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Abstract 

Sandia National Laboratories (SNL) has conducted an uncertainty analysis (UA) on 
the Fukushima Daiichi unit (1F1) accident progression with the MELCOR code. 
Volume I of the 1F1 UA discusses the physical modeling details and time history 
results of the UA. Volume II of the 1F1 UA discusses the statistical viewpoint. The 
model used was developed for a previous accident reconstruction investigation jointly 
sponsored by the US Department of Energy (DOE) and Nuclear Regulatory 
Commission (NRC). The goal of this work was to perform a focused evaluation of 
uncertainty in core damage progression behavior and its effect on key figures-of-
merit (e.g., hydrogen production, fraction of intact fuel, vessel lower head failure) and 
in doing so assess the applicability of traditional sensitivity analysis techniques.  

The following insights were gained from this analysis: 

1. The 1F1 UA shows that, with current modeling techniques, water injection at 15 
hours would likely have been expected to successfully cool the rubbilized 
reactor core without failure of the lower vessel head. While lower head failure 
was not ruled out by our simulated results, lower head failure was only 
predicted in approximately 40% of the MELCOR simulations. All simulations 
that resulted in lower head failure before 15 hours predict that most of the 
reactor core is no longer intact in the core region. 

2. Discrete events (e.g., valve chatter, core material relocation) reduce the stability 
of severe accident system model outputs, and can produce output variability on 
the same order as the epistemic uncertainties. This behavior makes direct 
comparisons of results (e.g., tradeoff studies) difficult to defend without a 
characterization of the uncertainty or variability in predicted results. Only inputs 
which can exhibit enough influence on output figures-of-merit to rise above the 
stability limitations of severe accident modeling can be isolated through 
sensitivity analysis alone. In this analysis molten Zircaloy breakthrough 
temperature, fuel collapse criteria, and radial solid debris relocation time 
constant were inputs that were found to meet this criterion. It should be noted 
that common LWR severe accident codes exhibit this behavior to some degree. 
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EXECUTIVE SUMMARY 
 
Volume II of the Fukushima Daiichi Unit 1 (1F1) Uncertainty Analysis (UA) provides the 
statistical background for the MELCOR simulations explored in Volume I of the 1F1 UA. Key 
insights from Volume II of the 1F1 are presented in this executive summary.   

General Insights 

As shown in the Visual Statistical Inspection portion of the Executive Summary, the 1F1 UA 
shows that, with current modeling techniques, water injection at 15 hours would likely have been 
expected to successfully quench the rubbilized reactor core without failure of the lower vessel 
head. While lower head failure was not ruled out by our simulated results, lower head failure was 
only predicted in approximately 40% of the MELCOR simulations. All simulations that resulted 
in lower head failure before 15 hours predict that most of the fuel rods (i.e., >98%) are no longer 
intact in the core region.  

Both the degree of core degradation and likelihood of lower-head failure were relatively 
independent of oxidation throughout the accident sequence. The levels of oxidation, as estimated 
by cumulative hydrogen production, early in the accident sequences (e.g., at the time of first fuel 
collapse) neither correlated positively nor negatively with the cumulative levels of oxidation at 
15 hours (i.e., the end of the simulation). Furthermore, the cumulative oxidation before the time 
of lower head failure did not correspond to the timing of lower head failure. While slower core 
degradation, as measured by the intact fuel mass fraction at the time of key bifurcation events 
throughout core degradation, corresponded to less oxidation at the end of the simulation, the 
level of cumulative oxidation at the time of the key event neither corresponded to the degree of 
oxidation before the event nor the timing of the event.    

Of the inputs considered, only a few input parameters examined in this analysis are both 
consistently statistically significant in regressions and appear in reliable, predictive regression 
models. These parameters include the temperature at which molten Zircaloy breaks through the 
structural zirconium di-oxide shell, the fuel collapse criteria, and the radial solid debris 
relocation time constant.   

Convergence 

Examination of event timing (e.g., time at first fuel collapse or time of lower plenum dryout) 
convergence shows fairly stable median estimates between the replicate samples. Outlier impact 
on the median is evident at 100 samples, especially for the conditional lower head failure timings 
which only converge over a subset (approximately 35) of the original 100 samples per replicate. 
Additionally, the replicate derived from the uniform input distributions shows a small but 
noticeable deviation (i.e., on the order a few percent) from the informed distribution replicate 
results (Replicates 1-3).  

Visual Statistical Inspection 

When conducting a statistical analysis of a large systems code, key insights can be derived from 
a rudimentary examination of figures of merit. Simple scatter plots relating sampled decay heat, 
fuel collapse criteria, and molten Zircaloy breakthrough temperature demonstrate clearly 
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distinguishable trends with hydrogen production at select times throughout the accident. Figure 
E-1 presents linear trends in both hydrogen production at lower plenum dryout, shown as the 
gray line on Figure E-1, and the timing of lower plenum dryout, shown via the color scale to the 
right of the figure, as a function of the sampled Zircaloy breakthrough temperature.  

 

 
Figure E.1 – Molten Zircaloy Breakthrough Temperature Scatterplot for Cumulative 

Hydrogen Production at Lower Plenum Dryout for Replicate 1. 

The distribution of the timing of events (e.g., main steam line failure or lower core plate failure) 
can be difficult to discern given only time histories as presented in the 1F1 UA Volume I and 
reproduced in this report in Appendix A. Cumulative Distribution Functions (CDFs) provide the 
analyst with another way to visualize the output data and provide key insights regarding accident 
progression not visible in traditional time histories.  For example, from the CDFs in Figure E.2, 
the timing of steam line failure and first fuel collapse are predicted to be intermingled events 
(i.e., some simulations experience main steam line failure before first fuel failure and others 
switch the timing of these events). This insight potentially allows the analyst to partition the 
analysis into multiple subsets which may allow for more informative analyses.  

Figure E.2 highlights that, while the timing of first control rod failure and first channel box 
failure are nearly co-incident, the hydrogen produced by the first channel box failure is over 
twice the hydrogen produced at first control rod failure. This divergence in CDF results is due to 
the rapid oxidation reaction occurring in the accident during this time period.  

The CDFs in Figure E.2 also clearly show that while experts believe that the 1F1 lower head 
failed before water injection occurred at 15 hours [ES.1, ES.2], the 1F1 UA results predict only a 
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35% chance of lower head failure given current SNL MELCOR calculations. The range of 
hydrogen generated before both lower head failure and the end of the simulation (i.e., 15 hours) 
are the same. This means that the simulations that produce the most amount of hydrogen and 
those that produce the least amount of hydrogen both resulted in lower head failure, and the 
CDFs show no noticeable differentiating trends between two event timings. These insights 
suggest that failure of the lower head in MELCOR appears to be independent of the amount of 
hydrogen, and thus oxidation energy, produced in the MELCOR simulation.   

 
Figure E.2 – Cumulative Distributions for Replicate 1 Event Timings and Corresponding 

Cumulative Hydrogen Production Before the Event Occurrence 

Automated Dynamic Regressions 

Severe accident progression involves complicated, non-linear phenomena. Thus, conducting 
regressions only at the end of the accident may fail to detect important driving phenomena 
during the actual accident progression. The 1F1 UA performed regressions for cumulative 
hydrogen production, intact fuel fraction, and mass of material ejected from the lower head to 
produce meta-models of the output variability at the occurrence of eight cliff edge events during 
the 1F1 accident. The meta-models were created using an automated stepwise algorithm, 
incorporating both linear and interaction dependencies, for both the original and rank 
transformed MELCOR outputs. An example regression table for the rank transformed 
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cumulative hydrogen data is shown in Table E.1. The beta values in the table represent the 
relative impact of the regressed trend for the input parameter defined in the table row and blank 
entries represent variables that were not regressed.  Many input parameters, e.g., effective fuel 
failure temperature and decay heat, have impacts whose influences rise and fall with the 
progression of the accident. 

As seen in Table E.1, only a select few input parameters, such as molten Zircaloy breakthrough 
temperature, were consistently resolved throughout key event timing. It was consistently noticed 
that event timings during core degradation were more easily regressed, although this insight may 
be reflective of the relative system stabilization once material has relocated to the lower head and 
most of the water has left the vessel.  

When assessing the usefulness of the regression results, three key insights became apparent. 
First, mass of material ejected from the lower head was not a feasible regression output due to 
the relatively small number of samples available for regression (i.e., 35% of the simulations 
predicted lower head failure). Second, the fraction of intact fuel occurs in quantized segments on 
the basis of the core nodalization. This discrete/discontinuous parameter violates some regression 
assumptions, thus the outputs must be scrutinized with care. Third, scatterplots were identified as 
an important tool to use in conjunction with regression model summaries for understanding and 
validating the regression results. 

Regression Validation 

Regressions are a useful tool when parsing through statistical outputs of large system codes; 
outputs of such analyses can become so large that systematic visual inspections of the output 
data can become impractical.  The variability present in the MELCOR stability results (Table E.2 
and E.3) stemming from the repeated discrete and non-linear events involved in system level 
severe accident simulations highlight why care must be taken to ensure that regression results are 
reflective of physical effects. Analyses of individual disparate sequences, as conducted in 
Volume I of the 1F1 UA, show the potential for nearly identical initial conditions to produce 
results that can provide the illusion of a significant trend. Therefore, a simple manual validation 
of physical effects suggested in the regression model is ineffective and subject to bias. 

Thus, Volume II of the 1F1 UA tested a subset of the regressions, trained on data from a given 
replicate at a given event on a given physical parameter, on corresponding data from the other 
replicates. It was consistently shown that regressions fit to the training data that have higher R2  
values did not produce regression models that were predictive when evaluated on new testing 
data. It was also shown that rank transformation of the training data lessened, but did not 
remove, the tendency of stepwise regressions to produce non-predictive meta-models that fit 
inherent variability instead of, or in addition to, physical trends. See Table E.2 and E.3 for 
comparisons between the R2 of the regressions on the training data (shaded blue) and the 
predictive effectiveness of that regression on new test data.  

Specific insights from Table E.2 and E.3 include:  
• The rank transformation of the output data for the replicate sampled from uniform 

distributions (RepU) allows for either: 1) the stepwise regression algorithm to produce a 
more predictive meta-model of output variability or 2) the transformation of the 
distribution of output data variability into a predictable arrangement.   
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Table E.1 – Mass of In-Vessel Hydrogen Produced, Beginning of Simulation Until Event, Rank Transformed Data 

 First Control 
Rod Failure 

First Channel Box First Fuel Failure Main Steam 
Line 

Lower Core 
Plate 

Lower Plenum 
Dry-out 

Lower Head Failure End of Simulation 

R2 / R2
adj / F-stat vs. Const. / pval .26 / .24 / 16.7 / 0 .05 / .04 / 5.02 / .027 .23 / .21 / 9.78 / 0 .42 / .38 / 11 / 0 .53 / .5 / 21.1 / 0 .52 / .5 / 25.8 / 0 .4 / .37 / 10.5 / .0003 .17 / .16 / 10.1 / .0001 

Intercept 0.84 0.62 0.54 0.104 0.24 0.28 0.08 0.40 

Time Constants for Radial (solid) 
Debris Relocation (s) [1]    𝛽𝛽𝑖𝑖 = 0.174 

𝛽𝛽1,4 = −0.871 𝛽𝛽𝑖𝑖 = −0.189    

Time Constants for Radial (liquid) 
Debris Relocation (s)         

dT|dz Model, Time Constant for 
Averaging Flows (s)  𝛽𝛽𝑖𝑖 = −0.227       

dT|dz Model, Characteristic 
Coupling Time (s)         

dT|dz Model, Relative Weight of 
Historical Flow (s)         

Molten Zircaloy Break-Through 
Temperature (K) [2]    𝛽𝛽𝑖𝑖 = −0.867 

𝛽𝛽2,3 = 1.082 𝛽𝛽𝑖𝑖 = 0.545 𝛽𝛽𝑖𝑖 = 0.669 𝛽𝛽𝑖𝑖 = 0.467 𝛽𝛽𝑖𝑖 = 0.373 

Molten Cladding (pool) Drainage 
Rate (kg/(m*s)) [3]   𝛽𝛽𝑖𝑖 = −0.222 𝛽𝛽𝑖𝑖 = −0.727 

𝛽𝛽2,3 = 1.082     

Fraction of Strain at Which Lower 
Head Failure Occurs         

Scaling Factor for Candling Heat 
Transfer Coefficients         

Fraction of Un-oxidized Cladding 
Thickness Initiating T. M. 

Weakening (m) 
      𝛽𝛽𝑖𝑖 = 0.363  

Debris Quenching Heat Transfer 
Coefficient to Pool (W/(m*m*K)) 

[4] 
   𝛽𝛽𝑖𝑖 = 0.238 

𝛽𝛽1,4 = −0.871 𝛽𝛽𝑖𝑖 = −0.187 𝛽𝛽𝑖𝑖 = −0.52 
𝛽𝛽4,5 = 0.632  𝛽𝛽𝑖𝑖 = −0.185 

Debris Falling Velocity (m/s) 𝛽𝛽𝑖𝑖 = −0.199        

Minimum Debris Porosity         

Time At Temperature - Effective 
Failure Temperature (K) [5]   𝛽𝛽𝑖𝑖 = 0.4  𝛽𝛽𝑖𝑖 = 0.513 𝛽𝛽𝑖𝑖 = −0.039 

𝛽𝛽4,5 = 0.632   

Decay Heat Integrated to 10 
hours (J) 𝛽𝛽𝑖𝑖 = −0.46715  𝛽𝛽𝑖𝑖 = −0.234  𝛽𝛽𝑖𝑖 = −0.151    

Note: This table is included in the executive summary for illustrative purposes only. 𝛽𝛽𝑖𝑖 represents the regression coefficient for the variable associated with the 
row of the cells and 𝛽𝛽1,4 represents the regression with coefficient for the terms with [1] and [4] in the first column (i.e., Time Constant for Solid Debris 

Relocation Debris Quenching Heat Transfer Coefficient to Pool respectively). For additional explanation of how to interpret the results in this table, please see 
Section 6.1 Interpreting Regression Dependency Tables in the main report.
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• Replicate 1 (Rep1) produced the highest R2 for the training data but performed with the 
poorest predictive merit when the Rep1 meta-model was applied to testing data from 
Rep2, Rep3 and RepU. 

• Combining Rep1 with Rep2 did not produce a more predictive regression meta-model 
than regressions trained with Rep2 data alone. Rep1 may include significant outliers 
which distort the stepwise regression results.    

Table E.2 – Comparison of Predictive Ability of Linear Regressions, with Interaction 
Terms, for Cumulative Hydrogen Production at the Time of Lower Plenum Dryout 

 
Rep1 Rep2 Rep3 RepU Rep12 

Rep1 0.48 0.30 0.31 0.01 0.41 

Rep2 0.27 0.40 0.40 0.23 0.41 

Rep3 0.30 0.34 0.34 0.19 0.29 

RepU 0.26 0.37 0.36 0.45 0.36 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  0.27 0.34 0.36 0.14 0.32 

R2
adj 0.46 0.39 0.33 0.43 0.40 

 
Table E.3 – Comparison of Predictive Ability of Rank Regressions for Cumulative 

Hydrogen Production at the Time of Lower Plenum Dryout 

 
Rep1 Rep2 Rep3 RepU Rep12 

Rep1 0.52 0.40 0.36 0.37 0.44 

Rep2 0.24 0.38 0.36 0.34 0.44 

Rep3 0.31 0.34 0.38 0.30 0.30 

RepU 0.25 0.39 0.39 0.41 0.35 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  0.27 0.37 0.37 0.34 0.32 

R2
adj 0.50 0.37 0.36 0.40 0.43 

 
Though regression model assumptions are difficult to validate, the extent to which the 
assumptions are violated affects the likelihood that the model will produce a reliable explanation 
of system variance. A meta-model that violates the assumptions of the regression technique 
employed can still provide insight, but inference based upon the model should be done with care. 

MELCOR Stability 

A stability analysis was also performed on the 1F1 UA MELCOR deck. Figure E.3 plots the 
spread of cumulative hydrogen production as a function of maximum time step defined in the 
input deck. The scatter is weighted toward a maximum time step of 0.01 since a log-uniform 
distribution was sampled for this stability study. The timing of lower plenum dryout is 
represented by the color bar on the right side of the plot.  As can be seen by Figure E.3, neither 
the event timing, which can vary by approximately 1 hour, nor the cumulative amount of 
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hydrogen produced before lower plenum dryout, which can vary by over 225 kg, are shown to be 
a strong function of maximum time step. It should also be noted that a constant variability in 
output can be experienced over both small and large ranges of selected maximum time step. 
Thus, MELCOR stability can be estimated over a smaller range of maximum time steps which 
may prevent computational resources from being wasted without the need to execute the code 
with very small time steps (i.e. less than 0.01 to 0.05), thereby precluding excessive CPU time.  

Additionally, the impact of MELCOR stability on event timing was assessed and compared to 
the timing variability computed by the full 1F1 UA, using Figure E.4. Core degradation 
variability due to MELCOR stability was smaller for the three perturbation studies [i.e., sub-
figures b), c) and d)]; the span timing of first fuel collapse and lower core plate failure occurred 
over 2 and 3 hours respectively for Replicate 1 of the full UA [i.e, sub-figure a)]. These events 
were compressed into an approximately one hour time window for the perturbation studies. The 
separation of the span of late phased event timings is more closely aligned between the 1F1 UA 
and perturbation results. Thus, it is extremely important to assess the impacts of code stability 
when informing late-phased accident management with system codes.       

  
Figure E.3 – Variability of Cumulative Hydrogen Production at the Time of Lower Plenum 

Dryout, and the Timing of Lower Plenum Dryout, as a function of Maximum Allowable 
Time-Step  



xxx 

 
Figure E.4 – Event Timing CDFs for a) Replicate 1, b) Small Input Perturbation, c) 

Maximum Time Step Perturbation, d) Flow Path Shuffle Perturbation 
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1 INTRODUCTION 
1.1 Background 
Sandia National Laboratories (SNL) conducted uncertainty analyses (UA) with a MELCOR [1.1] 
representation of the 1F1 reactor. This representation was previously developed for an accident 
reconstruction investigation jointly sponsored by the U.S. Department of Energy (DOE) and 
Nuclear Regulatory Commission (NRC) [1.2]. However, this study only examined a handful of 
inputs and boundary conditions, and the predictions yielded fair agreement with plant data and 
release estimates. Further MELCOR Fukushima simulation efforts [1.3][1.4][1.5] proceeded at 
SNL in a similar fashion–that is, only analyzing a few simulations–and these simulations resulted 
in better agreement with plant data and release estimates.  

The severe accidents at Fukushima Daiichi units involve high levels of uncertainty in accident 
progression and consequence, as evidenced by the numerous international accident analyses that 
all predict various degrees of plant damage and radioactivity releases [1.2][1.7][1.8][1.9] 
[1.10][1.11]. Because each analysis employs different plant nodalizations, physics models (if 
different codes are used), and boundary conditions, every analysis predicts unique accident 
progressions with varying degrees of agreement with data. Inevitably, the inherent uncertainty 
and complexity of severe accidents forces analysts to adjust inputs and boundary conditions in 
order to “match” data. The SNL Fukushima UA project intends to improve upon these previous 
forensic analysis methods by taking a more methodical approach to severe accident uncertainty. 

A thorough forensic understanding of these complicated accidents entails rigorous uncertainty 
analyses. More than two years after the accidents, many events and operator actions remain 
unknown. Moreover, key severe accident phenomena are not fully understood; thus some current 
computational models involve high degrees of uncertainty. Uncertainty analyses are required to 
gain a better understanding of the Fukushima accidents because these accidents are of critical 
importance to the future of nuclear safety and the use of nuclear power. These analyses also 
provide an opportunity for validation of severe accident codes, which build confidence in the 
codes and in the guidance derived from their results with respect to reactor decommissioning and 
severe accident management. 

 

1.2 Purpose and Relationship to 1F1 UA 
Volume I of this report series discusses the MELCOR model used for the 1F1 UA and provides a 
deterministic examination of the variability in the 1F1 MELCOR output due to Monte Carlo 
sampling of input parameter distributions. Volume I also conducted perturbation studies to 
determine the robustness of the output distribution to: 1) small changes in input parameters, 2) 
changes in dtmax, and 3) changes in the order in which flow path information is read by 
MELCOR.  

Volume II of this report series discusses the input parameter uncertainties sampled in the 1F1 
UA and convergence of the output distribution, and examines various methods that can be used 
to parse results from an UA. It is hypothesized that statistical techniques, such as traditional 
regression techniques, can help sort through the large volume of output data produced by an 
uncertainty analysis and possibly provide key insights into accident progression that would 
otherwise be difficult to isolate.  
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1.3 Document Outline 
This report is comprised of 9 chapters. There contents are as follows: 

1. Introduction – Provides a high level background regarding the purpose of this report. 
2. Definition of Uncertain Input Parameters – Defines the uncertain parameters which were 

sampled for the time histories in Volume I and the subsequent statistical analyses in 
Volume II. 

3. Treatment of Output Uncertainties – Provides a high level description of how output 
uncertainties will be treated throughout the report. This is an extremely important section 
if the review of the regression chapters is to be understood.  

4. Convergence of Timing Figures of Merit (FoMs) – Demonstrates the degree of 
convergence reached by the various replicates used in the 1F1 UA.  

5. Visual Inspection of the MELCOR Statistical Outputs – Examines the UA outputs 
through visual statistical tools such as scatterplots and Cumulative Distribution Functions 
(CDFs). 

6. Automated Regression Analyses – Regressions were conducted using an automated 
stepwise algorithm, incorporating both linear and two-way interaction dependencies, for 
both the original and rank transformed MELCOR outputs. 

7. Regression Validation – Applies the regressions calculated within each replicate to data 
from other replicates to validate the regressed terms.  

8. MELCOR Output Stability – Examines the degree of output stability achieved in the 1F1 
UA by examining the output variability due to small input perturbations, changes in 
maximum allowable time step, and rearrangement of flow path order in the MELCOR 
input.  

9. Summary and Conclusions – Reviews what was learned from the 1F1 UA.  
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2 DEFINITION OF UNCERTAIN INPUT PARAMETERS 
 

Chapter 2 describes the input and output uncertainty treatment for the 1F1 uncertainty analysis. 
Section 2.1 outlines the formulation of point estimate parameters which were appropriated nearly 
identically from both previous and ongoing uncertainty studies [2.1][2.2]. Chapter 2.2 describes 
epistemic uncertainties which were modified significantly from pre-existing MELCOR UA.  
Sections 2.3 and 2.4 briefly describe the treatment of additional aleatory uncertainties, or lack 
thereof, and the major differences between the 1F1 UA and the Peach Bottom Mark I UA.  

2.1 Point Estimate Distributions for Input Uncertainties 
The uncertainty analysis presented in this report leverages uncertainty characterizations from 
previous MELCOR studies [2.1][2.2][2.3]. Table 2.1 presents the point estimates of uncertain 
parameters treated in this analysis.   

Table 2.1 presents epistemic uncertainty distributions that accomplish two goals: 

1. Represent the current understanding of physical parameter values or the effective impact 
of input approximations (e.g., the disabled eutectics sub-model within MELCOR) and 

2. Exploration of the impact of purely numerical inputs within MELCOR (e.g., numerical 
smoothing coefficients).  

Except for the tabular uncertainty distributions for decay heat (Section 2.2.2) and fuel rod time at 
temperature relationships (Section 2.2.3), the epistemic uncertainties are cast as a beta fit of 
either the original Peach Bottom distributions or updates of the Peach Bottom distributions for 
ongoing MELCOR UA work. Beta distributions were utilized for two reasons: 

1. Beta distributions are defined in the MELCOR Uncertainty Engine [2.5] and 
2. Beta distributions are flexible, thus they are able to mimic the shape of most common 

distributions while being bounded between two values.  

While beta distributions are typically bounded between zero and one, they can be shifted and 
renormalized to characterize any continuous range of potential values. This is shown in Equation 
(2-1), where LB is the lower bound, UB is the upper bound, k is the normalization constant for 
the beta distribution, 𝛼𝛼 and 𝛽𝛽 are shape parameters, and X is the uncertain variable.   

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑋𝑋|𝐿𝐿𝐿𝐿,𝑈𝑈𝑈𝑈,𝛼𝛼,𝛽𝛽) = 𝐿𝐿𝐿𝐿 +
1
𝑘𝑘
�

(𝑋𝑋 − 𝑈𝑈𝑈𝑈)
𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿

�
𝛼𝛼−1

�
(𝑋𝑋 − 𝑈𝑈𝑈𝑈)
𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿

�
𝛽𝛽−1

 (2-1) 

The Fukushima UA recasts all of the uncertain parameters in beta distributions either by 
matching the median and mode of the original distribution to the beta distribution or by moment 
matching via the Beta Maximum Likelihood Estimates (BMLE). For most distributions, the 
mean and mode of the original distribution were matched to the mean and mode of the beta 
distribution. This approach was selected over the BMLE approach because the BMLE approach 
does not preserve the mode of the initial distribution. Many of the transformed distributions were 
originally cast as triangular distributions, where the mode, not the mean, value was defined. 
Thus, transformations that disregard the mode were not desired. The BMLE approach was used 
to transform the log-uniform distribution for the debris fall velocity because the quality of the 
mean/mode beta fit was poor.  
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Table 2.1 – List of Epistemic Uncertain Parameters 

Parameter Nomenclature Uniform 
Distribution 

Shifted Beta 
Distribution 

(Mode/Mean) 

Shifted Beta 
Distribution 

(BMLE) 
Source 

Time constants for radial (solid) debris relocation SC1020_1 LB = 180 s 
UB = 720 s 

LB = 180 s 
UB = 720 s 
α = 1.33 
β = 1.67 

LB = 180 s 
UB = 720 s 
α = 2.08 
β = 2.56 

[2.2] 

Time constants for radial (liquid) debris relocation SC1020_2 LB = 30 s 
UB = 120 s 

LB = 30 s 
UB = 120 s 
α = 1.33 
β = 1.67 

LB = 30 s 
UB = 120 s 
α = 2.08 
β = 2.59 

[2.2] 

dT/dz sub-model, time constant for averaging flows  SC1030_2 LB = 0.09 s 
UB = 0.11 s 

LB = 0.09 s 
UB = 0.11 s  
α = 1.1 
β = 1.1 

LB = 0.09 s 
UB = 0.11 s  
α = 1 
β = 1 

Assumed 

dT/dz model, characteristic time for coupling dT/dz temperatures to 
average CVH volume temperature when dT/dz model is active  SC1030_4 LB = 8 s 

UB = 12 s 

LB = 8 s 
UB = 12 s  
α = 1.1 
β = 1.1 

LB = 8 s 
UB = 12 s  
α = 1 
β = 1 

Assumed 

dT/dz model, maximum relative weight of old flow in smoothing 
algorithm involving time constant for averaging flows  SC1030_5 LB = 0.5 s 

UB = 0.7 s 

LB = 0.5 s 
UB = 0.7 s  
α = 1.1 
β = 1.1 

LB = 0.5 s 
UB = 0.7 s  
α = 1 
β = 1 

Assumed 

Molten Zircaloy break-through temperature SC1131_2 LB = 2100 K 
UB = 2540 K 

LB = 2100 K 
UB = 2540 K 
α = 2.77 
β = 2.33 

LB = 2100 K 
UB = 2540 K 
α = 2.58 
β = 2.05 

Section 
2.2.1 

Molten cladding (pool) drainage rate SC1141_2 LB = 0.1 kg/m-s 
UB = 2.0 kg/m-s 

LB = 0.1 kg/m-s 
UB = 2.0 kg/m-s 
α = 1.11111 
β = 1.8889 

LB = 0.1 kg/m-s 
UB = 2.0 kg/m-s 
α = 1.24 
β = 2.26 

[2.2] 

Fraction of strain at which lower head failure occurs SC1601_4 LB = 0.16 
UB = 0.20 

LB = 0.16 
UB = 0.20 
α = 1.1 
β = 1.1 

LB = 0.16 
UB = 0.20 
α = 1 
β = 1 

Assumed 
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Table 2.1 – List of Epistemic Uncertain Parameters, Cont. 

Parameter Nomenclature Uniform 
Distribution 

Shifted Beta 
Distribution 

(Mode/Mean) 

Shifted Beta 
Distribution 

(BMLE) 
Source 

Fraction of un-oxidized cladding thickness at which thermal-
mechanical weakening of oxidized cladding begins  cor_rod_2 LB = 0.0005 m 

UB = 0.0015 m 

LB = 0.0005 m 
UB = 0.0015 m 
α = 1.1 
β = 1.1 

LB = 0.0005 m 
UB = 0.0015 m 
α = 1 
β = 1 

Assumed 

Scaling factor for candling heat transfer coefficients  
cor_cht_hfzrXX 

LB = 0.9 
UB = 1.1 

LB = 0.9 
UB = 1.1 
α = 1.1 
β = 1.1 

LB = 0.9 
UB = 1.1 
α = 1 
β = 1 

Assumed 

Debris falling velocity cor_lp_4 
log-uniform dist. 
LB = 0.01 m/s 
UB = 1.0 m/s 

LB = 0.01 m/s 
UB = 1.0 m/s  
α = 0.0587 
β = 0.4763 

LB = 0.01 m/s 
UB = 1.0 m/s  
α = 0.85 
β = 1.14 

[2.2] 

Minimum debris porosity (Lipinski dryout model); SC1244(1) 

Min. porosity used in flow blockage Ergun pressure drop 
equation; SC4413(5) 

Min. hydrodynamic volume fraction; SC4414(1) 

Minimum porosity to be used in calculating the flow resistance in 
the flow blockage model; SC1505(1) 

Minimum porosity to be used in calculating the area for heat 
transfer to fluid; SC1505(2)1 

minpordp LB = 0.01 
UB = 0.2 

LB = 0.01 
UB = 0.2 
α = 1.1 
β = 1.1 

LB = 0.01 
UB = 0.2 
α = 1 
β = 1 

Assumed 

Fuel rod time-at-temperature relationship TaT (1)2 (1) (1) Section 
2.2.3 

Time dependent core decay heat dch (2) (2) (2) Section 
2.2.2 

                                                 
1 Minimum debris porosity is defined in many locations of the MELCOR input. For consistency, the same distribution and subsequent sampled values are applied 
to each sensitivity coefficient.  
2 Fuel rod time-at-temperature and time dependent decay heat are tabular uncertain variables, not point estimates. See the appropriate section for more 
information regarding the characterization of these variables.  
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The distributions that were initially defined as uniform distributions are still uniform 
distributions under either the mean/mode or the BMLE transformation (i.e., the shape parameters 
α = 1 and β = 1 correspond to a uniform distribution). Uniform distributions are typically used 
when the upper and lower bounds of the parameter can be estimated, but no maximum likelihood 
can be ascertained. It should be noted that while not initially defined by the analysis, uniform 
distributions both impart a mean and standard deviation and imply significant likelihood to the 
tails of the parameter distribution. In these cases, the authors used expert judgment to reassign 
the shape parameters from α = 1 and β = 1 to α = 1.1 and β = 1.1 to de-emphasize the tails of the 
uniform distributions.       

2.2 Development of Select Epistemic Uncertainties  
This section describes the epistemic distributions used in the Fukushima UA that deviate 
significantly from previous SNL MELCOR-UA research. The parameters described in this 
section are significantly modified from those previous studies and thus the approaches taken to 
modify these parameters are documented in this section. 

2.2.1 Molten Zirconium Breakthrough Temperature 
As the fuel temperature rises, the cladding undergoes many chemical and structural transitions. 
As modeled in MELCOR using best practices [2.9], once the temperature reaches 1073K the fuel 
rod cladding ruptures and releases fission products from the fuel-cladding gap. As the 
temperature increases (starting as low as 1100 K) the steam rapidly oxidizes the cladding, 
forming a ZrO2 shell. Above 2100 K, the zirconium the does not fully oxidize forms an α-phase 
ZrO fluid, which is held up by the ZrO2 shell. The ZrO also migrates through the fuel pellet 
cracks and forms a (U,Zr)O2-x mixture through slow dissolution of the irradiated UO2 fuel. The 
thickness of the ZrO2 is primarily a function of: 

• Steam supply of oxygen to the α-ZrO, thus increasing the ZrO2 shell thickness, 
• Oxygenation of the α-ZrO from the ZrO2 shell, thus decreasing the shell thickness3, and   
• Cladding temperatures, which heavily influence reaction rates (i.e., higher temperature 

=> faster reactions) 

It should be noted that the α-ZrO can also extract oxygen from the UO2 pellet. Schematic 
representations of the process approximated by the molten Zircaloy breakthrough temperature 
(MZBT) can be seen in Figure 2.1 and Figure 2.2. When Zircaloy-melt breaks through the ZrO2 
shell, it also removes some dissolved uranium and fission products and stops the heat generation 
from the zirconium oxidation reaction. This dissolution process is simulated in the SOARCA 
study by assuming 0.2 kg of UO2 is dissolved for every 1 kg of Zirconium melt generated by the 
candling process.4 

                                                 
3 Does not occur below 2273 K [2.6] 
4 A more mechanistic approach to determining dissolved UO2 content could be taken by the eutectics model, if this 
model did not lead to code instabilities. 
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Figure 2.1 – Schematic of Zircaloy Melt Breakthrough (Not to Scale) 

Using structural models of the oxide shell, it has been shown [2.6] that high temperature failure 
(a.k.a. flowering) of the ZrO2 shell can occur through two primary failure modes: 

1. Oxide shell grows too thick under intermediate rate temperature ramps in Kelvin (K) per 
second (s)   �~3 𝐾𝐾

𝑠𝑠
< d𝑇𝑇

d𝑡𝑡
< ~6 𝐾𝐾

𝑠𝑠
� and the surface stress exceeds the flexural limits. The 

stress causes cracks in the ZrO2 shell, which are filled with melt. The melt then oxidizes, 
causing more cracks. Eventually, the oxide shell expands to the point that the 
incompressible melt applies enough internal pressure to rupture the oxide shell.5 Results 
of simulations with the code S/Q [2.6] have been conducted and the simulation results are 
presented as Figure 2.3 and Figure 2.4. 

2. Oxide shell erodes and is too thin under rapid temperature ramps to contain the melt 
�d𝑇𝑇
d𝑡𝑡

> ~6 𝐾𝐾
𝑠𝑠
� . Thinning of the oxide shell is caused by internal erosion by the melt. This 

failure mode can be seen in Figure 2.5. 
3. The last possibility is that the oxide shell completely oxidizes the melt. This is predicted 

to occur under extremely slow temperature ramps {dT
dt

<~3K
s
}.  

 

                                                 
5 Small variations in pellet diameter can dramatically change the predicted failure temperature.  
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Figure 2.2 – Depiction of Molten Zirconium Breakthrough (Figure 4-7, [2.7]) 

 

 
Figure 2.3 – Flowering Failure of ZrO2 Shell at a Heat-Up Rate of 4K/s  

with Pellet Diameter of 9.0 mm (Figure 14, [2.6]) 

T = 2393 K 
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Figure 2.4 - Flowering Failure of ZrO2 Shell at a Heat-Up Rate of 4K/s  

with Pellet Diameter of 9.1 mm (Figure 16, [2.6]) 

 

 
Figure 2.5 - Flowering Failure of ZrO2 Shell at a Heat-Up Rate of 8 K/s (Figure 15, [2.6]) 

The epistemic uncertainty for the MZBT was previously characterized by a triangular distribution 
because only three points (a lower bound, a most likely value, and an upper bound) are available 
[2.1]. The lower bound is defined as the Zircaloy melting temperature of 2100 K. The upper 
value of 2540 K was selected in the hydrogen uncertainty study [2.1] based on qualitative 
consideration of α-ZrO phase diagram and observations/analyses of the PHEBUS experiments 

T = 2223 K 

T = 2372 K 
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[2.9]. The mode is 2400 K, the value used in the deterministic SOARCA analysis and the default 
MELCOR value [2.4]. The selection of a triangle distribution suggests that a most probable value 
for the uncertain parameter is the MELCOR recommended value (mode), with decreasing 
likelihood for values away from the most probable.  

Subsequent to the current analysis, reference [2.10] was considered to improve the uncertainty 
distribution for MZBT. Figure 2.3 - Figure 2.5 show the results of high temperature fuel/cladding 
simulations and predicted two failure modes: (#1) erosion of the shell and (#2) rapid expansion 
of the shell which is subsequently stressed by unoxidized melt. Two simulations were conducted 
for the later failure mode to show variability due to pellet diameter uncertainties. During the 
updating process, the two failure modes were assigned equal weight (i.e., without knowledge of 
the transient conditions, it is assumed that failure modes #1 and #2 are equally likely to occur) 
and the two simulation results for failure mode #1 were assigned equal weight. The new data and 
their associated weights can be seen in Table 2.2. These weights will be used in equation (2-10) 
to create the new epistemic MZBT uncertainty distribution. 

 
Table 2.2 – Molten Zircaloy Breakthrough Temperature Estimates from S/Q Simulations 

Failure Mode Figure # MZBT Temperature Weight 

#1-Surface stress exceeds the flexural limits. Figure 2.3 2393 K 0.5 

#1-Surface stress exceeds the flexural limits. Figure 2.4 2223 K 0.5 

#2- Oxide shell erodes and is too thin Figure 2.5 2372 K 1 

  

During the 1F1 UA, it is believed that the triangular distribution prescribed too much certainty 
on the MELCOR default value for MZBT, given the limited information available. In order to 
move the information density away from the MELCOR default and toward the tails of the 
distribution, the Fukushima UA study converted the triangular distribution into a beta 
distribution which preserved the mode and mean of the triangular distribution. A BMLE 
transformation, which preserves the mean and the standard deviation of the original distribution, 
simultaneously shifts the mode away from the default MELCOR value and increases the 
confidence in that new mode. 

The epistemic MZBT distribution found in Table 2.1 was created by combining the original 
epistemic uncertainty distribution defined above with the simulation data in Table 2.2 using 
Bayesian updating. Details regarding the Bayesian updating process can be found below, 
although many readers may wish to skip ahead to Section 2.2.2. 

The Bayesian updating process evaluates the likelihood of the simulation data against the prior 
understanding of potential breakthrough temperatures. The prior distribution is represented by a 
mean/mode beta transformation from the triangular distribution. The likelihood function takes 
the form of a Generalized Binomial Distribution (GBD) to allow for incorporation of the non-
integer weighted data [2.11]. The posterior distribution then takes the form of the beta 
distribution because the binomial and beta distributions are conjugate distributions, which can be 
found in Table 9.1 of [2.12]. A detailed description of the updating process follows: 
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Step 1: Define the Prior Distribution. 
The 1F1 UA uses a shifted Beta distribution with lower bound (LB) of 2100K, upper bound (UB) 
of 2540 K, and the shape parameters α = 5.58 and β = 6.42. These shape parameters were chosen 
to preserve the mean and the mode of the Peach Bottom UA prior distribution.  

𝜋𝜋(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐿𝐿𝐿𝐿,𝑈𝑈𝑈𝑈,𝛼𝛼,𝛽𝛽)   (2-2) 

Step 2: Define the Likelihood Function 

The likelihood function selected to examine the likelihood of the prior distribution given the new 
evidence is a GBD. The binomial distribution is defined as: 

𝐿𝐿(𝑘𝑘,𝑛𝑛|𝑝𝑝) = � 𝑛𝑛!
𝑘𝑘!(𝑛𝑛−𝑘𝑘)!

� 𝑝𝑝𝑘𝑘1 − 𝑝𝑝𝑛𝑛−𝑘𝑘    (2-3) 

where there is evidence of k events happening in n trials with probability p. Written in this form, 
the evidence must be provided in integer values. For the MZBT temperature, the evidence is a 
temperature value, or a fractional value between the upper bound and the lower bound. This will 
be explained later, but is mentioned here to specify that the likelihood function must be modified 
to account for non-integer values. It has been shown in [2.11] and using [2.13] that the gamma 
function can be substituted for factorials while allowing for non-integer values through the 
definition of the gamma function presented in equation (2-4). 

𝑥𝑥! = Γ(𝑥𝑥 + 1)       (2-4) 

Thus, equation (2-3) can be transformed into the GBD in (2-5): 

𝐿𝐿(𝑘𝑘,𝑛𝑛|𝑝𝑝) = � Γ(𝑛𝑛+1)
Γ(𝑘𝑘+1)Γ(𝑛𝑛−𝑘𝑘+1)� 𝑝𝑝

𝑘𝑘1 − 𝑝𝑝𝑛𝑛−𝑘𝑘.   (2-5) 

Using  (2-5), it is now possible to use the GBD to evaluate positive non integer evidence. Here is 
an example to demonstrate constancy with the binomial distribution. Imagine that a system exists 
with two parallel primary components. The system works per design 8 out of 10 times, each 
component failing once on different tests. Though this system met success criteria (one out of 
two in operation), a risk analysis may wish to treat each failure as a partial failure. Thus, each 
failure may be treated a ½ a failure in the binomial distribution. 

Ultimately, the factorial and/or gamma terms will factor out in the Bayesian updating process 
and thus the transformation is only academic.  

Step 3: Transform the Evidence to be consistent with the Likelihood Function 
The binomial and beta distributions (or at least MATLAB’s formulations of these distributions) 
bound the random variable between zero and one. Thus, the MZBT temperature must be 
transformed to fall between zero and one. The transformation of the ith piece of evidence 𝐸𝐸𝑖𝑖 is 
defined in (2-6): 

𝑝𝑝𝑖𝑖 = 𝐸𝐸𝑖𝑖−𝐿𝐿𝐿𝐿
𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿

.       (2-6) 

Step 4: Conduct the Updating With Unequally Weighted Likelihood Functions 
Nominally, the Bayesian updating process would treat all evidence equally. The general equation 
for Bayesian updating can be seen in Equation (2-7): 
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𝜋𝜋(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐸𝐸) = 1
𝑐𝑐
𝐿𝐿(𝐸𝐸|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) ∗ 𝜋𝜋(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)   (2-7) 

where c is a normalizing constant and E the collection of evidence used in the updating process 
(i.e., k and n above). If each piece of evidence is considered separately, (2-7) becomes (2-8):  

𝜋𝜋(𝑇𝑇𝑇𝑇𝑇𝑇𝑝𝑝|𝐸𝐸) = 1
𝑐𝑐
𝜋𝜋(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)∏ {𝐿𝐿(𝐸𝐸𝑖𝑖|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)}𝑁𝑁

𝑖𝑖=1 ,  (2-8) 

where ∏ {𝐿𝐿(𝐸𝐸𝑖𝑖|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)}𝑁𝑁
𝑖𝑖=1  is the product of likelihood functions for each piece of evidence. 

Equation (2-8) can be generalized further to incorporate unequal weighting of evidence by 
raising each likelihood function to the power of its weight. This ensures that the weights are 
additive in the product likelihood function: 

𝜋𝜋(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝐸𝐸) = 1
𝑐𝑐
𝜋𝜋(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)∏ {𝐿𝐿(𝐸𝐸𝑖𝑖|𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)}𝑤𝑤𝑖𝑖𝑁𝑁

𝑖𝑖=1 .  (2-9) 

 

Figure 2.6 and Figure 2.7 show the Fukushima MZBT distributions.  

 
Figure 2.6 – Fukushima MZBT Uncertainty PDFs: Blue = Prior Density Function, Green = 

Updated Density Function.  
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Figure 2.7 – Fukushima MZBT Uncertainty CDFs. Blue = Prior Density Function, Green = 

Updated Distribution.  

2.2.2 Decay Heat 
Decay heat is the initial driving force for most accidents in nuclear power plants. It is the 
dominant energy source for severe accidents of shutdown LWRs, such as the 1F1 station 
blackout accident sequence. Given this, uncertainties in the radionuclide inventories and decay 
data lead to uncertainties in the time-dependent production of decay heat. 

For the Fukushima uncertainty analyses, it is impractical to characterize the epistemic 
uncertainties associated with the buildup and decay of radionuclides. Fortunately, it is feasible to 
run SCALE [2.14] calculations to determine best estimate values of the following three 
parameters: 

• Time-dependent decay heat reduction, 
• Power fraction amongst fissile isotopes at reactor scram, and 
• Radionuclide inventories. 

The first two outputs can be used to supplant the nominal decay heat estimates in ANS-5.1, thus 
allowing SNL to combine the ANS-5.1 [2.16] time-dependent decay heat uncertainties on 
primary fissile nuclides with the SCALE best estimate curves [2.15].  

ANS-5.1 provides conservative time dependent decay heat curves for four nuclides (i.e., U-235, 
U-238, Pu-239, and Pu-241) on a per-fission basis along with a 1-sigma uncertainty estimate for 
each of the four nuclides in tabular form with 79 entries starting at 1 second after shutdown and 
ending at 1x1013 seconds (3.2x105 years) after shutdown. This analysis truncates the ANS data at 
1x106 seconds, thus only including the first 37 entries for each nuclide table. Thus, this method 
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will sample the decay heat for each isotope 37 times per simulation. From literature [2.17]6, a 
correlation coefficient of 0.8 was selected. A large correlation was desired because hotter-than-
expected parent nuclides likely lead to hotter-than-expected daughter nuclides, not significantly 
cooler daughter nuclides.  

ANS-5.1 breaks decay heat estimates into short-term and long-term irradiation components. 
These components are then combined to produce burn-up specific decay heat estimates. While 
the short term and long term variability in decay heat estimates are important to the base decay 
heat curve (which this analysis replaces with a SCALE calculation), the time dependent 1-sigma 
uncertainty estimates were comparable. Thus, for simplicity only the long-term irradiation 1-
sigma values were utilized to determine the relative decay heat variability around the base case 
SCALE simulation estimates.   

The first stage of sampling was conducted for the time dependent decay energy release for each 
of the four isotopes using the multivariate normal distribution with the covariance matrix derived 
from the time dependent 1-sigma estimates and the correlation coefficient of 0.8. The horse-tail 
results of this analysis can be seen in Figure 2.8. These results are independent of any light water 
reactor type or time in cycle calculation. As can be seen from the figure, uncertainties in decay 
heat are dominated by fissioning of U-238 and Pu-241.  

 

 
Figure 2.8 – Decay Energy Uncertainty for each of the Four Isotopes in ANS-5.1. 

                                                 
6 This reference is dated 1979 and only examined U-235 decay heat. A more current reference including additional 
data for U-235 and any data from U-238, Pu-239, and Pu-241 would improve the accuracy of this methodology. 
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Next, the isotopic decay heats for each sample were multiplied by the best estimate power 
fractions provided by SCALE and summed to give the total MeV/fission for the time at cycle (or 
the unit in the case of Fukushima). The MeV per fission curves for reactor configuration k can be 
calculated with equation (2-10), where the time dependent vectors 𝐸𝐸𝑘𝑘𝑖𝑖 (𝑡𝑡) or 𝐸𝐸𝑗𝑗𝑖𝑖(𝑡𝑡) are ith the MeV 
per fission curve for configuration k (time at cycle and/or unit number) and j is the isotopic index 
number. The power fractions (𝐹𝐹𝑗𝑗𝑘𝑘) from SCALE can be found in Table 2.3. 

 𝐸𝐸𝑘𝑘𝑖𝑖 (𝑡𝑡) = �𝐹𝐹𝑗𝑗𝑘𝑘𝐸𝐸𝑗𝑗𝑖𝑖(𝑡𝑡)
4

𝑗𝑗=1

 (2-10) 

 
 Table 2.3 – Fukushima Unit 1, 2, and 3 Isotopic Power Fractions 

Nuclide 1F1 1F2 1F3 

U-235 0.48 0.56 0.55 

U-238 0.070 0.065 0.067 

Pu-239 0.37 0.32 0.32 

Pu-241 0.074 0.053 0.063 

 

Once the time dependent samples of 𝐸𝐸𝑘𝑘𝑖𝑖 (𝑡𝑡) are computed, they can be normalized by the power 
fraction averaged ANS 5.1 point estimate curves for the four isotopes, 𝐸𝐸𝑗𝑗(𝑡𝑡). The normalized 
decay heat curves 𝑬𝑬𝒌𝒌𝒊𝒊 (𝒕𝒕) are: 

 𝑬𝑬𝒌𝒌𝒊𝒊 (𝒕𝒕) =
𝐸𝐸𝑘𝑘𝑖𝑖 (𝑡𝑡)

∑ 𝐹𝐹𝑗𝑗𝑘𝑘𝐸𝐸𝑗𝑗(𝑡𝑡)4
𝑗𝑗=1

. (2-11) 

Then these normalized decay heat curves 𝑬𝑬𝒌𝒌𝒊𝒊 (𝒕𝒕) can be multiplied by the SCALE computed 
decay heat curves for each reactor configuration 𝑃𝑃𝑘𝑘(𝑡𝑡) at each point (i.e., the notation .∗ is used 
instead of traditional vector multiplication) in time to obtain: 

 

 𝑃𝑃𝑘𝑘𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑘𝑘(𝑡𝑡) .∗  𝑬𝑬𝒌𝒌𝒊𝒊 (𝒕𝒕), (2-12) 

where 𝑃𝑃𝑘𝑘𝑖𝑖(𝑡𝑡) is the ith realization of the decay heat curve for reactor configuration k.  

The decay heat curves for 1F1, 1F2, and 1F3 (of which the 1F1 UA only utilizes the 1F1 decay 
heat curves) can be seen in Figure 2.9, Figure 2.10, and Figure 2.11. Each curve, 𝑃𝑃𝑘𝑘𝑖𝑖(𝑡𝑡), is 
equally likely and the database of 𝑃𝑃𝑘𝑘𝑖𝑖(𝑡𝑡) curves are sampled without replacement with equal 
weighting.  
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Figure 2.9 – Fukushima 1F1 Decay Heat Curve Horsetails. 

 
Figure 2.10 - Fukushima 1F2 Decay Heat Curve Horsetails. 
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Figure 2.11 - Fukushima 1F3 Decay Heat Curve Horsetails. 

 

2.2.3 Time at Temperature 
The current 1F1 MELCOR representation lacks detailed mechanistic models for evaluating fuel 
mechanical response to the effects of cladding oxidation, material interactions (i.e., eutectic 
formation), Zircaloy melting, fuel swelling, and other processes that occur at very high 
temperatures.7 In lieu of detailed models, a simple temperature-based criterion is used to define 
the threshold beyond which normal ("intact") fuel rod geometry can no longer be maintained, 
and the core materials at a particular location collapse into particulate debris. The temperature-
based criterion reflects physico-chemical processes that affect fuel rod integrity. Using a 
composite of information, such as from the PHEBUS studies [2.9], four data points were log-
linearly interpolated to create the rod collapse criteria used in the SOARCA study. This time-at-
temperature criterion was introduced in an attempt to avoid non-physical cliff-edge effects that 
are observed during a calculation when fuel temperatures are predicted to hover just below a 
failure temperature for extended periods. However, the code still models local rod collapse due 
to high temperature as a discrete and near-instantaneous (over one time step) event at each core 
cell. 

                                                 
7 One MELCOR fuel rod collapse parameter which may or may not be used is the COR_CCT record that specifies 
the minimum unoxidized metal thickness that can support intact rod geometry (once metal thickness drops below the 
threshold vale in the local COR cell, the rods are instantly converted to particulate debris). From the MELCOR COR 
reference manual: "It is possible for a fuel rod to be hot but unoxidized, either as a result of heating in an inert 
environment or following total loss of ZrO2 through candling involving secondary transport or eutectics. As 
currently coded, such a rod will be converted to particulate debris when the remaining metal thickness falls below 
the user-specified minimum value" (on COR_CCT). 
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The TaT is a time-at-temperature structural representation of the remaining lifetime of the fuel 
rod system. Thus, the TaT is an integral damage model, where rubblization of the core region is 
predicted when the damage fraction (DF)8 equals one. The DF is defined by Equation (2-13) 
where, ∆𝑡𝑡𝑖𝑖 is the width of the ith time step and Li(T) is the lifetime value during the ith time step 
(fresh material is expected to fail at temperature T for the lifetime L(T), and T is the temperature 
in Kelvin).  

 𝐷𝐷𝐷𝐷 = �
∆𝑡𝑡𝑖𝑖
𝐿𝐿𝑖𝑖(𝑇𝑇)

𝑁𝑁

𝑖𝑖=1

 (2-13) 

The purpose of this function is to ensure realism in the simulation by ensuring high temperature 
failure pathways exist even if failure threshold values are not exceeded. The original SOARCA  
version of the TaT was developed to force rubblization of the fuel rod between 2500K and 
2700K to provide consistency with the PHEBUS experiments [2.9].  

The original SOARCA version of the TaT curve has three distinct regions. The first region shows 
a rapid decrease in lifetime, from effectively infinite (in severe accident time scales) to 10 hours 
near the melting point of zirconium. The lifetime then drops from 10 hours at 2100K to 1 hour at 
2500K. At this point, the PHEBUS experiments demonstrated that eutectic effects start to 
weaken the structural integrity of the fuel assembly. Thus, the lifetime of the fuel assembly 
decreases rapidly after 2500K, down to 1 minute at 2700K.  

TaT is only one of three parameters which can cause the fuel rod to rubblize. The other two 
parameters are: 

• Melting of either the fuel or oxide shell, and 
• Collapse of the core support structure.  

A distribution of TaT curves was developed using the Bayesian updating process described in the 
subsections below by combining insights from previous uncertainty analyses with the time 
temperature profiles prior to fuel collapse from the VERCORS tests [2.10] (see Figure 2.12). It is 
assumed that the Arrhenius equation is an acceptable first order model to determine the expected 
lifetime at a given temperature. Thus, the damage model is defined as in Equation (2-14):  

 
1

𝐿𝐿(𝑇𝑇)  = 𝐴𝐴 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(𝐵𝐵𝐵𝐵) ,𝐷𝐷(𝑡𝑡) = ∑�
1

𝐿𝐿(𝑇𝑇)  ∗ ∆𝑡𝑡� (2-14) 

                                                 
8 Also referred to as a cumulative damage fraction, but this parameter will be referred to as a DF in this report to 
avoid confusion with the cumulative distribution function (CDF).  
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Figure 2.12 - Time at Temperature Histories From the VERCORS Experiments [2.10]. All 

tests underwent identical temperature ramps, stars indicate fuel collapse times. 

2.2.3.1 Defining the Likelihood Function 
Due to a combination of experimental variability and model inadequacy, no one combination of 
A and B in Equation (2-14) will result in each VERCORS experiment predicting failure when 
damage equals 1.0. Thus, a lognormal likelihood function was utilized to determine the 
probability that a given combination of A and B describes the VERCORS data. The lognormal 
distribution was chosen in part due to the exponential dependency between lifetime and 
temperature, but other likelihood distributions may be more appropriate and should be examined 
in future work. The likelihood function is defined in Equation (2-15), where E is evidence, or the 
collection of predicted damage fractions from a given combination of A and B at the fuel collapse 
time (D1 ,D2 ,…,DN), and 𝜎𝜎 is the standard deviation of the log transformation of the damage 
fractions. Because the desired mean corresponds to a damage fraction of 1.0, which is defined as 
0.0 under log transformation, no μ term appears in the likelihood function. 

 𝐿𝐿(𝐸𝐸|𝐴𝐴,𝐵𝐵,𝜎𝜎,𝑀𝑀) = ��
1

𝐷𝐷𝑖𝑖 ∗ 𝜎𝜎 ∗ √2𝜋𝜋
∗ exp �−

ln(𝐷𝐷𝑖𝑖)
2𝜎𝜎2

��
𝑁𝑁

𝑖𝑖=1

 (2-15) 

2.2.3.2 Defining the Prior Distributions 
The damage fraction model used in the 1F1 MELCOR representation uses one aleatory and two 
epistemic parameters to determine the likelihood of fuel collapse from the VERCORS data. Each 
of these parameters needs prior distributions to describe the state of knowledge before the 
Bayesian updating process. The prior distribution for the aleatory component of uncertainty, 
𝜋𝜋(𝜎𝜎), describes the likelihood of experimental variability associated with a given DF that would 
allow fuel collapse through inherent experimental randomness. Then the prior joint epistemic 
uncertainty, 𝜋𝜋(𝐴𝐴,𝐵𝐵), will be developed to describe the best state of knowledge in fuel collapse 
that a given combination of the shape parameters A and B in Equation (2-14) will result in when 
predicted by the damage fraction model. 
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The prior distribution of, or the understanding of the potential values for, the lognormal 
distribution’s aleatory term σ was extracted from the raw VERCORS data and the original 
piecewise SOARCA TaT curve [2.7]. It is desirable to fully separate prior distributions from the 
evidence, but in this case the expected distribution of potential model variance was difficult to 
ascertain without looking at the data; the utilization of a non-Arrhenius TaT curve reduces the 
potential for self-reinforcing information feedback. First, the SOARCA TaT curve was used to 
calculate the damage fraction at failure time for each VERCORS experiment. The distribution of 
failure DFs can be seen in Figure 2.13, with a MLE of σ of 0.59 and a 95% confidence interval 
of [0.37 to 1.45].  This information was used to develop the prior distribution of σ, or 
𝜋𝜋(𝜎𝜎|𝑀𝑀∗,𝐸𝐸∗), where 𝑀𝑀∗ is the SOARCA TaT curve and 𝐸𝐸∗ is the collection of VERCORS DFs at 
failure.  

 
Figure 2.13 – Histogram of Damage Fractions Corresponding to Failure Using the 

SOARCA DF Model and Corresponding Prior Distribution of σ. Count are experimental 
failures from the VERCORS tests, with 6 tests in total. 

The initial likelihoods of the shape parameters A and B were extracted from assessments from 
the Peach Bottom UA [2.2] and expert elicitation from the VERCORS failure temperatures 
(excluding the time at temperature information). These shape parameters were evaluated though 
Arrhenius fits of independent Monte Carlo samples from two distributions: one which varied 
over fuel lifetime at 2100K taken from the Peach Bottom UA and the other which varied the 
temperature corresponding to one minute of fuel lifetime at that temperature taken from expert 
elicitation. These two distributions are defined in Equation (2-16), where T is temperature, L(T) 
is lifetime at a given temperature, EF is the Error Factor of the lognormal distribution (𝜆𝜆95

𝜆𝜆05
). 

SurryUA implies that unpublished work from the Surry UA was leveraged and Experts implies 
that expert elicitation was leveraged.  

 
𝜋𝜋(𝐿𝐿(𝑇𝑇)|𝑇𝑇 = 2ℎ𝑟𝑟𝑟𝑟, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(ln(𝑇𝑇) ,𝐸𝐸𝐸𝐸 = 10) 

𝜋𝜋(𝑇𝑇|𝐿𝐿(𝑇𝑇) = 1𝑚𝑚𝑚𝑚𝑚𝑚,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙(𝜇𝜇 = 2479𝐾𝐾,𝜎𝜎 = 89𝐾𝐾)  
(2-16) 

It should not be surprising that this methodology creates a correlation between A and B. Thus, a 
linear relationship was developed between B and the natural log of A so that B can be treated as 
an independent variable and A can be treated as a conditional distribution. The linear relationship 
and conditional distribution are defined in Equation (2-17). The marginal prior of B|M, the 
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conditional prior of A|B,M, and the joint prior 𝜋𝜋(𝐴𝐴,𝐵𝐵 |𝑀𝑀)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 can be seen in  Figure 2.14. The 
joint prior is calculated as a product of the marginal and conditional prior.  

 
𝜇𝜇ln(𝐴𝐴)(𝐵𝐵) = −3 ∗ 𝐵𝐵 − 2295 + 𝜖𝜖 

𝜋𝜋(𝑙𝑙𝑙𝑙 (𝐴𝐴) |𝐵𝐵) = 𝑁𝑁( 𝑙𝑙𝑙𝑙 (𝐴𝐴)│𝜇𝜇𝑙𝑙𝑙𝑙(𝐴𝐴)(𝐵𝐵) , (𝜎𝜎│𝜖𝜖),𝑀𝑀)  
(2-17) 

 

 
Figure 2.14 – Marginal Prior Distribution for B|M, Contour plot Conditional Prior 

Distribution for A|B,M, and Joint Prior Distribution 𝝅𝝅(𝑨𝑨,𝑩𝑩|𝑴𝑴)𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

The full joint prior distribution, 𝜋𝜋(𝐴𝐴,𝐵𝐵,𝜎𝜎 |𝑀𝑀,𝑀𝑀∗,𝐸𝐸∗)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, is calculated via the 
multiplication rule found in Equation (2-18).  

 𝜋𝜋(𝐴𝐴,𝐵𝐵,𝜎𝜎|𝑀𝑀)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜋𝜋(𝐴𝐴,𝐵𝐵|𝑀𝑀)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝜋𝜋(𝜎𝜎|𝑀𝑀∗,𝐸𝐸∗)𝑑𝑑𝑑𝑑
=  𝜋𝜋(𝐴𝐴|𝐵𝐵,𝑀𝑀)𝑑𝑑𝑑𝑑 ∗ 𝜋𝜋(𝐵𝐵|𝑀𝑀)𝑑𝑑𝑑𝑑 ∗ 𝜋𝜋(𝜎𝜎|𝑀𝑀∗,𝐸𝐸∗)𝑑𝑑𝑑𝑑 (2-18) 

2.2.3.3 Calculating the Posterior Distribution 
Once the prior distribution and likelihood functions are defined, Bayes Theorem [Equation 
(2-19)] is then applied to combine the prior judgment of the likelihood of A, B, and 𝜎𝜎 values with 
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the experimental information from the VERCORS failure temperatures to produce a new 
understanding of the probability of A, B, 𝜎𝜎 sets. With enough information, the product term in 
the likelihood function 𝐿𝐿(𝐸𝐸|𝐴𝐴,𝐵𝐵, σ,𝑀𝑀) defined in Equation (2-15) outweighs the prior 
distribution. Without a preponderance of new information, the prior distribution outweighs the 
likelihood function and the state of knowledge does not substantially change. In this way, 
Bayesian methods can be used to protect analyses from misinterpreting small samples of 
information.  

 𝜋𝜋(𝐴𝐴,𝐵𝐵,𝜎𝜎|𝐸𝐸,𝑀𝑀)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
𝐿𝐿(𝐸𝐸|𝐴𝐴,𝐵𝐵,σ,𝑀𝑀) ∗ 𝜋𝜋(𝐴𝐴,𝐵𝐵,𝜎𝜎|𝑀𝑀)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∫ 𝐿𝐿(𝐸𝐸|𝐴𝐴,𝐵𝐵,𝜎𝜎 ,𝑀𝑀) ∗ 𝜋𝜋(𝐴𝐴,𝐵𝐵,𝜎𝜎|𝑀𝑀)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (2-19) 

Because MELCOR always assumes fuel collapse at DF = 1.0, the 𝜎𝜎 term, while important to 
include during the Bayesian updating process, is not important to the final MELCOR 
calculations and is thus integrated out of the final analysis. Therefore, the subsequent figures 
presented in this report were created after performing the integration over all possible values of 𝜎𝜎 
as seen in Equation (2-20). 

 𝜋𝜋(𝐴𝐴,𝐵𝐵|𝐸𝐸,𝑀𝑀)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = � 𝜋𝜋(𝐴𝐴,𝐵𝐵,𝜎𝜎|𝐸𝐸,𝑀𝑀)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∞

0 

 (2-20) 

By discretizing A, B, and 𝜎𝜎, the numerator of Equation (2-19) can be calculated numerically for 
millions of combinations of A, B,  and 𝜎𝜎. These combinations can then be numerically integrated 
over to solve for the normalization constant in the dominator of Equation (2-19). Contour plots 
of the prior, likelihood, and posterior functions, all three averaged over 𝜋𝜋(𝜎𝜎)𝑑𝑑𝑑𝑑, can be seen in 
Figure 2.15 and Figure 2.16. 

 
Figure 2.15 – Prior and Likelihood Contour Plots 
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Figure 2.16 – Posterior Distribution  

A 3-D view of the joint posterior distribution, 𝜋𝜋(𝐴𝐴,𝐵𝐵│𝐸𝐸,𝑀𝑀)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, can be seen in Figure 2.17. 
The posterior joint distribution resulting from the Bayesian updating process described herein is 
referred to as the SharkFin distribution due to the fin-like shape of the probability density 
function in Figure 2.17. This distribution is sampled to select (A, B) pairs to define SharkFin TaT 
curves for the 1F1 UA. The distribution of SharkFin TaT curves overlaid on top of the original 
SOARCA curve can be seen in Figure 2.18. 

 
Figure 2.17– Plot of the Joint Posterior Distribution, 𝛑𝛑(𝐀𝐀,𝐁𝐁│𝐄𝐄,𝐌𝐌)𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝. 

For use in follow-on studies, the median TaT curve is: 

 
1

𝐿𝐿50𝑡𝑡ℎ(𝑇𝑇){𝑠𝑠𝑠𝑠𝑠𝑠} = 2.16𝑥𝑥10−11 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(7𝑥𝑥10−3 ∗ 𝑇𝑇) 

 
(2-21) 
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Figure 2.18 – Posterior Statistical Representation of Shark-Fin Failure Curves Overlaid on 

the SOARCA [2.7] Time at Temperature Failure Curve. 

 

2.3 Aleatory Uncertainties 
No additional explicit aleatory uncertainties were included in this analysis because the focus was 
on exploring the impact of core degradation uncertainties. In MELCOR, most of the core 
degradation parameters that can be sampled are either purely epistemic or an inseparable mixture 
of epistemic and aleatory uncertainties. 

 

2.4 SOARCA Peach Bottom Uncertainties Not Included in This 
Report 

The Fukushima UA only explores core degradation phenomena and does not extend to 
containment performance and offsite releases. The Fukushima UA also does not address 
sequence uncertainties, which may be handled in follow-up analyses. The neglect of sequence 
uncertainties facilitates a concentrated analysis of the uncertainties involved in modeling core 
degradation and in-vessel accident phenomena using MELCOR. 
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3 TREATMENT OF OUTPUT UNCERTAINTIES 
 

Chapter 3 describes the output uncertainty treatment for the 1F1 uncertainty analysis. Once the 
uncertain parameters have been propagated through the 1F1 MELCOR representation, various 
statistical checks and evaluations can be employed to interrogate the output. This section reviews 
the convergence testing, scatter plot, and regression methodologies employed on the output data 
for Fukushima 1F1.  

In its most general sense, Monte Carlo is simply a technique to evaluate integrals via random 
sampling of input parameter distributions. Often, but not always, these methods are used when 
the integrals are difficult to solve analytically or even numerically. For the 1F1 calculations, the 
integral is: 

𝑦𝑦 = ∫ 𝑓𝑓(𝑿𝑿|𝒁𝒁) ∗ 𝜋𝜋(𝑿𝑿)d𝑿𝑿 

where 𝑓𝑓(𝑿𝑿|𝒁𝒁) is the MELCOR output as a function of the uncertain vector of inputs X, with the 
epistemic uncertainties of all input variables contained in the matrix 𝑿𝑿 defined by 𝜋𝜋(𝑿𝑿)d𝑿𝑿, and 
given the assumed certain inputs, 𝒁𝒁. The number of assumed certain inputs, 𝒁𝒁, is greater than the 
number of uncertain inputs, 𝑿𝑿, by orders of magnitude.  

3.1 Convergence Testing 
Due to the non-linear nature of MELCOR calculations and the large number of uncertain 
parameters evaluated in this analysis, a full evaluation of the equation above would likely 
involve tens to hundreds of thousands of samples from 𝜋𝜋(𝑿𝑿)d𝑿𝑿. This degree of analysis was 
impractical for the 1F1 UA. Instead, this analysis focuses on resolving the median value (i.e. the 
50th percentile) of the distribution of 𝑓𝑓(𝑿𝑿|𝒁𝒁) ∗ 𝜋𝜋(𝑿𝑿)d𝑿𝑿.  
Because the 50th percentile is less sensitive to tail effects the median can often stabilize with only 
a few tens of Monte Carlo samples. In general, statistical convergence is similar to numerical 
convergence, in that the residuals (or the difference between the current estimate and the next 
estimate) are chosen to suit the needs of the analysis. A licensing or regulatory support 
calculation might require reduced sampling related uncertainty around the median than an 
exploratory calculation, such as this UA. As convergence criteria, the authors saw that the 
median often did not shift more than 0.5 %

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 for the last 20% of the samples (e.g., if a 

replicate has one hundred realizations, no single realization between realizations eighty through 
one hundred should move the median estimate of the FoM by more than 0.5%). This criterion 
was deemed adequately stable for the sensitivity analysis.  

Three graphical convergence tests were conducted on each sample. These tests were: 

1. 1→N convergence of the 33rd, 50th, 67th percentiles. This examination was proposed to 
examine the degree to which the centroid of the distribution has converged and to 
determine if the outputs were symmetric or non-symmetric, not to demonstrate 
convergence of non-median values. 

2. 1→N convergence of the bootstrap (i.e., resampled with replacement) median of a sample 
of MELCOR output FoMs.  
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3. Histograms of medians from a bootstrapped 80% of the Monte Carlo simulations with 
replacement. Ideally this histogram should consist of values with a margin of error 
appropriate for the analysis (the medians should have a standard error of less than 5%). 

Due to the numerical methods and non-linearity, including cliff-edge affects in MELCOR, it is 
recognized that a best estimate input simulation does not correlate with any given output figure 
of merit (e.g. mean, median, mode). It should be emphasized that the intent of this UA is not to 
completely characterize the tails or the mean of the output distribution. Instead a representative 
percentile (i.e. median) is desired to represent the output. 

3.2 Scatter Plots 
Scatter plots of select output variables were examined to find visual trends in the data. Analytical 
techniques are extremely powerful tools for automated trend detection, but they can only detect 
what the analyst asks them to detect. Scatterplots can help an analyst ask the correct questions 
through subsequent analytical techniques and can be an important verification step to determine 
if an analytical technique is functioning properly.   

3.3 Regression 
Before stepwise linear regression is discussed, it is important to emphasize the purpose of the 
meta-models produced in the 1F1 UA. One approach to evaluating the capability of a regression 
to explain population variability is to use the regression to predict variability in new samples of 
data. Thus the data is broken into two sets (referred to in this report as a training set and a testing 
set). A predictive regression analysis is typically fit to the training set and then applied to the 
testing set to determine the predictive accuracy of the meta-model. It is extremely important that 
the testing and training set be divided randomly to prevent user bias in the evaluation process. 

The regression analysis for the 1F1 UA is not conducted to produce a reduced order predictive 
relationship. Instead, this UA utilizes regression as a tool to determine which variables have 
higher (e.g. first) order effects on the FoM. While this approach is applied to the entire sample, 
the trends within the samples should be validated against other samples to ensure that potentially 
noisy system response does not introduce linear behaviors in the sample which are not indicative 
of the population. 

Stepwise linear regression analysis was used to identify potential first order (i.e. linear) 
relationships between sampled inputs and FoM. Using matrix algebra to solve for linear 

regression parameters [3.1], the MELCOR output, F�

𝑥𝑥1���⃗
𝑥𝑥2����⃗
⋮
𝑥𝑥𝑁𝑁����⃗

�, for a vector of uncertain inputs, 𝑥𝑥1���⃗ , 

can be linearly approximated by:  

 F�

𝑥𝑥1���⃗
𝑥𝑥2����⃗
⋮
𝑥𝑥𝑁𝑁����⃗

� ≅ 𝐘𝐘 = 𝐁𝐁 𝐗𝐗 ≅ 𝜷𝜷 �𝑿𝑿+∈ (3-1) 

Where Y is the output vector, B is the actual vector of input coefficients, 𝜷𝜷 �  is the inferred vector 
of input coefficients, and X is the set of input vectors with first and second order interactions 
between input variables.  For the regressions conducted in this report, Y is the MELCOR output 
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vector of size n, where n is the sample size. The input matrix can potentially be as large as a n by 
120 matrix consisting of first order, interaction, and quadratic behaviors of the input variables. X, 
Y, and 𝜷𝜷� are shown in Equation (3-2). 

 

𝒀𝒀 = �
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
�  ,𝑩𝑩 = �

𝐵𝐵1
⋮
𝐵𝐵𝑛𝑛
�  ,

𝑿𝑿 = �
𝑋𝑋1,1 ⋯ 𝑋𝑋1,15
⋮ ⋱ ⋮

𝑋𝑋𝑛𝑛,1 ⋯ 𝑋𝑋𝑛𝑛,15 
   

𝑋𝑋1,1
2 𝑋𝑋1,1𝑋𝑋1,2 ⋯ 𝑋𝑋1,15

2

⋮ ⋱ ⋮
𝑋𝑋15,1
2 𝑋𝑋15,1𝑋𝑋15,2 ⋯ 𝑋𝑋𝑛𝑛,15

2
    �   

(3-2) 

 

From Equation (3-1), 𝜷𝜷 � can be solved for using Equation (3-3): 

 𝜷𝜷� = (𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀 (3-3) 

Taking the variance of each side of Equation (3-3), it can be shown that the variance of the 𝜷𝜷� 
vector can be computed as in (3-4) 

 𝑉𝑉𝑉𝑉𝑉𝑉�𝜷𝜷�� = 𝑉𝑉𝑉𝑉𝑉𝑉((𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑿𝑿′𝒀𝒀) = 𝜎𝜎2(𝑿𝑿′𝑿𝑿)−𝟏𝟏  (3-4) 

where 𝜎𝜎2 is defined as the standard error of the population, which is approximated based on the 
sample (size n) by S2 in (3-5). The number of degrees of freedom (or columns in the input matrix 
𝑿𝑿) is defined as k (i.e. dependent variables) + 1 (i.e., the constant). 

 𝜎𝜎2 ≅ S2 =
𝑆𝑆𝑆𝑆𝑆𝑆

𝑛𝑛 − 𝑘𝑘 − 1 
  (3-5) 

SSE, defined in (3-6), is the sum of the square of the errors and is defined by Syy defined in (3-7), 
a measure of the variability in components of the MELCOR output vector, Y and SSR defined in 
(3-8), a measure of variability in the components of the regression output vector, 𝒀𝒀�, to the 
MELCOR output. 

 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑦𝑦𝑦𝑦 − 𝑆𝑆𝑆𝑆𝑆𝑆  (3-6) 

 𝑆𝑆𝑦𝑦𝑦𝑦 =
(𝑛𝑛∑ 𝑦𝑦𝑖𝑖2𝑛𝑛

𝑖𝑖=1 − (∑ 𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 )2)

𝑛𝑛
 (3-7) 

 𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑦𝑦𝚤𝚤�
2

𝑛𝑛

𝑖𝑖=1

−
(∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1 )2

𝑛𝑛
  (3-8) 

 

Because statistical variability can cause regression techniques to identify false trends and 
dependencies, only terms which can estimate that a coefficient is (𝜷𝜷�𝒊𝒊) is not zero with high 
probability (typically greater than 5%), are included in a regression model. A pictorial example 
can be seen in Figure 3.1. It should be noted that confidence interval calculations for regression 
coefficients are dependent on additional statistical assumptions regarding the distribution of 
residuals which are likely violated in this analysis.  
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Figure 3.1.  Graphical Example of Statistically Significant Coefficients [3.2] 

A stepwise regression model is constructed as follows:  

1. The average FoM output is used as the constant (A) term in the regression model with no 
other dependent terms. 

2. Every dependent coefficient (BXi) is evaluated for addition to the meta-model. The 
coefficient with the lowest probability of being zero is added to the meta-model, so long as 
the probability of that term being zero is lower than 0.05. When a new term is added, the 
residuals (X-Xpredicted) are readjusted to incorporate the predictive capability of the new 
model. 

3. Step 2 is repeated with linear (Xi) and interaction (XiXj) terms until no additional terms 
have a probability of being zero that is less than 0.05. 

4. The model is pruned by removing terms with dependent coefficients whose probability of 
being zero has risen above 0.1. Every time a term is added to a meta-model, the 
uncertainties of all other coefficients change as the meta-model estimates change. The 
uncertainties can either grow or shrink, and if the probability of being zero grows too large 
(>10%) they are removed from the analysis. 

5. Steps 3 and 4 are repeated until no additional terms can be included or removed.     

Statistical meta-model checks using R2, R2
adj, and the F statistic were conducted for each 

stepwise regression.  

R2 is the ratio between the variance explained by the model and  the variance within the original 
data and is calculated in (3-9). 

  𝑅𝑅2 =
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑦𝑦𝑦𝑦

=
∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦�)𝑖𝑖

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑖𝑖
 (3-9) 

One concern with using 𝑅𝑅2 as the sole metric for determining the goodness-of-fit of a regression 
model is that if the number of terms in a regression model approaches the sample size, 𝑅𝑅2 will 
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approach unity. Thus, it is common to adjust 𝑅𝑅2 to penalize the goodness-of-fit measure for 
adding new terms. This 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  is defined in equation (3-9). 

 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 =  𝑅𝑅2 − (1 − 𝑅𝑅2) ∗
𝑛𝑛 − 1

𝑛𝑛 − 𝑘𝑘 − 1
 (3-10) 

Finally, the F statistic is used to examine the following hypotheses: Is a simpler model more 
appropriate than the current model? The F-statistic is a two parameter statistic which requires:  

• The population size,  

• The degrees of freedom in the current meta-model,  

• The degrees of freedom in the reduced meta-model, and 

• SSE computed for both the current and the reduced meta-models. 
The hypothesis test used in the 1F1 UA analysis answers the question: Is a constant model more 
appropriate than the regression model? Thus, the F-statistic is calculated as: 

 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘 ,   𝑛𝑛−𝑘𝑘−1 =

𝑆𝑆𝑆𝑆𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑆𝑆𝑆𝑆𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑘𝑘

𝑆𝑆𝑆𝑆𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛 − 𝑘𝑘

 (3-11) 

After calculating the F statistic, the F distribution can be used to determine the probability that a 
constant meta-model is more appropriate than the regression model.  

The stepwise regressions used to derive the desired FoMs were automated using the linear 
stepwise regression functionality (i.e., stepwiselm) found within MATLAB [2.13].    

3.3.1 Model Summary Tables 
The stepwise regression function used in MATLAB to perform all of the linear regressions 
begins by assuming that a constant model is appropriate. Then, the parameters are added and 
removed systematically from the model based on p-values obtained from the F-test described in 
section 3.3; parameters with a p-value greater than 0.05 were excluded from the regressions 
[2.13] and included in subsequent models unless their p-value exceeded 0.1. The final results of 
the stepwise regression procedure are presented in model summary tables in sections 6.2 and 6.3.  

Each summary table (e.g. Table 6.2) lists coefficient estimates (Estimate), standard error 
estimates (SE), and the t-statistic (tStat) with corresponding p-value (pValue) from the t-test for 
each parameter included in the model. In this context, the t-test was used to test the hypothesis 
that the regression coefficient for the predictor variable is zero given the current model. Thus, a 
p-value below 0.05 for a parameter indicates that within the current model, we have confidence 
that the regression coefficient for that parameter is non-zero. Similarly, a p-value above 0.1 
indicates that we have less than 10% confidence that the regression coefficient for that parameter 
is non-zero. Hence, the p-values in the summary tables do not rank of the importance of the 
variables, but rather justify their inclusion in the model. 

3.3.2 Regression Validation 
The purpose of the regression analysis is not always to describe all of the variance in the system; 
indeed that objective may be difficult regardless of statistical technique. Instead, the purpose of 
these regression analyses is to identify which parameters have high impacts on physical FoM 
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when compared to nominal MELCOR precision. Put another way, MELCOR’s results may have 
a high enough level of inherent variability that regression results can be skewed and/or 
representative of inherent variability rather than meaningful trends.  

Thus the best regression is not necessarily the regression with the highest 𝑟𝑟2 when fit to the 
sampled training data. The square of the regression coefficient can be defined as the fraction of 
response variance explained by the regression model [3.3]: 

 𝑅𝑅2 ≅ 𝑟𝑟2 = 1 −
𝑠𝑠𝑌𝑌|𝑀𝑀
2

𝑠𝑠𝑌𝑌2
 (3-12) 

In equation (3-12), 𝑅𝑅2 is the same 𝑅𝑅2 as defined in equation (3-9), 𝑠𝑠𝑌𝑌|𝑀𝑀
2  is the variance of the Y 

output data given the output meta-model M, and 𝑠𝑠𝑌𝑌2 is the variance of the Y output data. 𝑠𝑠𝑌𝑌2 is 
defined in equation (3-10). For a regression fit, 𝑠𝑠𝑌𝑌|𝑀𝑀

2  is defined in equation (3-11), where the 
minus k term unbiased the estimate to account for the loss of degrees of freedom in the data as a 
result of the regression fit. 𝑠𝑠𝑌𝑌2 and 𝑠𝑠𝑌𝑌|𝑀𝑀

2  for the sample used to train the regression model are 
defined in equations (3-13) and (3-14). 

  

 𝑠𝑠𝑌𝑌2 =
1

𝑛𝑛 − 1
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑛𝑛

𝑖𝑖=1

 (3-13) 

 𝑠𝑠𝑌𝑌|𝑀𝑀
2 =

1
𝑛𝑛 − 𝑘𝑘 − 1

��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑀𝑀�
2

𝑛𝑛

𝑖𝑖=1

 (3-14) 

In these formulations, k is the number of regressed terms in the meta-model, the -1 in the 
denominator is due to a loss of one degree of freedom involved in calculating the constant term 
(which equals the average output value 𝑦𝑦� in the absence of a regression model), 𝑦𝑦𝑖𝑖 is the ith 
MELCOR output and 𝑦𝑦𝑖𝑖|𝑀𝑀 is the ith regression model prediction.    

When a regression is fit to one sample and then applied to another sample, statistical estimates 
are no longer biased due to the loss of degrees of freedom. Thus, equation in (3-14) can be 
simplified to: 

 𝑠𝑠𝑌𝑌|𝑀𝑀
2 =

1
𝑛𝑛
��𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑀𝑀�

2
𝑛𝑛

𝑖𝑖=1

 (3-15) 

Now we have two fit estimates, one for the training data (3-16) and one for the predicted data 
(3-17).  

 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2 = 1 −
1

𝑛𝑛 − 𝑘𝑘 − 1∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑀𝑀�
2𝑛𝑛

𝑖𝑖=1

1
𝑛𝑛 − 1∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

 (3-16) 

 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 = 1 −
1
𝑛𝑛∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑀𝑀�

2𝑛𝑛
𝑖𝑖=1

1
𝑛𝑛 − 1∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

 (3-17) 
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Given these two relationships, analysts now have the ability to compare relative predictive and 
training merit as a fraction of explained initial variance in a sample. Due to the formulation of 
𝑅𝑅𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 , if the predictive meta-model produces a higher variance than the raw data, negative 
values are possible.  

3.4 Important Notes for Interpreting Regression Analyses 
This section provides:  

1. A key for decoding which variables were regressed within a model summary table, 
2. A description of how the tabular variables decay heat and time at temperature were 

condensed into point estimates for the regression analysis, and 
3. An explanation for interpreting MATLAB’s regression formulations 

3.4.1 Input Variable Decoder Ring 
Each regression uses a unique identifier to represent an input variable. The decoder ring 
abbreviations and definitions are provided in Table 3.1. 

 
Table 3.1 – Regression Input Variable Abbreviation 

Abbreviation Definition 

'RSDR' Time Constants for Radial (solid) Debris Relocation (s) 

'RLDR' Time Constants for Radial (liquid) Debris Relocation (s) 

'dTdz_TCAF' dT|dz Model, Time Constant for Averaging Flows (s) 

'dTdz_CVH' dT|dz Model, Characteristic Coupling Time (s) 

'dTdz_Smooth' dT|dz Model, Relative Weight of Historical Flow (s) 

'MZBT' Molten Zircaloy Break-Through Temperature (K) 

'MCDR' Molten Cladding (pool) Drainage Rate (kg/(m*s)) 

'FSLHF' Fraction of Strain at Which Lower Head Failure Occurs 

'SFCHTC' Scaling Factor for Candling Heat Transfer Coefficients 

'DebrisHT' Debris Quenching Heat Transfer Coefficient to Pool (W/(m2*K)) 
'DFV' Debris Falling Velocity (m/s) 

'minPorosity' Minimum Debris Porosity (unit-less) 

'TaT' Time At Temperature - Effective Failure Temperature (K) 

'DCH' Decay Heat Integrated to 10 hours (J) 

 

3.4.2 Tabular Variable Representation for DCH and TaT 
Functional inputs (often represented in MELCOR by table lookups) cannot be directly included 
into the X vector defined in Equation (3-2). Thus, the tabular functions must be represented by 
point estimates. Ideally, these estimates should have some relation to the physical FoM being 
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regressed. For example, if hydrogen production at the time of first fuel failure is being regressed, 
it would make sense for the decay heat to be representative of that event timing. Thus, the 
analyst may choose to integrate decay heat from the beginning of the accident until the time of 
first fuel failure, which itself is an uncertain event. This approach can be undesirable because of 
the challenges involved with implementation and the potential for unintended correlation with 
other parameters which also drive the timing of the event.  

A simpler approach is to define a predetermined scenario independent of the accident being 
analyzed. The point estimate for each sampled table is then approximated by analyzing the table 
against the independent scenario. The benefit of this approach is that the representative value is 
independent of any other uncertain parameter sampled in the 1F1 UA. This simpler approach 
was adopted for the 1F1 UA. 

3.4.2.1 Time at Temperature (TaT) 
The time at temperature (TaT) curves, defined in Section 2.2.3, were derived from the 
VERCORS experiments. Damage is accrued as a function of temperature using Equation (2-14). 
To approximate the temperature ramp that would be experienced in the 1F1 calculations, the fuel 
was assumed to begin accruing damage at 2100K while experiencing a 10K/min temperature 
ramp with one minute time steps. When the cumulative damage equaled one, the fuel 
temperature at that time was selected to be representative of the time at temperature curve. The 
distribution of TaT effective failure temperatures can be seen in Figure 3.2. 

 
Figure 3.2 – Empirical CDF of Effective Time at Temperature Values  

3.4.2.2 Decay Heat  
Instead of fixing the decay heat value for subsequent regressions to a given event within the 1F1 
accident progression, the decay heat curve was integrated out to ten hours for all timing and 
physical FoMs. Decay heat was integrated to ten hours because most of the impacts of decay 
heat on core degradation in the emergency core water injection time-horizon have been 
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experienced by this time. The selection of ten hours also ensured that all timing FoMs were 
bounded by the decay heat estimate, with the exception of lower head failure. The empirical 
CDFs of the integrated DCH values are presented in Figure 3.3. 

 
Figure 3.3 – Empirical CDF of Effective Integrated Decay Heat Load from 0 to 10 hours 

3.4.3 Interpretation of MATLAB regression Equations 
The regression equations produced by MATLAB can be counterintuitive at first glance; this 
section is intended to provide a primer to help the reader interpret the MATLAB regression 
equation.  

An example MATLAB regression output is: 

    y ~ 1 + X1 + X2*X3 

First, the reader should note that MATLAB does not include a placeholder for the regression 
coefficients. Thus, in matrix form, MATLAB is essentially providing Equation (3-18) and 
omitting the  𝜷𝜷� vector. 

 𝒀𝒀~𝑿𝑿 (3-18) 

Thus, the 1 in the MATLAB output is not implying the constant is one. Instead, MATLAB is 
implying that the constant is 1 times 𝛽𝛽0� which can be found in the associated model summary 
table.  

Second, MATLAB cannot include an interaction term into a regression without including the 
independent terms as well, regardless of statistical significance. Thus, X2*X3 actually represents 
X2+X3+(X2 times X3). In the model summary table, the coefficient for X2 times X3 is 
represented by X2:X3.  

Thus, the example MATLAB regression output could be more intuitively understood as: 

   𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + 𝛽𝛽3𝑋𝑋3 + 𝛽𝛽23𝑋𝑋2𝑋𝑋3 
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4 CONVERGENCE OF TIMING FOMS 
Section 4 examines the statistical convergence of Replicate 1 for various timing FoMs. Similar 
tests are conducted for all three Replicates and all three perturbations, although for brevity these 
results are not presented in this report.  

This section examines the degree of convergence of the median estimate of the timing FoMs: 

1. First Control Rod Failure, 
2. First Channel Box Failure, 
3. First Fuel Failure, 
4. Main Steam Line Failure, 
5. Lower Core Plate Failure, and 
6. Lower Plenum Dryout. 

In general, these timing FoMs occur in order, although first fuel failure can, and often does, 
occur after main steam line failure. Physical FoMs (i.e., material ejected from the lower head, 
hydrogen produced, and intact fuel mass) are examined at these timing FoMs (and the end of 
simulation) and not at fixed points in time. The convergence testing presented in this report 
focuses on the convergence of the median for the timing FoMs. All physical FoMs were 
examined during the post-processing of the UA but were not reproduced in this report for 
brevity. In addition, only convergence results for Replicate 1 are presented in this report, 
although the other replicates were examined and also converged.  

Convergence of the timing FoMs are presented using three different methods. Section 4.1 
examines the convergence the 31.4th, 50th, and 68.6th percentiles of the timing FoMs as a function 
of as the number of realizations originally sampled. Section 4.2 uses a bootstrap resampling 
approach to examine the order dependency of the median convergence as a function of sample 
number. Finally, Section 4.3 uses the bootstrap subsampling approach to produce histograms of 
potential median estimates using only 80% of the sampled data.   

4.1 Distribution Convergence as a Function of Sample Size 
Figure 4.1 through Figure 4.7 show the convergence of the 31.4th, 50th, and 68.6th quantiles 
(𝑞𝑞0.314, 𝑞𝑞0.5, and 𝑞𝑞0.686) of the timing FoMs as a function of realization numbers as originally 
sampled for Replicates 1, 2, 3 and the Uniform Replicate. These quantiles (𝑞𝑞0.314, 𝑞𝑞0.5, and 
𝑞𝑞0.686) were chosen to be one standard deviation in either direction of the median. While 
convergence of the 50th percentile was the primary concern to the authors, the other two 
quantiles were arbitrarily selected to demonstrate the convergence, or lack thereof, of the bulk of 
the remaining distribution.  

The desired convergence criterion is that the median should stabilize to within 5% of the median 
within 80% of the sample size, or at the 80 realization marker for all but Figure 4.7.  It should be 
noted that every timing FoM meets this convergence criteria, although the median timing of 
lower plenum dryout wanders more than other timing events. This wandering may be due to 
bifurcation in the intact fuel fraction at lower plenum dryout discussed in Section 5.4. 

Figure 4.7, or the conditional timing of lower head failure, only has 35 realizations because only 
35% of the Replicate 1 realizations led to lower head failure within 15 minutes.  
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Figure 4.1 - Convergence the 31.4th, 50th, and 68.6th Percentiles of the Timing of First 
Control Rod Failure FoM as a Function of Realization Number 
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Figure 4.2 - Convergence the 31.4th, 50th, and 68.6th Percentiles of the Timing of First 

Channel Box Failure FoM as a Function of Realization Number 
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Figure 4.3 - Convergence the 31.4th, 50th, and 68.6th Percentiles of the Timing of First Fuel 

Failure FoM as a Function of Realization Number 
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Figure 4.4 - Convergence the 31.4th, 50th, and 68.6th Percentiles of the Timing of Main 
Steam Line Failure FoM as a Function of Realization Numbers as Originally Sampled  

 

Realization Number, n

10 20 30 40 50 60 70 80 90

Ti
m

e 
at

 M
ai

n 
S

te
am

 L
in

e 
Fa

ilu
re

 (h
rs

)

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1 median, m

68.6%

31.4%

m  -/+ 5%* m

1.05*q
0.5 (N=100)

0.95*q
0.5 (N=100)

q
0.5 (N=n)

q
0.686 (N=n)

q
0.314 (N=n)

Realization Number, n

10 20 30 40 50 60 70 80 90 100

Ti
m

e 
at

 M
ai

n 
S

te
am

 L
in

e 
Fa

ilu
re

 (h
rs

)

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1 median, m

68.6%

31.4%

m  -/+ 5%* m

1.05*q
0.5 (N=100)

0.95*q
0.5 (N=100)

q
0.5 (N=n)

q
0.686 (N=n)

q
0.314 (N=n)

Realization Number, n

10 20 30 40 50 60 70 80 90 100

Ti
m

e 
at

 M
ai

n 
S

te
am

 L
in

e 
Fa

ilu
re

 (h
rs

)

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1 median, m

68.6%

31.4%

m  -/+ 5%* m

1.05*q
0.5 (N=100)

0.95*q
0.5 (N=100)

q
0.5 (N=n)

q
0.686 (N=n)

q
0.314 (N=n)

Realization Number, n

10 20 30 40 50 60 70 80 90 100

Ti
m

e 
at

 M
ai

n 
S

te
am

 L
in

e 
Fa

ilu
re

 (h
rs

)

4.4

4.6

4.8

5

5.2
median, m

68.6%

31.4%

m  -/+ 5%* m

1.05*q
0.5 (N=100)

0.95*q
0.5 (N=100)

q
0.5 (N=n)

q
0.686 (N=n)

q
0.314 (N=n)

Replicate 1 Replicate 2 

Replicate 3 Replicate Uniform 



44 

  

  
Figure 4.5 - Convergence the 31.4th, 50th, and 68.6th Percentiles of the Timing of Lower 
Core Plate Failure FoM as a Function of Realization Numbers as Originally Sampled  
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Figure 4.6 - Convergence the 31.4th, 50th, and 68.6th Percentiles of the Timing of Lower 

Plenum Dryout FoM as a Function of Realization Numbers as Originally Sampled  

Realization Number, n

10 20 30 40 50 60 70 80 90 100

Ti
m

e 
at

 L
ow

er
 P

le
nu

m
 D

ry
ou

t (
hr

s)

6.8

7

7.2

7.4

7.6

7.8

8
median, m

68.6%

31.4%

m  -/+ 5%* m

1.05*q
0.5 (N=100)

0.95*q
0.5 (N=100)

q
0.5 (N=n)

q
0.686 (N=n)

q
0.314 (N=n)

Realization Number, n

10 20 30 40 50 60 70 80 90

Ti
m

e 
at

 L
ow

er
 P

le
nu

m
 D

ry
ou

t (
hr

s)

6.8

7

7.2

7.4

7.6

7.8

8
median, m

68.6%

31.4%

m  -/+ 5%* m

1.05*q
0.5 (N=100)

0.95*q
0.5 (N=100)

q
0.5 (N=n)

q
0.686 (N=n)

q
0.314 (N=n)

Realization Number, n

10 20 30 40 50 60 70 80 90 100

Ti
m

e 
at

 L
ow

er
 P

le
nu

m
 D

ry
ou

t (
hr

s)

6.8

7

7.2

7.4

7.6

7.8

8 median, m

68.6%

31.4%

m  -/+ 5%* m

1.05*q
0.5 (N=100)

0.95*q
0.5 (N=100)

q
0.5 (N=n)

q
0.686 (N=n)

q
0.314 (N=n)

Realization Number, n

10 20 30 40 50 60 70 80 90 100

Ti
m

e 
at

 L
ow

er
 P

le
nu

m
 D

ry
ou

t (
hr

s)

6.8

7

7.2

7.4

7.6

7.8

8

8.2 median, m

68.6%

31.4%

m  -/+ 5%* m

1.05*q
0.5 (N=100)

0.95*q
0.5 (N=100)

q
0.5 (N=n)

q
0.686 (N=n)

q
0.314 (N=n)

Replicate 1 Replicate 2 

Replicate 3 Replicate Uniform 



46 

  

  

Figure 4.7- Convergence the 31.4th, 50th, and 68.6th Percentiles of the Conditional Timing 
of Lower Head Failure FoM as a Function of Realization Numbers as Originally Sampled  

4.2 Bootstrapped Distribution Convergence as a Function of Sample 
Size  

While Section 4.1 examined the convergence of the median as a function of the original sample 
order, Section 4.2 explores the effect that order has on the convergence of the median. Figure 4.8 
through Figure 4.14 were developed by taking the 100 original sample data points and 
resampling the entire set with replacement 1,000 times to generate 1000 samples of 100 data 
points. The new 1,000x100 matrix, as pictured below, was then examined to find the row with 
maximum, median and minimum timing FoMs as a function of resampled realization number. 
Table 4.1 - An example 1000 by 100 matrix, in which each row contains one sample of 100 

data. 
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In this way, the authors could determine if the median value is dominated by a subset of sampled 
values or if convergence is approximately order independent. In general, median timing FoMs 
converged to within 5% of the final estimated median after ~40% of the samples regardless of 
order.  

 
Figure 4.8 – Bootstrap Resampled Convergence of the Median of the Timing of First 

Control Rod Failure FOM as a Function of Realization Numbers for Replicate 1. 
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Figure 4.9 – Bootstrap Resampled Convergence of the Median of the Timing of First 

Channel Box Failure FOM as a Function of Realization Number 
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Figure 4.10 – Bootstrap Resampled Convergence of the Median of the Timing of First 

Fuel Failure FOM as a Function of Realization Number 

Note that the Replicate 2 converges the median of the timing of first channel box failure quickly 
while Replicate 3 has a harder time converging the median within the first 100 resamples. All 
replicates converge the time of first fuel collapse to an acceptable degree (i.e., within 5%). 
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Figure 4.11 – Bootstrap Resampled Convergence of the Median of the Timing of Main 

Steam Line Failure FOM as a Function of Realization Number 

Note that the replicate which used the uniform distribution experiences a slightly slower 
convergence of the median of lower plenum dryout timing than the informed Replicates (1-3). 
The medians for replicates 1-3 converge the time of main steam line failure to an acceptable 
degree (i.e., within 5%), while the median for the replicate uniform does not acceptably 
converge. This lack of acceptable convergence may indicate that the number of realizations was 
not sufficient to reliably calculate the median. Thus, statistics calculated using only the replicate 
uniform data may not accurately represent the true behavior of the data. 
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Figure 4.12 – Bootstrap Resampled Convergence of the Median of the Timing of Lower 

Plenum Dryout FOM as a Function of Realization Number 

The medians for replicates 1-3 converge the time of lower core plate failure to an acceptable 
degree (i.e., within 5%), while the median for the replicate uniform does not acceptably 
converge. 
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Figure 4.13 – Bootstrap Resampled Convergence of the Median of the Timing of Lower 

Core Plate Failure FOM as a Function of Realization Number 

The medians for replicates 1-3 converge the time of lower plenum dryout to an acceptable degree 
(i.e., within 5%), while the median for the replicate uniform does not acceptably converge. 
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Figure 4.14 – Bootstrap Resampled Convergence of the Median of the Conditional Timing 

of Lower Head Failure FOM as a Function of Realization Numbers  

 

4.3 Bootstrapped Histograms of Sampled Medians  
Sections 4.1 and 4.2 focused on the convergence of the median as a function of realization 
number. This section will elaborate on the shape of the distribution of potential medians that 
could have arisen from the original sample. To examine this question, the bootstrapped samples 
from 4.2 were used and the medians were obtained for each of the 1000 samples of size 80 (i.e. 
see sample matrix in figure with 𝑛𝑛 = 80). These bootstrapped medians where then used to create 
histograms of potential median estimates, as seen in Figure 4.15 through Figure 4.21.  

Multimodal behavior, as evidenced in the timing of main steam line failure (Figure 4.18) and 
lower plenum dryout (Figure 4.20), are likely caused by discontinuities in the FoM near the 50th 
percentile. It should be noted that the replicate sampled from uniform input distributions exhibits 
a higher tendency of multimodal and/or flat output timing distributions.  
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Figure 4.15 – Histogram of Bootstrapped Medians for First Control Rod Failure for 

Replicate 1. 

Replicate 1 Replicate 2 

Replicate 3 Replicate Uniform 
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Figure 4.16 – Histogram of Bootstrapped Medians for First Channel Box Failure  

Replicate 1 Replicate 2 

Replicate 3 Replicate Uniform 
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Figure 4.17 – Histogram of Bootstrapped Medians for First Fuel Failure (Collapse) 

Replicate 1 Replicate 2 

Replicate 3 Replicate Uniform 
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Figure 4.18 – Histogram of Bootstrapped Medians for Main Steam Line Failure 

Replicate 1 Replicate 2 

Replicate 3 Replicate Uniform 
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Figure 4.19 – Histogram of Bootstrapped Medians for Lower Core Plate Failure  

Replicate 1 Replicate 2 

Replicate 3 Replicate Uniform 
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Figure 4.20 – Histogram of Bootstrapped Medians for Lower Plenum Dryout  

 

Replicate 1 Replicate 2 

Replicate 3 Replicate Uniform 
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Figure 4.21 – Histogram of Bootstrapped Medians for Lower Head Failure 

 

4.4 Insights from Convergence Examinations 
Examination of timing FoM convergence shows fairly stable median estimates between the 
replicate samples. Outlier impact on the median is still evident at 100 samples, especially for the 
conditional lower head failure timing FoM which converges on a subset of the original 100 
samples. The replicate derived from the uniform input distributions shows a small but noticeable 
deviation from the informed distribution Replicate (1-3) results.  

 

Replicate 1 Replicate 2 

Replicate 3 Replicate Uniform 
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5 VISUAL INSPECTION OF THE MELCOR STATISTICAL OUTPUTS 
 

Chapter 5 uses visual statistical interrogation techniques to deduce high level insights regarding 
the 1F1 accident progression. The first three sections of chapter 5 examine a subset of scatter 
plots to determine if any trends are visible in the raw data. Section 5.1 examines scatter plots of 
select input variables against hydrogen production FoMs. Section 5.2 examines scatter plots of 
physical FoMs at timing FoMs to end of simulation FoMs to produce a first order examination of 
potential time dependent correlations within the FoMs.  Finally, Section 5.3 examines the time 
progression of timing FoMs during the accident.  

Section 5.4 examines cumulative distributions of timing figures of merit with their 
accompanying hydrogen generation and intact fuel mass cumulative distributions. These 
distributions can be useful when interpreting how figures of merit change over the transient and 
provide new perspective to physical FoM when compared to the time histories Appendix A.  

5.1 Scatter Plots of Inputs FoM and Output FoM at Select Timing 
FoMs 

A cursory examination of independent variable scatterplots was made to identify obvious trends 
which may inform subsequent sensitivity analyses.  Three parameters exhibited notable trends: 

1. molten Zircaloy breakthrough temperature, 
2. effective time at temperature for fuel failure, and 
3. decay heat. 

5.1.1 Molten Zircaloy Break-Through Temperature 
Subjectively, the molten Zircaloy breakthrough temperature parameter provides the clearest 
trends to hydrogen production as a function of uncertain input. Figure 5.1, 6.23, and Figure 5.2 
show a fairly linear influence of the breakthrough temperature on hydrogen production at main 
steam line failure, lower core plate failure, and lower plenum dryout.  

Interestingly, the trend reverses from a negative trend at main steam line failure to a positive 
trend at lower plenum dryout and lower core plate failure. While the trend of hydrogen 
production reverses, the trend of event timing, shown as a 3rd dimensional color axis on the 
scatterplot, consistently shows that higher breakthrough temperatures correspond to earlier 
failure times for subsequent events. One potential explanation for this trend is that holding up 
material for a longer period of time in the hotter regions of the core accelerates subsequent 
failures when relocation finally occurs. 
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Figure 5.1 – Molten Zircaloy Breakthrough Temperature Scatterplot for Cumulative 

Hydrogen Production at Main Steam Line Failure for Replicate 1. 

 
Figure 5.2 – Molten Zircaloy Breakthrough Temperature Scatterplot for Cumulative 

Hydrogen Production at Lower Core Plate Failure for Replicate 1. 
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Figure 5.3 – Molten Zircaloy Breakthrough Temperature Scatterplot for Cumulative 

Hydrogen Production at Lower Plenum Dryout for Replicate 1. 

5.1.2 Time at Temperature 
The effective temperature at fuel collapse is more complex than the breakthrough temperature 
described in the previous section. The effective time at temperature relationships were ascribed 
to a discrete failure temperature estimate via a surrogate temperature transient as described in 
Section 3.4.2.1. 

In Figure 5.4, the collapse temperature does not appear to have a significant positive trend for in-
vessel hydrogen produced, save for a cluster of outlier points near 2500K. This cluster of low 
hydrogen production samples, all failing before 4.5 hours and producing less than 325kg of H2, 
suggests that the data is split into two regimes: one set of simulations where hydrogen has 
effectively plateaued, due to the cooling impacts following main steam line failure (RPV 
depressurization and the subsequent temporary steam cooling), and thus is invariant to failure 
temperature, and one set where hydrogen is rapidly generated and thus early failure temperatures 
correspond to lower hydrogen production.     

Figure 5.5 illustrates this relationship further by adding an axis for time differential between 
main steam line failure and first fuel failure. As can be seen, before main steam line failure, 
hydrogen produced before fuel failure is scattered from low to high hydrogen production values. 
Once main steam line failure occurs additional hydrogen production tends to decrease 
dramatically9, as can be seen by the milder relationship between the difference of main steam 
line failure and first fuel failure and hydrogen production in Figure 5.5. At this point, the 
                                                 
9 One theory for stabilization of the cumulative hydrogen production after main steam line failure is that the fuel is 
cooled during blowdown. The fuel must then reheat to resume significant hydrogen production.  
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cumulative hydrogen generation is negatively correlated to conditional additional time to first 
fuel collapse, potentially due to the lower cumulative damage prior to main steam line failure.  
This impact with main steam line failure is even more visible with intact fuel mass (see Figure 
5.6). 

 
Figure 5.4 – Effective Temperature of Fuel Failure Scatterplot for Cumulative Hydrogen 

Production at First Fuel Failure for Replicate 1. 

 
Figure 5.5 – Effective Temperature of Fuel Failure (TaT)  Scatterplot at Main Steam Line 
Failure with Time Differential (𝚫𝚫𝑻𝑻) Between the Time of Main Steam Line Failure (𝑻𝑻𝑴𝑴𝑴𝑴𝑴𝑴) 
and First Fuel Failure (𝑻𝑻𝑭𝑭𝑭𝑭) vs Intact Fuel Fraction (𝚫𝚫𝑻𝑻 = 𝑻𝑻𝑴𝑴𝑴𝑴𝑴𝑴 − 𝑻𝑻𝑭𝑭𝑭𝑭) for Replicate 1. 
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Figure 5.6– Effective Temperature of Fuel Failure (TaT, in oC) Scatterplot at First Fuel 

Failure with Time Differential (𝚫𝚫𝑻𝑻) Between the Time of Main Steam Line Failure (𝑻𝑻𝑴𝑴𝑴𝑴𝑴𝑴) 
and First Fuel Failure (𝑻𝑻𝑭𝑭𝑭𝑭) vs Intact Fuel Fraction (𝚫𝚫𝑻𝑻 = 𝑻𝑻𝑴𝑴𝑴𝑴𝑴𝑴 − 𝑻𝑻𝑭𝑭𝑭𝑭) for Replicate 1. 

Figure 5.7 shows a noisy, but positive, relationship between effective fuel failure temperature 
and hydrogen produced before lower core plate failure.  

 
Figure 5.7 – Effective Temperature of Fuel Failure Scatterplot with Cumulative Hydrogen 

Production at Lower Core Plate Failure for Replicate 1. 
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5.1.3 Decay Heat  
The effect of decay heat was only easily visible during the first two failure times, first channel 
box failure and first control rod failure. During these timing FoMs, it is evident that higher decay 
heat leads to earlier event timings, which seems to roughly correlate to lower hydrogen 
production at the time. The scatter plots for hydrogen production at first control rod and first 
channel box failure can be seen in Figure 5.8 and Figure 5.9. 

 
Figure 5.8 – 10 Hour Integrated Decay Heat Scatterplot at First Channel Box Failure for 

Replicate 1. 

 
Figure 5.9 – 10 Hour Integrated Decay Heat Scatterplot at First Control Rod Failure for 

Replicate 1. 
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5.2 Scatter Plots H2 generated at a Timing FoM and H2 at the End of 
Simulation 

This section examines the evolution of cumulative hydrogen production scatter, from major 
timing FoMs to the end of simulation.  

From Figure 5.10, there is no discernable relationship between H2 generation at first fuel collapse 
and H2 generation at the end of the simulation. The bifurcation at lower fuel collapse times was 
due to the main steam line failing later than first fuel failure for a portion of the simulations. 
Because main steam line failure and first fuel failure overlap, Figure 5.11 is essentially Figure 
5.10 with hydrogen production values before main steam line failure shifted to higher values to 
account for additional hydrogen production between fuel failure and main steam line failure. 

By the time of lower plenum dryout, the major discrete events during core degradation have 
occurred and hydrogen production has stabilized because most of the liquid water available for 
oxidation reactions has been boiled and transported away from the core/lower plenum regions of 
the RPV. Thus, Figure 5.12 shows a correlation structure start to form between timing FoMs and 
the end of simulation.  

 
Figure 5.10 – Hydrogen at First Fuel Failure vs Hydrogen at End of Simulation for 

Replicate 1. 
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Figure 5.11 – Hydrogen at Main Steam Line Failure vs Hydrogen at End of Simulation for 

Replicate 1. 

 
Figure 5.12 – Hydrogen at Lower Plenum Dryout vs Hydrogen at End of Simulation for 

Replicate 1. 
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5.3 Scatter Plots of Time Progression of Hydrogen Production 
Between Timing FoMs 

As shown in Section 5.1.2, some physical FoMs can only be explained in the context of timing 
between events. Thus, it behooves the analyst to examine the variability in the timing of FoMs. 
The event couplings were examined both in terms of the absolute timing of the events and the 
conditional timing of events for the following events: 

1. first fuel failure versus lower plenum dryout (Figure 5.13) and  
2. lower plenum dryout versus lower head failure (Figure 5.14) 

A positive correlation exists between the time of first fuel failure and lower plenum dryout, but a 
negative correlation exists between first fuel collapse and the time it takes to move from first fuel 
collapse to lower plenum dryout. One interpretation of this plot is that lower plenum dryout is 
accelerated by later fuel collapse because later fuel collapse has hotter material and more time 
for decay heat to accumulate in the system. It should be noted from the color axis of the plot, that 
higher hydrogen levels at a given time tend to both relate to earlier first fuel failures and reduce 
the conditional time of lower plenum dryout at a given first fuel collapse time. 

 

 
Figure 5.13 – Timing of First Fuel Collapse vs Lower Plenum Dryout for Replicate 1. 

Figure 5.14 shows the time at lower plenum dryout versus lower head failure conditional on that 
simulation yielding lower head failure before 15 hours. Again, a positive correlation between 
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event times relative to the beginning of the accident transforms into a negative conditional 
correlation when the time of the first event is subtracted from the time of the second event. 
Hydrogen production levels, a surrogate for oxidation energy generated, seem to have little to no 
effect on the timing or prevalence of lower head failure. 

 
Figure 5.14 – Timing of Lower Plenum Dryout vs Lower Head Failure for Replicate 1. 

5.4 Cumulative Distribution Functions 
In addition to scatterplots, cumulative distributions can be useful for interpreting uncertainty 
results.  From Equation (5-1), the cumulative distribution function (CDF or 𝐹𝐹(∙))of an uncertain 
parameter is defined as the integral of the probability density function, 𝜋𝜋(𝑋𝑋′)d𝑋𝑋′, from negative 
infinity to the value X. Because one of the values in 𝜋𝜋(𝑋𝑋′)d𝑋𝑋′ must be the “real” value, and by 
the definition of probability distributions, the integral from −∞ to ∞ must equal unity. 

 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐹𝐹(𝑋𝑋) = � 𝜋𝜋(𝑋𝑋′)d𝑋𝑋′
𝑋𝑋

−∞
 (5-1) 

Figure 5.15 and Figure 5.16 show the cumulative distribution event timing (on top of the figure) 
and either for cumulative hydrogen production or intact fuel mass (on the bottom of the figure), 
respectively. A CDF was generated for each physical FoM for each timing FoM.  By potting 
each CDF on a single FoM axis, the distribution of outcomes of the FoM is visible throughout 
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the accident. It should be noted that CDFs for lower head failure were not plotted as a 
conditional distribution and thus these CDFs do not reach a value of one within the plot. 

Figure 5.15 shows the CDFs associated with hydrogen production. Regressions associated with 
these CDFs can be found in Table 6.3. The decrease and subsequent rapid increase of the CDF 
slope for the main steam line failure and first fuel failure for both event timing and hydrogen 
generation near a CDF value of 0.1 is due to the relative timing of main steam line and first fuel 
failure discussed previously. These effects seem to dilute as the accident sequence progresses. 
From the lower head failure and end of simulation CDFs for hydrogen generation, the range of 
the CDFs span the same hydrogen levels even though not all simulations led to lower head 
failure. Thus, hydrogen generation (and hence oxidation energy produced) is not the primary 
driving force for lower head failure.  

 

 
Figure 5.15 – Cumulative Distributions for Replicate 1 FoM Timings and Corresponding 

Hydrogen Production 
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Figure 5.16 b) shows the CDFs associated with the fraction of intact fuel mass. As can be seen 
from the main steam line curve, approximately 15% of Replicate 1 simulations resulted in a 
significant (~>5%) loss of intact fuel before the main steam line failed. That fraction can drop to 
below 63% of fuel remaining intact by the time main steam line fails. The lower core plate 
failure, lower plenum dryout, and end of simulation CDFs all experience dramatic bifurcations in 
the intact fuel fractions, which may be the result of ring collapse only being predicted in a 
fraction of the Replicate 1 simulations. An entire MELCOR COR ring can collapse when the 
stub tubes and supporting CRD-columns yield due to high temperature stress and/or melting. 
When lower support is lost, MELCOR assumes that all intact material above the failure elevation 
instantly transforms to particulate debris and relocates.   

 

 
Figure 5.16 – Cumulative Distributions for Replicate 1 FoM Timings and Corresponding 

Intact Fuel Mass 

5.5 Summary of Insights from a Visual Inspection of the MELCOR 
Statistical Outputs 

Key insights from the automated regression analysis are summarized below: 
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• While experts believe that the 1F1 lower head failed before water injection occurred at 15 
hours, the 1F1 UA results show that there is only a 40% chance of that outcome given the 
current state of 1F1 severe accident representations in MELCOR.   

• For the simulations that experienced lower head failure, almost all of the fuel was 
transitioned to particulate debris and is not expected to be held up in the core region. 

• The timing of steam line failure and fuel collapse are predicted to be intermingled events, 
which complicates the early phase core degradation analysis.   

• Decay heat, fuel collapse criteria (TaT), and molten Zircaloy breakthrough temperature 
have clearly distinguishable trends with hydrogen production at select times throughout 
the accident.     
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6 AUTOMATED REGRESSION ANALYSIS 
Chapter 6 presents the results of the Replicate 1 regression analysis for each combination of the 
physical and timing FoM.  Regressions are conducted for both of the untransformed and the rank 
transformed data. A representative timing regression from Replicate 1 physical FoM is selected, 
then corresponding regressions are taken from Replicates 2-3 and Replicate U. Each of these 4 
regressions is then applied to the other 3 samples to evaluate the predictive merit of the 
regression fits. 

This chapter reviews the results from a series of regression analyses. These analyses were 
applied to three physical FoMs, at various timing FoMs, for the 1F1 accident progression results 
from Replicate 1. Utilizing regression analysis, first order influences may be inferred from the 
samples of the population of potential MELCOR output results. When interpreting regression 
results, it is important to remember that a regression model can only regress influences for which 
it is preconditioned. Section 5.1 and 5.4 did not produce obvious transformations in the FoMs 
and/or input variables to facilitate linear regressions. Thus, without additional transformations to 
the input/output data, the only influences which can be inferred using a stepwise regression 
process are: 

• Linear influences in an input parameter, e.g. Δ𝑌𝑌 = 𝛽𝛽𝑖𝑖Δ𝑋𝑋𝑖𝑖, and  
• Interaction influences between input parameters, e.g. Δ𝑌𝑌 = 𝛽𝛽𝑗𝑗𝑗𝑗Δ𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗. 

Other regression techniques both can and have been employed to infer input influences on output 
behavior [6.1]. For the 1F1 analysis, the authors are concerned that due to the high variability of 
core degradation-influenced MELCOR outputs, regressions may be susceptible to fitting inherent 
variability instead of or in addition to the physical trends derived from input variability. Thus, 
only simple linear regressions are employed across various event times to determine if trends 
hold throughout the accident and then these regressions are validated across multiple samples to 
determine if either the regression results are applicable to the entire population of 1F1 MELCOR 
outputs or simply to fitting inherent variability within a given sample.  

Section 6.2 outlines the regression results from the untransformed input and output MELCOR 
FoM data. A series of dependency tables are presented for each physical FoM. In these 
dependency tables, each column summarizes the magnitude of the influence of the physical 
FoMs at each of the timing FoMs and each row represents the input variable attributed to that 
influence. Multiple dependency tables are presented for each physical FoM to infer changes in 
the influencing input variables between timing FoMs.   

Section 6.3 repeats the efforts in 6.2 except that the X and Y variables are rank transformed. This 
potentially allows for non-monatomic effects to be linearized and thus detected in the linear 
regression analysis. 

Chapter 7 takes three raw and three rank regressions from Sections 6.2 and 6.3 and compares 
them across the three replicate samples and the uniform sample in order to gauge predictive 
merit to the population of potential 1F1 MELCOR simulations. Additionally, Replicates 1 and 2 
were combined and regressed and the resulting regressions were applied to the sample data in 
Replicate 3 and the uniform sample to determine if a larger training sample size would produce 
better predictive regressions. 
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6.1 Interpreting Regression Dependency Tables 
This section describes the methodology used for conducting regressions on the raw (i.e. 
untransformed) input and output MELCOR data at each timing FoM. As a reminder, the timing 
FoMs we selected because they mark the addition of new discrete events in the core degradation 
process: 

1. First Control Rod Failure, 
2. First Channel Box Failure, 
3. First Fuel Failure, 
4. Main Steam Line Failure, 
5. Lower Core Plate Failure, 
6. Lower Plenum Dryout, 
7. Lower Head Failure, 
8. End of Simulation. 

Three physical FoMs are examined: 

• Mass of Material Ejected from the Lower Head, 
• Cumulative In Vessel Hydrogen Production, and 
• Intact Fuel Mass in the Core. 

As many as 36 raw regressions were conducted for each physical FoM. Practicality prevents the 
authors from systematically discussing each regression, thus dependency tables were created to 
summarize the key results from each regression. After the dependency tables are presented, 
select model summary tables are provided to allow the reader to more completely understand the 
results of the regression analysis.  

An example dependency table is shown in Figure 6.1. This table is illustrative and has been 
shrunk to fit on a portrait page. The table can be read as follows: 

1. The first row defines the timing FoM in which the regression in a given column is 
conducted. For example, the column within the blue dashed box defines the regression 
for a physical FoM (e.g. cumulative in-vessel hydrogen production) at the timing FoM 
defined by the first cell in the column (i.e., lower core plate failure).  

2. The second row provides R2, R2
adj, F-statistic and the probability that a constant model is 

more appropriate derived from the F-statistic.  These measures are defined in Section 3.3. 
On a basic level, a regression is a better fit to the data if it has a high R2 value and a lower 
F-statistic based probability.  

3. Rows 3 through 18 will indicate if the variable in the first cell of that row was found in 
the regression. For example, the row with the orange dashed border defines all of the 
timing FoMs which regressed molten Zircaloy breakthrough temperature as having a 
linear influence on the physical FoM. If a parameter was not identified in a regression, it 
was not included in the dependency table and the cell is left blank. Thus, blank cells are 
included to emphasize the lack of evidence for significant influence of parameters at 
different timing FoMs. 



77 

 

  
Figure 6.1 – Example Dependency Table 

The numbers contained in a given box provide a measure of the impact of that variable on the 
regression. The columns in the X matrix consist of variables which can vary by orders of 
magnitude (e.g. decay heat is often on the order of 1010 J while unoxidized cladding thickness 
until thermal mechanical weakening is on the order of 0.001), thus the beta values also vary over 
orders of magnitudes to convert the input parameter to the regressed changes in Y. As a result, 
beta values cannot be compared directly.  

Instead of only providing 𝛽𝛽𝑖𝑖, the product of 𝑋𝑋𝑖𝑖𝛽𝛽𝑖𝑖 is the FoM within the regression output which 
allows the effect of one variable, 𝑋𝑋𝑖𝑖, to be compared to the effect of another variable, 𝑋𝑋𝑗𝑗, on the 
output FoM, Y. For notational simplicity, define the estimate for the minimum value of 𝑋𝑋𝑖𝑖 taken 
over all samples as 𝑋𝑋𝑖𝑖(1). Similarly define the estimates for the median value of 𝑋𝑋𝑖𝑖 and the 
maximum value of 𝑋𝑋𝑖𝑖 by 𝑋𝑋𝑖𝑖(𝑛𝑛/2) and 𝑋𝑋𝑖𝑖(𝑛𝑛) respectively. Since 𝛽𝛽𝑖𝑖 may be either positive or 
negative, the product 𝑋𝑋𝑖𝑖(𝑛𝑛)𝛽𝛽𝑖𝑖 will estimate the maximum effect when 𝛽𝛽𝑖𝑖 is positive, but will 
estimate the minimum effect when 𝛽𝛽𝑖𝑖 is negative. Thus, the minimum and maximum are taken 
after multiplication by 𝛽𝛽𝑖𝑖. Because the range of 𝑋𝑋𝑖𝑖 varies from parameter to parameter, the 
impact of the direct influence from the variable is reported in Equation (6-1). 

   (6-1) 

[Δ𝑌𝑌min ,Δ𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,Δ𝑌𝑌max]|𝑋𝑋𝑖𝑖~ �min �𝛽̂𝛽𝑖𝑖𝑋𝑋𝑖𝑖(1) , 𝛽̂𝛽𝑖𝑖𝑋𝑋𝑖𝑖(𝑛𝑛)  � ,𝑋𝑋𝑖𝑖(𝑛𝑛/2), max �𝛽̂𝛽𝑖𝑖𝑋𝑋𝑖𝑖(1) , 𝛽̂𝛽𝑖𝑖𝑋𝑋𝑖𝑖(𝑛𝑛)  � � 

Thus, as highlighted by the blue cloud in Figure 6.1, the time at temperature parameter can 
increase hydrogen production at the time of first fuel failure anywhere from 887 to 962 kg of H2, 
with half the samples estimating hydrogen production over or under 919 kg of H2. This high 
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positive causal relationship is balanced by the presence of negative decay heat and molten 
Zircaloy breakthrough temperature influences in the same column. In summary, this regression is 
implying that higher fuel failure temperatures correlates with additional H2 at first fuel failure for 
the sample of 1F1 MELCOR simulations regressed, while higher molten Zircaloy breakthrough 
temperatures and decay heat levels may lower H2 produced at time of fuel failure.  

 
When interaction effects are fit to the meta-model, explaining the parameter influence becomes 
more complex. The three parameter vector described in Equation (6-1) is still used to describe 
direct effects of the parameter and is the first vector in an interaction cell within the dependency 
table. Below the direct effect vector lays the interaction vector. It includes the interaction 
coefficient, the median of the interaction term, and the three parameter X vector used in (6-1). 
This interaction vector is defined in Equation (6-2). 

  
[Δ𝑌𝑌min ,Δ𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,Δ𝑌𝑌max]|𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗(𝑛𝑛/2)  ~ �min �𝛽̂𝛽𝑖𝑖,𝑗𝑗  𝑋𝑋𝑗𝑗(𝑛𝑛/2) �𝑋𝑋𝑖𝑖(1) ,𝑋𝑋𝑖𝑖(𝑛𝑛/2) ,𝑋𝑋𝑖𝑖(𝑛𝑛)�� ,

median �𝛽̂𝛽𝑖𝑖,𝑗𝑗  𝑋𝑋𝑗𝑗(𝑛𝑛/2) �𝑋𝑋𝑖𝑖(1) ,𝑋𝑋𝑖𝑖(𝑛𝑛/2) ,𝑋𝑋𝑖𝑖(𝑛𝑛)��  , max �𝛽̂𝛽𝑖𝑖,𝑗𝑗  𝑋𝑋𝑗𝑗(𝑛𝑛/2) �𝑋𝑋𝑖𝑖(1) ,𝑋𝑋𝑖𝑖(𝑛𝑛/2) ,𝑋𝑋𝑖𝑖(𝑛𝑛)��� 
(6-2) 

Obviously, the influence on the FoM of 𝑋𝑋𝑖𝑖 is a combination of the direct and interaction effects. 
Thus, a third vector is included to approximate the full impact of 𝑋𝑋𝑖𝑖 in the regression. This third 
vector, the sum of the previous two, is defined in Equation (6-3). All interaction terms have a 
color coded numerical indicator to identify the interacting variable.   

[Δ𝑌𝑌min ,Δ𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,Δ𝑌𝑌max]|𝑋𝑋𝑖𝑖,𝑋𝑋𝑖𝑖𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗  ~  �min �𝛽̂𝛽𝑖𝑖,𝑗𝑗 𝑋𝑋𝑗𝑗(𝑛𝑛/2) �𝑋𝑋𝑖𝑖(1) ,𝑋𝑋𝑖𝑖(𝑛𝑛/2) ,𝑋𝑋𝑖𝑖(𝑛𝑛)�

+ 𝛽̂𝛽𝑖𝑖 �𝑋𝑋𝑖𝑖(1) ,𝑋𝑋𝑖𝑖(𝑛𝑛/2) ,𝑋𝑋𝑖𝑖(𝑛𝑛)�� , median �𝛽̂𝛽𝑖𝑖,𝑗𝑗 𝑋𝑋𝑗𝑗
�𝑛𝑛2�
�𝑋𝑋𝑖𝑖(1) ,𝑋𝑋𝑖𝑖

�𝑛𝑛2�
,𝑋𝑋𝑖𝑖(𝑛𝑛)�

+ 𝛽̂𝛽𝑖𝑖 �𝑋𝑋𝑖𝑖(1) ,𝑋𝑋𝑖𝑖(𝑛𝑛/2) ,𝑋𝑋𝑖𝑖(𝑛𝑛)�� , max �𝛽̂𝛽𝑖𝑖,𝑗𝑗  𝑋𝑋𝑗𝑗
�𝑛𝑛2�
�𝑋𝑋𝑖𝑖(1) ,𝑋𝑋𝑖𝑖

�𝑛𝑛2�
,𝑋𝑋𝑖𝑖(𝑛𝑛)�

+ 𝛽̂𝛽𝑖𝑖 �𝑋𝑋𝑖𝑖(1) ,𝑋𝑋𝑖𝑖(𝑛𝑛/2) ,𝑋𝑋𝑖𝑖(𝑛𝑛)��� 

(6-3) 

Only the most relevant model summary tables are provided, as including every model summary 
table for the regressions in the dependency tables is not practical.   

6.2 Raw Regressions 
This section presents the dependency tables for regressions conducted on the original MELCOR 
data from Replicate 1. First, the regressions for material ejected from the lower head conditional 
on lower head failure are presented. Next, the in-vessel hydrogen production regressions are 
presented. Finally, the fraction of intact fuel mass regressions are presented.   

Important: Regression insights are correlative, not necessarily causal, and are comingled with 
the timing of the event. For example, reduced H2 at fuel failure with higher decay heat may 
be caused by higher decay heat collapsing fuel earlier, thus reducing the available time to 
produce hydrogen. Thus, higher decay heat levels should not be interpreted to produce less 
H2 during a severe accident.  
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6.2.1 Material Ejected from the Lower Head Conditional on Lower Head Failure 
This section provides the dependency and summary tables for the physical FoM – material 
ejected from the lower head. The dependency table which displays FoM values from the 
beginning of simulation can be seen in Table 6.1. Material cannot eject from the lower head until 
lower head fails, and once failure occurs there is a near instantaneous relocation of a fraction of 
the material held up in the lower head to the drywell. A moderate fraction (~ 52%) of the sample 
variance of debris relocation at the time of lower head failure can be explained with a regression 
involving the:  

• Characteristic couple time of the dT/dz model, 
• Debris quenching heat transfer coefficient, and  
• Debris falling velocity. 

 
Table 6.1 – Mass of Material Ejected from the Lower Head Conditional on Lower Head 

Failure, Beginning of Simulation Until tFOM, Raw Data  

 Lower Head Failure End of Simulation 

R2 / R2
adj / F-stat vs. Const./ p-val .56 / .516 / 12.7 / 0 N/A 

Intercept 1998.7 kg 44930 kg 

Time Constants for Radial (solid) 
Debris Relocation (s)  

RSDR 
  

Time Constants for Radial (liquid) 
Debris Relocation (s) 

RLDR 
  

dT|dz Model, Time Constant for 
Averaging Flows (s) 

  

dT|dz Model, Characteristic 
Coupling Time (s) 

dTdz_TCAF 
[66450, 81748, 99124]  

dT|dz Model, Relative Weight of 
Historical Flow (s) 

dTdz_CVH 
  

Molten Zircaloy Break-Through 
Temperature (K)  

MZBT 
  

Molten Cladding (pool) Drainage 
Rate (kg/(m*s)) 

MCDR 
  

Fraction of Strain at Which Lower 
Head Failure Occurs 

MSLHF 
  

Scaling Factor for Candling Heat 
Transfer Coefficients 

SFCHTC 
  

Fraction of Un-oxidized Cladding 
Thickness Initiating T. M. 

Weakening (m) 
MechWeak 

  

Debris Quenching Heat Transfer 
Coefficient to Pool (W/(m*m*K)) 

DebrisHT 
[-51758, -30396, -2910]  

Debris Falling Velocity (m/s) 
DFV 

[482, 12511, 34129]  

Minimum Debris Porosity 
minPorosity 

  

Time At Temperature - Effective 
Failure Temperature (K) 

TaT 
  

Decay Heat Integrated to 10 hours (J) 
DCH 

  

Note: Blank cells denote that the parameter was not regressed at 
the timing FoM. 
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While prior physical intuition is difficult to extract for dT/dz model parameters, it is logical that 
debris heat transfer coefficients, which likely influence the timing of vessel head failure, and 
debris falling velocity, which likely effects how much of the rubbilized core material makes its 
way to the lower head before failure, are likely influencing parameters of the mass of material 
ejected from the lower head at the time of lower head failure.  

No statistically significant regression results could be obtained for the end of simulation (i.e. 15 
hours after the start of the transient). This finding strengthens the hypothesis that correlations 
may be easier to find at key bifurcation points in an accident progression than at set times.  

The model summary table for the regression of mass of material ejected from the lower head at 
the time of lower head failure can be seen in Table 6.2. The scatterplots of these variables are 
shown in Figure 6.2. 

 
Table 6.2 – Model summary Table for Mass of Material Ejected from the Lower Head at 

the Time of Lower Head Failure  

Event Parameters Estimate SE tStat pValue 

Lower Head 
Failure 

[n=34, f=3] 

Intercept 1998.7 29340 0.068 0.95 

dTdz_CVH 8274 2682 3.09 0.004 

DebrisHT -27 5.6 -4.78 0.00004 

DFV 34160 12331 2.77 0.0095 

Note: see dependency table for regression fit statistics 
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Figure 6.2 – Scatter Plots of the Three Regressed Variables of Mass of Material Ejected 

From the Lower Head from Replicate 1.   

6.2.2 In-Vessel Hydrogen Production 
Unlike mass of material ejected from the lower head, hydrogen production begins before every 
timing FoM, thus a full dependency table is needed to examine the regressions for every timing 
FoM. This table is presented in Table 6.3.  

The first trend to be discussed from the dependency Table 6.3 is the evolution of fit qualities to 
the Replicate 1 sample. With the exceptions of first channel box failure, lower plenum dryout, 
and end of simulation, R2 and R2

adj increase as the accident progresses and the amount of 
hydrogen produced starts to stabilize. From Figure 5.15 b), this behavior is expected as the 
spread of H2 produced starts to stabilize after first fuel failure. The timing of lower head failure 
extends through end of simulations, causing a bifurcation in hydrogen production between 
simulations which experienced lower head failure and simulations that did not experience lower 
head failure. Thus, the end of simulation fit for H2 production is poor. Additionally, the timing 
FoMs do not comprise a comprehensive list of discrete events which occur during core 
degradation. Discrete events, e.g. failure of core sections or rings, can and do occur throughout 
the distribution of core degradation timing FoMs. These discrete events can dramatically reduce 
the ability of a linear regression to resolve potential dependencies.  

The second noticeable trend is with MZBT. This is the only parameter within the Replicate 1 
sample that was included in every stage throughout the accident sequence in which the parameter 
could potentially have a physical impact on hydrogen generation. It would have been 
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disconcerting if this parameter was included for control rod and channel box failure since MZBT 
would first occur after channel box failure. At first fuel failure and main steam line failure, 
whose timing distributions are essentially coincident from Figure 5.15 b), a negative trend10 was 
regressed between MZBT and hydrogen production, suggesting a suppressive effect at higher 
sampled MZBT. By the time of lower core plate failure, this trend reversed and a positive 
correlation was established between MZBT and hydrogen production for all remaining timing 
FoMs.  

A number of the interaction effects11, resolved also seem physical. For the main steam line 
failure, a negative correlation was resolved for the interaction between RSDR and DebrisHT, 
both parameters which would affect debris behavior in the core. At the time of lower core plate 
failure, a positive correlation was resolved for the interaction between TaT and MZBT, both 
parameters effecting how long hot material is held up in the core region, a trend which is clearly 
visible in Figure 6.3. Interaction effects were also observed for lower plenum dryout and lower 
core plate failure, but the physical justification for those interactions is less clear.   

The three input variables RSDR, DebrisHT, and TaT are regressed at three separate times 
throughout the accident progression. No other variables, except MZBT, were regressed at more 
timing FoMs. It is also notable that both variables TaT and DCH, approximated as described in 
Section 6.4.1.2, were regressed. 

 
Figure 6.3 – Linear Interaction Between Effective Fuel Failure Temperature (K) {TaT} and 
Molten Zircaloy Melt Breakthrough Temperature (K) {MZBT} at the Time of Lower Core 

Plate Failure for Cumulative Hydrogen Production.  

                                                 
10 The sign of the regressed trend is shown by the sign of the regression coefficients provided in the dependency 
tables.  
11 Interaction effects are conjoint influence on the output FoM. These effects are provided in the dependency tables 
as described in Section 6.4.1. 
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Table 6.3 – Mass of In-Vessel Hydrogen Produced, Beginning of Simulation Until tFOM, Raw Data 

 First Control Rod 
Failure 

First Channel Box First Fuel Failure Main Steam Line Lower Core Plate Lower Plenum  
Dry-out 

Lower Head 
Failure 

End of Simulation 

R2 / R2
adj / F-stat vs. Const./ 

p-val .28 / .26 / 18.7 / 0 .06 / .05 / 5.9 / 0.017 .26 / .24 / 11.3 / 0 .33 / .31 / 11.9 / 0 .58 / .55 / 21.1 / 0 .485 / .463 / 22.3 / 0 .66 / .6 / 10.7 / 0 .194 / .177 / 11.7 / 0 

Intercept 65 kg 144 kg 155 kg 757 kg 8288 kg 158.44 kg -126.73 kg 242.09 kg 
Time Constants for Radial 
(solid) Debris Relocation 

(s) [1] 
RSDR 

   
 [33, 81, 128] 

[-184, -117, -48][4] 
[-56, -36, -15] 

 
[-34, -22,-9 ] 

 
  [35, 84, 132]  

Time Constants for Radial 
(liquid) Debris Relocation 

(s) 
RLDR 

        

dT|dz Model, Time 
Constant for Averaging 

Flows (s) 
dTdz_TCAF 

  [ -32, -29,-26]        

dT|dz Model, Characteristic 
Coupling Time (s) 

dTdz_CVH 
        

dT|dz Model, Relative 
Weight of Historical Flow 

(s) 
dTdz_Smooth 

        

Molten Zircaloy Break-
Through Temperature (K) 

[2] 
MZBT 

  [-217, -202, -185]  [-470, -437,-400 ] 
 [-9221, -8570, -7857 ] 
[8248, 8996, 9679][6] 

[391, 426, 459] 
[665, 725, 780]  [632, 689, 742]  [491, 535, 576] 

Molten Cladding (pool) 
Drainage Rate (kg/(m*s)) 

MCDR 
   

      

Fraction of Strain at 
Which Lower Head 

Failure Occurs 
FSLHF 

    [73, 83, 91]    

Scaling Factor for Candling 
Heat Transfer Coefficients 

SFCHTC 
        

Fraction of Un-oxidized 
Cladding Thickness 

Initiating T. M. 
Weakening (m)[3] 

MechWeak 

      
 [97, 177, 282] 

[-151, -95, -52][5] 
[45, 82, 131 

 
 

Debris Quenching Heat 
Transfer Coefficient to 
Pool (W/(m*m*K)) [4] 

DebrisHT 

   
[9, 95, 162] 

[-200, -117, -11][1] 
[-38, -22, -2] 

 
[-1314, -772, -74] 
[73, 757, 1290][6] 

[-25, -14, -1] 
  [-37, -22, -2] 

Debris Falling Velocity 
(m/s)[5] 

DFV 
[-0.511, -0.187, -0.007]      

 

[2, 62, 169] 
[-258, -95, -4][3] 

[-89, -33, -1] 
 

Minimum Debris Porosity 
minPorosity     [-19, -10, -1]    

Time At Temperature - 
Effective Failure 

Temperature (K)[6] 
TaT 

  [887, 919, 962]  
[-8597, -8212, -7924] 
[8680, 8996, 9418][2] 

[756, 784, 821] 

[-215, -205, -198] 
[731, 757, 793][4] 

[533, 552, 578] 
  

Decay Heat Integrated to 
10 hours (J) 

DCH 
[-23, -22, -21]  [-502, -482, -462]    
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In order to promote additional clarity regarding the regression results presented in the hydrogen 
dependency table, model summary tables at first fuel failure, lower core plate failure, and lower 
head failure are shown in Table 6.4, Table 6.5, and  

Table 6.6. 
Table 6.4 – Model Summary Table for Hydrogen Produced Before First Fuel Failure 

Event Parameters Estimate SE tStat pValue 

First Fuel 
Failure 

[n=100] 

 

Intercept 155 330.7 0.47 0.64 

MZBT -0.09 0.042 -2.03 0.05 

TaT 0.36 0.08 4.49 0.00002 

DCH -5e-09 2e-09 -2.14 0.04 

Note: see dependency Table 6.4 for regression fit statistics 
 

Table 6.5 – Model Summary Table for Hydrogen Produced Before Lower Core Plate 
Failure 

Event Parameters Estimate SE tStat pValue 

Lower Core 
Plate 

[n=100] 

 

Intercept 8288 3048 2.72 0.008 

RSDR -0.05 0.018 -2.79 0.006 

MZBT -3.66 1.3 -2.81 0.006 

FSLHF 453.8 203.7 2.23 0.028 

minPorosity -94.4 42.6 -2.22 0.029 

TaT -3.2 1.2 -2.69 0.008 

MZBT:TaT 0.0014 0.0005 2.95 0.004 

Note: see dependency Table 6.4 for regression fit statistics 
 

Table 6.6 – Model Summary Table for Hydrogen Produced Before Lower Head Failure 

Event Parameters Estimate SE tStat pValue 

Lower 
Head 

Failure 

[n=34] 

 

Intercept -127 167 -0.76 0.455 

RSDR 0.19 0.055 3.48 0.002 

MZBT 0.29 0.07 4.18 0.0003 

MechWeak 0.00002 44456 4.24 0.0002 

DFV 169.07 87.5 1.93 0.064 

MechWeak:DFV -0.00003 93175 -2.95 0.006 

Note: see dependency Table 6.4 for regression fit statistics 
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6.2.3 Fraction of Intact Fuel Mass 
The dependency table for intact fuel mass is Table 6.7. No regressions were conducted before 
fuel failure because, nominally, all fuel is intact before the first fuel failure. In general, the 
regressions for intact fuel mass explain less of the variance than was seen with hydrogen 
production in Table 6.3. The finding that intact fuel mass is less susceptible to linear regression 
than hydrogen generation is not surprising when examining the cumulative distribution functions 
for hydrogen production and intact fuel mass found in Figure 5.15 b) and Figure 5.16 b), 
respectively.  The discontinuous nature of Figure 5.16 arises from the core nodalization scheme 
employed in the 1F1 MELCOR deck and thus inhibits the effectiveness of linear regression 
techniques.  

Even with these limitations, some valuable trends are noticeable. The interaction term between 
TaT and MZBT found in the hydrogen production regressions is still noticeable for intact fuel 
mass, although based on Figure 6.5 this interaction may be less significant. These two 
parameters are the primary parameters identified throughout the accident progression, with the 
exception of decay heat’s contribution to driving first fuel failure.  

  
Figure 6.4 – Linear Interaction Effective Temperature of Fuel Failure (K) and Molten 

Zircaloy Breakthrough Temperature (K) {MZBT} at the Time of Lower Core Plate Failure 
for Fraction of Intact Fuel Mass.  

1

MCDR, kg/ m*s

0.5

02600

2400

ZMBT, K

2200

0.3

0.35

0.25

0.45

0.5

0.4

2000

Fr
ac

. o
f I

nt
ac

t F
ue

l M
as

s 
at

 L
ow

er
 C

or
e 

P
la

te



86 

Table 6.7 – Fraction of Intact Fuel Mass, Beginning of Simulation Until tFOM, Raw Data 

 First Fuel Failure Main Steam Line Lower Core Plate Lower Plenum Dry-
out Lower Head Failure End of Simulation 

R2 / R2
adj / F-stat vs. Const./ 

p-val .12 / .102 / 6.62 / .002 .185 / .176 / 22.2 / 0 .307 / .286 / 14.2 / 0 .182 / .165 / 10.8 / 0 N/A .238 / .215 / 10 / 0 

Intercept 0.8415 kg -0.36111 kg 16.947 kg 0.23813 kg 0.00074 kg -0.12205 kg 

Time Constants for Radial 
(solid) Debris Relocation (s) 

RSLD 
      

Time Constants for Radial 
(liquid) Debris Relocation (s) 

RLDR 
      

dT|dz Model, Time Constant 
for Averaging Flows (s) 

dTdz_TCAF 
      

dT|dz Model, Characteristic 
Coupling Time (s) 

dTdz_CVH 
      

dT|dz Model, Relative 
Weight of Historical Flow (s) 

dTdz_Smooth 
      

Molten Zircaloy Break-
Through Temperature (K) 

[1] 
MZBT 

[-0.1005, -0.1097, -0.11979]  
[-19, -18, -16] 
[16, 17, 18] [4] 

[-0.79. -0.74, -0.68] 
[-0.84, -0.78, -0.72 ]   

Molten Cladding (pool) 
Drainage Rate (kg/(m*s)) 

MCDR 
      

Fraction of Strain at Which 
Lower Head Failure Occurs 

FSLHF 
      

Scaling Factor for Candling 
Heat Transfer Coefficients 

SFCHTC 
      

Fraction of Un-oxidized 
Cladding Thickness 

Initiating T. M. Weakening 
(m) [2] 

MechWeak 

     
[0.08, 0.15, 0.24] 

[-0.192, -0.12, -0.066] [3] 
[0.016, 0.029, 0.046] 

Debris Quenching Heat 
Transfer Coefficient to Pool 

(W/(m*m*K)) [3] 
DebrisHT 

     
[0.01, 0.1, 0.17] 

[-0.2, -0.12, -0.01] [2] 
[-0.035, -0.021, -0.002] 

Debris Falling Velocity (m/s) 
DFV       

Minimum Debris Porosity 
minPorosity       

Time At Temperature - 
Effective Failure 

Temperature (K) [4] 
TaT 

 [1.28, 1.33, 1.39] 
[-17, -16, -15] 

[16, 17, 18] [1] 
[1.14, 1.18, 1.24] 

[0.85, 0.88, 0.92]   

Decay Heat Integrated to 10 
hours (J) 

DCH 
[0.219, 0.228, 0.238]      
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In order to promote additional clarity regarding the regression results presented in the fractional 
intact fuel mass dependency table, model summary tables at lower core plate failure, lower 
plenum dryout, and end of simulation are shown in Table 6.9, Table 6.9, and Table 6.10. 

 
Table 6.8 – Model Summary Table for Intact Fuel Mass Fraction at Lower Core Plate 

Failure 

Event Parameters Estimate SE tStat pValue 

Lower Core 
Plate 

[n=100] 

Intercept 17 8.3 2.038 0.044 

MZBT -0.008 0.004 -2.13 0.036 

TaT -0.006 0.003 -1.9 0.06 

MZBT:TaT 3e-06 1e-06 2.04 0.0437 

Note: see dependency table for regression fit statistics 
 

Table 6.9 – Model Summary Table for Intact Fuel Mass Fraction at Lower Plenum Dryout 

Event Parameters Estimate SE tStat pValue 

Lower Plenum 
Dryout 

[n=100] 

Intercept 0.24 0.49 0.48 0.629 

MZBT -0.0003 0.00009 -3.83 0.0002 

TaT 0.0003 0.0002 2.09 0.039 

Note: see dependency table for regression fit statistics 

 
Table 6.10 – Model Summary Table for Intact Fuel Mass Fraction at End of Simulation 

Event Parameters Estimate SE tStat pValue 

End of 
Simulation 

[n=100] 

Intercept -0.12 0.03 -3.71 0.0003 

MechWeak 158 32.91 4.81 5e-06 

DebrisHT 0.00009 0.00003 3.35 0.001 

MechWeak:DebrisHT -0.11 0.027 -4.23 0.00005 

Note: see dependency table for regression fit statistics 
 

6.3 Rank Regressions 
The rank regressions are similar to the raw regressions conducted in Section 6.4.2, except that 
the inputs and the outputs are rank transformed before the linear regressions are conducted. A 
rank transformation takes the variable being transformed and assigns an integer value 
corresponding to the “rank” of that component.12 Thus, the observation with the highest value is 
                                                 
12 Aside: Rank transformation are commonly used in sports to rank the production of players. For example, on Nov. 
10th, 2014, the rank transformation of passing yard in the National Football League was: 1. Andrew Luck (3085 
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assigned rank 1, the second largest observation is assigned rank 2 and so on. When two or more 
observations have the same value, they are all assigned the mean of their ranks. Thus, the total 
number of distinct ranks in the transformed data is the number of distinct values in the original 
data, which may be less than the sample size n. If only one data point attains the largest observed 
value, the first rank will be 1. However, if multiple data points attain the largest observed value 
then the first rank will be greater than 1. Similarly, if every observation is unique (i.e. there are 
no ties in the data), then the smallest observation will have rank n. Otherwise, the smallest 
observation will have a rank less than n. Hence, for the example rank transformation shown in 
Equation (6-4),  i and j are integers less than n and greater than or equal to 1, and n is the length 
of the vector Y, accounting for the possible occurrence of ties in the data. 

  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝒀𝒀) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ��
𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
�� = �

𝑖𝑖
⋮
𝑗𝑗
� ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 1 ≤  𝑖𝑖, 𝑗𝑗 ≤   𝑛𝑛 (6-4) 

The rank transformation of variables equally spaces out the components within a vector by non-
dimensional spaces of one. Thus all vectors, no matter how small or large the range they cover, 
will be spaced between one and n (i.e., the number of Monte Carlo simulations run for the 
sample).  With the range of all X and Y variables equal to each other and the median equaling n/2 
by definition, the regression coefficients produced can be directly compared to each other 
without the need to transform a ΔY vector as was done in Equations (6-1) and (6-3). The 
potential challenge with conducting a rank transformation blindly is that the rank transformation 
process may introduce trends that do not exist, or alternatively miss linear trends which are 
harder to detect under a rank transformation. Thus, it is important to take the rank regression 
results and examine them in an untransformed state to determine the true impact of the regressed 
trend.  

One additional transformation was conducted on the rank transformed data in order to allow the 
regressions to be applied to samples of different sizes than the training data size. This 
transformation involves dividing each value in the rank transformed vector by the maximum 
rank. This normalizes the values in the X and Y column vectors to the interval (0,1].   
6.3.1 Material Ejected from the Lower Head Conditional on Lower Head Failure 
The dependency table for the rank regressions of mass of material ejected from the lower head 
only regressed to two timing FoMs: lower head failure and end of simulation. In addition to 
examining the trends highlighted in the rank regression dependency table (see Table 6.11), it is 
informative to compare these trends to those highlighted in the raw regressions dependency table 
(see Table 6.1). 

As both of the rank and raw regressions were performed upon the same sample (e.g. Replicate 
1), the variables indicated in each timing FoM regression should be similar. An examination of 
both dependency tables reveals generally higher fit estimates for later timing FoMs. The rank 
regressions fit the mass ejected from the lower head at timing FoM data set slightly better, with 
the rank regression even resolving an interaction effect for the end of simulation. It should be 
                                                                                                                                                             
yards), 2. Ben Roethlisberger (3063 yards), 3. Peyton Manning (2912 yards), 4. Drew Brees (2816 yards), 5. Matt 
Ryan (2525 yards). Source: www.rotoworld.com.   
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noted that while the rank regression resolved more of the variance than the raw regression 
resolved, no additional parameters were included in the rank regression.     

 
Table 6.11 – Mass of Material Ejected from the Lower Head Conditional on Lower Head 

Failure, Beginning of Simulation Until tFOM, Rank Data  

 Lower Head 
Failure 

End of Simulation 

R2 / R2
adj / F-stat vs. Const./ p-val .62 / .58 / 16.4 / 0 .16 / .14 / 6.18 / .0007 

Intercept 0.46 0.027 
Time Constants for Radial (solid) Debris 

Relocation (s)  
RSDR 

  

Time Constants for Radial (liquid) 
Debris Relocation (s) 

RLDR 
  

dT|dz Model, Time Constant for 
Averaging Flows (s) 

dTdz_TCAF 
  

dT|dz Model, Characteristic Coupling 
Time (s) 

dTdz_CVH 
𝛽𝛽𝑖𝑖 = 0.378  

dT|dz Model, Relative Weight of 
Historical Flow (s) 

dTdz_Smooth 
  

Molten Zircaloy Break-Through 
Temperature (K)  

MZBT 
  

Molten Cladding (pool) Drainage Rate 
(kg/(m*s)) 

MCDR 
  

Fraction of Strain at Which Lower Head 
Failure Occurs 

FSLHF 
  

Scaling Factor for Candling Heat 
Transfer Coefficients 

SFCHTC 
  

Fraction of Un-oxidized Cladding 
Thickness Initiating T. M. Weakening (m) 

MechWeak 
  

Debris Quenching Heat Transfer 
Coefficient to Pool (W/(m*m*K)) 

DebrisHT 
𝛽𝛽𝑖𝑖 = −0.612  

Debris Falling Velocity (m/s) 
DFV 𝛽𝛽𝑖𝑖 = 0.326  

Minimum Debris Porosity [1] 
minPorosity  𝛽𝛽𝑖𝑖 = 0.631 

𝛽𝛽1,2 = −0.846 
Time At Temperature - Effective 

Failure Temperature (K) [2] 
TaT 

 𝛽𝛽𝑖𝑖 = 0.115 
𝛽𝛽1,2 = −0.846 

Decay Heat Integrated to 10 hours (J) 
DCH   

Note: Blank cells denote that the parameter was not regressed at 
the timing FoM. 

 
In order to promote additional clarity regarding the regression results presented in the mass of 
material ejected dependency table, a model summary table at lower head failure is shown in 
Table 6.12. 
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Table 6.12 – Model Summary Table for Mass of Material Ejected From the Lower Head at 
Lower Head Failure 

Event Parameters Estimate SE tStat pValue 

Lower Head 
Failure 

[n=34] 

Intercept 0.463 0.121 3.82 0.0006 

dTdz_CVH 0.378 0.114 3.31 0.002 

DebrisHT -0.612 0.113 -5.41 7e-06 

DFV 0.326 0.117 2.8 0.009 

Note: see dependency table for regression fit statistics 
 

6.3.2 In-Vessel Hydrogen Production 
The dependency table for the rank regressions of hydrogen production covers every timing FoM. 
In addition to examining the trends highlighted in the rank regression dependency table (see 
Table 6.13), it is informative to compare these trends to those highlighted in the raw regressions 
dependency table (see Table 6.3). 

As both of the rank and raw regressions stem from the same sample (i.e., Replicate 1), the 
relative suitability of the regression for each timing FoM should be similar. Indeed, an 
examination of both dependency tables reveals generally higher fit estimates for later timing 
FoMs. The rank regressions fit the hydrogen production at timing FoM data sets slightly better, 
with the exception of main steam line failure and lower plenum dryout. Rank regressions fit the 
sample data significantly better for lower head failure, likely due to the small number of samples 
associated with this conditional timing FoM (i.e., 34 out of 100 simulations lead to lower head 
failure and thus were available for regression).     

MZBT still shows the most suitability for regression amongst sampled parameters, having high 
regression coefficients from main steam line failure to end of simulation. Interestingly, MZBT 
was not resolved for the timing of first fuel failure as was the case for the raw regression. At 
main steam line failure, an interaction effect was identified between MZBT and MCDR, an 
interaction which was not seen in the raw regression.  This trend can be seen in the raw data 
shown in Figure 6.5, but a fraction of high MZBT samples indicate low hydrogen production. 
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Table 6.13 – Mass of In-Vessel Hydrogen Produced, Beginning of Simulation Until tFOM, Rank Data 

 First Control 
Rod Failure 

First Channel Box First Fuel Failure Main Steam 
Line 

Lower Core 
Plate 

Lower Plenum 
Dry-out 

Lower Head Failure End of Simulation 

R2 / R2
adj / F-stat vs. Const. / pval .26 / .24 / 16.7 / 0 .05 / .04 / 5.02 / .027 .23 / .21 / 9.78 / 0 .42 / .38 / 11 / 0 .53 / .5 / 21.1 / 0 .52 / .5 / 25.8 / 0 .4 / .37 / 10.5 / .0003 .17 / .16 / 10.1 / .0001 

Intercept 0.84 0.62 0.54 0.104 0.24 0.28 0.08 0.40 
Time Constants for Radial (solid) 

Debris Relocation (s) [1] 
RSDR 

   𝛽𝛽𝑖𝑖 = 0.174 
𝛽𝛽1,4 = −0.871 𝛽𝛽𝑖𝑖 = −0.189    

Time Constants for Radial (liquid) 
Debris Relocation (s) 

RLDR 
        

dT|dz Model, Time Constant for 
Averaging Flows (s) 

dTdz_TCAF 
 𝛽𝛽𝑖𝑖 = −0.227       

dT|dz Model, Characteristic 
Coupling Time (s) 

dTdz_CVH 
        

dT|dz Model, Relative Weight of 
Historical Flow (s) 

dTdz_Smooth 
        

Molten Zircaloy Break-Through 
Temperature (K) [2] 

MTBT 
   𝛽𝛽𝑖𝑖 = −0.867 

𝛽𝛽2,3 = 1.082 𝛽𝛽𝑖𝑖 = 0.545 𝛽𝛽𝑖𝑖 = 0.669 𝛽𝛽𝑖𝑖 = 0.467 𝛽𝛽𝑖𝑖 = 0.373 

Molten Cladding (pool) Drainage 
Rate (kg/(m*s)) [3] 

MCDR 
  𝛽𝛽𝑖𝑖 = −0.222 𝛽𝛽𝑖𝑖 = −0.727 

𝛽𝛽2,3 = 1.082     

Fraction of Strain at Which Lower 
Head Failure Occurs 

FSLHF 
        

Scaling Factor for Candling Heat 
Transfer Coefficients  

SFCHTC 
        

Fraction of Un-oxidized Cladding 
Thickness Initiating T. M. 

Weakening (m) 
MechWeak 

      𝛽𝛽𝑖𝑖 = 0.363  

Debris Quenching Heat Transfer 
Coefficient to Pool (W/(m*m*K)) 

[4] 
DebrisHT 

   𝛽𝛽𝑖𝑖 = 0.238 
𝛽𝛽1,4 = −0.871 𝛽𝛽𝑖𝑖 = −0.187 𝛽𝛽𝑖𝑖 = −0.52 

𝛽𝛽4,5 = 0.632  𝛽𝛽𝑖𝑖 = −0.185 

Debris Falling Velocity (m/s) 
DFV 𝛽𝛽𝑖𝑖 = −0.199        

Minimum Debris Porosity 
minPorosity         

Time At Temperature - Effective 
Failure Temperature (K) [5] 

TaT 
  𝛽𝛽𝑖𝑖 = 0.4  𝛽𝛽𝑖𝑖 = 0.513 𝛽𝛽𝑖𝑖 = −0.039 

𝛽𝛽4,5 = 0.632   

Decay Heat Integrated to 10 
hours (J) 

DCH 
𝛽𝛽𝑖𝑖 = −0.46715  𝛽𝛽𝑖𝑖 = −0.234  𝛽𝛽𝑖𝑖 = −0.151    
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Figure 6.5 – Linear Interaction Between Molten Clad Drainage Rate (kg/(m*s)) {MCDR} 
and Molten Zircaloy Breakthrough Temperature (K) {MZBT} at the Time of Main Steam 

Line Failure for Cumulative Hydrogen Production.  

DebrisHT jumps to the second most frequently regressed parameter by exhibiting a negative 
coefficient for hydrogen production at the time of lower core plate failure, in addition to 
preexisting regressions for main steam line, lower plenum dryout and end of simulation. A 
negative trend is slightly noticeable in the raw untransformed data shown in Figure 6.6, but it is 
difficult to determine if this trend is physical or a function of the inherent variability introduced 
with the rank transformation.  

DebrisHT also shows interaction effects with RSDR at main steam line failure and TaT at lower 
plenum dry-out. From Figure 6.7, it is possible that the negative trend is actually an artifact of 
the sequence variability between main steam line failure and first fuel failure. Future studies of 
this accident should perform additional order-dependent regressions on main steam line failure 
and first fuel failure. Figure 6.8 shows the raw data for DebrisHT and TaT at lower plenum 
dryout. The rank regression indicates a weak positive relationship between the two variables, but 
a visual examination of the data does not confirm this relationship.  
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Figure 6.6 – DebrisHT Scatterplot of Hydrogen Produced by Lower Core Plate Failure 

   

 
Figure 6.7 – Linear Interaction Debris Quenching Heat Transfer (W/m2K) {DebrisHT} and 
Radial Solid Debris Relocation Time Constant (s) {RSDR} at the Time of Main Steam Line 

Failure for Cumulative Hydrogen Production. 13 

 

 

 

                                                 
13 The color scale reproduces the z-axis for clarity. 
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Figure 6.8 – Linear Interaction Debris Quenching Heat Transfer (W/m2K) {DebrisHT} and 

Effective Fuel Failure Temperature (K) {TaT} at the Time of Lower Plenum Dryout for 
Cumulative Hydrogen Production. The color scale reproduces the z-axis for clarity. 

In order to promote additional clarity regarding the regression results presented in the hydrogen 
dependency table, model summary tables at main steam line failure, lower plenum dryout, and 
lower head failure are shown in Table 6.14, Table 6.15, and Table 6.16. Note that statistically 
insignificant first order interactions were included to support statistically significant interaction 
terms for Table 6.14 and Table 6.15, with the DebrisHT:TaT term being only marginally 
significant itself. Thus, the TaT effects are suspect.  
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Table 6.14 – Model Summary Table for Cumulative Hydrogen Production at Main Steam 
Line Failure 

Event Parameters Estimate SE tStat pValue 

Main Steam 
Line 

[n=100] 

Intercept 1.045 0.142 7.36 7e-11 

RSDR 0.174 0.164 1.06 0.292 

MZBT -0.867 0.162 -5.35 6e-07 

MCDR -0.727 0.156 1.06 0.00001 

DebrisHT 0.238 0.18 1.32 0.19 

RSDR:DebrisHT -0.871 0.305 -2.86 0.005 

MZBT:MCDR 1.082 0.273 3.96 0.0001 

Note: see dependency table for regression fit statistics 
 

Table 6.15 – Model Summary Table for Cumulative Hydrogen Production at Lower 
Plenum Dryout 

Event Parameters Estimate SE tStat pValue 

Lower 
Plenum 
Dry-out 

[n=100] 

Intercept 0.284 0.108 2.63 0.01 

MZBT 0.669 0.073 9.17 9e-15 

DebrisHT -0.52 0.167 -3.11 0.002 

TaT -0.039 0.183 -0.21 0.832 

DebrisHT:TaT 0.632 0.316 2.00 0.048 

Note: see dependency table for regression fit statistics 
 
Table 6.16 – Model Summary Table for Cumulative Hydrogen Production at Lower Head 

Failure 

Event Parameters Estimate SE tStat pValue 

Lower Head 
Failure 

[n=34] 

Intercept 0.08 0.103 0.77 0.445 

MZBT 0.467 0.141 3.30 0.002 

MechWeak 0.363 0.141 2.58 0.015 

Note: see dependency table for regression fit statistics 
 

6.3.3 Fraction of Intact Fuel Mass In-Core 
The dependency table for the rank regressions of fractional intact fuel mass in-core is regressed 
for first fuel failure, main steam line failure, lower core plate failure, lower plenum dryout, lower 
head failure, and end of simulation. In addition to examining the trends highlighted in the rank 
regression dependency table (see Table 6.17), it is informative to compare these trends to those 
highlighted in the raw regressions dependency table (see Table 6.7). 
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As both of the rank and raw regressions stem from the same sample (i.e., Replicate 1), the 
relative suitability for regression of each timing FoM should be similar. Indeed, an examination 
of both dependency tables reveals generally higher fit estimates for later timing FoMs. The rank 
regressions fit the fraction of intact fuel mass better than the raw regressions and sometimes 
regress different dependencies. 

For example, at the time of first fuel failure, the raw regressions singled out decay heat and 
molten Zircaloy breakthrough temperature as being important. The rank regressions kept decay 
heat, and its positive correlation, but dropped the breakthrough temperature in favor of debris 
falling velocity. In this case, the rank regression emerged with the higher R2 and the stronger 
physical explanation; the temperature at which material relocates before fuel failure would 
potentially lower the intact fuel fraction more than the debris falling velocity keeps fuel intact by 
removing hot material from the intact fuel.  

The rank transformation improves the suitability for regression of fractional intact fuel at main 
steam line failure. The rank transformation takes the raw regression of effective fuel failure 
temperature and adds to it an interaction effect with the breakthrough temperature (see Figure 
6.9) and maintains the debris falling velocity from the first fuel failure regression.  

 
Figure 6.9 – Interaction Term Plot between Molten Zircaloy Breakthrough Temperature 

(K) {MZBT} and Time at Temperature vs Fraction of Intact Fuel Mass at Main Steam Line 
Failure. 
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Table 6.17 – Fraction of Intact Fuel Mass, Beginning of Simulation Until tFOM, Rank Data 

 First Fuel Failure Main Steam Line Lower Core Plate Lower Plenum 
Dry-out 

Lower Head 
Failure 

End of Simulation 

R2 / R2
adj / F-stat vs. Const./ p-val .09 / .07 / 4.79 / .01 .4 / .38 / 15.9 / 0 .29 / .26 / 9.69 / 0 .2 / .18 / 11.9 / 0 N/A .06 / .05 / 5.93 / 0.017 

Intercept 0.29 0.47 0.37 0.53 0.51 0.063 

Time Constants for Radial (solid) 
Debris Relocation (s) 

RSDR 
      

Time Constants for Radial (liquid) 
Debris Relocation (s) 

RLDR 
      

dT|dz Model, Time Constant for 
Averaging Flows (s) 

dTdz_TCAF 
      

dT|dz Model, Characteristic Coupling 
Time (s) 

dTdz_CVH 
      

dT|dz Model, Relative Weight of 
Historical Flow (s) 

dTdz_Smooth 
      

Molten Zircaloy Break-Through 
Temperature (K) [1] 

MZBT 
 

𝛽𝛽𝑖𝑖 = −0.461 

𝛽𝛽1,2 = 1.633 
𝛽𝛽𝑖𝑖 = −0.188 𝛽𝛽𝑖𝑖 = −0.35   

Molten Cladding (pool) Drainage Rate 
(kg/(m*s)) 

MCDR 
      

Fraction of Strain at Which Lower 
Head Failure Occurs 

FSLHF 
  𝛽𝛽𝑖𝑖 = −0.206    

Scaling Factor for Candling Heat 
Transfer Coefficients 

SFCHTC 
      

Fraction of Un-oxidized Cladding 
Thickness Initiating T. M. 

Weakening (m) 
MechWeak 

     𝛽𝛽𝑖𝑖 = 0.148 

Debris Quenching Heat Transfer 
Coefficient to Pool (W/(m*m*K)) 

DebrisHT 
      

Debris Falling Velocity (m/s) 
DFV 

𝛽𝛽𝑖𝑖 = 0.23 𝛽𝛽𝑖𝑖 = 0.19 𝛽𝛽𝑖𝑖 = 0.088    

Minimum Debris Porosity 
minPorosity 

      

Time At Temperature - Effective 
Failure Temperature (K) [2] 

TaT 
 

𝛽𝛽𝑖𝑖 = −0.456 

𝛽𝛽1,2 = 1.633 
𝛽𝛽𝑖𝑖 = 0.12 𝛽𝛽𝑖𝑖 = 0.302   

Decay Heat Integrated to 10 hours 
(J) 

DCH 
𝛽𝛽𝑖𝑖 = 0.195      
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For the lower core plate regression, the rank transformation removes the interaction between 
breakthrough temperature and effective fuel failure temperature while adding fractional strain to 
induce lower head failure and debris falling velocity. As emphasized in the discussion of Table 
6.19, this regression is suspected to have fit inherent variability and thus may not be indicative of 
population trends.  

After lower core plate failure, the benefits derived from conducting a rank regression diminish. 
The regressions for lower plenum dryout are extremely similar to the raw regressions, adding 
little to no additional information. At the end of simulation, rank regressions do not resolve the 
debris quenching heat transfer coefficient found in the raw regression results.   

In order to promote additional clarity regarding the rank regression results presented in the 
fractional intact fuel mass dependency table, model summary tables at main steam line failure, 
lower core plate failure, and lower plenum dryout are shown in Table 6.18, Table 6.19, and 
Table 6.20. Note that many of the regression values have marginal significance (0.1 < pValue < 
0.5) and FSLHF in Table 6.19 should not be physically possible because lower head failure is 
preceded by lower core plate failure. Thus, the applicability of these regressions to samples from 
the same distribution should be examined before subsequent research decisions are made.   

 
Table 6.18 – Model Summary Table for Fraction of Intact Fuel Mass at Main Steam Line 

Failure 

Event Parameters Estimate SE tStat pValue 

Main Steam 
Line 

[n=100] 

Intercept 0.469 0.126 3.71 0.0003 

MZBT -0.461 0.196 -2.36 0.020 

DFV 0.19 0.080 2.37 0.020 

TaT -0.456 0.210 -2.17 0.033 

MZBT:TaT 1.633 0.354 4.62 0.00001 

Note: see dependency table for regression fit statistics 
 

Table 6.19 – Model Summary Table for Fraction of Intact Fuel Mass at Lower Core Plate 
Failure 

Event Parameters Estimate SE tStat pValue 
Lower Core 

Plate 
[n=100] 

Intercept 0.366 0.097 3.77 0.0003 
MZBT -0.188 0.09 -2.1 0.039 
FSLHF -0.206 0.088 -2.33 0.022 

DFV 0.212 0.088 2.40 0.018 
TaT 0.47 0.11 4.29 0.0004 

Note: see dependency table for regression fit statistics 
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Table 6.20 – Model Summary Table for Fraction of Intact Fuel Mass at Lower Plenum 
Dryout 

Event Parameters Estimate SE tStat pValue 
Lower Plenum 

Dry-out 
[n=100] 

Intercept 0.535 0.083 6.41 5e-09 
MZBT -0.35 0.094 -3.73 0.0003 
TaT 0.302 0.114 2.65 0.009 

Note: see dependency table for regression fit statistics 
 

6.4 Summary of Automated Regression Insights 
Key insights from the automated regression analysis are summarized below: 

• Whether or not an input parameter is included in a regression model varies over the 
various timing FoMs. Only a subset of input parameters, such as molten Zircaloy 
breakthrough temperature, was consistently resolved throughout timing FoMs for a given 
physical FoM.  

• Event timings that occurred during core degradation timings were more easily regressed 
than early or late phased event timings.  

• The mass of material ejected from the lower head was not an effective physical FoM to 
study with regression analysis due to the single dynamic corresponding timing FoM 
available for the physical FoM and the relatively small number of samples available for 
regression because a majority of the replicate realizations did not experience lower head 
failure.  

• Fraction of intact fuel mass occurs in MELCOR in quantized segments due to the system 
nature of the code. The quantized output data, as opposed to continuous hydrogen data, 
likely violate key assumptions in the regression analysis.  Thus, inference should be done 
with caution. 

• Scatterplots are an important tool for understanding the results of the regression output.  
 

6.5 References 
[6.1] U.S. Nuclear Regulatory Commission, State-of-the-Art Reactor Consequence Analyses 

Project: Uncertainty Analysis of Unmitigated Long-Term Station Blackout of the Peach 
Bottom Atomic Power Station-Draft Report, NUREG/CR-7155, SAND2012-
10702P,Washington, DC, 2012. 





101 

7 REGRESSION VALIDATIONS 
 

Regression can be a powerful tool to help analysts understand the impact of uncertainty on the 
output of computer models. However, the output of these tools, as with all statistical and 
deterministic techniques, should be analyzed for applicability to the question of interest. This is 
especially true for results from system representations of severe accidents (e.g. MELCOR). 
Chapter 7 examines the regression results presented from a selection of physical and timing FoM 
pairings to determine the accuracy of the regressions produced.  

The physical and timing FoM pairings are: 

7.1 - Mass of Material Ejected (ME) at Lower Head Failure, 

7.2 - Cumulative Hydrogen (H2) Produced, and  

7.3 - Fraction of Intact Fuel Mass . 

7.1 Mass of Material Ejected (ME) at Lower Head Failure 
This section describes the regressions for the mass of material ejected from the lower head at the 
time of lower head failure. Ten regression models were created from four samples: 

1. Regressions (both rank and raw) trained on the sampled data from Replicate 1, 
2. Regressions (both rank and raw) trained on the sampled data from Replicate 2, 
3. Regressions (both rank and raw) trained on the sampled data from Replicate 3, 
4. Regressions (both rank and raw) trained on the sampled data from the uniform 

distributions, and 
5. Regressions (both rank and raw) trained on the sampled data from Replicate 1 and 2. 

Finally, the regressions were applied to the non-training samples to gauge the predictive ability 
of each regression. 

Note that for mass of material ejected from the lower head The regressions were preformed 
conditional on failure of the lower head. Thus, the discussion of each replicate will begin with a 
statement of the size of the training data available for regression.  

Table 7.1 presents the summary fit statistics for all related regressions conducted for the 1F1 UA. 
In general, while all fits provide 𝑅𝑅2 values under 0.6, Replicate 1 and Replicate 3 seem to have 
the best R2 values. Grouping the Replicate 1 and 2 data for regression does not improve upon the 
regressions fit solely on the Replicate 2 data. The variability of R2 across the regression samples 
suggests that the model which minimized the variance of the model-corrected local (sample) 
variance in the training data found by each of the four regressions may or may not be the ideal 
model which minimizes the model-corrected global (population) variance. Thus, individually the 
four regressions may be of limited predictive value.   
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Table 7.1 – Training Data Fit Comparisons for the 10 Regressions for Mass of Material 
Ejected from the Lower Head at the Time of Lower Head Failure 

Set Type n k 𝑅𝑅2 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  

Rep. 1 
Raw 34 3 0.56 0.52 

Rank 34 3 0.62 0.58 

Rep. 2 
Raw 41 1 0.12 0.10 
Rank 41 1 0.11 0.09 

Rep. 3 
Raw 43 3 0.41 0.37 

Rank 43 3 0.48 0.45 

Rep. U 
Raw 42 1 0.28 0.27 

Rank 42 2 0.38 0.35 

Rep. 1&2 
Raw 75 2 0.13 0.11 

Rank 75 1 0.10 0.09 

 

7.1.1 Replicate 1 
Raw linear regression model: 

    ME ~ 1 + dTdz_CVH + DebrisHT + DFV 

Rank linearregression model: 

    Rank(ME) ~ 1 + Rank(dTdz_CVH) + Rank(DebrisHT) + Rank(DFV) 

Both meta-models agree regarding the type of regression trends that exist in the Replicate 1 
sample, but the rank regression was able to explain more of the variance when compared to the 
raw regression’s ability to explain the variance. The model summary tables for the rank and raw 
regressions can be found in Table 6.23 and Table 6.24. 

 
Table 7.2 – Model Summary Table for the Raw Regression of Rep. 1 for Mass of Material 

Ejected from the Lower Head at the Time of Lower Head Failure 

 Estimate SE tStat pValue 

(Intercept) 1998.7 29340.0 0.1 9.5E-01 

dTdz_CVH 8274.1 2681.7 3.1 4.3E-03 

DebrisHT -26.7 5.6 -4.8 4.3E-05 

DFV 34160.0 12331.0 2.8 9.5E-03 
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Table 7.3 – Model Summary Table for the Rank Regression of Rep. 1 for Mass of Material 
Ejected from the Lower Head at the Time of Lower Head Failure 

 Estimate SE tStat pValue 

(Intercept) 0.5 0.1 3.8 6.2E-04 

dTdz_CVH 0.4 0.1 3.3 2.4E-03 

DebrisHT -0.6 0.1 -5.4 7.3E-06 

DFV 0.3 0.1 2.8 8.9E-03 

 

7.1.2 Replicate 2 
Raw linear regression model: 

    ME ~ 1 + RSDR 

Rank linear regression model: 

    Rank(ME) ~ 1 + Rank(DFV) 
The linear regression analysis struggled to find linear trends in the Replicate 2 data. The raw 
regression resolved RSDR, and the rank regression resolved DFV. DFV was regressed from both 
the rank and the raw regressions from Replicate 1. The model summary tables for the Replicate 2 
regressions can be found in Table 7.4 and Table 7.5. Scatterplots for RSDR and DFV for 
Replicate 2 can be seen in Figure 7.1. These scatterplots suggest a bifurcated response for a 
subset of parameter values which explains the low relative fitting estimates.  

 
Table 7.4 – Model Summary Table for the Raw Regression of Rep. 2 for Mass of Material 

Ejected from the Lower Head at the Time of Lower Head Failure 

 Estimate SE tStat pValue 

(Intercept) 37903.0 11889.0 3.2 2.8E-03 

RSDR 67.1 28.7 2.3 2.5E-02 

 
Table 7.5 – Model Summary Table for the Rank Regression of Rep. 2 for Mass of Material 

Ejected from the Lower Head at the Time of Lower Head Failure 

 Estimate SE tStat pValue 

(Intercept) 0.3 0.1 3.9 4.1E-04 

DFV 0.3 0.2 2.2 3.5E-02 
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Figure 7.1 – Scatter Plots for RSDR and DFV from Replicate 2 

7.1.3 Replicate 3 
Raw linear regression model: 

    ME ~ 1 + dTdz_Smooth + DFV + minPorosity 

Rank linear regression model: 

    Rank(ME) ~ 1 + Rank(dTdz_Smooth) + Rank(DFV) + Rank(minPorosity) 

Both meta-models agree regarding the type of regression trends that exist in the Replicate 3 
sample, but the rank regression was able to explain more of the variance when compared to the 
raw regression’s ability to explain the variance. Replicate 3 resolved a different dTdz model than 
Replicate 1 and picked minPorosity instead of DebrisHT. The model summary tables for the rank 
and raw regressions can be found in Table 7.6 and Table 7.7. Figure 7.2 shows the scatterplots 
for the resolved terms in Replicate 3.  

 
Table 7.6 – Model Summary Table for the Raw Regression of Rep. 3 for Mass of Material 

Ejected from the Lower Head at the Time of Lower Head Failure 

 Estimate SE tStat pValue 

(Intercept) 144070.0 33175.0 4.3 9.7E-05 

dTdz_Smooth -131780.0 52535.0 -2.5 1.6E-02 

DFV 41487.0 12228.0 3.4 1.6E-03 

minPorosity -182210.0 56465.0 -3.2 2.5E-03 
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Table 7.7 – Model Summary Table for the Rank Regression of Rep. 3 for Mass of Material 
Ejected from the Lower Head at the Time of Lower Head Failure 

 Estimate SE tStat pValue 

(Intercept) 0.6 0.1 5.9 6.3E-07 

dTdz_Smooth -0.3 0.1 -3.0 5.1E-03 

DFV 0.5 0.1 4.1 2.0E-04 

minPorosity -0.4 0.1 -3.4 1.6E-03 

 

 
Figure 7.2 – Scatterplots for minPorosity, DFV, and dTdZ_Smooth for Replicate 3  

 

7.1.4 Replicate Uniform 
Raw linear regression model: 

    ME ~ 1 + RSDR 

Rank linear regression model: 
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    Rank(ME) ~ 1 + Rank(RSDR) + Rank(DFV) 
Both meta-models agree regarding regression of RSDR, but the rank regression also selected 
DFV. The DFV is a term that was regressed in all but one of the previous regressions. The rank 
regression, with its extra predictive term, was able to explain more of the variance when 
compared to the raw regression’s ability to explain the variance. The model summary tables for 
the rank and raw regressions can be found in Table 7.8 and Table 7.9. Figure 7.3 shows the 
scatterplots for the resolved terms in Replicate Uniform. 

It should be noted that the uniform case puts more probability mass on the tails of the 
distribution. Thus, theoretically, it sacrifices convergence of central tendencies to better 
characterize tail behavior.  

 
Table 7.8 – Model Summary Table for the Raw Regression of Rep. U for Mass of Material 

Ejected from the Lower Head at the Time of Lower Head Failure 

 Estimate SE tStat pValue 

(Intercept) 23547.0 9716.4 2.4 2.0E-02 

RSDR 83.4 20.9 4.0 2.8E-04 

 
Table 7.9 – Model Summary Table for the Rank Regression of Rep. U for Mass of Material 

Ejected from the Lower Head at the Time of Lower Head Failure 

 Estimate SE tStat pValue 

(Intercept) 0.1 0.1 1.0 3.0E-01 

RSDR 0.4 0.1 3.2 2.4E-03 

DFV 0.4 0.1 3.1 3.5E-03 

 

 
Figure 7.3 – Scatterplots for RSDR and DFV for Replicate Uniform 
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7.1.5 Replicate 1 and 2 Pooled 
Raw linear regression model: 

    ME ~ 1 + RSDR + DCH 

Rank linear regression model: 

    Rank(ME) ~ 1 + Rank(DFV) 
The raw and rank regressions developed two different regression models with approximately the 
same explanation of variance. The raw regression results include RSDR and DCH as dependent 
variables. This is the first regression model prodcued in which decay heat was resolved as 
significant for lower head failure. The rank regression included DFV, which was regressed often 
in the other samples. It is noteworthy that the Replicate 1 and 2 pooled data reproduced similar 
trends to Replicate 2, with the addition of DCH for the raw regression. The model summary 
tables for the rank and raw regressions can be found in Table 7.10 and Table 7.11.  

 
Table 7.10 – Model Summary Table for the Raw Regression of Pooled Data from Rep. 1 

and 2 for Mass of Material Ejected from the Lower Head at the Time of Lower Head 
Failure 

 Estimate SE tStat pValue 

(Intercept) 385010.0 162240.0 2.4 2.0E-02 

RSDR 54.7 21.4 2.6 1.3E-02 

DCH -3.5E-06 1.7E-06 -2.1 3.9E-02 

 
Table 7.11 – Model Summary Table for the Raw Regression of Pooled Data from Rep. 1 

and 2 for Mass of Material Ejected from the Lower Head at the Time of Lower Head 
Failure 

 Estimate SE tStat pValue 

(Intercept) 0.3 0.1 5.4 8.9E-07 

DFV 0.3 0.1 2.8 6.3E-03 

 

7.1.6 Comparisons  

Table 7.12 and Table 7.13 present the 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  and 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2  for the raw and rank regressions of 
the samples from the MELCOR estimates of mass of material ejected from the lower head at the 
time of lower head failure. As can be seen, the two replicates with the highest fraction of 
variance explained, Replicates 1 and 3, seem to be primarily fit to inherent variability. These 
regressions increase the predictive variance when compared to the sample variance. This is 
consistent for both the rank and the raw regressions. Replicate 2 has the most constant predictive 
ability in both rank and raw forms while the pooled data is fairly predictive with raw data but 
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struggles with rank transformed data. For raw data the three replicates were difficult to predict, 
but developed meta-models which could predict the Replicate U.  

There are three key conclusions which can be drawn from these tables: 

1. RSDR seems to be the dominate parameter in producing a predictive relationship. 
Regressions that predicted this term as the primary component of the regression model 
were able to reduce the variance in new samples, especially under rank transformation.  

2. Regressions for mass ejected from the lower head have low predictive values and are 
subject to regressing inherent variability, potentially due to either the reduced sample size 
or the nature of the parameter.  

3. Variability in training R2 values between samples is a potential warning sign for the 
creation of unstable predictive models. The relatively poor predictive performance of the 
raw Rep12 regression indicates that the sample size does not significantly improve 
predictive results for this data set. Increasing sample size appeared to improve the rank 
regression results more than the raw regression results.  

 
Table 7.12 – Comparison of Predictive Ability of Raw Regressions for Mass of Material 

Ejected from the Lower Head at the Time of Lower Head Failure 

 Rep1 Rep2 Rep3 RepU Rep12 

Rep1 0.56 0.005 -0.18 -0.25 0.13 

Rep2 -0.83 0.12 -0.16 0.05 0.13 

Rep3 -0.36 -0.03 0.41 -0.09 0.004 

RepU -0.70 0.21 -0.24 0.28 0.13 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  -0.63 0.06 -0.19 -0.10 0.07 

R2
adj 0.52 0.10 0.37 0.27 0.11 

 
Table 7.13 – Comparison of Predictive Ability of Rank Regressions for Mass of Material 

Ejected from the Lower Head at the Time of Lower Head Failure 

 Rep1 Rep2 Rep3 RepU Rep12 

Rep1 0.62 0.11 -0.11 0.001 0.10 

Rep2 -0.79 0.11 -0.06 0.14 0.10 

Rep3 -0.55 0.22 0.49 0.24 0.21 

RepU -0.65 0.21 -0.03 0.38 0.21 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  -0.66 0.18 -0.07 0.13 0.21 

R2
adj 0.58 0.09 0.45 0.35 0.09 
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7.2 Cumulative Hydrogen (H2) Produced at Lower Plenum Dryout 
This section describes the regressions for the cumulative hydrogen production at the time of 
lower plenum dry-out. Ten regression models were created from four samples: 

1. Regressions (both rank and raw) trained on the sampled data from Replicate 1, 
2. Regressions (both rank and raw) trained on the sampled data from Replicate 2, 
3. Regressions (both rank and raw) trained on the sampled data from Replicate 3, 
4. Regressions (both rank and raw) trained on the sampled data from the uniform 

distributions, and 
5. Regressions (both rank and raw) trained on the sampled data from Replicate 1 and 2. 

Finally, the regressions were applied to the non-training samples to gauge the predictive ability 
of each regression.  

Table 7.14 presents the summary fit statistics for all related regressions conducted for the 1F1 
UA. In general, while all fits perform poorly, Replicate 1 and Replicate 3 seem to have the best 
R2 values. Grouping Replicate 1 and 2 does not improve the overall fit from Replicate 2.  

 
Table 7.14 – Training Data Fit Comparisons for the 10 Regressions for Cumulative 

Hydrogen Production at the Time of Lower Plenum Dry-out 

Set Type n k 𝑅𝑅2 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  

Rep. 1 
Raw 100 4 0.49 0.46 

Rank 100 4 0.52 0.50 

Rep. 2 
Raw 98 2 0.40 0.39 

Rank 98 1 0.38 0.37 

Rep. 3 
Raw 100 2 0.34 0.33 

Rank 100 2 0.38 0.36 

Rep. U 
Raw 100 3 0.45 0.43 

Rank 100 2 0.41 0.40 

Rep. 12 
Raw 198 3 0.41 0.40 

Rank 198 3 0.44 0.43 

 

7.2.1 Replicate 1 
Raw linear regression model: 

    H2 ~ 1 + MZBT + DebrisHT*TaT 

Rank linear regression model: 

    Rank(H2) ~ 1 + Rank(MZBT) + Rank(DebrisHT)* Rank(TaT) 
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Both meta-models agree regarding the type of regression trends that exist in the Replicate 1 
sample, but the rank regression was able to explain (marginally) more of the variance when 
compared to the raw regression’s ability to explain the variance. The model summary tables for 
the rank and raw regressions can be found in Table 7.15 and Table 7.16. For both regressions, 
TaT is an insignificant variable which is only included to support the interaction term 
DebrisHT:TaT, which itself is only marginally significant. Future work may involve examining 
the predictive ability of this meta-model with and without the interaction term.  

 
Table 7.15 – Model Summary Table for the Raw Regression of Rep. 1 for Cumulative 

Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) 158.4 411.2 0.4 0.7 

MZBT 0.31 0.04 8.79 6.4E-14 

DebrisHT -0.68 0.32 -2.10 3.8E-2 

TaT -0.08 0.16 -0.51 0.61 

DebrisHT:TaT 2.6E-4 1.3E-04 2.07 0.042 

 
Table 7.16 – Model Summary Table for the Rank Regression of Rep. 1 for Cumulative 

Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) 0.28 0.11 2.63 0.01 

MZBT 0.67 0.07 9.17 9.9E-15 

DebrisHT -0.52 0.17 -3.11 2.4E-03 

TaT -0.04 0.18 -0.21 0.83 

DebrisHT:TaT 0.63 0.32 2.00 0.05 

 

7.2.2 Replicate 2 
Raw linear regression model: 

    H2 ~ 1 + dTdz_CVH + MZBT 

Rank linear regression model: 

    Rank(H2) ~ 1 + Rank(MZBT) 
Both meta-models agree regarding the dependency on MZBT in the Replicate 2 sample, but the 
raw regression also resolves the characteristic coupling time within the dTdz model. This meta-
model is marginally significant (e.g., pValue between 0.01 and 0.05), but its addition does allow 
the raw regression to explain slightly more of the variance than the rank regression. The model 
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summary tables for the rank and raw regressions can be found in Table 7.17 and Table 7.18. The 
scatterplots for dTdz_CVH and the MZBT can be seen in Figure 7.4. 

 
Table 7.17 – Model Summary Table for the Raw Regression of Rep. 2 for Cumulative 

Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) -179 107.11 -1.67 0.10 

dTdz_CVH 8.2 3.47 2.36 0.021 

MZBT 0.33 0.04 7.71 1.2E-11 

 
Table 7.18 – Model Summary Table for the Rank Regression of Rep. 2 for Cumulative 

Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) 0.2 0.05 3.87 2.0E-04 

MZBT 0.62 0.08 7.59 2.1E-11 

 

 
Figure 7.4 – Scatterplots for dTdz_CVH and MZBT for Replicate 2 

 

7.2.3 Replicate 3  
Raw linear regression model: 

    H2 ~ 1 + dTdz_CVH + MZBT 

Raw linear regression model: 

    Rank(H2) ~ 1 + Rank(dTdz_CVH) + Rank(MZBT) 
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Both meta-models agree regarding the type of regression trends that exist in the Replicate 3 
sample, but the rank regression was able to explain (marginally) more of the variance when 
compared to the raw regression’s ability to explain the variance. The model summary tables for 
the rank and raw regressions can be found in Table 7.19 and Table 7.20. The scatterplots for 
dTdz_CVH and MZBT can be seen in Figure 7.5. 

 
Table 7.19 – Model Summary Table for the Raw Regression of Rep. 3 for Cumulative 

Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) -188 123.73 -1.52 0.13 

dTdz_CVH 8.4 4.10 2.06 0.042 

MZBT 0.33 0.05 6.96 4.0E-10 

 
Table 7.20 – Model Summary Table for the Rank Regression of Rep. 3 for Cumulative 

Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) 0.1 0.07 1.17 0.24 

dTdz_CVH 0.22 0.08 2.66 0.009 
MZBT 0.63 0.08 7.48 3.3E-11 

 

 
Figure 7.5 – Scatterplots for dTdz_CVH and MZBT for Replicate 3. 

 

7.2.4 Replicate Uniform  
Raw linear regression model: 
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    H2 ~ 1 + MZBT + MechWeak + DebrisHT 

Rank linear regression model: 

    Rank(H2) ~ 1 + Rank(MZBT) + Rank(MechWeak) 
Both meta-models agree regarding the dependency on MZBT and MechWeak in the Replicate 
Uniform sample, but the raw regression also resolves the DebrisHT coefficient. With the extra 
term, the raw regression was able to explain a higher percentage of the raw training data variance 
than the rank regression was able to explain of its variance. The model summary tables for the 
rank and raw regressions can be found in Table 7.6 and Table 7.7. The scatterplots for MZBT, 
MechWeak, and DebrisHT can be seen in Figure 7.8 and Figure 7.9. 

 
Figure 7.6 – Model Summary Table for the Raw Regression of Rep. Uniform for 

Cumulative Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) 15.9 89.06 0.18 0.86 

MZBT 0.29 0.04 7.94 3.8E-12 

MechWeak -38386 16372.00 -2.34 0.021 

DebrisHT 0.02 0.01 2.47 0.015 

 
Figure 7.7 – Model Summary Table for the Raw Regression of Rep. Uniform for 

Cumulative Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) 0.3 0.06 4.23 5.3E-05 

MZBT 0.59 0.08 7.67 1.3E-11 

MechWeak -0.16 0.08 -2.10 0.038 

 
Figure 7.8 – Scatterplots for MZBT and MechWeak for Replicate Uniform 
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Figure 7.9 – Scatterplots for DebrisHT for Replicate Uniform 

7.2.5 Replicate 1 and 2 Pooled 
Raw linear regression model: 

    H2 ~ 1 + dTdz_TCAF + MZBT + TaT 

Rank linear regression model: 

    Rank(H2) ~ 1 + Rank(MZBT) + Rank(TaT) + Rank(DCH) 
Both meta-models agree regarding the dependency on MZBT and TaT in the pooled Replicate 1 
and 2 sample, but the raw regression also resolves the dTdz_TCAF coefficient while the rank 
regression also resolved DCH. With these differing fits, the rank regression had an overall better 
R2 value over the training data. The model summary tables for the rank and raw regressions can 
be found in Table 7.21 and Table 7.22. 

 
Table 7.21 – Model Summary Table for the Raw Regression of Pooled Rep. 1&2 for 

Cumulative Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) -588 157.74 -3.73 2.5E-4 

dTdz_TCAF 1008 482.44 2.09 0.04 

MZBT 0.30 0.03 10.90 6.7E-22 

TaT 0.17 0.05 3.34 1.0E-3 
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Table 7.22 – Model Summary Table for the Raw Regression of Pooled Rep. 1&2 for 
Cumulative Hydrogen Production at the Time of Lower Plenum Dryout 

 Estimate SE tStat pValue 

(Intercept) -0.02 0.06 -0.39 0.70 

MZBT 0.67 0.06 12.01 3.3E-25 

TaT 0.23 0.07 3.50 5.7E-04 

DCH 0.12 0.05 2.22 0.028 

 

7.2.6 Comparisons 
As was mentioned previously, the range of R2 fits to the training data was reduced significantly 
for cumulative hydrogen production when compared to mass ejected from the lower head. The 
fruits of the higher fit stability throughout the samples are indicative of an overall greater 
predictive ability of the regression models. The comparison of rank and raw regression predictive 
ability can be seen in Table 7.23 and Table 7.24. 

 
Table 7.23 – Comparison of Predictive Ability of Raw Regressions for Cumulative 

Hydrogen Production at the Time of Lower Plenum Dryout 

 Rep1 Rep2 Rep3 RepU Rep12 

Rep1 0.48 0.30 0.31 0.01 0.41 

Rep2 0.27 0.40 0.40 0.23 0.41 

Rep3 0.30 0.34 0.34 0.19 0.29 

RepU 0.26 0.37 0.36 0.45 0.36 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  0.27 0.34 0.36 0.14 0.32 

R2
adj 0.46 0.39 0.33 0.43 0.40 

Additional notes on Raw Regressions in Table 7.23 
Replicates 1 and U had the highest R2 but lowest predictive ability, especially for raw 
regressions. Replicate U experienced consistent predictive R2 of all meta-models (~0.01). 
Interestingly, Replicate U had a dramatically increased predictive ability for its rank regression. 
It is possible that the higher probability concentration in the tails does well at predicting general 
placement with small data sets, but breaks down when trends are set using raw data.   

Replicates 2, 3, and 12 had lower initial R2 but better predictive capability than Replicate 1 and 
U. Replicate 12’s predictive ability for Replicate 3 was worse than either Replicate 1 or 2 
separately, but did a better job at predicting Replicate U. Across the board, dTdz_CVH & MZBT 
seem to be the reliability predictive terms. Doubling the sample size did not seem to dramatically 
improve the predictive nature of the regression models.  
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Table 7.24 – Comparison of Predictive Ability of Rank Regressions for Cumulative 
Hydrogen Production at the Time of Lower Plenum Dryout 

 Rep1 Rep2 Rep3 RepU Rep12 

Rep1 0.52 0.40 0.36 0.37 0.44 

Rep2 0.24 0.38 0.36 0.34 0.44 

Rep3 0.31 0.34 0.38 0.30 0.30 

RepU 0.25 0.39 0.39 0.41 0.35 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  0.27 0.37 0.37 0.34 0.32 

R2
adj 0.50 0.37 0.36 0.40 0.43 

 

Additional notes on rank regressions in Table 7.24 
Replicates 1, U, and 12 had the highest R2 but lowest predictive ability. In general, the predictive 
nature of the rank regressions improved when compared to the raw regressions. Replicate 1 
regressions experienced consistent low predictability across the replicates. Replicate U 
regressions experienced varying predictability, but it is consistently higher than the 
corresponding raw regression results. Replicate 12 had a higher R2 than Replicate 2 but slightly 
lower predictive capability. Conversely, Replicate 12 had a lower R2 than Rep1 but had a higher 
predictive capability.  

Replicate 2 and 3 had low initial R2 but higher predictive ability. Interestingly, Replicates 2 and 
3 showed a better ability to explain the variance in the testing sample than the variance in the 
training data in multiple cases. As with the raw regressions, dTdz_CVH , and MZBT seem to be 
the reliability predictive terms. 

7.3 Fraction of Intact Fuel Mass (FIFM) at Lower Core Plate Failure 
This section describes the regressions for the intact fuel fraction at the time of lower core plate 
failure. Ten regression models were created from four samples: 

1. Regressions (both rank and raw) trained on the sampled data from Replicate 1, 
2. Regressions (both rank and raw) trained on the sampled data from Replicate 2, 
3. Regressions (both rank and raw) trained on the sampled data from Replicate 3, 
4. Regressions (both rank and raw) trained on the sampled data from the uniform 

distributions, and 
5. Regressions (both rank and raw) trained on the sampled data from Replicate 1 and 2. 

Finally, the regressions are applied to the non-training samples to gauge the predictive ability of 
each regression.  

Overall R2 estimates for intact fuel mass are higher and more stable than mass of material ejected 
in the lower head but lower and less stable than cumulative hydrogen production.  
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Table 7.25 – Training Data Fit Comparisons for the 10 Regressions for Intact Fraction of 
Fuel Mass at the Time of Lower Core Plate Failure 

Set Type n k 𝑅𝑅2 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

Rep. 1 
Raw 100 3 0.31 0.29 14.2 

Rank 100 4 0.29 0.26 9.7 

Rep. 2 
Raw 98 7 0.53 0.49 14.6 
Rank 98 4 0.42 0.39 16.8 

Rep. 3 
Raw 100 2 0.24 0.23 15.4 

Rank 100 2 0.23 0.22 14.7 

Rep. U 
Raw 100 2 0.4 0.38 30.7 

Rank 100 2 0.35 0.34 26.5 

Rep. 1&2 
Raw 198 5 0.39 0.37 24.5 

Rank 198 2 0.23 0.22 14.7 

 

7.3.1 Replicate 1 
Raw linear regression model: 

    FIFM ~ 1 + MZBT*TaT 

Rank linear regression model: 

    Rank(FIFM) ~ 1 + Rank(MZBT) + Rank(FSLHF) + Rank(DFV) + Rank(TaT) 
Both meta-models agree regarding the dependency on MZBT and TaT in the Replicate 2 sample, 
but the rank regression also resolves the FSLHF and DFV coefficients. Even with the extra terms 
in the rank regression, the raw regression was able to explain a higher percentage of the raw 
training data variance than the rank regression was able to explain of its variance. The regression 
on FSLHF is likely a statistical anomaly because the fraction of strain before lower head failure 
should have no impact on FoMs before lower head failure occurs. The model summary tables for 
the rank and raw regressions can be found in Table 7.26 and Table 7.27. The scatterplots for 
MZBT, FSLHF, DFV, and TaT are in Figure 7.10 and Figure 7.11. The 3-D scatter plot for MZBT 
and TaT was shown in Figure 6.4. The linear trends are significantly more visible in MZBT, TaT 
and DFV than in FSLHF. 
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Table 7.26 – Model Summary Table for the Raw Regression of Rep. 1 for Intact Fuel Mass 
at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) 16.95 8.32 2.04 0.04 

MZBT -0.01 3.5E-03 -2.13 0.04 

TaT -0.01 3.2E-03 -1.90 0.06 

MZBT:TaT 2.8E-06 1.4E-06 2.04 0.04 

 
Table 7.27 – Model Summary Table for the Raw Regression of Rep. 1 for Intact Fuel Mass 

at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) 0.37 0.10 3.77 2.9E-04 

MZBT -0.19 0.09 -2.10 0.04 

FSLHF -0.21 0.09 -2.33 0.02 

DFV 0.21 0.09 2.40 0.02 

TaT 0.47 0.11 4.29 0.00 

 

 
Figure 7.10 – Scatterplots for MZBT and FSLHF for Replicate 1 
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Figure 7.11 – Scatterplots for DFV and TaT for Replicate 1 

7.3.2 Replicate 2 
Raw linear regression model: 

    FIFM ~ 1 + TaT + DCH + MZBT*DFV + MCDR*DFV 

Rank linear regression model: 

    Rank(FIFM) ~ 1 + Rank(TaT) + Rank(MZBT)* Rank(DFV) 
Both meta-models agree regarding the dependency on MZBT and TaT in the Replicate 2 sample, 
but the rank regression also resolves the FSLHF and DFV coefficients. The model summary 
tables for the rank and raw regressions can be found in Table 7.28 and Table 7.29. The 
scatterplots for MZBT, DCH, and TaT are in Figure 7.12. 3-D plots for MZBT:DFV and 
MCDR:DFV are shown in Figure 7.13 and Figure 7.14.  

 
Table 7.28 – Model Summary Table for the Raw Regression of Rep. 2 for Intact Fuel Mass 

at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) -0.36 0.58 -0.62 0.54 

MZBT -6.4E-4 1.2E-4 -5.57 2.6E-07 

MCDR -0.15 0.05 -2.91 4.6E-03 

DFV -1.23 0.54 -2.27 0.03 

TaT 6.1E-04 1.2E-04 5.02 2.6E-06 

DCH 7.6E-12 3.7E-12 2.05 0.04 

MZBT:DFV 5.3E-04 2.3E-04 2.30 0.02 

MCDR:DFV 0.21 0.10 2.09 0.04 
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Table 7.29  – Model Summary Table for the Rank Regression of Rep. 2 for Intact Fuel 
Mass at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) 0.47 0.10 4.86 4.8E-06 

MZBT -0.73 0.16 -4.53 1.7E-05 

DFV -0.07 0.16 -0.46 6.5E-01 

TaT 0.54 0.10 5.43 4.5E-07 

MZBT:DFV 0.65 0.27 2.43 0.02 

 

 

 
Figure 7.12 – Scatterplots for MZBT, DCH, and TaT for Replicate 2 
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Figure 7.13 – Scatterplot of MZBT and DFV for Replicate 2 

 
Figure 7.14 – Scatterplot of MCDR and DFV for Replicate 2 

7.3.3 Replicate 3 
Raw linear regression model: 

    FIFM ~ 1 + MZBT + TaT 

Rank linear regression model: 

    Rank(FIFM) ~ 1 + Rank(MZBT) + Rank(TaT) 
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Both meta-models agree regarding the dependency on MZBT and TaT in the Replicate 3 sample. 
The rank regression did marginally better at resolving the variance in the sample data. The model 
summary tables for the rank and raw regressions can be found in Table 7.30 and Table 7.31. 

 
Table 7.30 – Model Summary Table for the Raw Regression of Rep. 3 for Intact Fuel Mass 

at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) -0.10 0.46 -0.21 0.84 

MZBT -3.0E-04 8.3E-05 -3.66 4.2E-04 
TaT 4.8E-04 1.4E-04 3.29 1.4E-03 

 
Table 7.31 – Model Summary Table for the Rank Regression of Rep. 3 for Intact Fuel 

Mass at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) 0.42 0.08 5.00 2.5E-06 

MZBT -0.26 0.09 -2.81 0.01 

TaT 0.44 0.11 3.96 1.4E-04 

7.3.4 Replicate Uniform 
Raw linear regression model: 

    FIFM ~ 1 + MZBT + TaT 

Rank linear regression model: 

    Rank(FIFM) ~ 1 + Rank(MZBT) + Rank(TaT) 
Both meta-models agree regarding the dependency on MZBT and TaT in the Replicate 3 sample. 
The raw regression did marginally better at resolving the variance in the sample data. The model 
summary tables for the rank and raw regressions can be found in Table 7.32 and Table 7.33. 

 
Table 7.32 – Model Summary Table for the Raw Regression of Rep. Uniform for Intact 

Fuel Mass at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) 0.33 0.37 0.89 0.38 

MZBT -3.5E-04 4.9E-05 -7.12 1.9E-10 

TaT 3.5E-04 1.3E-04 2.64 0.01 
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Table 7.33– Model Summary Table for the Rank Regression of Rep. Uniform for Intact 
Fuel Mass at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) 0.55 0.08 7.28 8.8E-11 
MZBT -0.47 0.08 -5.65 1.6E-07 
TaT 0.39 0.10 3.79 2.6E-04 

7.3.5 Replicate 1 and 2 Pooled 
Raw linear regression model: 

    FIFM ~ 1 + TaT + DCH + MZBT*DFV 

Rank linear regression model: 

    Rank(FIFM) ~ 1 + Rank(minPorosity) + Rank(TaT) + Rank(MZBT)* Rank(DFV 

Both meta-models agree regarding the dependency on MZBT and TaT in the Replicate 3 sample. 
The raw regression model also included DCH and an interaction between DFV and MZBT. The 
rank regression also included minPorosity and TaT. The raw regression did better at explaining 
the variance in the sample data. The model summary tables for the rank and raw regressions can 
be found in Table 7.34 and Table 7.34. 

Table 7.34 – Model Summary Table for the Raw Regression of the Pooled Rep. 1+2 data 
for Intact Fuel Mass at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) -0.21 0.43 -0.49 0.62 
MZBT -5.2E-04 0.00 -6.11 5.5E-09 
DFV -0.81 0.41 -1.96 0.05 
TaT 4.9E-04 0.00 5.44 1.6E-07 
DCH 5.7E-12 0.00 2.13 0.03 

MZBT:DFV 3.8E-04 0.00 2.13 0.03 
 
Table 7.35 – Model Summary Table for the Rank Regression of the Pooled Rep. 1+2 data 

for Intact Fuel Mass at the Time of Lower Core Plate Failure 

 Estimate SE tStat pValue 

(Intercept) 0.36 0.08 4.28 3.0E-05 
MZBT -0.55 0.12 -4.57 8.5E-06 
DFV -0.04 0.12 -0.30 0.76 

minPorosity 0.13 0.06 2.16 0.03 
TaT 0.49 0.07 6.69 2.4E-10 

MZBT:DFV 0.53 0.21 2.54 0.01 
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7.3.6 Comparison 
As was mentioned previously, the range of R2 fits to the training data fell in between those 
calculated for mass ejected from the lower head and cumulative hydrogen production;, both in 
terms of average R2 and stability of R2 between samples. The comparison of rank and raw 
regression predictive ability can be seen in Table 7.36 and Table 7.37. 

 
Table 7.36 – Comparison of Predictive Ability of Raw Regressions for Intact Fuel Mass at 

the Time of Lower Plate Failure 

 Rep1 Rep2 Rep3 RepU Rep12 

Rep1 0.31 0.16 0.25 0.19 0.39 

Rep2 0.25 0.53 0.32 0.32 0.39 

Rep3 0.23 0.02 0.24 0.23 0.19 

RepU 0.34 -1.53 0.38 0.39 0.37 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  0.27 -0.45 0.32 0.25 0.28 

R2
adj 0.29 0.50 0.23 0.38 0.37 

 
Table 7.37 – Comparison of Predictive Ability of Raw Regressions for Intact Fuel Mass at 

the Time of Lower Plate Failure 

 Rep1 Rep2 Rep3 RepU Rep12 

Rep1 0.29 0.21 0.21 0.14 0.34 

Rep2 0.32 0.42 0.30 0.30 0.34 

Rep3 0.17 0.20 0.23 0.20 0.26 

RepU 0.19 0.29 0.32 0.35 0.27 

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  0.23 0.23 0.28 0.21 0.27 

R2
adj 0.26 0.39 0.22 0.34 0.33 

 

Replicate 2 had the most consistency in terms of the meta-model’s fit to data and ability of other 
models to explain more of the variance in the data, but the predictive models from Replicate 2 
were unreliable, especially for the raw data. The meta-model predicted from Replicate 3 had the 
lowest R2 over the training data but consistently had the best predictive merit. MZBT and TaT 
were consistently resolved across the samples and were the only parameters resolved in 
Replicate 3.  
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8 MELCOR OUTPUT STABILITY 
While the focus of the statistical analysis in this report revolves around the results Replicate 1, 
the authors would be remiss if some attention was not paid to the perturbation cases. Because 
there is no physical meaning to the values varied in the three perturbation cases, no regressions 
were conducted on the perturbation results. Instead, scatterplots and cumulative distributions 
were used to identify statistical trends in the FoMs.  

As a reminder, the three perturbation cases are as follows: 

P1. The small input perturbations can generally be interpreted as small14 (essentially 
insignificant) variations in all uncertain MELCOR inputs except the time at temperature 
and decay heat tables.   

P2. The dtmax perturbation varies the maximum time step that the code can take. It should be 
noted that this is not the exact time step the code takes during the simulation, which can 
change as needed by the code. MELCOR may reduce the system time step to overcome 
various issues (e.g. convergence, solver errors, engineering tolerances), and each 
MELCOR package (CVH/FL, COR, etc.) may use distinct time step schemes as 
necessary. Nonetheless, the code/system-level time step is a key user input. 

P3. The flow path shuffle perturbation changes the flow path order used to solve matrix 
solutions in MELCOR at each time step.  

8.1 Scatter Plots 
This section presents scatterplots for hydrogen produced at a given timing FoM vs the hydrogen 
produced at the end of the simulation (EoS hydrogen) for each perturbation. Note that all 
samples follow the same accident progression: 

1. Control Rod Failure (not plotted due to the small variability at this timing FoM),  
2. Channel Box Failure, 
3. Main Steam Line Failure, 
4. First Fuel Failure, 
5. Lower Core Plate Failure, 
6. Lower Plenum Dryout, and 
7. Lower Core Plate Failure (optional and not plotted).  

For comparison to the perturbation cases, the same five FoMs are plotted for Replicate 1 in  
Figure 8.1. 

8.1.1 P1 – Small Input Perturbation 
A selection of hydrogen generation scatterplots from P1 is shown in Figure 8.2. At channel box 
failure, the variance of EoS hydrogen production as a function of hydrogen produced by channel 
box failure is fairly constant, but the amount of hydrogen produced seems to be a strong function 
of channel box failure time, which itself is fairly tight. While trends from fuel collapse are 
difficult to discern, hydrogen produced at main steam line failure seems to be a strong function 
of the main steam line failure time. Alternatively, end of simulation hydrogen is a weak function 
of main steam line failure time, likely due to loss of precision caused by core degradation 

                                                 
14 Technically, these variations were elicited by forming a uniform distribution around the sampled values for the 
median-like cases, with the upper and lower bounds of the uniform distribution taken as ±0.5% of the nominal value. 
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approximations. Fuel failure seems to be a non-precise process, but the same trends exhibited for 
main steam line failure return for lower core plate failure and lower plenum dryout. The only 
exception for these last two timing FoMs is that late failures seem to have a reversed trend, 
where extremely late lower plenum dryout times can occur with lower overall hydrogen levels.    

8.1.2 P2 – dtmax Perturbation  
The dtmax perturbation study is interesting as a single ordinate parameter is varied to elicit output 
changes. If the code were numerically convergent in the traditional sense, one would expect that 
reduced dtmax would correlate to a numerically truer answer. Of course, this is not the case 
because dtmax does not have a one-to-one correlation with the time step taken during discrete 
events (e.g., due to MELCOR’s algorithms, a higher dtmax might yield a smaller dt during core 
degradation than a lower dtmax) and because the if-then-else statements used to change geometry 
in MELCOR are, by definition, not time step convergent. Ad-hoc "engineering tolerances" are 
implemented in certain sub-models in the code, such as the molten material candling process, 
that attempt to smooth or remove gross time step dependencies. However, these work-arounds do 
not completely resolve the issue. Thus, in addition to the hydrogen variability plots, plots of 
timing FoMs vs dtmax for hydrogen production are also presented.  

8.1.2.1 Hydrogen Variation Plots 
A selection of hydrogen generation scatterplots from P2 is shown in Figure 8.3. The first 
clustering of results appears to occur with main steam line failure, where both a low and high 
cluster of hydrogen production levels are reached at the time of main steam line failure. While 
the distributions of these clusters vary dramatically, a positive correlation between hydrogen at 
the time of main steam line failure and end of simulation is noticeable. This trend is not as 
observable in Replicate 1. The range of hydrogen production at first fuel failure is reduced 
because all dtmax occur with main steam line failure occurring well before first fuel collapse. This 
reduced range continues with lower core plate failure but by lower plenum dryout the dtmax 
variance in hydrogen production has surpassed Replicate 1, primarily due to 3 outliers past 825 
kg of H2. As with P1, main steam line failure, lower core plate failure, and lower plenum dryout 
all show a roughly positive correlation between failure time and hydrogen levels. The same 
extremely high failure time negative correlation is also noted (see Section 8.1.1).  

8.1.2.2 dtmax Dependencies 
A selection of max time step sensitivity scatterplots from P2 is shown in Figure 8.4. No dtmax 
dependency is seen, especially for later timing FoMs, and the inherent variability seems to be 
constant as a function of dtmax. 

8.1.3 P3 – Flow path Shuffle Perturbation 
A selection of hydrogen generation scatterplots from P3 is shown in Figure 8.5. The results from 
P3 may best be described as a higher variance version of P2, with most of the same trends in the 
output results visible.  

8.1.4 Overall takeaways from the Perturbation Scatterplots 
The distribution of hydrogen generation (and thus oxidation) early in the simulation has very 
little impact on the hydrogen generated at the end of the simulation for all perturbation cases, 
although mild trends were seen for the time step perturbation study. When the timing FoMs were 
examined as a function of time step, variance was fairly constant as a function of dtmax except for 
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near the lower end of dtmax, near 0.01s, where the variance counter-intuitively starts to increase. 
This increase in variance at low dtmax might be caused by forcing the code to take smaller time 
steps than the discrete core degradation models were designed for supporting; the lumped-
parameter, thermal-hydraulic formulations in MELCOR, and its explicit coupling to the 
MELCOR other packages, may also have numerical trouble with very small time steps. The 
system-level physics models in MELCOR were originally geared towards resolving gross, 
macroscopic changes over rather large time steps. 
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Figure 8.1- Replicate 1 H2 at Timing FoM vs H2 at EoS. 
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Figure 8.2- P1 H2 at Timing FoM vs H2 at EoS. 
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Figure 8.3 – P2 H2 at Timing FoM vs H2 at EoS. 
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Figure 8.4 – P2 dtmax vs H2 at Timing FoM 
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Figure 8.5 – P3 H2 at Timing FoM vs H2 at EoS. 
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8.2 Cumulative Distribution Functions 
The cumulative distributions for Replicate 1, P1, P2 and P3 are shown in Figure 8.6, Figure 8.7, 
and Figure 8.8. Light dotted lines on the distributions for P1, P2, and P3 indicate the median-like 
values, selected as realization 13 of Replicate 1, which provides the basis for the input 
parameters which inform these perturbations.  

Figure 8.6 presents the cumulative distributions for event timings. As can be seen, the timing 
variability is reduced for all events. Even though realization 13 does not experience lower head 
failure, between 10% and 35% of perturbation simulations resulted lower head failure.  

 

 

 

 
Figure 8.6 – Event Timing Cumulative Distribution Functions: Top Left – Replicate 1, Top 

Right – P1, Bottom Left – P2, Bottom Right – P3  
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Figure 8.7 presents the cumulative distributions for in vessel hydrogen production. In each case, 
main steam line failure exhibits a low hydrogen production cluster at ~250kg and a high 
hydrogen production cluster at ~400kg. The span of hydrogen production results is narrower 
early but grows consistent with Replicate 1 toward the end of the simulation. Additionally, the 
realization 13 hydrogen value coincides with the centroid of the early distributions but tends 
toward the upper tail of the perturbation distributions late in the accident. Each perturbation 
continues the trend in Replicate 1of hydrogen production at lower core plate failure spanning the 
entire hydrogen production at end of simulation.   

 

 

 

 
Figure 8.7 – Hydrogen Production Cumulative Distribution Functions: Top Left – 

Replicate 1, Top Right – P1, Bottom Left – P2, Bottom Right – P3  
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Figure 8.8 presents the cumulative distributions for fraction of intact fuel mass. Because main 
steam line failure occurs before first fuel failure in realization 13, the fraction of intact fuel at 
main steam line failure is ~1.0 for all perturbations. Replicate 1 and the three perturbations all 
have potential ring failure discretization in the lower core plate failure and lower plenum dryout 
curves. In general, it is interesting how similar the intact fuel mass curves are between Replicate 
1 and the three perturbation cases at each timing FoM. Potentially, the sampled parameters for 
this UA had minimal effect on the core degradation progression pathway.  

  

 

 
Figure 8.8 – Intact Fuel Mass Cumulative Distribution Functions: Top Left – Replicate 1, 

Top Right – P1, Bottom Left – P2, Bottom Right – P3  
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8.3 Summary of MELCOR Output Stability Insights 
MELCOR results are stable early in the accident sequence before non-linear and semi-
mechanistic core degradation and relocation models are allowed to reduce output stability. All 
three perturbation methods appear to exhibit the same influence on the distribution of output 
FoMs. Changes in time step throughout the core degradation models are predicted to have the 
most direct impact on the progression of core degradation. Small changes in input parameters, 
changes in the maximum allowable time step, and changes in the flow path arrangement all have 
the potential to impact the time step taken during core degradation.  

P2 (maximum time step) shows that late stage variability in hydrogen production appears to 
exhibit a constant variance with only a minimum trend in the mean as a function of maximum 
time step above 0.02 seconds. This implies that the impact of maximum time step stability on 
MELCOR outputs can be approximated by taking small samples around a nominal (e.g. 0.1 to 
0.2 s for large LWR models) maximum time step. This insight can be extremely important when 
the impacts of MELCOR stability need to be assessed but constraints prevent consistently 
varying the maximum time step over orders of magnitude.    
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9 SUMMARY AND CONCLUSIONS 
The Volume II of the 1F1 UA explored how common statistical techniques can be utilized to 
gain insights into severe accident modeling using system codes such as MELCOR. This chapter 
summarizes the key insights from this report. 

9.1 General Accident Insights 
The 1F1 UA suggests that water injection at 15 hours would likely have been expected to 
successfully quench the rubbilized reactor core without failure of the lower vessel head. While 
lower head failure was not ruled out by our simulated results, lower head failure was only 
predicted in approximately 40% of the MELCOR simulations. All simulations that resulted in 
lower head failure before 15 hours predict that most of the fuel rods (i.e., >98%) are no longer 
intact in the core region.   

9.2 Statistical Analysis Summary 
Cumulative distributions of output variables are a useful alternative to simple horsetail plots, 
especially when non-linear temporal effects are examined. Horsetails do not explicitly tell the 
analyst when events happen, nor do they indicate potential overlap in events, as occurred in 
Replicate 1 between main steam line failure and first fuel failure. 

Scatter plots are fundamental for understanding an uncertainty analysis, but in general there are 
too many potential scatter plots that can be created to be very helpful to an analyst. Regression 
techniques are useful in determining predefined trends (e.g., trends that are linear or can be made 
linear through transformations) in the data. Once trends are highlighted in the regression 
analysis, it is advisable to examine the scatterplots of the variables that are identified in the 
regression analysis to truly verify the existence of the suspected trends.  

When employing such techniques, especially on smaller sample sizes, it is important to verify the 
results against additional samples to determine if the regression is describing the population or a 
combination of the population and inherent variability in the sample. The regression models 
where used in this report to 'fit' (i.e., regression or meta-model) to a set of training data (FoMs). 
These meta-models were subsequently tested with new sampled data to evaluate if the meta-
models were able to predict new FoMs generated from same exact model, parameters, and 
distributions. This new testing data is essentially the same data used to train the original 
regression models, but use a different random number seed for the parameter sampling. 

Linear regression tends to over-fit the MELCOR predicted FoMs, even with high R2 fits created 
with low p-value terms. In some cases, these regression models can even explain less of the 
variance when applied to a new sample of data. When multiple regressions were conducted and 
varying R2 estimates were produced, the lower R2 regressions consistently performed better 
when applied to new datasets. Due to variability generated from discrete events inherent in 
severe accident system modeling, a questioning approach is always advised when explaining 
MELCOR outputs and their variability.  

The automated regression results from the 1F1 UA produced some interesting high level results: 

Mass Ejected from the Lower Head 
The Replicate 1 regression identified the dT/dz model’s relative weight of historical flows, 
debris falling velocity, and minimum porosity as potential predictive variables for the mass 
of material ejected from the lower head at the time of lower head failure. After comparing 
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these results to those from other replicates, none of these three variables were predictive in 
nature. Instead, radial debris relocation time constant was the only term that consistently 
described a fraction of the variance associated with this FoM. See section 6.4.4 for more 
information. 

In general, regressions for mass ejected from the lower head have low predictive ability and 
are subject to regressing inherent variability, potentially due to either the reduced sample size 
or the nature of the parameter. The variability in training R2 values between samples is a 
potential warning sign for the creation of non-predictive meta-models. If further studies of 
mass ejected from the lower head were conducted, increasing the sample size does not appear 
to help the predictive nature of regressions. Additionally, rank regressions appear to do a 
better job than raw regressions for this FoM.   

Cumulative Hydrogen Production in Vessel 
Replicate 1 predicted a consistent influence of molten Zircaloy breakthrough temperature on 
hydrogen production throughout the accident progression. This insight is in rough agreement 
with previous UAs conducted at SNL [9.1]. Additional variables varied in their inclusion in 
the rank and raw dependency tables throughout the accident progression, including: radial 
solid debris relocation time constant, debris falling velocity, time at temperature, and debris 
quenching heat transfer coefficient. 

Replicate regression results were examined further for the time of lower plenum dryout. In 
general, rank regressions had more consistent, but not necessarily better, predictive ability 
than raw regressions. While the spread of R2 from sample to sample was not as wide as was 
seen with mass ejected from the lower head, the same trend of models with higher R2 
producing lower predictive R2 was noticed. For predicting hydrogen at lower plenum dryout, 
the only two terms that were consistently included in highly predictive meta-models were 
molten Zircaloy breakthrough temperature and the dT/dz model’s characteristic coupling 
time.  

Intact Fuel Mass Fraction 
Replicate 1 predated a consistent influence on molten Zircaloy breakthrough temperature and 
effective fuel failure temperature on intact fuel mass fraction throughout the accident 
sequence. As can be seen from the cumulative distributions for intact fuel mass fraction, the 
core degrades in discrete 2D nodes (i.e. axial levels and rings), causing step changes in 
response and thus limiting the applicably of linear regression analysis.   

Replicate regression results were examined further for the time of lower core plate failure.  
The same general predictive trends found for intact fuel mass and cumulative hydrogen 
production were also found for intact fuel mass fraction.  For predicting intact fuel mass 
fraction, molten Zircaloy breakthrough temperature and effective fuel failure temperature 
were consistently resolved in predictive meta-models. 

Additionally, the perturbation results were interesting in that general trends found for FoMs in 
the main uncertainty analysis, other than fuel failure timing, were also noted in the perturbation 
cases. A key takeaway from the perturbation analysis is that both before and after core 
degradation, output FoM variances appear to be a fairly constant function of dtmax. Thus, future 
MELCOR analysis may be able to explore a very small range of dtmax values to determine if the 
desired change in output FoMs is robust to the analyst’s selection of dtmax.      
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9.3 High Level Conclusions 
Detailed conclusions from the statistical analysis can be found in Section 9. The key takeaways 
from the statistical analysis are as follows: 

The results of the 1F1 analyses demonstrate that MELCOR simulation outputs that occur after 
discrete events (e.g., valve chatter, core material relocation) experience low numerical precision. 
Numerical precision can produce variability on the same order as the epistemic uncertainties, 
thus making direct comparisons of results (e.g., tradeoff studies) difficult to defend. Only inputs 
which can exhibit enough influence on output FoMs to rise above the inherent precision can be 
isolated via sensitivity analysis. An example of high influence variables are molten Zircaloy 
breakthrough temperature and radial solid debris relocation time constant.  

In general, only R2 values less than 0.5, and as low as 0.2 for mass of material ejected from the 
lower head, were achievable with either linear or rank regressions. Furthermore, when multiple 
regressions were conducted on different samples of the same FoM, the lower models with lower 
R2 on the training data exhibited greater predictive ability on testing data sets. In general, only 
approximately one third of the 15 sampled variables (i.e., radial debris relocation time constant, 
molten Zircaloy breakthrough temperature, time at temperature relationship for fuel collapse, and 
the dT/dz_CVH numerical parameter) were resolved in regressions that were shown to have 
predictive ability for the three FoMs examined in detail. Other terms, such as debris falling 
velocity, were potentially predictive but also appeared prominently in regression that 
demonstrated poor predictive ability. 

The magnitude of inherent variability can lead sensitivity analysis techniques (e.g., regressions) 
to ascribe trends to the inherent variability instead of or in addition to physical trends. 
Investigations of identified trends through validation exercises on new samples and/or 
examination of scatterplot results are required to have confidence in the results of more advanced 
sensitivity analysis techniques. For example, during validation of the intact fuel fraction at the 
time of lower core plate failure, cladding thickness corresponding to mechanical weakening and 
dT/dz model parameters were only regressed in regression models which presented poor 
predictive ability.  Thus, these terms were likely fitted to inherent variability in the samples and 
not actually indicative of the trends in the sampled population.   

Linear regressions can be useful when interpreting UA results, but care must be taken not to 
conflate major event discontinuities. For example, regressions at 15 hours into the accident when 
water injection begins performed poorly because 30-40% of the simulations had experienced 
lower head failure and the remainder of the simulations still had all core material contained in the 
lower head. Similarly, Replicates 1, 2, 3, and Uniform all experienced approximately 10-20% of 
the simulations where fuel rods started to collapse before the main steam line failed. Scatterplots 
showed that outputs for time of first fuel failure and main steam line failure experienced 
bifurcations which subsequently impeded the regressions. Isolating these sequence variations 
should greatly increase the suitability for regression of the output data at these timing FoMs.  

Physical FoMs are not the only FoMs affected by the MELCOR output inherent variability.  
Event timing (i.e., timing FoMs) was also affected. While the perturbation study did not vary 
pre-vessel failure timing FoMs by over an hour �Δ𝑡𝑡𝑖𝑖

𝑡𝑡𝚤𝚤�
≤ 15%�, the timing of vessel failure is 

extremely uncertain. For example, the 1F1 UA simulations were ended at 15 hours due to the 
initiation of water injection at that time. During the first 15 hours, the three perturbations studies 
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predicted anywhere from 15-35% of the simulations would result in lower head failure, with the 
earliest lower head failure time of approximately 12.9 hours. The realization from which the 
perturbations were conducted did not predict lower head failure. The magnitude of variability 
regarding the occurrence of lower head failure before operator action epitomizes the necessity of 
conducting a full and rigorous uncertainty analysis when evaluating the effectiveness of human 
intervention to prevent major bifurcation points during accident progression in MELCOR. 

 

9.4 Future Analysis 
As with any study, many approaches for analysis were outside the scope and/or budget of the 
project. This section describes analysis techniques which were unable to be included in the 
Fukushima UA but which may be considered for inclusion in future analyses. 

9.4.1 Improvements in the Molten Zircaloy Breakthrough Temperature 
As described in Section 2.2.1, S/Q simulation data from two erosion and one stress-induced 
failure pathway were used to update the Peach Bottom prior distribution and create a beta 
distribution for use in the Fukushima UA. While optimally the MELCOR eutectics model would 
operate efficiently and predict the breakthrough temperature mechanistically, the probabilistic 
meta-modeling approach may still be improved.     

Instead of using both failure pathways to update the same beta distribution, each failure pathway 
could have its own distribution;, starting with the same Peach Bottom inspired prior distribution 
and updated with the appropriate failure data. If each distribution is sampled separately, 
breakthrough would occur at the lower sampled temperature.  

9.4.2 Regress on Event Timing 
In addition to regressing on physical FoMs, regressions on the timing FoMs themselves may be 
insightful. Care must be taken for early timing FoMs as low variability in failure timings can 
lead (and has led) to infinite loops in the stepwise regression algorithm if inclusion and exclusion 
terms are not selected appropriately.  

9.4.3 Advanced Regression Techniques 
The Peach Bottom UA used the following three regression techniques to parse the UA output: 
rank regressions, recursive partitioning and spline regression. Even though the Fukushima UA 
does not have the main steam line vs safety relief valve failure bifurcation that was seen in the 
Peach Bottom UA, recursive partitioning and spline regressions may still yield insightful results 
[9.1][9.2]. When using either the automated techniques used in this report or the automated 
techniques used in the Peach Bottom UA, care must be taken to avoid their limitations, such as 
over fitting, which decreases the predictive strength of the meta-model [9.3]. Human 
examination of either (or both) of the following concepts are important: 

• Assumptions of the regression techniques are not (severely) violated and/or 
• Insights gained from the training sample are applicable to the greater population of 

potential results.  

Though regression model assumptions are difficult to validate, the extent to which the 
assumptions are violated affects the likelihood that the model will produce a reliable explanation 
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of system variance. A meta-model that violates the assumptions of the regression technique 
employed can still provide insight, but inference based upon the model should be done with care. 

9.4.4 Sample Size Study 
While the hydrogen and intact fuel fraction regressions did not improve dramatically when 
Replicate 1 and 2 were combined, improvement was seen for mass of material ejected from the 
lower head. A more comprehensive sensitivity study should be conducted on the impact of 
sample size on regression quality. These studies can be conducted by: 

• Running more simulations per sample until regression convergence occurs, 
• Conducting bootstrap regressions on 70% of Rep 1-3 and examining the consistency of 

produced meta-models, and 
• Employing the Top Down Coefficient of Concordance (TDCC) on regression outputs 

from the above two methods to quantify convergence [9.4]. 

9.4.5 Precondition Regressions 
Regressions which demonstrate predictive behavior often include terms that were not initially 
regressed in that sample. Preconditioning the stepwise regression for each sample with a handful 
of predictive terms may increase the regression stability between samples. The stepwise 
regression can remove these preconditioned terms if they turn out not to be supported by the 
data, but preconditioning may force the regression to a global minimal error instead of a local 
minimal error solution.  

9.4.6 Update Dependency Tables After Validation Exercise 
The dependency tables presented in this report were constructed from Replicate 1. The validation 
effort showed that regressions on Replicate 1 were not often descriptive of population trends. 
Validation efforts should be conducted for each combination of timing and physical FoMs and 
the dependency tables should be updated with only trends that were descriptive of the 
population, not the sample.   

9.4.7 Examine Other Physical FoMs 
In general, FoMs such as iodine and cesium release dominate the risk to the public from a reactor 
meltdown. Thus, examinations of these FoMs would be informative to some decision-makers. 
The phenomenology important to the production, release, and transport of radionuclides may be 
different than the phenomenology that is important to hydrogen production, core integrity, and/or 
material ejected from the lower lead.  

9.4.8 Run Regressions Conditional on Sequence Variations 
While the Fukushima UA did not experience the dramatic sequence bifurcations found in the 
Peach Bottom UA, some sequence variably was experienced regarding the order of main steam 
line and fuel failure, as well as if the lower head failed. These sequence variations can be studied, 
and their impacts on other timing FoMs, can be studied in more detail.  

9.4.9 Explore Additional Sequence Variability 
The 1F1 UA focused solely on system depressurization through main steam line failure. Other 
explanations for primary system depressurization, such as SRV failure, should be explored in 
follow-on analyses.  Some example sequence variability may include: 
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• Accident progression after emergency core injection; specifically focusing on injection 
rates/timings 

• Various modes of containment leakage; containment venting. 
• Various treatments of reactor building explosion and assumed leak paths for 

radionuclides to the enviornment. 
• Significantly different burnup and decay heat level (e.g. scram near BOC, EOC etc.). 

9.4.10 Study the Marginal Distributions of Scatterplots 
The Fukushima UA employed simple scatter plots to visually examine output data for trends. 
These scatterplots can also be viewed with the marginal distributions of both the X and Y 
variables. Once these marginal distributions are calculated, additional statistical checks can be 
conducted against both distributions to check for trends. An example scatterplot with marginal 
histograms from the P1 cases is found in Figure 9.1. 

 
Figure 9.1 – Example Marginal Histogram Scatterplot from P1 
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APPENDIX A: 1F1 TIME HISTORIES FROM 1F1 UA VOLUME I 
 

The time histories from Replicate 1 and the Perturbation are reproduced below from Volume 1 of 
the 1F1 UA for convenience. Blue lines represent individual realizations, the red line represents 
the median of blue realizations, and the green line is the “median-like” realization (i.e., 
Realization 13 of Replicate 1) used as the base realization for the perturbation analysis.  

 
Figure A.1.  Reactor Pressure Vessel Pressure (Replicate 1). 

 
Figure A.2.  Dry Well Pressure (Replicate 1). 
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Figure A.3.  Wet Well Pressure (Replicate 1). 

 
Figure A.4.  Reactor Pressure Vessel Water Level (Replicate 1). 
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Figure A.5.  Fraction of Intact C Rod Mass in the Core (Replicate 1). 

 
Figure A.6.  Fraction of Intact Fuel Mass in the Core (Replicate 1). 
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Figure A.7.  Mass of Hydrogen Produced from In-Vessel Reactions (Replicate 1). 

 
Figure A.8.  Water Mass in the Lower Plenum (Replicate 1). 
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Figure A.9.  Mass of Core Material Ejected to the Dry Well (Replicate 1). 
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Figure A.10.  Comparison of Perturbation Analyses and Replicate 1 Results (RPV 

Pressure). 
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Figure A.11.  Comparison of Perturbation Analyses and Replicate 1 Results (Drywell 
Pressure). 
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Figure A.12.  Comparison of Perturbation Analyses and Replicate 1 Results (Wetwell 
Pressure). 
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Figure A.13.  Comparison of Perturbation Analyses and Replicate 1 Results (Reactor 

Pressure Vessel Water Level). 
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Figure A.14.  Comparison of Perturbation Analyses and Replicate 1 Results (Fraction of 

Intact Control Blade Mass). 
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Figure A.15.  Comparison of Perturbation Analyses and Replicate 1 Results (Fraction of 

Intact Fuel Mass). 
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Figure A.16.  Comparison of Perturbation Analyses and Replicate 1 Results (Mass of 

Hydrogen Produced In-Vessel). 

 



157 

 
Figure A.17.  Comparison of Perturbation Analyses and Replicate 1 Results (Mass of 
Water in the Lower Plenum). 
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Figure A.18.  Comparison of Perturbation Analyses and Replicate 1 Results (Mass of 
Material Ejected). 
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APPENDIX B: DEPENDENCY TABLES 
This appendix contains conditional dependency tables from raw and rank regression of the 
hydrogen and intact fuel mass fraction physical FoMs. For conditional dependency tables, 
instead of regressing to the vector Y, regressions are conducted on Y’ which is defined as Y-Yi, 
where Yi is the physical value from which the timing FoM is being regressed.  

Table B.1, B.2 and B.3 show the 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  fit statistics for in vessel hydrogen production and intact 
fuel mass fraction for various timing FoMs conditional on other timing FoMs. The highest  𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  
regressions identified in these tables are examined in more detail in Sections A.1 and A.2 to 
determine if these conditional dependency tables can provide insight not discernable from the 
full dependency tables. No conditional dependency tables were able to be regressed for rank 
intact fuel mass fraction. 

  
Table B.1 – Conditional Regression Fit Statistics for Raw Cumulative In-Vessel Hydrogen 

Production 

Timing FoM First Channel 
Box 

First Fuel 
Failure 

Main Steam 
Line 

Lower 
Core Plate 

Lower 
Plenum Dry-

out 

Lower Head 
Failure 

End of 
Simulation 

Averaged 
R2 

First Control 
Rod Failure N/A 0.179 0.126 0.507 0.426 0.231 0.15 0.27 

First Channel 
Box  

0.175 0.115 0.504 0.417 0.38 0.151 0.29 

First Fuel 
Failure   

0.14 0.395 0.38 0.23 0.21 0.27 

Main Steam 
Line    

0.47 0.462 0.522 0.316 0.44 

Lower Core 
Plate     

0.17 0.178 N/A 0.17 

Lower Plenum 
Dry-out      

N/A 0.0799 0.08 

 
Table B.2 – Conditional Regression Fit Statistics for Rank Cumulative In-Vessel 

Hydrogen Production 

Timing FoM First Channel 
Box 

First Fuel 
Failure 

Main Steam 
Line 

Lower 
Core Plate 

Lower 
Plenum Dry-

out 

Lower Head 
Failure 

End of 
Simulation 

Averaged 
R2 

First Control 
Rod Failure N/A 0.2 0.395 0.484 0.483 0.362 N/A 0.38 

First Channel 
Box  

0.325 0.398 0.49 0.475 0.626 N/A 0.46 

First Fuel 
Failure   

0.0652 0.351 0.334 0.366 N/A 0.28 

Main Steam 
Line    

0.505 0.441 0.647 N/A 0.53 

Lower Core 
Plate     

0.124 0.496 N/A 0.31 

Lower Plenum 
Dry-out      

0.185 N/A 0.19 
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Table B.3 – Conditional Regression Fit Statistics for Raw Intact Fuel Mass Fraction 

Timing FoM First Channel 
Box 

First Fuel 
Failure 

Main Steam 
Line 

Lower 
Core Plate 

Lower 
Plenum Dry-

out 
Lower Head 

Failure 
End of 

Simulation 
Averaged 

R2 

First Control 
Rod Failure N/A N/A 0.176 0.262 0.137 N/A N/A 0.19 

First Channel 
Box 

 

N/A 0.176 0.262 0.137 N/A N/A 0.19 

First Fuel 
Failure 

  

N/A 0.275 0.102 N/A N/A 0.19 

Main Steam 
Line 

   

0.082 0.06 N/A N/A 0.07 

Lower Core 
Plate 

    

N/A N/A 0.169 0.17 

Lower Plenum 
Dry-out 

     

N/A 0.09 0.09 

 

B.1 Conditional Cumulative Hydrogen Production 
Table B.4 presents the conditional dependency table for raw cumulative hydrogen production 
from first control rod failure. Only MZBT and RSDR were regressed, and in general the 
regression results are worse than the main dependency table. MZBT was regressed for every 
subsequent timing FoM, just as in the main dependency table.  

Table B.5 presents the conditional dependency table for rank cumulative hydrogen production 
from first control rod failure. Only MZBT and TaT were regressed, and in general the regression 
results were worse than those summarized in the main dependency table.  

B.2 Conditional Intact Fuel Mass Fraction 
Table B.6 presents the conditional dependency table for intact fuel mass fraction from first 
control rod failure. Only MZBT and TaT were regressed, and in general the regression results are 
worse than the main dependency table.  

B.3 Preliminary Conditional Dependency Table Conclusions 
It was hypothesized that breaking the regression results into smaller segments would identify 
additional linear relationships between input variables and output FoMs. From the tables in 
Appendix A, the smaller time segments seem to reduce the suitability for regression of the output 
vectors.  Indeed, while regressing to various timing FoMs shows promise, regressing between 
timing FoMs does not show as much opportunity for severe accident insight.  
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Table B.4 – Conditional Raw Cumulative Hydrogen Production Table from Main Steam Line Failure 

 Lower Core Plate Lower Plenum Dry-out Lower Head Failure End of Simulation 

R2 / R2
adj / F-stat vs. Const./ p-val .48 / .47 / 88.9 / 

0 .47 / .46 / 85.9 / 0 .55 / .52 / 19 / 0 .32 / .32 / 46.7 / 0 

Intercept -643 -810 -886 -574 

Time Constants for Radial (solid) 
Debris Relocation (s)   [44, 108, 169]  

Time Constants for Radial (liquid) 
Debris Relocation (s)     

dT|dz Model, Time Constant for 
Averaging Flows (s)     

dT|dz Model, Characteristic 
Coupling Time (s)     

dT|dz Model, Relative Weight of 
Historical Flow (s)     

Molten Zircaloy Break-Through 
Temperature (K) [745, 813, 874] [1000, 1091, 1174] [1073, 1171, 1259] [868, 947, 1019] 

Molten Cladding (pool) Drainage 
Rate (kg/(m*s))     

Fraction of Strain at Which Lower 
Head Failure Occurs     

Scaling Factor for Candling Heat 
Transfer Coefficients     

Fraction of Un-oxidized Cladding 
Thickness Initiating T. M. 

Weakening (m) 
    

Debris Quenching Heat Transfer 
Coefficient to Pool (W/(m*m*K))     

Debris Falling Velocity (m/s)     

Minimum Debris Porosity     

Time At Temperature - Effective 
Failure Temperature (K)     

Decay Heat Integrated to 10 
hours (J)   
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Table B.5 – Conditional Rank Cumulative Hydrogen Production Table from First Channel Box Failure 

 First Fuel Failure Main Steam Line Lower Core Plate Lower Plenum Dry-out Lower Head Failure End of Simulation 

R2 / R2
adj / F-stat vs. Const./ p-val N/A .19 / .18 / 22.2 / 0 .28 / .26 / 18.6 / 0 .15 / .14 / 16.7 / .00009 N/A N/A 

Intercept 0.04 1.36 1.04 -0.17 0.999 0.992 

Time Constants for Radial (solid) 
Debris Relocation (s)       

Time Constants for Radial 
(liquid) Debris Relocation (s)       

dT|dz Model, Time Constant for 
Averaging Flows (s)       

dT|dz Model, Characteristic 
Coupling Time (s)       

dT|dz Model, Relative Weight of 
Historical Flow (s)       

Molten Zircaloy Break-
Through Temperature (K)   [0.66, 0.72, 0.77] [0.77, 0.84, 0.9]   

Molten Cladding (pool) Drainage 
Rate (kg/(m*s))       

Fraction of Strain at Which 
Lower Head Failure Occurs       

Scaling Factor for Candling Heat 
Transfer Coefficients       

Fraction of Un-oxidized Cladding 
Thickness Initiating T. M. 

Weakening (m) 
      

Debris Quenching Heat Transfer 
Coefficient to Pool (W/(m*m*K))       

Debris Falling Velocity (m/s)       

Minimum Debris Porosity       

Time At Temperature - 
Effective Failure Temperature 

(K) 
 [-1.39, -1.33, -1.28] [-1.23, -1.18, -1.14]    

Decay Heat Integrated to 10 
hours (J)       
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Table B.6 – Conditional Intact Fuel Mass Table from First Control Rod Failure 

 First Fuel 
Failure 

Main Steam Line Lower Core Plate Lower Plenum Dry-out Lower Head Failure End of Simulation 

R2 / R2
adj / F-stat vs. Const./ p-val N/A .19 / .18 / 22.2 / 0 .28 / .26 / 18.6 / 0 .15 / .14 / 16.7 / .00009 N/A N/A 

Intercept 0.04 1.36 1.04 -0.17 0.999 0.992 
Time Constants for Radial 

(solid) Debris Relocation (s)       

Time Constants for Radial 
(liquid) Debris Relocation (s)       

dT|dz Model, Time Constant for 
Averaging Flows (s)       

dT|dz Model, Characteristic 
Coupling Time (s)       

dT|dz Model, Relative Weight of 
Historical Flow (s)       

Molten Zircaloy Break-
Through Temperature (K)   [0.66, 0.72, 0.77] [0.77, 0.84, 0.9]   

Molten Cladding (pool) 
Drainage Rate (kg/(m*s))       

Fraction of Strain at Which 
Lower Head Failure Occurs       

Scaling Factor for Candling 
Heat Transfer Coefficients       

Fraction of Un-oxidized 
Cladding Thickness Initiating T. 

M. Weakening (m) 
      

Debris Quenching Heat Transfer 
Coefficient to Pool 

(W/(m*m*K)) 
      

Debris Falling Velocity (m/s)       

Minimum Debris Porosity       

Time At Temperature - 
Effective Failure Temperature 

(K) 
 [-1.39, -1.33, -1.28] [-1.23, -1.18, -1.14]    

Decay Heat Integrated to 10 
hours (J)       
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APPENDIX C: REPLICATE AND PERTURBATION DEFINITIONS 
 

Appendix C reproduces descriptive tables (Table C.1 and C.2) regarding the replicates and 
perturbation analysis from Volume I of the 1F1 UA. Please see Volume I of the 1F1 UA for a 
more detailed discussion. 

 
Table C.1 – List of MELCOR Cases 

case type id # rlz description 

Replicates w-1f1-rep1 100 Replicate 1; base case for statistical analysis 

 

w-1f1-rep2 100 Replicate 2 

 w-1f1-rep3 100 Replicate 3 

 w-1f1-rep1u 100 Replicate 1; rerun with uniform distributions 

 w-1f1-p01 100 
“median-like” realization rerun with small 
perturbations of its sampled values (see Table 
C.2) 

perturbations w-1f1-p02 100 
“median-like” realization rerun with with 
DTMAX sampled from a log-uniform 
distribution (LB = 0.01 s, UB = 0.1 s)  

 w-1f1-p03 100 “median-like” realization rerun with the model’s 
flow path input randomly reordered 
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Table C.2 – Small Perturbation Distributions Based on Rlz13 Sampled Values. 

parameter nomenclature uniform distribution 

time constants for radial (solid) debris relocation SC1020_1 
L.B. = 4.3004E+02 
Rlz13 = 4.3220E+02 
U.B. = 4.3436E+02 

time constants for radial (liquid) debris relocation SC1020_2 
L.B. = 6.5580E+01 
Rlz13 = 6.5910E+01 
6.6240E+01 

dT/dz model, time constant for averaging flows  SC1030_2 
L.B. = 9.1232E-02 
Rlz13 = 9.1690E-02 
U.B. = 9.2148E-02 

dT/dz model, characteristic time for coupling dT/dz 
temperatures to average CVH volume temperature when 
dT/dz model is active  

SC1030_4 
L.B. = 8.8286E+00 
Rlz13 = 8.8730E+00 
U.B. = 8.9174E+00 

dT/dz model, maximum relative weight of old flow in 
smoothing algorithm involving time constant for 
averaging flows  

SC1030_5 
L.B. = 5.6377E-01 
Rlz13 = 5.6660E-01 
U.B. = 5.6943E-01 

molten zircaloy melt break-through temperature SC1131_2 
L.B. = 2.3492E+03 
Rlz13 = 2.3610E+03 
U.B. = 2.3728E+03 

molten cladding (pool) drainage rate SC1141_2 
L.B. = 3.4367E-01 
Rlz13 = 3.4540E-01 
U.B. = 3.4713E-01 

fraction of strain at which lower head failure occurs SC1601_4 
L.B. = 1.7313E-01 
Rlz13 = 1.7400E-01 
U.B. = 1.7487E-01 

scaling factor for candling heat transfer coefficients cor_cht_hfzrXX 
L.B. = 1.0826E+00 
Rlz13 = 1.0880E+00 
U.B. = 1.0934E+00 

fraction of un-oxidized cladding thickness at which 
thermal-mechanical weakening of oxidized cladding 
begins  

cor_rod_2 
L.B. = 1.3094E-03 
Rlz13 = 1.3160E-03 
U.B. = 1.3226E-03 

debris quenching heat transfer coefficient to pool cor_lp_2 
L.B. = 9.8654E+02 
Rlz13 = 9.9150E+02 
U.B. = 9.9646E+02 

debris falling velocity cor_lp_4 
L.B. = 4.6894E-01 
Rlz13 = 4.7130E-01 
U.B. = 4.7366E-01 

minimum debris porosity (Lipinski dryout model); 
SC1244(1) 
min. porosity used in flow blockage Ergun pressure drop 
equation; SC4413(5) 
min. hydrodynamic volume fraction; SC4414(1) 
minimum porosity to be used in calculating the flow 
resistance in the flow blockage model; SC1505(1) 
minimum porosity to be used in calculating the area for 
heat transfer to fluid; SC1505(2) 

minpordp 
L.B. = 8.9968E-02 
Rlz13 = 9.0420E-02 
U.B. = 9.0872E-02 
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