

Visualization for Hyper-Heuristics:
Front-End Graphical User Interface

Lauren Kroenung

Faculty Advisor:
Dr. Daniel Tauritz

Department of Computer Science

March 28, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract

DE-AC04-94AL85000.

SAND2015-2324R

	
 2	

Abstract
Modern society is faced with ever more complex problems, many of which can be
formulated as generate-and-test optimization problems. General-purpose optimization
algorithms are not well suited for real-world scenarios where many instances of the same
problem class need to be repeatedly and efficiently solved because they are not targeted
to a particular scenario. Hyper-heuristics automate the design of algorithms to create a
custom algorithm for a particular scenario. While such automated design has great
advantages, it can often be difficult to understand exactly how a design was derived and
why it should be trusted. This project aims to address these issues of usability by
creating an easy-to-use graphical user interface (GUI) for hyper-heuristics to support
practitioners, as well as scientific visualization of the produced automated designs. My
contributions to this project are exhibited in the user-facing portion of the developed
system and the detailed scientific visualizations created from back-end data.

1 Introduction
Many practical problems cannot be solved using exhaustive search methods. With
exhaustive methods, it would simply cost too much time to find optimal solutions. For
such problems heuristics can be beneficial. Heuristics are incomplete search methods
that do not ensure finding the most optimal solution [1]. However, they can get close to
optimal in much shorter times. Hyper-heuristics automate the design of algorithms by
combining multiple heuristics in order to create a custom algorithm or solution for a
particular scenario.
 Though hyper-heuristics can be efficient, it is hard to figure out why a resulting
solution is more favorable over others. Since it is also difficult to discern how the system
arrived at a specific solution, practitioners can have a hard time understanding why
they should use that solution. Without any tools to analyze how the hyper-heuristics
came to a particular solution or what makes that solution better than others, a
practitioner could potentially abandon the results altogether in favor of a lesser solution
of known origin.
 The goal of this research is to provide those missing tools and allow users an
interactive, in-depth analysis of the evolved algorithms and their experimental results.
This project involved the creation of a user-friendly GUI that has the ability to
integrate with an arbitrary hyper-heuristic driven framework and then visualize the
data produced. The developed user interface can provide interactive visualizers with
which to analyze post-run results and can also be used to modify parameters of the
integrated framework.

	
 3	

 Hyper-heuristics can be applied to a number of different search methods, but for
this research we were focused on hyper-heuristics employed with genetic programming
(GP), which is a type of evolutionary algorithm (EA). In the field of EA visualization,
there has been research in both visualizing the genetic history of individual solutions in
order to determine how a solution came to be [2] as well as visualizing population
information and genetic lineage from GP runs [3]. However, none so far has dealt with
both hyper-heuristics and EAs in the same interface. While some interactivity exists in
prior experimental applications, this research project aims to have more.
 In this project, two important aspects of GP with hyper-heuristics were focused
on for creating visualizations: the individuals being evolved and phylogenetic trees that
are generated post-run from the framework. The hyper-heuristic framework that was
worked with during the semester, HYDRA, specifically dealt with evolving Black Box
Search Algorithms (BBSAs) [4] [5] [6].

2 Design Decisions
2.1 Deciding on a Language

It was decided early on that the application should work on a user’s machine regardless
of their operating system; therefore it needed to be cross-platform. The language used to
write the user interface needed to be chosen before any development could begin. Three
solid options with their corresponding advantages and disadvantages were discussed.
Figure 1 shows an overview of each language that was considered.
 If implemented as a web application, the only prerequisite for running the
interface system was having an Internet browser installed. This would make the
application easily independent of a user’s operating system and it could be designed
responsively to work on any screen size, allowing for mobile support in the future. While
using Python and Tkinter would allow for cross-platform compatibility, the user
interface would not have been able to run on mobile devices such as phones or tablets.
Once this was realized, the Python and Tkinter option was discarded.
 Both HTML5 and Java could be employed within a web browser, however, there
were more disadvantages associated with using a Java applet. Most computers do not
come preinstalled with Java, which is what a Java applet needs to run. This means a
user would have to download Java before being able to use the interface, if they did not
have it installed already. Even then, all browsers do not support Java applets. With
these limitations, it was clear that if browser compatibility was the goal then HTML5
was the final answer. The only downside to this option is that older browsers may not
support the HTML5 canvas element and there are a small percentage of users that do

	
 4	

Figure 1: Language Options

Language Pros Cons

HTML5 (Canvas
+ JavaScript)

• Not dependent on user’s operating
system

• A very small percentage of internet
users have JavaScript disabled

• Variety of interactive visualization
libraries available

• Could use Python as app’s backend
with Django

• Older browsers may not
support Canvas

• HTML5 Canvas is stateless,
must track everything
manually

• Canvas is redrawn every time
an element moves, which can
slow the browser

Python (Tkinter) • Will work natively on Windows,
Mac, and Linux

• Able to quickly build full
application

• The hyper-heuristic framework
being integrated with was already
written in Python

• Very generic look
• Would take effort to make

anything user-friendly
• Harder to involve interactive

visualizations
• Not able to do web

application

Java (Applet) • Could still implement as a web
application

• Therefore not dependent on user’s
operating system

• Java is useful when it comes to
drawing graphics

• Not supported by all browsers
• Java does not come installed

by default on many machines
• Can be slow to initialize

Figure 1: Table of the languages considered to build the interface in.

not have JavaScript enabled on their browsers. Overall however, HTML5 would work
for a larger proportion of potential users than a Java applet would.

2.2 Hyper-heuristic Framework Flexibility

It was known from the beginning that the resulting user interface should work with an
arbitrary hyper-heuristic framework running beside it. The interface application needed
to be designed with that aspect in mind so it could be compatible with a variety of
different hyper-heuristic driven frameworks, allowing for future growth. In order to
accommodate this characteristic, the various pages in the GUI are dynamically
generated from the settings file provided by the current framework. Choosing to build
pages dynamically means that when the interface needs to integrate with a different
hyper-heuristic framework, the only action necessary is to feed it a different settings file
from that framework.

	
 5	

3 Implementation
There were two distinct parts in implementing this user interface, which was given the
name VASUKI (Visualization and Scientific User Kontrol Interface). It was necessary to
build both a front-end as well as a back-end for the web application to function. The
back-end was constructed using Django (a Python web framework) and it was the part
of the application that integrated with the hyper-heuristic framework. All the
functionality employed within Django involves parsing and manipulating data retrieved
from the framework, which is then sent to the front-end. The front-end was written in
HTML5, CSS, and JavaScript along with the ArborJS library. This portion of the
application involved the look and feel of the user interface, the format of the
dynamically generated pages, and the interactive visualizer that displayed post-run data
from the framework. As seen in Figure 2, there was a clear split in the work that had to
be done for this project, so I contributed to the front-end coding, while another
undergraduate researcher focused on the back-end.

Figure 2: Flow of the web interface

3.1 User Interface Design

The final layout design of the interface was structured responsively to be able to fit
within the browser’s viewport without any unseemly breaking of page elements. The

The separation
between the

front-end and
back-end.

	
 6	

interface can be viewed from a range of devices, including phones, tablets, laptops, and
desktop computers. Full system functionality while on mobile devices has not been
implemented from the back-end; however, the front-end is coded to handle browser
window resizing as elegantly as possible.

3.2 Dynamically Generated Pages from Settings File

The settings file provided by the hyper-heuristic framework is parsed in a way where
pages that allow users to edit run settings can be dynamically generated. When the user
modifies the settings values on the interface, they are saved into the actual settings file
used by the framework while it runs. By having this aspect built into the GUI, users
can edit the framework’s settings, tell the framework to start a run, and then analyze
that run’s results all in the same interface.
 As it can be difficult for practitioners to understand variable names that stem
from the framework’s given settings file, tooltips have been incorporated into these
pages. These tooltips appear
whenever the user’s mouse hovers on
top of an input field’s label to
further explain what this particular
settings field modifies within the
framework.

3.3 Phylogenetic Tree Visualizer

When looking at the phylogenetic visualizer, each node on the tree represents one
individual in the GP process. The directed edges represent gene inheritance from one
individual to another. An example of this can be seen in Figure 4. For the HDYRA
framework, if a user clicks on one of the nodes in the phylogenetic tree visualizer, they
can view the corresponding individual BBSA tree for further analysis of that solution’s
genes [4]. Viewing the individuals like this can assist practitioners in understanding
what parts of a solution make it better than others.
 Users can comprehend an individual’s genealogy by viewing the phylogenetic tree
as a whole. Within a BBSA tree, the ability to view the originating individual of any
given gene found is also provided. Being able to see an individual gene’s ancestry can
help users understand how the framework arrived at a particular solution.
 One method available in determining the validity of a solution produced by
hyper-heuristics is to trace its origin. By investigating the origin of certain genes in an
individual, a practitioner is able to determine why a particular set of genes was passed
on. If a set of genes survives several generations, this implies that this particular set is
likely to be advantageous to the solution.

Figure 3: a tooltip on a settings page

	
 7	

3.4 Individual Visualizer

This visualizer displays individuals respective to the integrated hyper-heuristic
framework. With the HYDRA framework, the individuals within its GP are tree-
represented BBSAs [4]. An example of this can be seen in Figure 5. The individual
visualizer has two functionalities within the web interface: (1) it can be used to create
de novo individuals for use in the initial population of the framework’s GP and (2) the
same visualization renderer is also utilized when analyzing specific individuals from the
resulting hyper-heuristic framework run data, where the run data is displayed as a
phylogenetic tree.

4 Conclusion
Runs performed in hyper-heuristic frameworks produce complex data that can be
difficult to interpret by practitioners. The visualizations produced by this interface give
users the ability to perform interactive, in-depth analyses of the evolved algorithms and
their experimental results. Such analyses can assist practitioners and researchers in
uncovering the origin of particular solutions and what makes those solutions better than
others. The strengths of VASUKI lie in the interactive characteristics of its visualizers.
The VASUKI interface will be beneficial in aiding the understanding of a variety of
hyper-heuristic frameworks, as this experimental system is able to function independent
of where the data originates.

Figure 4: Phylogenetic tree on the left, one of the individuals on the right
	

	
 8	

Figure 5: a BBSA tree in the individual visualizer

5 Acknowledgments
I would like to acknowledge and thank Dr. Daniel Tauritz, Matt Martin, and Luke
Simon for all their guidance and support during this project.

References
[1] Ross, P. (2005) 'Hyper-Heuristics', in Ross, P., Burke, E.K. and Kendall, G. (ed.)
 Search Methodologies. US: Springer, pp. 529-556.

[2] E. Hart and P. Ross, "GAVEL - A new tool for genetic algorithm visualization",
 IEEE Transactions on Evolutionary Computation, vol.15, no.4, pp. 335-348, Aug
 2001.

[3] Bogdan Burlacu, Michael Affenzeller, Michael Kommenda, Stephan Winkler, and
 Gabriel Kronberger. 2013. Visualization of genetic lineages and inheritance
 information in genetic programming. In Proceedings of the 15th annual
 conference companion on Genetic and evolutionary computation (GECCO '13
 Companion), Christian Blum (Ed.). ACM, New York, NY, USA, 1351-1358.

	
 9	

[4] Matthew A. Martin and Daniel R. Tauritz. 2013. Evolving black-box search
 algorithms employing genetic programming. In Proceedings of the 15th annual
 conference companion on Genetic and evolutionary computation (GECCO '13
 Companion), Christian Blum (Ed.). ACM, New York, NY, USA, 1497-1504.

[5] Matthew A. Martin and Daniel R. Tauritz. 2014. A problem configuration study
 of the robustness of a black-box search algorithm hyper-heuristic. In Proceedings
 of the 2014 conference companion on Genetic and evolutionary computation
 companion (GECCO Comp '14). ACM, New York, NY, USA, 1389-1396.

[6] Matthew A. Martin and Daniel R. Tauritz. 2014. Multi-sample evolution of
 robust black-box search algorithms. In Proceedings of the 2014 conference
 companion on Genetic and evolutionary computation companion (GECCO Comp
 '14). ACM, New York, NY, USA, 195-196.

	

