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Abstract

The Johnson Criteria metric calculates probability of detection of an object imaged by an optical system, and was
created in 1958 by John Johnson. As understanding of target detection has improved, detection models have evolved
to better model additional factors such as weather, scene content, and object placement. The initial Johnson Criteria,
while sufficient for technology and understanding at the time, does not accurately reflect current research into target
acquisition and technology. Even though current research shows a dependence on human factors, there appears to be
a lack of testing and modeling of human variability.
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1 Introduction

1.1 Purpose

The purpose of this document is to provide a comprehensive history of the Johnson Criteria. This history contains
the work leading up to the creation of Johnson’s detection criteria, modifications applied to the criteria, perceived and
actual shortcomings of the criteria, and the current status of the work being done on target detection. The shortcomings
of the Johnson Criteria are discussed in greater detail by providing the research performed on each topic between the
creation of the Johnson Criteria in 1958 up to the present day. This history is intended to clear up any misinformed
ideas caused by the confusion of the numerous methods and applications of target detection. An often overlooked
shortcoming of the criteria is the lack of human factors or user variability data. Although minimal, the research and
testing performed on this front is also discussed.

1.2 Background

The Johnson Criteria was initially formulated as a method of predicting the probability of target discrimination. How-
ever, although the simple rule that detection requires four pixels on target is remembered and used in many scenarios,
the implications and required conditions of the criteria are often forgotten. This leads to misinformed decisions when
designing and implementing target detection systems. Many factors are important when calculating the probability of
detecting a target. These factors, their implications, proposed solutions, and research to support each of the claims are
given for each of the shortcomings in Johnson’s original criteria.

1.3 Document Search

When researching this topic, numerous articles and reports were found. Publication dates ranged from 1948 to the
present. These include military reports, books, and conference proceedings, among others. Some reports referenced
other reports that were very difficult to find due to their either being classified, previously classified, or out of date.
Much time was spent finding and reading these documents. Work was also done following given equations, applying
them to specific situations, and attempting to verify results presented in the reports. This was sometimes difficult due
to very limited information provided by the reports themselves.

Although not an exhaustive list, the documents presented in this report cover a large majority of the reports with
topics relating to the Johnson Criteria. Over 150 papers were found and read while looking for information about
target detection. In total, nearly 100 documents were found that relate to the history, implementation, verification, and
validation of, improvements to, and problems with the Johnson Criteria.

1.4 Summary of Findings

Although the detection models and metrics proposed and implemented over the last several decades have definite
improvements over John Johnson’s original model [40], they are still lacking in a few ways. First, even though
many models take weather into consideration, there is still no model that accurately predicts target detection in all
inclement weather situations. However, the more prevalent problem with these models is their lack of modeling of the
human element within a detection system. Although the models take most other variables into account, the differences
between humans observers are not typically considered when calculating the probability of target detection. These
models have included improvements to the original criteria such as taking the background, viewing angle, signal-to-
noise ratio, and other factors into account when calculating the probability of target detection. It is clear that although
target detection models are continuously improving, more rigorous testing is required, as is the addition of human
variability modeling, before these models can be trusted to accurately provide the probability of target detection in any
given situation.
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2 History

2.1 Work Prior to Johnson

The foundations for target acquisition were laid down by several key researchers, not all of whom can be recognized.
The work of Otto Schade in 1948 is an example of this work. His work in optics would later become the basis for
Johnson’s theories on target acquisition. Otto characterized electro-optical systems and the noise associated with the
systems. [81] He also developed a metric for determining the quality of imaging systems. Other works of his include
modeling the eye a few years later in 1956, by depicting as an analog camera. [82]

The work of Albert Rose was also a basis for the work to be done by Johnson later, although his work was less
critical. In 1948 he published a paper detailing the noise of phosphor-based illumination systems. [76] This work was
used by Johnson to describe the noise level of his system and develop an idea of the minimum detectable contrast
threshold. Johnson used this to determine the thresholds for different discrimination levels at increasing viewing
distance. [40]

Coltman studied the effects scintillation fluctuations had on the ability of observers to detect patterns on a CRT at
varying contrast levels in 1954. [15] The necessary contrast to discern bar patterns given a certain noise threshold was
of interest to Johnson due to his methodology of obtaining resolvable cycles across a target.

Dr. Robert Wiseman, Johnson’s immediate superior, also reports that Johnson collaborated with Professor Howard
Coleman from the University of Texas on the initial concept of equivocating resolvable line pairs and actual targets.
[99] However, Coleman did not assist in this research beyond an initial intellectual level.

2.2 Initial Validation of the Johnson Criteria

The history of target acquisition generally traces its origin to the work of John Johnson in the late 1950’s. He charac-
terized the probability of detecting an object based on the effective resolution of an imaged object. This is an intuitive
concept, and one that was validated by his findings. He found that as the number of resolvable cycles across a target
increased, so did the probability of an observer successfully locating a target. Four general categories for discriminat-
ing targets were given, as shown in Table 1. This set of data, known as the Johnson Criteria, represents the number of
cycles across a target for an ensemble of observers to have a 50% chance of completing the discrimination task. [40].

Table 1: Summary of Johnson Criteria

Discrimination Level Cycles on Target Description
Detection 1.0±0.25 Object is of military significance

Orientation 1.4±0.35 Object aspect
Recognition 4.0±0.8 Class of object (Jeep, tank, etc.)
Identification 6.4±1.5 Member of class

These results were a simplification of a very complex system. Johnson recognized at the time that these numbers
would change based on viewing angles and the contrast transfer function, also called the modulation transfer function
or spatial frequency response function of the system. These results were merely a way to roughly quantize the problem
of detection, and were not initially expected to be used outside the Night Vision Equipment Branch. The need for such
a system, however, soon led to a wide adoption of this criteria. [99]

This concept of equivalent bar resolution became the basis of many target acquisition models for the next 50 years.
The concept underlying his methodology was verified by early findings of other research groups, some of which were
unaware of his findings. The results of these experiments also showed that resolvable cycles are not the only factors
influencing the probability of detection.

Baker and Nicholson performed a series of studies in 1967, in which the number of scan lines across a target were
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varied and compared against the percentage of correct responses. The targets used were Landolt C, alphanumeric
symbols, and silhouettes. Unsurprisingly, it was found that as information content increased, the percentage of correct
responses increased as well. A significant result was that the number of scan lines required to recognize a silhouette
varied with the target aspect ratio and orientation. The authors conjectured that certain targets were more easily
recognized at some angles rather than others. [5]

Erickson et al. in 1968 observed that the number of scan lines across a square would increase the percentage of
correct detection. This was related to the contrast of the target, but never continuously modeled. His results correctly
suggested that increase in contrast would likewise increase the percentage of correct responses. [31]

In 1969, Levine et al. measured the response times and accuracy of observers as they attempted to identify aircraft
at varying resolutions and gray scale levels. They found that the performance of the observer would increase with
resolution up to 12 scan lines across the target. After this, there was no significant improvement in performance. This
indicated that modeling target acquisition as a probability was a good approach, as opposed to searching for a single
asymptotic performance level. [54]

Also in 1969, Hemingway and Erickson studied the recognition of alphanumeric symbols. At smaller angles,
symbols could not be fully resolved, and performance did not reach an asymptote. Individual performance varied from
50% to 97%, indicating that human factors play an important role in the probability of detection. [28]

Self published a study in 1969 detailing factors that influence target acquisition probabilities. Quantitative results
were mentioned, but never explicitly stated. His list of qualities that affect performance include target type, size,
location, and distinction from the background. He also notes that some observers in the various studies will con-
sistently outperform their colleagues. He speculated that training, experience, ability, task, briefings given a priori,
search habits, motivation, acceptable false detection rates, and target assumptions would all affect target detection and
recognition. [90]

In 1970, Erickson and Hemingway again published a study in which similar vehicles were identified in foliage and
sand backgrounds. The results showed that observers performed better when viewing the target in foliage. [30] This
instance of variability due to the background was later generalized to be a function of target contrast and background
clutter.

Jones and Leachtenauer in 1970 classified aircrafts based on the number and type of characteristics necessary to
complete the discrimination task. For example, the F-100’s engine intake ducts and position of the fuselage had to
be recognized by the observer to successfully identify the aircraft. [42] [52] This study showed that certain areas of a
target are more critical in identification than others.

Though noise was known to affect the probability of detection, its effects were not thoroughly modeled until 1973
by Rosell and Willson. Using Johnson’s method of equivalent bar resolution and standard for a 50% probability of
successfully completing the discrimination task, Rosell and Willson showed that the ability to detect a target could be
modeled as a function of SNR. [78] Others have noted that Johnson’s model tended to overestimate scenes with lower
SNR, indicating that Rosell’s ideas of SNR being related to detection probability are non-menial. [10]

In 1975, Lacey conducted an experiment which demonstrated the importance of viewing angles. A variety of
aircraft were presented to viewers at varying angles. As could be expected, targets of similar nature were more
frequently confused for each other. The ability of an observer has shown to be dependent on viewing angle. The same
type of aircraft experienced significant deviations in the percentage of correct identification when the viewing angle
was altered. [50] [52]

2.3 Extension of the Johnson Criteria

The use of the Johnson Criteria became more widely accepted, and as a result of this, in addition to an increase in the
capability of IR imaging, a surge of research began to further generalize the criteria.

In 1969, the Night Vision Lab (NVL) was attempting to develop a performance model for FLIR systems. The
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concept of minimal resolvable temperature introduced by Lloyd and Sendall, which allowed the concept of a bar
resolution test to be generalized to include IR systems. Efforts were subsequently redirected to use this method to
characterize IR systems. [98] [55]

The expansion of the criteria then took place in 1974 through the efforts of Lawson and Johnson. In this land-
mark paper, several important changes surfaced. In addition to now including a metric for measuring the acquisition
probability of infrared systems, the paper also gave an equation for relating the number of cycles across a target to
the probability of detection given the N50 of the target. These equations have evolved over time to more accurately
model different environments, criteria, and data sets, but the general form has remained unchanged, even in the current
Targeting Task Performance (TTP) metric. [41] [83] This is given by Equation 1. [38]

P(t) = P∞[1− e(−t/τFOV )] (1)

P∞ =
(N/(N50)D)

E

1+(N/(N50)D)E (2)

E = 2.7+0.7(N/(N50)D) (3)

Table 2: Variables for Calculating Probability of Detection

Variable Unit Description
P(t) Unitless Probability of detection within time t
P∞ Unitless Asymptotic probability; probability over infinite time
E Unitless Scaling value found from test data
N Cycles Resolvable cycles across target

(N50)D Cycles Number of cycles for 50% detection
t Seconds Time

τFOV Seconds Average time to find target

Johnson also noted that the required resolution of a target involves many factors. One of which of aspect ratio
and viewing angle on target detection. He noted that objects with large widths, like ships, require different N50s than
targets such as a tank. He also noted that when viewing the same target under the same conditions from differing
angles, the required resolution can vary significantly. Finally, he discussed the importance of resolving distinguishing
characteristics, postulating that the more detailed the features were in a set, the greater the probability of detection. [22]

This work was soon expounded upon by Lawson in 1975 to make up the NVEOL model. He worked to develop a
program to model target acquisition in which several additional parameters could be modeled. Atmospheric conditions,
for instance, were being integrated into the target acquisition models. Modeling such as this had already began, but had
recently been given a heightened interest due to problems with the current data. Navy pilots in the Mediterranean Sea
in 1973 found that they could detect enemy vessels at ranges greater than those predicted by the Air Force Geophysics
Laboratory. [99] This trend in modeling atmospheric data was updated in the program proposed by Lawson. It used
Beer’s law to model transitivity in a variety of weather conditions for a range of wavelengths. Though simplistic, it
gave more versatility to the system’s modeling parameters. [74] [72]

In addition to adding parameters, this updated model also measured the modular transfer function (MTF) of the
entire system, including the eye. This was a necessary development; because many of the previous tests in target
acquisition did not report the MTF of their system, much of the data is not applicable today. Having the MTF allows
the data to be generalized for other systems, not just the one tested.

This model was published by Ratches the following year in 1976. It gave a succinct description of the equations
used to measure the MTF of a system, using the minimum resolvable temperature difference (MRTD), and the effects
of SNR on detection probability as measured by Rosell in 1973. This model would serve as the basis of target
acquisition modeling for the next 15 years. [72]

Erickson published another paper in 1978 attempted to incorporate the data that had been collected using scan lines
on target and resolvable cycles. Realizing the importance of using metrics that incorporate a system’s ability to resolve
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a scene, he attempted to generalize his results with that of Johnson’s. He estimated that his system had a ratio of 1.5
scan lines per resolution line, or 3 per line pair, and stated that using this conversion ratio, his results were comparable
to Johnson’s work in 1974. [29]

In 1978, Lawson, Cassidy, and Ratches developed a time dependent model of search, in which the probability of
detection could be characterized by the amount of time an observer had looking at the field, as well as a function of
resolved cycles. This differed from the static approach, where observers had essentially unlimited time to detect and
perform a discrimination task. [51] [73]

P = P1P2 (4)

P2 = 1− e−τ/(mt)
τ =

6.8
N/N50

(5)

Table 3: Variables for Time-Dependent Search Model

Variable Unit Description
P Unitless Total probability as a function of time and cycles on target
P1 Unitless Probability of detecting target given infinite amount of time (see Equation 1)
P2 Unitless Probability of detection as a function of time given that target could be detected
m FOVs Number of sensor Field of Views within search field of regard
N Cycles Resolvable cycles across target

N50 Cycles Number of cycles for 50% detection

The change from the first to the second generation of Thermal Imaging Systems (TIS) took place over the next
few years. These imagers have a variety of differences. For instance, first-generation TIS employed raster scanning,
whereas second-generations use staring arrays in two dimensions. Differences in detectors are also significant. Origi-
nally, TIS generally used detectors that continually outputted a signal; a shift to on-focal-plane sampling was taken in
the latter generation where detector elements were sampled at a regular interval and then discharged for the next sam-
ple. [43] Differences such as these helped to cause the need for the Static Performance Model to be updated. [38] [25]

The ACQUIRE model and FLIR90 model was developed in 1990 to work in conjunction with each other. The
FLIR90 model was an improved metric for determining the MRTD. The ACQUIRE was an improved system for
modeling the probability of detecting an object. Each of these systems attempted to address several shortcomings with
the Johnson metric, as well as updating outdated metrics. These new metrics were also developed to better model the
latest generation of FLIR equipment. [75]

The FLIR90 addressed several shortcoming of the NVEOL model. [87] Firstly, it fixed the problem of varying
aspect ratios by measuring the characteristic target area in two dimensions. Noise is also modeled differently in this
model; it is characterized in three dimensions and is divided into six categories: pixel temporal and spatial noise,
temporal line and column bounce, and spatial line-to-line and column-to-column non-uniformities. The MRTD of a
sensor can be modeled as a function of these noise parameters, and thus can determine how noise will affect target
detection. [86] These parameters were later expanded in the FLIR92 update. [89] Since the Ratches model of 1976
was built to model first generation FLIR sensors, improvements in the physical FLIR hardware necessitated updates
from this previous model, thus resulting in the newer FLIR90 model. [64]

The FLIR92 model kept the majority of the parameters from the FLIR90 model. [32] An initiative led by Luanne
Obert and John D’Agostino addressed the noise and resolution issues of second generation FLIR systems. [73] It
added an additional noise component of frame-to-frame noise. Improvements were made in the modeling of the eye’s
temporal, vertical and horizontal spatial integration effects. This update did not change the general approach taken by
the FLIR90 model, it merely expanded it’s capabilities. This update was more widely used than FLIR90. [88] [45]

The ACQUIRE model was an improvement over the original Johnson criteria as well. It redefined some of the
discrimination categories, and, like FLIR92, it models the characteristic target dimensions in two dimensions. [32] The
numbers of cycles for N50 were redefined to better model data and adapt to the second generation of FLIR technology
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and to adjust for two-dimensional MRTD measurements. [75] [44] They were also generalized to match varying levels
of clutter, so that scenes with low clutter had a higher probability of detect than one with moderate clutter. The amount
of clutter in a scene was subjectively assessed. [67] This metric was simplified to not measure clutter directly for
each scene, but creates general categories. The ACQUIRE model also is able to measure the probability of time-
dependent detection. [27] A summary of criteria can be seen in Table 4. [91] Also, a comparison of the ACQUIRE
model to the Johnson Criteria can be seen in Figure 1. This comparison shows the probability of target detection at
four discrimination levels for both the Johnson and the ACQUIRE metrics for a range of distances. An average of the
N50 values for many different targets was used in each of the metrics. The displayed distance difference measures the
difference between the Johnson Criteria and the AQUIRE Metric at the 50% probability of detect level. A negative
distance means that the Johnson Criteria predicts a shorter distance for discrimination than does the ACQUIRE Metric.

Table 4: Summary of ACQUIRE Criteria

Discrimination Level Cycles on Target Description
Detection 0.75 Object is of military significance

Classification 1.5 Discriminate between classes of vehicles
Recognition 3.0 Categorize within a class of similar objects
Identification 6.0 Member of class
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Figure 1: A comparison between the ACQUIRE Model and the Johnson Criteria assuming standard N50 values for
each discrimination level. The distance difference is measured at the 50% probability of detect and compares the
difference between the Johnson Criteria and the AQUIRE Metric. These values were calculated for a system viewing
a target of 0.75 meter height, with an imaging system having a 10 micron pixel and a 10 millimeter focal length.
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There have been a number of tests that use this model, many of which have occurred recently. [24] In 1999, the
ACQUIRE model outperformed the FTAM model. [37] As of 2000, the US Army Materiel Systems Analysis Activity
stated that the ACQUIRE model was the most accurate over a variety of conditions. [56] [3] The simplicity of the
model lends well to fitting data for a given situation, although adapting the criteria for varying situations generally
requires experimental data. Traditionally, however, for moving targets, the N50 is 2/3 the value for an equivalent static
target. [57] [56] The standard values of N50 are established as a basic guideline, and were modified to match newer
imaging technology and to change from a one-dimensional to a two-dimensional characteristic dimension. [89]

In 2004, the ACQUIRE-LC metric was introduced to determine range for camouflaged targets. Camouflage de-
velopers showed that camouflage did indeed have an impact on the range at which a target could be detected. New
equations were set to govern the type of camouflage and amount of clutter in the scene. These can be seen in Equations
6 and 7.

Moderate Clutter : N50 =
6

∆T 2
RSS

+0.75 (6)

Low Clutter : N50 =
0.75

∆T 2
RSS

+0.75 (7)

∆TRSS =
√
(µtgt −µbkgd)2 +σ2

tgt (8)

Table 5: Equations for ACQUIRE-LC N50

Variable Unit Description
µtgt °K Average Target Temperature

µbkgd °K Average Background Temperature
σtgt °K Standard Deviation of Target Temperature

∆TRSS °K Target Contrast Differential Temperature

It should be noted that the equations given for ACQUIRE-LC were initially intended to only be used to detect
targets in camouflage in IR systems, but they have since been updated to apply to all targets. [47]

In 2005, the ACQUIRE and ACQUIRE-LC metrics were bound together into one metric called the Detect05. This
model updated clutter and adds the capability of detecting moving targets. The updated equation of clutter can be seen
in Equation 9. The variables are the same as the ACQUIRE-LC model, except for C, which is a measure of clutter.
For low, medium-low, medium, and high amounts of clutter, C is 1, 1.5, 2.0, and 2.7 respectively. [47]

N50 = 0.75C[(C/∆TRSS)
2 +1] (9)

2.4 Modern Challenges

Understanding how modern image processing techniques affect target acquisition is just as important today as it
was when accounting for differences in imaging technology decades ago. Studies to understand the effect of video
compression on target acquisition have been an area of interest, where compression was modeled as a combination
of an MTF and blur. [14] The effects of various contrast enhancement algorithms on target detection were modeled
in 2008. The increase in contrast did not significantly raise the probability of recognition. The authors speculate that
certain critical features were not adequately resolved regardless of contrast, which significantly impacted performance.
It is also important to note that the scenes were relatively clear of clutter; the contrast enhancement algorithms would
also cause the clutter of the scene to increase. [26] Algorithms generating super-resolved images from a series of
undersampled images can likewise be modeled by the TTP metric. [39]
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A push for detection of targets in close-quarter situations is also underway. Urban cycle criteria are being estab-
lished, in which combatants may quickly and briefly reveal themselves. [56] Recognition of the type of activities that
humans are doing are also of interest; for instance, distinguishing between pointing a rifle and using an ax is a useful
distinction in physical security. [92] Developing criterion for recognizing objects that people are carrying are also of
interest. [63]

2.5 Additional Studies and Verification

The Johnson Criteria is not exclusively applied to military detection - it can be used in many different applications
where a person is looking for a specific target in a static or moving image. The applications discussed below show
other ways in which the Johnson Criteria can help in target acquisition, with targets such as guns in a public area,
threats in luggage at an airport, or medical targets inside the human body.

The human factors issue is also widely relevant and applied to many different situations. As discussed in the
Human Factors section 3.7, all people are different and will see the same image differently. In order for a detection
model to be accurate, it must take these human differences into account. [6]

In 2000, Gale noted the similarities between image detection in medical situations and airport baggage inspection
[33]. Gale discusses a training detection model developed for medical uses that has also been used in airport security
with good success. The model is used to understand the errors involved in target detection, and thus to fix these errors
through different training methods. The errors possible in a target detection scenario are the same across applications,
and were found to occur in the following areas: “visual search, detection of potential targets, and interpretation.”

One relevant situation is airport x-ray screening [84]. In 2005, Schwaninger et al. discuss several image based
factors that affect threat detection in x-ray screening. These factors are view difficulty (the angle the threat object is
viewed from), superposition (the amount of other objects on top of the threat object), and bag complexity (how many
other objects besides the threat object are in the bag, as well as the type of object). However, Schwaninger states that
image based factors are not the only factors that affect threat detection. Human factors - including age, training, and
vision - also affect threat detection. Schwaninger understood that threat detection could not be characterized without
first characterizing the humans searching for the threat.

Another similar situation is described by Darker et al. in 2008 [18], in which the process of discovering threat
detection using closed-circuit television (CCTV) cameras can be automated. In this discussion, Darker et al. realized
that characterizing (even minimally) the human observers (CCTV operators) in their study was an important step. The
number of participants, along with their gender, age, and years of experience were all reported in the paper.

Image detection is also a very important aspect in the medical field. Many medical procedures (x-rays, MRI, etc.)
involve images of some sort to be taken of the body, and then examined. The entire system (from imaging device to
viewing device) must provide enough resolution for medical professionals to detect problematic target areas, such as
fractures in bones or growths on organs. In a report from 2005, the American Association of Physics in Medicine
highlights this dependence of medical professionals on imaging and detection techniques before going into intricate
detail about improving the imaging and viewing aspects of the process. [1].
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3 Factors Affecting Detection

3.1 Clutter

Clutter is generally referred to as how complicated a scene appears. This concept, though easy to understand, has
proven fairly difficult to quantify. It is intuitive that attempting to detect a target in a plain background is much easier
than one where vegetation or other objects can obscure the initial shape of a target, as in a forest. The extraneous
objects in a scene will cause observers to not find the military target as quickly or sometimes miss it entirely. The
amount of clutter in a scene has been shown to have a significant impact on user performance, as seen in the studies
summarized below.

In his original paper in 1958, Johnson did not take clutter into account. [40] Clutter is discussed by Self in 1969.
Self stated that the time it takes for a person to detect a target varied according to which background was in the image.
While his definition of clutter was not thoroughly discussed, the idea of a complex background increasing the difficulty
of detection was noted. [90]

Erickson and Hemingway studied similar situations a year later in 1970. Their experiments showed that the
percentage of observers who were able to successfully detect a target in foliage was roughly 20% higher than on a
sandy background. [30] This was significant, especially since the factors that affect scene detection were still being
modeled. [78]

In 1983, Schmieder and Weathersby derived a clutter metric by measuring the standard variation of the radiance
in a scene. They noted that clutter and time-varying noise are not equivalent phenomena. They also experimentally
showed that as clutter levels increased, the number of cycles required to resolve a target also increased. For scenes
with low clutter, for 50% probability of detection, N50 was 0.5 and for high clutter it was raised to 2.5. [83]

Research done by Georgia Tech Research Institute has attempted to quantify the effects of various parameters on
clutter level. They also presented a new metric of clutter, which defines a pixel-by-pixel definition of scene complexity.
Parameters such as air temperature, solar irradiance and time, mean temperature, and wavelength for data collection
were correlated with clutter to determine which, if any, external parameter affected the clutter level of the image.
General trends were established, such as an increase in clutter with the time of day, but the scatter for the fitted lines
was large. [35]

Mazz agrees with the correlation between the complexity of a scene and the difficulty of locating an object in
1998 by stating that as clutter increases, the N50 values for IR also increase. Images were subjectively sorted into four
categories and their N50 values compared. The cycles required for detection varied from 1.3 to 2.5 cycles. It is also
interesting to note that as clutter increased, so did the false detection percentage (FDP). He postulates that the effect
of clutter and FDP are additive. [57]

In 1999, Horrigan pointed out that it becomes very difficult to attempt to model clutter. Many parameters can result
in many complicated equations. He attempts to cover some shortcomings of the ACQUIRE model and standardize the
variations of the clutter metrics presented in past years. His model, the FLIR Target Acquisition Model, was not as
successful as the ACQUIRE model, however. [37]

Research done by Bhanu and Rong from the University of California has resulted in methods to model the clutter
of the background of a scene. This was done to make automatic target detection possible while reducing false alarms.
The process of target detection includes selecting all potential target areas, then comparing these against modeled
backgrounds in order to filter out any false alarms. [7]

3.2 Signal-to-Noise Ratio and Blur

Signal-to-noise ratio (SNR) factors into the ability to detect targets. Blur affects object recognition in a similar way.
Both are concerned with the quality of image. Noise and blur were of concern when evaluating the quality of an image,
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dating back to Schade’s work in the 1940’s. Blur affects the quality of an image even with modern optical systems
and is now measured by an MTF; an optical system may not be able to sufficiently focus the scene due to inherent
aberrations in the lenses, thereby spreading the light to neighboring pixels, causing blur.

In 1969, Self noted that a noisy image affected object detection, but he never quantified this result. He also noted
that the sharpness of an image was related to observer performance. [90]

Also in 1970, Scott, Hollanda, and Harabedian all tested the effects of SNR with respect to scan lines required to
resolve a target. [85]

A significant contribution to the field of target acquisition came from Rosell and Wilson. Through a series of
papers, they related the ability of an observer to detect an object to the SNR of the image. [79] [77]

In 1974, O’Neill saw that ships with the same resolution had different levels of detectability under varying levels
of SNR. [2] [69]

In 1981, Burke showed that blur and noise are interrelated. Air Force photo-interpreters qualitatively ranked the
interpretability of 250 military scenes. The study reported that adding noise to a blurry image did not affect judgment
nearly as much as adding blur to a noisy image. [13]

Similarly, in 1983, Politte, Holmes, and Snyder noticed that blur and noise resulted in reduced judgment of image
quality. He also noted that as SNR decreased, the effects of other variables of observer variability decreased as
well. [2] [71]

In 1997, Aleva and Kuperman note that the effects of blur and noise together are much more detrimental than when
taken separately. This is apparent in the ROC curves published in the original report. As expected, as noise and blur
increased, observer performance decreased. [2]

Mazz analyzed the variability in N50 in 1998, and showed that sensor resolution was inversely proportional to the
cycles on target required for detection. The author also notes that this correlation was confounded by the fact that the
false detection rate also decreases in this experiment. [57]

Using the ACQUIRE model in 2007, Krapels and Driggers saw that the probability of detection decreased as blur
increased. This is because they showed experimentally that a blurred image contained fewer resolvable cycles than its
unblurred counterpart. [46]

In 2008, a study on the cycle criteria required to resolve thalassic vessels used blur to simulate a decrease in
resolvable cycles on target. The MTF of the blur was able to be mathematically modeled, and thusly incorperated into
the system MTF. The TTP metric was able to predict the decrease in performance based on the change in MTF. [48]

3.3 Aspect Ratio and Viewing Angle

A target may appear different depending on the angle for which it is viewed. Johnson’s original criteria assumed that
the target would carry information necessary for discriminating between different targets. This is not always true,
especially for similar objects. It is also not true that the entirety of an object’s area carries discriminating information.
The probability of discrimination is related to an object’s aspect ratio and the viewing angle. Aspect ratio is the ratio
of the height of the object to the width. Viewing angle refers to the orientation of the object.

In 1972, it was first realized that the angle at which the object was viewed greatly impacted the way an objected was
seen. It was Moser who noticed that the Johnson Criteria did not hold true for Naval vessels at certain aspect angles,
suggesting that the side view would be much more useful than the bow view. He noted that the ratio of dimensions of
a single target varied from 1.2 to 14.6 depending on the angle for which it was viewed and that not all of the resolved
area was pertinent to discriminating between types of targets. He instead suggested using the perimeter of the ship as
a measure of information content. [62]
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Only a few years later in 1974, Johnson and Lawson showed that the number of cycles required for target discrimi-
nation varied significantly with changes in viewing angle for objects with a large aspect ratio. [41] Ratches noted in the
Static Performance Model that the cycle criterion given had been averaged over a myriad of targets and orientations.
He noted that targets with aspect ratios in great excess of one will deviate from these significantly. [74]

The variations of performance based on target orientation is a well understood phenomenon. It is casually taken
into consideration in studies where aspect ration and viewing angle are not the main topic of interest. In 1991, Rotman,
Gordon, and Kowalczyk studied how varying the density of smoke would affect target detection. They showed that a
tank would have a much higher chance of being detected, over 30% better chance, if viewed from the side rather than
the front. [80]

In 2001, Leachtenauer noted that the percentage of correct identification of aircrafts varied as much as 60% when
viewing the same target from different angles. [52] This study also indicates the effect of viewing angle is correlated
not only with the size of the target, but the distinguishing characteristics available to the observer.

3.4 Visible Light vs. Infrared

When dealing with probability of detection, there are many differences when using visible systems versus infrared
(IR) systems. These differences include the times and situations during which each are best used, the operation of
the cameras used for detecting images of each type, and the detail shown by the resulting images. Weather is a large
deciding factor for deciding between using a visible or an infrared system, as fog obscures visible systems more than
infrared systems.

In 1994, Howe discussed the current status of modeling IR systems, as well as future challenges to face. In this he
discussed some of the problems associated with imaging with FLIR technology. The strongest problem involved target
boundaries blending into the background of a scene. Howe discussed how the current version of thermal models failed
in this area, as well as in situations where the target was highly cued. These difficulties do not show up as strongly in
visible systems. [38]

The variability in N50 was also noted when comparing IR and visible data sets. A report released in 1998 showed
that the detection N50 ranged from 0.75 to 4.1 cycles on target required for detection with an average of 1.8 ± 0.93
for the 24 tests reported. It should be noted that the highest variation of 13.7 cycles was excluded from analysis due
to uncertainty in the MRTD during acquisition. For visible data sets, cycles varied from 0.72 to 11.7 cycles on target
with an average of 4.58± 3.45 for a total of 8 tests reported in the report. These tests were done with varying numbers
of observers, target types, time of day, time limits, target opportunities, location, clutter, and ranges. [57]

O’Connor also noticed, in 2003, a difference between probability of detect between visible and IR systems. The
probability of detect was greater in the visible spectrum than in the IR. The N50 values for visible systems were
measured to be 7.5 while the IR system was 11.5. He speculates that the removal of details, such as paint color,
explains why the visible system outperformed the IR system. [65]

In 2008, small watercraft cycle criteria were developed for the ACQUIRE and TTP metrics for SWIR systems.
Blur was added to decrease the cycles on target for each image, and each vessel was filmed from 12 different angles.
Data was compared to a previous data set for similar type of crafts which were imaged in the MWIR and visible range.
The characteristic dimension of the crafts for the two tests were recorded as 3.9 meters. The N50 for the visible set
(recorded in grayscale) was 4.0, as compared to the MWIR and SWIR, which were 2.8 and 3.5 respectively. The V50
for visible, MWIR, and SWIR are 14.0, 10.6, and 11.3 respectively. [48]

3.5 Distinguishing Characteristics

Object identification has been shown to depend greatly on the ability to resolve distinguishing characteristics. This
concept has important implications in target acquisition. The ability to view these characteristics are assumed to be
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true in the ACQUIRE and TTP metrics; if this assumption is not true, the performance of the system risks severe
degradation.

Moser, in 1972, noted that he perimeter of an object might be a better metric to assist in predicting target acquisition
performance. He showed that the Johnson Criteria did not apply to some naval targets, and noted that most of the
area of a ship is featureless, and will not assist in target recognition. He conjectured, “Perhaps a better measure
of information content would be the resolvable perimeter of the target or the number of resolvable angles along its
perimeter.” [62]

Johnson first documented in 1974 that, “Recognition probability is determined by the perception of target features.”
Johnson continues to explain that more features and detailed features would lead to increased probability of detect.
[22] [41]

One of the major theories that attempts to model how humans recognize objects was developed by Biederman in
1987. He attempts to classify objects as being comprised of simplified subsections called “geons.” [8]

O’Kane, Biederman, and Cooper analyzed the correlation of critical features and target recognition in 1996. De-
veloping a dichotomous decision tree for target recognition, they showed that the percentage of confusion was highly
correlated with the nodal separation on the decision tree. It was then shown that the ability to detect critical feature
correlated with the variance in observer performance more so than physical phenomena, such as range, target size,
and atmospheric transmission. [80] It should be remembered that the physics-based ACQUIRE model predicts the
performance of an ensemble of observers, not individuals.

In 1997, O’Kane predicted that object confusion could be modeled. O’Kane noted that visual misidentification
was a significant problem by relating Herdman’s research in 1993 that “15% - 20% of US Army casualties have been
estimated to be cases of fratricide,” [34] showing a strong need to reduce the occurrence of such misidentification.
This led O’Kane to conduct experiments from which predictions of detection could be made from the number of
distinguishing features on vehicles. This could greatly improve identification models. [66]

In 2001, Leachtenauer noticed that military targets with similar features were more often confused with each other.
For example, identical engine intakes on aircrafts led to a higher percentage of misidentification. The features required
to detect a variety of aircraft and terrestrial vehicles were analyzed. [52]

Similarly, in 2003, O’Conner measured the N50 of 12 different tanks. These tests were performed without fuel
drums, erected radars, etc. He showed that the removal of these “giveaway” target identification tags increased the
difficulty of detection. [65]

That same year, Leachtenauer published a paper detailing a brief history of models based on the Johnson Criteria
and stressed the importance of recognizable characteristics. He emphasized knowing what direction the enemy would
likely approach from, and encouraged cycle criterion to be based on that orientation. [53]

In 2008, Darker et al. in the United Kingdom began to research how CCTV operators detected people carrying
concealed and unconcealed firearms in public places. Through surveys, Darker and team were able to make up a list
of most-used operator strategies for detecting firearms. This study shows how certain characteristics allow for easier
threat detection, and provides confirmation as to the importance of discernible target features. [18]

The question of how best to detect an object in an image is relevant to many different applications, including airport
security bag checks. In 2008, Schwaninger et al. discussed the factors that affect threat detection in X-ray screening.
Several image based factors were defined, including view difficulty, superposition, clutter, and opacity. [11]

In 2013, Maurer et al. discusses image-based modeling, noting that in 2001, NVESD began to develop image-
based models. Image-based modeling uses details of the image to give predictions of target discrimination. [56]
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3.6 Weather

Weather conditions can greatly impact the probability of detect. Most studies have been performed with fog or smoke,
for both visible and IR cameras. Work done on calculating how the vision-obscuring smoke and fog affects detection
is important, especially for naval purposes on the coast. However, although much research has been done on the
qualitative effects of fog and smoke, not much research has been performed quantitatively. For example, “heavy fog”
is quite an arbitrary definition. A much better description would take into account the number and size of the particles
in the air. Since this research is much more work-intensive, it is not often done. However, the results taken from
relatively well-defined qualitative data provides a foundation for understanding the effects of particles in the air on
target detection.

Beginning in 1975, Ratches and Lawson reported results from the experiments they performed with fog. They
modeled the transmission of light through fog for a detection system using signal-to-noise ratios between the target
and the fog, respectively. This model had an accuracy of ±20% when testing the optimum situation. However, there
are few results from field tests due to the dynamic nature of fog. Even so, it is clear that testing in inclement weather
or with difficult targets greatly degrades the results. At the time, work was being done to improve the model for these
adverse conditions. [74]

Over 15 years later, in 1991, Rotman, Gordon, and Kowalczyk performed experiments with smoke. They noticed
that obscurants are not a constant source of interference; there are natural fluctuations in the density of the smoke or
fog. This was tested in simulations where the ability to detect a tank in constant and fluctuating levels of the smoke
was measured as a function of time over a variety of wavelengths. It was found that the probability of detection in
fluctuating obscurants is generally higher than if it were constant. [80]

Krapels et al. published a study in 2001 to determine the feasibility of modeling turbulence as an MTF. The
NVESD studied a similar model produced by researchers at Ben-Gurion University. Krapels et al. evaluate this MTF
model, and conclude that it is a viable model and reasonable to use in the model for the US Army. [49]

The ability to model atmospheric degradation through computer simulations have been in use since the 1970’s,
which started with LOWTRAN. The database has been updated through the years and is now called MODTRAN.
NVThermIP is able to model atmospheric effects. It can be done through MODTRAN, Beer’s law, or an input table.

The ability to model atmospheric effects is important, as shown by Table 6. The probability of detection drops
significantly as the average transmission over 10 kilometers, τ(ave), decreases, especially at longer distances. These
numbers do not accurately describe the real world, as the model is much more complex than used here. However, they
do show how severely adverse weather conditions affect the probability of detection, and emphasize the importance of
modeling weather conditions when looking at the probability of detection. [70]

Table 6: Beer’s Law Atmospheric Transmission
Table taken from [70, p.4]

P(det)
Range (m) τ(ave) = 100% τ(ave) = 50% τ(ave) = 25% τ(ave) = 10%

0 1 1 1 1
1 1 1 1 1
3 0.999 0.998 0.996 0.991
5 0.982 0.963 0.934 0.874
7 0.938 0.878 0.792 0.644
9 0.878 0.765 0.620 0.412
10 0.845 0.706 0.537 0.315
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3.7 User Variability

User variability and human factors are topics which are lacking in the literature of imaging criteria. Some papers note
this lack of information whereas others ignore it all together. However, no paper ever attempts to completely model
human factors or user variability, nor have experiments been performed to completely characterize variability between
observers. This is an important part in defining probability of detect, and must be taken into account in order to give
validity to the model.

In 1969, Self gave a list of studied observer traits and behaviors that were relevant to predicting probability of
detect. These behaviors included using several different search patterns to search the images. The relevant traits
included the amount of training and instruction the observer had received and the amount of pressure the observer was
under.

Self also discusses observations he made about searchers. These include over-searching likely areas while ignoring
others, rapidly searching likely areas rather than searching the entire scene systematically, and forgetting to search
certain areas of a scene. Results of these search patterns include not quickly finding a target in an unlikely area,
finding a target in the center of a scene more quickly than targets on the edges, and, as expected, not quickly finding a
target in forgotten areas of the scene. Also, observers who were under pressure more quickly found targets than those
under no pressure. Lastly, Self observed that chance played a large part in detecting targets. [90]

In 1991, Donohue states that Johnson ignored variability between observers when discussing factors that influ-
ence target detection. Donohue confirmed Self’s predictions that an observers’ training, experience, native ability,
instruction, briefing, motivation, compromise (speed vs. accuracy), and assumptions all affected the performance of
observers. [22]

In 1994, Miller surveyed a group of soldiers about factors they believed to be important in target acquisition. These
included threat level, combat experience, training, stress level, etc. The soldiers qualitatively designated importance
to each of these factors that they believed to be important. Later, the same test was administered asking the same
questions. The results from the two surveys varied significantly, indicating that the question of human factors cannot
be quantified by consulting field users. Instead, he developed a fuzzy logic model for the JANUS target acquisition
system. [61]

Soon after, in 1995, Valeton and Bijl conducted experiments on human performance on target acquisition. Part
of the purpose of these experiments were to validate the TARGAC model. One of their conclusions was that military
observers were more likely to react to a stimulus whereas civilians tended to wait until they were certain. This adds to
the idea that training impacts performance. [94]

Mazz compiled a report showing that, although models like ACQUIRE are able to predict the performance of an
ensemble of observers, the performance of individuals in the group can vary widely. A Monte Carlo simulation was
run to generate statistically equivalent observers and compared to the results gathered from war game simulations.
The spread of probabilities for any given averaged probability was much smaller in the simulation than for an actual
observer. This indicates that factors other than expected statistical variations cause observer scores to vary. [58]

In 1999, Ratches, while discussing the MRTD model, mentioned that the model depended on both sensor and
observer variables. The model takes observer eye integration time into account, but Ratches notes that although
training, motivation, and reward also affect detection, these factors have not been incorporated into the MRTD model.
[73]

In 2008, Bolfing noted the importance of quantifying the human observers used in his test on detection of airport
threats. The study recorded the gender, age range of the observers, and hours of training for each observer, and
reported results as they correlated with these factors. Bolfing showed that age had a smaller yet noticeable affect
on target detection. When comparing the affect of all these human factors on threat detection, a regression analysis
gives an R2 value of .69, showing a noticeable correlation. Further analysis shows this correlation is statistically
significant. [12]

According to Maurer, many factors affect search and detection models, one of which is variations between ob-
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servers. As recently as 2013, Maurer notes that work is still being done to improve these models, and that this work is
required in order to modify and improve these models. Although the models give reasonable results now, as technology
improves, the models of target detection will improve as well. [56]
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4 Newer Models

In order to better keep up with the development of imaging technology and improved understanding of the human
psychophysiology, newer metrics have been proposed. Some have been accepted and widely implemented, and others
are still competing for a clear superior system.

When testing new models, the Army has determined that predicting the performance of a model includes validating,
verifying, and accrediting the model. Validating includes comparing the results of experiments with the predictions
given by the model. Verifying involves making sure the model’s equations concur with the physics of the scenario and
system, and accurately representing these equations in code. The last step of accreditation consists of noting the types
of situations in which the model works. [60]

4.1 Triangle Orientation Discrimination

The Triangle Orientation Discrimination (TOD) threshold is a metric that was proposed to modernize the charac-
terization of electro-optical system performance. It claims that the old metrics of minimum resolvable temperature
difference (MRTD) and minimum resolvable contrast (MRC) are limited in several areas. Only the amplitude is taken
into account when viewing the bar pattern, which means that the spatial phase spectrum is ignored, even though it con-
tains potentially useful information. Aliasing effects also occur when bar patterns with frequencies greater than the
Nyquist frequency of the imaging system is used. A lack of standardization in testing also produces some ambiguity
in these results. [9]

Instead, the TOD presents triangles to observers and asks them to distinguish their position and orientation. This
method has several advantages. It is applicable to many types of imaging systems, including both IR and visible. It can
also be used by the ACQUIRE model. [9] Determining the best metric to evaluate sensor performance is not clearly
defined as of yet. [39]

4.2 Targeting Task Performance

The most recent metric proposed by the NVESD is the Targeting Task Performance (TTP) metric. This metric attempts
to address some of the inherent flaws in the Johnson criteria as it relates to modern technology, such as the use of focal
plane array imagers, and human psychophysics, such as the Contrast Transfer Function (CTF) of the eye. [96] [97]
The CTF accounts for the fact that humans are able to discern details at lower levels of contrast better at certain
spatial frequencies than at others. This metric also explicitly takes into account the probability of detection by chance,
something that is not always done in the Johnson-based models. If an observer reports whether an object is of military
importance, he will be correct 50% of the time by pure chance. This model also keeps with previous methods of
accounting for target size and aspect ratio by characterizing its dimensions as the square root of the area.

Ctgt =

√
∆µ2

tgt +σ2
tgt

2µbkgd
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Table 7: Variables for TTP Model N50

Variable Unit Description
ξcuto f f Cycles Highest spatial frequency able to be resolved by target at given target contrast
ξcuton Cycles Lowest spatial frequency able to be resolved by target at given target contrast (essentially 0)

R km Range to target
Atgt m Characteristic dimension of target (

√
target area)

Ctgt Unitless Apparent contrast of target
CT Fsys(ξ ) Cycles−1 Contrast Threshold Function of system

Ctgt Unitless Target Contrast to background
µtgt °K Average Target Temperature

µbkgd °K Average Background Temperature
σtgt °K Standard Deviation of Target Temperature
N Cycles Number of resolvable cycles across target at range R (Johnson)
V Cycles Integral of resolvable cycles across target at range R (TTP)

V50 Cycles Number of cycles for 50% detection
P Unitless Probability of detecting a target as a function of cycles on target

There have been multiple tests to verify the validity of this test. [97] There is no set standard for V50. [93] It must
be experimentally determined for each system, scene, and target combination. [96] However, the cycles for certain
sets of targets are published to the public, and others can be estimated from known values. These target sets include
humans in various settings and activities, tanks, boats, etc. [23] [68] [93] [48] [92] [47]

Due to the fact that the TTP metric corrects for detection being achieved by pure chance, it is difficult to directly
relate or compare the TTP’s V50 values to other models’ N50 values for all cases in general. Vollmerhausen states that
in order to provide this comparison, the raw chance should first be calculated. In order to calculate this raw chance,
the number of possible targets to discriminate between must be known. This is different for every situation [96].

However, as a quick approximation, Hixson suggests that V50 values can be approximated as 2.7×N50 for all
cases. Although this degrades accuracy, especially in cases where the Johnson Criteria does not accurately predict the
probability of detection, it allows for the TTP model to still be used to easily calculate the approximate probability of
detection [36]. The other equations necessary to predict the probability of detection are also more complicated when
using the TTP model. The equations rely on specifics of the target and scene, including the mean and standard deviation
of the target contrast, and the mean value of the scene. These values are not necessary for Johnson’s probability
equations.

Also, the TTP metric is more sensitive to certain image qualities than is the Johnson metric, due to its consideration
of when the target exceeds the system contrast function. [96] The TTP metric is “better” than the Johnson Criteria in
that it is less generic and more case-specific, thus giving more accurate information for each situation. However, it is
difficult to create a generic model, and is more difficult to calculate the probability of detection due to the amount of
extra information required by this metric. Therefore, although it is possible to compare the TTP metric to the Johnson
Criteria and the ACQUIRE metric, it is difficult to find or caluclate the TTP values corresponding to the Johnson or
ACQUIRE values. [97]

4.3 ORACLE

The ORACLE model was developed by the British Aerospace. It is primarily concerned with modeling human psy-
chophysics. [16] It represents many features of “human visual processing in a simplified mathematical form.” [60] It
attempts to model factors like the response of cones to color and the MTF as a function pupil diameter. It assumes
that the edges of the target are more important than the energy within that area for the eye to be able to successfully
differentiate the model; it therefore relies on contrast and perimeter of the target. Hardware factors are included as
well, like the mean luminance of the scene. [17] It is useful for predicting target acquisition when electro-optical aids
are present. [60] The ORACLE model has not been published in its entirety. [95]
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4.4 Georgia Tech Vision

The Georgia Tech Vision (GTV) model is also based on psychophysical characteristics of search modeling. It models
a number of features, including motion processing of rods and a map of weighted values of conspicuous target. It uses
this information to model search patterns that an observer will likely take. It determines the probability of fixating
upon a blob during a glimpse and the probability of determining whether that blob is indeed of significance. [95] [20]
The GTV also has an automated target detection feature. It uses a neural network to train the algorithm to recognize
specific targets. The GTV has five stages or models in which processing takes place: [21] [95]

1. Front end module

This module is concerned with retinal factors, and response of photoreceptors, and physical features such
as pupil dilation.

2. Preattentive module

Feature extraction and predictions of conspicuities in peripheral vision are simulated. It produces a large
number of filtered images with varying characteristics to predict performance in clutter.

3. Attentive module

Simulates feature extraction for the foveal region and also produces a large number of filtered images with
varying characteristics.

4. Selective attention and training module

The scene is segmented into blobs that are target candidates.

5. Performance module

This takes the information gathered in previous modules to compute the probability of detecting a target.

Georgia Tech claims that the military approach of physics-based models are not a comprehensive system. It
likewise claims that the modeling of the eye are overly simplified, and do not adequately represent the visual search
process. [19]

4.5 Rand/Bailey Classical Model of Search

The Rand/Bailey Model is described by Vaughan as a model that is target centered rather than situation centered, relies
on empirical data rather than on data gathered through human visual physiology, and attempts to predict performance
for a group of observers. [95] This model looks at a scene in three independent ways: time-dependent search, time-
independent detection, and time-independent discrimination. The probabilities from each of these are multiplied
together to form the total probability of detection. [4] The Rand/Bailey model became a foundation for the FLIR92
model in 1992.

The probability of detecting an object is the product of the probability of glimpsing the target, detecting it, and
discriminating it, as seen in Equation 14.

P = P1 ·P2 ·P3 (14)

• P1 = probability of glimpsing target

• P2 = probability of detecting target during glimpse

• P3 = probability of discerning target
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This model takes clutter into account by defining it as the number of target-like features within an area equal to
100 times the area of the target. It is also time dependent.

This model is not useful for scenes with isolated targets or targets with high contrast, because these targets can be
found more easily with different search methods. Also, the size of the target is the only guide for the search process,
and lastly, the model is unable to return a decision that scene does not contain a target.

4.6 Recognition by Components (RBC) Theory

The idea of distinguishing characteristics has been shown to have an impact on target recognition. Biederman states
in the RBC theory that objects are able to be decomposed into subsections called “geons” that are crucial to feature
recognition. He proposed that objects are able to be decomposed into basic geometric representations based on five
properties of edges: curvature, collinearity, symmetry, parallelism, and cotermination. It also assumes that it is unlikely
to view something at an angle that skews the information beyond recognition; for example, although it is possible to
view a three dimensional curve such that it looks like a straight line in two dimensions, the RBC theory does not
account for this. [8]

This model has undergone testing which indicates that it could account for intra-target set confusion. [66] The
theory that certain parts of a target need to be resolved before an observer can reliably identify the target makes
intuitive sense, and has been tested by others. For further tests on distinguishing characteristics, see subsection 3.5.

4.7 Alternative Criteria for Target Dimensions

There are many different ideas as to which areas of a target contain the best amounts of resolvable information to use
in the image detection models.

Van Meeteren published a theory in 1976 that the resolution of a thermal imager was better categorized by equiv-
alent resolvable disks than grating patterns as proposed by Sendall and Lloyd. He argued that targets were two
dimensional, and that disks better represented resolved targets than sinusoidal patterns. He worked to find the effects
of noise on his findings, but his original paper did not account for resolution-limited systems. [59]

Blumenthal and Campana also attempted to establish a metric using aperiodic targets like circles or squares that
were barely detectable. They also note that Johnson’s model did not adequately account for the SNR of a scene. They
claimed that their model could be used for a variety of noise types and SNR. [10]

In 1972, Moser suggested that the target’s resolvable perimeter - or resolvable angles along the perimeter - gave
better informational content as compared to information throughout the target. [62]

4.8 Sarnoff Visual Discrimination Model

In 1995, Peli states that the Sarnoff Visual Discrimination Model is ideal for the evaluation of imaging systems and
their components. [60] The benefits of this model include speed, simplicity of operation, accuracy, and physiological
plausibility. This model is an updated version of the Carlson and Cohen JND Model (1980).

The input to this model includes a pair of images and several parameters: physical distance between sample image
points, distance from modeled observer to the image plane, fixation depth, and eccentricity of the images in the visual
field of the observer. After being heavily processed and filtered, the output of the model returns a map showing the
probability (as a function of position) of detecting the differences in the images. This method is built on the concept
of just noticeable differences (JND), where JNDs are a measure of visibility of a displayed signal.

The following list describes the flow of the Sarnoff Visual Discrimination Model:
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• Image two objects/stimuli

• Sample

• Obtain bandpass contrast responses

• Obtain oriented responses

• Pass through transducer

• Result: JND map and probability

The Sarnoff Visual Discrimination Model appears to be useful for measuring how well an imaging system repli-
cates an image. Good replication of a scene means that the probability of detecting a target is higher than if the scene
is imaged poorly.

Peli states that the Sarnoff Visual Discrimination Model can be used to determine the specifications of a display
such that it meets given needs. It gives predictions for the expected visual performance based on certain parameters of
the imaging system.
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5 Conclusion

This document was written with the intent that by providing a clear and complete history of the Johnson Criteria,
the source of much confusion would be clarified. The original criteria, along with the motivation and verification
behind each modification was documented chronologically. The same method was used to discuss the discovery of
each shortcoming in the original Johnson Criteria, including weather, object, and human-related factors. The latest
models used in the field of target detection were also discussed. Research is still being performed on these topics, so
the history of the Johnson Criteria is continuously growing. However, the information presented in this document is
applicable to all involved in work related to target detection.
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