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Abstract

This report details a work in progress. We have attempted to calibrate and validate a
Von Mises plasticity model with the Johnson-Cook failure criterion (Johnson & Cook, 1985)
against a set of experiments on various specimens of Al 6061-T651. As will be shown, the
effort was not successful, despite considerable attention to detail. When the model was com-
pared against axial-torsion experiments on tubes, it over predicted failure by 3× in tension,
and never predicted failure in torsion, even when the tube was twisted by 4× further than
the experiment. While this result is unfortunate, it is not surprising. Ductile failure is not
well understood. In future work, we will explore whether more sophisticated material mod-
els of plasticity and failure will improve the predictions. Selecting the appropriate advanced
material model and interpreting the results of said model are not trivial exercises, so it is
worthwhile to fully investigate the behavior of a simple plasticity model before moving on
to an anisotropic yield surface or a similarly complicated model.
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Chapter 1

Introduction

Sandia analysts frequently wish to know when severe plastic deformations will cause a
metal component to break. Predicting exactly when failure will occur can be a challenge
because the scientific community has yet to agree on the proper approach to model ductile
failure. Instead, analysts will often use ductile failure models to just compare one design to
another, or they will ensure that important results of the analysis do not hinge on precisely
predicting the time and location of a crack. These kinds of strategies are prudent and
appropriately conservative, but it would clearly be better if we had failure models we could
trust across a wide range of defamation modes.

Much of what makes ductile failure a difficult research area is local measurements of the
failure strains are rare in the literature. To circumvent this, many researchers employ a
hybrid approach that combines experiments and simulations to quantitatively estimate the
failure strains (e.g. Wierzbicki et al. (2005); Faleskog & Barsoum (2013)). Typically, exper-
iments on various geometries are performed in a load frame, while monitoring the far-field
load and displacement. These measurements are then compared against simulations using
the finite element method, or detailed analytical calculations with simplifying assumptions.
If the comparisons are favorable, then the model’s predictions of the local strain to failure for
a given load path are used to calibrate a failure model. This means that accurate predictions
of failure hinge on accurate predictions of all the plasticity up to the initiation of failure.
Many plasticity models can produce reasonable predictions of gross plasticity, but the strain
localization that often precedes failure is much more difficult to predict. Strain localiza-
tion can be quite sensitive to the plasticity model, mesh densities, and geometric/material
defects.

In some cases, the confidence in the strain field predictions is enhanced by comparing
against measured strain fields. This approach is certainly an improvement over comparing
against only far-field measurements, but macroscopic strain field measurement techniques,
such as digital image correlation (Sutton et al. , 2009), frequently require a significant degree
of smoothing to distinguish the signal from the noise. If a sharp strain localization occurs
prior to failure, then a model is still required to predict the strain to failure. In a departure
from most papers in the ductile failure literature, Ghahremaninezhad & Ravi-Chandar (2013)
and Haltom et al. (2013) performed local, grain level, measurements of the strain to failure
on Al-6061-T6. They found that it was difficult to precisely quantify the failure strain be-
cause the localization occurred on such a small scale, but both concluded that the equivalent
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plastic strain to failure monotonically decreased with increasing triaxiality (mean stress over
equivalent stress). Such scientific studies are worthwhile endeavors, however, grain measure-
ments are not practical on an engineering scale. One cannot perform in-depth experiments
and metallography on every combination of processing parameters used to manufacture a
metal component. Until we have an efficient method to measure highly localized strains, it
is still valuable to continue to develop the hybrid approach of combining experiments and
simulations to calibrate ductile failure models.
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Chapter 2

Modeling Approach

Here, we compare a simple Von Mises plasticity model with the Johnson-Cook failure
criterion (Johnson & Cook, 1985) against a series of experiments on Al 6061-T651 bars and
tubes. Smooth bar tension (Fig. 2.1(a)), compression, notched bar tension (Fig. 2.1(b)),
smooth tubes (Fig. 2.1(c)), and notched tubes (Fig. 2.1(c)) specimens were all machined
from the same large bar of Al-6061 shown in Fig. 2.1(a). Many of these experiments were
previously published (Lu & Jin, 2014), but the compression data, failed specimen images,
and several repeat experiments contained herein are new.

L

T

(a) Smooth bars (b) Notched bars (c) Smooth tube and
notched tube

Figure 2.1. Photos of the specimens

The smooth bar tension and notched bar tension specimens were used to calibrate the
plasticity and failure model, while compression experiments and tension-torsion experiments
on the tube specimens were used to attempt to validate the model. We could have calibrated
the failure model against the notched tube experiments, and validated against the notched
bar experiments, but we wished to explore how a model calibrated against straightforward
experiments can predict more elaborate experiments.

All finite element simulations were performed using Sierra/Solid Mechanics implicit quasi-
statics v. 4.32 and v. 4.34 (Sierra/Solid Mechanics, 2014). Meshes were generated with
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CUBIT (CUBIT, 2014). The element type was q1p0, which has a fully integrated (2 ×
2× 2 quadrature) deviatoric response, and a under integrated (1-point quadrature) pressure
response.

No attempt was made to model crack propagation. Simply deleting elements once they
meet the failure criterion can cause problems for implicit finite element solvers, and can also
lead to mesh sensitive results. Fortunately, the initiation of cracks was always very distinct
in the experiments studied here. Either crack propagation occurred in an unstable manner,
such that crack initiation virtually coincided with ultimate failure, or there was a sudden
drop in load and a macroscopic crack was observed in the specimen surface. This scenario
allowed us to focus on crack initiation and leave propagation for future work.
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Chapter 3

Model Calibration

Most constitutive models for ductile failure fall into two categories: uncoupled models
and coupled models. Uncoupled models consist of a plasticity model with an independent
failure criterion attached to it. Material failure occurs when the failure criterion reaches a
critical value. In coupled models, the plastic response depends on the amount of damage
(e.g. void growth) that occurs during plastic deformation. Material failure occurs when the
damage reaches a critical value. Coupled models may be more physically realistic, but they
are also harder to calibrate. We typically do not have direct experimental measurements
of damage during mechanical deformation, so the extent of damage must be inferred by
comparing other measurements against simulation results. Such inferences are possible with
accurate measurements of damaged and damage free material behavior through the range of
interest, but those measurements are not always available.

In this work, we elected to use an uncoupled ductile failure model. This choice allowed
the plasticity model to be calibrated independent of the failure model, and it allowed an
efficient failure model calibration scheme that will be discussed in Section 3. Convenience,
however, was not the only motivation for this decision. Ghahremaninezhad & Ravi-Chandar
(2012) cross-sectioned Al 6061-T6 notched tension specimens at various stages prior to failure
and detected a void area fraction greater than 1% only when the specimen was within ≈ 1%
of the failure displacement. Furthermore, they cross-sectioned a failed specimen and found
virtually no voids at distances of greater than 30 µm beneath the fracture surface. These
results suggest that voids do not play a significant role in the plastic response of Al 6061-T6.
Voids may be a bigger factor in more ductile materials, such as stainless steel, which can
sustain the extreme local deformations needed to accommodate cavities without failing.

Elasticity Model

The elastic behavior of the aluminum was modeled using a simple isotropic, linear-elastic,
material model. The value for Young’s modulus E = 68.9 GPa and Poisson’s ratio ν =0.33,
were taken from the median values listed in Table 2 of Ledbetter (1982) for Al 6061-T6.
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Plasticity Model

A simple J2-flow model with isotropic hardening and a multilinear hardening curve was
used to capture the aluminum plasticity. The model is rate and temperature independent,
which suffices for Al-6061 tested at isothermal, quasi-static rates, in room temperature air
(Hoge, 1966; Lindholm & Yeakley, 1968). In the Sierra/Solid Mechanics manual (Sierra/Solid
Mechanics, 2014), this model is known as the Multilinear Elastic-Plastic Hardening Model,
but it is important to note that we did not use the tearing parameter failure model that is
typically paired with this plasticity model. (As discussed in Section 3, the failure model was
Johnson-Cook.)

0 5 10 15 20 25
0.0

0.1

0.2

0.3

0.4

δe /Le (%)

(GPa)

P
A

T

L

Failure

Figure 3.1. Experimentally measured smooth bar engi-
neering stress–strain curves along the transverse (T) and lon-
gitudinal (L) directions. Four specimens were tested in each
direction.

The tensile specimens used for calibrating the hardening curve are shown in Fig. 2.1(a)
and Fig. 3.2(a), and the corresponding mechanical response curves are shown in Fig. 3.1.
Four specimens were oriented in the longitudinal (L) direction and four were oriented in the
transverse (T) direction. All eight specimens were round, dogbone, bars with a diameter
2R=2.54 mm and a distance between the fillets L of approximately 16.5 mm (see Fig. 3.2(a)).
The vertical axis in Fig. 3.1 is the axial force P over the original cross-sectional area A, and
the horizontal axis is the mechanical extensometer displacement δe over the extensometer
gage length Le = 7.62 mm. The specimens did not have a defect to ensure necking would
occur in the same location, so some of the variation in the mechanical response curves
after the maximum load could be due to the neck forming at various locations within the
extensometer gage length. The transverse specimens have an approximately 10 MPa higher
yield stress than the longitudinal specimens, which persists until the maximum load. During
necking, the transverse specimens have a slightly more negative tangent modulus and fail at
a roughly 25% smaller value of δe/Le than the longitudinal specimens. It should be noted,
however, that the central gage section of the transverse specimens came from the center
of the large bar in Fig. 2.1(a), while the central gage section of the longitudinal specimens
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LLe
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(a) Specimen
schematic

Top View

Side View

Le

2

R

H = R / 32

(b) FE Mesh

Figure 3.2. Smooth bar geometry and finite element dis-
cretization.

came from regions near the circumference of the large bar. Thus, there appears to be a
small amount of anisotropy in the plastic response, and a large amount of anisotropy in the
failure displacement, but it is possible some of the anisotropy is actually spatial variation of
properties in the large bar.

The mesh used to simulate the tension tests is shown in 3.2(b). The deformation was
assumed to be symmetric about the mid-plane, so only the bottom half of the extensometer
gage length was modeled. The loading and the specimen are axisymmetric, but Sierra/SM
(Sierra/Solid Mechanics, 2014), does not include axisymmetric elements. Fortunately, a 30◦

wedge with the appropriate boundary conditions is an accurate substitute. The decision
to model only the extensometer gage length, the angle of the wedge, the element size of
H = R/32, and the simulation time step size are all justified in Appendix A.1. In order to
trigger the necking localization at the center of the bar length, the mesh was tapered with
a radius of R at the symmetry plane, and a radius of 1.0005R at the bottom extensometer
knife edge.

The piecewise linear hardening curved was obtained by an inverse method programmed
into a Python script. Starting from the user specified yield stress, the inverse method found
the slopes of 50 to 70 linear hardening segments. For a given linear hardening segment,
a hardening slope was guessed and the mechanical force–displacement response from the
finite element simulation was compared with the experimental response. If the agreement
was unacceptable, slope was iterated on until acceptable agreement was reached. If the
agreement was acceptable, the slope was stored and the calibration routine moved to the next
linear hardening segment. This trial-and-error process continued until the entire mechanical
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(a) Calibrated hardening curves
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(b) Mechanical responses
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Specimen images, pre and post experiment

(c) Transverse deformed shapes
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(d) Longitudinal deformed shapes

Figure 3.3. Two separate hardening curve calibrations to
one tensile experiment along the transverse (T) direction and
one experiment along the longitudinal (L) direction. The pre-
dicted deformed shape (overlaid with contours of equivalent
plastic strain) is also compared against specimen images be-
fore and after tensile tests, for the transverse and longitudinal
specimens. The circled numbers above the images in (c) and
(d) correspond to the instances in (b).
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response of the specimen was recovered in the simulation.

Two hardening curve calibrations were obtained: one against a longitudinal specimen and
one against a transverse specimen. The hardening curves and mechanical response curves
are shown in Fig. 3.3(a) and (b). The variables σe and εpe are the Von Mises equivalent
stress and Von Mises equivalent plastic strain. The predicted and measured mechanical
responses agree very well, and the hardening curves have shapes that are typical of a Von
Mises plasticity model calibrated against Al 6061. (See Fig. 13b in Tardif & Kyriakides
(2012) for a comparison of hardening curves for different yield surfaces calibrated against the
same tensile response curve.) As expected, the transverse hardening curve is about 10 MPa
higher than the longitudinal. Perhaps more interesting is the fact that the transverse curve
terminates at εpe = 41.9 %, while the longitudinal terminates at εpe = 71.3 %. Clearly, the
difference in the failure displacements in (b) gets amplified in the equivalent plastic strain
to failure.

Piecewise linear hardening can represent the tensile plastic behavior of nearly any mate-
rial, so it is instructive to also compare the predicted shape of the neck against the experiment
to evaluate other assumptions in the model. Figure 3.3(c) and (d) depict the deformed shape
predictions overlaid with contours of equivalent plastic strain. The figures also include images
of the specimens taken before the experiment and after tensile failure. (Strictly speaking,
the failed specimens should be compared against simulations that have been unloaded to
zero load, but the elastic part of the deformation is small compared to the plastic.) The
transverse model calibration does quite a good job of predicting the deformed shape of the
transverse specimen. The longitudinal calibration does not have enough lateral contraction
to accurately predict the deformed shape, but the discrepancy is not excessive.

Presuming for a moment that the large aluminum bar is transversely isotropic, then
the transverse specimen should have necked anisotropically. A more in depth comparison
between the isotropic model and the experimental measurements would include an image
perpendicular to both the longitudinal and transverse directions. The longitudinal specimen,
on the other hand, should have an axisymmetric neck, so no further comparisons are needed.

To further examine the plasticity model predictions, Fig. 3.4 compares compression sim-
ulations from the two hardening curve calibrations against compression experiments in the
transverse and longitudinal directions. Provided the compression platens are made friction-
less, compression specimens deform in a homogenous manner to far larger strain magnitudes
than tension specimens that suffer from the tensile necking instability. Homogeneous uni-
axial compressive stress means the compression specimen (see Fig. 3.4(a)) with diameter
2R=5.08 mm and length L=8.89 mm can be modeled with a single element (see Fig. 3.4(b)).
Of course, it is nearly impossible to have zero friction at the compression platens, but Kawa-
hara (1990) developed a method to minimize it. The compressive responses are shown in
Fig. 3.4(c) with the tensile responses for reference. The horizontal axis δ/L is the engineering
strain across the compression platens. The displacement at the platens δ was calculated from
the the actuator stroke measurement, with a small correction factor to compensate for the
axial compliance of the load stack (see Kawahara (1990) for details). Note that the elastic
modulus in the compression experiments should be disregarded because the initial stiffness
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Figure 3.4. Compression specimen geometry, finite ele-
ment mesh, and mechanical responses along the transverse
(T) and longitudinal (L) directions. The compression simula-
tions used the T and L hardening curves shown in Fig. 3.3a.
The measured tension stress-strain curves are included for
reference.
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is affected by the platens engaging the specimen. Keeping in mind that the specimens did
slightly “barrel” during the experiments, the simulations match up reasonably well with
the experiments up to |δ/L| ≈ 25%. The discrepancy beyond |δ/L| ≈ 25% may be due to
increased barreling, or it may be due to inadequacies in the model. Further investigation
would be needed to track down the cause.

Thus far we have shown results from the transverse and longitudinal hardening calibra-
tions in tandem, but from here onward we will only consider the longitudinal calibration.
The notched tension bars, notched tubes, and smooth tubes (Fig. 2.1(b) and (c)) were all
machined from the large Al-6061 bar with the same orientations as the longitudinal tensile
specimen in Fig. 2.1(a), so it is only natural to proceed with the longitudinal hardening
curve calibration.

Failure Model

We elected to use the phenomenological Johnson-Cook failure model (Johnson & Cook,
1985) due to its simplicity and because the recent results by Haltom et al. (2013) indicate
that failure of Al-6061-T6 exhibits a exponential dependence on the stress triaxiality. For
isothermal, rate-independent, failure, the Johnson-Cook model reduces to three model pa-
rameters d1, d2, and d3, which relate the stress triaxiality η to the equivalent plastic strain
to failure εpef through the following equation

εpef = d1 + d2 exp [d3 η] . (3.1)

If η is constant, then (3.1) is sufficient, but η is not constant through the deformation history
in nearly all practical experiments. In the more general case, the integral

D =

∫ εpe

0

dε̂pe
εpef

, (3.2)

sums each dεpe increment, normalized by the equivalent plastic strain to failure εpef for the
current value of η, to calculate D. If D ≥ 1, then failure occurs.

The failure model parameters di were calibrated against the the longitudinal smooth bar
tension results previously discussed and results from three different notched bar geometries
(shown in Fig. 3.5(a)). The three notched bar geometries provide a wide range of stress
triaxialities when pulled, and they are frequently found in the ductile failure literature (e.g.
Wierzbicki et al. (2005); Faleskog & Barsoum (2013)). First, we will discuss the predictions
of the notch bar plastic responses, and, second, we will discuss the failure model calibration.

The notched bar geometry, finite element meshes and mechanical responses are shown in
Fig. 3.5. In all three notched bar specimens, the radius R = 6.35 mm and the mechanical
extensometer gage length Le = 25.4 mm (Fig. 3.5(a)). The notched bar geometries were
discretized into the meshes shown in Fig. 3.5(b). The decision to model only the extensometer
gage length, the angle of the wedge, and the element size of H = R/24 are all justified in
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Figure 3.5. Notched bar specimen geometry, finite element
meshes, and mechanical responses. The mechanical response
plot contains two experiments and one simulation for each
geometry.

Appendix A.2. Two experimental curves are compared against one simulation of each notch
geometry in the plot of axial force P versus extensometer displacement δe (Fig. 3.5(c)). The
mechanical response predictions are reasonably accurate in all three cases. The r = 3.12R
prediction is probably the most accurate because the deformation is closest of the three to
the smooth bar tension calibration of the hardening curve.

An efficient failure model calibration scheme was developed to quickly iterate on the
model parameters di. Although the process of calibrating a path dependent, uncoupled,
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Figure 3.6. Calibration of the Johnson Cook failure model.
(a) contains the calibrated model parameters, while (b) de-
picts the εpe versus η path for the first point to fail in each of
the calibration simulations. See text for further description.

failure model is easier than a failure model coupled to a plasticity model, it still requires
requires many iterations of the same finite element simulation. Each time you change the
failure model parameters, it is possible a different material point, with a different stress-
strain history, will fail first. Here, however, it was clear that failure would occur in a small
region, so we simply output the Cauchy stress σ and the equivalent plastic strain εpe at every
time step for the elements in the failure region. Then, σ and εpe were imported into Python
and D was calculated for a given set of di. In this manner, simulations could be run well past
failure once and the di could be changed without rerunning the simulations, which greatly
sped up the calibration optimization process.

The three model parameters di were optimized against four experiments, using the L-
BFGS-B algorithm (Zhu et al. , 1997). The resulting failure model parameters are listed
in Fig. 3.6(a). One can evaluate the quality of the fit by examining the longitudinal curve
in Fig. 3.3(b) and the three notched bar curves in Fig. 3.5(c). Figure 3.6(b) is another
depiction of the calibration results, where the first point to fail in the simulation is plotted
in εpe–η space. Each curve also has a + symbol to indicate when the first point failed in
the simulation, and a × symbol to indicate when the average of the two specimens failed
in the experiments. Obviously, we did not measure εpe or η in the experiment, so the ×
symbol coordinates come from correlating the failure displacement δe in the experiment to
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the simulation displacement δe, and then selecting the corresponding values of εpe and η from
the simulation. Fig. 3.6(b) also includes a plot of equation (3.1) as a dashed line to help
guide the reader’s eye, and show when the model predicts failure for a state of constant η.
The value of η primarily increases in all the simulations, so it is not surprising that the failure
predictions are beyond the dashed line. In summary, the model calibration is satisfactory.
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Chapter 4

Validation Effort

The model was compared against a series of tension-torsion experiments on notched
tubes and smooth tubes. The notched tube validation effort is more extensive, so the dis-
cussion below focuses on the notched tubes, but the smooth tube comparison can be found
in Appendix B.

The notched tube specimen geometry is shown in Fig. 4.1(a), along with the coordinate
systems used to report some of the results. The tube actually has two notches, one on the
outer diameter, one on the inner diameter, resulting in a wall thickness B = 0.508±0.025 mm
at the apex of the notch. The inner diameter notch was machined with a specialized, hook-
shaped, tool on a computer numerically controlled (CNC) machine. The length of the
specimen between the grips, was approximately 50 mm. The axial displacement and angle
of twist was measured using stereo digital image correlation (DIC)(Sutton et al. , 2009) on
the outside surface of the tube. A virtual extensometer measured the axial displacement
δe and the transverse displacement δx between two points separated by Le = 16 mm. One
point was 8 mm above the notch apex and the other was 8 mm below the notch apex. Both
points were on the line where the X = 0 plane intersects the undeformed tube outer surface.
(See Fig. 10a in Lu & Jin (2014) for plots of the transverse displacement along this line.)
The angle of twist between the two points was calculated as φe = arcsin(δx/C), where C is
the tube radius in the thick wall region (see Fig. 4.1(a)).

Three different meshes (see Fig. 4.1(b)) were used for the three different loading con-
ditions, but the three meshes shared two common features. (1) Mid-plane symmetry was
assumed for all three meshes, so it was only necessary to model the bottom half of the speci-
men. (2) The deformation was assumed to be spatially uniform in the vicinity of the virtual
extensometer knife edges, so it was not necessary to model the specimen material outside
the extensometer gage length. The tension specimen was modeled using a thin 2◦ wedge to
take advantage of the axisymmetric nature of the problem, but the combined tension-torsion
and the torsion problem required a full 360◦ mesh to simulate the twisting motion. Mesh
convergence studies were performed on all three boundary value problems, resulting in 108,
36, and 18 elements across the notch thickness in the tension, combined tension-torsion, and
torsion specimens, respectively. The details of the mesh convergence study can be found in
Appendix A.3.

The notched tube simulations are compared against the experiments in Fig. 4.2, where
the mechanical response predictions are reasonable, but the failure predictions are quite
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Figure 4.1. Notched tube specimen geometry and finite
element meshes.

poor. Two experiments and one simulation were performed for each loading condition. Fig-
ure 4.2(c) shows the deformation paths, where it is evident that δe and φe were controlled
to follow linear paths in the tension and tension-torsion simulations. A preliminary study
(see Appendix A.3) found that following the precise deformation path measured in the ex-
periment did not significantly change the failure predictions, so the linear paths were used
for simplicity. In the torsion simulation, φe was prescribed and the axial force P was held
to zero to mimic the conditions in the experiment. Interestingly, the torsion simulation
predicts a slight elongation, which is consistent with the Poynting effect (Poynting, 1909),
but an axial contraction is observed in the experiment. Perhaps the mechanical response
measurements in Fig. 4.2(d) and (e) are the most revealing. In tension, the experiments
reach the maximum load and fail, while the simulation slightly over predicts the post yield
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Figure 4.2. Notched tube experiments compared against
simulations. The plots contain two experiments and one sim-
ulation for each general loading type. The torsion simulation
does not predict failure, despite having twisted the tube four
times beyond the experiments (circled labels 3 and 4 on the
torsion curve in (e) are at φe = 5.5o and 9.0o, respectively).
The circled labels correspond to the field images in Fig. 4.4.

load and over predicts the failure displacement by roughly 3×. In combined tension-torsion,
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the experiments and the simulation exhibit a local maximum in the torque M without a cor-
responding maximum in the load. The prediction of the failure displacement is better in the
tension-torsion simulation than in the tension simulation, but it is still about 50% too large.
In pure torsion, the experiments have an intriguing local maximum in the torque long before
ultimate failure. A decreasing force–displacement curve in tension can indicate a necking
instability, but necking instabilities typically do not occur in torsion, so this is a curious
result. As expected, the simulation predicts a monotonically increasing torque. The torsion
experiments fail at φe ≈ 2.2◦, while the simulation never predicted failure, despite having
twisted the mesh to φe = 8.8◦. In all cases, the predictions of the axial load and torque leave
a little to be desired, but the predictions of failure are lamentable. The remainder of this
report will explore why.

The reason the torsion simulation never failed becomes clear when we consider Fig. 4.3,
but the poor predictions in the other two simulations are more difficult to understand. Sim-
ilar to Fig. 3.6(b), the εpe–η paths for the first points to fail in the notched tube simulations
are plotted in Fig. 4.3, along with the average failure points in the experiments, at the corre-
sponding value of δe in the simulation. The four failure model calibration points are shown
for reference. The triaxiality in pure torsion remains roughly 0 throughout the simulation. If
we input η = 0 into (3.1), then failure is not predicted until εpef = 576 %, which is long way
from the εpe = 72 % reached when the simulation was at the failure twist angle measured in
the experiment. While not encouraging, the poor prediction in torsion is not terribly surpris-
ing since the model was calibrated at high triaxialities. The poor predictions in combined
tension-torsion and, especially, tension are more troubling. The notched tube tension-torsion
simulation is close to the same triaxiality as the smooth bar tension calibration point, and
the notched tube tension simulation is even between the two of the failure model calibration
points.
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Figure 4.3. Notched tube failure predictions compared
against experiments. The failure model calibration points
are shown for reference.
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The plasticity model and the failure model were calibrated against a smooth bar tension
experiment, so one would expect the model to produce a decent prediction of the tensile
failure in the double notched tube. On the other hand, the shoulders above and below the
notch are 6.25 times thicker than the thin wall at the notch apex, so they constrain the ability
of the notch to contract in the hoop direction as the tube is pulled along the Z-direction.
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This constraint causes a significant hoop stress, which changes the lode angle at the failure
point. We briefly considered switching from the Johnson-Cook failure criterion to a lode
angle dependent failure criterion, but it is not prudent to fiddle with the failure model until
one is certain that the plasticity model is accurately predicting the deformation.

A comparison between the predictions of the deformed shape against cross-sections of
failed specimens sheds some light on the cause for the poor failure prediction in the ten-
sion and tension-torsion simulations. The circled number instances in Fig. 4.2(d) and (e)
correspond to the deformed shapes with overlaid contours of equivalent plastic strain in
Fig. 4.4. Instance 2 in tension, 3 in tension-torsion, and 2 in torsion were carefully chosen
to correspond with the values of δe and φe when one of the two specimens tested in each
configuration failed in the experiments. Those failed specimens were cross-sectioned and
polished in order to capture the images shown overlapping the bottom half of the deformed
shape predictions in 2 , 3 , and 2 . The tension simulation predicts minimal deformation,
while the specimen clearly developed a significant neck through the wall thickness in the ex-
periment. The tension-torsion simulation does predict through thickness necking in 3 , but
the amount is under predicted. Finally, the torsion shape prediction agrees with the experi-
mentally observed shape, but that is simply because the shear specimen did not appreciably
deform in the thickness direction.

The deformed shape comparisons show that the plasticity model does not capture the
strain localization prior to failure. Until this shortcoming is rectified, we cannot evaluate the
applicability of the failure model. Localization is known to be very sensitive to boundary
conditions, imperfections, and material properties, so two attempts were made to see if small
changes could induce necking in the notched tube tension simulation.

Machining the notch on the inner diameter of the tube is a relatively involved operation,
and it is possible that the notch wall thickness was not entirely uniform. This possibility
was investigated by shifting the inner notch cutout axis of revolution to one side, resulting
in a wall thickness B + e on one side and B − e on the other side (see Fig. 4.5(b)). An
eccentric inner notch destroys the axisymmetry of the boundary value problem, and leads
to a small amount of bending as the specimen is pulled, so the tension mesh in Fig. 4.1(b)
was not used. Instead, 180◦ of the specimen was modeled, taking advantage of the X − Z
plane symmetry, and the entire 50 mm between the grips was meshed. Note that the number
of elements across the notch was reduced from 108 to 18 to make these simulations more
tractable. The mechanical responses and failure predictions for two different eccentricities
are compared against a nominal notched tube simulation with 18 elements across the notch
in Fig. 4.5(c). An eccentricity of e = 0.05B corresponds to the tolerance on the notch
wall thickness (±0.025 mm), yet the defect makes very little difference on when the strain
localizes and the failure criterion is met.

Al-6061-T651 is quite prone to tensile strain localization due to its mild hardening after
initial yield. The point where the hardening curve becomes flat often leads to localization
because the equivalent plastic strain can increase without an increase in the equivalent stress,
so Fig. 4.6 explores the impact of artificially making the hardening curve go flat at εpe = 20 %
and εpe = 10 %. Shifting the flat point from εpe = 30 % (the original calibration) to εpe = 20 %
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preserves the smooth bar tension response (Fig. 4.6(b)), but it also produces a negligible
change in the notched tube tension simulation (Fig. 4.6(c)). A more extreme shift of the flat
point to εpe = 10 % violates the smooth bar tension calibration and appreciably changes the
notched tube tension simulation, but the strain still localizes, triggering failure, far beyond
the experiment. The necking instability in this problem does not appear to be highly sensitive
to the hardening curve shape.
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Chapter 5

Discussion

In an effort to understand why the plasticity model does not accurately capture the strain
localization in tension or tension-torsion, the principal Cauchy stress paths for the first points
to fail were plotted in the π-plane (Fig. 5.1(a)). We have ordered the three principal stresses
such that σ1 < σ2 < σ3. The π-plane is a bit difficult to look at because none of the three
principal stress axes actually lie in the π-plane, so we will start with some explanations.
First, the calibration stress paths appear to be all along the σ3 axis, but they also have a
mean stress component, which is perpendicular to the π-plane. Second, pure shear is simply
a combination of tension and compression in the principle frame, so σ1 < 0 and σ3 > 0 for
the notched tube torsion stress path, causing it to be 30◦ to the right of the σ3 axis projected
onto the π-plane. Third, observe that the tension and tension-torsion stress paths exhibit a
sharp change in direction when they hit the initial yield surface. To unravel why the stress
paths change direction, we consider the plots of stress against simulation time t̄ in Fig. 5.1(b)
and (c).

Let us look at the notched tube tension stress path first. The failure point in the tension
simulation does not experience shear, so the stress histories in the global cylindrical frame
(top plot in Fig. 5.1(b)) are the same as the stress histories in the principle frame (bottom
plot in Fig. 5.1(b)). In the linear-elastic range, the simulation predicts axial stress and a
significant hoop stress because the large shoulders constrain the lateral Poisson contraction
of the notch in the hoop direction. This is why the stress path follows a radial line to the
right of the σ3 projection in the π-plane. When the notch begins to plastically deform, the
hoop constraint plays a bigger role because the plastic strains are isochoric. This causes
the hoop strain to sharply increase and the stress path to sharply turn to the right in the
π-plane after initial yield.

The notched tube tension-torsion stress path follows a similar progression, but the shear
stress σΘZ makes the explanation more complicated. Pure shear is simply a combination
of tension and compression in the principle frame. Here, σΘZ serves to increase the largest
principle stress σ3 and decrease the smallest principle stress σ1, while leaving the intermediate
principle stress σ2 untouched. In the linear-elastic range, the hoop constraint again causes
hoop stress along with the axial stress, but the shear stress makes σ1 become negative in
Fig. 5.1(c). This is why the tension-torsion stress path also follows a radial line to the right
of the σ3 projection in the π-plane. Between t̄ = 0.08 and t̄ = 0.23, yielding begins, the
shear stress remains relatively constant, and the hoop stress quickly increases, which causes
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Figure 5.1. (a) Cauchy stress paths in the π plane for the
first point to fail (or come closest to failing) in the calibra-
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stress histories.
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σ1 to increase by 52 MPa, while σ2 only increased by 9 Mpa. This is why the stress path
turns to the left, towards the projection of the σ3 axis in the π-plane.

Now that we have established why the stress paths are those shown in Fig. 5.1(a), we
can make some observations which suggest a non-quadratic or anisotropic yield surface could
improve the plasticity predictions and, by extension, improve the failure predictions. We note
again that the stress paths in Fig. 5.1(a) are for the first point to fail in each simulation.
Not all material points in a given specimen follow the stress paths in Fig. 5.1(a), but the
spread is likely small enough that qualitative comparisons between the stress paths can be
made in order to decide how to proceed from here.

• The predictions of the mechanical response in the notched bar and notched tube sim-
ulations all start to deviate from the experiments at the onset of plasticity, yet the
notched tube deviations are worse than the notched bar. This is likely because the
axial core of the notched bar follows stress paths in Fig. 5.1(a) that closely align with
the smooth bar tension stress path that was used to calibrate the plasticity model. The
notched tube stress paths, on the other hand, all probe portions of the yield surface to
the right of where the hardening curve was calibrated.

• The notched tube torsion mechanical response prediction deviates the most from the
experiment (Fig. 4.2(e)), and, of all the stress paths, the notched tube torsion stress
path is the furthest from the smooth bar tension calibration in the π-plane.

• The notched tube tension simulation and tension-torsion simulation both had trouble
predicting the deformed shape of the notch. The same two simulations also produce
stress paths that penetrate the initial yield surface and then quickly turn to almost
trace along the yield surface as it isotropically grows.

• The notched tube tension-torsion simulation did a better job of predicting the deformed
notch shape and the eventual failure than the notched tube tension simulation. This
could be related to the observation that the tension-torsion stress path turns towards
smooth bar tension stress path, while the tension stress path turns away from where
the isotropic hardening curve was calibrated.

The notched tube plastic response appears to be sensitive to the shape of the yield
surface, but it remains to be seen if the yield surface actually deviates enough from Von-
Mises to make a significant difference in the notched bar and notched tube predictions. The
transverse smooth bar measurements in Fig. 3.1 only have a 3.5 % larger yield stress than
the longitudinal, so it seems hard to believe that could significantly change things. On
the other hand, strain localizations are quite sensitive to anisotropy. Ghahremaninezhad
& Ravi-Chandar (2012) measured less than 2 % difference in yield stresses between the
rolling, 45◦, and transverse directions on thin sheet specimens, yet they predicted a 17 %
lower force at failure with the anisotropic model compared to the isotropic model. Perhaps
more importantly, the local strain values predicted by the anisotropic model were in better
agreement with the experimental measurements with maximum values that were 2× those
in the isotropic model.
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For the next material model, we plan to start with a specialization of the Hill (1948) model
to transverse isotropy, matched up with the Johnson Cook failure criterion. One could also
consider using a Gurson-type model which causes the yield surface shape to evolve as damage
accumulates, but damage does not start to accumulate in such models until well after yield.
The J2-theory model used here started to deviate from the experiments at the onset of yield,
so it is better to alter the initial yield surface. Furthermore, as previously mentioned, there
is no evidence of damage until immediately prior to failure in Al-6061 (Ghahremaninezhad
& Ravi-Chandar, 2012). It is possible Johnson Cook failure model will still be inadequate to
capture the experimental measurements, but we will be in a much better position to prove
that if we accurately capture the plasticity.
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Chapter 6

Conclusions

A simple Von Mises plasticity model and the Johnson Cook ductile failure model were
calibrated and compared against experiments on Al-6061. Although the plasticity model
predictions of the global force and torque measurements were decent, the predictions of duc-
tile failure in a notched tube were quite poor. The model over predicted the notched tube
failure by 300 % in tension, over predicted by 50 % in tension-torsion, and never predicted
failure in torsion, even when the tube was twisted 400 % further than the experiment. The
model was calibrated against tension and notched tension experiments, so the poor predic-
tions of failure in the notched tube tension and tension-torsion experiments were particularly
troubling.

Careful comparisons with cross sectioned, failed, notched tube specimens revealed that
the plasticity model did not accurately predict a necking instability prior to failure. One
cannot evaluate a ductile failure model unless one can properly predict the plasticity up to
failure, so efforts were made to induce the necking instability. A mesh refinement study, a
defect sensitivity study, and a hardening curve sensitivity study all did not have the desired
effect.

Further analysis led to the belief that an anisotropic yield surface is needed to capture
the plasticity behavior. Anisotropic plasticity models are more involved to calibrate and
their results can be difficult to interpret, so the experience gained from the isotropic Von
Mises plasticity model used herein should aid in future work.
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Appendix A

Preliminary Studies

A number of preliminary studies were performed before settling on the final analyses
shown in the main body of the report. This section of the appendix records those studies.

A.1 Smooth Bar

Ductile failure predictions depend heavily on the quality of the plasticity model calibra-
tion, so it is worthwhile to perform the calibration carefully. We first made our best guess at
the proper approach and modeling parameters to simulate the smooth bar tension test, and
generated the longitudinal hardening curve shown in Fig. 3.3(a). Then those guesses were
tested by comparing against other approaches and parameters.

Full Gage
Length

Extensometer
Only

(a) Meshes
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0.4

Ext Only

Full Gage Length

δe /Le (%)

(GPa)

P
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(b) Mechanical response

Figure A.1. A comparison between modeling the entire
smooth bar gage length against modeling only the extensome-
ter gage length (assuming symmetry about the mid plane).

Figure A.1 depicts the difference between modeling the entire gage length between the
grips against only modeling the extensometer gage length, and it makes negligible difference.

39



90o

30o

10o

(a) Meshes

0 5 10 15 20
0

20

40

60

80

100
10o

30o

90o

δe /Le (%)

(%)
ε p

eavg(    )

(b) Equivalent plastic strain

Figure A.2. A comparison between modeling the smooth
bar specimen as a 10◦, 30◦, and 90◦ wedge. The equivalent
plastic strain (εpe) was averaged over the element at the center
of the tensile specimen, as denoted by the avg(·) operator.

The neck that develops after the maximum load makes the deformation non-uniform. If the
region of appreciable necking extends beyond the extensometer knife edges, then a simulation
that forces the material to deform uniformly at the extensometer knife will over-constrain
the boundary value problem. In this case, the necking region is sufficiently far from the knife
edges that modeling only the extensometer gage length is acceptable.

The effect of three different wedge angles are considered in Fig. A.2, and the angle made
no difference. Poorly shaped elements are known to produce inaccurate results in certain
scenarios, and the element at the tip of the 10◦ wedge specimen in Fig. A.2(b) might be
considered suspect. To investigate this we examined the equivalent plastic strain, the lode
angle, and the triaxiality at the wedge tip element, where the neck occurs. The wedge
angle had no effect on all of these local variables important to failure modeling, as well
as the mechanical response prediction, which is dominated by elements far from the wedge
tip. Only εpe is shown to conserve space. The highest value of εpe was not always at the
integration point closest to the wedge tip, varying in the 10th decimal place or higher, so
we simply took an average of all nine q1p0 integration points to generate each data point
in Fig. A.2(b). It is posited that the deformation, even inside the neck, is close enough to a
principal deformation that the q1p0 element performs well at the wedge tip. Other elements
may or may not perform similarly.

The mesh convergence on the mechanical response and the failure model prediction is
shown in Fig. A.3, where each curve is labeled by the size of the elements along the bar radius
R. At each mesh refinement, each element was split into eight elements. See Fig. 3.2(b) for
an image of the mesh with 32 elements along the radius. The simulation with 16 elements
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Figure A.3. Mesh convergence of the smooth bar mechan-
ical response and failure.

along the radius is practically the same as the fine simulation with 64 elements along the
radius (a 0.8 % difference at failure), but we elected to use 32 elements along the radius to
be conservative.

The small sensitivity to the simulation time step ∆t̄ is displayed in Fig. A.4. Plasticity
models are typically formulated in an incremental form that must be numerically integrated,
so significant errors will be incurred if the time step is too large. Usually time step con-
vergence studies are not performed in a practical setting because it is difficult to make the
finite element solver converge if the time step is too large, and it is not terribly computa-
tionally expensive to take small time steps. Here, a quick time step convergence study was
performed on the smooth bar tension simulation. Instead of fixing the time step for each
simulation, which often results in simulations where the solver fails to converge, adaptive
time stepping (Sierra/Solid Mechanics, 2014) with a maximum time step was utilized. This
approach yielded the time step histories in Fig. A.4(a), where each history is labeled accord-
ing to its maximum time step, and the total simulation time is t̄ = 1. All the time step
histories first ramp up to their respective maximum values. When the specimen develops
a neck, the time step sizes for max(∆t̄0) and max(∆t̄0)/2 briefly dip to smaller values so
that the solver can converge, while the other time step histories maintain their respective
values. The time step’s impact on the mechanical response curve and the failure prediction
is minimal (Fig. A.4(b)), but we decided to use the smallest time step max(∆t̄0)/16 = 0.004.

Strictly speaking, a time step convergence study should be performed on each boundary
value problem, but the effort required was deemed excessive. Given the small sensitivity in
Fig. A.4(b), we simply used adaptive time stepping on all simulations with a maximum time
step of ∆t̄ = 0.004, where t̄ = 1 is when failure was detected in the experiment.
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Figure A.4. Time step convergence of the smooth bar
mechanical response and failure.

A.2 Notched Bar

The mesh convergence of the three notched bar geometries is shown in Fig. A.5, where
each mesh is labeled according to the element size along the notch root radius R. At each
mesh refinement, each element was split into eight elements. See Fig. 3.5(a) for images of
the meshes with 24 elements across R. Not surprisingly, the mechanical response of tightest
notch (r = 0.16R) is somewhat sensitive to mesh density. The failure prediction of the
shallowest notch (r = 1.56R) is also a little bit sensitive to mesh refinement because the
specimen develops a neck similar to the smooth bar tension simulation. In all three cases,
the simulation with 24 elements across the notch root radius R was selected as sufficiently
converged.
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Figure A.5. Mesh convergence of the notched bar mechan-
ical response and failure.

A.3 Notched Tube

Early in the effort to validate the material model against the notched tube experiments,
a displacement path sensitivity study was performed. Although the notched tube tension
and tension-torsion experiments were programmed to follow linear displacement paths, such
a prescription is very difficult to achieve in reality. The load stack always stretches a small
amount, the grips always slip, and the stress state near the grips is always complex. We
simply measure the local displacement and rotation on the surface of the specimen and
accept the non-linearity. In a simulation, however, we can compare the response for a
linear displacement path (long dashes in Fig. A.6) to the response for the displacement path
measured in the experiment (short dashes in Fig. A.6).

The sensitivity to the prescribed displacement path in φe–δe space is investigated in
Fig. A.6. The simulations following the measured displacement path continue beyond the
failure points in each experiment by linearly extrapolating the displacement path slope at
failure. Considering the tension simulation first, the measured tension path in Fig. A.6(b)
has a small amount of twist, which causes the simulation that follows the measured tension
path to predict a torque reaching as high as M = 19 N·m. The torque prediction, however,
does not correlate well with the experiment in Fig. A.6(c), where the measured torque does
not exceed 2.5 N·m. Moving to the tension-torsion simulation, the mechanical response
prediction does appear to be better when the simulation follows the measured displacement
path. Exact magnitudes of P and M are not predicted in Fig. A.6(d) and (e), but the overall
character of the prediction and the experiment are more consistent.

For simplicity, we decided to simply use linear displacement paths for all further simu-
lations. It is strange that the torque predictions differ so much from the experiment in the
tension simulation. The torque is quite sensitive to the angle of twist when the material
is in the elastic range. Perhaps the twist measurement φe is accurate enough for plasticity
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Figure A.6. Notched tube experiments compared against
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ment paths and those that follow proportional displacement
paths.
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Figure A.7. Mesh convergence of the notched tube me-
chanical response and failure under two different deforma-
tions.

measurements, but not for elasticity measurements. Regardless, the prediction of failure did
not improve when the measured path was followed in both tension and tension-torsion cases,
so the linear displacement paths were deemed sufficient.

The simulations in Fig. A.6 all used 18 elements across the apex of the notch as a
starting point, but mesh sensitivity studies were subseqently performed (see Fig. A.7). The
first two mesh refinements involved locally splitting each element near the notch into 27
elements, along with a small transition region to the unrefined portion of the mesh. The
third refinement was performed uniformly, where every element was split into eight elements.
The meshes with 108 elements and 36 element across B are shown in Fig. 4.1(b). Although
the tension simulation mechanical response appears converged with 18 elements through the
notch, the failure displacement prediction still changes by 4 % as the mesh is refined from
54 to 108 elements. It is highly likely that another refinement would result in a minimal
reduction in the failure displacement, so 108 elements was considered adequate. Clearly, a
large number of elements is required to resolve the hot spot at the center of the “X” in the
equivalent plastic strain field for 4 in Fig. 4.4. Fortunately, the tension-torsion boundary
value problem only required 36 elements across B to converge.

The mesh convergence of the torsion simulation is shown separately in Fig. A.8, because
it received a different treatment. Similar to the tension-torsion mesh convergence study, the
first two mesh refinements on the torsion mesh were local refinements. A global refinement
was planned, but the simulation with 18 elements across B took 48 hours on 32 processors.
Increasing the element count by eight-fold would have been too computationally expensive,
so we simply accepted the 18 elements across the notch. The mechanical response is clearly
converged with 18 elements, but failure was never predicted in the model. Local mesh
convergence was assessed instead using D, the Johnson-Cook failure indicator, and it is
unlikely that a finer mesh would be significantly different than B/18 in Fig. A.3.
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Figure A.8. Mesh convergence of the notched tube un-
der torsion. None of the simulations predicted failure, so
the Johnson-Cook failure indicator D for the point closest to
failure at the end of each simulation is shown instead.

In an effort to find out why the torsion simulation was so slow, we found that the finite
element solver struggled to converge when the material points at the notch apex reached the
flat part of the longitudinal hardening curve in Fig. 3.3(a). The solver was probably having
difficulty determining whether to assign a large amount of strain to the notch apex, or to
assign a small amount of strain to the apex and the surrounding region.
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Appendix B

Smooth Tube

The smooth tube geometry shown in Fig. B.1(a) has advantages and disadvantages com-
pared to the notched tube.

• Machining the smooth tube to maintain the wall thickness B = 0.508 ± 0.025 mm is
likely easier than controlling the notched tube wall thickness at the notch apex.

• The smooth tube tends to buckle under pure torsion.

• The smooth section Ls=12.7 mm produces a more uniform strain field, so it is possible
to make accurate measurements of the strain field using DIC, at least until the strain
localizes immediately prior to failure.

We elected to focus the modeling effort on the notched tube instead of the smooth tube
because of the inability to measure pure torsion failure in the smooth tube, but it may still
be instructive to examine the smooth tube model predictions.

The smooth tube meshes are shown in Fig. B.1(b). Initially, the tension specimens were
fully meshed with no symmetry assumptions to investigate if the strain localization prior to
failure would break symmetry. A single node on the outer diameter was shifted inward by
0.0005B to create a defect, and three elements were used through the thin wall thickness
for these simulations. Once we established that axisymmetry prevailed during the tension
simulation, a 2◦ wedge was meshed with 54 elements through the thickness. The tension-
torsion experiment was only simulated until shortly after yield, so only 2 elements were
needed across B. In both smooth tube experiments, DIC measured the strain fields on the
surface of the tube. We elected to use the Biot strain, which is defined as EB = U−I, where
U is the right stretch tensor from the polar decomposition of the deformation gradient, and
I is the identity tensor. The Biot strain fields were averaged over a surface area, roughly
9mm wide and 10mm tall, centered on the smooth thin wall section of the tube. In the
simulations, we set the extensometer gage length to Le=10 mm.

As shown in Fig. B.3(a) and (b), a sawtooth pattern of high strain was observed just
prior to failure in the experiment, and sawtooth crack was observed afterwards. The primary
author is also aware of unpublished tensile experiments on thin walled aluminum tubes
that failed in a similar sawtooth fashion. These observations led to a study to see if the
simulations could predict such patterns. Figure B.2 shows the experimentally measured
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Figure B.1. Smooth tube specimen geometry and finite el-
ement meshes. The extensometer gage length in (a) is shown
at its assumed value of Le = 10 mm.

smooth tube and smooth bar responses, as well as four simulations with different smooth
lengths. The first smooth length Ls = 12.7 mm corresponds to the experiment, while
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Figure B.2. Smooth tube and smooth bar tension ex-
periments compared against smooth tube simulations with
various thin wall section gage lengths.

Ls = 19.05 mm, 25.4 mm, and 101.6 mm are 1.5×, 2×, and 8× longer than the experiment.
The extensometer gage length remained 10 mm for all simulations. The responses are plotted
as Biot stress P/A versus the Biot strain EB

ZZ , which are equivalent to engineering stress
and engineering strain, respectively, for principal deformations1. Note that the smooth tube
response measurement slightly exceeds the smooth bar response measurement at the onset
of yield. The smooth tube and smooth bar responses prior to maximum load are reasonably
captured by the Ls = 12.7 mm and Ls = 101.6 mm simulations, which demonstrates that
the extensometer gage length in the Ls = 12.7 smooth tube is not in a state of uniaxial
stress. The lateral contraction of the smooth thin wall section is constrained near the thick
shoulders (W = 7.25B), which leads to a hoop stress inside the extensometer gage length
if Ls is sufficiently short. The smooth thin wall length also has an interesting effect on the
necking behavior, as shown in the εpe field images in Fig. B.3(c), which correspond to the
circled number instances in Fig. B.2. After the maximum load, the tube outer diameter necks
inward, but eventually the simulation predicts necking across the wall thickness. Small values
of Ls give an axisymmetric neck, while large values of Ls produce a criss-crossing pattern of
high strain similar to the experimental observations in Fig. B.3(a) and (b). Obviously, Ls

had to be artificially increased to induce the criss-crossing, but this result shows that the
instability is not outside of the realm of possibility. Perhaps a different material model would
produce criss-crossing in the actual smooth length of Ls = 12.7 mm. For now, however, the
thin wedge (Fig. B.1(b)) with axisymmetric boundary conditions is a legitimate approach to

1If an anisotropic material’s principal axes are not aligned with the uniaxial loading axis, it is possible to
induce non-principal deformations that cause the Biot stress and strain to deviate from engineering stress
and strain, but that did not occur here.
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(a) Measured maximum princi-
ple strain just prior to failure

(b) Failed specimen
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Figure B.3. A sawtooth pattern of high strain was ob-
served in the smooth tube tension experiment, and the sub-
sequent crack followed the same pattern. When the experi-
mental specimen is faithfully modeled, with a smooth length
of Ls = 12.7 mm, the simulation predicts a circular ring of
high strain. When the smooth length is increased beyond the
actual experimental specimen length, the high strain region
transitions into a sawtooth pattern.
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Figure B.5. Mesh convergence of the smooth tube me-
chanical response under combined tension-torsion.

simulate the smooth tube tension experiment.

The mesh convergence of the tension boundary value problem and the tension-torsion
boundary value problem are shown in Fig. B.4 and Fig. B.5, respectively. In tension, we
considered the convergence of the mechanical response as well as the failure prediction. The
mechanical response prior to the through thickness necking is well represented by only three
elements across the thickness, but 27 elements appear to be needed after the onset of through
thickness necking. The failure prediction, on the other hand, has not converged even with
54 elements across B. Further refinement may lead to failure directly after necking, but
the onset of necking would remain the same. In tension-torsion, roughly equal amounts of
tensile and shear strain were applied, and we only considered convergence of the mechanical
response. The vertical axis MR/J in Fig. B.4 is the engineering shear stress, while Rφe/Le

is the average engineering shear strain across the extensometer. Two elements across B is
sufficient to resolve the torsion and axial (not shown) responses in tension-torsion to the
small deformations considered.
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Figure B.6. Smooth tube experiments compared against
simulations.

The smooth tube simulation results are compared against the experiments in Fig. B.6.
The experiments are plotted using the Biot shear strain averaged across the extensometer
length ĒB

ΘZ , while the simulations are plotted using the engineering tensorial shear strain
averaged across the assumed extensometer length Rφe/(2Le). The difference between ĒB

ΘZ

and Rφe/(2Le) should be negligible for the small shear strains simulated. The comparisons
between the simulations and the experiments on the smooth tube are similar to the notched
tube. The smooth tube tension specimen fails at the maximum load, while the simulation
continues well past maximum load before the failure is predicted (see Fig. B.6(d)). The
tension-torsion simulation follows a linear path tangent to the initial path measured in the
experiment (see Fig. B.6(b)). This linear path was chosen because the initial portion of
experimentally measured path determines the initial yield stresses. As shown in Fig. B.6(c)
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and (e), the simulation slightly under predicts the shear stress and over predicts the axial
stress. Hopefully, future work will show whether these discrepancies are due to non-linearities
in the experimental strain path in Fig. B.6(b) or due to anisotropic plasticity.
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