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Abstract

Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat 
and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, 
all of which compromise system reliability.  Unfortunately, traditional noncontact flow methods are 
few, and have limitations of their own. We have discovered two classes of fields that can induce 
fluid vorticity without requiring either gravity or a thermal gradient.  The first class we call 
Symmetry-Breaking Rational Fields.  These are triaxial fields comprised of three orthogonal 
components, two ac and one dc.  The second class is Rational Triad Fields, which differ in that all 
three components are alternating.  In this report we quantify the induced vorticity for a wide variety 
of fields and consider symmetry transitions between these field types.  These transitions give rise to 
orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.
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 QUANTIFYING VORTICITY IN MAGNETIC PARTICLE SUSPENSIONS 
DRIVEN BY SYMMETRIC AND ASYMMETRIC MULTIAXIAL FIELDS

1.  INTRODUCTION

Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat 
and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and 
seals, all of which compromise reliability. Unfortunately, noncontact methods of inducing strong 
organized flows are few, and have limitations of their own. For example, natural convection [1–
3] requires both gravity and a destabilizing thermal gradient. Magnetohydrodynamics [1] 
requires the injection of large currents into conducting liquids and high magnetic fields. 
Thermomagnetic convection in ferrofluids [4,5] requires gravity, a destabilizing thermal gradient 
and a large magnetic field gradient, which makes scaling to large volumes challenging. A more 
flexible method that eliminated these requirements would be amenable to a broad range of 
applications.

We have discovered several classes of triaxial fields of modest strength that induce 
vigorous noncontact fluid flow in dilute magnetic particle dispersions without requiring gravity, 
a thermal gradient, or a magnetic field gradient. Such fields can create flow lattices [6], vortex 
lattices and vortex fluids [7, 8]. These induced flows have been used to direct droplet motion [9], 
create a thermal valve [10], effect active, directed wetting [7], and stimulate a variety of 
biomimetic dynamics [9]. However, at this point our understanding of these flows is based only 
on the symmetry of the multiaxial fields and this non-quantitative approach is useful only for 
certain highly symmetric fields. In this study a functional of the magnetic field is introduced that 
pertains to the measurable fluid torque densities. The purpose of this study is to investigate the 
degree to which this functional conforms to the wide range of observed phenomena, to 
demonstrate that it conforms to the many predictions of symmetry theory, and to use this 
functional to make predictions where symmetry theory cannot be applied.

1.1. Symmetry Theory Background

The symmetry theories we have developed are for two classes of fields that induce vorticity, each 
of which is comprised of three orthogonal components. The first class we call symmetry-
breaking rational fields [7,8]. These fields employ two alternating components and one dc 
component. The frequencies of the ac components form a rational number l:m, where l and m are 
relative primes, so either one or both are odd. The second class of fields we call rational triads 
[11], which differ in that all three components are alternating. Once again the frequency ratios 
are rational numbers, such as 1:2:3. For both field classes it can be shown that the dynamic fields 
have the symmetry of vorticity and thus have the parity required to allow deterministic fluid 
vorticity and flow reversal.

The primary goal of the symmetry theories is to predict whether deterministic vorticity 
can occur and if so, to predict the direction of the fluid vorticity vector and the field changes 
required to reverse the sign of the vorticity without changing its magnitude. For symmetry-
breaking rational fields the predictions are that the vorticity axis is parallel to the odd axis unless 
both axes are odd, in which case it is parallel to the dc field. Only if the vorticity is around an ac 
axis does reversing the dc field reverse the flow, but changing the phase of the high frequency 
(m) component by 180°/l (l ≤ m) always reverses the flow. These predictions have been 
experimentally confirmed for all fields investigated [8].
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For rational triads the symmetry theory predicts that vorticity occurs around the field 
component whose reduced frequency has unique numerical parity (e.g., the “2” in 1:2:3). In the 
case where all reduced frequencies are odd (e.g., 1:3:5) the dynamic field does not have the 
symmetry of vorticity, so it is not possible to make predictions about flow with this approach. 
Symmetry theory also predicts the phase changes required to reverse flow at constant magnitude. 
These predictions have also been confirmed for the fields we have investigated [11].

Symmetry theory has some limitations. First, it is not possible to make predictions for 
fields whose Lissajous trajectories are not highly symmetrical. For symmetry-breaking fields 
these 2-d trajectories occur at particular phase angles between the two ac components. For 
example, for a 1:2 field these special phase angles (applied to the high frequency component) are 
0°, 90°, 180°,...  In all cases there are four distinct Lissajous trajectories that can be treated out of 
this 1-d set of continuous phases. All other phase angles cannot be treated. For rational triads the 
symmetric Lissajous trajectories can be obtained by applying the phase angles 0°, 90°, 180°,… to 
each of the three frequencies in any combination. It turns out that this creates only 16 distinct 3-d 
Lissajous trajectories that can be analyzed out of the 2-d set of independent phase angles (there 
are only two independent phases for three frequencies since the zero of time is unimportant).

A second limitation of symmetry theory is the inability to make any kind of estimate of 
the magnitude of the torque density created within a magnetic particle dispersion subjected to a 
multiaxial field. Intuitively, it is reasonable that a 1:2 symmetry-breaking field will create greater 
vorticity than a 13:20 field, but there is currently no method of justifying this belief. Even more 
disconcerting is the inability to deal with the effect of small frequency changes. For example, the 
symmetry-breaking field 150:100 factors to 3:2, so vorticity is predicted to occur around the 
high-frequency field axis. But if the low frequency is increased to obtain 150:101 the low 
frequency axis becomes odd so vorticity should now occur around this axis. But 150:101 can be 
viewed as a phase-modulated 3:2 field, so we expect to observe oscillating vorticity around the 
high frequency axis, which is indeed the experimental observation. Symmetry theory cannot 
address this oscillating flow.

Finally, symmetry theory cannot address the utter peculiarity of the origin of these flows. 
There is just something strange about predicting vorticity for fields that in general are non-
circulating. Yet these flows can be quite vigorous. In fact, the symmetry theory only shows that 
these flows are allowed and cannot make any statement about whether they should or should not 
occur. For these reasons it is desirable to have a physically reasonable method that for any given 
field can produce a torque density vector that produces vorticity. One approach is to simulate the 
system microscopically. This would lead to an understanding of the microscopic magnetic 
particle dynamics as well as addressing the issues raised above, but such an approach would be 
extremely time-consuming. A second approach is to develop a closed-form theory of the 
microscopic particle dynamics that can at least be numerically integrated. A third approach is to 
use physical insight and previous results to develop a functional that produces the torque vector: 
This is the approach we have taken as a first step on the path to quantifying vorticity in any 
multiaxial field.

1.2. Torque Density Functional

A physically meaningful functional must conform to all of the above-mentioned predictions of 
the symmetry theories and yet must also conform to various experimental observations. These 
observations include the finding that the torque density in a particle suspension exposed to a 
particular field is independent of particle size, liquid viscosity, and the magnitude of the field 
frequencies, provided that the Mason number is below a critical value that permits particle 
chaining. For the restricted case of a “vortex field,” which consists of a rotating field to which an 
orthogonal dc field is applied, an expression has been derived for the suspension torque density 
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that is based on the analysis of volatile particle chains that lag in phase behind the field [12]. 
This is a phase lag problem in three dimensions for particle chains whose size is determined by 
various instabilities that lead to fragmentation. This theory successfully accounts for all of the 
experimental observations on vortex fields, the result being 

(1)  1
12
 p0M 2 sin2 f  cos2 f  for  f  45

where  is the particle volume fraction, 0 is the vacuum permeability, M is the particle  p

magnetization, and f is the angle the field vector makes to the dc field. For this case the Mason 
number is defined as , where  is the field frequency. Eq. 1 is valid when this Mn  9 (20M 2 )

Mason number is less than ~0.02 for balanced vortex fields, those having equal rms field 
components ( ). In the case of linear magnetic polarization the particle magnetization tan f  2

for a dilute suspension is given by where  is the intrinsic susceptibility of a  pH0  p  3
magnetic sphere comprised of a material whose relative permeability greatly exceeds that of the 
liquid, which is the typical case for soft ferromagnetic particles. In short, the specific torque 
density is simply proportional to the energy density of the field.  p 0H0

2

The vortex field is a very simple case because it admits a steady-state solution. For other 
multiaxial fields, such as 1:2:dc the field magnitude is not constant and the axis about which 
instantaneous field rotation occurs is not so easily described. If we make the approximation that 
the instantaneous field energy density gives the instantaneous torque density then all that remains 
is dealing with the direction of the instantaneous torque vector. As a second approximation this 
torque direction is taken to be the direction about which the instantaneous field rotates, 

, in other words this vector is normal to the instantaneous rotation 

plane of the field. If the torque is indeed caused by particle chains lagging the field, then this is a 
good approximation when the phase lag is small. The torque density functional M is thus 

.      (2)M  M(s)ds
0

1  where 

Here s = ft is the reduced time, f is a frequency, and h is the reduced field. For symmetry 
breaking fields the reduced field is

(3)h(t)  H0 (t)
H0

 sin(l  2 ft l )x̂ sin(m 2 ft m )ŷ c
2

ẑ

l and m are relative primes and by convention l ≤ m. The rms reduced field is . (For 2 c2 2
a balanced field, where all rms field components are equal c = 1.) For the rational triads we 
restrict our attention to such balanced fields, so

                 (4)h(t)  sin(l 2 ft l )x̂ sin(m2 ft m )ŷ sin(n2 ft n )ẑ

In this case the rms reduced field is  and to be definite l ≤ m ≤ n. The predicted torque 3 / 2
density is related to the dimensionless torque density functional by .T  const  p0H0

2M
This expression may be viewed as an ansatz, not a theory per se, however it produces 

many useful results that are in accord with experiment and also can be used to successfully 
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predict unexpected effects that we have observed in experiment. Some of these predictions were 
sufficiently strange that we literally ran down to the lab to verify them, and verify them we did, 
as will be discussed below.
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2. EXPERIMENTAL

The magnetic particle suspension consisted of molybdenum-Permalloy platelets ~50 m across 
by 0.4 m thick (Novamet Corp.) dispersed into isopropyl alcohol at a low volume fraction. The 
uniform triaxial ac magnetic fields were produced by three orthogonally-nested Helmholtz coils, 
operating in series resonance with appropriately-configured capacitor banks, two of which 
employ a computer-controlled fractal design [13]. For the 1:3:5 rational triad field studied in this 
work the fundamental frequency was 50 Hz and all three induction field components were 
150 Grms. The three field components were phase-locked via two Agilent/HP function 
generators (equipped with Option 005), allowing for stable control of the phase angle of each 
component. (If the field components are not phase-locked there will be a very slow phase 
modulation between the components due to the finite difference in the oscillator frequency of 
each function generator, preventing meaningful studies of the phase angle.)

To quantify the magnitude of the vorticity, the torque density of the suspension was 
computed from measured angular displacements on a custom-built torsion balance. In this case 
the suspension (1.5 vol%) was contained in a small vial (1.8 mL) attached at the end of the 
torsion balance and suspended into the central cavity of the Helmholtz coils via a 96.0 cm-long, 
0.75 mm-diameter nylon fiber with a torsion constant of ~13 N·m rad−1.
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3. RESULTS AND DISCUSSION

3.1. Computations for Symmetry-Breaking Fields

The first issue that must be addressed is whether the functional conforms to the predictions of 
symmetry theory. The case of a 2:3:dc field with both phase angles set to zero is given in Fig. 1. 
Recall that vorticity must occur around the high frequency (y) axis in this case. In these figures 
the three components of the integrand of M(s) and its integral are given as functions of the 
reduced time. This integral corresponds to the rotation of a body subject to this time-dependent 
torque density. Along both the x and z axes the integrands are perfectly symmetric around zero, 
so the integral over one cycle is zero and the average slope of the integral, which is proportional 
to the average torque density, is thus zero. Along the y axis the integral is asymmetric, and the 
integral has a finite average slope and torque density. So this particular case conforms to the 
predictions of symmetry theory. In fact, even the predicted fluctuations in the torque can be 
observed experimentally as a jittery torque signal.
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Figure 1.  Instantaneous values of the computed torque functional
are given for a 2:3:dc symmetry-breaking field. The integral of these functions corresponds to the rotation of a free body 
subjected to this torque. A persistent rotation only occurs around the y axis, which is indeed the prediction of symmetry theory. 
The time-averaged torque density functional is the slope of the integral. It is this slope that pertains to measurement, since the 
field frequencies are typically in the audio range, generally above 48 Hz in our laboratory and frequently much higher, and so 
the fluctuations only give rise to rapid fluctuations of the needle in our torsion fiber apparatus.
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3.2. Dependence on Phase and DC Field

The computed torque density has a strong dependence on the relative phase between the ac field 
components, as well as on the magnitude of the dc field. This dependence is shown in Fig. 2 for 
the y axis torque created by the 2:3:dc field. At zero dc field the torque functional is zero, in 
accordance with symmetry theory for even, odd fields, but for finite dc fields the torque is non-
vanishing, is periodic on the interval 180°, and can be reversed at constant magnitude by any 90° 
shift of the high frequency phase, in agreement with both symmetry theory [7] and experiment 
[8]. Moreover, symmetry theory shows that reversing the dc field reverses the torque for even, 
odd fields and the torque functional also shows this reversal. In general, for the field l:m 
symmetry theory shows that when plotted against the high-frequency phase the torque curve is 
periodic on the interval 360°/l and reverses at constant magnitude for phase shifts of 180°/l.

Figure 2.  Computed torque density as a function of the high frequency phase for the 2:3:dc field. 
The dc field is relative to the rms amplitude of either of the ac field components.

Odd:odd fields differ in that vorticity is symmetry allowed even in the absence of the dc field 
component and therefore must not reverse upon dc field reversal. Computations for the 1:3 field 
do indeed show that the torque functional does not vanish in the absence of a dc field, but grows 
stronger as the dc field increases and cannot be reversed by reversing the dc field. This suggests 
the possibility of torque when the dc field is replaced by an ac field, a subject discussed below. 
However, the experimental situation is complicated by the fact that in the absence of the dc 
component the particles experience a time-averaged interaction that can be described as a 
negative dipolar interaction, causing the particles to form into parallel stationary sheets [14–16] 
(like baklava), instead of forming the volatile chains that give rise to vorticity. Because of this 
competing effect, fluid vorticity does require the presence of the dc component, at least for 
spherical particles. For platelets made of soft ferromagnetic materials the situation is more 
complex: Although stationary sheets can form in a biaxial field under some circumstances (e.g., 
very high frequency, very high viscosity, low field), flow instabilities typically occur in the form 
of a square lattice of antiparallel flow columns normal to the plane of the field [6]. When these 
columns form in an odd:odd field there is pronounced vorticity as well, the axis of which is 
parallel to the flow columns. At higher platelet loadings a normal-field instability can occur that 
causes the particle dispersion to rise up as a ridge, within which a lattice of flow columns can be 
observed [see Fig. 4 in Reference 6]. The vorticity in the absence of a dc field can be easily 
confirmed by detuning one of the field components to create a phase modulation that periodically 
reverses the vorticity. The ridge then sloshes back-and-forth in response to the oscillating 
vorticity, which brings us to the next issue: field heterodyning.
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3.3. Heterodyning
A more interesting problem is that of heterodyning, which occurs when one of the 
frequencies is detuned to create a modulation of phase and flow reversal. In Fig. 3 are 
presented computations for the case 101:150:dc. Because this is a modulation of 2:3:dc it 
is expected that a periodic torque around the y axis will occur, and this is indeed observed 
in the component My(s). More importantly, the time-average of this torque is zero, in 
conformity to symmetry theory. However, symmetry theory allows a finite time-average 
torque around the x axis, and although this torque is quite small, the slope can be seen in 
the data in Fig. 3(b).

          
Figure 3. When a 2:3:dc field is detuned field to 101:150:dc 

the heterodyne beating creates periodic flow reversal around the y axis, which is indeed observed in the laboratory. (top) The 
torque functional demonstrates this flow reversal and shows that the peak torque density is expected to be the same as for the 
non-heterodyned field. However, symmetry theory shows that for the 101:150:dc field the average torque can be non-vanishing 
only around the x axis. For this field the torque functional shows that around the y axis does indeed average to zero and a small 
but finite net torque does occur around the x axis, as shown at bottom.

3.4. Torque Density for Fields of Increasing Complexity 
As the irreducible ratio of the field frequencies requires larger integers to represent, both 
experiment and intuition indicate that the suspension torque density diminishes, though 
symmetry theory is uninformative on this point. To examine this issue we have considered a few 
particular sequences of irreducible rational numbers. The first two sequences arise in 
investigations of the fractional quantum Hall effect [17] and serve as useful examples here as 
well. Both of these sequences approach 1/2, one from above [k/(2k − 1), k = 1,2,…] and one from 
below [k/(2k + 1), k = 1,2,…]. All of these calculations are for balanced fields and the phase 
angle between the field components (either x or y will do) is varied to find the maximum of the 
torque functional.

The dependence of |M| on the denominator of these ratios is shown in Figs. 4(a) 
and 4(b). For the sequence approaching ½ from above the torque vacillates between the high 
frequency and dc field directions, in agreement with symmetry theory, and falls off 
asymptotically as the inverse of the number of domains N in the relevant Lissajous curve, given 
by . Fields such as 21:41 therefore give rise to very small torques in N  lm (l 1)(m1)
comparison to something like 2:3. For the sequence approaching ½ from below, Fig. 4(b), the 
behavior is similar, with the odd:odd fields showing somewhat greater torque. 
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Figure 4. The maximum of the torque functional as a function of phase 

is plotted versus the relative denominator frequency for rational number sequences approaching ½ from above and below.  
Multiplying these peak torques by the number of domains in the 2-d Lissajous plots shows an approach to an asymptote, 
indicating an algebraic decay.  The alternation in the torque axes are predicted by symmetry theory as well. (bottom) 
Experimental torque data for rational number sequences approaching ½ from above and below show the alternation of the 
vorticity axis between the high frequency and dc field axes, although the relative magnitude of the torque around each axis is 
reversed from the trend predicted by the functional. In both cases the magnitude of the torque is observed to decay rapidly as 
the number of Lissajous domains increases.

Both of these sequences were investigated experimentally, with the torque data shown in 
Figs. 4(c) & (d). The experimental torque values display the alternation of the vorticity axis 
between the high frequency and dc field axes, in accord with the torque functional and symmetry 
theory. Furthermore, an oscillatory trend in the relative magnitudes of the torques between the 
two vorticity axes is also observed; however, the trend in the relative magnitudes is reversed 
from that predicted by the functional. The reason for this discrepancy is not clear. Finally, the 
overall magnitude of the torque is observed to decay rapidly with increasing denominator 
frequency, corresponding to an increasing number of Lissajous domains.

Two sequences approaching unity were investigated as well. The first consists of 
irreducible ratios containing an even integer, [k/(k + 1), k = 1,2,…], and the second consists of 
only odd numbers, [(2k − 1)/(2k + 1), k = 1,2,…]. Fig. 5(a) shows that for the even, odd field 
sequence there is an oscillation between the torque being around the low and high frequency 
axis, as expected from symmetry theory, and that the maximum torque is again asymptotically 
scaling as the inverse number of domains in the Lissajous plot. For odd:odd fields the torque is 
predicted to occur only around the dc field direction and once again it falls off as the inverse 
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number of domains, Fig. 5(b), but the amplitude is much larger for any given domain number 
than for the other cases investigated.

Figure 5. The maximum of the torque functional as a function of phase 
is plotted versus the relative denominator frequency for even:odd and odd:odd frequencies approaching unity. Multiplying these 
peak torques by the number of domains in the 2-d Lissajous plots shows an approach to an asymptote, indicating an algebraic 
decay. The odd:odd torques are expected to be especially strong. (bottom) Experimental torque data for even, odd ratio 
approaching unity. An oscillatory series of torques are produced whose vorticity axis alternates between the high and low 
frequency components. The magnitude of the torque is observed to decay rapidly as the number of Lissajous domains 
increases. 

Experimental torque data were also collected for the even, odd sequence approaching 
unity, Figs. 5(c) & (d). In accord with the predicted data from the functional in Fig. 5(a), the 
experimental torque values display an oscillatory behavior as the overall magnitude rapidly 
decays with increasing denominator frequency. The oscillations in torque correspond to the 
vorticity axis alternating between the high and low frequency components. However, as was 
observed with the sequences approaching ½ from above and below, the trend in the relative 
magnitudes between the two vorticity axes is reversed from that predicted by the functional. The 
odd:odd ratio approaching unity was also investigated, Fig. 5(d), in which case the torque only 
occurs around the dc field axis and falls off rapidly with increasing denominator frequency. 

Finally, neighboring terms in a Fibonacci sequence are relative primes and so make 
sequences of irreducible rational numbers. We investigated the sequence 1:1, 1:2, 2:3, 3:5, 5:8, 
8:13,… This sequence approaches the inverse golden ratio. The maximum torque functional for 
this sequence is plotted in Fig. 6. The vorticity axis is observed to form the repeated axis 
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sequence dc, low, high, which is once again in accord with symmetry theory. Once again the 
torque falls off as the inverse number of domains in the Lissajous plots. 

Figure 6. The Fibonacci sequence creates a periodic transition 
between all three field axes and once again the peak torque falls off as the inverse of the number of domains. 

3.5. Flow Reversal

In a previous publication [8] we reported a very strange observation for a 1:2 field. After 
applying the ac fields the dc field was slowly ramped up, which caused fluid vorticity to initiate 
and progressively increase. As the field was progressively increased further the vorticity slowed 
down, stopped, and then reversed direction. Symmetry theory cannot address this issue, but can 
the torque functional shed light on this? In Fig. 7 calculations are shown for a 1:2 field over a 
range of dc field strengths, ranging from c = 0 to 1.25 (see Eq. 3). Flow reversal occurs at 
roughly c = 0.75, which is commensurate with experimental observations of surface flow [8]. We 
pursued this issue by investigating many different symmetry-breaking fields and for all fields of 
the form odd:odd + 1 that we have investigated flow reversal is indicated. We can find no other 
fields where the torque functional indicates flow reversal. 

Figure 7. For all of the odd:odd+1:dc fields we have investigated (1:2, 3:4,…) 
the torque functional indicates flow reversal with increasing field.  Flow reversal seems to be unique to this class of fields.
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3.6. Inducing Vorticity with Biaxial Fields?

It is quick and easy to investigate a lot of ideas with the torque functional, including ideas 
that might be difficult to screen experimentally. Symmetry-breaking rational fields consist of 
three orthogonal components and thus are three-dimensional fields. Is it possible to initiate 
strong vorticity with fields confined to a plane? Take for example the biaxial field in the x-y 
plane with frequency ratio 2:3. Recall that this field produces vorticity around the y axis when a 
dc field is applied along the z axis. If instead a dc field is applied along the y axis, which is the 
odd axis, the torque functional indicates torque around the z axis, Fig. 8. The dependence of the 
torque functional on phase angle approaches a square wave, which is striking. The z axis is a C2 
symmetry axis for this case when one considers the equivalency of the field and its converse and 
the other two axes are antisymmetric under a 180° rotation. Because this symmetry is shared by 
vorticity around the z axis this observation could have been anticipated. Experiments on platelet 
suspensions do indeed confirm this prediction. On the other hand, if a dc field is applied along 
the x axis the torque functional predicts that vorticity will not occur, and it is notable that all 
three axes are C2 axes for the field and its converse, which is not the symmetry of vorticity.

Similar observations apply to the 1:2 field: when a dc field is applied along the odd axis 
(which in this case is the low frequency axis) the torque functional indicates torque around the z 
axis. When a dc field is applied along the even axis the functional predicts no torque. Again, this 
behavior could have been anticipated from the symmetry of the trajectories. It would appear that 
all even, odd fields are capable of producing a z axis torque when a dc field is applied along the 
odd field component.

Figure 8. When a dc field is applied along the high frequency axis of a 2:3 field 
the resulting biaxial field produces torque around the normal to the field plane.

As discussed above, odd:odd fields produce torque around the z axis even in the absence of a dc 
field, because odd:odd fields possess the symmetry of vorticity, with the z axis being the C2 axis 
of symmetry. Applying a dc field along either of the ac components does not change this 
symmetry and does not appreciably alter the dependence of the torque functional on phase angle. 
Odd:odd fields do not seem to be interesting as regards the addition of in-plane dc fields. 
However, suspensions of spherical particles have a strong tendency to form particle sheets, and 
the dc field component reduces this tendency, allowing the particles to form the chains that 
presumably give rise to the torque.
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3.7. Rational Triads

The experimental investigation of the torque generated by rational triads is time 
consuming because there are two independent phase angles. If torque measurements are made at 
10° intervals for each of the two phase angles over 1200 measurements are required. At roughly 
5 minutes per measurement that requires 100 hrs. of continuous work. Any new ideas about 
rational fields are therefore tough to sort through, especially those that might lead to off-axis 
vorticity (see below), which could triple the measurement time, since measurements would in 
general have to be made along all three field directions. In contrast, it is a matter of much less 
than a minute to compute the torque functional for the same set of phase angles. These results are 
sufficiently useful to guide experimental work. In the following we will explore the torque 
density functional for the specific cases of the four classes of rational triads, three of which we 
have previously investigated experimentally [11].

In previous work we have shown that there are four classes of rational triads [11]. The 
first is even, odd, odd and 1:2:3 is the simplest example of this class. Symmetry theory shows 
that this field produces vorticity around the even axis. The second class is even, even, odd fields 
with even:even factoring to even:odd. A simple example of this class is 2:3:4 and symmetry 
theory shows that vorticity is around the odd axis for this class (i.e., “3” in this case). The third 
class is even, even, odd with even:even factoring to odd:odd and once again symmetry theory 
predicts vorticity around the odd axis. The example of this class that was experimentally 
investigated in our previous paper is 1:2:6. Finally, the fourth class is odd:odd:odd, for which 
symmetry theory could not make predictions, simply because fields of this class do not have the 
symmetry of vorticity. These fields can be treated by the torque density functional, however, 
which we will find predicts off-axis vorticity for the example field 1:3:5.

The symmetry theory for rational triads is based on those 3-d Lissajous trajectories that 
have highly symmetric projections on faces normal to each of the three field directions. These 
symmetric 3-d trajectories can be expressed by assigning to each of the three sine terms in Eq. 4 
one of the phases 0°, 90°, 180°, 270°, corresponding to sine, cosine, −sine, −cosine. There are 
thus 4 × 4 × 4 = 64 symmetric 3-d Lissajous trajectories that can be treated by symmetry theory. 
These 64 trajectories can be classified into 4 groups of 16. In each of these groups the magnitude 
of the torque density is fixed, but 8 of the trajectories give clockwise flow and 8 give 
counterclockwise. In addition to predicting the vorticity axis symmetry theory also predicts these 
groups and the relative vorticity sign for each trajectory within each group.

The 1:2:3 triad—Calculations for the 1:2:3 field show that vorticity does indeed occur around 
the even axis. In Fig. 9 calculations are presented for the torque functional as a function of each 
possible set of two independent phase angles, (1, 2), (2, 3) and (1,3). Of course, all of 
these data sets contain the same information and can be related to each other by a change of 
variables. For the 1:2:3 field the equivalent phase angles are

.(1, 2, 0), (1 
1
22, 0,  3

22 ), (0, 2  21, 31)
In the 1, 2) plane one lattice vector that defines the unit cell (a vector that preserves 

torque density) is seen from Fig. 9(a) to be A=(0°, 180°). Substituting this phase shift into Eq. 4 
(with ) gives3  0

(5)h(t)  H0 (t)
H0

 cos(l s l )x̂ sin(m s m )ŷ cos(n s )ẑ

where . The torque equivalence of the fields [−C, S, C] {abbreviation for [−cos(1s), s  s 90
sin(2s), cos(3s)]} and [S, S, S], is in accord with symmetry theory, as shown in Table 5 of 
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Reference 11. The second lattice vector is B = (120°, 60°). The change of variables 
leads to [C, S, −C], which is also shown by symmetry theory to be equivalent to [S, S, s  s30

S]. Experimental data need only be taken over this unit cell, which is only 1/6-th the computed 
area. The lattice vectors are those phase changes that preserve vorticity. To reverse vorticity at 
constant magnitude requires a phase change of (60°, 120°).

Figure 9. The torque functional correctly predicts torque 
around the y axis for the 1:2:3 field. Here this torque density is plotted as a function of the three possible sets of phases.

It is interesting to examine how the unit cell transforms in other data planes. For the (1, 
3) plane the lattice vectors A and B become (270°, 90°) and (90°, −90°), which is the rather 
large and experimentally awkward unit cell observed in Fig. 9(b). In the (2, 3) plane the lattice 
vectors A and B transform to (180°, 0°) and (−180°, 360°) to create the unit cell apparent in Fig. 
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9(c). (Of course, a simpler choice for the unit cell is the lower half of the plane.) In any case, the 
torque functional can determine which pair of phase shifts leads to a unit cell suitable for 
experimental investigation, and avoids the issue of taking redundant data. In the (1, 3) plane 
flow reversal at constant magnitude requires a phase shift of (90°, 90°) and in the (2, 3) the 
required phase shift is (0°, 180°).

The torque functional can also be computed for the exact phases of all of the 64 
symmetric 3-d Lissajous trajectories presented in Table 5 of Reference 11. These computations 
show that within each group of 16 fields the torque magnitude is indeed constant and the 
computed relative vorticity signs (CW or CCW) are in agreement as well.

The 2:3:4 triad — In this case the torque functional shows torque around the odd axis (“3”), in 
accord with the predictions of symmetry theory. The equivalent phase angles are 

and in the (2, 3) plane lattice vectors are (2, 3, 0), (2 
2
33, 0,  4

33), (0, 3 
3
22, 22 )

A=(0°, 180°) and B=(90°, 45°), Fig. 10(a). These phase shifts transform [S, S, S] to [S, −S, S] 
and [S, −C, −S], respectively. Table 1 of the Electronic Supplementary Information (ESI) for 
Reference 11, shows that symmetry theory shows the equivalence of [S, S, S], [S, −S, S], and [C, 
−S, −S]. Moreover, torque functional calculations for the 64 symmetric Lissajous trajectories 
within this table are in agreement with the vorticity magnitude and sign groupings.  Flow 
reversal at constant magnitude can be achieved by the phase change (0°, 90°).

The lattice vectors A and B become (120°, 240°) and (60°, −60°) in the (2, 4) plane and 
the unit cell in this case is shown in Fig. 10(b). Flow reversal at constant magnitude can be 
achieved from the phase change (0°, 180°). In the (3, 4) plane the lattice vectors become (180°, 
0°) and (90°, 180°) and a unit cell corresponding to these vectors is shown in Fig. 10(c). The 
simplest flow reversal vector in this plane is (90°, 0°).

Previously reported experimental data were collected in the (2, 3) plane, which was 
perhaps not the best choice. The symmetry of these data reflect that of the torque functional, but 
both the shape of the maxima and their exact locations differ somewhat.

The 1:2:6 triad — This is the final example of a rational field for which we previously collected 
experimental data. Once again the torque functional demonstrates torque around the axis 
predicted by symmetry theory, which in this case is the odd axis. The computed magnitudes and 
the signs of the vorticity are in accord with the predictions of symmetry theory given in Table 2 
of the ESI for Reference 11. In the (1, 6) plane the lattice vectors are (0°, 360°) and (90°, 0°), 
which transform [S, S, S] to [S, S, S] and [C, S, S] respectively. Table 2 of the ESI for Reference 
11 shows that symmetry theory predicts that the torque density will be invariant for these fields. 
Flow reversal at constant magnitude can be achieved with the phase change (0°, 180°). The 
equivalent phase angles are . In the (1, 2) plane (1, 0, 6 ), (1 

1
66, 

1
36, 0), (0, 21, 6  61)

the lattice vectors transform to (60°, 120°) and (90°, 0°). In the (2, 6) plane the lattice vectors 
become (0°, 360°) and (180°, 540°). The unit cells for each of these representations are evident 
in Fig. 11. Previously reported experimental data were taken in the (1, 6) plane. These data 
reflect the symmetry of the torque functional, but the peak torques occur at somewhat different 
phase angles, demonstrating the limitations of the torque functional.
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Figure 10. The torque functional correctly predicts torque around the x axis
 for the 1:2:6 field. Again the torque density is plotted as a function of the three possible sets of phases.

The 1:3:5 triad—Odd:odd:odd fields do not have the symmetry of vorticity and so we could not 
conclude anything about the torque created by these fields in our previous paper [11]. However, 
some interesting comments can be made about such fields. Recall that for symmetry-breaking, 
odd:odd fields the vorticity is invariant to the direction of the dc field. This fact implies that if 
the dc field is replaced by an alternating field fluid vorticity will still occur around the same axis.  
Indeed, odd:odd:dc and odd:odd:even both produce vorticity around the z axis. However, by the 
same logic odd:odd:odd fields should produce vorticity around all axes, so the situation is one of 
competing amplitudes, which is the domain of the torque functional.
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For the 1:3:5 field the torque functional predicts torque around all field directions, so the 
net torque will be off axis. The computed torques around the x, y, and z axes are shown in Fig. 
12. Under the qualitative reasoning of the previous paragraph torque around the x axis is 
produced by the 3,5 components. The torque functional peaks at 0.175 for this axis. The torque 
functional around the z axis peaks at 0.081 and can be roughly thought of as being created by the 
1,3 components. Finally, the torque functional around the y axis peaks at only 0.0033 and can be 
approximately attributed to the 1,5 components. In fact, calculations for the balanced symmetry 
breaking field 1:3 produces a torque maximum of 0.163, for 3:5 the maximum is 0.067 and 1:5 
maximizes at 0.002. The torque around the y axis is too small to measure, but the other torques 
were mapped out in the (1, 5) plane, Fig. 13.

Figure 11. The torque functional predicts torque around all axes 
for the 1:3:5 field: (a) around the x axis; (b) around the y axis; and (c) around the z axis.
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Although the experimental torque data almost appear sheared or skewed compared to 
those predicted by the functional in Fig. 12(a), both sets possess the same unit cell defined by the 
lattice vectors (180°, 0°) and (60°, 120°). Despite the fact that both sets of data possess the same 
symmetry, there is a phase shift between the predicted and experimental data indicated by the fact 
that the positions of the extrema are not in the exact same location in each phase map. The origin 
of this phase offset is not clear at this time, but was also seen with previously studied rational 
triads (i.e., 1:2:3, 1:2:6, and 2:3:4) [11]. 

There is a noteworthy consequence concerning flow reversal due to the subtle differences 
between the experimental data, which appear sheared, compared to those predicted by the 
functional. Recall that the locus of points that delineate the green and red regions in these torque 
density maps are points of zero torque, and thus indicate points of flow reversal. In both the 
predicted and experimental phase maps [Figs. 12(a) & 13], points of flow reversal are indicated 
by white dots on the boundary of the unit cell. The torque functional predicts no points of flow 
reversal on the canted boundaries and two points on the vertical boundaries; whereas, 
experiments reveal two points of flow reversal on the canted boundaries and four on the vertical 
boundaries.

Figure 12. The torque functional predicts torque around all axes for the 1:3:5 field: 
(a) around the x axis; (b) around the y axis; and (c) around the z axis.
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4. SUMMARY

We have developed a functional—by using physical insight and previous results based on the 
theory of vortex magnetic field mixing—that can be used to predict the relative magnitude and 
direction of the vorticity vector in magnetic particle suspensions driven by complex, time-
dependent magnetic fields (symmetry-breaking rational fields and rational triads). We find that 
the functional predicts results that are in agreement with both the symmetry theories developed 
for these new classes of fields as well as experimental observations. Such a functional allows for 
the rapid investigation of innumerable magnetic field schemes, which can be used to direct 
future experimental work, and serves as a natural first step toward understanding the 
microscopic origins of the observed vorticity.  Experimental results are given for a wide variety 
of symmetry-breaking fields, showing that the torque density falls off rapidly as the number of 
domains in the Lissajous plot increases.  The 1:3:5 rational field was investigated 
experimentally and gives good agreement with the predictions of the torque functional.  The 
vorticity direction produced by this field cannot be predicted by symmetry theory, but the torque 
density functional shows that the vorticity axis is not aligned with any of the three field 
components, and this is indeed the experimental observation.
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CREATING ORBITING VORTICITY VECTORS IN MAGNETIC PARTICLE 
SUSPENSIONS THROUGH FIELD SYMMETRY TRANSITIONS — A ROUTE 

TO MULTI-AXIS MIXING

5.  INTRODUCTION TO VORTICITY ORBITS

We have recently reported that two types of triaxial electric or magnetic fields can drive 
vorticity in dielectric or magnetic particle suspensions, respectively.  The first type — 
symmetry-breaking rational fields — consists of three mutually orthogonal fields, two 
alternating and one dc, and the second type — rational triads — consists of three mutually 
orthogonal alternating fields.  In each case it can be shown through experiment and theory that 
the vorticity vector is parallel to one of the three field components.  For any given set of field 
frequencies only one vorticity direction is possible, but the sign and magnitude of the vorticity 
(at constant field strength) can be controlled by the relative phase angles and, at least for some 
symmetry-breaking rational fields, the direction of the dc field. In short, the locus of possible 
vorticity vectors is a 1-d set that is symmetric about zero is along a field direction. In this paper, 
we show that continuous 3-d control of the vorticity vector is possible.  The trick is to 
progressively transition the field symmetry by applying a dc bias along one of the principal axes 
of a rational triad while keeping the rms field amplitude constant along that axis.  Such biased 
rational triads are intermediate between symmetry-breaking rational fields and rational triads.  
A surprising aspect of these transitions is that the locus of possible vorticity vectors for any 
given field bias is extremely complex, encompassing all three spatial dimensions.  As a result, 
the trajectory of a vorticity vector as the dc bias is increased is complex, with large components 
occurring along unexpected directions.  More remarkable are the braided vorticity vector orbits 
that occur when one or more of the field frequencies are detuned.  These orbits provide the basis 
for highly effective mixing strategies.  Both numerical computations and experimental data are 
presented.

In this chapter we demonstrate that it is possible to use alternating triaxial magnetic 
fields to produce complex noncontact mixing in fluids seeded with very small volume fractions 
of magnetic particles.  In many mixing processes, such as those produced by stirring, fluid 
vorticity occurs around just a single axis.  This might not be the optimal approach for complex 
volumes, such as those that can occur in engineered microfluidic systems. And this might not be 
the optimal approach for heat transfer applications with complex boundaries.  We have 
discovered that dc biasing certain alternating triaxial fields produces extremely complex mixing 
processes when one or more of the field components is phase modulated.  In many cases the 
resultant vorticity vector never vanishes, but undergoes elaborate trajectories through all three 
spatial dimensions.  These trajectories can be varied over an enormous range by detuning 
multiple field components.  The results in this paper could be exploited to create entirely new 
approaches to efficient mixing and heat transfer in complex geometries.

In the last few years it has been shown that a wide variety of triaxial magnetic fields can 
produce strong fluid vorticity.  These fields are comprised of three mutually orthogonal field 
components, of which, either two or three are alternating, and the various frequency ratios are 
rational numbers. These dynamic fields generally lack circulation, in that a soft ferromagnetic 
rod subjected to one of these fields does not undergo a net rotation during a field cycle. Yet 
these fields do induce deterministic vorticity, which might seem counterintuitive. This vorticity 
is not a parity violation because the field trajectory, considered jointly with its physically 
equivalent converse, has parity. Parity occurs because the symmetry of this pair of fields is 
shared by vorticity: reversing this parity reverses flow.  An analysis of the symmetry of these 
fields enables the prediction of the vorticity axis, which is determined solely by the relative 
frequencies of the triaxial field components.  
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Changing the relative phases of the field components enables control of the magnitude 
and sign of the vorticity, and in some cases changing the direction of the dc field also reverses 
flow.  When the frequency of one of the field components is detuned slightly, a slow modulation 
of the relative phase occurs.  This heterodyning causes the flow to periodically reverse, but it 
remains on a single axis.  Such flows produce a simple form of stirring.  Certain triaxial fields 
produce unexpected changes in the direction of the vorticity vector when a dc field is applied 
along one of the ac field components, because the dc field causes a transition in the symmetry of 
the triaxial field.  Heterodyning one or more of the field components in such a biased rational 
triad field is the key to creating the aforementioned elaborate vorticity orbits.
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6. FIELD SYMMETRY TRANSITIONS

Understanding the rational for investigating field-symmetry transitions requires a little 
background.  We have discovered two methods of inducing fluid vorticity in magnetic particle 
suspensions.  In the first method two orthogonal ac components whose frequency ratio is a 
rational number are applied to the suspension.  Vorticity is induced when an orthogonal dc field 
is applied, because this field creates the parity needed for deterministic vorticity.  We have 
developed a theory of these Symmetry-Breaking Fields that predicts the direction and sign of 
vorticity as functions of the frequencies and phase. The second method is based on Rational 
Triads, fields comprised three orthogonal ac fields whose relative frequencies are rational (e.g. 
1:2:3).  These fields can also permit vorticity and we have developed a symmetry theory that 
allows us to compute the direction and sign of vorticity as functions of the frequencies and 
phases.  By progressively changing one of the ac components of a rational triad to dc we will 
generate competing symmetries that should lead to a continuous reorientation of the vorticity 
vector, providing fully 3-d control of fluid vorticity.

Our approach is based on the discovery that both ac/ac/dc and ac/ac/ac fields can generate 
fluid vorticity.  The axis around which this vorticity occurs is the critical factor for the concept of 
field-symmetry-driven vorticity transitions.  For the ac/ac/dc Symmetry-Breaking Fields the 
vorticity axis is determined by the ratio l:m of the two ac frequencies.  If l and m are relatively 
prime then at least one of these numbers is odd.  A consideration of the joint symmetry of the 
field and its converse shows that if only one of these numbers is odd the vorticity is parallel to 
the odd field component and reversing the dc field reverses the vorticity.  If both of these 
numbers are odd the vorticity is parallel to the dc field component.  For odd:odd fields reversing 
the dc field direction does not reverse the flow, which suggests that for these fields the dc field 
component can be replaced by an ac field and vorticity can still occur (the truth is a little more 
complicated—see discussion below).  In all cases the sign and magnitude of the vorticity can be 
controlled by the phase angle between the ac components.

For the fully alternating Rational Triad Fields the direction of vorticity is controlled by 
the three relative field frequencies l:m:n, where l, m and n are integers having no common 
factors.  There are four classes of such fields: I) even:odd:odd; II) even:even:odd where 
even:even can be factored to even:odd; III) even:even:odd where even:even can be factored to 
odd:odd and; IV) odd:odd:odd.  By analyzing the joint symmetries of the 3-d Lissajous 
trajectories of the field and its converse it is possible to show that the direction of vorticity is 
parallel to the field component that has unique numerical parity.  The fourth class (odd:odd:odd) 
has no component with a unique numerical parity and does not possess the symmetry required to 
predict a vorticity axis.  

Consider now the possibility of creating a continuous symmetry transition by gradually 
transitioning one of the three ac field components into a dc field, while keeping the rms field 
amplitude constant. To be definite we will let l, m, and n lie along the x, y, z components, 
respectively.  For example, if it desired to transition the z component of the field to dc the 
expression is

H0
1H0 (t)  sin(l 2 ft l )x̂ sin(m 2 ft m )ŷ 1 c2 sin(n2 ft n ) c

2





ẑ .

In this form all three field components have equal rms values and the ac to dc transition is 
effected by increasing c from 0 to 1 or from 0 to -1.  The effect of this ac-dc transition on field 
symmetry depends on both the type of rational triad and the component that is transitioned.
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6.1. Even, Odd, Odd Fields 

To be definite we consider the odd:even:odd field 1:2:3, which is shown in Fig. 13(a) for one 
particular set of phases.  For this class of fields the vorticity axis is along the even direction, 
which in this case is the y axis.  If the y field component is continuously transitioned to dc the 
vorticity axis will remain in the y direction (see the symmetry-derived rules given above), so no 
rotation of the vorticity axis is anticipated because field symmetry is preserved in this transition.  
In this particular case the sign of the final vorticity is independent of the sign of the dc field, but 
is dependent on the phase angles of the ac field components, so a vorticity-reversal transition 
should be possible wherein the fluid stagnates at some point (value of c) in the transition.  

Transitioning the odd field components to dc is much more interesting.  If the x 
component is fully transitioned to dc a change of field symmetry occurs that causes the vorticity 
vector to reorient from the y to the z axis. The progression of this symmetry change can be seen 
in Figs. 13(a-d).  For intermediate values of the dc amplitude (0<|c|<1) the field and its converse 
do not exhibit the symmetry of vorticity, but the continuous nature of the field transition suggests 
a continuous reorientation of the vorticity axis nevertheless: it would seem unphysical for the 
vorticity to simply vanish for intermediate dc field amplitudes.  An interesting aspect of this 
particular field transition is that the final vorticity sign is dependent on the dc field direction.  
This means there are four possible vorticity axis transitions: one wherein the vorticity axis vector 
transitions from +y to +z, one from +y to –z, one from –y to –z and one from –y to +z.  It is 
reasonable to assume that the vorticity vector rotates in the y-z plane in all cases, but we will find 
that this is not the case and very strong vorticity can emerge along the x axis for intermediate dc 
amplitudes.  This unexpected out-of-plane vorticity is investigated below by using the torque 
density functional to compute the torque density for these fields.

The same considerations hold when the z component is continuously transitioned to dc, 
only in this case the final vorticity axis is along x.  We thus expect to be able to orient the 
vorticity vector anywhere in the x–y plane, but we will see that a strong contribution to the 
vorticity occurs around the z axis, which is very surprising.

To summarize, for even, odd, odd fields applying a dc field along one odd ac component 
causes the vorticity to rotate from the even component direction to the other odd component.  
Applying a dc field along the even component does not cause a change in the vorticity direction.
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Figure 13. The field symmetry transition is illustrated for the 1+dc:2:3 triaxial field.  
In the top left plot the field trajectory and its converse are shown with zero dc bias.  The C2 symmetry axis of this rational triad 
is the y axis, which is the vorticity axis.  The x and z axis are antisymmetric under a 180° rotation. The top right plot has a 50% 
dc bias along the x axis and does not possess the symmetry of vorticity.  The bottom plot has 100% dc bias, so the ac 
amplitude is zero.  This is now a symmetry-breaking rational field and the z axis is the C2 symmetry axis and the vorticity 
direction.

6.2. Odd, Even, Even Fields where Even:Even Factors to Odd:Even 

The simplest field of this type is 1:2:4.  For these fields the vorticity is around the odd axis, 
which is x in this case.  As a result, if the y or z component of the field is transitioned to dc the 
direction of the vorticity will not change. The sign of the vorticity might change, however, 
because in this case it is dependent on the sign of the dc field.  Thus a symmetry-driven 
transition that gives rise to flow reversal can be effected by a proper selection of the dc field 
sign.  

If the x component transitions to dc the vorticity axis will reorient from the x to the y axis, 
with the vorticity sign again dependent on the dc field sign.   In this case it is expected that the 
vorticity vector can be continuously oriented in the x–y plane, but once again we will see that the 
torque density functional predicts a surprising component along the z axis during this transition.

In summary, for odd, even, even fields applying a dc field along either even component 
will not change the orientation of the vorticity axis, but may cause it to reverse. Applying a dc 
field along the odd component will cause the vorticity to rotate from the odd field axis to the odd 
axis that arises from factoring even:even.



36

6.3. Odd, Even, Even Fields where Even:Even Factors to Odd:Odd 

For this class of fields, such as 1:2:6, the vorticity is around the odd field axis, which is along x 
in this case.  If one component of such an odd:even:even field is fully transitioned to dc there are 
three possible outcomes: dc:odd:odd, odd:dc:even, odd:even:dc.  In each case the symmetry rules 
show that the vorticity is around the x axis (underlined).  Therefore no change in the orientation 
of the vorticity is expected, though its sign and magnitude might change during the transition.  In 
other words, such fields produce robust vorticity that is not strongly affected by stray dc fields.  
Note that only if the even field is transitioned does the final vorticity sign depend on the sign of 
the dc field.

6.4. Odd:Odd:Odd Fields 

The final case of odd:odd:odd fields is interesting, because any field component that is 
transitioned to dc becomes the vorticity axis.  This suggests that applying a dominant dc field in 
any direction will induce vorticity around that field, enabling fine control of the vorticity 
direction.  But reality is a bit more complex, as discussed below.

6.5. Torque density functional

In the previous chapter we proposed a measure of the torque density of a triaxial field that is 
based on both theory and experiment.  This functional was found to conform to all of the 
predictions of the symmetry theories but can also be applied to those cases where the trajectories 
of the triaxial fields do not possess the symmetry of vorticity, such as the field-symmetry-driven 
vorticity transitions that are the focus of this paper.  The functional is given by 

J    J  (s)ds
0

1  where (2)

where the dependence on the phase angles is indicated.  The torque density is related to this by 
T    const  p0H0

2J   , where 0  is the vacuum permeability and  p  is the particle volume 

fraction.
Applying this functional to the 1:2:3 field produces some surprising results.  For zero dc 

field the vorticity is parallel to the y axis (along the “2” field component) and for the full dc case, 
dc:2:3, it is parallel to the z axis, both in accordance with symmetry theory.  For intermediate 
values of c a simple ‘rule of mixing’ consistent with a field-squared effect is

J  (c)  (1 c2 ) J  (0) ŷ c2 J  (1) ẑ . (3)

This expression confines the vorticity vector to the y–z plane, which seems reasonable, but how 
does this expression compare to the predictions of Eq. 2?  It is clear that inserting Eq. 1 into Eq. 
2 does not result in an expression in which the ac and dc terms are separable, but it is not clear 
how important this is. 
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x torque, 1+dc:2:3, dc=0.5

y torque, 1+dc:2:3, dc=0.5

z torque, 1+dc:2:3, dc=0.5

Figure 14. Torque components along all three axes for a 1+dc:2:3 field with a c=0.5.
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6.6 Predicted torque densities along the three field components

To obtain an appreciation for the complexity of this symmetry transition we have plotted 
in Fig. 14 components of the torque density computed from Eq. 2 as functions of the phase 
angles 1 and 3 for c=0.5.  It is surprising to see that there is a component along the x axis, and 
in fact this is the dominant component, with a maximum value of 0.16 (arb. units) as compared 
to 0.09 for the y axis and 0.12 for the z axis.  

The nature of the continuous vorticity transition from the rational triad 1:2:3 to the 
symmetry-breaking rational field dc:2:3 is illustrated in Fig. 15 by plotting the torque density for 
a square lattice of points in the 1-3 plane, separated by 10° along each cardinal direction.  For 
the rational triad (c=0) the computed torque vectors are along the y axis, so changing the phase 
angles merely changes the magnitude and sign of the vorticity.  But even when a small dc bias is 
applied along the x axis the torque vectors have comparable components along both the x and z 
axes. Changing the phase angles thus enables a change in both the magnitude and direction of the 
fluid vorticity through all three dimensions.  As the dc field increases, the torque density data 
expands, eventually attaining a shape reminiscent of a pendulum ride and finally collapsing onto 
the z axis when the field along the x axis no longer contains an ac component: this is the 
symmetry-breaking-field limit, where c=1.  

The full range of 3-d control of the torque density is given in Fig. 16, where torque 
density data for numerous values of the dc bias are plotted, again for the square lattice of phase 
angles referred to in Fig. 15. The torque density has significant components in the x and z 
directions and by proper selection of the dc bias and phase angles vorticity can be created along 
essentially any direction.  This complex set of vorticity vectors has many implications for mixing 
and heat transfer, as we will see.

It is interesting to determine how the torque density produced at any given pair of phase 
angles evolves as the dc bias is progressively increased. To this purpose we have investigated 
phase angles along the first three transects shown in Fig. 17.  This figure serves as the color key 
for the curves in Fig. 18.  Recall that each of these curves must start on the y axis and terminate 
on the z axis. 

In the top left figure is the result of using the simple mixing law of Eq. 3 to estimate the 
torque density during the field symmetry transition from 1:2:3 to dc:2:3.  Here each line 
represents a different pair of phase angles along the first transect shown in Fig. 17. For this 
transect 1=0° and 3 increases from 0° to 360° by intervals of 20°. Not all colors in the key are 
shown because certain phase angles give the same curves when this mixing law is used.  
Equivalent 3 angles are (90°+n, 90°-n) and (270°+n, 270°-n) where 0°≤n≤90°. Data are for 
0≤c≤1 in intervals of 0.01.  This mixing law predicts that the torques are confined to the y-z 
plane, but the behavior predicted by the torque functional is much more complex.

When the torque functional is used to predict the torque density the result is dramatically 
different.  In Fig. 18 (top right) are shown computations for the phase angles along the first 
transect. All the colors in the key in Fig. 17 are now shown because each pair of phase angles 
produces a unique curve.  These torque density curves have substantial deviations from the y-z 
plane and in some cases the x torque is dominant. In all cases if the dc field is reversed (0≥c≥-1) 
both the x and the z torque components are reversed, which constitutes a rotation by 180° around 
the y axis. Torque density calculations for points along the second and third transects are also 
given in Fig. 18.  Once again, the x component of the torque frequently dominates.  Reversing 
the dc field (0≥c≥-1) would fill out the upper hemisphere for torque densities along the second 
transect, but would do nothing along the third transect. We conclude that, in general, increasing 
the dc bias is expected to produce a complex evolution of the vorticity.
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C=0

Rational triad field

C=0.1

 

C=0.5 C=0.7

  

C=0.9 C=1

Symmetry-breaking field

Figure 15. The nature of the continuous vorticity transition
from the rational triad 1:2:3 to the symmetry-breaking rational field dc:2:3 is illustrated.  These data are the computed torque 
functional, Eq. 2, for a square lattice of points in the 1-3 plane in Fig. 14, separated by 10° along each cardinal direction.  For 
the rational triad (c=0) the computed torque vectors are along the y axis, so changing the phase angles merely changes the 
magnitude.  When a dc bias is applied along the x axis the torque vectors fairly explode off the y axis to have significant 
components along both the x and z axes, so changing the phases angles now enables a change in both the magnitude and 
direction of the fluid vorticity.  As the dc field increases, this cloud of torque density data expands into a shape reminiscent of a 
pendulum ride, finally collapsing onto the z axis when the field along the x axis no longer contains an ac component: this is the 
symmetry-breaking-field limit, where c=1.  Field biasing thus enables continuous control over the direction of the vorticity 
direction. The tick marks on all axes are separated by 0.025.
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Figure 16. The data in Fig. 15 are presented, 
along with other values of the relative dc field amplitude, so that the full range of vorticity control can be appreciated.  
The maximum torque density amplitude in the x direction is roughly equal to that of the z direction.  Inset is a mandala 
that seems to capture the appearance of the data. It is of no other importance.
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Figure 17. The torque component along y for a 1:2:3 field 
is shown along with the color keys for the first, second, and third transects used to generate Fig. 18.
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Figure 18. Transects 
(top left) The result of using Eq. 3 to estimate the torque density during the transition from 1:2:3 to dc:2:3.  Each line 
represents a different set of phase angles along the first transect shown in Fig. 17. For this transect 1=0° and 3 
increases from 0° to 360° by intervals of 20°. Not all colors in the key are shown because certain phase angles give 
the same curves.  Equivalent 3 angles are (90°+n, 90°-n) and (270°+n, 270°-n) where 0°≤n≤90°. Data are for 0≤c≤1 
in intervals of 0.01.  The torques start on the y axis and end on the z axis and are confined to the y-z plane. The tick 
marks on all axes are separated by 0.025. (top right)  When the torque functional in Eq. 2 is used to predict the torque 
density for points along the first transect the result is dramatically different than the simple rule of mixing.  All the 
colors in the key in Fig. 17 are shown because each point gives a unique curve.  These torque curves have 
substantial deviations from the y-z plane: in some cases the x torque is dominant. If the dc field is reversed (0≥c≥-1) 
both the x and the z components of the torque are reversed. (bottom left & right) Torque functional calculations for 
points along the second and third transects during the transition from 1:2:3 to dc:2:3.  The key for the colors is given 
in Fig.17.  Again, in some cases the x torque dominates.  If the dc field component is reversed (0≥c≥-1) both the x 
and the z components of the torque are reversed, which would fill out the upper hemisphere for second transect, but 
do nothing for the third transect.



43

6.7 The prediction of vorticity orbits

Heterodyning of the applied 1+dc:2:3 field produces a rich variety of vorticity orbits that are 
both interesting and potentially useful for a number of applications.  We have numerically 
investigated these orbits for the dc bias c=0.5. In Fig. 19 are shown the simplest possible 
heterodyne orbits, taken along the four transects shown in Fig. 17. In the laboratory the first 
transect would be realized by slightly detuning the field frequency along the z axis by f.   
The second transect would be obtained by detuning the frequency of the x component.  The 
third transect requires detuning both of these field components by equal and opposite 
amounts, and for the fourth transect by equal amounts.  

The fourth transect is a bit of a disappointment, as the torque density barely changes, 
but the other transects produce striking results.  The first and second transects produce orbits 
with a net torque around the z axis (averaged over one orbital cycle) but with zero net torques 
around the other axes.  For these orbits the mixing is persistent.  The orbit for the third 
transect is interesting in that it produces zero net torque around any of the principal axes, 
which would enable complex mixing in freestanding droplets without incurring any net 
migration of the droplet. This mixing strategy would be ideal for the development of parallel 
bioassays of containerless droplet arrays, perhaps comprised of millions of droplets.  The 
fourth transect produces a non-zero net torque around the x axis alone.

The phenomenology of these vorticity orbits is much richer than indicated, Fig. 19 
being only the tip of the iceberg.  Fig. 20 shows the influence of adding a phase offset to one 
of the field components, in this case the x component, to create transects that are parallel to 
those already discussed.  The top figure shows a family of orbits obtained by transects 
parallel to the third transect in Fig. 17.  This set of orbits was obtained by adding phases from 
0-180° in increments of 10°.  The rather confined vorticity orbit in Fig. 19 grows into large 
orbits and finally collapses back into the tiny fish-shaped orbit at a phase shift of 180°, but 
reflected in the y-z plane.  

The same phase shifts were used to generate a set of orbits for a set of transects 
parallel to the second transect, generating the set of widely disparate vorticity orbits in the 
bottom plot of Fig. 19.  Adjustment of the relative phase enables a great deal of control over 
the dynamics of vorticity induced by biased rational triad fields.

Finally, we briefly investigated vorticity orbits for a few cases where the field 
frequencies, along the x and z axes, are detuned by unequal amounts, specifically by 2:1.  
These orbits, shown in Fig. 21, are really elaborate.  One can only imagine the complexity 
that would emerge if we applied phase shifts to these transects.  But the situation is bad 
enough already, so we did not pursue this topic further.  The question at this point is whether 
or not these orbits actually exist.  
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Figure 19. The heterodyne orbits 
are sensitive to the relative phase, which provides a simple means of controlling the vorticity orbits. 
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3  21

3  21

1  23

1  23

Figure 20. Complex vorticity vector orbits 
occur when the field components are detuned by different amounts.  Here we consider four simple cases that arise 
when the x and z field components are detuned by a ratio of 2:1.  Adding a constant phase shift to either field 
component will alter these orbits.  The point is that heterodyning can produce complex variations in the magnitude 
and direction of the vorticity vector.

6.8 Experimental set up

The magnetic particle suspension consisted of molybdenum-Permalloy platelets ~50 m 
across by 0.4 m thick (Novamet Corp.) dispersed into isopropyl alcohol at a low volume 
fraction. 

For the 1:2:3 rational triad field studied in this work the fundamental frequency was 
36 Hz (f in Eq. 1) and all three field components were 150 Oe (rms). The spatially uniform 
triaxial ac magnetic fields were produced by three orthogonally-nested Helmholtz coils. Two 
of these operated in series resonance with computer-controlled fractal capacitor banks.  The 
third coil was driven directly in voltage mode by a BI-90 operational amplifier.  The phase 
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shift of this coil at its operational frequency of 36 Hz was measured as +68° with a Hewlett-
Packard LCR bridge.  To compensate for this phase shift we added this phase to the signal 
output to drive the BI-90.  

The signals for the three field components were produced by phase-locked via two 
Agilent/HP function generators (equipped with Option 005), allowing for stable and accurate 
control of the phase angle of each field component. Note that if these signals are simply 
produced from separate signal generators there will be a very slow phase modulation 
between the components due to the finite difference in the oscillator frequency of each 
function generator.  And simply running two separate signal generators off the same 
oscillator does not control their phase relation.  Because all of our measurements are strongly 
dependent on phase, Option 005 is necessary.

To quantify the magnitude of the vorticity, the torque density of the suspension was 
computed from measured angular displacements on a custom-built torsion balance. In this 
case the suspension (1.5 vol%) was contained in a small vial (1.8 mL) attached at the end of 
the torsion balance and suspended into the central cavity of the Helmholtz coils via a 
96.0 cm-long, 0.75 mm-diameter nylon fiber with a torsion constant of ~13 N·m rad−1.

6.9 Results and Discussion

All of the above predictions depend on one key point: the appearance of torque along the x 
axis when a dc field is applied parallel to this axis.  Recall that this torque does not exist for 
c=0 or 1, but is only expected for intermediate values, i.e. during the symmetry transition. In 
fact, upon the application of the dc bias this torque does appear, and is strong, which came as 
no small relief.  Fig. 22 shows the measured torque density along each of the three field 
components for the the 1+dc:2:3 biased triaxial field with c=0.7, where both the ac and dc 
contributions of the biased field component have equal rms amplitudes.  These experimental 
data were taken for a square lattice of points in the phase angle plane of Fig. 17 on 10° 
intervals, so in each of these three plots there are 36x36=1296 data points. However, the 
symmetry of the data reduces the required number of measurements for each plot to a fourth 
of this, 324.   

The set of measured vorticity vectors is plotted in Fig. 23 (top).  These data can be 
compared to the computed data for the corresponding value of c=0.7 in Fig. 15. The detailed 
appearance is different, but the essential point is that the locus of points does not simply lie in 
the y-z plane, but has significant components along the x axis.  In fact, the maximum specific 
torque density (torque density divided by the volume fraction of particles) along the x axis is 
476 J/m3, which can be compared to the maxima of 1127 and 993 J/m3 along the y and z axes, 
respectively.  Heterodyning can be expected to create three-dimensional orbits that intersect 
these points.

The progression of the measured torque density as the dc field is increased from c=0 
to 1 is shown in Fig. 23 (bottom) for points taken along the third transect of Fig. 17, but with 
a phase offset of +60° applied to the x axis (36 Hz) component, to ensure a significant torque 
density around this axis [see Fig. 22 (top)].   These curves start on the y axis and terminate on 
the z axis and although they differ from the computed curves for the third transect, Fig. 18 
(bottom right), they do share the characteristic of being symmetric under a 180° rotation 
around the y axis.  Again, the essential point is that these curves are substantially different 
than the reasonable prediction given in Eq. 3 in that they are not confined to the y-z plane.
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Figure 21. Experimental torque density plots 
for the x (top), y (middle) and z (bottom) torque components. These data are for the 1:2:3 field with c=0.7.
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Figure 22.  (top) The locus of possible vorticity vectors 
for the 1+dc:2:3 biased rational triad with c=0.7.  These points span all three spatial dimensions, indicating that 
complex vorticity orbits can exist. (bottom) The evolution of the vorticity vectors taken along the third transect as c is 
increased from 0 to 1.  Each colored curve is for a different set of phase angles.  Each curve starts on the y axis and 
terminates on the z axis.  The important feature is the large torque density amplitude along the x axis.
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The vorticity orbits can be obtained by detuning one or more field components. To be clear about 
the experimental parameters the field can be written

H0
1H0 (t)  sin(s 2f1t 1)x̂ sin(2s)ŷ 1

2
sin(3s 2f3t)

1
2






ẑ

where s=ft is the reduced time. We have included the parameters  to indicate f1  and f2

detuning of the first and third field field components. The principal vorticity orbits for the 
1+dc:2:3 field, in Fig. 24, are for zero offset phase, i.e. , and correspond to the four 1  0
transects in Fig. 17, which are 

f1  0, f3  const; f1  const, f3  0; f3  f1; and f3  f1

respectively.  In Fig. 25 are shown the families of orbits that emerge when the offset phase is 
increased from 0 to 340° by 20° intervals.  Note that many of the points are the same in these 
plots (since they must be comprised of the available data points in Fig. 23), but the orbits 
interconnect these points in different ways.

The complexity of these orbits can be appreciated by one single phase modulation 
example, wherein we monitored the x component of the torque for the frequencies 36.1, 72 
and 108.2 Hz and recorded the torque density as a funciton of time.  This direction 
observation of this one component of the vorticity orbit is plotted in Fig. 26 (top), which 
shows a periodic behavior that is not a simple sinusoid.  The phase plot in Fig. 26 (bottom) 
shows strongly non-harmonic dynamics.  For this particular circumstance the variations in 
the torque density are symmetric about zero, indicating zero time-averaged vorticity, but 
there are many phase modulation cases where the vorticity never changes sign.
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Figure 23. Experimental vorticity orbits along the four transects 

shown in Fig. 17 are viewed along each field component.  Transect one is depicted in orange, transect two in green, 
transect three in violet, transect four in red.  When averaged over a cycle, transects one and two have a net z axis 
vorticity, transect four has a net x axis vorticity, and transect three has a net y axis vorticity, in concurrence with the 
predictions from the torque density functional in Fig. 19.
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Figure 24. Phase offsets significantly alter the vorticity orbits 
for each of the four transects shown in Fig. 24.   For each transect curves are presented for successive parallel 
transects at 20° intervals.
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Figure 25. For the phase modulated 1+dc:2:3 with c=0.7, 
given by the frequencies 36.1, 72 and 108.2 Hz the x axis torque is plotted as a function of cycles (top) and versus 
the time derivative of the torque (bottom) to make a phase plot.   The torque is periodic, though not a simple sinusoid, 
and the phase plot indicates a strongly non-harmonic dynamics (bottom).  For a harmonic oscillator this phase plot 
would be an ellipsoid.
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7. CONCLUSIONS

We have shown that applying a dc field parallel to a carefully chosen alternating component 
of an ac/ac/ac rational triad field can create a transition in the field symmetry.  By exploiting 
this transition we have shown through theory and experiment that we can point the vorticity 
vector in a wide range of directions comprising the full three spatial dimensions.  The 
direction of the vorticity vector can be controlled by the relative phases between field 
components and the magnetude of the dc field.  Detuning one or more field components to 
create phase modulation causes the vorticity vector to trace out complex orbits of a wide 
variety, creating very roust multiaxial stirring.  This multiaxial, noncontact stirring is 
attractive for applications where the fluid volume has complex boundaries, or is congested.  
Multiaxial stirring would be an effective way to deal with the dead zones that can occur when 
stirring around a single axis and could eliminate the accumulation of particulates that 
frequently occurs in such mixing.  But beyond the practical implications of this new 
technology there is a lot of interesting science.  A principal remaining challenge is a first-
principles, microscopic theory of the dynamics of particles in these fields that would enable 
more accurate predictions of the vorticity orbits and the other phenomena we have observed.



54



55

8. REFERENCES

1. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, 
New York, 1981), pp. 9–71.

2. A.V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics 
(World Scientific, Singapore, 1997).

3. Dynamics of Spatio-Temporal Cellular Structures: Henri Bénard 
Centenary Review, edited by I. Mutabazi, J. E. Wesfreid, and E. Guyon 
(Springer, Berlin, 2005).

4. D.P. Lalas and S. Carmi, Phys. Fluids, 1971, 14, 436.
5. R.A. Curtis, Phys. Fluids, 1971, 14, 2096.
6. K.J. Solis and J.E. Martin, Isothermal magnetic advection: creating 

functional fluid flows for heat and mass transfer, Appl. Phys. Lett., 2010, 
97, 034101.

7. J.E. Martin and K.J. Solis, Symmetry-breaking magnetic fields create a 
vortex fluid that exhibits a negative viscosity, active wetting, and strong 
mixing, Soft Matter, 2014, 10, 3993–4002.

8. K.J. Solis and J.E. Martin, Torque density measurements on vortex fluids 
produced by symmetry-breaking rational magnetic fields, Soft Matter, 
2014, 10, 6139–6146.

9. K.J. Solis and J.E. Martin, Complex magnetic fields breathe life into 
fluids, Soft Matter, 2014, 10, 9136–9142.

10. K.J. Solis and J.E. Martin, Multiaxial fields drive the thermal conductivity 
switching of a magneto-responsive platelet suspension, Soft Matter, 2013, 
9, 9182–9188.

11. J.E. Martin and K.J. Solis, Fully alternating, triaxial electric or magnetic 
fields offer new routes to fluid vorticity, Soft Matter, 2015, 11, 241–254.

12. J.E. Martin, Theory of strong intrinsic mixing of particle suspensions in 
vortex magnetic fields, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 
2009, 79, 011503.

13. J.E. Martin, A resonant biaxial Helmholtz coil employing a fractal 
capacitor bank, Rev. Sci. Instrum., 2013, 84, 094704.

14. J.E. Martin, R.A. Anderson, and C.P. Tigges, Simulation of the athermal 
coarsening of composites structured by a biaxial field, J. Chem. Phys., 
1998, 108, 7887.

15. J.E. Martin, E. Venturini, J. Odinek, and R.A. Anderson, Anisotropic 
magnetism in field-structured composites, Phys. Rev. E, 2000, 61, 2818–
2830.



56

16. J.E. Martin, R.A. Anderson, and R.L. Williamson, Generating strange 
magnetic and dielectric interactions: Classical molecules and particle 
foams, J. Chem. Phys., 2003, 118, 1557–1570.

17. B. Schwarzchild, Physics Nobel Prize Goes to Tsui, Stormer and Laughlin 
for the Fractional Quantum Hall Effect, Physics Today, December 1998.



57

9. DISTRIBUTION 

4 Lawrence Livermore National Laboratory 
Attn: N. Dunipace (1)
P.O. Box 808, MS L-795
Livermore, CA 94551-0808

1 MS0899 Technical Library 9536 (electronic copy)

1 MS0359 D. Chavez, LDRD Office 1911

1 MS0115 OFA/NFE Agreements 10012

1 MS0161 Legal Technology Transfer Center 11500



58




