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Abstract 
 

We report an uncertainty and sensitivity analysis for modeling AC energy from 
photovoltaic systems. Output from a PV system is predicted by a sequence of models. 
We quantify uncertainty in the output of each model using empirical distributions of 
each model’s residuals. We propagate uncertainty through the sequence of models by 
sampling these distributions to obtain an empirical distribution of a PV system’s 
output. We consider models that: (1) translate measured global horizontal, direct and 
global diffuse irradiance to plane-of-array irradiance; (2) estimate effective 
irradiance; (3) predict cell temperature; (4) estimate DC voltage, current and power; 
(5) reduce DC power for losses due to inefficient maximum power point tracking or 
mismatch among modules; and (6) convert DC to AC power. Our analysis considers a 
notional PV system comprising an array of FirstSolar FS-387 modules and a 250 kW 
AC inverter; we use measured irradiance and weather at Albuquerque, NM. 
 
We found the uncertainty in PV system output to be relatively small, on the order of 
1% for daily energy. We found that uncertainty in the models for POA irradiance and 
effective irradiance to be the dominant contributors to uncertainty in predicted daily 
energy. Our analysis indicates that efforts to reduce the uncertainty in PV system 
output predictions may yield the greatest improvements by focusing on the POA and 
effective irradiance models.  
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1. INTRODUCTION 
 
As the photovoltaic (PV) industry continues to mature and incentives are reduced, investment in 
PV increasingly depends on the confidence that can be placed in predictions of the energy yield. 
Predicting energy yield requires use of a sequence of models, e.g., to translate measured 
irradiance to the system’s plane-of-array, to estimate cell temperature, and to predict DC power 
for given conditions. Uncertainty in these models and their inputs arises from a variety of 
sources, including measurement errors, inexact model specification, and from the necessarily 
finite data used to calibrate models. In aggregate, these uncertainties contribute to uncertainty in 
predicted energy yield. Therefore, to understand what confidence can be placed in energy yield 
predictions, to identify how to improve model accuracy and to reduce prediction uncertainty, we 
must quantify the uncertainty introduced by each model and the effect of each model’s 
uncertainty on energy yield predictions. 
 
This report builds upon earlier work [1] which developed a methodology to quantify uncertainty 
in PV system output predictions and applied the methodology to PV systems comprising a single 
module. Here, we extend the analysis in [1] by considering additional steps in the modeling 
process: specifically, we improve the uncertainty characterization for the models for effective 
irradiance, and we address uncertainty in models involved in the translation of DC output from a 
module to AC power. As noted in Section 5 our findings in this analysis are consistent with those 
reported in [1]. Here we also present the methods for uncertainty quantification and consequently 
this report may be viewed as superseding the earlier work. 
 
Other analyses of uncertainty in module or system performance have centered on the effects of 
measurement uncertainties, or on calibration of models to data assumed to be exact. For 
example, a detailed investigation of module performance uncertainties under natural sunlight 
including correction for irradiance and temperature was given by Whitfield et al. [2]. The 
methodology was based on the analytical propagation of respective uncertainties in two 
dimensions using the Guide to the Expression of Uncertainty in Measurement (GUM) [3]. This 
methodology was used and expanded for long-term outdoor IV measurements for data of 
Northern latitude [4]. Dirnberger and Kraling [5] provide a detailed analysis of uncertainty 
deriving from indoor measurements to determine module rating at standard test conditions 
(STC). Müller et al. [6] compared measured and predicted performance of operating PV power 
plants over several years to quantify the uncertainty in predicted annual yield; they identified the 
solar resource and power reduction due to module degradation and/or soiling as the primary 
causes of differences between predicted and measured output. Hansen et al. [7] examined the 
influence of uncertainty in calibrated parameters on performance predictions, where the data 
used for calibration was assumed to be error-free.  
 
Our report is organized as follows: 

− Section 2 describes the methodology we employ to quantify uncertainty in each modeling 
step, and identifies the models we considered; 

− Section 3 describes and illustrates the uncertainty quantification for each modeling step; 
− Section 4 presents the results of the uncertainty analysis, i.e., the distribution of results 

predicted by propagating uncertainty through each modeling step; 
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− Section 5 summarizes the results of the sensitivity analysis, relating the uncertainty 
associated to each modeling step to the uncertainty observed in the predicted system 
output. 
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2. METHODOLOGY 

 
 
Here we describe the approach taken to quantify uncertainty in PV system modeling. We outline 
the conceptual approach to our uncertainty analysis in Section 2.1. In Section 2.2, we describe 
the process of PV system modeling and identify the scenarios selected for analysis. We then 
outline the methods used to quantify uncertainty at each modeling step in Section 2.3. 
 
 
2.1. Conceptual Approach to Uncertainty Analysis 
 
Uncertainty analysis is a systematic process to propagate uncertainty in a model or its inputs to 
uncertainty in the model’s output. An uncertainty analysis involves two primary steps: 
quantification and propagation. First, we quantify uncertainty in a model and in the model’s 
inputs. Here we use probability distributions to quantify uncertainty, noting that other 
expressions of uncertainty are available [8]. Second, we propagate uncertainty to a model’s 
output through a set of model calculations using a Monte Carlo technique to sample distributions 
for uncertainty. 
 
In concept, uncertainty can be categorized as either parameter uncertainty or model uncertainty. 
Parameter uncertainty refers to uncertainty in a particular model input, whereas model 
uncertainty refers to lack of knowledge regarding the model itself. In practice, these two 
categories tend to overlap, for example, a model for extraterrestrial irradiance may consist of a 
single, constant (but uncertain) value, or may comprise an equation involving several parameters 
that accounts for observed systematic variation in extraterrestrial irradiance over time.  
 
In our analysis, we explicitly address model uncertainty by considering several credible 
alternative models, when such models are available. However, we do not represent parameter 
uncertainty in the traditional manner, which would be to specify a distribution of possible values 
for each individual parameter. Instead, we adopt an approach where we characterize the 
uncertainty in a model’s output by quantifying the distribution of each model’s residual, i.e., the 
difference between the model’s prediction and the true value. This method of representing 
uncertainty in a model’s residuals effectively aggregates the uncertainty resulting from all of the 
model’s parameters into a single quantity. 
 
We adopt this approach because nearly all models involved in estimating PV system output are 
calibrated, i.e., their parameter values are determined by fitting the model’s equations to data 
that are considered representative. When a parameter is determined by fitting an equation to a set 
of data, uncertainty in the parameter arises from a number of sources, including uncertainty in 
the data used for the fitting, model uncertainty in the equation used, and numerical error arising 
from the finite sample of data and the fitting procedure. Moreover, when the parameter is jointly 
determined with other parameters, uncertainty in each parameter is likely correlated with 
uncertainty in all other parameters determined in the same fitting procedure. These factors 
complicate the effort to separately describe uncertainty in each fitted parameter. 
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2.2. PV System Modeling 
 
The process of modeling DC power output from a PV system involves nine notional steps, as 
illustrated in Figure 1. Uncertainty in the outcome of each step may arise from uncertainty in the 
models employed or from the parameters required by those models. For example, Step 2, 
“Incident Irradiance,” estimates plane-of-array irradiance (POA) from typical irradiance 
measurements (global horizontal irradiance (GHI), direct normal irradiance (DNI), and/or diffuse 
horizontal irradiance (DHI)). This translation involves a choice from among a number of models 
for sky diffuse irradiance, e.g., the isotropic sky diffuse model [9] or Hay and Davies’ diffuse 
model [10]. 
 
 

 
Figure 1. PV System Modeling Process 

 
 
Figure 2 indicates the sequence of models considered in the quantification of uncertainty for PV 
system modeling in this analysis. Most, but not all modeling steps are addressed in the 
uncertainty quantification illustrated by Figure 2. We intentionally did not consider uncertainty 
represented by the models and measurements in Step 1, because that uncertainty is dominated by 
uncertainty in measured irradiance which will directly (and proportionally) affect predicted 
power. There are several ongoing research programs to better understand and improve 
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measurement uncertainty. Our focus is to understand the relative contribution of all other 
modeling steps. 
 

 
Figure 2. Sequence of Models Considered in Uncertainty Quantification. 

 
 
To quantify uncertainty in the outcome of any particular modeling step, we needed concurrent 
measurements of model inputs and outputs with sufficient resolution and/or quality to have 
confidence that the data would fairly represent the uncertainty present. Except for soiling rates 
(part of Step 3), we found data for each of the steps indicated by Figure 2.  
 
Following the approach of the previous study [1], we characterize the uncertainty of each 
modeling step using measurements of inputs and outputs of that step. We then use measured 
irradiance (GHI, DNI, and DHI) and weather (ambient temperature and wind speed) data and the 
uncertainty characterizations to propagate uncertainty through the sequence of models to get an 
estimate of uncertainty in the overall modeling chain. Finally, we perform sensitivity analyses to 
identify which modeling steps contribute most to the overall uncertainty. In contrast to the 
previous study, which considered multiple locations and solar module technologies, here we 
consider only a single scenario: a notional fixed-tilt PV system comprising an array of 2,493 
First Solar 387 CdTe modules connected in 277 parallel strings (9 modules per string) to a 250 
kW SMA SC250U inverter.  
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Except the POA irradiance models, all models for Steps 2 through 5 illustrated in Figure 2 
require component-specific coefficients, many of which we determine from measurements made 
in Albuquerque, NM. In the uncertainty propagation, we use solar and weather measurements 
collected during 2013 and 2014, also at Albuquerque, NM. Because our analysis focuses on the 
relative influence of various uncertainties on the overall uncertainty in the modeling chain, rather 
than on the absolute values of the modeling outcomes, we do not believe that our use of site-
specific data greatly affects our study’s conclusions. 
 
2.3. Experimental Set-up 
 
Multiple experiments were performed in order to collect the data necessary for this study. Where 
possible, the experiments were conducted concurrently.  
  
In order to characterize the uncertainty in the plane-of-array irradiance ( POAG , or POA) model, 
solar irradiance measurements were collected at Sandia National Laboratories’ Photovoltaic 
Systems Evaluation Laboratory (PSEL) in Albuquerque, NM between October 2013 and 
September 2014. GHI was measured with a Kipp and Zonen CM11 pyranometer, DNI was 
measured with a CHP-1 pyrheliometer, and a shaded Epply PSP pyranometer was used to 
measure DHI. POA for a southward-facing surface tilted 35.05° from horizontal was measured 
using an additional Epply PSP pyranometer installed at the same orientation. Data from these 
instruments were captured at 3-second time intervals and time-stamped with a GPS time 
reference. The 3-second data were subsequently time-averaged to produce one-minute samples 
with sample times matching those of the PV data described below. Together with ambient air 
temperature and wind speed collected concurrently at the PSEL, these measurements of GHI, 
DNI, DHI, and POA also provided the data inputs for the uncertainty propagation phase of the 
study. 
 
To characterize the uncertainty in the model for effective irradiance (the amount of solar energy 
available to be converted by the solar module), a First Solar FS-390 module was installed at the 
PSEL facing south with a tilt of 35.05° (the latitude of the PSEL). Automatic data loggers 
captured short-circuit current from the First Solar module, along with back-surface temperature 
measured with thermocouples at approximately 30 second intervals, time-stamped with a GPS 
time reference. The 30-second data were time-averaged to produce one-minute samples.  
 
We attempted to characterize uncertainty in soiling at the PSEL by simultaneously measuring 
output from two FS-390 modules, one of which was cleaned daily and the other left to 
accumulate soiling naturally. However, the soiling rates at the PSEL are low enough that any 
systematic effects from soiling were obscured by daily variation in effective irradiance and by 
noise inherent in measuring module short-circuit current. Consequently, we only use data from 
the clean FS-390 module and examine the effect of soiling rates parametrically. 
 
Module-specific parameters for FS-390 modules were obtained at the PSEL using a separate 
module mounted on a two-axis tracker. These parameters include reflection and spectral 
mismatch losses expressed in the effective irradiance model, as well as temperature coefficients 
and electrical performance parameters used in Steps 4 and 5 of Figure 2. All these parameters 
were estimated from measured I-V curves recorded from the module under a wide range of 
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illumination and environmental conditions achieved by positioning the module with the tracker. 
The characterization tests and parameter estimation methods are summarized in [7].  
 
To estimate power losses due to module mismatch and MPPT tracking inaccuracies (Steps 6 and 
7 of Figure 2), we monitored operating voltage and DC power for an array of 48 First Solar FS-
387 modules connected to a Fronius IG-TS 5.0 inverter in four parallel strings of 12 modules 
each. We placed an additional single FS-387 module adjacent to the array so that it would be 
under the same illumination conditions as the array, and recorded I-V curves of this reference 
module at regular intervals. As described in Step 5 of the following section and Section 3.6, 
these data provide the basis for a new model for the aggregate power loss due to module 
mismatch and MPPT tracking inefficiencies. 
 
2.4. Methods for Uncertainty Quantification 
 
Let ( )f̂ x p  represent a model f̂  applied to inputs x  with a fixed set of parameter values p . 

Denote the true value at x by ( )f x ; then the residual is given by  
 
 ( ) ( ) ( )ˆ

f x p f x p f xε = −  (1) 
 
We regard ( )f x pε  as a random variable and develop distributions for ( )f x pε  for each 

selected model f̂  using the representative data. 
 
The distribution for ( )f x pε  characterizes the aggregate uncertainty in the model f̂  and the 

inputs x  conditional on the parameters p. Different distributions for ( )f x pε  can result when 
the parameters p are varied. Because parameters are generally obtained by calibration of a model 
to data, for a given set of data there are ‘best’ values for these parameters, but other values may 
arise from different data sets. Thus parameter variation can arise from alternate data sets, which 
in turn results if the analysis is done using measurements from a different location or time of 
year. 
 
Parameter values used here are those regarded as default values for each model. We did not 
attempt to quantify uncertainty in the parameters by finding alternate data sources and 
recalibrating models to obtain alternate parameter values. 
 
As indicated in Figure 2, calculation of AC power from a PV-based system involves a sequence 
of models. At each step in the process, uncertainty is quantified for the models used in that step. 
Results (with uncertainty) from each step are then used as input to the next step. 
 
 
Step 1: Estimation of POA irradiance 
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Plane-of-array (POA) irradiance POAG  is defined as the total broadband irradiance incident on 
the face of a module. It is typically represented as the sum of beam and diffuse components, bE  
and diffE , respectively: 
 
 POA b diffG E E= + .  (2) 
 
In turn, the diffuse component is expressed as the sum of ground-reflected diffuse irradiance 

,diff gE and diffuse irradiance from the sky, ,diff skyE : 
 
 , ,diff diff g diff skyE E E= + .  (3) 
 
For reasons presented later, uncertainty in estimating POA irradiance arises from uncertainties in 
models for ,diff skyE . Thus, we estimate POA irradiance using a model for the sky diffuse 

component ŝkyf  that operates on GHI, DNI and DHI: 
 
  ( ) ( ) ( ) ( )( ),

ˆ , ,POA b diff g sky POAG t E E f GHI t DNI t DHI t p= + +  (4) 
 
We consider the following models for ŝkyf : isotropic sky diffuse [9]; Sandia simple sky diffuse 

[11], Hay and Davies [9]; and Perez [12]. Expressions for P̂OAf  can be complex and are found in 
the listed references, along with each model’s parameter values. 
 
For POA irradiance models, the residual ( )POA POAt pδ  is expressed a fraction of the measured 

POA irradiance, denoted by ( )POA t : 
 

 ( )
 ( ) ( )

( )
POA POA

POA POA
POA

G t G t
t p

G t
δ

−
=  (5) 

 
We expressed the residual as a fraction because it allowed for a simpler detrending of the 
residuals as functions of the solar angle of incidence (AOI) (see Section 3.1 for details).  
 
Analysis of POA residuals revealed systematic trends in ( )POA POAt pδ  that changed with time of 
day, season, location and POA irradiance model (see Section 3.1). To facilitate random sampling 
from these results, we fit empirical expressions ( )POA POAy t p  to the residuals to separate trends 
from random effects: 
 
 ( ) ( ) ( )POA POA POA POA POA POAt p y t p t pδ ε= +  (6) 
 
Illustrative results are provided in Section 3.1 for each POA irradiance model. 
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Step 2: Estimation of effective irradiance 
 
Effective irradiance eE  represents the irradiance converted to electrical current within the 
module. eE  differs from POAG  due to several mechanisms: optical losses at the module’s face 
(primarily specular reflection); mismatch between the solar spectrum and the module’s quantum 
efficiency; losses due to shading and soiling; and parasitic losses due to electrical resistance 
internal to the module. Models are available to separately quantify reflection losses and spectral 
mismatch. Parasitic losses are normally implicitly included in the module performance model 
(see Step 4). Here, we explicitly consider uncertainty in spectral mismatch. Although uncertainty 
exists regarding models for reflection losses we judge that uncertainty in reflection loss models is 
small compared to uncertainty in spectral mismatch models. We attempted without success to 
locate and analyze data describing soiling losses. We do not consider shading losses in this 
analysis because such losses are highly dependent on local features and on a PV system’s 
configuration. Thus, all uncertainty represented for the effective irradiance model is attributed to 
the spectral mismatch terms. 
 
The effective irradiance is modeled using an empirical expression common to many module 
performance models (e.g., [13], [14]): 
 
  ( ) ( )( ) ( )( )1 2

ˆ ˆ, ( ) ( )e E E E E b diffE t p q f AM t p f AOI t q E t E t SF = +   (7) 

 
where diffE  represents the diffuse irradiance incident on the solar module, including circumsolar, 

sky and ground-reflected diffuse irradiance. The functions 1̂f  and 2̂f  model spectral mismatch 
and reflection losses, respectively. The scalar multiplier SF  represents the losses due to soiling 
on the face of the solar module, with a value of 1.0 corresponding to a clean module.  
 
Consistent with the approach of [13] and [14], the spectral mismatch function, ( )( )1̂ Ef AM t p , 
is modeled here as a fourth-order polynomial: 
 
 4 3 2

1 ,4 ,3 ,2 ,1 ,0
ˆ ( ( ) | ) ( ) ( ) ( ) ( )E E E E E Ef AM t p p AM t p AM t p AM t p AM t p= + + + + ,  (8) 

 
where AM  is the absolute air mass calculated from solar position and site altitude using tools 
coded in the PV_Lib toolbox [11]. Solar position (i.e., zenith Z  and azimuth Az , both measured 
in degrees) is computed using a legacy algorithm originating with G. Hughes [15]. Relative air 
mass AMr  is calculated from the zenith angle using the empirical model described in [16]: 
 

 
( ) ( )( ) 1.6364

1
cos 0.50572 6.07995 90

AMr
Z Z

−=
+ × + −

 (9) 

 
Finally, using site pressure P  (Pa) estimated from site elevation H  (m) by [17] 
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1 0.190263244331.514100

11880.516
HP − = × 

 
, (10) 

 
absolute air mass AM  is obtained as 
 

 
101325

PAM AMr= × . (11) 

 
With absolute air mass determined for a set of measurement conditions, the parameter vector Ep  
for a given module is determined by fitting the expression in Eq. (8) to the measured short-circuit 
current of the module [7]. No uncertainty is ascribed to the models represented by the 
calculations in Eqs. (9) through (11). 
 
Reflection losses are quantified by calculating the complement, i.e., the fraction 2f  of direct 
irradiance that is captured by the module. The factor 2f  is modeled as a polynomial function of 
the angle of incidence AOI : 
 

5 4 3 2
2 ,5 ,4 ,3 ,2 ,1 ,0

ˆ ( ( ) | ) ( ) ( ) ( ) ( ) ( )E E E E E E Ef AOI t q q AOI t q AOI t q AOI t q AOI t q AOI t q= + + + + + .  (12) 
 
Given solar position (azimuth and zenith as defined above) and module orientation (azimuth 

AAz  and tilt Tθ ), AOI is determined by geometry: 
 
 1cos [cos( ) cos( ) sin( )sin( ) cos( )]T T AAOI Z Z Az Azθ θ−= + −   (13) 
 
Because reflections are generally specular in nature, 2̂f  is applied only to the beam component 
of the incident irradiance. The parameter vector Eq  is determined by fitting the expression in Eq. 
(12) using measurements of short-circuit current taken over a suitable range of module-sun 
geometries obtained using a two-axis tracker (see [18] for details). In our analysis we regard the 
effect on uncertainty in eE  due to uncertainty in 2̂f  as small in comparison with the effect of 

uncertainty in 1̂f . Alternatives to Eq. (12) are available (e.g., [19], [14]). 
 
Effective irradiance is not measured directly. Rather, effective irradiance is calculated from 
measured short-circuit current SCI  and cell temperature CT  [13]: 
 

 
( )( )0 1 25

SC

SC Isc C

IE
I Tα

=
+ −

, (14) 

 
where Iscα  is the pre-determined value for the temperature coefficient of SCI  and 0SCI  is the pre-
determined value for SCI  at standard test conditions (STC), i.e., broadband POA irradiance of 
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1000 W/m2 and cell temperature of 25°C. For the modules in our experiments, Iscα  and 0SCI  
were estimated from testing of a similar model at Sandia National Laboratories using techniques 
described in [7]. In computing effective irradiance, we estimated the cell temperature CT  from 
the module back-plane temperature measurements using Eq. (17). 
 
As with POA irradiance we quantified the residual for effective irradiance as the relative 
difference between modeled values ( )ˆ ,E EE t p q  calculated from measured irradiance and 

measured values ( )E t  obtained from corresponding short-circuit current measurements: 
 

 ( )
 ( ) ( )

( )
,

, E E
E E E

E t p q E t
t p q

E t
δ

−
=  (15) 

 
Analysis of these residuals revealed systematic trends in ),|( EEE qptδ  that changed with season, 
time of day, and sky condition (clear vs. cloudy). To facilitate random sampling from these 
results, we fit empirical expressions ( )E Ey t p to the residuals to separate trends from random 
effects:  
 
 ( ) ( ) ( )| , | , | ,E E E E E E E E Et p q y t p q t p qδ ε= +   (16) 
 
Illustrative results for the residuals are shown in Section 3.2. 
 
 
Step 3: Estimation of cell temperature 
 
We model cell temperature ( )CT t  using the empirical approach proposed by [13]. Cell 

temperature is modeled by adding to module back surface temperature ( )MT t  a temperature 
difference that is proportional to POA irradiance POAG : 
 

 ( ) ( ) ( )
21000 W/m

POA
C M

G t
T t T t T= + ∆ . (17) 

 
( )MT t  is modeled as a function of ambient temperature ( )ambT t  and wind speed ( )WS t : 

 
 ( ) ( ) ( )( ) ( )expM POA ambT t G t a bWS t T t= + + . (18) 
 
Combining Eq. (17) and Eq. (18) obtains a model for cell temperature: 
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 ( )  ( ) ( ) ( )( )
 ( ) ( )( ) ( )

 ( )
2

ˆ , ,

exp
1000 W/m

POAC TC TC amb TC

POA
POA amb

T t p f G t T t WS t p

G t
G t a bWS t T t T

=

= + + + ∆
 (19) 

 
The parameter vector ( ), ,TCp a b T= ∆  is determined by fitting the expression in Eq. (19) to 
module temperatures measured over a range of irradiance, air temperature and wind conditions. 
 
Cell temperature CT  is not measured directly. Instead, CT  can be calculated from measured short-
circuit current and open-circuit voltage using a technique similar to [20]. The residual for cell 
temperature is quantified by the difference between modeled values  ( )CT t  and values ( )CT t  
calculated from IV curve measurements for a module of the same model: 
 
 ( )  ( ) ( )TC TC C TC Ct p T t p T tε = −  (20) 
 
Illustrative results are provided in Section 3.3. 
 
 
Step 4: Calculation of DC power 
 
We obtain DC power ( )D̂CP t  by separately predicting DC voltage ( )D̂CV t  and current ( )ˆ

DCI t  

from the PV modules by using the Sandia Array Performance Model (SAPM) D̂Cf  [13]: 
 
 ( ) ( )  ( )  ( )( ) ( ) ( )ˆˆ ˆ, , ,DC DC DC DC DC C DC VDC DC IDC DCV t p I t p f E t T t p t p t pε ε   = +     (21) 

 
In Eq. (21) the residuals ( )VDC DCt pε  and ( )IDC DCt pε  represent the residuals for DC voltage 

( )D̂CV t  and current ( )ˆ
DCI t , respectively. Module DC power (with uncertainty) is then 

determined by multiplying: 
 
 ( ) ( ) ( )ˆ ˆ ˆ

DC DC DC DC DC DCP t p V t p I t p= ×  (22) 
 
The parameter vector DCp  contains 13 module-specific values that are determined from IV curve 
measurements during a sequence of performance tests [7]. 
 
The residuals ( )VDC DCt pε  and ( )IDC DCt pε  are quantified by comparing modeled values with 
measured I-V curves. Illustrative results are provided in Section 3.4. 
 
Step 5: Estimation of array DC loss 
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With the estimate of module output power given illumination and temperature conditions, we 
now consider an array of similar modules connected to a DC-to-AC inverter in PN  parallel 
strings, each with SN  series modules. Ideally, maximum power from such an array is generated 
by operating each module at its maximum power point, i.e., the voltage at which the module 
produces maximum power output. Hence, array performance models (e.g., [13]) typically use 
effective irradiance and cell temperature to estimate the maximum power point of a single 
representative module and then assume that every module in the array can be operated identically 
so that the array output can be computed by multiplying the representative module’s output: 
 
 [ ] [ ]( ) ( ) ( ) ( )array s DC P DC P s DCP t N V t N I t N N P t= × = . (23) 
 
This approach generally overestimates the amount of DC power an actual array will produce for 
two reasons: first, differences between modules in a string prevent operating all models at their 
individual maximum power points, and second, even if all the modules in an array were 
identical, modern control systems cannot perfectly maintain the maximum power point at each 
instant. Power decreases due to these two mechanisms are referred to as mismatch and maximum 
power point tracking (MPPT) losses, respectively. 
 
Mismatch loss arises from the fact that the modules in an array are not identical. Some 
differences between modules are systemic, such as variations in module current or voltage due to 
manufacturing or in operating conditions due to a module’s installation. For example, the 
location of a module in an array may affect its operating temperature. Other variations are 
ephemeral, such as non-uniform illumination across an array due to passing clouds or differences 
in temperature due to changing air currents. Because of these variations, each module will have a 
slightly different maximum power point at each instant in time. However, the DC current in a 
string must be the same for each module causing individual modules to vary from their 
maximum power points. Consequently the string will produce less than the maximum DC power 
that would be predicted by the array performance model. 
 
MPPT loss arises from the inability of control systems in modern inverters to precisely and 
instantly find the operating voltage that will yield maximum power output from the array. In 
practice, the control system adjusts the string voltage by set increments and at fixed time 
intervals based on present and previous measurements of array output. Imprecise or delayed 
adjustments to string voltages result in the array delivering to the inverter less than the maximum 
DC power that would be predicted by array performance model.  
 
While these two loss mechanisms are reasonably well-understood, few widely-accepted models 
exist for accurately estimating these losses. Analyses have shown that the string mismatch losses 
are typically quite small even when the modules comprising the string have substantial 
differences (e.g., [21]). MPPT losses are dependent on the tracking algorithm in use but are also 
small in magnitude ([22], [23]) and are acknowledged as difficult to measure precisely [24]. 
 
Rather than attempt to separately quantify the uncertainty in a string mismatch loss model and an 
MPPT loss model, we construct a data-driven model of the aggregate of these two losses which 
we term array DC loss, and quantify the uncertainty in this aggregate model. Given a non-



22 

uniform array driven at a sub-optimal control voltage, we define effective module power, 
( ),DC effP t , as the power delivered to the inverter by the ‘average’ module, i.e., a module 

considered representative of the modules comprising the array. Denoting the maximum power 
this module could produce as ( )DCP t , we write ( ),DC effP t  as  
 
 ( ) ( ) ( ),DC eff DCP t P t P t= −D , (24) 
 
where ( )P t∆  represents the DC power loss per module due to string mismatch and MPPT 
inefficiency. Based on experimental results described in Section 3.5, we use a constant value of 

( )P t∆  for each day, which we select depending on the variability of the day’s irradiance. 
 
We use the model described above to estimate DC output power from an array as  
 
 ( ) ( )( )ˆ ˆ ( )array P S DCP t N N P t P t= −D   (25) 

 
where ( )D̂CP t  is obtained from Eq. (22). Uncertainty in ( )ârrayP t  arises from uncertainty in 

( )P t∆ , which is characterized by comparing the maximum power of a reference module with the 
power output of an array driven by a maximum power point tracking algorithm. Illustrative 
results are shown in Section 3.5. 
 
Step 6: Estimation of AC power 
 
A final loss mechanism considered is the imperfect efficiency of the inverter. Some of the DC 
power that is provided to an inverter is lost in the conversion to AC power. Much of this lost 
power is converted to heat by the physical mechanisms involved in the conversion process. We 
model inverter output AC power ( )ACP t  as  
 
 ( ) ( )( )ˆˆ |AC inv DC invP t f P t p= ,  (26) 
 
where ( )( )ˆ |inv DC invf P t p  represents the generally-used model proposed in [25]: 
 

 ( )( ) ( )( ) ( )( )20ˆ | AC
inv DC inv DC DC

P Cf P t p P t B C P t B
A B

−
= − + −

−
 . (27) 

 
In this model, 0ACP  represents the maximum ac-power “rating” for the inverter at reference or 
nominal operating conditions. The intermediate variables A, B, and C are defined in terms of the 
operating voltage ( )DCV t  and several other parameters: 
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( )( )
( )( )
( )( )

0 1 0

0 2 0

0 3 0

1

1

1

DC DC DC

s DC DC

DC DC

A P C V t V

B P C V t V

C C C V t V

 = + ⋅ − 
 = + ⋅ − 
 = + ⋅ − 

 (28) 

 
The parameter vector ( )0 0 0 0 0 1 2 3, , , , , , ,inv AC DC DC sp P P V P C C C C=  is determined by fitting the 
expression in Equations (27) and (28) to inverter output power measured over a range of input 
power and voltage conditions, as specified, for example, in a test protocol jointly developed by 
Sandia National Laboratories and BEW and promulgated by the California Energy Commission 
(CEC)  [26]. 
 
Because the inverter tests are replicated a number of times (10 is typical) the parameter vector 

invp  is regarded as uncertain. A set of parameter vectors { }, 1, ,inv kp k N=   is obtained by fitting 
the model indicated in Eq. (27) and Eq. (28) to the measurements for each individual test. 
Uncertainty in ( )( ),

ˆ |inv DC eff invf P t p  is thus quantified by elements of { }, 1, ,inv kp k N=  . 
Illustrative results are shown in Section 3.6. 
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3. QUANTIFYING UNCERTAINTY 
 
 
Here we describe the quantification of uncertainty for each modeling step: POA irradiance 
(Section 3.1), effective irradiance (Section 3.2), cell temperature (Section 3.3), DC power 
(Section 3.4), array DC loss (Section 3.5), and DC-to-AC conversion (Section 3.6). 
 
 
3.1. POA Irradiance 
 
As noted earlier, estimating POA irradiance from GHI, DNI and DHI requires estimating the 
beam and diffuse components: 
 
 POA b diffG E E= +  (29) 
 
Beam irradiance bE  is determined from DNI by accounting for the sun’s angle of incidence 
AOI  on the module: 
 
 ( )cosbE DNI AOI= ×  (30) 
 
Angle of incidence AOI  is computed using the module’s assumed fixed orientation (latitude tilt 
and 180° azimuth) and the sun position computed using a legacy algorithm originating with  
G. Hughes [15], which has sufficiently high accuracy that we did not consider uncertainty in 
AOI . 
 
The diffuse component is divided into ground reflected irradiance ,diff gE  and sky diffuse 
irradiance ,diff skyE : 
 
 , ,diff diff g diff skyE E E= +  (31) 
 
Ground reflected irradiance ,diff gE  is estimated using an uncertain value for ground albedo a : 
 

 ( )
,

1 cos
2diff g

A
E GHI a

−
= × ×  (32) 

 
where A  is the tilt angle of the module towards the equator (assumed constant and precisely 
known). The model for ,diff gE  in Eq. (32) assumes horizontal surrounding terrain and isotropic 
reflection of GHI from the ground [27] that is independent of solar zenith angle, solar azimuth, 
or time of day. Thus, the albedo parameter a represents a spatially and temporally averaged 
fraction of GHI reflected from the ground. No precise quantification of albedo is available. It is 
typical to assume a value 0.2a =  [27]. We use 0.2 as a base value; our earlier work [1] 
concluded that the value had little influence in our analysis. 
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Sky diffuse irradiance ,diff skyE  is calculated using one of four alternative models (listed in order 
of increasing model complexity): 
 

− Isotropic sky diffuse model [9]; 
− Sandia simple sky diffuse model [11]; 
− Hay and Davies diffuse model [9]; 
− Perez sky diffuse model [9]. 

 
For models that require parameter values we used values generally regarded as typical, as 
follows: 

− Sandia simple sky diffuse model – empirical coefficients 0.012 and 0.004, from [11]. 
These values were determined by calibrating the model to measurements of GHI, DHI, 
and ambient temperature at Sandia in Albuquerque, NM, prior to 2010. 

− Hay and Davies diffuse model – annual average extraterrestrial radiation aE  taken equal 
to 1367 W/m2. 

− Perez sky diffuse model – the Perez model requires a large number of empirical 
coefficients. We used values from Table 6 in [12] that are regarded as typical and 
recommended by the model’s originators. 

 
For each model we determined an empirical distribution for the model residuals using concurrent 
measurements of GHI, DNI, DHI and POA irradiance at Sandia’s Photovoltaic Systems 
Evaluation Laboratory during 2013-2014. We used measured GHI, DNI and DHI to predict POA 
irradiance then computed model residuals by comparing predicted to measured POA irradiance. 
Using scatterplots and other techniques, we identified systematic trends in the residuals that are 
reflected in the characterization of uncertainty in each model’s residuals. 
 
To avoid including residuals primarily resulting from measurement artifacts we exclude data 
measured with sun elevation angles less than 10°. At the PSEL site, local shadowing 
occasionally affects measurements at low sun elevation angles. In addition, the instrument used 
to measured POA irradiance shows measurement aberrations due to internal reflections at high 
incident angles. For these reasons our analysis precludes low sun elevation angles. 
 
 
3.1.1. Isotropic sky diffuse model 
 
Figure 3 displays the residuals for the Isotropic sky diffuse model as a function of angle of 
incidence AOI . Dependence of the residuals on AOI  is evident. Figure 4 shows residuals for 
two different months and demonstrates dependence of residuals on time of year. Figure 5 
illustrates that residuals in a given month are different for clear sky conditions as opposed to 
cloudy conditions. Finally, Figure 6 and Figure 7 show that residuals can also depend on time of 
day. In Figure 6 and Figure 7, we separate residuals into two subsets (before and after noon), and 
fit each subset with a second order polynomial in AOI  to quantify the different trends. 
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Figure 3. Residuals for predicted POA irradiance using Isotropic sky diffuse model. 

 

 
Figure 4. Dependence of residuals on time of year for Isotropic sky diffuse model. 
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Figure 5. Dependence of residuals on sky condition for Isotropic sky diffuse model (May 

2014 shown). 

 
Figure 6. Dependence on time of day of residuals for Isotropic sky diffuse model (clear 

periods during May 2014 shown). 
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Figure 7. Dependence on time of day of residuals for Isotropic sky diffuse model (cloudy 

periods during May 2014 shown). 
 
Using this partition of the data, we assembled 48 empirical distributions of model residuals for 
the Isotropic clear sky model. For each month, we distinguished clear and cloudy conditions by 
the ratio of measured DNI to GNI (Global Normal Irradiance—measured with a pyranometer 
bore-sighted with the DNI pyrheliometer): if the ratio was greater than 0.85, we considered the 
sky to be clear. We further separated each day into morning (AM) and afternoon (PM) time 
periods, resulting in 48 data subsets. Within each subset we quantified the systematic 
dependence of the residuals on AOI  by fitting a second order polynomial (as illustrated in 
Figure 6 and Figure 7). The polynomial fit is generally successful at removing the systematic 
trends (see, for example, Figure 8 and Figure 9). We then estimated one or more empirical 
cumulative distribution functions (CDFs) from the difference between each residual and the 
fitted polynomial (e.g., Figure 10 and Figure 11). To accommodate changes in variance of the 
de-trended residuals across AOI , we partitioned AOI  into several bins and obtained separate 
CDFs for each bin. 
 
We note that the de-trended residuals exhibit a relatively consistent daily pattern during clear sky 
conditions (e.g., Figure 8) but a rather random pattern during cloudy conditions (e.g., Figure 9). 
Accordingly, to propagate uncertainty we sample one quantile value for all times with clear 
conditions for each day, but randomly sample a quantile value for each time with cloudy 
conditions. 
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Figure 8. Residuals for clear sky conditions, May 2014, before noon, after removing 

trend. 

 
Figure 9. Residuals for cloudy conditions, May 2014, before noon, after removing trend. 
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Figure 10. Empirical CDFs for de-trended residuals during clear sky conditions (May 2014 

shown). 

 
Figure 11. Empirical CDFs for de-trended residuals during cloudy sky conditions (May 

2014 shown). 
 



32 

 
3.1.2. Sandia simple sky diffuse model 
 
For the Sandia simple sky diffuse model we adopted the same general approach for quantifying 
uncertainty in model residuals as is used for the Isotropic sky diffuse model. We observed a 
range of residuals generally comparable to the Isotropic sky diffuse model (compare Figure 12 
and Figure 5). 
 

 
Figure 12. Dependence on sky condition of residuals for Sandia simple sky diffuse model 

(May 2014 shown). 
 
 
3.1.3. Hay and Davies diffuse model 
 
For the Hay and Davies diffuse model we adopted the same general approach for quantifying 
uncertainty in model residuals as is used for the Isotropic sky diffuse model, and observed 
similar ranges of residuals (compare Figure 13 and Figure 5). 
 
 
3.1.4. Perez sky diffuse model 
 
For the Perez sky diffuse model we adopted the same general approach for quantifying 
uncertainty in model residuals as is used for the Isotropic sky diffuse model. Similar ranges of 
residuals are observed in these models (compare Figure 14 and Figure 5). 
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Figure 13. Dependence on sky condition of residuals for Hay and Davies diffuse model 

(May 2014 shown). 
 

 
Figure 14. Dependence on sky condition of residuals for Perez sky diffuse model (May 

2014 shown). 



34 

Finally, comparing the systematic trends in the residuals of the four POA irradiance models, we 
observe that the trends are similar among the models, with more or less the same general shape 
in each month, and the magnitude of each trend varying depending on the model (see Figure 15). 
In a given month, the systematic trends in the Hay and Davies model residuals have the most 
variance; the Sandia model seems to have the least-varying trends.  
 

 
Figure 15. Trends in POA model residual by model and month (clear morning conditions 

shown). 
 
 
3.2. Effective irradiance 
 
Estimating effective irradiance involves beam irradiance and diffuse irradiance in the plane of 
the array ( bE  and diffE  respectively), two polynomial functions 1( )f AM  and 2 ( )f AOI , and a 
derate factor SF to account for surface soiling: 
 
 1 2( ) ( )e b diffE f AM f AOI E E SF = +    (33) 
 
Beam irradiance bE  is computed from measured DNI using Eq. (30). Because we have more 
reliable measurements of POA than diffE , we obtain diffE  from POA irradiance POAG  and bE  by 
 
 diff POA bE G E= −   (34) 
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We use Eq. (34) to compute diffuse POA irradiance at this stage in order to avoid compounding 
effective irradiance model residuals with error from the sky diffuse models discussed in Section 
3.1. Assuming a value of 1.0 for the soiling factor SF of a clean module, our model for effective 
irradiance could be stated as  
 
 ( )1 2( ) 1 ( )e POA bE f AM G f AOI E= − −   .  (35) 
 
We determined coefficients of the polynomials 1( )f AM  and 2 ( )f AOI  for the First Solar 
modules by measuring electrical performance of one module over a range of AOI and AM values 
using a two-axis tracker. We also determined effective irradiance from concurrent measurements 
of module short-circuit current and cell temperature (Eq. (14)). We then compiled an empirical 
distribution for the effective irradiance residuals (see Eq. (15)). 
 
We found systematic trends in the effective irradiance residuals similar to those found in the 
POA model residuals. Figure 16 displays the residuals for the First Solar effective irradiance 
model as a function of AOI. The dependence of the residuals on AOI is immediately apparent. 
Successive subdivision of the residuals by time of year, sky condition and time of day further 
highlights this dependence, as depicted in Figure 17 through Figure 20. Figure 17 shows the 
residuals for two different months, while Figure 18 shows how the residuals for a single month 
differ between clear and cloudy sky conditions. Figure 19 illustrates the difference between 
morning and afternoon residuals for clear conditions, and Figure 20 shows the difference 
between morning and afternoon residuals for cloudy conditions.  
 

 
Figure 16. Residuals for predicted effective irradiance. 
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Figure 17. Dependence of effective irradiance residuals on time of year. 

 
Figure 18. Dependence of effective irradiance residuals on sky condition (May 2014 

shown) 
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Figure 19. Dependence of effective irradiance residuals on time of day (clear periods 

during May 2014 shown) 

 
Figure 20. Dependence of effective irradiance residuals on time of day (cloudy periods 

during May 2014 shown). 
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We subdivided the effective irradiance residuals by month, sky condition, and time of day, and 
we further subdivided each month/sky condition/time of day subset into two additional subsets 
( 50AOI ≤ and 50AOI > ), resulting in a total of 96 subsets. We de-trended the residuals by 
fitting a second-order polynomial in AOI to the data in each subset. No attempt was made to 
ensure continuity of the polynomials across the 50AOI =  boundary. Examples of the de-
trending polynomials are depicted in Figure 19 and Figure 20.  
 
Figure 21displays monthly trends fit to effective irradiance residuals for each time-of-day and 
sky condition combination. The collection of trends reveals that the model generally 
overestimates effective irradiance in the morning and underestimates it in the afternoon, and the 
error is generally greater the closer the sun is to the horizon.  
 
Subtracting the fitted polynomial from the residuals in each subset generally removes the 
systematic trend (see typical results in Figure 22 and Figure 23). To characterize the remaining 
variation in the residuals, we estimated an empirical CDF of the de-trended residuals in each of 
the 96 subsets (see Figure 24 and Figure 25). The polynomial fit and CDF for each subset thus 
comprise an empirical distribution of the First Solar effective irradiance residuals for each 
combination of time of year (month), time of day, angle of incidence range, and sky condition. 
Figure 22 and Figure 23 show that the de-trended effective irradiance residuals have a fairly 
constant daily pattern during clear sky conditions, but vary randomly during cloudy sky 
conditions. Accordingly, when we propagate uncertainty, we use a single random quantile value 
for all times with clear sky conditions in a day, but we sample a different random quantile value 
for each time with cloudy sky conditions. 
 

 
Figure 21. Monthly trends fit to effective irradiance residuals 
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Figure 22. Effective irradiance residuals for May 2014 morning clear sky conditions after 

removing trends. 
 

 
Figure 23. Effective irradiance residuals for May 2014 morning cloudy sky conditions 

after removing trends. 
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Figure 24. Empirical CDFs for de-trended effective irradiance residuals during clear sky 

conditions (May 2014 shown) 
 

 
Figure 25. Empirical CDFs for de-trended effective irradiance residuals during cloudy sky 

conditions (May 2014 shown) 
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Because the partitions for the effective irradiance distributions are not based on POA irradiance, 
the same distributions for effective irradiance are used with each of the four different POA 
irradiance models. Also, because calculated effective irradiance was obtained from the same 
measurements as were used to estimate the effective irradiance model in Eq. (7), the CDFs for 
residuals for effective irradiance are generally unbiased. 

 
 

3.3. Cell Temperature 
 
Cell temperature is modeled using Eq. (19). We determined an empirical distribution of the cell 
temperature model residuals using measurements of POA irradiance, wind speed and ambient 
temperature at Sandia’s Photovoltaic Systems Evaluation Laboratory (PSEL) during January 
2013, along with I-V curves recorded for a First Solar module during this same time. We 
estimated cell temperature from the I-V curves using a technique similar to [20], and computed a 
set of residuals by comparing modeled and estimated cell temperatures. Examining the residuals, 
we found different behavior for different sky conditions and ranges of wind speed WS (see 
Figure 26). Accordingly, we created three empirical distributions for the model residuals. 
Conditional on clear or cloudy conditions, we constructed three distribution models for the 
residual in cell temperature by partitioning wind speed into two intervals for cloudy periods:.  
 Clear: E1 = {0 < WS < ∞} (36) 
 Cloudy: E2 = {0 < WS ≤ 5} (37) 
  E3 = {5 < WS} (38) 
We constructed an empirical CDF for the residuals in cell temperature for each interval, as 
displayed in Figure 27. Because the partitions for the distributions are not based on POA 
irradiance, the same distributions are used for each of the four POA models created above. 
 
 
3.4. PV Module Output 
 
Figure 28 shows measured DC power and DC voltage from testing of a First Solar FS-387 
module at PSEL during February 2013. Using these measurements we determined coefficients 
for the Sandia Array Performance Model (SAPM) [13], which we then used to produce model 
predictions of DC power and DC voltage, also depicted in Figure 28.  
 
We find the residuals in predicted DC current and predicted DC voltage to be uncorrelated 
(Figure 29; correlation coefficient 0.0067). We see a relatively strong correlation between 
effective irradiance and cell temperature (Figure 30), as should be expected.  
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Figure 26. Residuals for Cell Temperature Model. 

 

 
Figure 27. Empirical CDFs for Cell Temperature Model Residual. 
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Figure 28. Measured and modeled DC power and DC voltage for First Solar FS-387 

module. 
 

 
We note a small systematic dependence of the residual for DC current on effective irradiance, 
and an increase in the variation of the residual with increasing effective irradiance (Figure 31, 
top panel). We also observe different ranges of the DC voltage residual for different effective 
irradiance values (Figure 31, bottom panel). Due to the correlation between effective irradiance 
and cell temperature, the residual in DC voltage similarly changes with cell temperature. 
Consequently, we construct an empirical model for the de-trended DC current and voltage 
residuals by partitioning effective irradiance (expressed in unit of ‘suns’) into three intervals: 
 
 { }1 0 0.5E E= ≤ ≤  (39) 

 { }2 0.5 0.9E E= < ≤  (40) 

 { }3 0.9E E= <  (41) 
 
For each interval we de-trended the DC current residuals by subtracting a line fit to the data as 
depicted in Figure 31. We then constructed an empirical distribution for the de-trended residuals. 
We also constructed an empirical distribution for the DC voltage residuals for each interval 
without applying any de-trending. CDFs for the resulting current and voltage distributions are 
displayed in Figure 32 and Figure 33, respectively. When propagating uncertainty, we sample 
each distribution independently and assume no temporal correlation between sampled values. 
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Figure 29. Residual for predicted DC current and DC voltage for First Solar FS-387 

module.  

 
Figure 30. Correlation between effective irradiance and cell temperature for First Solar 

FS-387 module. 
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Figure 31. Correlation between effective irradiance and residual for DC voltage and 

current for First Solar FS-387 module. 
 

 
Figure 32. Distributions of de-trended DC current residual for First Solar FS-387 module. 
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Figure 33. Distributions of DC voltage residual for First Solar FS-387 module. 

 
 
3.5. Array DC Loss 
 
The model for array DC loss (i.e., the aggregate of mismatch and MPPT loss) requires an 
estimate of the average loss per module ( )P t∆  (Eq. (24)). To quantify ( )P t∆  we followed a 
technique proposed by Jantsch et al. [24]. We use measured performance of a PV array at the 
PSEL with 48 First Solar FS-387 modules in four parallel strings of 12 modules each, connected 
to (and controlled by) a Fronius IG-TS 5.0 inverter. A single First Solar FS-387 reference 
module is operated separately and adjacent to the array. Both the array and the reference module 
are held at maximum power by the inverter. The I-V curve of the reference module, is measured 
at one-minute intervals simultaneous with measurement of the inverter operating voltage and 
input current. These data were collected for 20 February through 15 March 2014, a period which 
included a wide range of sky conditions from clear to overcast. 
 
By dividing the inverter operating voltage by twelve (the number of modules in each string), we 
compute the voltage of an “average” array module. For the same instant in time, we obtain the 
maximum power voltage and current of the reference module by finding the maximum power 
point in the corresponding I-V curve.  
 
Figure 34 shows the average array module voltage plotted against the reference module 
maximum power voltage for a clear day. In Figure 34 the quantities µ and σ are respectively the 
average and standard deviation of the difference between the array average and reference module 
voltages. If the reference module and all the array modules were completely identical and there 
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were no error in the MPPT algorithm of the inverter, these data would be expected to lie along 
the 1:1 line, which is shown in the figure for reference. We note that the data do lie generally 
along a line of unity slope, but there is a constant difference of nearly one volt between the 
average array module voltage and the reference module maximum power voltage. Data from 
other days show a similar pattern, generally following a line with unity slope offset from the 1:1 
line by about one volt. The offset results primarily from the intrinsic difference between the 
reference module and the array’s ‘average’ module. Between days the primary difference is in 
the variance of the data, which is much higher on cloudy days than on clear days resulting from 
the inverter’s less efficient tracking of the array MPPT during rapidly changing irradiance 
conditions. 
 

 
Figure 34. Comparison of array average module voltage to reference module maximum 

power voltage. 
 
 
Assuming that the array and the reference module are uniformly illuminated on clear days, we 
attribute the voltage offset illustrated in Figure 34 to systemic differences between the average 
array module and the reference module. We average this voltage difference over all the clear 
days, denoting the result as offsetV∆ , and use offsetV∆  to estimate the effective module DC power 

( ),DC effP t  for each array measurement as follows. We first compute the effective reference 

module voltage ( ),DC effV t  corresponding to the measured array voltage:  
 

 ( ) ( )
,

array
DC eff offset

S

V t
V t V

N
= −D .  (42) 
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We then use the reference module I-V curve at time t  to find the effective module current 
( ),DC effI t  corresponding to ( ),DC effV t , as depicted in Figure 35. We then compute ( ),DC effP t  as 

the product of ( ),DC effV t  and ( ),DC effI t , and the instantaneous power loss ( )P t∆ as the difference 

between the reference module maximum power and ( ),DC effP t , as specified in Eq. (24). 
 

 
Figure 35. Calculation of module operating current and output power from array 

operating voltage. The array operating voltage and offsetV∆  are exaggerated here for 
clarity. 

 
Analysis of array DC losses observed in our measured data showed a tendency towards roughly 
constant daily loss rates, with rates that vary between days. Figure 36 illustrates the cumulative 
array DC loss for several days with different degrees of variability in irradiance. On inspection of 
the irradiance profiles for the days represented in Figure 36, we found that each day’s loss rate 
was generally correlated with the degree of variability in the irradiance that day. Based on this 
finding, we decided to represent array DC loss using a daily constant rate indexed by sky 
condition as determined by the variability of irradiance. 
 
We quantify variability in irradiance by the method in [28], which characterizes a day’s 
irradiance in terms of two indices: clearness and variability. Clearness index CI is the ratio of 
total measured daily insolation to total clear-sky insolation. This index is near zero on an 
overcast or rainy day (little light received), and approaches a value of 1.0 on a clear day. 
Variability index VI is the ratio of the path length of the measured GHI curve to that of the 
theoretical clear-sky GHI curve [28]. This index approaches a minimum value of 1.0 on clear 
days and increases as the magnitude and frequency of changes in irradiance increase. However, 
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VI may also approach 1.0 on overcast days, when the increase in path length due to frequent but 
small amplitude variations in the irradiance curve is offset due to receiving less light in the day. 
For highly variable days, VI is typically much larger than 1.0. Figure 37 plots VI against CI 
values for the days during which the array and representative module were monitored. Using this 
graph, together with time-series plots of measured GHI for these days, we assigned each day to 
one of four categories based on their VI and CI index values (see Table 1). 

 
Figure 36. Single-module cumulative array DC loss during single days. 
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Figure 37. Clearness and Variability index values 20 Feb – 15 Mar 2014, Albuquerque, NM 
 
 

Table 1. Rules for grouping days based on Variability Index VI and Clearness Index CI 
 

Day Type VI/CI Range 
Clear 1.5VI <  and 0.85CI >  
Partly Variable 10VI < and 0.6CI >  and not Clear 
Variable 10VI ≥  
Overcast 10VI < and 0.6CI ≤  

 
For each day d, we estimate the daily average array DC loss rate ( )P d∆  as 
 

 ( ) ( ) ( ) ( ) ( )
0

1

1
00 0

1 1
2

N
Nt k k

k kt
kN N

P t P t
P d P t dt t t

t t t t

−

+
=

∆ + ∆
∆ = ∆ ≅ −

− − ∑∫ . (43) 

 
where 0 , , ,k Nt t t   are the times at which values of ( )kP t∆  are available. Grouping the days 

into the categories indicated in Table 1, we arrived at a set of values ( ){ }P d∆ for each type of 

day, shown in Figure 38. These results are consistent with observed behavior of MPPT 
algorithms: tracking errors are generally minimal on clear days, but increase as variability in 
irradiance increases. String mismatch loss results in a positive minimum value for each type of 
day. Loss rates may be lower on overcast days due to lower net irradiance received. 
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Figure 38. Daily array DC loss rates due to string mismatch and MPPT losses. 

 
 
Array DC power loss rate, denoted by ( ) ( ) ( )( ), ,DC DCP t P t CI t VI tD = D , is modeled by ( )50P t∆ , 

i.e., the median of ( ){ }P d∆ , for each type of day ( )d t , where the type of day is determined by 

( ) ( ),CI t VI t  as described above. Uncertainty in ( )DCP tD  is quantified by an empirical 
distribution for each type of day constructed from the data underlying Figure 38. A time series of 

( )DCP tD  is independently determined for each realization of the system model by randomly 
sampling the empirical distribution once for each day.  
 
 
3.6. AC Power 
 
For DC to AC conversion we use the inverter model described by Eq. (27) and Eq. (28). We 
quantify uncertainty using test data reported by the California Energy Commission (CEC) for a 
250 kW SC250U inverter manufactured by SMA Technologies. The specification sheet provides 
data from ten replicated tests, each of which consists of measuring conversion efficiency while 
the operating the inverter to produce six different output power levels at each of three input 
voltage settings, yielding a total of eighteen measurements of conversion efficiency per test 
replicate.  
 
We estimate a base inverter model by fitting the model equations (Eq. (27) and Eq. (28)) to the 
aggregate data from all ten test replicates. We characterize the uncertainty in this base model by 
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a set of ten alternative models which result from independently fitting the model equations to the 
data for each test replicate.  
 
Figure 39 depicts a subset of the CEC data along with efficiency predictions for the base and 
alternative models. The figure shows that the uncertainty in the inverter model is small relative to 
the bias in the model. Measured efficiency (dots) shows very low variability which leads to 
extremely small differences between the models (lines). The differences between the replicated 
tests and the resulting differences between the models are only apparent at the scale of the figure 
inset. However, both the base and alternative models depart from the measured data indicating a 
bias in the model, perhaps arising from a structural deficiency which prevents greater accuracy in 
the representation of measured inverter performance. 
 
The extremely low uncertainty in the inverter model is further illustrated in Figure 40. We 
estimate the total annual AC energy output for each alternative inverter model by propagating 
measured irradiance (GHI, DNI, DHI) through the chain of base models up to and including the 
array DC loss model, and use the results as input to each of the alternative inverter models 
(narrow colored bars) and the base inverter model (broad grey bar). The greatest difference 
among inverter models is extremely small—around 0.015%—compared with the greatest 
difference in annual POA insolation due to the sky diffuse models (about 4%). 
 

 
Dots represent test data; lines represent base model (black) and alternative models (colored). 

Figure 39. Comparison of Inverter Models (nominal voltage case).  
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Narrow bars represent models fit to data from a single test. Broad bars 
represent model fit to data from all tests. 

Figure 40. Uncertainty in Annual AC Energy for Inverter Models.  
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4. UNCERTAINTY ANALYSIS 
 
 
4.1. Uncertainty Propagation 
 
Conceptually, uncertainty about a model or the model’s inputs implies that the model’s outputs 
are also uncertain. Here we employ a Monte Carlo technique to generate a sample representing 
the distribution of uncertainty in each model’s output, using the characterization of uncertainty 
for each model derived from the model’s residuals. 
 
The true value of the quantity being predicted by a model is not known. The model’s output 
provides a baseline estimate of this unknown value. We also have information about the possible 
errors in each model’s prediction in the form of a distribution for each model’s residuals. By 
sampling the residuals and combining the sample with each model’s baseline estimate, we 
generate a sample of the true (unknown) quantity predicted by each model. For example, 
consider Step 1, Estimation of POA irradiance. The baseline estimate of POA irradiance, 
 ( )POAG t , is the result from a POA model. The true value of POA irradiance, denoted by 

( )POAG t , is unknown, but we have a distribution for the POA model’s residual ( )POA POAt pδ  and 
an equation relating these quantities: 
 

 ( )
 ( ) ( )

( )
POA POA

POA POA
POA

G t G t
t p

G t
δ

−
=  (44) 

 
We then regard ( )POA POAt pδ  as a random variable, sample a value for ( )POA POAt pδ , and 
estimate the true (unknown) value for POA irradiance as: 
 

 ( )
 ( )

( )1
POA

POA
POA POA

G t
G t

t pδ
=

+
 (45) 

 
Thus, we obtain a sample for the true value of ( )POAG t . Except as noted below, analogous 
methods are used to generate samples for the true values for other modeled quantities. These 
samples are passed from one modeling step to the next to compute a sample of AC output from 
the PV system. 
 
Sampling the distributions of model residuals must account for any observed correlations 
between the residuals and the model’s inputs. For example, the residual in the Isotropic sky 
diffuse model for estimating POA irradiance from GHI, DNI and DHI exhibits systematic 
variation over a range of solar zenith angles (see Figure 3). Accordingly, we construct 
uncertainty distributions that account for these correlations. 
 
Calculating PV system output over time inherently involves models with time series inputs, e.g., 
GHI. Consequently, the sampled model residuals are themselves time series and must reflect 
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appropriate temporal correlations. We address temporal correlations in a rather simplified 
manner that will tend to overstate the influence of an uncertain time series input on the model’s 
output. For a small number of distinct conditions, e.g., clear or cloudy skies, morning or 
afternoon hours, we first judge whether the time series of model residuals exhibits any 
significant temporal correlation. When a model residual exhibits temporal correlation for a given 
condition, we assume that time series values remain perfectly correlated until the condition 
changes. When a model residual shows little or no temporal correlations during a given 
condition, we randomly and independently sample the model residual at each time step. 
 
In the uncertainty propagation, Step 1, Estimation of POA irradiance, produces a sample for the 
true (unknown) value of ( )POAG t  from measured GHI, DNI and DHI. The subsequent Step 2, 
Estimation of Effective Irradiance, requires as input beam and diffuse POA irradiance ( bE  and 

diffE  respectively). We translate the sample of ( )POAG t  to samples of ( )bE t  and ( )diffE t  by 

using Eq. (29), Eq. (30) and measured DNI. In other words, we regard ( )bE t  as known exactly 

without error and regard all of the error in ( )POAG t  as arising from the diffuse POA irradiance 
model. 
 
Steps 3 through 5 proceed as described in Section 2, with each step accepting as input the sample 
of output from earlier steps, and the ouput from each step being modified by a random sample 
from the step’s error distribution (as described in Section 3). At Step 6, Estimation of AC Power, 
rather than an empirical distribution of error in the model output, we have instead a set of ten 
equally likely alternative models for the inverter’s performance. We propagate uncertainty in the 
inverter model by randomly selecting one of these alternative models for each realization of the 
system model. 
 
 
 4.2. Uncertainty Analysis Results 
 
Using measured weather data (i.e., GHI, DNI, DHI, wind speed and ambient temperature) 
collected at Albuquerque NM from October 2013 through September 2014, we applied the 
methods outlined above to generate a total of four samples of possible output from a hypothetical 
PV system consisting of 277 parallel strings, each string comprised of nine First Solar FS-387 
modules, connected to an SMA SC250U inverter. Each sample uses a different POA irradiance 
model, and comprises 100 time series, one year in length, of one-minute array AC power, which 
are reduced to time series of daily AC energy.  
 
Figure 41 shows the results obtained when using the isotropic sky model. In Figure 41, a single 
red curve shows the CDF resulting from the baseline estimate of daily AC energy. The range of 
variation in daily energy in this curve is primarily determined by the variation in daily insolation 
over the year. The group of blue curves comprises 100 CDFs for daily AC energy that result 
from the uncertainty propagation. The separation between the red curve and the group of blue 
curves indicates a bias on the order of 3% of daily energy that is incurred by using the isotropic 
sky model in combination with the other component models. The variation among the blue 
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curves represents the range of uncertainty in daily energy that results when uncertainty in each 
component model is propagated through the complete modeling chain.  

 
Figure 41. Distribution of Daily AC Energy using the Isotropic Sky Model 

 
Figure 42 shows the graph from Figure 41 alongside similar plots of daily AC energy using the 
three other POA irradiance models (the subsequent component models are not varied). Figure 42 
shows that: 

- For each POA irradiance model, the blue CDFs are tightly grouped, indicating that the 
overall variation in predicted daily energy is relative small (on the order of 1%). 

- The greatest offset between the red and blue CDFs is observed for the isotropic sky and 
the Hay and Davies models, indicating that the default parameter values for these models 
result in POA irradiance predictions that are systematically biased when compared with 
onsite measurements. 

These observations are similar to those noted at the module DC power level in the previous study 
[1], which suggested that bias in predicted daily energy output can be attributed to bias in the 
POA irradiance models. This suggestion is supported by comparison of the daily AC power 
distributions in Figure 42 with similar plots of predicted daily POA insolation shown in Figure 
43, in which similar, model-related biases are apparent.  
 
Figure 44 displays the annual POA insolation measured at Albuquerque, NM during the period 
simulated in the uncertainty propagation, along with the baseline estimate and the histogram of 
values from each sample for annual POA insolation for each POA irradiance model. As in the 
previous study, this figure confirms that model baseline estimates can be substantially different 
from measured values, that biases tend to be systematic for each POA model, and that applying 
residuals to the model baseline estimate generally obtains a value similar to the measured annual 
insolation. 
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Figure 42. Distributions of Daily AC Energy 

 
 

 
Figure 43. Distributions of Daily POA Insolation 
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Figure 44. Distributions of Annual POA Insolation 

Note: black = measured, red = model baseline estimate; blue = sample histogram. 
 
Besides looking at distributions of annual POA insolation estimates, the previous study also 
examined the residual in monthly POA insolation predicted by each model. Results of repeating 
this analysis with the weather data used in the present study are shown in Figure 45, where we 
note biases consistent with those in the previous report. In addition, we also observe two fairly 
distinct seasonal patterns in these biases: the shapes of the isotropic sky and Sandia model curves 
are almost identical, as are those of the Hay and Davies and Perez models. This similarity was 
also evident, but not noted in the previous report.  
 
The next stage in the modeling chain after POA is effective irradiance. Figure 46 and Figure 47 
show the distributions of daily and annual effective insolation, respectively. We observe that the 
amount of uncertainty after the effective irradiance model is not much different than after the 
POA model, as the group of the family of blue curves is still very tight. Furthermore, the distance 
between each group and the red curve representing the baseline model appears to change only 
very slightly from the POA to the effective irradiance model steps. Close comparison of Figure 
47 and Figure 44 confirms that the effective irradiance model step alters the overall bias in the 
results slightly: in all four models, the baseline estimate for effective irradiance is closer to the 
measured value than in the POA stage. 
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Figure 45. Residuals for monthly POA insolation for Albuquerque, NM.  

 
 
 

 
Figure 46. Distributions of daily effective insolation 
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Figure 47. Distributions of annual effective insolation 

 
Figure 48 and Figure 49 show the distributions of daily module DC power output before and 
after the application of array DC losses, respectively. These figures follow the same general 
patterns as in the POA and effective irradiance figures discussed previously. Overall, the 
difference between the baseline estimate and the random realizations appears to be somewhat 
smaller after these modeling steps than after the effective irradiance modeling step.  
 
Finally, Figure 50 shows the annual AC output energy predictions for the hypothetical array. 
Above each sky diffuse model label, the wide gray bar represents the baseline estimate of 
inverter output energy, obtained by propagating the weather data through the chain of models. 
The narrow colored bars represent the 100 sample elements obtained by applying model 
uncertainty at each step of the modeling chain. These narrow bars have the same pattern within 
each sky diffuse group because we used the same set of random numbers for a given realization 
in each sky diffuse model. The colors of the bars in each group indicate the ten realizations of the 
inverter model that represent uncertainty in the DC-to-AC conversion modeling step. 
 
Several observations can be noted from inspection of Figure 50: 

- For each sky diffuse model, the maximum difference between the realizations is on the 
order of 1MW-hr, or 0.25% of the average annual energy output of approximately 400 
MW-hr. This is consistent with the very close grouping in the daily AC energy output 
distributions among the random realizations noted in Figure 42. 
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Figure 48. Distributions of daily module DC output 

 
 

 
Figure 49. Distributions of daily module DC output with array DC loss applied. 
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Broad bars = baseline estimates; narrow bars = realizations; colors identify inverter models. 

Figure 50. Annual AC output for the baseline model and the sample elements. 
 

- Comparison of the various colored groups within each sky diffuse model indicates that 
the variation between the ten alternative inverter models appears to be minimal. This is 
consistent with the close grouping of the baseline and alternative inverter models noted 
previously in Figure 39. 

- The maximum difference between the four baseline estimates is approximately 15.4 MW-
hr, approximately 3.8% of the average of the four estimates. This difference is the same 
as the relationship between the maximum difference and average of the four baseline 
annual POA insolation estimates (red lines in Figure 44). In fact, all the relative 
differences between the four baseline estimates are about the same at the inverter stage as 
they are at the POA irradiance stage. 

- Within each sky diffuse model group, the relationships between the sample elements and 
the baseline estimate of the annual AC energy appear similar to the same relationships 
between the baseline and sample elements for annual POA insolation.  

- The differences between the four sets of realizations are much smaller than the 
differences between the four baseline estimates. These relationships are also evident in 
the distributions of annual POA and effective insolation (the blue histograms in (Figure 
44 and Figure 47, respectively).  

These observations support our method of ‘correcting’ model error by applying sampled 
residuals, in that we observe closer agreement among the four sets of realization than among the 
four baseline estimates. Moreover, consistency from one modeling step to the next also indicates 
that the primary sources of uncertainty, i.e., the residuals with the greatest effect, are in the early 
modeling steps: translation to POA irradiance and conversion from POA irradiance to effective 
irradiance. 
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5. SENSITIVITY ANALYSIS 
 
 
5.1. Sensitivity Analysis Methods 
 
Given the results of an uncertainty analysis, a sensitivity analysis examines the relationship 
between uncertainty in models or model inputs and the resulting uncertainty in the modeling 
outcomes. The basic model output at each time step of our analysis is AC power. We quantify 
uncertainty in AC power in a manner similar to that used to quantify model output uncertainty at 
each modeling step. We first compute a baseline estimate of AC power by using the baseline 
models at each step without applying values for each model’s residual. We obtain a sample of 
residuals for AC power by subtracting this baseline estimate from each of the 100 realizations for 
AC power obtained by applying the sampled residual at each modeling step. Finally, we examine 
the relationship between the AC power residuals and the samples for model residuals by means 
of correlations and scatterplots. 
 
Formally, we calculate a difference for AC output by ( )ACP t∆ : 
 
 ( ) ( ) ( )ˆ

AC AC ACP t P t P t∆ = −  (46) 
 
where ( )ACP t  is the baseline estimate of AC power, obtained from the chain of models without 
applying residuals or using the alternate inverter models. Specifically, the baseline estimate 

( )ACP t  is obtained by setting ( ) 1POA POAt pδ = , ( ), 1E E Et p qδ = , ( ) 0TC TCt pε = , 

( ) 0DC VDCt pε = , ( ) 0DC IDCt pε = , ( ) ( )50DCP t P tD = D  and using the base inverter model. 
 
We then perform correlations at each time step between ranked values for ( )ACP t∆  and ranked 

values for each of ( )POA POAt pδ , ( ),E E Et p qδ , ( )TC TCt pε , ( )DC VDCt pε , ( ) DC IDCt pε , 

( )DCP tD  and an index Invg  which ranks the alternate inverter models in order of increasing 
annual energy. The index Invg  is computed by applying the alternate inverter models to the 
output of the array DC loss step for the base models, summing and then ranking the annual 
energy.  
 
We use stepwise regression to build a sequence of regression models for ( )ACP t∆  using 

( )POA POAt pδ , ( ),E E Et p qδ , ( )TC TCt pε , ( )DC VDCt pε , ( ) DC IDCt pε , ( )DCP tD  and Invg  as 
predictors. The first model uses the single predictor that provides the best predictions (among all 
single predictor models) for ( )ACP t∆ ; the second model uses the first predictor plus one 
additional predictor; and so forth. The order in which the predictors are selected for the sequence 
of regression models indicates the strength of correlation between a predictor and ( )ACP t∆ . 
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Intuitively, one expects to see AC power to increase with increasing POA irradiance, increasing 
effective irradiance, decreasing temperature, increasing DC voltage or DC current, decreasing 
array DC loss and increasing AC power conversion. However, for residuals expressed as ratios 
(e.g., ( )POA POAt pδ ) we can instead find a negative correlation between AC power and the 
sampled values for residuals because of the manner in which the residuals are quantified. For 
example, we observe negative correlation between the POA model residual ( )POA POAt pδ  and the 

deviation in ( )ACP t∆  because there is an inverse relationship between ( )POA POAt pδ  and ( )POAG t  
(see Eq. (45)). To permit an intuitive interpretation of our results, we switched the signs of 
several correlation coefficients. 
 
 
5.2. Sensitivity Analysis Results 
 
Figure 51 displays the stepwise rank regression coefficients for daily AC energy for our 
hypothetical array in Albuquerque, NM, using the isotropic sky diffuse model. We use rank 
regression to remove the effects of the widely varying magnitudes among predictor variables. 
The predicted variable ( )ACP t∆  is the time series of the difference between each realization’s 
daily AC energy and the daily AC energy for the base realization. Because daily AC energy for 
the base realization is fixed, greater values of ( )ACP t∆  correspond to increased AC energy 
output. The predictor variables must be summarized to daily quantities which reflect any 
monotonic relationships with ( )ACP t∆ . In general, we summed the model residuals for each 
realization, reasoning as follows: 

− For POA irradiance, we summed the sampled model residuals (i.e., ( )POA POAt pδ  in Eq. 
(6)) for each day, reasoning that the sum of residuals is monotonically related with AC 
energy.  

− For effective irradiance, we summed the sampled model residuals (i.e., ( )| ,E E Et p qδ  in 
Eq. (16)). 

− For cell temperature, we summed the sampled model residuals (i.e. ( )TC TCt pε  in Eq. 
(20)), reasoning that the sum is monotonically related with total daily cell temperature, 
which in turn is monotonically related to AC energy. 

− For DC voltage and DC current, we summed the sampled model residuals ( )VDC DCt pε  

and ( )IDC DCt pε  reasoning that these sums are monotonically related to AC energy. 

− For array DC output (i.e., after array DC losses), the uncertainty propagation (see Section 
3.5) produces a daily DC loss rate which we use directly in the regression, reasoning that 
the DC loss rate is monotonically related with AC energy. 

− Uncertainty in AC output is characterized by a set of alternate inverter performance 
models (see Section 3.6). We created an index an index Invg  which ranks the alternate 
inverter models in order of increasing annual energy and thus is monotonically related to 

( )ACP t∆ .  
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After performing rank regressions at a daily time scale we summed over months and repeated the 
regression (Figure 55).  
 
 
5.2.1. Daily AC Energy 
 
Figure 51 clearly shows that uncertainty arising from the POA irradiance and effective irradiance 
modeling steps dominate the uncertainty in the deviation of daily AC energy from its baseline 
value. Generally, uncertainty in effective irradiance shows the greatest influence on uncertainty 
in daily AC energy, although uncertainty in POA irradiance shows a stronger correlation during 
certain periods (July/August and November/December). Uncertainty arising from the array DC 
loss model appears to have a secondary but still significant effect. Uncertainty arising from each 
of the other models (cell temperature, DC voltage and DC current, and inverter) is relatively 
insignificant. 
 
Figure 52 compares the regression analysis results for daily AC energy for all four POA 
irradiance models. This figure confirms that the residuals arising from the POA and effective 
irradiance models are dominant regardless of which sky diffuse irradiance model is used. Figure 
53 and Figure 54 present the stepwise regression results ordered by the variability and clearness 
indices, respectively. These figures confirm that the alternating order of the coefficients 
associated with the effective irradiance (Ee) and POA irradiance models in Figure 52 result from 
seasonal dependencies. The daily variation in the magnitude of these coefficients likely results 
from our stochastic models for the model residuals, which imperfectly preserve the 
autocorrelations observed in the daily data. 

 
Figure 51. Stepwise rank regression coefficients for daily energy (isotropic sky diffuse 

model). 
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Figure 52. Stepwise rank regression coefficients for daily energy (all 4 POA models).  

 
 

 
Figure 53.  Stepwise rank regression coefficients sorted by variability index. 
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Figure 54.  Stepwise rank regression coefficients sorted by clearness index 

 
5.2.2. Monthly AC Energy 
 
Figure 55 shows the stepwise rank regression analysis results for monthly AC energy for each 
POA irradiance model. Table 2 lists the correlation coefficients found to have statistical 
significance in the stepwise regression process and the associated R2 values achieved as each 
variable is added to the model. POA and effective irradiance are ranked either #1 or #2 in all 
cases, while array DC loss (indicated as MPPT in Figures 51-53 and Table 2) occurs frequently 
in the #3 position. Together with the relatively high values of R2 (the lowest exceeds 0.86), the 
consistency of these rankings confirms the dominant contribution of POA and effective 
irradiance models to uncertainty in the end-to-end model and, suggest that array DC loss may 
warrant additional attention. 
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Figure 55. Stepwise rank regression coefficients for monthly energy (all 4 POA models). 
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. 
Table 2.  Stepwise rank regression models for montly AC energy 

 Isotropic Sandia Hay & Davies Perez 

 
Variable Coeff R2 Variable Coeff R2 Variable Coeff R2 Variable Coeff R2 

Ja
n 

POA 0.6866 0.5372 POA 0.6741 0.5169 Ee 0.6661 0.5225 Ee 0.7074 0.5735 

Ee 0.6319 0.9288 Ee 0.6467 0.9272 POA 0.6400 0.9259 POA 0.6021 0.9306 

MPPT 0.0795 0.9351 MPPT 0.0843 0.9342 MPPT 0.0671 0.9303 MPPT 0.0644 0.9347 

Fe
b 

Ee 0.7556 0.6907 Ee 0.7651 0.7034 Ee 0.6921 0.6096 Ee 0.7255 0.6448 

POA 0.4828 0.9217 POA 0.4667 0.9185 POA 0.5651 0.9306 POA 0.5301 0.9269 

Imp 0.0776 0.9281 Imp 0.0807 0.9255 Imp 0.0675 0.9356 MPPT 0.0870 0.9351 

MPPT 0.0689 0.9329 MPPT 0.0705 0.9304 MPPT 0.0652 0.9398 Imp 0.0734 0.9404 

M
ar

 Ee 0.7239 0.6402 Ee 0.7254 0.6434 Ee 0.7617 0.6824 Ee 0.7946 0.7295 

POA 0.5325 0.9248 POA 0.5285 0.9232 POA 0.4987 0.9270 POA 0.4445 0.9273 

Inverter -0.0560 0.9278 Inverter -0.0604 0.9268       Inverter -0.0584 0.9306 

Ap
r 

Ee 0.7768 0.4696 Ee 0.7327 0.4200 Ee 0.7409 0.4262 Ee 0.7799 0.4733 

POA 0.6375 0.8828 POA 0.6765 0.8822 POA 0.6767 0.8896 POA 0.6358 0.8871 

MPPT 0.1352 0.9003 MPPT 0.1366 0.9000 MPPT 0.1296 0.9057 MPPT 0.1319 0.9037 

Tc -0.0684 0.9048             Tc -0.0663 0.9079 

M
ay

 Ee 0.7799 0.7321 Ee 0.7514 0.6914 Ee 0.7514 0.6936 Ee 0.7689 0.6989 

POA 0.4695 0.9316 POA 0.5088 0.9265 POA 0.5072 0.9262 POA 0.5047 0.9312 

MPPT 0.1064 0.9426 MPPT 0.1137 0.9390 MPPT 0.1150 0.9391 MPPT 0.1118 0.9433 

Ju
n 

Ee 0.6973 0.6838 Ee 0.6943 0.6785 Ee 0.6804 0.6658 Ee 0.7041 0.6998 

POA 0.5263 0.9602 POA 0.5291 0.9584 POA 0.5451 0.9596 POA 0.5114 0.9585 

MPPT 0.0759 0.9657 MPPT 0.0769 0.9641 MPPT 0.0662 0.9638 MPPT 0.0763 0.9641 

Ju
l 

POA 0.8583 0.6682 POA 0.8581 0.6583 POA 0.8640 0.6705 POA 0.8742 0.6937 

Ee 0.4452 0.8631 Ee 0.4525 0.8581 Ee 0.4412 0.8615 Ee 0.4284 0.8737 

MPPT 0.1215 0.8761 MPPT 0.1248 0.8713 MPPT 0.1181 0.8738 MPPT 0.1194 0.8860 

Inverter -0.0895 0.8839 Inverter -0.0928 0.8797 Inverter -0.0847 0.8808 Inverter -0.0898 0.8939 

Au
g 

POA 0.7148 0.5142 POA 0.7115 0.5046 POA 0.7130 0.5095 POA 0.7012 0.4876 

Ee 0.5919 0.8777 Ee 0.5980 0.8755 Ee 0.5903 0.8719 Ee 0.6126 0.8782 

MPPT 0.1427 0.8979 MPPT 0.1423 0.8956 MPPT 0.1523 0.8949 MPPT 0.1616 0.9041 

Se
p 

POA 0.7067 0.3839 Ee 0.6987 0.3831 POA 0.7224 0.3889 POA 0.7083 0.3725 

Ee 0.6861 0.8532 POA 0.6955 0.8525 Ee 0.6879 0.8589 Ee 0.7005 0.8564 

MPPT 0.1140 0.8661 MPPT 0.1167 0.8660 MPPT 0.1255 0.8747 MPPT 0.1365 0.8749 

O
ct

 

Ee 0.7637 0.6827 Ee 0.7625 0.6876 Ee 0.8265 0.7909 Ee 0.8244 0.7924 

POA 0.5099 0.9293 POA 0.5067 0.9296 POA 0.4218 0.9466 POA 0.4211 0.9450 

MPPT 0.0730 0.9344 MPPT 0.0750 0.9350 MPPT 0.0604 0.9509 MPPT 0.0644 0.9498 

            Tc -0.0507 0.9532 Tc -0.0549 0.9525 

N
ov

 POA 0.8202 0.7350 POA 0.8170 0.7272 POA 0.7557 0.6459 POA 0.7427 0.6268 

Ee 0.4503 0.9241 Ee 0.4520 0.9187 Ee 0.5175 0.8989 Ee 0.5435 0.9064 

Inverter -0.0917 0.9320 Inverter -0.0843 0.9255 Inverter -0.0763 0.9044 Inverter -0.0773 0.9121 

De
c POA 0.7469 0.5017 POA 0.7357 0.4780 Ee 0.7088 0.4447 Ee 0.7290 0.4648 

Ee 0.6460 0.9175 Ee 0.6638 0.9166 POA 0.6821 0.9082 POA 0.6715 0.9134 
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5.2.3 Comparison with previous results  
 
In prior work Hansen and Pohl [1] found that uncertainty in the POA irradiance and effective 
irradiance models had a dominant influence on the uncertainty in predicted module output DC 
energy. They repeated the analysis for two different module technologies in each of two 
locations and obtained similar results for all four cases, suggesting that ranking of important 
model residuals will not depend greatly on location or module technology. The analysis in [1] 
included several but not all of the models that are considered here: their work included models 
for POA irradiance, effective irradiance, cell temperature, module voltage and module current, 
but not for array DC losses or AC energy. In addition, the uncertainty quantification for the 
effective irradiance model in [1] did not fully capture the range of model error because the 
uncertainty was quantified from the data used to estimate the model. In this work uncertainty in 
the effective irradiance model was quantified using out-of-sample data. 
 
The present study considers one of the cases addressed in [29] (i.e., a CdTe array of modules in 
Albuquerque, NM), but uses weather/irradiance data from a different time period. The results 
presented here confirm the previous conclusion that, among the models considered, uncertainty 
in POA irradiance and effective irradiance models have the greatest influence on the uncertainty 
in predicted system output. As was done in [1], this analysis excludes the influence on system 
output of uncertainty in the measurement of irradiance. 
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5.3 Discussion of omitted modeling steps 
 
 
5.3.1 Uncertainty in Irradiance Measurement  
 
Our uncertainty analysis does not include characterization of uncertainty in irradiance 
measurements, nor of its effect on the uncertainty in power and energy predictions. Intuition 
suggests that error in measured GHI and DNI conveys roughly (but not exactly) to a proportional 
error in POA irradiance predicted by a model. Quantification of error in measured GHI and DNI 
depends strongly on the type of instruments used to make these measurements and the errors can 
exhibit complex patterns that depend on solar angles, temperature and weather conditions (e.g., 
[30]. Often, error is reported only as a statistic derived from a lengthy data record; errors in the 
range from 2% to 8% are often cited as general guidelines for a range of irradiance instruments 
[31]. Due to the known complexity of the uncertainty in irradiance measurements and the 
intuitive understanding that errors of at least 2% will translate roughly to 2% errors in predicted 
power, we chose to omit treatment of error in irradiance measurements from our analysis. We 
note that current research efforts are intended to develop a much deeper understanding of the 
performance and uncertainty of available irradiance instruments [32]. 
 
 
5.3.2 Albedo 
 
Albedo characterizes the fraction of irradiance incident on the ground that is reflected away. 
Prediction of POA irradiance includes a term quantifying the ground-reflected irradiance (Eq. 
(32)). Our uncertainty quantification for POA irradiance (Section 3.1) and uncertainty and 
sensitivity analyses are conditional on a constant, assumed albedo value 0.2a = , which is typical 
for PV systems [27]. In our prior work [1] we demonstrated that uncertainty in albedo over the 
range from 0.1 to 0.3 has a minor effect on POA insolation and concluded that uncertainty in 
albedo would not be a major influence on uncertainty in AC energy. 
 
 
5.3.3 Soiling 
 
Accumulated soil on the face of a PV module reduces the irradiance reaching the module’s cells 
to less than the POA irradiance. Characterization of power loss due to soiling as a function of 
time is complex (e.g., [33], [34]); soiling losses rates are dependent on material composition, 
local weather, PV array construction and solar angles; monthly loss rates exhibit significant 
variation [35]. Few models are available (e.g., [36]) and the available models generally comprise 
a constant soiling loss rate without a more detailed accounting for variation in factors that affect 
soiling.  
 
Measurements of soiling rates exhibit relatively large uncertainties. Soiling rates can be 
estimated by comparing short-circuit current measured for two modules (or reference cells), one 
kept clean and one allowed to soil, operated outdoors side-by-side. During our work to 
characterize uncertainty, we obtained one such data set comprising measured short-circuit 
current for an appropriate pair of modules over a period of several months. However, the soiling 
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rates in Albuquerque, NM are relatively low, and the systematic trend that would indicate soiling 
was generally obscured by variability in the measured short-circuit current. The variability could 
be the result of variation in solar spectrum for which we attempted to account using the effective 
irradiance model described in Section 2.4, Step 2. Uncertainty in this effective irradiance model 
may be as great as a few percent of measured current (e.g., Figure 22) even during clear sky 
conditions. Such variability is likely to obscure the effect of the minor amount of soiling 
occurring at the test location. 
 
It is generally understood and accepted that the effect of soiling is to reduce the irradiance 
reaching a module cells. Careful laboratory measurements have shown a linear relationship 
between soiling areal density and the reduction in irradiance in which the slope is related to the 
composition of the soil [37]. Thus it stands to reason that uncertainty in soiling will convey 
proportionally to uncertainty in electrical current and thus to power. Because uncertainty in 
measurement of soiling losses is relatively high (e.g., [35]) compared with uncertainty in other 
models we have considered, it is reasonable to conclude that uncertainty in soiling losses is likely 
to be as influential on uncertainty in annual energy predictions as are the other models identified 
as influential (e.g., translation to POA irradiance and conversion from POA irradiance to 
effective irradiance.) 
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6. CONCLUSIONS 
 
We have completed an uncertainty and sensitivity analysis for modeling AC energy from 
photovoltaic systems. We considered a single system comprising 2493 FirstSolar modules 
connected to a 250 kW DC to AC inverter, located at Albuquerque, NM. We quantified 
uncertainty in the following modeling steps: 

− Translation from measured GHI, DNI and DHI to POA irradiance; 
− Estimation of effective irradiance (i.e., irradiance converted to electrical current); 
− Prediction of cell temperature from measured air temperature and wind speed; 
− Production of DC voltage and current from the module; 
− Estimation of array DC power loss due to module mismatch and to maximum power 

point tracking inaccuracy; 
− Estimation of DC-to-AC conversion efficiency. 

Due to the complexity and correlations among each model’s parameters, we adopt an approach 
where we characterize the uncertainty in a model’s output by quantifying the distribution of each 
model’s residual, i.e., the difference between the model’s prediction and the true value, rather 
than the traditional approach of quantifying uncertainty in each model’s input parameters.  
 
We found that the overall uncertainty in predicted PV system output, i.e., daily energy, to be 
relatively small, on the order of 1%. We considered four alternative models for the POA 
irradiance modeling step; and found that variance in predicted PV system output is not greatly 
dependent on the choice of one of these models. However, we found that all POA irradiance 
models exhibited a systematic bias of upwards of 4% that depends on location, and that this bias 
translates proportionally to predicted energy. Thus, choice of a POA irradiance model implies a 
bias to some degree in the predicted output, but not a greater (or smaller) variance in the 
predictions. 
 
We performed a sensitivity analysis to relate uncertainty in the PV system output to uncertainty 
arising from each model. We found that uncertainty in the models for POA irradiance and 
effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our 
analysis indicates that efforts to reduce the uncertainty in PV system output predictions may 
yield the greatest improvements by focusing on the POA and effective irradiance models.  
 
Our analysis excludes consideration of the uncertainty in the irradiance measurements and of 
uncertainty in predictions of soiling losses. It stands to reason that uncertainty in irradiance 
measurements and in soiling convey proportionally to uncertainty in predicted system output, 
and thus, these uncertainties are as least as influential, if not more influential, than uncertainty in 
the models we have considered. 
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