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Abstract

In this report, we propose a framework for the design and implementation of in-situ analy-
ses using an asynchronous many-task (AMT) model, using the Legion programming model
together with the MiniAero mini-application as a surrogate for full-scale parallel scientific
computing applications.

The bulk of this work consists of converting the Learn/Derive/Assess model which we had
initially developed for parallel statistical analysis using MPI [PTBM11], from a SPMD to an
AMT model. In this goal, we propose an original use of the concept of Legion logical regions
as a replacement for the parallel communication schemes used for the only operation of the
statistics engines that require explicit communication.

We then evaluate this proposed scheme in a shared memory environment, using the Legion
port of MiniAero as a proxy for a full-scale scientific application, as a means to provide input
data sets of variable size for the in-situ statistical analyses in an AMT context. We demonstrate
in particular that the approach has merit, and warrants further investigation, in collaboration
with ongoing efforts to improve the overall parallel performance of the Legion system.
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1 Introduction

Over the last two decades the Department of Energy has established the essential role of high-
performance computing in advancing a wide range of scientific disciplines. Driven by constrained
power budgets, the future success of this vital component of scientific discovery faces a criti-
cal challenge from rapidly changing processor and system architecture designs. In particular, the
placement and movement of data is becoming the key-limiting factor on both performance and en-
ergy efficiency. Furthermore, the increased quantities of data the systems are capable of generating,
in conjunction with the insufficient rate of improvements in the supporting I/O infrastructure, is
forcing applications away from the off-line post-processing of data towards techniques based on in
situ analysis and visualization. Together, these challenges are shaping how we will both design and
develop effective, performant and energy-efficient software. In particular, they highlight the need
for data and data-centric operations to be fundamental in the reasoning about, and optimization of,
scientific work flows on extreme-scale architectures.

We therefore aim to design, develop, and evaluate a unified data-driven approach for program-
ming applications and in situ analysis and visualization. Specifically to understand the interplay
between data-centric programming model requirements at extreme-scale and the overall impact of
those requirements on the design, capabilities, flexibility, and implementation details for both ap-
plications and the supporting in situ infrastructure. This work leverages the Legion programming
model and run-time system that has been developed as part of the ASCR-funded ExaCT Co-Design
Center.

Despite its importance, this area is largely unexplored, and the current work is therefore focused
on studying the impact of:

1. supporting effective in situ data management analysis and visualization,

2. providing a foundation for building efficient and effective work flow management,

3. enabling an interactive in situ user environment on the underlying run-time software design,
and

4. understanding the impact on existing applications, infrastructure and tools.

With this overarching goal in mind, the present report describes our first effort in this direction,
with the design and development of statistical data analysis data algorithms in Legion using a
Miniaero as a proxy application for large-scale simulation programs.
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2 Background

2.1 Terminology

We begin by defining some of the terminology that will be used throughout this report. For further
detail, please refer to [BC+15].

We first recall that data parallelism involves carrying out a single task and/or instruction on
different segments of data across many computational units. Different types of data parallelism
include single-instruction, multiple-data (SIMD), a type of instruction level parallelism where an
individual instruction is synchronously executed on different segments of data and is best illus-
trated by vector processing on a central processing unit (CPU) or many integrated cores (MIC)
architecture, and single-program multiple-data (SPMD), where the same tasks are carried out by
multiple processing units but operate on different sets of input data (e.g., multithreading on a single
compute node, and distributed computing using Message Passing Interface (MPI) communication).

In contrast, task parallelism focuses on completing multiple tasks simultaneously over differ-
ent computational units. These tasks may operate on the same segment of data or many different
data sets. In particular, task parallelism can occur when non-conflicting tasks operate on the same
data, usually because they only require read-only access. At a process level, this is a form of
multiple-program multiple-data (MPMD). Pipeline parallelism is achieved by breaking up a task
into a sequence of individual sub-tasks, each of which represents a stage whose execution can be
overlapped. Pipeline parallelism is most often associated with data movement operations, overlap-
ping data fetches with computational work to hide latency and minimize gaps in the task pipeline,
which can occur for both on-node and remote memory fetches.

A parallel programming model is an abstract view of a machine and set of first-class constructs
for expressing algorithms. The programming model focuses on how problems are decomposed
and expressed, and provides the mechanisms for an application to express concurrency. Program-
ming models are often characterized according to their style, for example imperative, declarative,
procedural, or functional. In this report we will focus on declarative programming, in which
the programmer expresses or defines the desired result without specifying how the result is to be
achieved.

A programming language is a syntax and a set of code constructs for implementing one or more
programming models. For example, the C++ programming language supports both functional and
procedural imperative programming models.

A parallel execution model specifies how an application creates and manages concurrency.
Examples of various execution models include communicating sequential processes (CSP), strict
fork-join, the actor model, and event-based models. The execution model classifications also dis-
tinguish how parallel data access hazards are managed. Without providing a full description of the
different execution models, we note that in imperative style the programming model and execution
model are closely tied and therefore not distinguished. In contrast, a declarative programming style
decouples the execution model from the programming model.
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A parallel run-time system primarily implements portions of an execution model, managing
how and where concurrency is managed and created. Run-time systems therefore control the order
in which parallel work (decomposed and expressed via the programming model) is actually per-
formed and executed. Run-time systems can range greatly in complexity, comprising all aspects of
parallel execution that are not explicitly managed by the application.

An asynchronous many-task (AMT) model is a categorization of programming and execution
models that break from the dominant CSP or SPMD models. Different asynchronous many-task
run-time system (AMT RTS) implementations can share a common AMT model. An asynchronous
many-task (AMT) programming model decomposes applications into small, transferable units of
work (many tasks) with associated inputs (dependencies or data blocks) rather than simply de-
composing at the process level (MPI ranks). An AMT execution model can be viewed as the
coarse-grained, distributed memory analog of instruction-level parallelism, extending the concepts
of data pre-fetching, out-of-order task execution based on dependency analysis, and even branch
prediction (speculative execution). Rather than executing in a well-defined order, tasks execute
when inputs become available. An AMT model aims to leverage all available task and pipeline
parallelism, rather than only relying on basic data parallelism for concurrency. The term “asyn-
chronous” conveys both ideas that processes (threads) can diverge to different tasks, rather than
executing in the same order, and that concurrency is maximized (minimum synchronization) by
leveraging multiple forms of parallelism. The term “many-task” conveys the idea that the appli-
cation is decomposed into many transferable or migratable units of work, to enable the overlap of
communication and computation as well as asynchronous load balancing strategies.

2.2 Legion

Legion is a data-centric programming model for writing high-performance applications for dis-
tributed heterogeneous architectures, which grew out of earlier work on the data-centric Sequoia
language, under the auspices of A. Aiken at Stanford. It is now a joint research effort also involving
Los Alamos National Laboratory, NVIDIA Research, UC Santa Cruz, and the University of Utah.
Its highly declarative program expression is a strong shift from the procedural style of MPI.

Legion programs comprise tasks that operate on logical regions, which simply name collec-
tions of objects. When writing a task, the programmer explicitly declares the properties of the
data that will be operated on by the task. This includes the datas type, organization (e.g., array of
structs, struct of arrays), privileges (e.g., read-only, read-write, write-only, reduction), partitioning,
and coherence. The run-time system leverages these data properties to issue data movement op-
erations as needed, removing this burden from the developer. Task dependencies can be inferred
from the data properties allowing the run-time to determine when tasks can be executed, including
reordering tasks and executing them in parallel.

Furthermore, the separation of the logical and physical representation of data enables the run-
time to, e.g., create multiple copies of read-only data to maximize parallelism as appropriate.
Legion aims to decouple the specification of a program from its optimization via its mapping
interface, which gives developers control over the details of data placement and task execution.
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While this data-driven approach is extremely powerful for extracting parallelism, the trade-off is
that all inputs and outputs for a task must be declared a priori. In cases involving data-dependent
or dynamically sparse execution, not enough information can always be expressed a priori for
the Legion run-time to extract useful amounts of parallelism. Legion currently provides some
mechanisms and has other proposed solutions for addressing these issues.

The following principles have driven the design and implementation of Legion:

User control of decomposition: While Legion, in contrast to MPI, can automatically manage
task preconditions, it is similar to MPI in requiring that the user specify the data decomposition
into logical regions. Similarly, the choice of how to decompose algorithms into tasks is also the
responsibility of the application developer. MPI (other than MPI types) does not provide a data
model, leaving data management at the application level. Legion provides a relational data model
for expressing task decomposition that supports multiple views or decompositions of the same
data.

Handle irregularity: Legion aims to support dynamic decision making at run-time to handle
irregularities. This includes the ability to make dynamic decisions regarding how data is parti-
tioned, where data and tasks are placed.

Hybrid programming model: Tasks in Legion are functional with controlled side effects on
logical regions as described by the tasks data properties. However the tasks themselves consist
of imperative code. This coarse-grained functional programming model enables the distributed
scheduling algorithm of Legion to order tasks, while still supporting the imperative coding style
within tasks that is familiar to most application developers.

Deferred execution: All run-time calls in Legion are deferred, which means that they can be
launched asynchronously and Legion is responsible for computing the necessary dependencies, not
performing operations until it is safe to do so. This is only possible because Legion understands the
structure of program data for deferring data movement operations and because Legion can reason
about the side-effects of a task on logical regions.

Provide mechanism but not policy: Legion is designed to give programmers control over
the policy of how an application is executed, while still automating any operation which can be
inferred from the given policy. For example, Legion provides control over where tasks and data
are run, but the run-time automatically infers the necessary copies and data movement operations
to conform to the specified privilege and coherence annotations on the logical regions arguments
to each task. Default implementations exists for many tools like the Mapper, accelerating the path
to a debug implementation, although a wide and performant set of default libraries is still lacking.

Decouple correctness from performance: In conjunction with the previous design principle,
Legion ensures that policy decisions never impact the correctness of an application. This is useful
from a performance portability perspective, as a common specification can be mapped to multiple
machine types. The Legion run-time provides a default mapper, and the mapping interface is inten-
tionally extensible to support both custom mappers and the creation of mapping tools for building
custom mappers, for it will never be possible for a default mapper to perform an optimal mapping
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for all applications and all machine architectures. In practice, the decoupling of performance op-
timization and application code has not always been limited to the mapper interface, e.g., explicit
ghosting can be used to improve performance (which changes the application code).

Legion is designed for two classes of users: advanced application developers and DSL and
library authors. It is therefore a natural candidate as an AMT run-time system to support the our
target workload requirements.

2.3 MiniAero

MiniAero [FFLB15] is used as basis for this study; it is a compressible Navier-Stokes, three-
dimensional, unstructured mesh, finite volume, explicit, computational fluid dynamics (CFD)
mini-application that is representative of a part of the computational requirements for the re-entry
application of particular interest to Sandia. There is a baseline implementation of MiniAero avail-
able online at [man] that is approximately 3800 lines of C++ code, using MPI+Kokkos [ETS14].
MiniAero solves the Compressible Navier-Stokes equations using Runge-Kutta fourth-order time
marching and provides options for 1st or 2nd order spatial discretization of inviscid fluxes (em-
ploying Roes approximate Riemann solver). The boundary conditions include supersonic inflow,
supersonic outflow, and tangent flow. The fluxes are five-component vector quantities (mass, mo-
mentum vector, and energy). For the viscous and 2nd-order terms, a matrix of spatial gradients
is required consisting of the x, y, and z components of each of the mass, momentum vector, and
energy quantities. Once the residual is computed, it can be summed into the original values to
obtain new momentum, mass, and energy.

Most many-task run-time schedulers work with a directed acyclic graph (DAG), often referred
to as a task-DAG that encodes all the precedence constraints in a program: each node in the DAG
represents computational work, while precedence constraints are expressed via directed edges in
the graph, indicating which tasks must complete before other tasks can begin. If there is no edge
(precedence constraint) between two tasks then they can safely run in parallel. In general, fewer
precedence constraints lead to a wider task-DAG which has more concurrency to exploit.

In its most basic form, MiniAero is, at its core, a very static application, with a fairly narrow
task-DAG for, making it amenable to SPMD implementation. It it nonetheless an interesting use
case for an AMT implementation, as it provides a realistic proxy for full-scale scientific applica-
tions. It has, in particular, been ported to the Legion RTS (cf. [BC+15]), and this is the application
code which we used in this for our AMT in-situ research work presented here.

The distribution of MiniAero comes with a test harness for non-regression testing. Each of
the tests which belong to this framework can also be used in a stand-alone mode, and its input
deck be modified so various parameters can be explored individually or in conjunction. For our
in-situ analyses, we have retained a common test for the accuracy of computational fluid codes,
initially studied by [Sod78] from whom it takes its name. Specifically, we used the test case called
“3D Sod”, which implements a 1D shock tube problem, but set up in a 3D domain discretized into
3D rectilinear finite volume cells. The initial conditions are just a sharp jump in field variables
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at the middle of the x-range of the domain, along which the field variables vary. The physical
dimensions of the domain are specified in the input file miniaero.inp in each test case. For our
analyses we retained the default values and we therefore do not discuss them here. The parameter
which is the most important for us here, is the number of blocks into which the computational
grid is to be decomposed for parallel execution. The implementation requires that this number of
blocks be a power of 2; as a result, in order to always have perfectly load-balanced setting, one
must ensure that the number of cells along the x-axis be itself a power of 2.

2.4 Titan Statistics

In [PTBM11] we have presented a comprehensive view of the scalable, parallel statistical analysis
library which we designed and implemented and released as part of the open-source Visualization
Tool Kit (VTK) [Kit10], itself part of the Titan Informatics Toolkit [WB09]. Without providing a
comprehensive view of this library, which would be beyond the scope of this report, we hereafter
justify the choice it as a first candidate for our research on AMT in-situ analysis using Legion.

The Titan parallel statistics engines are a set of C++ classes, developed at Sandia National
Laboratories between 2008 and 2013, in particular by the authors of this report, based on SPMD
data parallelism using MPI. We therefore knew this tool kit very well before starting this study; we
knew in particular the limitations of the bulk-synchronicity when attempting to achieve extreme-
scale scalability. There was therefore a strong motivation to research other approaches, besides
SPMD, which would to allow for data analysis at scales orders of magnitude beyond what we were
able to achieve with MPI (optimal scalability with up to O(105) cores).

Figure 1. The 4 operations of statistical analysis and their interactions
with input observations and models. When an operation is not requested,
it is eliminated by connecting input to output ports.

The design decisions made during development were motivated by two primary factors:

(i) We wanted to mimic the predominant types of data analysis work flows, so that a data analyst
using our framework would find it natural and intuitive to use.

(ii) The design had to be conducive to embarrassingly parallel implementations when possible.
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In order to meet these two overlapping but not exactly congruent design requirements, we iso-
lated those parts of the analysis which by construction are not embarrassingly parallel (due to the
mathematics of the statistical analysis itself, not due to our design) so that parallel design trade-
offs be limited to those components where embarrassingly parallel implementations are not viable.
Specifically, the statistical analysis work flow is split into 4 disjoint operations:

• Learn a model from observations,

• Derive statistics from a model,

• Assess observations with a model, and

• Test a hypothesis.

These operations, when all are executed, occur in order as shown in Figure 1. However, it is also
possible to execute only a subset of these, for example when it is desired that previously computed
models, or models constructed with expert knowledge, be used in conjunction with existing data.
Note that in earlier publications (e.g., [PTB10]) only the first 3 operations are mentioned; the Test
operation, which we initially saw as a part of Derive, was separated out afterwards for reasons both
theoretical (statistical hypothesis testing relies on assumptions not accepted by all statisticians) and
practical (second pass through the data might be necessary, as well as calls to outside libraries).
We therefore always considered the Test operation as an experimental feature, not implemented
for all statistics engines, and therefore we leave it aside for the current study.

From the parallelism standpoint, this subdivision of the work flow reduces the Learn operation
to a special case of the map-reduce pattern [DG04], while the remaining two are embarrassingly
parallel. Specifically, the Learn operation belongs to the map-reduce pattern in that the parallel
algorithm computes (maps) a set of distributed (key,value) pairs. All local values associated with
the same key are then merged by the reduce function to compute the global primary model. In
some of our statistical algorithms, namely moment-based, it is not necessary to communicate the
keys for there is a fixed number of them, identical across all processes, and these keys may be
ordered uniquely, so sending values alone is unambiguous. In addition, the number of such keys
is typically very small (less than 10), which allowed us to implement the reduce function as an
AllGather MPI collective, allowing each core to perform locally all subsequent operations with no
further communication. In contrast, for quanta-based algorithms, tables with an arbitrary number
of key-value pairs must be communicated and different keys may be present on each process. We
therefore implemented the reduce function using a Gather-Broadcast two-step operation, involving
a small number of reduction nodes on which this procedure is performed, as illustrated in Figure 2
with a univariate analysis where the Learn operation builds a global histogram, along with derived
statistics such as empirical PDF and quantiles. This can potentially cause problems as the size
of the network increases to peta-scale, thereby justifying the need to investigate asynchronous
reduction strategies.

We conducted several systematic, multiple-parameter studies of the scalability properties of
our SPMD/MPI implementation with up to 105 cores on a tera-scale system, studying both weak
and strong scaling properties. Those tests demonstrated, in particular, that our design allowed
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Figure 2. A simplified example illustrating the operations of the
parallel order statistics; dashed red arrows indicate inter-process
communication. In terms of the map-reduce pattern, keys are the
raw observations (represented by letters a, b, c, d, e) and values are
the number of observations.

for optimal scalability of all moment-based engines, provided the input data sets were evenly
distributed across the system. Note that these studies purposefully ignored I/O and data movement
issues, using instead synthetic test data sets were generated on-the-fly by each process participating
in the experiment in order to isolate the analysis per se from other aspects that mostly depend on
the target platform. On the other hand, we established that for quanta-based statistics, our design
trade-offs (between efficiency and robustness) allows for optimal strong and weak scaling when
those statistical techniques are used in their appropriate context, namely, when the input data is not
quasi-diffuse, but honestly represents discrete measurements. Furthermore, those parallel engines
have been successfully applied to the analysis of large-scale turbulent, reacting flow simulation
data [BGP+09].

For those reasons, the Titan parallel statistics toolkit appeared as an ideal candidate for our
in-situ AMT study.
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3 Parallel Statistics in Legion

In this section, we discuss how we transposed the SPMD model used initially for our parallel statis-
tics engines, into an asynchronous many-task model that nonetheless retains the Learn/Derive/Assess
work flow. Retaining this flow of operations is important because the original goal of meeting the
predominant types of data analysis work flows remain. In addition, the decomposition into inde-
pendent operations, isolating those parts that do not require global communication from the others,
allows for a somewhat elegant transition to an AMT model, as will be seen below.

3.1 Approach

As described in §2, our SPMD models can take two different incarnations, depending on whether
the analysis pertains to moment-based or quanta-based statistics. In the former case, the imple-
mentation of the Learn phase relies on an AllGather MPI collective to reduce the distributed local
models into the global primary model whereas, in the latter case, this reduction uses a Gather-
Broadcast two-step process, for the sake of reducing inter-process communication as the size of
local models is not guaranteed to be negligible.

In the AMT model however, it is no longer necessary to express explicit data movement explic-
itly as in done in the SPMD model, for instance with the dashed red arrow in Figure 2. Considering
the same example for the sake of illustration, we can see that task parallelism can readily replace the
tasks performed by the distributed processes and the only be used to execute smaller computations
on segments of data but that, instead of specifying movement of data from processes to a number
of reduction nodes, it is instead sufficient to define a logical region of data where the equivalent of
MPI collectives will be performed. The separation of the logical from the physical representation
of data inherent to Legion makes it especially apt at supporting this purely data-driven scheme,
which should work, albeit maybe not efficiently, with any generic mapper.

Our proposed AMT algorithm for the Learn/Derive/Assess work flow therefore replaces com-
munication with a logical region that contain all model information, both primary and derived,
which we call the aggregation region. Sub-tasks launched by a top-level task pick up work to on
those data segments to which they are assigned, in a similar way to what is done by parallel pro-
cesses in the SPMD context, at least for the Learn and Assess phases. However, a first noticeable
difference is that no communication of data is expressed (even though it will be occur under the
hood, but how this happens is entirely the responsibility of the run-time system) but, instead each
tasks aggregates the primary statistics it has computed over its data segment, with those already
stored in the aggregation region, changing them in-place. As a result, no broadcast of the global
primary model is necessary, for all tasks using it (for instance, a new set of Assess sub-tasks) will
directly access the aggregate region to retrieve the values of the statistic. Moreover, the Derive
operation is now performed by the top-level task, for its results, also stored in the aggregation
region, will be also logically available to any Assess tasks launched from the top level. This asyn-
chronous many-task Learn/Derive/Assess scheme is represented in Figure 3, again for the case of
order statistics.
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Figure 3. A simplified example illustrating the operations of
the task-based order statistics; solid blue arrows indicate task
launches, dashed red rectangles represent the logical aggregation
region. Sub-tasks of the top-level task are not obligated complete
in this order, as both union and addition operators are commuta-
tive.

Note that another benefit of this AMT model is that it allows us to unify the two SPMD imple-
mentations (AllGather and Gather-Broadcast) into a single paradigm, valid for both quanta-based
and moment-based statistics. Also, because all aggregation operations (set unions, number addi-
tions and multiplications) are commutative, the learned primary model is guaranteed to be inde-
pendent of the order in which tasks report their results. However strict locks must be enforced to
prevent incomplete model updates: once a task ti has read the values in the aggregation region, no
other task can access this region before ti has written its own results there.
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3.2 Implementation Details

This report only discusses the descriptive statistics implementation of the AMT scheme described
in Figure 3, for it is, at the time of writing (November 2015), the only in-situ analysis which we
have interfaced with MiniAero-Legion. Prior to extending the list of available analyses, we will
develop an in-situ analysis API which will allow such additions to be done in a generic way.

Nevertheless, the above scheme could be used to transform every parallel statistics engine
currently available in the statistics filter of VTK into its Legion version. Specifically, the sub-tasks
(numbered 1, 2, and 3 in Figure 3) are implemented by means of a class, Statistics, itself a
sub-class of LegionData which is provided by MiniAero-Legion. The task implementation per se
consists of a method templated on the type of the Legion accessor used by the run-time to access
data within a physical region. Legion pointers do not directly reference data, but instead name an
entry in an index space, and are used when accessing data within accessors for logical regions.
In this setting, the accessor is specifically associated with the field being accessed and the pointer
names the row entry. Since pointers are associated with index spaces they can be used with an
accessor for physical instance. In this way Legion pointers are not tied to memory address spaces
or physical instances, but instead can be used to access data for any physical instance of a logical
region created with an index space to which the pointer belongs.

Given a Legion AccessorType, a concrete instance of Statistics provides a function called
learn statistics task(), which implements the Learn operation of the descriptive statistics
engine. In this case, the primary statistical model contains the following 8 quantities, stored in
double precision: sample size, minimum, maximum, mean, and centered M2, M3 and M4 aggre-
gates (cf. [P0́8]). The computation of the process-local model is done using the online versions of
the respective update formulas for the quantities above, whereas the aggregation with the global
model is computed by means of the pairwise versions; again, cf. [P0́8] for details. In turn, the
member function learn statistics() is responsible for setting up the Legion IndexLauncher
which sets up all necessary Legion environment so that as many sub-tasks as requested to oper-
ate on the partitioned input data be created and executed by the run-time. As part of this pro-
cess, learn statistics() also creates the Legion region requirements needed by the sub-task
launcher. Region requirements are Legion objects, used the describe the logical regions requested
by launcher objects as well as what privileges and coherence are requested on the specified logical
region. In the case of a descriptive statistics Learn task, two region requirements are needed: one
for the input data to be read (and only read), and the other for the output region where results are to
be aggregated (and which therefore is to be allowed for both read and write access). The top-level
task (labeled 0 in Figure 3) is responsible for calling learn statistics(). This will be discussed
below in §3.3 as this requires a modification of the driver code, MiniAero in the current study.

In addition, the Statistics class provides a member function called derive statistics(),
which is to be called only by the top-level task, for it needs only a single pass over the small set of
primary statistics in order to compute the derived statistics. Namely, for descriptive statistics, these
are the variance, standard deviation, skewness and kurtosis estimators. This operation is de facto
negligible for it involves a dozen arithmetic operations computer on a single region, performed by a
single task. Note that in this case the Legion region requirements are a read-only access to the first
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field (with ID Statistics::primary stat FID) of the logical region used to store the statistical
model, and write permission for the second field (with ID Statistics::derived stat FID) of
the same region. This implements the Derive operation as outlined in Figure 3. Note that the
current version of the Derive method only implements the unbiased sample variance estimator
(cf. [DCD86]) of a multiset x = {xi}i=n

i=1, with cardinality n greater than 1, defined as follows:

s2
x =

M2,x

n−1

where

M2,x =
i=n

∑
i=1

(xi− x)2

is the second-order aggregate computed by the Learn operation, in a single pass (without prior
computation of the mean x), cf. [P0́8] for details. The sample variance

σ
2
x =

1
n

M2,x

is currently not provided by the Legion implementation of the descriptive statistics engine, in
contrast with vtkPDescriptiveStatistics, and Octave as well, which offer it as an option.
This is because the Legion implementation still remains experimental and we have therefore not
yet developed an interface supporting multiple user-defined options. We therefore use s2 in this
report, as well as its square root sx as the standard deviation estimator, for all comparisons against
reference values. Similarly, for skewness and kurtosis only the following versions are currently
available, respectively:

g1,x =
M3,x

ns3
x

and
g2,x =

M4,x

ns4
x

unlike vtkDescriptiveStatistics and Octave, for example, which provide additional estima-
tors as well. However, g1 and g2 are generally the default formulas employed by statistical soft-
ware, and these are the ones which are used in this report for baseline comparisons with Octave.
Note that we prefer to report the kurtosis excess, g2−3, rather than raw kurtosis, for the kurtosis of
a normal distribution is 3 which allows one to distinguish between platykurtic (thin tails; kurtosis
defect) and leptokurtic (fat tails; kurtosis excess) distributions.

The Assess operation is not implemented at the time of writing, for this study is focused on
validating the proposed AMT design: as the Assess phase is purely task-local, it does not bring any
additional information in this regard. Because this design appears promising, as is demonstrated
subsequently in §4, further work will involve the implementation of a assess statistics()
member function of the Statistics class, together with a assess statistics task() static
function, to be launched in as many sub-tasks as necessary, similarly to what is done for the De-
rive operation, aside from the fact that no global aggregation is needed by the Assess operation.
Every Assess task will, for descriptive statistics, mark each datum of the data subset to which it is
assigned with its relative deviation with respect to the model mean and standard deviation (which
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amounts to the one-dimensional Mahalanobis distance from the value predicted by a Gaussian
model [Mah36]).

Finally, a few ancillary methods are provided by the Statistics. One must be called to
initialize the aggregation region, and another one is provided to print out the results. Also, all
the necessary boilerplate code required by the Legion mechanisms is implemented, and is not
discussed in detail here.

3.3 In-Situ Setting with MiniAero

We now discuss how the Legion version of MiniAero was interfaced with the in-situ AMT statistics
code described above.

This required the use of adapator code which we kept as little as possible; as this was a proof-
of-concept implementation, it was not designed with any genericity intent in mind, even though
consideration should be given to this question in the future, in order to allow the application devel-
oper to easy roll in and out different analyses as needed.

The first part of MiniAero/Legion to be modified is its TaskIDs.h file, whose enum TaskIds
defines one index for each task allowed to be created at run-time. Specifically, those added for the
sake of the in-situ statistics are the following :

initialize_statistics_TID,
learn_statistics_TID,
derive_statistics_TID,
dump_statistics_TID,

which respectively identify the statistics initialization, learn, derive and print-out tasks.

In addition, the file main.cc must

#include "Statistics.h"

so that its main routine can call out the static method

MiniAero::Statistics::register_tasks();

in order to register the tasks corresponding to the IDs listed above.

We also modified the user interface of MiniAero/Legion in order to allow for the specification
of additional parameters in the command line arguments of the MiniAero executable. Specifically,
we added the 3 following instance variables to Interface.h:
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bool descriptive_statistics;
int statistics_frequency;
int statistics_component;

to capture, respectively, whether the in-situ statistics should be executed and, if so, how often and
for which variable amongst the 5 components of the MiniAero solution vector. Note that at this
point only one variable can be analyzed at a time, but this will be modified in subsequent versions.
Furthermore, the implementation of the user interface in Interface.cc was modified, first for the
constructor which now takes in 3 the additional parameters:

Interface::Interface()
: problem_type(0), num_blocks(0),
blocks_x(0), blocks_y(0), blocks_z(0),
interval_x(0), interval_y(0), interval_z(0),
mesh_scale(1.0), output_frequency(1), time_steps(1),
length_x(0.0), length_y(0.0), length_z(0.0),
ramp_angle(0.0), dt(0.0), wait(false), viscous(false),
second_order_space(false), output_results(false),
descriptive_statistics(false), statistics_frequency(1), statistics_component(0)

with default values so that the analysis is not ran unless the user explicitly so requests. The
enroll options() function is then modified by incorporating the 3 corresponding option set-
tings:

options_.enroll("descriptive_statistics",GetLongOption::NoValue,
"If specified, will compute in-situ descriptive statistics.",
NULL);

options_.enroll("statistics_frequency",GetLongOption::MandatoryValue,
"Number of time steps after which a new statistical
analysis is performed.",
NULL);

options_.enroll("statistics_component",GetLongOption::MandatoryValue,
"Component of solution vector upon which a statistical
analysis is performed.",
NULL);

which are also added to the parsing method parse options() with, on one hand at the top of the
function:

descriptive_statistics = options_.retrieve("descriptive_statistics");

and, on the other hand at the bottom of the function:
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{
const char *temp = options_.retrieve("statistics_frequency");
if (temp != NULL) {

statistics_frequency = std::strtol(temp, NULL, 10);
}

}

{
const char *temp = options_.retrieve("statistics_component");
if (temp != NULL) {

statistics_component = std::strtol(temp, NULL, 10);
}

}

following the format already in place for the existing interface options. Consequently, 3 new
optional command line arguments become available; for instance, the following:

-descriptive_statistics -statistics_frequency 20 -statistics_component 0

when passed to the MiniAero executable, result in the in-situ analysis tasks being invoked (the
presence of -descriptive statistics results in the corresponding Boolean to become true)
every 20 time-steps, for the first component of the solution vector.

The last part of MiniAero/Legion that requires adaptor code is toplevel.cc, that also has to

#include "Statistics.h"

so it can instantiate a Statistics object. Prior to that, the interface options related to the in-situ
statistics must be retrieved, which is done as follows:

bool do_stats = interface.descriptive_statistics;
int stat_freq = interface.statistics_frequency;
int component = interface.statistics_component;

in a similar way as what is done for the other interface options. Subsequent versions of the AMT
statistics framework will design an interface with more options, modeled after those currently
offered by the VTK parallel statistics engines. The Statistics object is then instantiated as fol-
lows:

MiniAero::Statistics statistics(meshdata,ctx,runtime,mesh->num_blocks_,
task_wait_all_results,component);

which must be done somewhere before the driver time-loop. This is in fact similar to what is done
for the other main task objects of the Legion version of MiniAero (bc, solver, flux, etc.), and for
this reason we placed the Statistics instantiation immediately after all those already present in
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toplevel.cc for these other objects. The aggregation regions defined in §3 must also be created,
which requires quite a bit of boilerplate code, which will be abstracted out within the interface
in subsequent implementations. For now, one must manually create the aggregation region for
primary statistics:

Rect<1>
primary_stat_rect(Point<1>(0),Point<1>(MiniAero::Statistics::n_primary_stat-1));
IndexSpace primary_stat_is
= runtime->create_index_space(ctx,Domain::from_rect<1>(primary_stat_rect));

FieldSpace primary_stat_fs = runtime->create_field_space(ctx);
{
FieldAllocator allocator

= runtime->create_field_allocator(ctx,primary_stat_fs);
allocator.allocate_field(sizeof(double),MiniAero::Statistics::primary_stat_FID);

}
LogicalRegion primary_stat_lr
= runtime->create_logical_region(ctx,primary_stat_is,primary_stat_fs);
runtime->attach_name(primary_stat_lr, "primary_stat_lr");

and one for derived statistics:

Rect<1>
derived_stat_rect(Point<1>(0),Point<1>(MiniAero::Statistics::n_derived_stat-1));
IndexSpace derived_stat_is
= runtime->create_index_space(ctx,Domain::from_rect<1>(derived_stat_rect));

FieldSpace derived_stat_fs
= runtime->create_field_space(ctx);

{
FieldAllocator allocator

= runtime->create_field_allocator(ctx,derived_stat_fs);
allocator.allocate_field(sizeof(double),MiniAero::Statistics::derived_stat_FID);

}
LogicalRegion derived_stat_lr
= runtime->create_logical_region(ctx,derived_stat_is,derived_stat_fs);
runtime->attach_name(derived_stat_lr, "derived_stat_lr");

which will then be passed explicitly to the statistics invocation methods, inside the time-loop:

if (do_stats && !(n_s % stat_freq)) {
statistics.initialize_statistics(primary_stat_lr);
statistics.learn_statistics(MeshData::solution_n,primary_stat_lr);
statistics.derive_statistics(primary_stat_lr,derived_stat_lr);
statistics.dump_statistics(primary_stat_lr,derived_stat_lr);

}

with the last call being optional, to be used only if a print-out of the computed statistics is sought.
This concludes the description of the adapator code that is needed at the time of writing, and
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which was used to test out the code, some results of which are presented in the following section.
We nonetheless acknowledge that we also instrumented the code with timers, in addition to those
already present, to measure performance of the in-situ framework.
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4 Results

4.1 Algorithm Correctness

We used the initial mass values of the 3D Sod problem for a 128× 4× 4 mesh in order to exper-
imentally assess the correctness of the AMT in-situ statistics described in §3. The statistics tasks
thus operated over a multiset x = {xi}i=n

i=1 comprising the initial density at n = 128×4×4 = 2048
mesh nodes. Moreover, the default values provided with the 3D Sod case are such that the first half
of the domain, along the x-axis, takes on a density value of a = 0.103930418401153, while the
remaining half is set at b = 0.831439030101197. Therefore, a and b respectively are the minimum
and maximum reference values, while a+b

2 is the reference mean. In addition, because x is sym-
metric about its mean, its skewness is 0. Regarding the second and fourth order aggregates, one
has

M2,x =

n/2

∑
i=1

(
a− a+b

2

)2

+

n/2

∑
i=1

(
b− a+b

2

)2

=

n/2

∑
i=1

(
a−b

2

)2

+

n/2

∑
i=1

(
b−a

2

)2

= n
(

a−b
2

)2

and, similarly,

M4,x = n
(

a−b
2

)4

.

As a result, the reference values for unbiased sample variance, and kurtosis, are as follows:

s2
x =

n
n−1

(
a−b

2

)2

and

g2,x =
M4,x

ns4
x
−3 =

(
n−1

n

)2

−3.

For the sake of concision, we only used these 7 statistics, and not all 11 available primary and
derived statistics. However, those we retained are sufficient for there is redundancy between M2,
variance and standard deviation; M3 and skewness; and M4 and kurtosis excess. In any event, those
statistics retained for comparison studies span across primary and derived quantities, so that both
Learn and Derive phases were verified.

Subsequently, MiniAero-Legion was executed with a single in-situ analysis call, performed at
the initial time step, for a variable number of tasks ranging from 1 to 64 (the block decomposition
scheme used by MiniAero imposes that number of mesh sub-blocks be a power of 2). This was
done using the shared-memory-only low-level run-time, as recommended by the Legion team for
initial experiments.
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Table 1. Computed descriptive statistics of mass at the initial time
step of the 3D Sod test case, versus reference values.

Statistic Reference 1 task 4 tasks 64 tasks Octave

Cardinality 2048 2048 2048 2048 2048
Minimum 0.1039304 0.1039304 0.1039304 0.1039304 0.1039304
Maximum 0.8314390 0.8314390 0.8314390 0.8314390 0.8314390
Mean 0.4676847 0.4676847 0.4676847 0.4676847 0.4676847
Std. dev. 0.3638431 0.3638431 0.3638431 0.3638431 0.3638431
Skewness 0 -3.2766E-16 0 3.6015E-17 -1.9708E-13
Kurtosis -2.0009763 -2.0009763 -2.0009763 -2.0009763 -2.0000000

With those reference values at hand, computed with the same precision as that of the input
values a and b, we also compared out of curiosity our results with those obtained with the statistics
functions of Octave. We compare the calculated results to the reference values in Table 1. To avoid
visual clutter we only report 8 digits in the table.

Skewness aside, all computed in-situ statistics agree with their respective reference values, not
only for the 8 digits shown here, but also for all 15 significant digits permitted by the floating point
representation in double precision. Comparing the computed values skewness versus the reference
skewness is much more complicated, because the latter is 0, as testing equality with 0 is a very
complex question in floating point representation. It is beyond the scope of this report to discuss
it in detail, but suffices to remember that, short of using Units of Last Place comparison, the next
best option is absolute comparison. With this criterion, the in-situ computations fluctuated about 0
within a radius less than machine ε (ca. 2.22E-16), with even some cases (as reported here with
4 tasks) finding a true 0. In addition, the skewness estimate computed by Octave was 3 orders of
magnitude larger than machine ε.

Although we did not research this further, this is most probably caused by destructive can-
cellations, for skewness computations for symmetric data in floating point representation involves
mutual near-cancellations between quantities which are, in relative terms, indistinguishable within
machine ε. This is confirmed with kurtosis (excess), where our in-situ AMT implementation not
only exactly finds (with all significant digits) the theoretical reference value, but also beats Octave
which is only correct for the first 4 significant digits. The fact that our implementation always
performs better than Octave (as well as SciPy, as we verified separately) for third and fourth or-
der statistics is further vindication of our point-wise and pairwise update formulas first used in
vtkPDescriptiveStatistics.
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4.2 Parallel Scalability

In order to conduct scalability studies independently of load-balancing issues, we used the same
3D Sod test case as in §4.1, for the block-decomposition scheme results in a perfectly balanced
load per task (which must be a power of 2) when the number of nodes is itself a power of 2. With
this setting, we used the following evaluation criteria:

1. Strong scaling, i.e., at constant total work, also known as relative speed-up. Denoting TN(p)
the wall clock time measured to execute the calculation, strong scaling is defined as:

SN(p) =
TN(1)
TN(p)

.

Some authors prefer to write the numerator as Ts rather than TN(1) to make it clear that the
parallel algorithm should be compared to the most efficient serial implementation available
and not just the parallel algorithm run on a single task. Evidently, optimal (linear) scaling
is attained when SN(p) = p and, therefore, strong scaling results can be visually inspected
by plotting SN versus the number of tasks: optimal scaling is revealed by a line, the angle
bisector of the first quadrant.

2. Weak scaling, i.e., at constant work per task, also known as rate of computation scalability.
The rate of computation is defined as:

r(p) =
N(p)

TN(p)(p)
,

where N(p) now varies with p. Weak scaling is then measured by normalizing the rate of
computation by that which is obtained with a single task. In particular, if the sample size is
made to vary in proportion to the number of tasks, i.e., if N(p) = pN(1), then

R(p) =
r(p)
r(1)

=
pTN(1)(1)
TpN(1)(p)

=
pTN(1)(1)
pTN(1)(p)

=
TN(1)(1)
TN(1)(p)

.

Therefore, optimal (linear) scaling is attained with p tasks when R(p) = p. Note that without
linear dependency between N and p, the latter equality no longer implies optimal scalability.
Parallel scalability can thus also be visually inspected by plotting the values of R versus the
number of tasks, and in this case also, optimality corresponds to the angle bisector of the
first quadrant.

The information about time spent by each of the considered tasks can be extracted from the pro-
filing output of MiniAero/Legion, using the Python script called legion prof.py, which comes
with the distribution of Legion. This script parses the performance output that is generated when
the appropriate option flags are passed to the executable through the command line.

In order to verify that our concept of aggregation region introduced in §3.1 as an AMT surro-
gate for SPMD global reduction, a first step was to validate that some scaling could be obtained
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when using 1 or 2 tasks on a 2-core machine. If this was not the case, an entire re-evaluation of
the whole approach would have been warranted. With this in mind, the first scalability results pre-
sented hereafter were obtained on a system with a dual-core 2.3GHz Intel i7 CPU running Mac OS
v14.3.0, with MiniAreo/Legion built together with the in-situ statistics engine using shared mem-
ory for the low-level RTS. The reference case comprised 128×32×32 grid points, each of which
providing a value included in the input data set for the in-situ statistical analysis, performed by a
single Learn task. In order to assess strong scaling, the same mesh was analyzed by 2 in-situ Learn
tasks, whereas weak scaling was measured also with 2 Learn tasks but on a grid twice comprising
twice as many nodes, specifically 256×32×32.

Table 2. Learn operation: strong scaling at constant total work
with sample size N (left), and weak scaling at constant load of per
task (right).

N/p p T (µsec.) SN(p))

131072 1 1613 1.00
65536 2 918 1.76

N(p) p T (µsec.) R(p)

131072 1 1613 1.00
262144 2 1793 1.80
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Figure 4. Learn operation: strong and weak scaling with respect
to single task with N = 131072 values.

Table 2 summarizes the findings obtained with this setting, in terms of both strong (left) and
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weak (right) scaling. A first observation was observed timings displayed noticeable fluctuations,
for any given setting. Those fluctuations could represent almost a doubling of observed values,
between their respective minima and maxima. It is difficult to explain such variations without
specific investigation of this issue. Nonetheless, a plausible cause is that of OS jitters on a 2-core
platform, where the multiplicity of background tasks prevent full utilization of the 2 cores by 2
simultaneous tasks. Each of the 3 test cases was therefore ran 8 times, and the smallest timing was
retained. In each case, measured timings clustered in the vicinity of the smallest one, with only a
few outliers taking much longer to complete. This finding supports the hypothesis that OS-related
issues explain much of the observed timing variability.

With this convention, the computed scaling factors are both in the order of 1.8, with weak
scaling being only marginally greater than strong scaling. As illustrated by Figure 4, this is sub-
optimal but nonetheless promising, considering the fact that the underlying Legion build was not
optimized in any way for the target platform. At least, these first findings confirm that our design,
described in §3, is worth being evaluated further.

Note that, on the other hand, the Derive operation took ca. 31µsec. in all cases, irrespective
of problem size. This finding further confirms that the Derive operation scales optimally in a
distributed setting when used for quanta-based statistics. We shall study later whether this is also
observed for the Assess operation, as one would expect based on theory and practice in the SMPD
model.
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5 Conclusion

In this report, we proposed a framework for the design and implementation of in-situ analyses
using an asynchronous many-task (AMT) model. This framework was implemented using the
Legion programming model, using a mini-application as a surrogate for full-scale parallel scientific
computing applications.

The main contribution is the conversion into an AMT model of the Learn/Derive/Assess model
which we had initially developed in the context of a single-program multiple-data (SPMD) model.
In this goal, we proposed to replace the Allgather (or the Gather/Broadcast) pattern used by SPMD
version of the Learn operation (the only part of the Learn/Derive/Assess that requires inter-process
or inter-task communication) with a Legion logical region called an aggregation region. The re-
sponsibility to maintain the consistency of the aggregation region therefore falls upon the Legion
run-time system (RTS). The RTS thus becomes responsible for the parallel scalability of the AMT
in-situ analysis: if it cannot manage efficiently the access (both read and write) to the aggregation
from multiple tasks distributed over a large system, then parallel scaling is impossible.

Therefore, our proposed method appears to be a useful exercise for two reasons:

1. it allows for the evaluation of various in-situ analysis designs; and

2. it efficiently tests parallel scalability of Legion RTS upon various hardware platforms.

Indeed, the first tests performed using the shared-memory back-end of the low-level RTS show
promising scalability results. However, these results do not show optimal scale-up even at the
small scales tested so far, even for a type of analysis (moment-based) for which we had earlier
demonstrated optimal scaling properties with up to 105 cores in a SMPD implementation. This
shows that further work is needed in terms of Legion RTS optimization, some of which might be
the responsibility of the application developer, (i.e. changes to the mapper). Further work will
investigate this issue, in collaboration with the Legion team.

In addition, we will develop another in-situ analysis engine that pertains to the class of quanta-
based statistics, which will further test the parallel scaling capabilities of Legion logical regions,
for the reasons which we discussed at length in the SPMD context, as a result of the variable-size
of the quantized model which can be as large as the data set itself.

Finally, we need to investigate the Assess operation of the Learn/Derive/Assess analysis trip-
tych, which we have voluntarily left aside in this study which primarily focused on the in-situ
computation of a model from data in an AMT programming model.
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