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Abstract

Integrated Application Workflows (IAWs) run multiple simulation workflow components con-
currently on an HPC resource connecting these components using compute area resources
and compensating for any performance or data processing rate mismatches. These IAWs
require high frequency and high volume data transfers between compute nodes and staging
area nodes during the lifetime of a large parallel computation. The available network band-
width between the two areas may not be enough to efficiently support the data movement.
As the processing power available to compute resources increases, the requirements for this
data transfer will become more difficult to satisfy and perhaps will not be satisfiable at all
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since network capabilities are not expanding at a comparable rate. Furthermore, energy
consumption in HPC environments is expected to grow by an order of magnitude as exas-
cale systems become a reality. The energy cost of moving large amounts of data frequently
will contribute to this issue. It is necessary to reduce the volume of data without reducing
the quality of data when it is being processed and analyzed. Delta resolves the issue by
addressing the lifetime data transfer operations. Delta removes subsequent identical copies
of already transmitted data during transfers and restores those copies once the data has
reached the destination. Delta is able to identify duplicated information and determine the
most space efficient way to represent it. Initial tests show about 50% reduction in data
movement while maintaining the same data quality and transmission frequency.
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Chapter 1

Introduction

Scientific simulation workflows are becoming increasingly complex as the data size and the
computation speed accelerate. With disk-based storage array performance falling behind
these trends and faster alternatives, such as SSDs, still too expensive as a general solution,
a move to online Integrated Application Workflows (IAWSs) is starting. An illustration of
such an TAW is in Figure 1.1. The general idea for the staging area, or burst buffer as
they are sometimes called, is to offer a place to temporarily store intermediate data between
IAW components. Data analytics or visualization components can retrieve this data both
when it becomes available and when they have capacity. Current trends in extreme scale
OS design suggest that this is better thought of as a logical rather than physical model as
node partitioning is expected to offer a loosely coupled, nearly in-place data movement en-
vironment. This offers a degree of asynchrony while keeping data movement at interconnect
speeds, or faster, rather than being limited by the storage array bandwidth. While shifting
data movement online reduces the IO bottleneck, it is not a panacea.

The amount of relevant data produced during the run of such an application is large and
is getting larger as the simulation ensembles use finer resolutions and more complex physics.
Transferring such a high data volume repeatedly during runtime can have a severely negative
impact on the network, where the improvement in bandwidth cannot match the growing
data size, or on data storage due to a performance mismatch between data generators and
consumers. The resulting backlog could affect performance on both the compute area and
the staging area. Compounding the issue is the amount of energy consumed over the course
of such an application including the cost of transferring data. Currently, computation is
the single largest contributor to energy usage [5] but if the data volume grows at the same
rate, the cost of moving data can easily become the limiting factor. Not only is writing to
a storage array problematic, but also is moving data to other places within the compute
resource. This energy cap prompts new work into managing various energy use sources
throughout the scientific simulation workflow process. This paper examines one such project
focusing on managing data movement.

For at least two different scientific simulation application classes, there are opportunities
to reduce data movement with little to no negative IAW impact. For molecular dynamics
and finite element codes, the data proportion that changes with each calculation iteration is
significantly smaller than the entire working set size. Our measurements showed that only
40% to 75% of the data changed from iteration to iteration. Usually, the same type of data
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Figure 1.1. Overall IAW Architecture

is produced every timestep (e.g., temperature, velocity, position), but the value may or may
not change from timestep to timestep offering opportunities to avoid data movement and
the associated energy costs.

Using this observation, an application developer could adjust the application such that
if a particular element does not change between timesteps, it is not sent to any downstream
consumer. When the analysis software receives a “no change” or even no value at all instead
of the element, it can assume that it has not changed from the previous value and use the old
value instead. An even better and easier approach for application developers would be for
an underlying system that did this for any application running on top of it. We developed
such a system to effectively eliminate any data unchanged between output steps and yielded
approximately a 50% reduction in aggregate data movement over the simulation lifetime.

The rest of the paper is organized as follows. First is a short discussion of related work
in Section 2. Next is a design overview in Section 3. An evaluation follows in Section 4.
Section 5 has a short discussion of the evaluation implications and future work.



Chapter 2

Related Work

General workflow systems such as Pegasus [10], Kepler [8], and DAGMan [9] manage the
inter-component scheduling for an effective workflow. In general, they assume that each
component is a separate application and typically disk is used to store intermediate data.
These facts makes these systems less useful for constructing an online workflow system.
Hand-coded systems using a language like Python generally suffer the same limitations.

Data storage solutions like Zookeeper [4] are infeasible for this environment as well.
The inherent assumption of a single server containing a full copy of all of the data cannot
work for this environment. If a multi-TB output is pushed into a staging area, there must
be sufficient storage across a sufficient number of nodes to handle the data load. The
inherent data replication is also undesirable. Further, each record is treated as a separate
or full replacement entity. While Delta’s concepts could be incorporated into a system
like Zookeeper, it would require more semantic changes because an update can come from
any source eliminating the ability to effectively determine on the client side what data has
changed since the last update.

More directly related work includes the ConCORD [14] project. This work observed that
data in memory could be better thought of based on the accesses made against it affording
opportunities to reduce data duplication. While this works well in the target virtual machine
environment, it does not address data moving off a node.

AI-Ckpt [11] evaluated memory changes for scientific simulations to only move data pages
that change between output steps. While this is an admirable first step in this direction,
our observations showed that far greater data movement reductions could be achieved by
making decisions on an element-by-element basis because portions of every simulation vari-
able generally changed every iteration while certain portions did not. With these static and
dynamic elements intermixed, data pages are generally all moved even though only a portion
of the data has changed.

On a post-processing basis, a climate science team evaluated lossy data compression
techniques to determine how much a data set could be compressed while still maintaining
sufficient validity to keep application scientists confident [1]. This project yielded good
results, but is intended for long-term archival rather than the immediacy required by IAWs.
The additional steps for data compression may be appropriate as an alternative to this
approach, but would require considerably more computation, but at a lesser local storage



cost. Further investigation would be required to determine which solution is preferable for
which situations and if this globally optimized compression could be done on a node-by-node
basis.
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Chapter 3

Design and Implementation

One of the simplest way to examine the potential impact for this approach is to adapt an
existing 1O library to automatically handle both the data compression and expansion. The
easiest library in which to add these sorts of data processing techniques is ADIOS [6]. The
ability to install a new transport method that receives raw data with full name and type
information makes it easy to replace any 10O operation with data processing and then 10. The
HDF5 Virtual Object Layer (VOL) offers similar functionality, but with potentially more
rigid programming semantics.

Delta is a prototype ADIOS transport method that caches the last whole data set trans-
ferred for each output group and creates and expands compressed data sets only transferring
the reduced data between the source and destination. As far as the end user is concerned,
the TAW writes and reads data normally, but using the Delta transport method instead. The
architecture is illustrated in Figure 3.1.

Compute Area Staging Area

/ O - O
/| Simulation Application |\ /| Analysis Software |\
Y f

ADIOS ADIOS

Delta / Delta /
1 1

r

< Network >

Figure 3.1. A diagram of the IAW architecture, including
ADIOS and Delta
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In order to reduce data transferred over the network, Delta must determine how much
data is changed between every computation output. Each node in the system keeps track
of the local full output from the previous full output from which it generates the difference.
When the current round completes, the new output is compared to the cached full output.
During the first round, there is no comparison because there is no old output with which
to compare. Every subsequent round compares each variable element against its matching
predecessor including both scalars and vectors. Delta calculates the difference between the
rounds. Anything that has not changed is not included in the new payload and is instead
replaced by metadata to describe what is left out. Once the payload arrives at its destination,
the full, current data set can be recreated. The unchanged elements can be found in a
previous payload. If the number of changed elements is too large, then the cost of the
metadata summed with the changed data will be greater than the cost of just sending the
data plainly. Therefore, if the amount of change is above a certain threshold, all the data is
sent as is.

Packing the data for transport requires several steps. At top of each payload, certain
pieces of information are required. Some of these data items are artifacts of how ADIOS
encodes data. For example, because ADIOS uses a log-based format by default that anno-
tates every log entry with information about the source process rank, this additional data is
required. Using HDF5 VOL instead would eliminate some of these values, but would require
more communication to coordinate among the participating processes to determine what has
changed with each output step.

e Group ID: The identifier for the ADIOS group designated in the adios_open() call. In
ADIOS, a group is a set of variables that are transported with the same transport
method. A group can consist of both scalar and vector variables, each with different
data types and sizes. A single application can consist of many groups, each possibly
using a different transport method.

e Epoch: The epoch is the identifier of the current computation round. This value is
written once per payload, regardless of the number of variables.

e Current Rank: The rank of the process preparing to write the current payload. This
is written once per payload.

e Group Name Length: The reader will need to know the length of the name of the
current group to read it properly.

e Group Name: The name of the group involved in the current payload is required. This
value is only written once throughout the entire computation as well as its length.
After this, the group id will be sufficient to identify the group.

e Variable Count: The number of variables belonging to the group that was designated
during the adios_open() call. This is written only once during the length of the opera-
tion.

The previously mentioned parameters are written once during each adios_open-adios_close
cycle except for the variable count of a previously written group. Variable counts will not
change during the course of a full operation. After this section, the individual variables for
the designated group are added. Each variable has two required components:
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Status: The status has a value of NONE, SOME or NEW. If the status is SOME, there
was a change in the variable between the rounds. If the status is NONE, there was
no change and no data should be sent besides the required metadata. If the status is
NEW, that means that the variable in question is being written for the first time and
all the necessary metadata will be sent along with it.

Id: The variable id number used to identify the variable once it is delivered by the
receiver.

If the status is NONE, then only these two fields are sent as metadata for a particular
variable. The actual data is exactly the same as the previous round. If the status
is SOME, then more data is required, but since this variable was previously written,
some pieces of information can be left out. Otherwise, the variable is new and will be
padded accordingly.

Name Length: The length of the variable name, needed to read in the name when the
variable is being unpacked. This is only included for new variables being written for
the first time.

Name: The name of the variable, used to identify the variable in the user application.
This is also only required for first time variables. During subsequent rounds, the Id
will be a sufficient identifier for the variable.

Dim Count: The number of dimensions for the variable. If the variable is a scalar, this
value is 0.

Global: A Boolean value that signals whether or not the variable is global. A global
array has its dimensions and values split among the processes involved in the compu-
tation. The way the array is divided is user defined and it is up to the reader method
to correctly identify an individual piece should it be requested.

Dim Sizes: If the variable is a vector, then the size of each dimension must be included
in the metadata. If the vector is global, then for each dimension, three pieces of infor-
mation are necessary. First, the global value represents the total size of the dimension
across every involved process. Second, the local value represents the starting point in
the current dimension for the current process. Finally, the offset represents the amount
of entries in the dimension that belong to the current process, starting from the local
value.

Type: This is an integer that represents the data type. The type only needs to be
written the first time the variable is encountered.

Type Size: This is the size of the specified data type. This information is also only
required the first time.

Next, it must be determined whether all of the data should be sent or if a portion should
be left out with some metadata that describes it. If there are no copies of the variable, then
all of the information is sent. If the variable is a scalar, this is not an issue. If a scalar
changed, it must be sent. If it did not change, it is not sent. Vectors present a challenge.
Delta represents a vector variable using a bit vector. The bit vector is set to the size of the
full output from the round. For example, if the variable is question was an array with 100
elements, the bit vector would consist of 100 bits. Each element in the output is compared to
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an element in the same position in the previous round. If it is the same as before, the value
of the matching bit is set to 0 and the element is excluded from the payload. Otherwise, the
bit is set to 1 and the data remains in the payload. If the new output vector is larger than
the last, then the overflow is all represented by ‘1’s. All of the extra new data is included in
the payload. The output from the last round is then replaced by the current output. Next,
the size of the current rounds output is compared to the size of the reduced payload plus the
bit vector. If the reduction summed with the bit vector is larger than the original output
size, then the bit vector is discarded and all of the data is sent. Otherwise, the reduction
and the bit vector are prepared for transport. Here are the remaining metadata fields:

e Total Size: The total size of the payload data (number of elements multiplied by the
type size).

e Data: The actual payload whether it is the full output or the reduced output.

e Bit Count: The number of bits in the bit vector. If this is 0, then there is no bit vector,
meaning that it was not worth it to reduce the output or all of the data was changed
from the last round (or, as a special case, it is the first round). The bit count also tells
the size of the original output, for unpacking purposes.

e Bit Vector: The actual bit vector. If the bit count was 0, then the bit vector is not
included in the metadata.

This is the format for every variable in every output group. When complete, the buffer
is written to whatever the destination is. Figure 3.2(a) illustrates a full data set with all of
the associated metadata included. Figure 3.2(b) shows the same data set in the following
epoch. Some of its data values have changed, so a bit vector has been added to describe the
change. Much of the metadata is no longer necessary at that point since it is unchanging
and has already been written previously.

In order to unpack the payload, there are a set of data structures to manage the parts of
the payload. At the top is the Delta_Data_Struct, which keeps track of two different types
of information: The information that can change from epoch to epoch and the information
that stays the same.

For the changing information, The Delta_Data_Struct (or DDS) keeps a linked list of
Group_Struct structures. Each Group_Struct represents a different group and contains a
linked list of Epoch structures. An Epoch structure represents a single timestep in the
associated group’s lifespan. It also keeps track of the process (rank) that submitted the
group data during that timestep. Finally, each Epoch has a vector of Var_Struct structures
that hold the state of each variable during that particular epoch such as its value and size
(if it is a vector, for example).

For the unchanging information, the DDS has a linked list of Group_Record structures
that hold the group name and the number of variables for that group since those don’t
change. Also, each contains a vector of Variable_Record structures that hold information
such as the variable name, data type, and whether or not it is global.
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The data could be stored as the difference or reconstituted into the full data set. For
this first test case, we simply regenerated the whole data set each time removing complexity
from read operations.
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Group id =1

Epoch = 1

Current rank = 1

Group name length = 4

Group name = “vars”

Variable count = 1

Variable

Group id =1

Epoch =2

Current rank = 1

Variable

Status = NEW

ld=1

Name length = 6

Name = “vector”

Dim count = 1

Global = false

Dim sizes = 5

Type = 1 (integer)

Type size =4

Total size = 20
\ Data = 1,3,5,7,9
Bit count =0

(a) Full Payload

Status = SOME

ld=1

Dim count = 1

Dim sizes = 5

Total size = 8

Data = 2,6

Bit count =5

~  Bit vector = 1,0,1,0,0

(b) Difference Payload

Figure 3.2. Payload Descriptions



Chapter 4

Evaluation

Potential Output vs Actual Output in LAMMPS
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Figure 4.1. A graph showing the pattern of reduced writes
in LAMMPS for the “Crack” example

The evaluation is performed on the Chama capacity cluster at Sandia National Labo-
ratories. It consists of 1232 nodes each with 2 2.6 GHz Intel Sandy-Bridge CPUs with 8
cores/socket. Each node has 64 GB of DDR3 RAM and connects with a 4X QDR InfiniBand
network configured in a fat tree. The file system is the site shared Lustre offering 1 PB of

storage. There are also 8 login nodes each with the same hardware as the compute nodes.
All nodes run RHEL 6.

To evaluate this approach’s potential, two separate scientific applications were modified
to measure the change of output between timesteps. The first is the molecular dynamics code
LAMMPS [13]. It can simulate a number of interactions and events at a fine level by applying
physics to atom positions based on the simulation setup. The user can define the interaction
in an application specific manner and let it run over a number of timesteps. Here, the
modified code was run with and example called “crack”, which simulates a crack propagating
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through some solid. Roughly 40% of the data changed between output timesteps, getting
as high as 60% at times. Figure 4.1 displays the changes aggregated over time. Another
example, which simulated a melting solid had 60% of its variables changing between output
timesteps, getting as high as 75%. Similar results were found when running an example built
using the DEALL.II [2] finite element library. It is easy to see that this strategy will work
better with some simulations that others. Simulations that have some form of propagation
(such as a crack or melting) would have many of its parts remain static for some period
of time. Other simulations even have parts that don’t change at all (such as the ground
over which a liquid is flowing). These kinds of simulations would benefit the most from
applying Delta or an application specific version. Since ADIOS can be used to support such
applications, Delta aims to be an application independent version.
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Chapter 5

Conclusion

As supercomputers continue gaining ground on the road to exascale, many of the currently
acceptable practices when it comes to managing data will become obsolete because of the
resulting bottlenecks and the associated energy consumption. One of these practices involves
taking up bandwidth to transfer information that was already previously transmitted and
already exists at the destination. Delta makes an attempt to prevent that by keeping track of
changes between timesteps in a computation in order to detect stagnant data. By blocking
the transfer of such data, the extra bandwidth that would have been consumed is now
available to the rest of the application or not used at all. In that process, no data is lost to
the staging area for [AWs. The reader in Delta can rebuild the reduced data using previously
obtained information, giving a complete picture of the output produced during computation.

There are many avenues to continue this work. First, ADIOS has an inherent assumption
that the variables represented in an output can change. The current design does not take
this into account. There are also considerations related to static metadata. For example,
global or local array dimensions for structure meshes may not change over the simulation
lifetime. Retransmitting these values each time could be eliminated further reducing data
sizes.

Different data encoding techniques, such as using a sparse map when few elements change
could also be incorporated along with a flag identifying which encoding technique is em-
ployed.

Maintaining a fixed “full” data copy is sufficient for a prototype, but not an optimal
solution. Ideally, this “full” data copy would update with each output step reducing the
frequency of full data set transfers.

Other higher computational cost techniques such as lossless or lossy data compression
could be used instead. The performance, space, and energy tradeoffs must be investigated
to see when these more complex approaches would be superior to this simple approach.
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