org
www.python.org

RN

— ® W o ~NO U A~ WN =

Distribution -3— August 24, 2015

in the WinPython distribution is designed to work with COM objects. To connect to the
Acquisition software, one must dispatch a win32com client to connect to the instance of the
Acquisition software. The Application object is the COM object that is used access data in
the Acquisition software. Code in Listing 1 can be used as an entry point to the Acquisition
application. The object hierarchy and available functions and data are documented in the
PSV Basic Engine Manual, which is found in the PSV folder in the start menu. The data
and options available are similar but not identical to those exposed through the Polytec File
Access Software interface [3].

Import the module

import win32com.client

Connect to the application

com_handle = win32com.client.Dispatch()

Get the application object

application_object = h.GetApplication(com_handle ,10000)

Query the application object for additional data and operations
acquisition_object = application_object.Acquisition
settings_object = application_object.Settings

Listing 1: Example code to access data in the Polytec Acquisition software via the
Application object.

With the interfaces exposed through the application object and its children, fairly com-
plex operations can be driven with Python, including toggling the laser beams on and off,
pointing and focusing the laser beams at locations, creating 2D and 3D alignments, creating
measurement points, and starting a scan.

3 2D Alignment Script

The script documented in this section is not necessarily specific to the Polytec software, as
it basically moves the mouse and clicks in a pattern. This script is useful when performing
a 2D alignment. It is presented in Appendix A in Listing 2.

Historically, the 2D alignment has been one of the most tedious and labor intensive parts
of setting up a scan with the laser. The operator had to move the lasers and click on the
laser spot on the camera image, mapping laser deflections to positions on the camera image.
For complicated or curved parts a large number of points was usually needed to get good
triangulation over the entire part.

With more recent versions of the software, much of the labor intensive nature of the 2D
alignment was alleviated; the software included a ‘laser spot finder’ which could automatically
detect the spot on the camera image. The user was still required to move the laser, however,
and this process remained tedious if a large number of points were required. The user may
move and click the mouse upwards of 100 times for each laser head. To the author, it
seemed that the Polytec software had solved the hard problem (detecting the laser spot) but
neglected the easy problem of moving and clicking the mouse. An initial idea was to just

Distribution 4 August 24, 2015

Figure 1: Results of the clicking script on Microsoft Paint. One can see the 20x15 grid of
points, which took only a small amount of time to place compared to the amount of time it
would require to click those positions manually.

move the mouse and click uniformly over a rectangular area, but this would be limiting for
angled parts such as a nose cone, where the projection is more triangular than rectangular.

The author took inspiration from finite elements for this script, and clicked in an area defined
by a quadrilateral, using the typical finite element shape functions to warp the clicks so they
were approximately parallel with the edges. With this implementation, most shapes could
be covered well, with the user filling in sections that were not covered by the script.

The script relies on an adequate 2D alignment already being in place (typically just the four
corners of the quadrilateral are sufficient) so laser position due to the click ends up being near
where the mouse was clicked. The user then specifies the four corners of the quadrilateral
and the script moves the mouse and clicks for the user. Functionality can be demonstrated
in any software that records clicks, such as Microsoft Paint, where clicks are recorded by
drawing points on the image, see Figure 1.

When using the clicking script in the Polytec Acquisition software, there is no feedback from
the software to the script. The script simply clicks and relies on the laser finder to find
the spot. If the laser finder has trouble finding the spot, that alignment point may not be
placed. This can occur if the surface is too dark or the camera is too far away. The author
has had improved laser spot finder performance when using the external camera rather than
the camera in the top laser. Note that the clicks are stored in a buffer, so the script may
outrun the laser spot finder if it struggles to find a point. The author has found that even if
the laser script outruns the laser finder, good results are still obtained. Figure 2 shows the
results on a conical test article where the clicking script was used two times.

One should be aware that the clicking script controls the mouse, and when the first click
lands in the Acquisition software window, the window that is running the script loses focus.
This makes it very difficult to stop the script once it has started. For this reason, the user
is queried whether or not they want to proceed before the script takes control of the mouse.

Distribution —5— August 24, 2015

Figure 2: Example of 2D clicking script providing a fine resolution of 2D alignment points.
The areas covered by the clicking script are shown outlined in red (two sections), and the
remaining points were filled in manually.

It gives a very optimistic? estimate of the time required to complete.

The script is located at D:\dprohe\Python\rectange_click_spread.py on the 3D SLDV computer
owned by Sandia National Laboratories Department 01522. To see the instructions for the
script, one should open the command prompt discussed in Section 2 and type in python D:\
dprohe\Python\rectangle_click_spread.py -h into the prompt. The -h flag stands for ‘help’, and
displays the help instructions. The instructions are reproduced below for completeness:

This script clicks in a quadrilateral pattern, given the four corners. To use this
script to automate 2D alignment in the PSV software,

Enter 2D alignment

Set Laser of interest (Ctrl+1 to Ctrl+3)

Create a rough initial alignment (four corners is minimum)

= W o

Ensure Automatic 2D alignment is activated with High Contrast Display
on.

5. Ensure the video of the PSV software is visible below the terminal window.

6. Run script.

2This estimate is the time that would be required if the laser spot finder found each spot instantaneously,
which does not happen. Even if all of the spots have not been found by this time, the user should still get
control of the mouse back after this time has elapsed.

Distribution —6— August 24, 2015

7. When the script queries for the corners, hover the mouse over the corner
when you press enter, DO NOT CLICK as it will remove focus from the
terminal window.

8. Use caution when starting the script. It is very difficult to stop once started
as it controls the mouse and the terminal window loses focus.

To Run: python D:\dprohe\Python\rectange_click_spread.py [-h] -x <x_interval> -y
<y_interval>

e -h: displays this help
e -x: sets the number of clicks along the horizontal axis

e -y: sets the number of clicks along the vertical axis

4 3D Alignment Script

3D alignment is very important when doing a 3D scan because it is what ensures that
the laser spots are collocated at a point on the test article. There are two approaches to
3D alignment. The first is performing the 3D alignment directly on the part using known
locations on the part. Errors in this alignment will result in errors in the relative positions
of the lasers, which will make the spots not be collocated. A second approach is to use the
reference object to do the 3D alignment and then transforming the coordinate system to the
part coordinate system. This is the approach considered here.

Generally a good 3D alignment can be achieved when using the reference object (on the
order of a few tenths of a millimeter). The goal is then to transform the coordinate system
of the reference object into the coordinate system of the part. This requires knowledge of
points on the part in both the reference coordinate system and the part coordinate system.
To get a point in the reference coordinate system, one would generally place a measurement
point and then go into the Modify 3D Coordinates... dialog box to position the laser at the
correct point. This dialog box is very powerful in that it can modify the 3D coordinates,
set the distance to the lasers, and initiate a video triangulation. The drawback, however, is
that it requires the mouse to interact with the dialog box. If the user is staring closely at
the test article to determine whether or not the laser spots are collocated, he or she may end
up repeatedly walking back and forth between the test article and the computer monitor to
make fine adjustments to the measurement point position, and this can be tedious and time
consuming. A better solution would be the user standing in front of the test article with
the keyboard in his or her hand, modifying the position of the coordinates as he or she is
looking at the part.

The 3D alignment script is meant to provide this functionality. The script positions the
lasers at (z,y,z) = (-150 mm, 150 mm, 0), which is the top left corner of the reference
object. The script then lets the user move the spot at which the lasers are pointing using
an intuitive set of keys on the keyboard. The user can modify how much the point moves
with each keypress, focus the lasers, and place a measurement point all without returning to

Distribution —7— August 24, 2015

Figure 3: Example of laser spots not yet collocated. The lasers are pointed at a point in
space in front of the part, so they appear as three separate spots on the surface behind the
point. A similar situation would occur if the point were behind the test article.

the monitor and mouse. These measurement points can then be used by the Polytec-written
Macro to transform coordinates.

The script is located at b:\dprohe\Python\drive_lasers_3D.py on the 3D SLDV computer owned
by Sandia National Laboratories Department 01522. It is also reproduced in Appendix B in
Listing 3. To see the instructions for the script, one should open the command prompt dis-
cussed in Section 2 and type in python D:\dprohe\Python\drive_lasers_3D.py -h into the prompt.
The -h flag stands for ‘help’, and displays the help instructions. The instructions are repro-
duced below for completeness:

This script moves the laser beam and places measurements points. It should be
run *AFTER* 3D alignment is performed on the reference object. It provides
more convenient keys to control the laser position in x,y,z space. The controls
are as follows (note: keypad keys require numlock ON as the 5 key is used):

e Num 4: decrease X coordinate
e Num 6: increase X coordinate
e Num 2: decrease Y coordinate
e Num &: increase Y coordinate
e Num 0: decrease Z coordinate

e Num 5: increase Z coordinate

Distribution —8— August 24, 2015

Figure 4: Animation of aligning laser spots with landmark on the test structure (JavaScript
must be enabled to play Animation, and it may be necessary to use Adobe Reader).

e Num .: report current laser location to the command prompt
e Num +: Increases distance the position moves with each key press
e Num -: Decreases distance the position moves with each key press

f: focus the laser beams

e Enter: Position a measurement point at the coordinates specified
e FEsc: Exits the script

Positioning of the measurement point on the video depends on the 2D alignment.

If an instance of the PSV acquisition software is not running, this script will start
one and the default settings will be loaded.

Note that if the initial alignment using the reference object is poor, the laser spots will not
be on top of one another at any point in space. If the user is having trouble getting all of
the spots on the part to be on top of one another, the user should consider improving this
initial alignment.

5 Conclusions

This memo documents two scripts written in Python that the author has used successfully to
improve the process of aligning the laser beams. The scripts are located at D:\dprohe\Python\
on the 3D SLDV computer owned by Sandia National Laboratories Department 01522, and
are also reported in the appendices.

Distribution -9- August 24, 2015

References

[1] “Python.” http://www.python.org/. Accessed: 2015-07-29.
2] “WinPython.” http://winpython.sourceforge.net/. Accessed: 2015-07-29.

[3] “Polytec file access software.” http://www.polytec.com/us/products/
vibration-sensors/vibrometer-software/polytec-file-access-software/. Ac-
cessed: 2015-01-29.

http://www.python.org/
http://winpython.sourceforge.net/
http://www.polytec.com/us/products/vibration-sensors/vibrometer-software/polytec-file-access-software/
http://www.polytec.com/us/products/vibration-sensors/vibrometer-software/polytec-file-access-software/

0 ~NOoO O wN =

DO OO OUTUIUITU U UIUITUIO U DDA DDRDEDEDAEDREDWWWWWWWWWWNRNRONNNONRNORNNND—= = = 2 0 o oo
RWON "0V RWN—_-"0OOIIOIRWN_-"00OOIINIARWN_"0OO®INURARWN="0OOIDDUHLH»WN=" ©

Distribution

A rectangle_click spread.py

—10—

-%- coding: utf-8 -x-

nnn

Created on Tue Apr 28 11:39:07 2015

Qauthor: dprohe

import win32api,win32con
import time

import sys

import getopt
click_delay = 0.01
release_delay = 0.1
move_delay = 0.1
x_interval = 10
y_interval = 10

help_string = 7'~
This script clicks
To use this script to automate 2D alignment
1. Enter 2D alignment

2. Set Laser of interest (Ctrl+1
3. Create a rough

4. Ensure Automatic 2D alignment

to Ctrl+3)

Display on.
5. Ensure the video of the PSV software is
window.

6. Run script.

7. When the script queries for the corners,
corner when you press enter,
from the terminal window.

8. Use caution when starting the script.
once started as

in a quadrilateral pattern,

initial alignment (four corners
is activated with High Contrast

DO NOT CLICK as

given the four corners.
in the PSV software,

is minimum)

visible below the terminal

hover the mouse over the
it will remove focus

It is very difficult to stop
it controls the mouse and the terminal

window loses

-x <x_interval> -y <y_interval>

focus.
To Run:
python "7 ’+__file__+’"7 [-h]
-h: displays this string
-x: sets the number of clicks along the horizontal axis
-y: sets the number of clicks along the vertical axis
try:

opts,args =
except getopt.GetoptError:
print(help_string)

for opt,arg in opts:

if opt == "-h’:
print(help_string)
sys.exit()

elif opt == ~-x':
x_interval = int(arg)

elif opt == ’"-y’:

y_interval = int(arg)
def click(x,y):
win32api.SetCursorPos ((x,y))
time.sleep(click_delay)

getopt.getopt(sys.argv[1:]1," " hx:y:")

win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN ,x,y,0,0)

time.sleep(release_delay)

August 24, 2015

65
66
67
68
69
70
Al
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97
98
99
100
101

102
103
104
105
106
107

108
109
110
11

Distribution ~11- August 24, 2015

win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP ,x,y,0,0)
time.sleep(move_delay)

raw_input()
top_left = win32api.GetCursorPos()

#top_left = (1139, 281)

print(top_left)

raw_input()
top_right = win32api.GetCursorPos ()

#top_right = (1669, 292)

print(top_right)

raw_input ()
bottom_left = win32api.GetCursorPos ()

#bottom_left = (1177, 747)

print(bottom_left)

raw_input ()
bottom_right = win32api.GetCursorPos ()

#bottom_right = (1697, 714)

print(bottom_right)

time.sleep (1)

= bottom_left

= [i-j for (i,j) in zip(bottom_right, bottom_left)]

[i-j for (i,Jj) in zip(top_left,bottom_left)]

= [k-1-(i+j) for (i,j,k,1) in zip(u,v,top_right, bottom_left)]

= < ©c O
"

def shape(xi,yi):
return (o[@]+ul@]*xi+v[@]*xyi+w[@]*xix*yi,
o[1]+ul1]*xi+v[1]*yi+w[1]*xi*yi)

if == raw_input(+str((click_delay+release_delay+move_delay)x*
x_interval*xy_interval)+)
points = []

put_points = []
for i,xi in enumerate([float(k)/(x_interval-1) for k in range(x_interval)l):
for j,yi in enumerate([float(k)/(y_interval-1) for k in range(y_interval)l):
if (i == @ and j == @) or (i == x_interval-1 and j == @) or (i == @ and j ==
y_interval-1) or (i == x_interval-1 and j == y_interval-1):
put_points.append([int(k) for k in shape(xi,yi)1)
click (x[int(k) for k in shape(xi,yi)l)
else:
points.append([int(k) for k in shape(xi,yi)])
while len(points) > 0:
sorted_points = [(sum([1/sum([(float(ppi)-float(pi))**2 for ppi,pi in zip(pp,p)]) for pp
in put_points]),index) for index,p in enumerate(points)]
min_index = min(sorted_points)[1]
pt = points.pop(min_index)
click (xpt)
put_points.append(pt)

Listing 2: Python script that clicks in a quadrilateral shape.

0 ~NOoO O wN =

DO U UUIU U U A BDDEDEDADRDDEDEDEWWWWWWWWWWRNNNONRNONRNNNDNNORNORN=S = = = 20 oo
RWON "0V RWN—_-"0OOIIOIRWN_-"00OOIINIARWN_"0OO®INURARWN="0OOIDDUHLH»WN=" ©

Distribution —12- August 24, 2015

B drive_lasers 3D.py

-%- coding: utf-8 -x-

nnn

Created on Tue Jun 30 12:38:02 2015

@author: Dan Rohe

nnn

instructions = '’

This script moves the laser beam and places measurements points.
It should be run *AFTER* 3D alignment is performed on the
reference object. It provides more convenient keys to control
the laser position in x,y,z space. The controls are as follows:

Note: Keypad keys require numlock ON as the 5 key is used

Num 4: decrease X coordinate

Num 6: increase X coordinate

Num 2: decrease Y coordinate

Num 8: increase Y coordinate

Num @: decrease Z coordinate

Num 5: increase Z coordinate

Num .: report current laser location to the command prompt

Num +: Increases distance the position moves with each key press
Num -: Decreases distance the position moves with each key press

f: focus the laser beams
Enter: Position a measurement point at the coordinates specified
Esc: Exits the script

Positioning of the measurement point on the video depends on the
2D alignment.

If an instance of the PSV acquisition software is not running,
this script will start one and the default settings will be
loaded.’’’

print(instructions)

speed_index = 7
speeds = [0.001,0.01,0.1,0.25,0.5,1.0,2.0,3.0,5.0,10.0,25.0,50.0] # mm

laser_position = [-150.0,150.0,0.0] # mm, starting laser position
import win32com.client

from msvcrt import getch

import os

import sys

if "-h’ in sys.argv:
sys.exit()

h = win32com.client.Dispatch(’'PSV.Acquisitioninstance’)
app = h.GetApplication(True,10000)

acq = app.Acquisition

settings = app.Settings
info = acq.Infos
alignments = info.alignments

scanhead_devices = info.ScanHeadDevicesInfo.ScanHeadDevices

65
66
67
68
69
70
Al

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129

Distribution —13— August 24, 2015

alignments3D = alignments.alignments3D

alignments2D = alignments.alignments2D
for i in range(alignments3D.count):
scanX,scanY,distance = alignments3D[i].Coord3DToScanner(laser_position[@]/1000,
laser_position[1]/1000, laser_position[2]/1000,0.0,0.0,0.0)
scanhead_devices[i]. ScanHeadControl.ScannerControl.SetBeamPosition(scanX, scanY)

save_location = os.environ[1+

while True:

displacement = speeds[speed_index]
key = ord(getch())
if key == 27: # Esc, exit
break
elif key == 48: # 0, Z-
laser_position[2] -= displacement
elif key == 53: # 5, Z+
laser_position[2] += displacement
elif key == 50: # 2, Y-
laser_position[1] -= displacement
elif key == 56: # 8, Y+
laser_position[1] += displacement
elif key == 52: # 4, 7-
laser_position[@] -= displacement
elif key == 54: # 6, Z+
laser_position[@] += displacement
elif key == 43: # +, speed up

speed_index += 1

if speed_index == len(speeds):

speed_index = len(speeds)-1
print(+str(speeds[speed_index])+)
elif key == 45: # -, slow down
speed_index -= 1

if speed_index < 0:
speed_index = @

print(t+str(speeds[speed_index])+)
elif key == 13: # enter, place measurement point
print(+str(laser_position))

According to the PSV examples, I need to save and rewrite it to add a
measurement point.

settings.Save(save_location)

h_fas = win32com.client.Dispatch()

h_fas.Readonly = @

h_fas.Open(save_location)

meas_point = h_fas.Infos.MeasPoints.Add()

vidx = @
vidy = @
for i in range(alignments3D.count):
mirror_x,mirror_y = scanhead_devices[i].ScanHeadControl.ScannerControl.
GetBeamPosition(0.0,0.0)
thisvidx,thisvidy = alignments2D[i].ScannerToVideo(mirror_x,mirror_y,0.0,0.0)

vidx += thisvidx/alignments3D.count
vidy += thisvidy/alignments3D.count
meas_point.SetVideoXY (vidx,vidy)
meas_point.SetCoordXYZ (*[1/100@0 for 1 in laser_positionl])
h_fas.Save ()
h_fas.Close ()
settings.Load(save_location,312+68)
os.remove (save_location)
elif key == 102: # F, focus
print()
for i in range(alignments3D.count):
info.Vibrometers[@].Controllers[i].SensorHeads[@].StartAutoFocus ()
elif key == 46: # ., report position

130
131
132
133
134

135

Distribution —14- August 24, 2015

print(+str(laser_position)+)
else:
continue
for i in range(alignments3D.count):
scanX,scanY,distance = alignments3D[i].Coord3DToScanner(laser_position[@]/1000,

laser_position[1]/1000, laser_position[2]/1000,0.0,0.0,0.0)
scanhead_devices[i]. ScanHeadControl.ScannerControl.SetBeamPosition(scanX, scanY)

Listing 3: Python script that drives the lasers and points them at a position in space.

Distribution —15- August 24, 2015

Internal Distribution:

MS-0557 Mike Arviso Org. 1522
MS-0557 Fred Bauer Org. 1522
MS-0557 David Epp Org. 1522

MS-0557 Anthony Gomez Org. 1522
MS-0557 Patrick Hunter ~ Org. 1522
MS-0557 Randy Mayes Org. 1522
MS-0557 Adam Moya Org. 1522
MS-0557 Ben Pacini Org. 1522
MS-0557 Robert Wauneka Org. 1522

External Distribution:

Andrew Jessop
Lawrence Livermore National Laboratory
jessopb@llnl.gov

David Macknelly
Atomic Weapons Establishment
David.Macknelly@awe.co.uk

	Introduction
	Python and the Polytec System
	WinPython
	Interfacing WinPython with the Polytec Software

	2D Alignment Script
	3D Alignment Script
	Conclusions
	References
	rectangle_click_spread.py
	drive_lasers_3D.py

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	anm0:

