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Abstract

In this report, we present a multi-scale computational model to simulate plastic deforma-
tion of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink-
pair theory is used to formulate temperature and strain rate dependent constitutive equations.
The kink-pair theory is calibrated to available data from single crystal experiments to produce
accurate and convenient constitutive laws. The model is then implemented into a BCC crys-
tal plasticity finite element method (CP-FEM) model to predict temperature and strain rate
dependent yield stresses of single and polycrystalline tantalum and compared with existing
experimental data from the literature. Furthermore, classical continuum constitutive models
describing temperature and strain rate dependent flow behaviors are fit to the yield stresses
obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro-
dynamic simulations of Taylor cylinder impact test and compared with experiments.

In order to validate the proposed tantalum CP-FEM model with experiments, we introduce
a method for quan- titative comparison of CP-FEM models with various experimental tech-
niques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile speci-
mens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters
are used. A technique combining an electron back scatter diffraction (EBSD) and high reso-
lution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain
fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also
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analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These
high resolution measurements are directly compared with large-scale CP-FEM predictions.

This computational method directly links fundamental dislocation physics to plastic defor-
mations in the grain-scale and to the engineering-scale applications. Furthermore, direct and
quantitative comparisons between experimental measurements and simulation show that the
proposed model accurately captures plasticity in deformation of polycrystalline tantalum.
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1 Introduction

Tantalum is a body-centered-cubic (BCC) transition metal that is widely used in many high tem-
perature and strain rate applications. Despite strong scientific and engineering interests in BCC
refractory metals such as tantalum, molybdenum, tungsten and niobium, they are generally un-
derrepresented in computational materials science studies due to complex response compared to
close-packed structured metals. For example, BCC metals are well-known to exhibit strong tem-
perature and strain rate dependent flow and non-Schmid yield behavior [32, 96, 39, 103, 73]. These
characteristics deviate from many close-packed metals, specifically those that are face-centered-
cubic (FCC).

Various BCC computational models were developed at different length scales to capture these
experimentally observed characteristics in BCC metals. In atomistic/dislocation level, disloca-
tion kink-pair theory based on the thermally activated motion of screw dislocations is developed
to describe the strong temperature and strain rate dependent flow stresses of various BCC single
crystals [91, 93, 22, 9]. These models are based on a transition state theory and use the activa-
tion enthalpy to derive the temperature and strain rate dependent flow rule. The model success-
fully reproduced temperature and strain rate dependent flow behavior of tantalum [106], molyb-
denum [53, 52], tungsten [20] and niobium [94]. In continuum level, different analytical models
are developed to reproduce the temperature and strain rate effects in polycrystalline BCC metals,
e.g. Johnson-Cook (JC) [56, 55], Zerilli-Armstrong (ZA) [110] and Mechanical Threshold Stress
(MTS) [41] models. These continuum models successfully reproduced temperature and strain rate
dependent flow behaviors of various BCC polycrystals including Armco iron [56, 55, 110], steel
alloys [56, 55], molybdenum [81, 30], tungsten and tungsten alloys, [56, 67], tantalum and tan-
talum alloys [111, 29, 82, 79, 85], niobium [79] and vanadium [80]. However, these analytical
models are usually fit to macro-scale stress-strain response of polycrystals and only serve as a con-
venient fit to experimental data. Thus, most of these models in two length scales cannot provide
descriptions of deformation at the scale of the microstructure.

Crystal plasticity (CP) models can be a convenient method to link these two extreme scales. In
particular, modern crystal plasticity - finite element method (CP-FEM) models [86, 10, 6, 35], en-
forces inter-grain equilibrium and compatibility using a continuum finite elements and thus capable
of incorporating heterogeneous grain structure with varying grain shapes, crystal orientations, and
neighboring effects from other grains. However, most single crystal constitutive equations are de-
veloped specific to FCC metals, which exhibit far less dependence of the flow stress on temperature
and strain rate as compared to BCC metals [86, 10, 34]. Most visco-plasitc constitutive formula-
tions invoke a formulation that involves the rate of slip on individual slip systems [86, 11] but this
is primarily a numerical device, and thus inappropriate for describing the physical temperature and
strain rate dependence of the flow stress of BCC metals. Thus, the strain rate and temperature
effects must be accounted for in the constitutive equations capturing these effects explicitly. While
crystal plasticity models provide a link between the fundamental dislocation physics and contin-
uum level response, no such complete models for BCC refractory metals have been developed.

In addition to complexities in modeling BCC metals, a direct and detailed comparison between
the model predictions with experimental measurement have been very challenging. Although re-
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cent CP-FEM models successfully predicted texture and mechanical behaviors of polycrystalline
FCC [6, 36, 87, 112, 99, 89, 7, 42], BCC [107, 103, 73, 4, 78] and HCP metals [76, 102, 1], as
well as non-local size effects [84, 33, 72, 8], most of these models lack quantitative comparisons
with experimental measurements. This limitation mainly attributed to the lack of information on
subsurface microstructures [26] and different length scales in the simulations and experimental
measurements. In order to overcome these obstacles in polycrystal specimens, many direct com-
parison of CP-FEM and experiments are conducted with a specimen with a simple microstructure,
i.e. single crystals [109, 66] or coarse-grained specimens with a columnar grain through the thick-
ness [108, 113, 36, 87, 90, 50, 31, 112, 14, 72]. These multi-crystal specimens, usually in the
sheet form, are referred to as ‘oligocrystals’ and have a small numbers of grains, typically 3-20
grains within the gage section. Oligocrystal specimens are used to compare and validate CP-
FEM models with experiments, e.g. predictions of hardening behavior [31, 72], texture evolution
[36, 50, 31, 112, 60, 61], inter- and intra-grain strain fields [113, 87, 90, 50, 47, 112, 14, 60, 61, 99],
deformed specimen shapes [60, 61] and activated slips [46, 108, 113, 36]. However, most previ-
ous studies focus on FCC metals and many lack direct and quantitative comparisons, even with
simplified microstructures.

In this report, we present multi-scale modeling and experimental techniques to better under-
stand the plastic deformation in tantalum. This report is based on three recent publications on
modeling and experimental studies of tantalum [69, 70, 71] as well as further results that were
not included in these publications. The purpose of this report is to integrate and discuss detailed
simulation and experimental procedures and results. This report is comprised of two main topics.
In Chapters 2, 3 and 4 we develop temperature and strain rate dependent single crystal constitutive
equations for tantalum based on the dislocation kink-pair theory and single crystal data from the
literature [106]. The novel constitutive equations based on the motion of thermally activated screw
dislocations are implemented into BCC CP-FEM model to simulate plastic deformation of single-
and polycrystals. CP-FEM is then used to parameterize various conventional continuum-scale
analytical models that provide convenient constitutive formulations for approximating the effects
of temperature and strain rate on plastic deformation of BCC metals. In Chapter 5, we validate
the CP-FEM model with experimental measurements using tantalum oligocrystals. In addition,
we discuss the limitations of the current approach and investigate influences of other constitutive
effects in model predictions.

16



2 Dislocation Kink-Pair Theory

The dislocation kink-pair theory describes the temperature and strain rate dependent flow stresses
in BCC metals by relating the stress required to move a dislocation over the Peierls potential, τp
[91, 93, 22, 9]. The theory is based on the assumption that the flow stress resolved onto the active
slip system, τ , is composed of thermal and athermal contributions as follows:

τ(T, γ̇) = τ∗(T, γ̇)+ τ̄. (1)

Here τ∗ is the thermal component of the flow stress that depends on temperature (T ) and strain rate
(γ̇) while τ̄ represents the athermal stress that is independent of strain rate and weakly dependent
on temperature through the shear modulus. τ̄ accounts for long-range interactions such as the
effects of forest dislocations, impurities, solutes and grain boundaries, and can be determined from
the resolved shear stress above a critical temperature, Tc(γ̇), where the thermal part of the lattice
friction is negligible. For tantalum, measured athermal contribution, τ̄ , obtained from the single
crystal experiments is 27 MPa [106].



Regime II Regime I 

h 

ΔU 

Figure 1. Illustration of Peierls barrier and dislocation kink-pair
at two temperature regimes. One dislocation shows a bulge in the
line (on the left), described by the line tension model in Regime
II; and the second dislocation (right) has well formed kinks, de-
scribed by the elastic interaction model in Regime I. The valleys
and peaks are separated by the spacing h and the height of the
Peierls potential is ∆U .

Following the work of Seeger et al. [91, 92, 93], there are three temperature regimes in the
flow behavior of BCC metals. In the high temperature regime, above the critical temperature,
Tc(γ̇), the thermal dependence is similar to that of FCC metals. In this temperature regime, τ∗
becomes negligible and often ignored. Below the critical temperature, Tc(γ̇), BCC metals exhibit
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thermally activated flow that deviate from the behavior of FCC metals, and the mobility of screw
dislocations is the main contribution to the high resistance to flow. Below Tc(γ̇), there are two
regimes that are divided by T̂ (γ̇). In Regime I where T̂ (γ̇)< T < Tc(γ̇), the kinks are fully formed
and well separated, and the energetics are controlled by the elastic repulsion between kinks. Thus,
the kink-pair formation enthalpy, ∆H∗kp, can be calculated using the Elastic Interaction (EI) model.
Regime II (T < T̂ (γ̇)) is characterized by an activation barrier where the dislocation does not reach
the adjacent Peierls valley. In this regime, kinks are not fully formed and can be described by the
Line Tension (LT) model. Figure 1 illustrates the Peierls barrier and the transition states of the
kink-pairs for Regime I and Regime II.

An Arrhenius expression relating the activation enthalpy, strain rate and temperature can be
obtained by using a transition state theory as follows [91]:

γ̇ = γ̇0exp

(
−

∆H∗kp(τ
∗)

kBT

)
(2)

where γ̇0 is a reference strain rate, ∆H∗kp is the double kink activation enthalpy and kB is the Boltz-
mann constant. γ̇0 depends weakly on temperature and, when compared directly to the exponential
temperature dependence, can be approximated as a constant.

2.1 Elastic Interaction (EI) Model

In Regime I where T̂ (γ̇) < T < Tc (γ̇) is satisfied, the activation enthalpy associated with the
repulsion of a fully-formed kink-pair, ∆H∗kp, can be represented using the EI model as follows
[91]:

∆H∗kp = 2Hk−2

√
Tbh3

2
τ∗. (3)

Here, Hk is the formation enthalpy of an isolated kink, h is the kink height, b is the Burger’s vector
and T is the pre-logarithmic dislocation line tension factor of a screw dislocation. Using Equations
(2) and (3), a relationship between τ∗, temperature and strain rate in Regime I can be obtained:

τ∗I = τEI
p

(
1− kBT ln(γ̇0/γ̇)

2Hk

)2

= τEI
p

(
1− T

Tc (γ̇)

)2

(4)

where,

τEI
p =

2H2
k

Tbh3 and Tc (γ̇) =
2Hk

kBln(γ̇0/γ̇)
. (5)
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Note that the value of Tc in Equation (5) represents the temperature where the thermal part of the
flow stress becomes zero for a given strain rate. γ̇0 is a material constant that is used in Arrhenius
expression that relates the temperature and shear strain rate to the activation enthalpy in thermally
activated deformation mechanism. The value of γ̇0 can be estimated from γ̇0 = bρmwd, where ρm
is the mobile dislocation density, w is the attempt frequency and d is the lattice spacing.

  
 

26 
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Figure 2. Plots of (a) τ∗1/2 vs. temperature and (b) 1/Tc (γ̇) vs.
ln(γ̇) used to find material constants of the EI model.

Equation (4) can be fit to single crystal experiments to determine material paraters for the EI
model, e.g. Tc (γ̇), τEI

p , 2Hk, and γ̇0. For example, a linear fit to measured τ∗1/2 and temperature
can be used to obtain Tc (γ̇) and τEI

p for each strain rate while 2Hk and γ̇0 can be obtained by the
linear fit between 1/Tc (γ̇) and ln(γ̇) for Regime I. Figure 2 (a) and (b) show linear fits to tantalum
single crystal experiments [106] to obtain material parameters in the EI model.

2.2 Line Tension (LT) Model

At low temperatures (Regime II), τ∗1/2 is not linear in temperature and the LT model should be
used to describe flow in this regime. The activation enthalpy of kink-pair formation, ∆H∗kp, is
determined using a simple dislocation line tension model that incorporates the shape of the Peierls
potential in the formulation. Analytical expressions that relate the activation enthalpy, applied
stress, temperature and strain rate can only be obtained under certain circumstances. Thus, a
number of authors have introduced model potentials to facilitate solutions [91, 9, 45, 23, 40].
Notably, a sinusoidal potential has no analytical solution while those comprised of parabolas do
[27]. Some common analytical representations of Peierls potentials are shown in Figure 3.

Following the previous work by Seeger et al. [91, 106, 92, 94], ∆H∗kp using Eshelby Peierls
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Figure 3. Different representations of Peierls potential: Sinu-
soidal, Eshelby, antiparabolic and piecewise parabolic funtions.

potential can be approximated as follows:

∆H∗kp ≈ 2Hk−hbτ∗
√

S

U ′′(h)

(
1+ ln

τ̃
τ∗

)
, (6)

where S is the line tension associated with a screw dislocation, U(h) is the Peierls potential and

τ̃ = 2hU ′′(h)/b. For the Eshelby potential, τ̃ = 12
√

3τp, U ′′(h) = 6
√

2bτp
h and hb

√
S

U ′′(h) =
Hk√
3τp

are
satisfied [40]. The activation energy for the Eshelby potential in Equation (6) can be alternatively
written as follows [91]:

∆H∗kp = 2Hk

[
1− τ∗

2
√

3τp

(
1− ln

τ∗

12
√

3τp

)
+O(τ∗)

]
, (7)

where O(τ∗) is the higher order terms of the expansion. This form is useful in deriving a transition
between Regime I and Regime II as well as illuminating when the use of this approximation to
the Eshelby potential fails. If we assume ∆H∗kp for EI model and LT model are equal at the transi-
tion temperature (T̂ ) and ignore higher order terms in Equation (7), an implicit equation for τ∗ is
obtained [91]

2

√
Tbh3

2
τ∗ =

2Hkτ∗

2
√

3τp

(
1− ln

τ∗

12
√

3τp

)
. (8)
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Using the flow stress, τ̂ , obtained from single crystal experiments conducted at the transition
temperature, Equation (8) provides τp. In addition, 2Hk can be obtained from fitting kBT ln(γ̇0/γ̇)
versus τ∗(1+ ln(τ̃/τ∗) (Equation (6)) to measured single crystal data. Combining Equation (7)
with Equation (2) and ignoring higher order terms, an implicit equation for τ∗ is obtained [91]:

T
Tc

= 1− τ∗

2
√

3τp

(
1− ln

τ∗

12
√

3τp

)
. (9)

This is the procedure essentially used in refs [91, 106, 20, 53, 52, 94] with minor differences.
Note that above derivation for Eshelby potential [91] is valid for low values of τ∗ where higher
order terms in Equation (7) are ignored. At high stress and low temperature regime, ∆H∗kp and τ∗
using Eshelby potential can be approximated as follows [91, 21]:

∆H∗kp = 2Hk
5
6

[
2
3

(
1− τ∗

τp

)]5/4

and τ∗ = τp

(
1− 2

3

(
5
6

)4/5( T
Tc(γ̇)

)4/5
)
. (10)

An empirical LT model that approximate sinusoidal and two Eshelby models at low and high stress
regimes (Equations (9) and (10)) can be represented as follows:

∆H∗kp = 2Hk

(
1−
(

τ∗

τp

)4/5
)5/4

and τ∗ = τp

(
1−
(

T
Tc(γ̇)

)4/5
)5/4

. (11)

Alternatively, the LT model with antiparabolic representation of Peierls potential can be repre-
sented as follows [9, 23, 38]:

∆H∗kp = 2Hk

(
1− τ∗

τp

)2

and τ∗ = τp

(
1−
(

T
Tc(γ̇)

)1/2
)
. (12)

LT models adopting antiparabolic or sinusoidal representations of the Peierls potentials, Equa-
tions (11) and (12), allow more simple and direct representation of the flow stress compared to
Eshelby model. More general forms of activation enthalpy and τ∗ to estimate temperature and
strain rate effects are written as follows [64]:

∆H∗kp = 2Hk

(
1−
(

τ∗

τp

)p)q

and τ∗ = τp

(
1−
(

T
Tc

)1/q
)1/p

. (13)

Here, the values of p and q determine the shape of the energy barrier profile such that 0 ≤ p < 1
and 1 ≤ q < 2 are satisfied. Thus, p = 4/5 and q = 5/4 for sinusoidal and p = 1 and q = 2 for
antiparabolic LT models, respectively.
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In order to understand the difference in calculated τ∗ with the choice of Peierls potentials,
∆H∗kp/2Hk versus τ∗/τp is plotted using various representations of Peierls potentials as shown
in Figure 4. Here, Eshelby and Eshelby (high τp) represent τ∗ approximations using Equations
(9) and (10), respectively. For the piecewise parabolic function, the potential is parabolic with
upward concave parabola at y ≤ a/4 and 3a/4 ≤ y ≤ a, and a downward concave parabola at
a/4≤ y≤ 3a/4. As ∆H∗kp approaches zero, the Eshelby potential (Equation (9)) does not converge
to the expected value of τ∗ = τp, but instead to approximately τ∗ = 0.82τp. This deviation at high
stress regime for Seeger’s approximation using the Eshelby potential is due to the truncation of the
higher order terms in Equation (7).

Eshelby  
Eshelby (high τ*) 
Antiparabolic 
Piecewise parabolic 
Empirical 
Sinusoidal 

Figure 4. A plot of ∆H∗kp/2Hk versus τ∗/τp using different
Peierls potentials. Empirical model approximates sinusoidal and
two Eshelby models.

As shown in Figure 3, the shape of the piecewise parabolic function is very close to that of the
sinusoidal function which was shown to agree well with DFT results of Peierls potential for various
BCC refractory metals including molybdenum, tantalum, tungsten and niobium [105]. Despite
the obvious differences between the antiparabolic and piecewise parabolic representations (Figure
3), the functional forms of ∆H∗kp/2Hk versus τ∗/τp using two representations are quite similar
at high τ∗ where the LT model is applicable. On the other hand, the empirical formulation in
Equation (11) agrees very well to the sinusoidal representation of the Peierls potential and agrees
with Eshelby approximations at two stress regimes at low and high stress regimes, respectively.
Thus, antiparabolic and empirical representation of the temperature and strain rate dependent flow
stress also provides a simple model for accurately representing the flow behavior of BCC metals.
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2.3 Comparison with Experimental Data

The EI and LT models described in the previous sections are parameterized to tantalum single
crystal stress-strain data from the literature [106]. In this experimental work, Werner [106] used
ultrapure tantalum single crystals having residual resistance ratio (RRR) ∼= 14000 and interstitial
concentrations (C + N + O) less than 2 ppm to measure temperature and strain rate dependent
flow stresses between T = 80 K and 450 K and ε̇ = 2 ×10−5 s−1 and 6 ×10−3 s−1. τ∗ values
for single crystal tantalum were obtained from the Ackermann-Mughrabi technique which uses
pre-deformed specimens that are cyclic-saturated to produce very stable dislocation cell structure
and thus, minimize the variance in the observed response [2, 106].

Figures 5 shows the measured [106] and fitted τ∗ using the EI and LT models with the an-
tiparabolic Peierls potential for tantalum single crystals as a function of temperature for various
strain rates. It is shown that the EI and LT models accurately reproduce the temperature and strain
rate dependent flow stresses of tantalum single crystals in two temperature regimes. Note that
the transition stresses between two regimes, τ̂ , are approximately 93 MPa. Table 1 lists best-fit
material constants for the EI model and LT model using the antiparabolic Peierls potential.

Figure 5. A plot of measured and fitted τ∗ at different tempera-
tures and strain rates.

In order to see the effects of different Peierls potential shapes in LT model, Figures 6 compares
the best-fit τ∗ in Regime II using the antiparabolic, Eshelby and the empirical formulation. The
best-fit values of τp are 286 MPa, 267 MPa and 320 MPa for Eshelby, empirical and antiparabolic
LT models, respectively. Standard deviations between measured and fitted τ∗ using three models
are 3.3 MPa, 4.1 MPa and 3.6 MPa, respectively. Although τ∗ obtained from three LT models
exhibit relatively good agreement with measured data in all temperature ranges for tantalum, it
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Table 1. Best-fit material parameters used for the EI and LT mod-
els.

Parameter Value Parameter Value
τEI

p 406 MPa γ̇0 2.99×106 s−1

τLT
p 320 MPa 2HEI

k 0.85 eV
τ̂ 93 MPa

is shown that high τ∗ of tungsten at low temperatures is most accurately reproduced by the an-
tiparabolic LT model [69].

Figure 6. Line tension model predictions using the Eshelby, an-
tiparabolic and empirical representation of the Peierls potential.
All three models exhibit relatively good agreement with measured
temperature dependence.

2.4 Kink-Height and Preferred Slip System

The planes on which dislocation kinks nucleate, i.e. the slip planes, can be related to the height
of the dislocation kinks. Since the kink height, h, is directly related to the formation energy of
the kinks, it is hypothetically possible to extract the kink heights from experimentally determined
kink formation energies and compare with theoretical kink heights for different slip systems. For
example, the theoretical kink height for {110}, {112} and {123} slip planes are

√
2/3a0,

√
2a0,

and
√

8/3a0, respectively, where a0 is the lattice parameter. Therefore, kink heights to lattice
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parameter ratios for three slip systems are h{110}/a0 = 0.82, h{112}/a0 = 1.41 and h{123}/a0 =
1.63. Previous kink-pair studies consistently suggest that tantalum, molybdenum, tungsten and
niobium prefer {112} slip [106, 53, 52, 20, 94], with the exception of tungsten at low temperature
[20].
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literature regarding the dislocation line energy and line tension, it is useful to review the relevant
concepts in detail. The line energy, E, of a dislocation is related to the pre-logarithmic energy factor
E as E = E ln(R/ro) where R and ro are outer and inner cutoff radii respectively. The dislocation
line tension, S, is related to the dislocation line energy as S = E + d2E

d� 2 , where � is the angle between
the Burgers vector and the dislocation line direction. The pre-logarithmic line tension factor, T,
is then related to the pre-logarithmic line energy as T = E+ d2E

d� 2 . Since the pre-logarithmic line
tension factor is used throughout kink-pair theory, it must be computed accurately using anisotropic
elasticity. To do this, we use the integral formalism of anisotropic elasticity theory as described by
Bacon et al. [10] with the line tension evaluated using the integrals developed by Barnett et al. [12].
The computed pre-logarithmic energy and line tensions values are listed in Table 4 for screw and
edge dislocations, while the values computed over all angles are shown in Figure 6. As listed in
Table 4, it appears that the dislocation line tension factors reported previously for molybdenum
and tungsten [51, 18] are in error, and that the previous authors used line energy factors, instead of
line tension factors, in their calculations. For tantalum, we could not reproduce the reported fit to
the experimental data from their best-fit parameters. These differences lead to different slip plane
predictions.
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Table 5 lists calculated h and h/a0 using revised pre-logarithmic line tension factors for molyb-
denum, tantalum and tungsten. For Regime II, the kink height is calculated using the Eshelby
potential to compare with previous analyses [101, 51, 50, 18, 92]. As listed in Table 5, h/a0 ob-
tained from the fit to the single crystal experiments for molybdenum, tantalum and tungsten for
both EI and LT models range between 1.20 and 1.34. These h/a0 values are in between theoretical
values of h/a0 for {110} and {112} slip, 0.82 and 1.41, respectively. Therefore, these revised
kink height calculations suggest that it is difficult to conclusively support preferred slip system for
molybdenum, tantalum and tungsten. However, we do find that the calculated h/a0 for niobium is
close to theoretical value for {112} slip.
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Figure 7. Calculated pre-logarithmic factor of the dislocation line
tension and energy for tantalum.

The line energy, E, of a dislocation is related to the pre-logarithmic energy factor E as E =
E ln(R/ro) where R and ro are outer and inner cutoff radii respectively. The dislocation line tension,
S, is related to the dislocation line energy as S=E+ d2E

dθ 2 , where θ is the angle between the Burger’s
vector and the dislocation line direction. The pre-logarithmic line tension factor, T, is then related
to the pre-logarithmic line energy as T = E+ d2E

dθ 2 . Since the pre-logarithmic line tension factor
is used throughout kink-pair theory, it must be computed accurately using anisotropic elasticity.
To do this, we use the integral formalism of anisotropic elasticity theory as described by Bacon et
al. [13] with the line tension evaluated using the integrals developed by Barnett et al. [15]. The
computed pre-logarithmic energy and line tensions values are listed in Table 2 for screw and edge
dislocations, while the values computed over all angles are shown in Figure 7.

Kink heights can be obtained independently for Regime I and II using EI and LT models, as
follows:

h(EI) =
3

√
2H2

k
TbτEI

0
h(LT ) =

3

√
6H2

k
Tbτp

(14)
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Table 2. Calculated energy factor E and pre-logarithmic line ten-
sion factors T for tantalum and calculated kink height. Subscripts
s and e represent screw and edge dislocations, respectively.

Parameters Value Parameters Value
Ee 6.94×10−10 N a0 3.31 Å
Es 3.94×10−10 N b 2.87 Å
Te 1.84×10−10 N h(EI) 4.01 Å
Ts 1.23×10−9 N h(EI)/a0 1.21

T used [106] 1.18×10−9 N h(LT ) 3.96 Å
h(LT )/a0 1.20

Table 2 lists calculated h and h/a0 using revised pre-logarithmic line tension factors for molyb-
denum, tantalum and tungsten. For Regime II, the kink height is calculated using the Eshelby po-
tential to compare with previous analyses [106, 53, 52, 20, 94]. As listed in Table 2, h/a0 obtained
from the fit to the single crystal experiments for both EI and LT models are close to 1.20. These
h/a0 values are in between theoretical values of h/a0 for {110} and {112} slip, 0.82 and 1.41,
respectively. Therefore, these revised kink height calculations suggest that it is difficult to con-
clusively support preferred slip system for tantalum. It should be also noted that the kink height
calculations depend on τ0 and τp that are obtained by the extrapolations from the fit. Thus, h is
sensitive to the fit and any experimental scatter may have a large influence on h calculations. In
addition, this procedure assumes temperature and stress independent Peierls potential which may
also affect the fit and thus the predicted kink height. Therefore, kink-pair theory may not be the
optimum method to obtain accurate kink height estimates for determining the favorable slip planes
in BCC structured metals.
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3 BCC Crystal Plasticity Finite Element Model

Crystal plasticity is based on the assumption that the plastic deformation is due to dislocation
movement through the crystal lattice or slip. The development of constitutive equations that de-
scribe elastic-plastic deformation of crystals began with Taylor’s analysis of polycrystal defor-
mation [98] and later, comprehensive formulations have appeared [48, 12, 86]. Based on well-
established crystal plasticity formulations and adopting single crystal constitutive equations based
on dislocation kink-pair theory, BCC crystal plasticity finite element (CP-FE) model for tantalum
is developed. Constitutive equations are implemented into finite element code (JAS-3D) developed
at Sandia National Laboratories [17, 103, 73]. In this section, some important concepts and frame
work of the crystal plasticity model used in this work are presented. The model is then used to
simulate grain-scale deformation of single and polycrystalline tantalum.

3.1 Crystal Plasticity Formulations

The kinematics of crystal plasticity model used in this work follows multiplicative decomposition
of the deformation gradient [65, 88, 48, 86, 37, 73]. The total deformation gradient F is decom-
posed into elastic and plastic parts.

F = Fe ·Fp (15)

Here, Fe and Fp are the elastic and plastic part of the total deformation gradient, respectively. Fe
accounts for elastic distortion of the lattice while Fp defines the slip by the dislocation motion in the
unrotated configuration as shown in Figure 8. Note that Plastic deformation by Fp is an isochoric
and stress-free intermediate configuration in which the crystallographic lattice is unaltered and
unrotated with respect to the reference configuration. This stress-free intermediate configuration
can be obtained by unloading the deformed body from the current configuration. It is assumed
that this part results solely from continuous plastic shearing (dislocation motion) on well-defined
slip systems and dislocations pass completely through the material element of interest. Here, other
deformation mechanisms such as dislocation cross-slip, climb and twinning are not considered.

In Figure 8, sα
0 and nα

0 are the initial unit vectors in the slip direction and the slip plane normal
direction on α-th slip system, respectively. These two vectors define the α-th slip system uniquely
in each crystal. The slip direction vectors are regarded as embedded in the lattice and slip plane
normal is always perpendicular to the slip direction. As the crystal deforms, lattice is stretched and
rotated according to Fe. Therefore, rotated slip direction (sα ) and slip plane normal (nα ) of the slip
system α is given by,

sα = Fe · sα
0 and nα = nα

0 ·Fe
−1. (16)
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Figure 8. A schematics of multiplicative decomposition of the
deformation gradient.

The plastic deformation gradient, Fp, can be calculated by the crystal slip as follows [10]:

Fp = I+ γαsα
0 ⊗nα

0 . (17)

Here, γα is the amount of slip in α-th slip system. The velocity gradient, L in the current configu-
ration is written as:

L = Le +Lp = Ḟ ·F−1, (18)

where, Le and Lp are elastic and plastic parts of the velocity gradient, respectively, and can be
represented as follows:

Le = Ḟe ·Fe
−1 and Lp = Fe · Ḟp ·Fp

−1 ·Fe
−1. (19)

Assuming plastic deformation is caused by the dislocation slip, the plastic part of the velocity
gradient can be written as [86]:

Lp = ∑
α

γ̇αsα ⊗nα . (20)

The slip rate on α-th slip system, γ̇α , is represented as a power-law function of resolved shear
stress, τα , and slip resistance, gα , as follows [54]:

γ̇α = γ̇α
0

(
τα

gα

)1/m

(21)
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Here, γ̇α
0 is the reference shear rate and m is the rate sensitivity factor. For tantalum, γ̇α

0 = 0.001
s−1 and m = 0.012 are adopted [19, 57] and assumed to be identical for all slip systems. In this
work, 24 {110}〈110〉, as listed in Table 3, are used as supported by many atomistic simulations
and digital image correlation (DIC) experiments [104, 26].

Table 3. The twenty-four {110} slip systems.

α Slip System α Slip System α Slip System α Slip System
1 (011̄)[111] 7 (01̄1̄)[1̄1̄1] 13 (011̄)[1̄1̄1̄] 19 (01̄1̄)[111̄]
2 (1̄01)[111] 8 (101)[1̄1̄1] 14 (1̄01)[1̄1̄1̄] 20 (101)[111̄]
3 (11̄0)[111] 9 (1̄10)[1̄1̄1] 15 (11̄0)[1̄1̄1̄] 21 (1̄10)[111̄]
4 (1̄01̄)[1̄11] 10 (101̄)[11̄1] 16 (1̄01̄)[11̄1̄] 22 (101̄)[1̄11̄]
5 (01̄1)[1̄11] 11 (011)[11̄1] 17 (01̄1)[11̄1̄] 23 (011)[1̄11̄]
6 (110)[1̄11] 12 (1̄1̄0)[11̄1] 18 (110)[11̄1̄] 24 (1̄1̄0)[1̄11̄]

The second Piola-Kirchhoff stress, S, in the intermediate configuration can be represented as
follows:

S = C : E = det(Fe)Fe
−1TFe

−T , (22)

where, E is the Lagrangian strain tensor, T is the Cauchy stress, and C is the fourth order elastic
constant matrix. The Lagrangian strain tensor, E, can be expressed using deformation gradients as
follows:

E =
1
2
(
Fe
−T Fe− I

)
. (23)

The resolved shear stress of slip system α in Equation (21) is approximately,

τα = S : Pα
0 = S : (sα

0 ⊗nα
0 ) . (24)

For BCC metals, the slip resistance on α-th slip system, gα , can be decomposed into thermal
and athermal parts as follows [69]:

gα = min(τ∗EI,τ
∗
LT )+ τα

obs. (25)

Here, the first term represents temperature and strain rate dependent lattice resistance based on the
kink-pair theory as described in the previous section [91, 93, 9, 22]. At high temperature and low
stress regime (Regime I), EI model is used to represent τ∗:

τ∗EI = τEI
0

(
1− T

Tc

)2

= τEI
0

(
1− kBT ln(γ̇0/γ̇)

2Hk

)2

. (26)
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Here, Tc is the critical temperature, Hk is the enthalpy of an isolated kink and γ̇0 is the refer-
ence strain rate. For low temperature and high stress regime (Regime II), LT model using the
antiparabolic representation of Peierls potential [9] is used as follows:

τ∗LT = τLT
0

(
1−
(

T
Tc

)1/2
)

= τLT
0

(
1−
√

kBT ln(γ̇0/γ̇)
2Hk

)
. (27)

Note that in most CP-FE models for FCC metals, a thermal part of the flow stress is ignored. On the
other hand, τα

obs represents obstacle stress and regarded as an athermal part of the resolved shear
stress for slip system α . Note that non-Schmid effect is ignored in this work which was shown
to have negligible effect at room temperature deformation [73]. In comparing Equation (25) to
Equation (1), gα corresponds to τ(T, γ̇), min(τ∗EI,τ

∗
LT) to τ∗(T, γ̇), and τα

obs to τ̄ .

The obstacle strength,τα
obs, is formulated with forest dislocation densities as follows [97]:

τα
obs = Aµb

√√√√
NS

∑
β=1

ρβ . (28)

Here, A is a material constant usually in the range of 0.3 - 0.6, µ is the shear modulus, b is the
Burger’s vector, NS is the total number of slip systems, and ρβ is the dislocation density in slip
system β . It is assumed that initial dislocation densities are identical for all 24 slip systems and are
obtained from Equation (28) and τα

obs(t = 0)=τ̄ . Then, the total dislocation density for α-th slip
system is obtained by using a standard phenomenological equation as follows [62]:

ρ̇α =


κ1

√√√√
NS

∑
β=1

ρβ −κ2ρα


 · |γ̇α |, (29)

where, κ1 and κ2 are material parameters representing generation and annihilation of dislocations,
respectively. Thus, τα

obs evolves as the slip of dislocations on the slip system occurs and governs the
strain hardening of the model. The elastic constants and material constants used in the simulations
are listed in Table 4.

Table 4. Elastic constants and material constants used in crystal
plasticity model of tantalum.

C11 (GPa) C12 (GPa) C44 (GPa) b (Å) τobs,0 (MPa)
267 161 82.5 2.87 27
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3.2 Yield Stress Predictions

The kink-pair-derived flow rules for tantalum described in the previous section were implemented
into a crystal plasticity code to simulate uniaxial tension of single and polycrystals. Single crystal
CP-FEM simulations were conducted using a single hexahedral finite element with a crystal orien-
tation of [1̄49] along the tensile axis; this particular orientation was chosen because it is the softest
orientation, with the highest degree of resolved shear on the slip plane. Thus, the resolved shear
stresses from existing experimental data are converted to a uniaxial tensile stress by adding in τobs,0
and using a Schmid factor of 0.5. These temperature and strain rate dependent tensile stresses for
tantalum single crystals were compared with predicted yield stresses from CP-FEM simulations
using a 0.2% offset criterion. Note that flow stresses obtained from Ackermann-Muchrabi cyclic
tests are compared with yield stress from tensile simulations. Given that the rate of hardening in
tantalum is very low, flow stress obtained from the Ackermann-Mughrabi technique can be as-
sumed to be comparable to the yield stress. In addition, temperature and strain rate dependent τ∗
would have no significant effect on pre-deformation. As shown in Figures 9, the flow rules cali-
brated to single crystal data in the two temperature regimes provide accurate CP-FEM predictions
of temperature and strain rate dependent yield stresses of single crystal tantalum.

Figure 9. Measured and predicted yield stresses versus tempera-
ture and strain rates for tantalum single crystals in [1̄49] direction.

To simulate polycrystal deformation, we used a three-dimensional cubic specimen having 125
grains (5×5×5) with 64 elements per grain (total of 8,000 elements) as shown in Figure 10 (a).
Each grain was assigned a random initial crystal orientation from a uniform distribution. Uniax-
ial tension was simulated with (i) varying temperature at constant strain rates of 10−4 s−1, and
(ii) varying strain rate at room temperature. Predicted yield stresses are compared with various
experimental data from both the literature and our own tensile tests.
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Figure 10. (a) Schematic of an idealized 3D grain assembly used
for polycrystal simulations, and (b) the maximum Schmid factors
within the stereographic triangle. Single crystals oriented for [1̄11]
and [1̄49] loading directions have the maximum and minimum val-
ues of 0.50 and 0.27.

Figures 11 (a) and (b) show measured and predicted yield stresses versus temperature and strain
rate, respectively, in polycrystalline tantalum. CP-FEM simulations of yield stresses (red circles)
exhibit the same trends observed in the experimental data from various sources [51, 85, 100, 3, 29].
This agreement suggests that the thermal part of the flow stresses in polycrystals is accurately pre-
dicted using the CP-FEM simulation informed by the single crystal data. Figure 10 (b) shows the
maximum Schmid factors of slip system within the stereographic triangle for {110}〈111〉. Single
crystals oriented for [1̄11] and [1̄49] tension have minimum and maximum Schmid factors of 0.27
and 0.50, respectively. Thus, [1̄11] and [1̄49] single crystals provide yield stresses of the hardest
and softest orientations, respectively. Therefore, these cases (dashed lines in Figures 11 (a) and
(b)) provide an estimate of the upper and lower limits of strength in polycrystals (neglecting other
microstructural effects such as hardening due to grain boundaries and non-Schmid effects). As
shown in Figures 11 (a) and (b), various experimental data from the literature fall within this sim-
ple depiction of upper and lower limits. This is especially encouraging since the model calibration
was performed using data from only single crystal tests.

3.3 Strain Hardening Predictions

In order to assess the strain hardening predictions of the model, hardening parameters were fit to
reproduce the measured stress-strain response of polycrystal tantalum at 298 K and ε̇ = 10−4 s−1

[51]. A three-dimensional polycrystal mesh described in the previous section was used to parame-
terize the hardening parameters. The model was then used to predict the stress-strain responses at
78 K and 144 K. For all three temperatures, the best-fit hardening parameters obtained from 298
K simulations, k1 = 1.4×106 m−1 and k2 = 20. Although we assume that τobs is independent of
temperature and strain rate in the model, τobs,0 is parameterized for each temperature to accurately
reproduce the yield and to fit the hardening behavior. τobs,0 = 66 MPa, 27 MPa, and 19 MPa were
used for 78 K, 144 K and 298 K simulations, respectively.
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(a) (b) 

Figure 11. A plot of measured and predicted yield stresses of
polycrystals at (a) different temperatures and (b) different strain
rates at 300 K. Dashed lines represent yield stress predictions using
[1̄11] and [1̄49] single crystals.

As shown in Figure 12 (a), the model accurately reproduces stress-strain response at 298 K and
predicts hardening behavior at two other temperatures up to the strain before necking or strain soft-
ening occurs. It should be noted, however, that the current model does not capture the upper yield
point observed at small strains that attributed to interaction between dislocations and impurities
such as hard precipitations. On the other hand, the model using dislocation density based harden-
ing rule predicts lower strain hardening rate for lower temperature and larger strains as shown in
Figure 12 (b).

Note that the current model does not directly consider possible temperature dependent mecha-
nisms that affect strain hardening (e.g. temperature dependent dislocation evolution or mean free
path of mobile dislocations). The predicted temperature dependent strain hardening in Figure 12
(b) is attributed to different yield stress arising from τobs which in turn changes initial dislocation
density for different temperatures. Thus, temperature dependent strain hardening would not be
observed in conventional slip-based or isotropic hardening formulations.
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(a) (b) 

Figure 12. A plot of (a) measured [51] and predicted stress-strain
curves and (b) strain hardening rates of tantalum polycrystal at
different temperatures.
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4 Polycrystalline Models Incorporating Effects of
Temperature and Strain Rate

Several continuum-scale constitutive models exist for describing the flow behavior of polycrys-
talline BCC metals at high temperatures and strain rates [56, 5, 55, 110, 41, 59]. These models
are generally fit to experimental data of polycrystals to obtain material constants and reproduce
measured flow behavior. Using an analogous approach, we fit some of these constitutive models to
CP-FEM polycrystal simulation results in an attempt not only to investigate how well these mod-
els reproduce temperature and strain rate dependent yield behavior of polycrystalline tantalum, but
also to construct a simple polycrystal constitutive model that can be efficiently used in other appli-
cations, e.g. large scale metal forming analysis or shock applications, without requiring extremely
large and expensive CP-FEM calculations.

4.1 Continuum Scale Polycrystalline Models

Three most widely used constitutive models that incorporate the effects of temperature and strain
rate are Johnson-Cook (JC) model [56, 55], Zerilli-Armstrong (ZA) model [110] and Mechanical
Threshold Stress (MTS) model [41]. The JC, ZA and MTS models have the following forms to
represent the flow stress:

σ JC = (A+B · εn
p)(1+C · lnε̇)(1−T ∗m), (30)

σZA =C0 +C1exp(−C3T +C4T lnε̇)+C5εn
p, (31)

σMT S = σ0 +σ1εn
p + σ̂

(
1−
(
− kB

G0
T ln

ε̇
ε̇0

)1/q
)1/p

, (32)

where, εp is the plastic strain, ε̇ is the strain rate, T ∗ is the homologous temperature (T ∗ = (T −
Troom)/(Tm−Troom)), G0 is the activation energy per atom to overcome obstacles, ε̇0 is the reference
strain rate, and the p and q in Equation (32) represent parameters that determine the shape of the
energy barrier profile such that 0≤ p < 1 and 1≤ q≤ 2 [64]. Note that these models adopt power-
law Ludwik hardening [74]. If we assume that the yield stress is obtained at εp = 0, Equations
(30)-(32) can be rewritten as follows:

σ JC
y = A(1+C · lnε̇)(1−T ∗m), (33)
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σZA
y =C0 +C1exp(−C3T +C4T lnε̇), (34)

σMT S
y = σ0 + σ̂

(
1−
(
− kB

G0
T ln

ε̇
ε̇0

)1/q
)1/p

. (35)

Note that ε̇ in Equations (33) - (35) represent the macroscopic strain rates of polycrystalline
while γ̇ used in the EI and LT models denote resolved shear strain rates of single crystals. The
EI and LT models adopting antiparabolic Peierls potential have the same form as that of the MTS
model with p = 0.5, q = 1 and p = 1, q = 2 in two different temperature/ stress regimes, respectively.
In contrast, most MTS models are generally fit with arbitrary chosen values of p and q for all
temperature and strain rates [81, 30, 85, 82, 83, 80]. Despite the similar functional forms of the
EI/ LT models with the MTS model, the EI and LT models are derived from physics of dislocation
motion via kink-pair nucleation while the MTS model is a generic phenomenological model of
thermally activated flow.

4.2 Comparisons with CP-FEM Data

The JC, ZA, and MTS models in Equations (33) - (35) require three, four and six material constants
to represent the yield stress, respectively. In order to parameterize these material constants, yield
stresses obtained from polycrystal CP-FEM simulations (red circles in Figures 11) are fit to each
constitutive equation using a least-squares fitting procedure. For the JC model, we use T ∗ =
T/Tmelt to capture yield stresses below the room temperature and avoid T ∗ becoming a negative
value. For the ZA and MTS models, C0 and σ0 representing an athermal part of the yield stress are
determined from the yield stresses at high temperature/ low strain rate, 82 MPa. Previous studies
adopting the MTS model usually assume constant values of p and q in the range of 0 < p≤ 1 and
1≤ q≤ 2 [64] while ε̇0 is estimated from ε0 = bρmw0d where ρm is the mobile dislocation density,
w0 is the attempt frequency and d is the lattice spacing. Table 5 lists material parameters used in
MTS models in previous studies [82, 81, 80, 83, 30, 85]. Note that in most cases, σ̂ is the only
fitting parameter that is obtained from experimental data. In this work, all six parameters in the
MTS model, p, q, ε̇0, σ0, σ̂ and G0, are determined directly from the fit to the polycrystal CP-FEM
simulations. The MTS model in Equation (35) is only applicable when ε̇ ≤ ε̇0 and − kB

G0
T ln ε̇

ε̇0
≤ 1

are satisfied. However, at very high temperature/ low strain rate regime, it is numerically possible
to have − kB

G0
T ln ε̇

ε̇0
larger than 1. In such case, we assume that there is no thermal/ strain rate

dependent stress contributions and use σ0 to represent the yield stress.

Figures 13 (a) and (b) compare yield stresses fit to CP-FEM simulations using three constitu-
tive formulations. It is shown that yield stresses are accurately reproduced by the MTS and ZA
models, while the JC model produced a relatively poor-quality fit, consistent with the earlier work
on tantalum and tantalum-tungsten alloys [29]. Note that the JC model has a linear relationship
between the yield stress and the logarithm of strain rate, and thus is not easily able to reproduce
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Table 5. Material parameters used in MTS models in previous
studies [82, 81, 80, 83, 30, 85].

References σ̂ (MPa) G0 (eV) ε0 (s−1) p q
Nemat-Nasser [82] 1100 1 1×108 2/3 2
Nemat-Nasser [83] 1140 1 5×108 2/3 2

Park [85] 1100 1 5×108 0.3 1

(a) (b) 

Figure 13. A plot of yield stresses fit to CP-FEM simulations
using the JC, ZA and MTS model for (a) different temperature and
(b) different strain rates at 300 K.

temperature and strain rate dependent flow stresses simultaneously. Note that the predicted yield
stresses saturate at high temperature/ low strain rate regimes for the MTS model where − kB

G0
T ln ε̇

ε̇0
becomes larger than 1 and the yield stress is equal to σ̂ , consistent with CP-FEM predictions. Table
6 lists the standard deviations of yield stresses between CP-FEM simulations and three continuum
models. It is clearly shown that the temperature and strain rate dependent yield behavior is most
accurately reproduced using the MTS model. Table 7 lists best-fit material parameters for the three
models. For the MTS model, the best-fit p and q obey 0 < p≤ 1 and 1≤ q≤ 2 [64] and the best-fit
G0 is 1.96 eV, the same order of magnitude as 2Hk obtained from the kink-pair analysis. Also, C1
and σ̂ representing the thermal part of the flow stress at 0 K in the ZA and MTS models show good
agreement.

In comparing the kink-pair model and the MTS model, γ̇0 corresponds to ε̇0, 2Hk to G0 and τp
to σ̂ . For BCC polycrystals, it can be estimated that G0 = 2Hk, ε̇0 = Mγ̇0 and σ̂ = Mτp where M is
the average Taylor factor [98]. Thus, the MTS model can be fit to CP-FEM polycrystal predictions
with material parameterss informed from the kink-pair analysis. Values in parentheses in Tables 6
and 7 represent values obtained using G0 = 2Hk and ε0 = Mγ̇0, obtained from from the kink-pair
analyses while σ̂ , p and q values are fit to CP-FEM predictions.
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Table 6. Standard deviations of yield stresses between CP-FEM
predictions and continuum fits using the JC, ZA and MTS models
(unit: MPa).Values in parentheses in MTS model represent fitting
results using G0 = 2Hk and ε̇0 = Mγ̇0, obtained from the kink-pair
analysis.

Models Std. dev (MPa)
JC model 78.3
ZA model 28.2

MTS model 10.2(48.0)

Table 7. Best-fit constants used for the JC, ZA and MTS models.
Values in parentheses in MTS model represent fitting results using
G0 = 2Hk and ε̇0 = Mγ̇0, obtained from the kink-pair analysis.

Models Parameters Values

JC
A (MPa) 1848

C 0.058
m 0.109

ZA

C1 (MPa) 779
C3 (K−1) 3.18×10−3

C4 (K−1· s−1) 4.08×10−4

MTS

G0 (eV) 1.96 (0.85)
ε̇0 (s−1) 2.8×103 (9.1×1010)
σ̂ (MPa) 772 (767)

p 1.00 (0.69)
q 1.67 (1.00)

It is shown in Table 6 that the MTS model using material parameters informed from the kink-
pair model reproduces yield behaviors relatively well, but not as accurate as the MTS model with
all parameters fit to the data. Using material parameters informed from kink-pair theory still pro-
vides better predictions than the JC model; furthermore, this approach has the advantage of being
more physically based. As listed in Table 7, the best-fit σ̂ obtained from two MTS fits agrees well
while the other material parameters, G0, ε̇0, p and q, do not show obvious correlations. This im-
plies that the continuum-scale model is able to reproduce the observed macroscopic polycrystalline
behavior but it is unable to predict the single crystal, and hence dislocation-scale, properties. Thus,
the multi-scale formulation provided here allows one to propagate lower-scale information up to
the continuum, but demonstrates that larger length scale models cannot provide insight into the
physics at lower length scales, which is perhaps not surprising.
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4.3 Simulation of Taylor Impact Test

In this section, the constitutive model described in the previous section is used in high-rate solid
dynamics simulations of a common benchmark application: Taylor cylinder impact tests of a pro-
jectile specimen impinging on a hard target [95]. This method is often used to validate solid
dynamics simulation codes and models; and it provides a simple, convenient, and robust approach
for subjecting a single specimen to a wide range of strain rates across its length.

The simulation was conducted using ALEGRA, Lagrangian-Eulerian multi-physics code de-
veloped at Sandia National Laboratories. Figure 14 shows a schematic of a Taylor impact test. The
simulated projectile is a tantalum cylinder with dimensions of 38.1 mm in length and 7.62 mm in
diameter, and impinges on a hard surface of 4340 steel at a velocity of 175 m/s. Simulations were
conducted at standard atmospheric conditions described by a temperature of 298 K and pressure
of 1 bar.

175 m/s 

Ta 

4340 steel 

38.1 mm 

7.6 mm 

x 

z 

y 

Figure 14. A schematic of a Taylor cylinder impact test. Tan-
talum cylinder impinges on 4340 steel block at a velocity of 175
m/s.

The three-dimensional Lagrangian simulations were conducted with 9,120 hexahedral finite el-
ements in the tantalum projectile, and a target surface consisting of a block of 4340 steel described
by 62,500 hexahedral finite elements. A three-dimensional quarter-symmetry condition was used.
The MESQUITE remeshing algorithm was imposed at every time step in the ALEGRA simula-
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tions to avoid numerical artifacts associated with ill-conditioned finite elements evolving during
deformation. The contact between the projectile and target was assumed to be frictionless.

In ALEGRA, each material requires models for equation of state (EOS) and elastic-plastic
deformation (yield model). For tantalum projectile and steel plate, Mie-Grüneisen EOS model and
Sesame tabular EOS data were used, respectively [58]. For the yield model in tantalum, LT model
in dislocation kink-pair model suitable for high rate regime in Equation (12) is adopted. The strain
hardening rate is represented by an empirical law using tanh function as follows [44]:

∂σ
∂εp

= θ0

(
1− tanh(ασ/σs)

tanh(α)

)
. (36)

Here, εp is the equivalent plastic strain, θ0 and α are the material parameters and σs represent
temperature and strain rate dependent saturation stress that can be represented as follows [62]:

σs = σ0
s

(
γ̇
γ̇s

0

) kBT
µb3A

. (37)

Here, A, α and γ̇s
0 are the material constants.

For 4340 steel, Zerilli-Armstrong yield model having the following form was used [110].

σZ =C1 +C2 exp(−C3T +C4T ln ε̇p)+C5εN
p . (38)

where C1 - C5 and N are the material parameters. Table 8 lists material parameters used in yield
models for tantalum and 4340 steel.

Figure 15 (a) compares measured [75] and simulated tantalum projectile after the impact. Tay-
lor impact experiment was conducted under the same condition as the simulation. The simulated
image was captured after the projectile reflected off the steel plate such that the centerpoint of the
bottom of the (deformed) specimen reached its initial position of approximately 0.1 mm above the
target surface. It is shown that the simulated specimen shape shows relatively good agreement with
experimental data.

The profiles of the projectile’s shapes after impact are shown in Figure 15 (b), which contains
x-y coordinates along the outer surface from the ALEGRA simulation and previously published
experiments on tantalum Taylor impact tests [75]. The model predictions agree well with the
experiments. The total lengths of the deformed projectile was 28.4 mm from the simulation and
27.8 mm from the experiment, deviating approximately 2%. Deviations from the simulations may
attribute to lack of incorporating the texture, plastic anisotropy and accurate friction between the
surface and the projectile. Furthermore, consideration of deformation twinning observed at high
strain rate regimes [77, 28] may be required for more accurate prediction.

40



Exp. Sim. 

(a) (b) 

Figure 15. (a) Specimen shapes and equivalent plastic strain
maps predicted by ALEGRA simulations of impact of a three-
dimensional, quarter-symmetric tantalum specimen into a 4340
steel plate and (b) Projectile shape profiles (not to scale) predicted
by all four ALEGRA simulations, with results reported from ear-
lier Taylor cylinder impact experiments [75] (using the measure-
ments from the minor axis).
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Table 8. Material parameters used in ALEGRA yield model for
tantalum and 4340 steel.

Materials Parameters Values

Tantalum

σ0
s 575 GPa

γ̇s
0 107 s−1

θ0 2 GPa
b 2.86 Å
α 2.75
A 1.6

4340 steel

C1 89.8 MPa
C2 2.07 GPa
C3 17.4 K−1

C4 0.56 K−1

C5 1.03 GPa
N 0.531
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5 Validation of Crystal Plasticity Model with Experiments

In order to validate the proposed BCC CP-FEM model, plastic deformations of coarse-grained tan-
talum specimens were simulated and compared with experimental measurements of intragranular
strain and crystal rotation fields. To mitigate the effects of unknown subsurface microstructure,
tantalum tensile specimens with millimeter-sized grains provided nearly constant microstructure
through the thickness of the tensile bar. Experimental validation was performed using (1) electron
backscatter diffraction (EBSD) to map intragranular rotation, (2) high-resolution digital image
correlation (HR-DIC) to map the surface strain field, and (3) surface profilometry to map the out-
of-plane topographic distortion. Furthermore, measured surface strain fields were projected onto
the finite element mesh to compare measured and simulated data on a point-wise basis.

5.1 Experimental Procedures

Flat tensile specimens were machined from a 1 mm thick rolled sheet of 99.9 % pure tantalum
(Goodfellow Corporation), using electro-discharge machining (EDM). The gage section had a
slight hourglass radius of curvature of 51 mm with nominal specimen dimensions shown in Figure
16. Heat treating specimens at 2000◦C for 10 hours and 10−6 Torr in a vacuum furnace created
specimens with millimeter-sized grains in pseudo-two-dimensional grain structures [26]. Speci-
mens were then polished to a surface finish suitable for EBSD measurements [18]. A region of
interest was defined on each specimen, measuring approximately 5.3 mm × 1.5 mm (specimen
width), using scribe marks near the region boundaries; these fiducial markers were used for spa-
tially aligning the multiple data sets (e.g. EBSD and DIC data).
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Figure 16. Nominal dimensions of the tantalum tensile speci-
mens used in this work (unit:mm).
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2 A Ta oligocrystal was made by annealing. This 
has even fewer neighborhood effects. 
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Figure 17. A plot of the initial crystal orientations of tantalum
oligocrystal spencimen 1 within the region of interest obtained
from the EBSD measurements. Lower figures show initial crys-
tal orientations in inverse pole figures for RD, TD and ND.

The initial crystal orientations within the region of interest of each specimen were measured
using Channel 5 software (Oxford Instruments) inside a Zeiss Supra 55VP field emission scanning
electron microscope (SEM). Figures 17 - 19 show the initial crystal orientations with respect to RD,
TD and ND of three tantalum oligocrystal specimens. Multiple EBSD scans were stitched together
to cover the whole region of interest. Grain boundaries were defined as a 5◦ misorientation across
the 5 µm (specimen 1) or 4 µm (specimens 2 and 3) EBSD step sizes. Totals of 15, 17 and 12
grains were identified within the regions of interest for specimens 1, 2 and 3, respectively. The
average initial grain orientations in Bunge Euler angles relative to the globally defined axis are
listed in Table 9. It was observed that all three specimens had no significant initial texture, i.e.
initial grain orientations were spread out in the inverse pole figure.

To confirm the two dimensional nature of the microstructure in the gage section of the samples,
Figure 20 shows the grain boundaries on the front and back sides of the specimens identified with
EBSD measurements and etching. The dashed line in Figure 20 (b) represents a presumed grain
boundary that was not revealed by etching. Although the grains were not perfectly columnar, most
of the grain boundaries appeared to be within a few degrees of perpendicularity of the surface.
In the associated crystal plasticity models, the grains were assumed to be perfectly columnar with
subsurface crystal orientations identical to the corresponding surface measurements on an element-
wise basis.

Tensile tests were conducted in a custom-built in situ load frame, Figure 21 (a), inside a Zeiss
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Figure 18. A plot of the initial crystal orientations of tantalum
oligocrystal spencimen 2 within the region of interest obtained
from the EBSD measurements. Lower figures show initial crys-
tal orientations in inverse pole figures for RD, TD and ND.
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Figure 19. A plot of the initial crystal orientations of tantalum
oligocrystal spencimen 3 within the region of interest obtained
from the EBSD measurements. Lower figures show initial crys-
tal orientations in inverse pole figures for RD, TD and ND.
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Table 9. The initial crystal orientations of three tantalum
oligocrystal specimens (Bunge Euler angles in degrees).

Specimen 1
Grain φ1 Φ φ2 Grain φ1 Φ φ2 Grain φ1 Φ φ2

1 136.7 45.0 86.8 6 135.9 45.0 71.9 11 135.9 52.8 66.2
2 135.8 28.6 74.4 7 142.8 48.6 54.6 12 140.0 51.6 43.6
3 132.4 25.9 87.5 8 132.6 43.8 129.1 13 136.3 51.8 17.2
4 132.5 40.6 65.9 9 131.3 47.8 135.0 14 132.9 47.3 82.3
5 131.1 35.2 106.5 10 124.6 50.7 74.1 15 136.9 45.9 62.3

Specimen 2
Grain φ1 Φ φ2 Grain φ1 Φ φ2 Grain φ1 Φ φ2

1 148.9 49.2 38.3 7 138.8 24.0 12.4 13 149.5 44.8 162.9
2 145.0 44.7 9.9 8 134.1 52.9 30.6 14 131.3 39.9 21.4
3 136.7 52.0 12.4 9 136.5 53.8 73.9 15 136.7 51.0 168.1
4 134.4 24.9 168.4 10 142.6 40.2 158.0 16 140.9 50.1 125.6
5 125.9 50.7 136.2 11 137.2 43.0 13.8 17 115.4 16.9 164.5
6 130.5 52.7 72.4 12 140.5 44.3 173.4

Specimen 3
Grain φ1 Φ φ2 Grain φ1 Φ φ2 Grain φ1 Φ φ2

1 130.1 44.4 46.5 5 76.6 38.7 47.7 9 46.7 52.4 49.6
2 99.6 51.3 45.1 6 46.3 23.9 56.3 10 22.6 11.6 82.0
3 61.1 44.8 35.2 7 73.2 42.8 36.2 11 23.7 33.4 51.0
4 72.1 15.4 23.7 8 119.0 53.0 47.5 12 79.7 27.2 42.3

Supra 55VP field emission SEM. The tensile stage was specifically designed and built at Sandia
National Laboratories to be used for in situ EBSD experiments [16, 25]. The load frame uses
a linear variable differential transformer (LVDT) to measure displacement, and a custom-built,
strain-gage-based transducer to measure applied load. The tensile tests were performed in dis-
placement control in a stepwise fashion with ε̇ = 10−4 s−1 up to the final strain levels of 6.8 %
and 19.2 % for specimens 1 and 2, and ε̇ = 10−3 s−1 up to the 10.0 % final strain for specimen 3,
respectively. Figure 21 (b) shows the stress-strain response of three tantalum oligocrystals. Note
that for specimen 1, EBSD and DIC data was collected at four applied strain levels, εapp = 0, 0.8,
4.2 and 6.8 %. For specimen 2, EBSD data was collected at the initial, εapp = 0% and final strain
level, εapp = 19.2%, while the DIC images were captured at εapp = 4.0,7.5 and 11.0%. For spec-
imen 3, both EBSD and DIC data was collected at five strain levels, εapp = 0, 2, 4, 6, 8 and 10 %.
Figures 22 (a) -(c) show the surface images of initial and deformed specimens.

To obtain the local strain fields throughout the region of interest, a recently developed HR-DIC
technique was employed [24, 26]. After the initial EBSD scan, specimens were speckled with 300
nm copper powder. DIC results were obtained using Vic2d software (Correlated Solutions, Inc.).
The first specimen was loaded while imaging it with an optical microscope at an image scale of
460 nm/pixel so that each image measures 640 by 478 µm. A mosaic array of 48 overlapping
images (12 × 4) were stitched together to cover the region of interest, effectively resulting in a
41 megapixel image with 3.8 million DIC correlation points. The stitching of multiple images to
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Grain boundary (Front) Grain boundary (Back) 

Specimen 1 Specimen 2 

Figure 20. A plot of grain boundaries identified on front and back
sides of tantalum oligocrystal specimens. Backside grain bound-
aries were determined by EBSD for specimen 1 and by etching for
specimen 2. The dashed line on specimen 2 indicates the likely lo-
cation of a backside grain boundary. The indentation mark in the
center of a grain in (a) was due to an experimental mishap: the tip
of a forcep damaged this spot on the polished specimen surface.

form a higher fidelity map differentiates high resolution DIC from traditional single-image DIC.
The subset size and spacing for DIC measurements was 9.7 × 9.7 µm (21 × 21 pix) and 1.4
µm (3 pix), respectively. Crystal orientation measurements by EBSD were obscured when the
copper speckles were on the specimen surface. To obtain both HR-DIC and EBSD measurements
at each strain increment, the speckle pattern was repeatedly removed and reapplied to specimen 1.
Consequently, only incremental strain measurements were available for specimen 1 (i.e. the strain
accumulated during each loading step, not the total strain).

Loading of the second specimen took place inside the scanning electron microscope at roughly
twice the magnification of the first specimen resulting in an image scale of 247 nm/pixel. The
physical size of each image measured 759 by 570 µm. An array of 48 overlapping images (12 ×
4) were used to cover the region of interest, effectively resulting in a 144 megapixel image with
15.1 million DIC correlation points. The subset size and spacing for DIC measurements was 20
× 20 µm (81 × 81 pix) and 0.74 µm (3 pix), respectively. For oligocrystal specimen 3, strain
field results were obtained by stitching DIC results from 12 image locations (2 × 6) at each strain
level. The image scale for these measurements was 439 nm/pix with individual images having a
resolution of 3,072 × 2,304. DIC results were obtained with a subset size of 36× 36 µm (81 × 81
pix), a step size of 8 pixels (3.5 µm), and a strain window of 5 ×5 data points.

For surface strain field analysis, agrangian strain fields, εxx, εyy, and εxy, suitable for a large
deformation, were used. Lagrangian finite strain tensor is defined as follows:

εi j =
1
2
(
ui, j +u j,i +uk,iuk,i

)
, (39)

where u is the displacement field. After loading the first specimen, the topography of the front
surface was measured using a a Wyco NT1100 optical profiling system with a 50× objective lens.
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Figure 21. (a) An in situ tensile stage allowed loading to be per-
formed inside a scanning electron microscope or an optical micro-
scope. (b) Stress-strain data of three tantalum oligocrystal speci-
mens. Dashed lines represent fitted stress-strain curves using the
CP-FEM model.

The specimens were laid flat with negligible amounts of residual bending and torsion. The out-of-
plane displacements w, on the front surface were spatially differentiated to calculate the displace-
ment gradients ∂w/∂x and ∂w/∂y using the observation that the specimen surface was flat before
loading (i.e. zde f ormed = w). As will be shown in the results section, the measured deformation
gradients provide a useful metric for 3D model validation (more useful than the raw out-of-plane
surface profile, w). Measurements of the out-of-plane strains εxz, εyz, and εzz were unavailable
since the complementary quantities ∂u/∂ z, ∂v/∂ z, and ∂w/∂ z (where u and v represent the in-
plane displacements in the x and y directions, respectively) could not be measured.
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Figure 22. Surface images of specimens 1 - 3 at different applied
strains.
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5.2 Simulation Procedures

The entire gage sections of tensile specimens were meshed using a total of 1,426,650, 1,664,150
and 2,140,020 eight-noded hexahedral finite elements for specimens 1, 2 and 3, respectively. As
shown in Figure 23, it is assumed that grains are perfectly columnar. A splined mesh was used
to create smooth grain boundaries with finer elements placed near grain boundaries as more het-
erogeneous deformation near the grain boundary was expected. To capture the through-thickness
stress and strain distributions and to maintain good aspect ratios of finite elements, 50 (specimens
1 and 2) and 60 (specimen 3) through-thickness elements were used. Thus, the total numbers of
surface elements are 28,533, 33,283 and 35,667 for specimens 1, 2 and 3, respectively. Note that
the total number of EBSD data points (or pixels) on the surface, are around 319,000, 485,000 and
782,000, respectively, are about an order of magnitude larger than the total numbers of surface
elements used in the simulations.

x z 

y 

(a) Specimen 1 (b) Specimen 2 

(c) Specimen 3 

Figure 23. Finite element meshes of three oligocrystal speci-
mens. The gage sections were meshed using the total numbers of
1,426,650, 1,664,150 and 2,140,020 hexahedral finite elements for
oligocrystal specimens 1, 2 and 3, respectively.

The crystallographic orientation of each finite element in the simulation was determined by su-
perimposing the mesh onto the EBSD map; each element was assigned the grain orientation corre-
sponding to the nearest EBSD pixel. Note that crystal orientations were assigned on a element-wise
(not grain-wise) basis, and that the crystal orientations were initially identical through the thick-
ness (i.e. initial surface orientations are extruded through the specimen thickness). Figures 24 (a) -
(c) show initial crystal orientations of three oligocrystals in RD, TD and ND. It is shown that initial
crystal orientations used in the simulations accurately reproduces measured crystal orientations in
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Figures 17 - 19.

Material constants used in the simulations are listed in Tables 1 and 4. Note that τLT
0 , τEI

0 ,
ε̇0 and 2Hk were obtained by fitting the EI and LT models (Equations (26) and (27)) to tantalum
single crystal experiments [106, 69] while elastic constants and the Burgers vector for tantaltum
were obtained from the literature [49]. κ1, κ2 and the initial obstacle strength, τobs,0, that determine
the shape of the strain hardening and the yield stress were parameterized from the measured stress-
strain data, Figure 21 (b). Hardening curves of all three specimens were parameterized using
κ1 = 1.4×106 m−1 and κ2 = 15. On the other hand, τobs,0 that determines the initial yield strength
was 27 MPa, 37 MPa and 27 MPa for specimens 1, 2 and 3 respectively. This deviation in τobs,0
between specimens may be attributed to different initial dislocation densities, possibly because the
samples were harvested from different locations in the rolled plate. This difference is relatively
insignificant for this work since τobs,0 has little influence on strain field and texture predictions at
large deformation.

Figures 25 (a) - (c) compare observed and simulated deformed specimens 1 - 3 after 6.8 %,
19.2 % and 10.0 % applied strains, respectively. Deformed shapes from CP-FEM simulations
agree relatively well to the actual deformed shape from the uniaxial tension tests, especially for
specimens 1 and 3. However, the model prediction does not agree well for specimen 2 where
specimen is deformed more severely. Also note that the deformed surface images show arrays of
slip lines and larger deformation near the grain boundaries.
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Figure 24. Initial crystal orientations used in CP-FEM simula-
tions in RD, TD and ND of oligocrystal specimens 1, 2 and 3,
respectively.
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Measured Predicted 

(a) Specimen 1 (6.8%) 

(b) Specimen 2 (19.2%) 

(c) Specimen 3 (10.0%) 

Figure 25. Measured and predicted deformed specimens. A sur-
face image obtained from the optical microscope. (a) Specimen 1
at the applied strain of 6.8%, (b) specimen 2 at the applied strain
of 19.2%, and (c) specimen 3 at the applied strain of 10.0%.
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5.3 Strain Field Analysis: HR-DIC vs. CP-FEM

The displacement fields throughout the gage section of specimen 1 were obtained from the HR-
DIC measurements at var- ious applied strains of 0 %, 0.8 %, 4.2 % and 6.8 %. The surface strain
fields, εxx, εyy and εxy, were obtained from HR-DIC measurements at three incremental strains:
Points A to B (∆εAB=0.8%), B to C (∆εBC = 3.4 %) and C to D (∆εCD = 2.6 %). Note that at each
strain increment, strain fields relative to the last step are obtained.

ε xx ε xx

ε yy

ε xy

ε yy

ε xy

(a) HR-DIC measurements (b) CP-FEM predictions 
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Figure 3: Comparison of measured and simulated strain.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 26. A comparison of measured and predicted εxx, εyy and
εxy maps for specimen 1 at ∆εAB=0.8% (Point A to B).

Figures 26 - 28 compare measured and predicted surface strain fields, εxx, εyy and εxy, of speci-
men 1 at different strain increments. A comparison of measured and predicted strain field distribu-
tions show good quantitative agreements for all strain increments. The model accurately captures
locations where the maximum and minimum strain fields are observed. Predicted strain fields
agree very well especially at lower applied strain, ∆εAB and ∆εCD, as shown in Figures 26 and 27.
However, the model fails to capture observed slip lines and detailed strain localizations. Some of
these deviations may contribute to defects or microstructure that exist in subsurface that cannot be
captured with the surface EBSD measurements. In addition, grain boundary effects such as grain
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 27. A comparison of measured and predicted εxx, εyy and
εxy maps for specimen 1 at ∆εBC=3.4% (Point B to C).

boundary strengthening/ weakening due to dislocation pile up or accumulation of impurities, are
ignored in this model.

Because the CP-FEM model is three-dimensional, it should be able to accurately predict out-
of-plane deformations in addition to in-plane strains. Optical profilometry provided measures of
displacement gradients (similar, but not equal to out-of-plane shear strains) on the front surface of
specimen 1 at 6.8 % applied strain. Model predictions of displacement gradients are compared to
these experimental measurements in Figures 29 (a) and (b). The measured and predicted ∂w/∂x
and ∂w/∂y maps show reasonably good agreement. Thus, the model not only captures in-plane
strain fields well but out-of-plane deformations are also correctly predicted.

Figures 30 and 31 show measured and predicted surface strain fields of oligocrystal specimen
2. Here, strain fields at the strain increments from B’ to C’ (∆εB′C′ = 3.5 %) and B’ to D’ (∆εB′D′

= 7.0 %) are compared. Similar to specimen 1, CP-FEM predictions of surface strain fields agrees
relatively well with the measurement. However, the model failed to capture strain localizations
near the grain boundaries.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 28. A comparison of measured and predicted εxx, εyy and
εxy maps for specimen 1 at ∆εCD=2.6% (Point C to D).

Figures 32 – 34 compare measured and simulated surface Lagrangian strain fields, εxx, εyy and
εxy, respectively, at five applied strains (εa =2, 4, 6, 8 and 10 %). The CP-FEM model qualitatively
captures the heterogeneous intergranular surface strain fields observed in HR-DIC measurements
including the locations of localized strain fields at different applied strains. As shown in Figures
32 and 33, large tensile εxx and compressive εyy strains were observed in grains 1 and 4 while grain
5 showed less deformation, Furthermore, the model accurately predicted large shear strains, εxy, in
grains 5 and 6 and near the grain boundaries associated with grains 2-6, 2-8, and 2-9. However,
some detailed features observed in DIC measurements, i.e. slip lines (at epsilona = 2%) and
localized strain fields between grains 1 and 4 (at εa = 10%), were not captured with the model.
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Figure 29. A comparison of measured and predicted εxz and εyz

maps for specimen 1 at 6.8 % uniaxial tensile strain. (a) profilom-
etry measurement and (b) CP-FEM prediction.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 30. A comparison of measured and predicted εxx, εyy and
εxy maps for specimen 2 at ∆εB′C′=3.5% (4.0 to 7.5%).
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Figure 31. A comparison of measured and predicted εxx, εyy and
εxy maps for specimen 2 at ∆εB′D′=7.0% (4.0 to 11.0%).
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Figure 32. A comparison of measured (HR-DIC) and predicted
(CP-FEM) εxx at applied strains (εa) of 2 %, 4 %, 6 %, 8 % and 10
% for specimen 3.
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Figure 33. A comparison of measured (HR-DIC) and predicted
(CP-FEM) εyy at applied strains (εa) of 2 %, 4 %, 6 %, 8 % and 10
% for specimen 3.
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Figure 34. A comparison of measured (HR-DIC) and predicted
(CP-FEM) εxy at applied strains (εa) of 2 %, 4 %, 6 %, 8 % and 10
% for specimen 3.
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To quantitatively compare measured and predicted surface strain fields, the DIC data (781,015
data points) was imposed on to the finite element mesh (35,667 surface elements), similar to the
procedure used to assign the initial EBSD data to the model. By assigning DIC data on surface
finite elements used in the simulation, the experimental measurement and model predictions can be
objectively compared on a point-wise basis. In this procedure, the size of the DIC data was reduced
by a factor of 22. Figures 35 (a) and (b) show εxx at 10 % applied strain from the full HR-DIC data
and reduced data, respectively. As shown in Figure 35, this reduction appears to have relatively
small effect on the resolution of the strain field. This may indicate that DIC resolution was more
than sufficient to resolve the observed strain localizations and that a lower resolution would have
been adequate, especially for comparisons with continuum-scale model predictions.

(a) Full DIC data (b) Reduced DIC data 

ε xx

25% 
 
 
 
0% 

ε xx

25% 
 
 
 
0% 

Figure 35. Plots of εxx at 10 % applied strain using (a) full HR-
DIC data (781,015 data points) and (b) reduced DIC data, imposed
on to finite element mesh (35,667 data points).

Using HR-DIC measurements and CP-FEM predictions of strain fields with the same data
resolution, deviations between two data sets were obtained as follows:

∆ε = εDIC− εsim, (40)

where. εDIC and εsim represent surface strain fields obtained from DIC and CP-FEM simula-
tions, respectively, for each element. Figure 36 shows calculated ∆εxx maps at different applied
strain levels. Positive values (red) represent regions where simulation under-predicts strain fields
while negative values (blue) show over-predicted regions. It is shown that large ∆εxx values were
observed near the grain boundaries and locations where slip lines developed in the experiment,
especially near grain boundary 1-4.
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Figure 36. Deviations between measured and simulated surface
strain fields, εxx, at different applied strains. Here, deviations of
strain fields are calculated as ∆εxx = εDIC

xx − εsim
xx .
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Table 10. Average deviation between measured and simulated
strain fields (∆εavg) and relative errors (∆εavg/εa) at various ap-
plied strains within the whole specimen.

Applied strain (εa)
2 % 4% 6% 8% 10%

∆εavg
xx 0.0073 0.0102 0.0143 0.0215 0.0344

∆εavg
yy 0.0059 0.0097 0.0116 0.0142 0.0180

∆εavg
xy 0.0031 0.0071 0.0104 0.0136 0.0159

∆εavg
xx /εa 0.36 0.26 0.24 0.27 0.34

∆εavg
yy /εa 0.30 0.24 0.19 0.18 0.18

∆εavg
xy /εa 0.16 0.18 0.17 0.17 0.16

To further quantify the deviation between the measured and predicted strain fields, the quantity
∆εavg, defined as follows, was calculated for each strain component within the entire region.

∆εavg =

√
1
N

N

∑
i=1

(
εDIC

i − εsim
i
)2
. (41)

Here, N is the total number of data points (N=35,667). Table 10 lists the average deviation between
measured and simulated strain fields at various applied strains. The model agreed relatively well
with HR-DIC measurement, i.e. average deviation between the model and experiment at 10%
deformation for εxx was around 3% strain.

Table 10 lists the relative error, ∆εavg/εa at all five applied strain levels within the entire speci-
men. Here, we chose to normalize ∆εavg with εa instead of εDIC or εsim per data point to objectively
compare deviations at different applied strains and because many εDIC and εsim values were very
close to zero. An average value of ∆εavg

xx /εa for the whole specimen over five applied strains were
0.29. That is, the difference between model predictions and experimental measurements of εxx is
around 30% of the applied strain. This value could be used as an objective criterion for compar-
ing different models or for investigating effects of model parameters. Note that ∆εavg

xx /εa is fairly
consistent across the applied strain measurements except for increased values in applied strains of
2 and 10 % compared to 4 – 8 %. As indicated by Figures 32 and 36, increased ∆εavg

xx /εa at small
strains in grain 1 can likely be attributed to experimentally observed slip lines. At larger strains,
large deviation was observed near the grain boundary between grains 1 and 4. This discrepancy
indicates a possible deficiency in the model’s handling of grain boundaries. Large ∆εavg

xx /εa at
large strains could also be a result of the model not accounting for damage.

To assess the fidelity of the model prediction per grain basis, averaged ∆ε̄xx =
(
εDIC

xx − εsim
xx
)
/εa

within each grain were obtained. Figures 37 (a) and (b) show calculated ∆ε̄xx versus the maximum
Schmid factor and volume fraction, respectively. As shown in Figure 37 (a), CP-FEM model under-
predicted εxx (∆ε̄xx > 0) for grains having low maximum Schmid factors. In particular, grains 12,
5 and 8 having lowest Schmid factors (0.385, 0.392 and 0.414, respectively) and thus represent-
ing hardest grains were under-predicted by the model. In addition, the model over-predicted εxx
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Figure 37. Calculated
(
εDIC

xx − εsim
xx
)
/εa versus (a) the maximum

Schmid factor and (b) volume fraction for each grain.

(∆ε̄xx < 0) for two softest grains (grains 1 and 14). This result suggests that the CP-FEM model
predictions of strain fields are less accurate in grains having extreme orientations, i.e. softest and
hardest grains within the specimen. On the other hand, there was no noticeable correlation between
∆ε̄xx and the volume fraction (or the size) of each grain within the gage section as shown in Figure
37 (b).

Although we strive to reproduce the microstructural features of the specimen and test pro-
cedures accurately using high resolution experimental techniques and a simple-structured spec-
imen, there still exist various limitations of the current approach. The main possible source of
error between the model and simulation is an assumption on columnarity of the specimen. The
oligocrystal specimen used in this work does not have a perfectly columnar grain structure and it
is likely that initial crystal orientations varied through the thickness direction. While macroscopic
mechanical responses of coarse-grained oligocrystals are likely to have small effects from local
grain boundary properties, it is clear that a more sophisticated treatment of grain boundaries and
grain boundary-dislocation interaction would improve model predictions. This is clearly shown
in Figure 36 where the model underpredicted εxx near grain boundaries as compared to HR-DIC
measurements. Furthermore, many material parameters used in the model are assumed to be con-
stant and homogeneous throughout the specimen, i.e. the model does not incorporate any initial
heterogeneous distribution of defects.
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5.4 Texture Analysis: EBSD vs. CP-FEM

In addition to strain field analysis, crystal orientations and their rotations upon uniaxial tensions
are measured and compared with CP-FEM simulations. Figures 38 - 40 show crystal orientation
maps of deformed tensile specimens at various applied strains for oligocrystal specimens 1 - 3,
respectively. Here, the colors represent the crystal orientations in RD, TD and ND and in specimen,
EBSD data were not fully collected in severely deformed regions (in black). It is shown that
relatively large crystal rotations were observed near the grain boundaries.

(a) RD (b) TD (c) ND 

[111] 

[011] [001] 

RD 

TD 

Figure 38. Crystal orientations obtained from the EBSD mea-
surements at different applied strains for specimen 1 RD, TD and
ND.
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Figure 39. Initial and deformed (19.0 %) crystal orientations
obtained from the EBSD measurements for specimen 2 in RD, TD
and ND.
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Figure 40. Initial and deformed (10.0 %) crystal orientations
obtained from the EBSD measurements for specimen 3 in RD, TD
and ND.
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Figures 41 - 43 show the measured and predicted textures of specimen 1-3 in RD, ND and TD.
For all three cases, initial crystal orientations obtained from the EBSD are accurately reproduced
by the model and the predicted deformed textures show qualitatively good agreement with EBSD
measurements. There were scattered initial crystal orientations within the same grain that may
attribute to both actual variations of the crystal orientation within the grain and the experimental
scatter or the noise in EBSD data. Although there are some studies exploring the orientation noise
in EBSD data [43], it is very difficult to separate these two effects.

ND 

ND 

TD 

TD 

RD 

RD 

(a) Measured (EBSD) 

(b) Predicted (CP-FEM) 

Figure 41. Deformed texture within the unit stereographic trian-
gle of specimen 1 at the applied strain of 6.8 % in RD, TD and
ND. (a) EBSD measurement and (b) CP-FEM prediction.
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Figure 42. Deformed texture within the unit stereographic trian-
gle of specimen 2 at the applied strain of 19.2 % in RD, TD and
ND. (a) EBSD measurement and (b) CP-FEM prediction.
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Figure 43. Deformed texture within the unit stereographic trian-
gle of specimen 3 at the applied strain of 10.0 % in RD, TD and
ND. (a) EBSD measurement and (b) CP-FEM prediction.
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Figures 44 - 46 shows the intensity plot of crystal orientations obtained from EBSD and CP-
FEM simulation of deformed specimen. Here, the number of data points within the unit area of
stereographic triangle are normalized by the total number of data points. Figures 44 - 46 show that
the simulated texture agrees well quantitatively.
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Figure 44. Intensity plots of crystal orientations within the unit
stereographic triangle of specimen 1 at the applied strain of 6.8
% in RD, TD and ND. (a) EBSD measurement and (b) CP-FEM
prediction.
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Figure 45. Intensity plots of crystal orientations within the unit
stereographic triangle of specimen 2 at the applied strain of 19.2
% in RD, TD and ND.(a) EBSD measurement and (b) CP-FEM
prediction.
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Figure 46. Intensity plots of crystal orientations within the unit
stereographic triangle of specimen 3 at the applied strain of 10.0
% in RD, TD and ND. (a) EBSD measurement and (b) CP-FEM
prediction.
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Although measured and predicted texture show relatively good agreement, noticeable deviation
was observed in the region shown in red points in Figure 47. Red data points in the unit stereo-
graphic triangle is analyzed to locate the positions on the deformed surface image. It is shown
that the data points that were not correctly captured using the CP-FEM model corresponds to grain
boundaries. Thus, it shows that the model does not properly capture the plastic incompatibilities
near the grain boundaries at high strains.

Deformed Texture 
(EBSD)  

Figure 47. Deformed texture at 19.2% straining where it deviates
from the simulation in Specimen 2. It shows that the deviation in
red points in inverse pole figure is the crystal orientations at the
grain boundaries.

In order to understand the magnitude of the crystal rotation upon deformation, a distribution
of crystal misorientation angle can be calculated. Given two crystal orientations, gA and gB, the
misorientation between two crystal orientation, ∆g, can be defined as follows [63]:

∆gAB = gBg−1
A (42)

The misorientation angle, ∆g, can be represented in terms of a rotation axis, n, and an angle, θ ,
and the following relation holds:

cos θ =
1
2
(∆g11 +∆g22 +∆g33−1) (43)

Using Equations (42) and (43), distributions of the misorientation angle, θ , are plotted for
specimen 1 using EBSD data and CP-FEM predictions as shown in Figure 48 (a). Here, the
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misorientation angle is obtained at 4.2 % strain relative to the initial crystal orientation (Points
A to C in Figure 21 (b)). It is shown that the model captures a general trend of misorientation
angle distributions upon deformation. Similar to strain field and texture analyses, sub-surface
microstructure and grain boundary effects would be the possible reasons for deviations in measured
and predicted misorienation angles. Figure 48 (b) shows a comparison of the deformed surface
image and simulated misorientation angles relative to neighboring elements at 4.2 % applied strain.
Note that θ in Figure 48 (b) represents misorientation angle between neighboring elements and is
shown that misorientation angles exceeding 0.5 degrees are mostly near the grain boundaries.

7° 

0° 

EBSD 

(a) Misorientation angles relative to the initial crystal orientation 

θAC

2.5° 
1.0° 
0.5° 

CP-FEM 

(b) Misorientation angles relative to neighboring elements 

Figure 48. A comparison of misorientation angles. (a) Misori-
entation angles obtained from EBSD measurement and CP-FEM
simulations at 4.2% strain (Point C) relative to the initial crys-
tal orientation (Point A) and (b) misorientation angles relative to
neighboring elements at 4.2% applied strain (Point C).

5.5 Failure Analysis

In uniaxial tension tests, specimen 2 is more severely deformed compared to specimen 1 and 3, up
to 19.2% applied strain. At such strain, a necking occurred near the center of the gauge section as
shown in front and top views of the deformed specimen 2 in Figure 49.

Figure 50 compare the surface image and simulated εxx of the specimen 2 at 19.2 % applied
strain (Point E in Figure 21). At such large applied strain, a small notch and an irregular surface
are developed at the top of the tensile specimen 2, as shown in Figures 50 (a) and (b). The location
of the notch matches very well with the predicted locations with the highest εxx, from the side and
the top views. On the other hand, the model do not accurately predicts observed deformed shape,
especially as seen from the side view. This may due to stress relaxation at surface notch which
cannot be captured using the FE model. On the other hand, displacements through the thickness is
captured relatively well with the model (Figure 50 (b)).
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(a) Front view 

(b) Top view 

Figure 49. Deformed specimen 2 at applied strain of 19.2%. (a)
The front view and (b) the side view.
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Figure 50. The surface image and simulated εxx of specimen 2 at
19.2 % applied strain (a) side view and (b) top view.
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6 Discussion

In this section, we investigate various constitutive effects that would affect the model predictions,
e.g. effects of the mesh, the choice of slip systems and the initial crystal orientations.

6.1 Mesh dependence

In FE-based simulations, different types and sizes of meshes may have a significant effect on the
model predictions. Figure 51 shows the effect of mesh size on the prediction of deformed tex-
ture for specimen 2. Here, CP-FEM simulations using a coarse mesh having the total number
of 207,000 elements are compared with the results in the previous section. The coarse mesh has
approximately eight times smaller mesh, two times smaller in all three directions. As shown in
Figures 51, predicted deformed texture show the same trend but having more elements in the sim-
ulation produced larger dispersion of crystal orientations, more similar to the EBSD measurement.
Note that the total number of EBSD scans for specimen 2 is 754,236 while the total number of
surface elements in the mesh is 33,283, about 20 times smaller.

33,283 surface elements 
(1,664,150 total elements) 

8,288 surface elements 
(207,200 total elements) 

(a) Coarse mesh (b) Fine mesh 

Figure 51. Prediction of deformed texture of specimen 2 at the
applied strain of 19.2 % using (a) a coarse mesh and (b) fine mesh.

In addition to in-plane mesh sizes, the number of elements through the thickness also affect CP-
FEM predictions. In the simulations of materials in sheet form, 2D shell elements or a single 3D
elements through the thickness are often adopted [14]. However it has been reported that multiple
integration points through the thickness are required, e.g. 25 to 51 integration points are suggested
to assure 1% numerical accuracy for in a large sheet metal forming simulations [68, 101]. In order
to see how the through thickness elements affect the results in columnar oligocrystal simulations,
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previous results (50 elements through the thickness) are compared with predictions using a same
surface mesh but having a single element through the thickness.

ε xx

ε yy

ε xy

(a) Predicted strain map (2D) (b) Predicted strain map (3D) 

ε xx

ε yy

ε xy

-5% 
 
  
 
0% 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xx 8% 

4% 

0% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!yy 0% 

-3% 

-6% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xy 2% 

0% 

-2% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xx 8% 

4% 

0% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!yy 0% 

-3% 

-6% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xy 2% 

0% 

-2% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xx 8% 

4% 

0% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!yy 0% 

-3% 

-6% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xy 2% 

0% 

-2% 

4.2% Applied Strain 

Measured (DIC) Predicted (CP-FEM) 

(a) !xx 

(b) !yy 

(c) !xy 

Figure 3: Comparison of measured and simulated strain.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.

3

2% 
 
 
 
0% 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xx 8% 

4% 

0% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!yy 0% 

-3% 

-6% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xy 2% 

0% 

-2% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xx 8% 

4% 

0% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!yy 0% 

-3% 

-6% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xy 2% 

0% 

-2% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xx 8% 

4% 

0% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!yy 0% 

-3% 

-6% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xy 2% 

0% 

-2% 

4.2% Applied Strain 

Measured (DIC) Predicted (CP-FEM) 

(a) !xx 

(b) !yy 

(c) !xy 

Figure 3: Comparison of measured and simulated strain.

8 Main DIC Strain Components 

Maximum Schmid Factor: {110} slip 

Measured !xx (DIC) 

8 Main DIC Strain Components 

Maximum Schmid Factor: {112} slip 

Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.

3

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xx 8% 

4% 

0% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!yy 0% 

-3% 

-6% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xy 2% 

0% 

-2% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xx 8% 

4% 

0% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!yy 0% 

-3% 

-6% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xy 2% 

0% 

-2% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xx 8% 

4% 

0% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!yy 0% 

-3% 

-6% 

4.2% Applied Strain 

Validating CP-FEM Simulations w/ DIC Experiments 

CP-FEM Simulation 

Experiment 

!xy 2% 

0% 

-2% 

4.2% Applied Strain 

Measured (DIC) Predicted (CP-FEM) 

(a) !xx 

(b) !yy 

(c) !xy 

Figure 3: Comparison of measured and simulated strain.

8 Main DIC Strain Components 

Maximum Schmid Factor: {110} slip 

Measured !xx (DIC) 

8 Main DIC Strain Components 

Maximum Schmid Factor: {112} slip 

Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.

3

7% 
 
 
 
0% 

ε xx

ε yy

ε xy

Figure 52. A comparison of predicted εxx, εyy and εxy distribu-
tions for specimen 1 at ∆εCD=3.4 % deformation using (a) a sin-
gle element through the thickness and (b) 50 elements through the
thickness.

Figures 52 (a) and (b) compare predicted strain distributions of specimen 1 at ∆εCD=3.4%
using a single and 50 elements through the thickness. Although adopting a single element through
the thickness captures the regions where large and small strain fields are observe, much better
agreement with the DIC data is obtained when many elements through the thickness is adopted.

Figures 53 compares simulated texture of specimen 2 at the applied strain of 19.2 % using a
single and 50 elements through the thickness. 2D and 3D simulations predict different deformed
textures, and texture is more accurately captured with many elements through the thickness. This
different attribute to stress variation through the thickness that cannot be accurately captured using
a single element through thickness. This effect is clearly shown strain map distribution in Figure
50 (b). Note that these oligocrystals have relatively low height to thickness ratios and thus cannot
ignore significant through thickness strain and stress distributions.

80



50 elements 
through thickness 

Single element 
through thickness 

(a) (b) 

Figure 53. Deformed texture using (a) a single element through
the thickness and (b) 50 elements through the thickness.
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6.2 Effects of Initial Crystal Orientations

EBSD data of the undeformed specimen is usually used to inform the crystal orientations of each
grain and used as an input in the simulation. Each grain is defined by some arbitrary grain boundary
criteria, e.g. 3 degrees between scan points, and the average crystal orientation is obtained for each
grain. In typical poly- and oligo-crystal FE simulations, many elements represent a single grain
and elements representing the same grain are typically assigned with a single averaged crystal
orientation. Thus, a small variation of crystal orientations within a grain are ignored. Alternatively,
we can assign each element with crystal orientations without an averaged scheme, e.g. crystal
orientations per element. Although the latter model has a advantage that a small variation within
a grain may be captured and reproduces realistic initial microstructure, it is difficult to separate
effects of experimental scatter and the actual orientation deviation within a grain.

In order to investigate the effect of initial crystal orientations, Figures 54 - 56 compare de-
formed textures of specimens 1 and 2 using two schemes: (a) a crystal orientation per grain and
(b) a crystal orientation per element. For a crystal orientation per grain, the total number of initial
crystal orientations used in the simulation equal to the total number of grains, 15 for specimen 1
and 17 for specimen 2, while the case (b), the total number of the initial crystal orientations equal
to the total number of surface elements. As shown in Figures 54 and 55, a wave-like pattern is
observed in the case of having a single crystal orientation per grain. On the other hand, having
a scattered initial orientations showed more dispersed deformed texture and did not show wave
lines. However, the difference in treating the initial texture did not changes the trend of deformed
texture as shown in the intensity plots (Figures 56). It is very difficult to separate the effect of the
measurement error or the actual distribution of the crystal orientation. It is likely that both affect
the scattered initial distributions.
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Initial Initial 

Deformed Deformed 

(a) Orientation per element (b) Orientation per grain 

Figure 54. Effects of initial crystal orientations on texture evolu-
tion for specimen 1 at 6.8% applied strain.. (a) One initial orienta-
tion per grain and (b) one initial orientation per element.
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Initial Initial 

(a) Orientation per element (b) Orientation per grain 

Figure 55. Effects of initial crystal orientations on texture evolu-
tion for specimen 2 at 19.2% applied strain. (a) One initial orien-
tation per grain and (b) one initial orientation per element.
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Figure 56. Effects of initial crystal orientations on texture evolu-
tion for specimens 1 and 2. Contours represent measured intensity
of crystal orientations.
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Figure 57 compares misorientation angles using two schemes. Similar to texture predictions,
two schemes in the initial crystal orientations make little difference and more continuous misori-
entations are observed where each element was assigned with different initial crystal orientations.

7° 

0° 

(a) CP-FEM, orientation per element (b) CP-FEM, orientation per grain 

!AC

Figure 57. Predicted misorientation angles using different initial
crystal orientations. (a) Crystal orientation per element and (b)
crystal orientation per grain.

Also note that the initial treatment do not significant effect on predicting strain field predictions
as shown in Figure 58. Thus, these results illustrate that small deviations in crystal orientations
within the grain do not significantly affect texture and strain distributions.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 58. A plot of εxx, εyy and εxy obtained from CP-FEM sim-
ulations of specimen 1 at ∆εCD = 3.4% using (a) crystal orientation
per element and (b) crystal orientation per grain.
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6.3 {110} versus {112} slip

In FCC metals, slip generally occurs in 〈110〉 directions in {111}planes. In BCC metals, slip
occurs along 〈111〉directions but the slip planes that dislocations move are not well-defined. Al-
though many atomistic simulations and experiments support {110} slip for tantalum at room tem-
perature [104, 26], {112} slip is observed or predicted in various BCC metals as well. Figure 59
shows surface images of deformed specimen 1 and 2 and corresponding slip traces. Here, black
lines represent the observed slip lines while the red and blue lines denote the projected {110} and
{112} slip traces. In agreement with previous conclusion with specimen 1 [26], observed slip lines
agree well with projected slip traces for {110} slip systems for specimen 2 as well.

(a) Specimen 1 (b) Specimen 2 

10 

14 
0.47 

0.48 

0.48 

0.47 

{110} 
{112} 

Figure 59. Surface images showing the slip lines and projected
{110} and {112} slip traces for (a) specimen 1 at 0.8% applied
strain [26] and (b) specimen 2 at 19.2% applied strain.

Figure 60 (a) illustrates the maximum Schmid factors of single crystals for {110} and {112}
slip systems within the standard stereographic triangle. Depending on type of the slip planes that
slip occurs, stress projection at different crystal orientations can be different. Thus, it will change
the prediction of the yield stress of the material for different crystal orientations. In addition to
crystal orientation dependent yield stress, crystal rotation upon uniaxial tension and compression
show different paths depending on active slip planes as shown in Figure 60 (b).

In order to investigate the effects of different slip systems on CP-FEM predictions, two oligocrys-
tal specimens, 1 and 2, are simulated using 24 {112} slip systems while all other material param-
eters are kept the same as {110} slip simulations. Table 11 lists 24 {112} slip systems used in the
simulation.
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(b) Single crystal rotations upon isochoric deformation 
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Figure 60. (a) The maximum Schmid factors in {110} and {112}
slip systems and (b) single crystal rotations under isochoric defor-
mations in uniaxial compression and tension.

Table 11. The twenty-four {112} slip systems.

α Slip System α Slip System α Slip System α Slip System
1 (112̄)[111] 7 (1̄1̄2̄)[1̄1̄1] 13 (112̄)[1̄1̄1̄] 19 (1̄1̄2̄)[111̄]
2 (2̄11)[111] 8 (21̄1)[1̄1̄1] 14 (2̄11)[1̄1̄1̄] 20 (21̄1)[111̄]
3 (12̄1)[111] 9 (1̄21)[1̄1̄1] 15 (12̄1)[1̄1̄1̄] 21 (1̄21)[111̄]
4 (1̄12̄)[1̄11] 10 (11̄2̄)[11̄1] 16 (1̄12̄)[11̄1̄] 22 (11̄2̄)[1̄11̄]
5 (1̄2̄1)[1̄11] 11 (121)[11̄1] 17 (1̄2̄1)[11̄1̄] 23 (121)[1̄11̄]
6 (211)[1̄11] 12 (2̄1̄1)[11̄1] 18 (211)[11̄1̄] 24 (2̄1̄1)[1̄11̄]
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Figure 61 compares measured εxx using DIC with the maximum Schmid factors of each grain
for {110} and {112} slip systems. It is expected to have a strong correlation between εxx and the
maximum Schmid factor in the simulation. In accordance with previous studies by Carroll et al.
[26], stronger correlations between the axial strain and the maximum Schmid factor for {110} slip
are observed for both specimen 1 and 2 at the room temperature. For example, in {112} slip case,
the maximum Schmid factors for grains 6, 7, 10 and 11 in specimen 1 and grains 12, 13, 15, 16,
and 17 in specimen 2 are relatively large while measured εxx are small.
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Figure 61. A plot of (a) εxx obtained from the DIC measurement
(b) the maximum Schmid factors for {110} slip systems and (c)
the maximum Schmid factors for {112} slips for specimen 1 and
2, respectively.

Figure 62 shows measured and predicted strain fields of specimen 1 at ∆εCD=3.4 % (Point C to
D). Although Schmid analysis showed relatively large difference in the maximum Schmid factors
for many grains, predicted strain map showed similar distribution for both slip systems. Figure 63
compares predicted εxx for specimen 2 at 19.2% applied strain. In contrast to surface strain field
analysis of specimen 1 in Figure 62, noticeable deviation between {110} and {112} predictions
are observed for specimen 2, at large applies strain. Comparing predicted εxx and observed notch
in specimen 2, it is shown that the predictions using the {110} slip agrees better than {112} slip.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 4: Measured strain and maximum Schmid factor for {110} and {112} slip systems.
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Figure 62. A comparison of predicted εxx, εyy and εxy maps for
specimen 1 at ∆εCD=3.4 % (Point C to D). Predictions using (a)
{110} slip and (b) {112} slip.
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Figure 63. Deformed specimen and simulated εxx of specimen 2
at 19.2 % applied strain for {110} and {112} slips. (a) Side view
and (b) top view.
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Figures 64 (a) and (b) compare images of deformed specimen and simulated shapes using
{110} and {112} slip systems. It is shown that both {110} and {112} slip accurately predicts
deformed shape of specimen 1 at 6.8 % straining while more deviations are observed for speci-
men 2 at 19.2 % deformation. At large deformation (specimen 2), CP-FEM simulations failed to
accurately predict deformed shape, mainly due to crack initiation at the specimen surface.

{110} slip 
{112} slip 

CP-FEM Simulation 

(a) Specimen 1 

(b) Specimen 2 

{110} slip 
{112} slip 

CP-FEM Simulation 

Figure 64. Deformed specimen and simulated shape of speci-
mens for {110} and {112} slip. (a) Specimen 1 at 6.8 % and (b)
Specimen 2 at 19.2 %.

The choice of slip systems are more sensitive in texture predictions as shown in Figure 65.
Figures 65 (a) and (b) compare texture predictions using {110} and {112} slips for specimen 2 at
19.2 % deformation. It is observed that the prediction using {110} slip agree better with measured
texture from EBSD. Figure 66 compares predicted misorientation angles of specimen 1 relative
to the initial orientations using {110} and {112} slip systems at 4.2 % applied strain. CP-FEM
simulations using {110} and {112} slip system show similar trend in crystal rotations but {112}
predicted larger rotations.

A series of comparisons between measured and predicted quantities such as Schmid factors,
strain distributions, deformed shapes and texture evolution, suggest that it is difficult to conclu-
sively determine the favored slip systems. It is shown that macro-scale observations, such as DIC
strain measurements and deformed shape are relatively less sensitive to the choice of slip systems.
On the other hand, experimental measurements at smaller scales, e.g. texture evolution, is more
sensitive to assumptions made in the simulation.
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(a) {110} slip system (b) {112} slip system 

Figure 65. Effects of slip systems on texture evolutions. (a)
{110} slip and (b) {112} slip.
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Figure 66. Predicted disorientation angles relative to initial crys-
tal orientations at 4.2 % applied strain using different slip systems.
(a) {110} slip systems and (b) {112} slip systems.
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7 Conclusions

In this work, we developed multi-scale computational model for tantalum. The dislocation kink-
pair theory is used to incorporate temperature and strain rate dependent flow behaviors of single
crystal tantalum and the model is calibrated to single crystal experiments. A BCC crystal plasticity
finite element model developed from dislocation kink-pair theory accurately captures temperature
and strain rate dependent yield stresses of single crystal tantalum. Simulated yield stresses of poly-
crystalline tantalum are fit to three continuum constitutive formulations that model flow stresses at
high temperatures and strain rates. These models, when calibrated to CP-FEM simulations, can be
used to predict yield behavior of polycrystals without the need to perform expensive, direct CP-
FEM simulations. The Mechanical Threshold Stress model is found to reproduce the simulated
yield stresses of polycrystal BCC metals most accurately. The MTS model fit to the dislocation
kink pair theory in Taylor impact tests showed excellent agreement with experimental data. In
order to further validate the proposed model, CP-FEM simulations of tantalum oligocrystals are
compared directly to EBSD and DIC experiments. It is shown that both strain fields and texture
predictions using CP-FEM model agreed well with measured data.

The framework developed in this work provides a method to connect dislocation physics to the
continuum scale models. In particular, meso-scale simulation technique used in this work, BCC
CP-FEM model, allows microstructure-informed, predictive computational capability to enable
more realistic engineering scale simulations of polycrystalline metals for a variety of applications.
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