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Abstract 

Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed 
clutter can be represented as either real/imaginary (also known as I/Q) values, or as 
Magnitude/Phase values.  Generally, these component values are integers with limited 
number of bits.  For clutter energy well below full-scale, Magnitude/Phase offers lower 
quantization noise than I/Q representation.  Further improvement can be had with 
companding of the Magnitude value. 
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Foreword 
This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
author. 

 

 

 

 

 

 

 

 

Classification 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction & Background 
The digital processing of radar data for a number of airborne Intelligence, Surveillance, 
and Reconnaissance (ISR) radar modes entails images or maps of range versus range-
rate, sometimes termed “Doppler.”  Individual range-Doppler cells are rendered as 
elements in a 2-dimensional array, often displayed as pixels in an image format.  We will 
hereafter term these complex elements generically as “pixels” regardless of any display 
limitations. 

Digital processing allows these pixels to manifest phase information as well as magnitude 
information; corresponding to complex values.  That is, each pixel is a complex number.  
Such pixel values require description with two independent components, such as real and 
imaginary components, also known as In-phase (I) and Quadrature-phase (Q) 
components, or perhaps Magnitude and Phase components. 

This is true of Synthetic Aperture Radar (SAR), Inverse SAR (ISAR), and Moving Target 
Indicator (MTI) range-Doppler maps.  The ability to process phase as well as magnitude 
information is essential for some image exploitation algorithms, including Coherent 
Change Detection (CCD), Interferometric SAR (InSAR, or IFSAR), and multi-channel 
MTI processing. 

Furthermore, data size limitations typically cause standard image formats to describe the 
complex pixel values with pairs of integer values, rather than floating point values.  
Consequently there are inherent dynamic range issues with the precision limitations that 
integer descriptions impose upon pixel values. 

However, for a fixed number of bits per pixel, the precise format of the complex number 
will impact the dynamic range that is achievable.  Quite simply, some formats are ‘better’ 
than others, especially for the kinds of radar target data the radar is likely to encounter. 

In this report, we will confine our analysis to complex pixel encoding for a SAR image of 
uniform distributed land clutter.  In particular, we are interested in the relative 
performance of integer encoding of I/Q pixel values versus Magnitude/Phase pixel 
values.  In particular, we desire the clutter to be adequately represented to facilitate 
exploitation as described above. 

We will further discuss alternate encoding schemes for the pixel magnitude to enhance 
the dynamic range that is achievable. 

We will generally ignore any system noise effects, and assume that the only perturbation 
of pixel values is due to quantization itself.  Our measure will be the ratio of mean clutter 
energy to quantization noise energy in the pixel, which we will term as the Clutter-to-
Noise Ratio (CNR). 
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As background to the following discussion, we offer the following reference material. 

The underlying nature of uniform distributed clutter is described by Oliver and 
Quegan.1 

Typical clutter reflectivity values are described by Long2 and also by Ulaby and 
Dobson.3 

The topic of radar complex image encoding is very related to radar complex 
image compression, which seeks to minimize, or at least reduce, the number of 
bits necessary to store or transmit the image data without unacceptable loss in 
precision and/or accuracy.  A paper by Eichel and Ives discusses SAR complex 
image compression.4 

The impact on various complex pixel encoding schemes on SAR CCD is 
discussed in a report by Thompson.5 
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2 Clutter Model 
We shall model uniform clutter in a pixel as a complex random variable, with In-phase (I) 
and Quadrature-phase (Q) components modelled as independent Gaussian random 
variables.  That is, the pixel value is given as 

( ),z m n X jY= +  = complex pixel value, (1) 

where 

m  = pixel row number, 
n  = pixel column number, 
X = pixel In-phase value (random variable), and 
Y = pixel Quadrature-phase value (random variable). (2) 

The Probability Density Distribution (PDF) functions for the individual independent 
random variables are 

( )

2

1
2

x

Xf x e σ
πσ

 − 
 = , and 

( )

2

1
2

y

Yf y e σ
πσ

 − 
 = , (3) 

where 

σ  = standard deviation of the random variable. (4) 

Since these components are independent of each other, the joint PDF can be written as 

( ) ( ) ( ), ,X Y X Yf x y f x f y= . (5) 

We note that the very same pixel can be written in Magnitude-Phase format as 

( ), jPz m n R e= , (6) 

where 

R = pixel magnitude value (random variable), and 
P = pixel phase value (random variable). (7) 

We note that these are related to the I/Q coordinates as 
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2 2R X Y= + , and 

atan YP
X

 =  
 

. (8) 

These are also random variables, but with PDF functions given by 

( )

21
2

2

r

R
rf r e σ

σ

 −  
 =  for 0r ≥ ,  and 

( ) 1 rect
2 2P

pf p
pp

 =  
 

, (9) 

where 

( ) 1 1 2
rect

0
u

u
else
≤

= 


. (10) 

The magnitude exemplifies a Rayleigh distribution, and the phase exemplifies a Uniform 
distribution.  

Similarly to the I/Q coordinates, since these components are independent of each other, 
their joint PDF can be written as 

( ) ( ) ( ), ,R P R Pf r p f r f p= . (11) 

We note that the clutter model exhibits circular symmetry in the complex plane. 

Note that the average pixel clutter power is 

22C σ= . (12) 
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3 Quantization Error Analysis 
Let us now define a quantized version of the pixel value as having constituent 
components 

ix  = quantized pixel In-phase value, and 

iy  = quantized pixel Quadrature-phase value,  (13) 

where 

i  = index value into some finite set of allowable quantized values.  (14) 

Corresponding magnitude and phase values are 

2 2
i i ir x y= + , and 

atan i
i

i

yp
x

 
=  

 
. (15) 

A corresponding quantized complex pixel value is then 

( ), ijp
i i i iz m n x jy r e= + =  = quantized complex pixel value. (16) 

The quantized values for these components are limited to some set of allowable values.  
Generally, the allowable values are not independent of each other.  We will assume the 
particular member of the set that is chosen will be that member that is nearest the actual 
un-quantized value being considered for conversion (quantization). 

We define the quantization error as the distance between the true value and its quantized 
value, namely 

( ) ( ), ,i iz m n z m nε = −  = quantization error, (17) 

where the quantized value is that which is nearest the true value. 

The Mean-Squared-Error (MSE) due to quantization error is the statistical measure in 
which we are interested.  We calculate this for an individual member of the set of 
allowable quantization values as 

( )2meani iMSE e=  = MSE quantization error for ( ),iz m n , (18) 

where the mean is calculated over the space of pixel complex values before any 
quantization.  We perform this mean calculation as follows. 
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Figure 1.  Generalized quantization process. 

Consider an area in the complex plane around some allowed quantized pixel value with 
index i, where all points in this area are assigned to quantized values ( ),i ix y  or 
equivalent.  We define this area as 

iA  = area in complex plane quantized to value ( ),i ix y . (19) 

This is illustrated in Figure 1.  We define the overall mean squared quantization error 
then as 

( )2
, ,

i

i X Y
i A

MSE f x y dxdyε=∑ ∫ ∫  = mean squared quantization error. (20) 

For the purposes of this report, we will assume that ( ), ,X Yf x y  is relatively constant 
over any particular area iA .  In fact we will assume a conditional Uniform distribution 
over iA  which allows us to approximate the probability of selecting a coordinate within 
area iA  as 

( ) ( ),Prob ,i X Y i i iA f x y A≈ . (21) 

I

Q

( ),iz m n

iA
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This may also be written as 

( ) ( ),Prob ,i R P i i iA f r p A≈ . (22) 

Note that 

( )Prob 1i
i

A =∑ . (23) 

The mean squared quantization error is then 

( )Probi i
i

MSE MSE A≈∑ , (24) 

where the local MSE is the variance in the quantization error 

iMSE  = the local MSE within and over the area iA . (25) 

In any case, the Clutter-to-Noise Ratio (CNR) for quantization noise is given by 

22CCNR
MSE MSE

σ
= = . (26) 

We now consider two special cases. 
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3.1 Uniform I/Q Quantization 

Consider a rectangular area in the complex plane that is centered at ( ),i ix y , and is 
defined by 

x∆  = the span of the area in the I direction, and 
y∆  = the span of the area in the Q direction. (27) 

This is illustrated in Figure 2.  The area can then be calculated as 

iA x y= ∆ ∆ . (28) 

Since we will presume that ( ), ,X Yf x y  is constant over this area, then we have 
essentially a uniform distribution of the quantization error over the area iA .  The variance 
in the quantization error is then identified as 

2 2

12 12i
x yMSE ∆ ∆

= +  = variance in quantization error over the area iA , (29) 

The overall MSE for uniform I/Q quantization is then calculated as 

  
Figure 2.  Uniform I/Q Quantization model. 

I

Q

( ),iz m n

iA

x∆

y∆
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( )
2 2

Prob
12 12IQ i

i

x yMSE A
 ∆ ∆

≈ +  
 

∑ , (30) 

which can be simplified to simply 

2 2

12 12IQ
x yMSE ∆ ∆

≈ + . (31) 

Now consider that the spans of the quantization area can be written as 

2

2 I

fs
bx
s

∆ = , and 

2

2 Q

fs
by
s

∆ = , (32) 

where 

fss  = full-scale signal value, 

Ib  = number of bits to represent I value, and 

Qb  = number of bits to represent Q value. (33) 

The factor of “2” in the equations accounts for allowing the signal to span the range 

( ),fs fsss −  in each of the I and Q dimensions.  We are also assuming that full-scale 

signals are substantially larger than the clutter level, that is 

fsss >> . (34) 

This is quite typical for SAR images.  Combining these allows us to write 

2

2 2
1 1

3 2 2I Q

fs
IQ b bMSE

s  
≈ +  

 
. (35) 

The CNR is then calculated as 

12

2 2 2
1 16

2 2I Qb bIQ fs

CCNR
MSE

s
s

−  
 = = +     

. (36) 

We observe that bits in I versus bits in Q have equivalent impact on MSE.  There is no 
advantage in trading one for the other. 
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3.2 Uniform Magnitude/Phase Quantization 

Now consider a segment of an annular ring in the complex plane that is centered at 
( ),i ir p , and is defined by 

r∆  = the span of the area in the magnitude direction, and 
p∆  = the span of the area in the phase direction. (37) 

This is illustrated in Figure 3.  For small spans in both magnitude and phase, the area can 
then be calculated as 

i iA r r p≈ ∆ ∆ . (38) 

Since we will presume that ( ), ,R Pf r p  is constant over this area, then we have 
essentially a uniform distribution of the quantization error over the area iA .  The variance 
in the quantization error is then identified as 

2 22

12 12
i

i
r prMSE ∆∆

≈ +  = variance in quantization error, (39) 

   
Figure 3.  Uniform Magnitude/Phase Quantization model. 
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Q

( ),iz m n
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The overall MSE for uniform Magnitude/Phase quantization is then calculated as 

( )
2 2

2 Prob
12 12RP i i

i

r pMSE r A
 ∆ ∆

≈ +  
 

∑ . (40) 

This can be expanded to 

( ) ( )
2 2

2Prob Prob
12 12RP i i i

i i

r pMSE A r A∆ ∆
≈ +∑ ∑ , (41) 

which can then be simplified to 

( )
2 2

22
12 12RP
r pMSE σ∆ ∆

≈ + . (42) 

Now consider that the spans of the quantization area can be written as 

2 R

fs
br
s

∆ = , and 

2
2 Pbp p

∆ = , (43) 

where 

fss  = full-scale signal value, 

Rb  = number of bits to represent Magnitude value, and 

Pb  = number of bits to represent Phase value. (44) 

We are also still assuming that full-scale signals are substantially larger than the clutter 
level, that is 

fsss >> . (45) 

Recall that this is quite typical for SAR images.  Combining these allows us to write 

2 2
2

2 2 2
1 2 14

12 2 2R P

fs
RP b b

fs
MSE

s sπ
s

       ≈ +          
. (46) 

The CNR is then calculated as 
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1
2 2

2
2 2 2 2

2 1 2 112 4
2 2R Pb bRP fs fs

CCNR
MSE

ss π
ss

−
           = = +              

. (47) 

We observe that bits in Magnitude have a different impact than bits in Phase.  For low 
clutter levels, the phase bits have severely diminished influence, and this can be 
approximated as 

2
2

2
212 2 Rb

fs
CNR s

s

 
 ≈
 
 

. (48) 

Bonus Observation 

We now ask the question “What should the relationship be of Phase bits to Magnitude 
bits?”  We now presume the answer is calculated as that condition where each contributes 
the same amount to MSE.  Accordingly, we set 

2
2

2 2 2
1 2 14

2 2R Pb b
fs

sπ
s

     =        
, (49) 

and solve 

2
2

2 2
1 2log 4
2P R

fs
b b sπ

s

  
  = +
  

  
. (50) 

It is quite typical for average clutter levels in a SAR image to be 50 dB or more below 
full-scale signal values.  Such levels severely reduce the impact of phase quantization, 
although it must be remembered that enough phase quantization is retained to render the 
span of the phase as “small.”   

For example, for a mean clutter level 50 dB below full-scale, that is 2 2 52 10fsss  −= , 
equivalent impact allows about 6 fewer phase bits than magnitude bits. 
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3.3 Comments on Comparing the Two 

We can examine the relative MSE for the two complex pixel representations by looking 
at their ratio, namely 

2
2

2 2 2

2 2

1 2 14
2 2

1 14
2 2

R P

I Q

b b
fsRP

IQ
b b

MSE
MSE

sπ
s

  
  +
  

  ≈
 

+  
 

. (51) 

For the same number of bits in all components (i.e. I, Q, Magnitude, and Phase), this 
simplifies to 

2 2
2

2 2
2 21 4 1 40

8 8
fs fsRP

IQ

MSE
MSE

ss π
ss

   
   + +
   
   ≈ ≈ . (52) 

For average clutter levels well below the full-scale limit, this ratio approaches 

1
8

RP

IQ

MSE
MSE

→ . (53) 

This suggests that Magnitude/Phase format approaches a 9 dB advantage over I/Q format 
with respect to quantization noise for low clutter levels.  We observe that 6 dB of this is 
due to the finer spacing of magnitude increments being limited to the range 0, fss   , and 

3 dB of this is due to the phase contribution to MSE disappearing at low clutter levels. 

This advantage manifests as an improved CNR, which in turn manifests as an improved 
coherence measure with truth, and ultimately as improved performance of those modes 
that depend on coherence, such as Interferometric SAR (InSAR or IFSAR), and Coherent 
Change Detection (CCD). 
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“Accuracy is the twin brother of honesty; inaccuracy, of dishonesty.” 
-- Nathaniel Hawthorne 
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4 Magnitude Companding 
We observe from the previous sections that CNR is improved with finer quantization in 
the region of the complex plane where signal levels are more likely, which for clutter 
means at smaller magnitudes.  This begs the question “Can we just use finer quantization 
near the origin of the complex plane where the clutter signal is more likely, and leave the 
coarser quantization away from the origin where the clutter signal is less likely?”  The 
answer is quite obviously “Yes.”   

In telephony this is often called “companding,” as a blending of “compressing and 
expanding” the signal for transmission through a channel with limited dynamic range.  
The essence of companding is to increase sensitivity to small signals by sacrificing 
sensitivity to large signals; reducing the ratio of peak to average power.  Schemes to 
accomplish this are discussed in any number of communications texts. 6,7,8  An example 
in audio applications is the Dolby Noise Reduction scheme. 

The companding can be effected by putting the linear signal through a nonlinear gain 
stage prior to the channel (compression), and then at the other end applying the inverse of 
the nonlinear characteristic to the signal (expansion)  to recover the original linear signal.  
If the channel is an Analog-to-Digital Converter (ADC) then the process is described as 
nonlinear encoding of the signal.  If applied to digital data, it might be called Digital 
Companding.  

While we could apply companding to I/Q values, the circular symmetry of our clutter 
suggests that we are best served applying companding to only the magnitude of the 
clutter signal, and not the phase.  We will henceforth only consider companding applied 
to clutter signal magnitude. 

Any of the following functions would serve as a compression function prior to 
quantization 

• Nth root of magnitude, 

• logarithm of magnitude, 

• floating-point representation of magnitude (i.e. magnitude with exponent), and 

• any monotonic increasing function with diminishing slope. 

A number of other specific companding functions also exist. 

Recovering the linear magnitude involves applying the inverse function of these 
compression functions.  This expands the signal to its original magnitude.  When 
expanded, we witness that any additive noise now has power that is signal-magnitude 
dependent, or more so than without companding.  This is true for both quantization noise 
as well as additive system noise. 
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Consequently, our metric for companding performance will remain the CNR.  Table 1 
details some examples of various companding functions as well as bit-resolutions for 
magnitude and phase data.  We make some observations as follows. 

• Companding increases CNR, more so for lower clutter levels. 

• For equal number of magnitude and phase bits and −50 dB clutter with respect to 
full-scale, companding with a cubic magnitude scaling (companding function) is 
worth about 4 bits each (8 bits total) with respect to a linear magnitude scaling. 

• Even with linear magnitude scaling and −50 dB clutter with respect to full-scale, 
trading 3 phase bits for 3 magnitude bits yields about a 13 dB increase in CNR.   

 
Table 1.  CNR estimates for various bit-resolutions and sample companding functions. 

  

Magnitude 
Bits

Phase
Bits

calculation 
vs.

numerical
Magnitude 

scaling

Clutter 
relative to 
Full-scale 

(dB)
CNR
(dB)

16 16 calculation linear -70 37.1214
16 16 numerical linear -70 37.1227
16 16 numerical square root -70 66.6096
16 16 numerical cube root -70 74.5925

16 16 calculation linear -50 57.1214
16 16 numerical linear -50 57.1216
16 16 numerical square root -50 76.4769
16 16 numerical cube root -50 80.9259

12 12 calculation linear -50 33.0390
12 12 numerical linear -50 33.0346
12 12 numerical square root -50 52.3910
12 12 numerical cube root -50 56.8407

8 8 calculation linear -50 8.9566
8 8 numerical linear -50 8.4298
8 8 numerical square root -50 28.3069
8 8 numerical cube root -50 32.7573

19 13 numerical linear -50 71.0051
15 9 numerical linear -50 46.9219
11 5 numerical linear -50 22.8403



- 23 - 

 

How much companding is desired? 

The somewhat broader question is “When and how much companding is desired or 
required?” 

The answer to this requires as prerequisite two items of knowledge. 

1. How much dynamic range do we have? 

2. How much dynamic range do we need? 

Dynamic range is measured here in dB.  We define it here as the difference between full 
scale and the noise level, presumed to be the quantization noise for this discussion.   

Consider magnitude only for now.  We recall that with a linear scaling, each magnitude 
bit yields 6.02 bits of dynamic range.  Quantization noise manifests at approximately 11 
dB below the Least Significant Bit (LSB), adding 11 dB to the dynamic range as limited 
by quantization noise.  Recall that we are ignoring other noise sources in this discussion.   
Consequently, for linear scaling we identify the dynamic range available as 

6.02 11linear RDR b≈ + . (54) 

For example, with 16 bits of magnitude, and neglecting phase, we identify a dynamic 
range of about 107 dB.  If we require more than this, then companding should be 
considered.   

But with companding, quantization noise is clutter signal-level dependent.  Therefore 
dynamic range as defined above is signal dependent when companding is used.  
However, since our reason to improve dynamic range is generally to allow observation of 
weaker signals, we will assume for analysis that the signal level of interest is when the 
RMS clutter level is at the LSB.  For 16 bits of magnitude, this is at a clutter level about 
96 dB below full-scale.  At this clutter signal-level, we retain a CNR of about 11 dB, due 
to quantization alone and of course absent any other noise sources.  With clutter at this 
signal-level, based on numerical simulations, a square-root companding function will 
boost dynamic range to about 53 dB, and a cube-root companding function will yield 
about 66 dB of dynamic range.  This illustrates the improvement that companding offers. 

We now make some observations about some previously ignored aspects of this analysis. 

• While companding magnitude gives us smaller magnitude steps for smaller 
signals, we do not get smaller phase steps.  However, the quantization error due to 
phase also depends on magnitude as Eq. (39) suggests.  Consequently, for small 
signals, magnitude still dominates quantization, even with companding. 

• With other noise sources perturbing the pixel value, such as system noise, there is 
essentially no advantage in reducing MSE due to quantization very far below the 
system noise.  As a practical matter, real CNR will be dominated by the larger of 
quantization noise or system noise.  
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“Fast is fine, but accuracy is everything.” 
-- Wyatt Earp 
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5 Conclusions 
We summarize herein the following. 

• With respect to complex radar image pixels, a specific number of bits with 
Magnitude/Phase representation generally offers superior precision and accuracy 
over an I/Q representation.  For low-clutter signals, the advantage is about 9 dB as 
measured with respect to quantization noise. 

• An equal number of Magnitude and Phase bits will have unequal impact on 
quantization noise.  Several Phase bits can generally be traded for Magnitude bits 
to achieved improved (lower) quantization noise. 

• Companding the magnitude of a pixel can significantly reduce the statistical 
quantization noise for clutter. 
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“There is always space for improvement,  
no matter how long you've been in the business.” 

-- Oscar De La Hoya 
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