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Abstract 

 

Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means 

to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing 

process.  During product development, a small number of units are forced to fail at high stress.  

The failed units are then examined to determine the root causes of failure. The identification of 

the root causes of product failures exposed by highly accelerated life testing can instigate 

changes to the product’s design and/or manufacturing process that result in a product with 

increased reliability.  It is widely viewed that this qualitative use of highly accelerated life testing 

(often associated with the acronym HALT) can be useful.  However, highly accelerated life 

testing has also been proposed as a quantitative means for “demonstrating” the reliability of a 

product where unreliability is associated with loss of margin via an identified and dominating 

failure mechanism.  It is assumed that the dominant failure mechanism can be accelerated by 

changing the level of a stress factor that is assumed to be related to the dominant failure mode.  

In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a 

single highly accelerated stress relative to normal use.  If no (or, sufficiently few) units fail at this 

high stress level, some might claim that a certain level of reliability has been demonstrated 

(relative to normal use conditions).  Underlying this claim are assumptions regarding the level of 

knowledge associated with the relationship between the stress level and the probability of failure.  

The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of 

using accelerated life testing protocols (and, in particular, “highly accelerated” protocols) to 

make quantitative inferences concerning the performance of a product (e.g., reliability) when in 

fact there is lack-of-knowledge and uncertainty concerning the assumed relationship between the 

stress level and performance.  In addition, this document contains recommendations for 

conducting more informative accelerated tests. 
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1.  INTRODUCTION 
 

 

Today, designers and manufacturers (including Sandia) face tight deadlines and cost constraints 

to develop and test new products.  Testing is done to improve the product during development 

(find and fix problems) as well as to assess/demonstrate performance.   For example, in the 

reliability context at Sandia, the former is regarded as “improving the inherent reliability of the 

product”, while the latter is focused upon “estimating the reliability of the product as fielded”.  

Both are obviously important but often require different testing and sampling strategies, as well 

as different philosophies for interpreting the results.  In response to schedule and cost constraints, 

engineers are under pressure to reduce both the number of units tested and the time required to 

complete testing.  Some products must operate reliably for long periods of time over many use 

cycles in specific environments.  Other products (one-shot devices) must operate properly once 

after a long period of dormant storage.  In either case, it is difficult to estimate the long-term 

performance of such products given the constraints on testing duration.  These considerations 

naturally lead to accelerated testing where a product is subjected to conditions (related to 

dormant storage and/or use) in excess of what the product normally experiences.  Such 

conditions cause the product to fail or degrade more rapidly than when experiencing normal/use 

conditions.  A large variety of accelerated tests can be used to assess performance (or find and 

fix problems).  The tests are typically accelerated by: increasing the use-rate of a product, 

increasing the aging-rate of a product, or increasing the level of stress under which a product 

operates or is tested [1, pp. 468-469].   

With respect to increasing the use-rate of a product, Meeker and Escobar [1] give an example of 

a toaster that may be normally used twice a day with a nominal life of 20 years.  Assuming that 

its life is governed by the number of times that it is used, one can observe a “lifetime” of use by 

testing the toaster 365 times per day for 40 days.  A high energy discharge capacitor is an 

example of a Sandia product tested in an analogous manner.  Such capacitors are often used at 

Sandia in one-time use nuclear weapon (NW) applications.  However, it will be functioned many 

times due to 100% production testing at the capacitor level of assembly, the next assembly level, 

and in some cases in sample production or post-production surveillance tests.  The goal is to 

ensure that the capacitor still functions as required in spite of numerous previous operations.  

Thus, we can rapidly observe a capacitor’s lifetime by functioning it repeatedly in a short period 

of time.  Other common NW examples of use-rate aging involve sample environmental tests 

performed during production.  These tests have the intent of emulating a weapon lifetime 

through application of mechanical environments and thermal cycling (all at or within normal 

lifetime or Stockpile to Target Sequence environmental extremes), but in a short period of time.  

Use-rate aging was also at the heart of the historical NW Accelerated Aging Unit (AAU) 

program, where a surveillance sample was temperature cycled (within the normal STS range) 

and then disassembled and inspected for changes.  In general, the use-rate form of accelerated 

testing is straightforward both in its application and resulting interpretation as long as life is 
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governed by only the number of times that the product is used without regard to the frequency 

per unit time of use.    

With respect to increasing the aging-rate of a product, we are concerned about failure 

mechanisms that relate to changes in the product over time that are due to its background 

environment.  For example, the dormant storage life of many types of electrochemical cells is 

affected by chemical reactions that consume the active materials.  The reaction rates are 

temperature dependent.  Thus, at 25°𝐶 a battery may have a useful storage life of 10 years while 

at 55°𝐶 it has a useful storage life of only 6 months.  Hence, by increasing temperature, we can 

accelerate the onset of failure.  Corrosion is another phenomenon leading to product failure that 

can be studied by accelerating the aging rate. For example, certain production and storage 

conditions may lead to corrosion products within energetic devices over the course of decades of 

storage life.  It is desirable to be able to evaluate the storage life of these devices in a much 

shorter amount of time.  In other cases, slowly-progressing chemical reactions may degrade 

material properties (e.g., tensile strength) over time and eventually cause the product to fail 

during its eventual use.  

With respect to level-of-stress acceleration, we are concerned about failure that is accelerated by 

increasing the level of stress (beyond normal use conditions) in which a product operates (e.g., 

current, voltage, g-forces, shock).  These failures are not due to age-related degradation of the 

product, per se, but are related to how the product is used (or transported).  For example, lithium-

ion rechargeable batteries experience two type of degradation (one related to aging-rate, the other 

related to level-of-stress).  The first type (related to aging-rate) is associated with dormant 

storage when the battery is not in operation (i.e., not being charged or discharged).  The factors 

that influence the degradation of the batteries in this case are temperature and state-of-charge.  

The second type of degradation (related to level-of-stress) is associated with active use of the 

battery (i.e., as it is being charged and discharged).  The factors that influence the degradation of 

the batteries in this case include charge and discharge rates (and the number of charge/discharge 

cycles).   In NW applications, level-of-stress acceleration relates to the ability of a component to 

survive stress (higher than use levels) without failing.  For example, consider a capacitor that 

needs to operate for 100 cycles at low voltage over its lifetime.  The level of accumulated 

damage at the normal operating condition may be equivalent to the accumulated damage 

acquired with 10 cycles at a higher voltage.  Often the intent of level-of-stress testing is to 

understand and improve the margin of a product, with margin in this case meaning the level of a 

particular input or environment that the product can withstand before failing as compared to the 

required level. 

Clearly the choice of which acceleration to use (use-rate, aging-rate, or level-of-stress) is driven 

by the nature of the product, the failure mechanism, the presumed model for accelerating the 

failure mechanism, testing capabilities, the question to be answered by the evaluation, etc. By 

using accelerated tests it is possible to rapidly acquire performance information to support each 

of these models.  Nelson [2] provides a comprehensive treatise on all aspects of accelerated 
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testing (and analysis).  In addition, Nelson [3, 4] provides a relatively current bibliography of 

more than 100 references on statistical plans for accelerated tests.  

In order to exploit accelerated testing, it is necessary to have first identified the dominating 

failure mechanism(s).  This may be easier for materials and components and more difficult for 

complex assemblies and systems.  It is essential to note that in order to effectively use 

accelerated tests to make credible performance or reliability estimates at use conditions, one 

must have knowledge of the acceleration mechanism(s) and an accurate model that relates 

performance to the level of the accelerating factor(s).  For example, if a chemical reaction is the 

mechanism that affects performance (and limits useful life) then temperature might be used as 

the accelerating factor.  An Arrhenius model might be useful to mathematically express the 

relationship between performance and temperature.  Escobar and Meeker [5] describe a number 

of accelerating factors and models (empirical and physical).   

Whether empirically or physically based, a model should be acknowledged as an imperfect 

approximation to reality.  George Box once wrote that "all models are wrong, but some are 

useful."   Here, the utility of a model is measured by its ability to accurately extrapolate 

performance from accelerated conditions to use conditions.  In practice, the accuracy of the 

extrapolation is heavily dependent on the degree of acceleration.  In general, the accuracy of the 

extrapolation decreases as the degree of acceleration increases.  While this document relates to 

accelerated testing in general, the emphasis is on cases where the level of acceleration is large or 

extreme.  In such cases the testing is often referred to as being highly accelerated.  

In some cases, the performance data take the form of a continuous response variable that relates 

to the useful life of a product.  For example, the thickness of a resistive layer grows as a 

consequence of a chemical reaction within a lithium-ion electrochemical cell.  As this layer 

grows, the discharge resistance of the cell increases [6].  At some point, the resistance increases 

to a point where the cell’s performance is unacceptably degraded.  In cases where units can be 

measured multiple times, degradation paths can be observed and modeled as a function of the 

accelerating factor. Tests that provide such information are referred to as accelerated degradation 

tests.  More commonly, accelerated life tests are conducted.  Accelerated life tests, which are 

generally less informative than accelerated degradation tests, provide information regarding 

whether or not each test unit has survived a particular stress/exposure.  From these tests, only the 

failure times for units that fail (perhaps left censored) and the running times for units that have 

not failed are observed.   

In this document, the primary focus is on the use of accelerated life tests to improve, predict, and 

demonstrate reliability.  Section 2 contains a summary of HALT (highly accelerated life test) 

which is a specific class of highly accelerated testing methods for finding and fixing problems 

during design, development, and preproduction.   By doing so, HALT can improve reliability.  

Section 3 discusses the quantification of reliability, particularly in the NW context.  First, this 

section briefly illustrates how reliability might be characterized by using both parametric and 
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nonparametric approaches with data acquired at use conditions.  Next, various approaches for 

using accelerated tests to characterize reliability are described.  Section 4 compares the various 

approaches for accelerated testing as a means to characterize reliability and discusses the 

attributes and potential pitfalls of each.  Section 5 summarizes and contains recommendations for 

conducting informative accelerated tests. 
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2. HALT 
 

HALT (as described by Hobbs [7] and McLean [8]) is a specific class of highly accelerated 

testing methods for finding and fixing problems during design and preproduction.  McLean [8, p. 

xix] views HALT as a “process for the ruggedization of preproduction products.”  According to 

McLean [8, p.2], “HALT constitutes both singular and multifaceted stresses that, when applied to 

a product, uncover defects.  These defects are analyzed and driven to the root cause, and 

corrective action is implemented.  Product robustness is a result of adhering to the HALT 

process.”  HALT is broadly viewed as a prescriptive process for testing pre-production units 

under extreme levels of one or more stress factors (e.g., extreme temperatures, thermal cycles, 

and vibration).  The implication is that by following HALT during product development, the 

portion of the unreliability of a product related to margin can be reduced by making the product 

more robust to exposures to extreme environments.  However, HALT is generally viewed as 

being qualitative in nature and is not intended to make quantitative inferences (e.g., regarding 

reliability).  Also, note that HALT is not intended to address issues in production (e.g., process 

shifts) that generate defects which can also adversely influence reliability.  HASS (highly 

accelerated stress screen), which is not discussed further here, is the process recommended in [7] 

and [8] for ensuring that units with such defects are not delivered to customers.  

It is widely believed that HALT can be used to improve reliability.  McLean [8, pp. 28-30] gives 

a number of examples where HALT was found to be beneficial.  However, it is somewhat 

surprising that there aren’t more examples in the open literature.  McLean [8, p. 135] offers the 

following in this regard –  “Since 1990, some users of these techniques have been willing to 

share their product and business improvements, but this number remains relatively small and 

lacking in detail.  The majority have not had the desire or time to share these techniques because 

of the competitive advantages that these techniques can realize, and they don’t want their 

competitors to know why they’re pulling away from the pack.  Also, time is a luxury that many 

can ill-afford to invest in publishing their findings.” 

There are caveats associated with using HALT for its intended purpose (see e.g., [2, pp. 37-39]).  

For example, Nelson [2, p. 38] describes a case in which hundreds of thousands of a type of 

television transformer had been manufactured and gone into service.  An engineer conducted a 

HALT experiment that revealed a new failure mode.  A re-design corrected the failure mode.  

However, no transformer from the old design ever failed from the new mode.  In this case, the re-

design was unnecessary!   Thus, when there is a failure during a HALT experiment, it is 

necessary to find and carefully study the failure's root cause and assess whether the failure mode 

could occur in actual use conditions.  Subject-matter knowledge (often combined with 

fundamental modeling of the particular failure mode observed) is essential for making such a 

determination.   
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HALT is generally regarded by the statistical community as a non-statistical, engineering 

approach [2, 3, 9] that cannot properly be used to demonstrate or estimate reliability, or 

otherwise make quantitative inferences at use conditions.  Nelson [2, p. 194] states “An entirely 

different purpose of accelerated testing is to force the product to fail to discover failure modes 

that would occur in actual use. Then the product or process is improved to reduce those failure 

modes. Such testing is used during product development or debugging of the production process, 

and includes HALT, HASS, and environmental stress screening. This bibliography does not 

include references to such techniques as they are nonstatistical, and do not yield estimates of 

product life.” 

In fact, while engineers are able to use HALT to find and fix potential problems without a 

statistical basis, there is not perfect clarity among its proponents regarding whether HALT can or 

should be used to make quantitative inferences, such as reliability assessments.  Regarding 

HALT and HASS, Hobbs [7; p.1-2] states “The HALT and HASS methods are designed to 

improve the reliability of the products, not to determine what the reliability is.”  On the other 

hand, McLean [8, p. 132] states that “Presently, HALT does allow one to calculate a reliability 

number (see the last section in this chapter)”.  The section referred to [8, p.145] is rather vague 

and relates to issued (or to be filed) patents on this topic. [A literature search revealed three 

possibly relevant issued US patents; 7,120,566, 7,149,673, and 7,260,509.]  Without providing 

further details, McLean states “Results indicate an excellent correlation between the results from 

HALT and the field.  This estimator will be available to practitioners on a Web site in the 

future.”  

Meanwhile, practicing engineers may be tempted to use results acquired from HALT (and other 

types of “highly accelerated” life tests) as a basis for making quantitative inferences.  For 

example, suppose that a HALT experiment revealed no new failures.  With certain strong 

assumptions (e.g., regarding the relationship between the level(s) of the accelerating factors and 

the probability of product failure), engineers may be inclined to make quantitative inferences 

about performance (e.g., reliability) at use conditions based on exposure of a limited number of 

units to extremely elevated levels of stress.  The purpose of the following sections is to explain 

how highly accelerated tests (including HALT) might be used to attempt to make such inferences 

and the pitfalls of doing so. 
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3. QUANTIFICATION OF RELIABILITY 
 

 

The performance of a product might be characterized in many different ways such as accuracy, 

versatility, speed, availability, durability, and reliability.  Here we will focus on the quantitative 

characterization of reliability.  Bazovsky [10] attributes the following definition of reliability to 

Knight et al. [11] “Reliability is the probability of a device performing its purpose adequately for 

the period of time intended under the operating conditions encountered.”   For many commercial 

“continuously operating” products, reliability is generally given as a probability distribution 

relating to the period of time associated with failure-free operation.  In such cases, the period of 

failure-free operation is often measured by time-to-failure or cycles-to-failure.  For many 

military and aerospace products, reliability relates to the ability of an item to perform over the 

duration of a particular mission given a specified set of use conditions (environment and 

operation).  

Specific to the NW context, nuclear weapon reliability is defined as the probability that a unit 

selected from the stockpile will achieve the specified yield at the target, given proper inputs and 

assuming operation anywhere across the entire range of normal STS environments, and 

throughout the life of the weapon.  In the NW context, reliability is quantified by considering 

relevant system and component test data [12].  In doing so, there are rather stringent criteria in 

place to judge the usability of test data and other evidence in making a reliability assessment: 

 The information must be representative of stockpile performance – this means that the 

tested hardware must be sufficiently representative of that in the stockpile and that the 

tester and test procedure must faithfully report performance as it would occur in a real 

operation. 

 One must be able to infer from the data whether or not yield at target would have been 

achieved. 

 One must understand well the scope of the evaluation in identifying the full range of 

defectiveness that might be present in a sample.  As a simple example, tests conducted at 

hot temperature are incapable of detecting defects only manifested at cold temperature.  

In general this means that multiple complementary tests must be done in adequate 

quantity in order to ensure that all defects are findable.  No one evaluation type is 

sufficient to do this.  Thus, it is important to realize the limitations and benefits of each 

part of the test program as they relate to understanding performance in the large 

environmental/operational/lifetime state space over which weapons are assessed. 

 

Design robustness to various stressors is of course important.  Ensuring margin during design 

and development is a critical foundation upon which long-term reliability is built.  However 

although it is a necessary part of the overall test program, it is not in and of itself sufficient. 
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While the reliability of a product can be legitimately assessed directly only through fielded 

experience, it is important that the producer have some notion of a product’s capability (in terms 

of reliability or margin) prior to being fielded.  In general in the commercial world, if there is 

sufficient time and/or a sufficient number of units available to be tested, reliability can be 

characterized via testing at use conditions.  However, due to tight deadlines, there is often a need 

for accelerated testing to provide a quicker assessment of a product’s capability. In the case of 

nuclear weapons, there is clearly a desire to have some understanding of performance over the 

lifetime without requiring test durations of decades.  Note that defects due to uncontrolled 

variation during later production may keep the product’s reliability from achieving the capability 

that was observed during development and early production.  On the other hand, improvements 

in the production process (that result in fewer defects) may allow the actual reliability to exceed 

the capability that was observed during development and early production.   

During development and early production, there are various approaches for characterizing 

reliability. In most of the approaches discussed here, reliability is inferred directly from failure 

data (i.e., a model of reliability as a function of either time or stress is developed based upon the 

point at which the failures occurred).  The time-to-failure analogy will be used here for 

illustration.  The subsections that follow describe some of these approaches where reliability is 

described with reference to a requirement (e.g., in terms of a minimum time-to-failure).  The first 

two approaches do not involve accelerated tests (testing is performed at use conditions) but serve 

to illustrate the use of parametric and nonparametric methods.  The third approach involves 

accelerated testing and is fully parameterized in terms of a model for probability of failure as a 

function of the stress factor(s).  The parameters are estimated via an experiment.  The fourth 

approach is a variant of the third approach where it is assumed that some of the model 

parameters are known, allowing for a nonparametric “pseudo demonstration” of reliability.  The 

fifth approach involves the use of degradation data to characterize reliability.  In this approach, 

the results of the testing will be expressed as some performance measure as a function of time.  

By itself, this is not reliability.  To make an inference about reliability, one must then compare 

the degradation data to a requirement that has a well-understood relationship to performance.  

Knowledge of such a performance requirement will be assumed here, but finding it may be 

difficult and is outside of the scope of this discussion.  Lastly, a brief description of some 

Bayesian approaches is provided. 

The nature of the data used to characterize reliability may depend on the testing approach that is 

used.  In some cases in which units are tested to failure, failure times are observed directly.  In 

other instances, the failure times are censored. That is, we might only know that a unit failed 

prior to some specified time (left-censored observation).  This is very common for NW 

components, since they reside in dormant storage and thus will not manifest failure until 

explicitly tested even though the failure may actually have occurred much earlier or could have 

even been observed “at birth”.  In other cases, we might only know that a unit continues to 
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operate beyond the last running time.  Such observations are referred to as being right-censored.  

In other cases, failure times are interval-censored.  That is, the failure time is known only to have 

occurred within a specified time interval.  When all of the failure times are observed directly, the 

resulting data are said to be complete.  When at least some of the failure times are censored, the 

resulting data are said to be incomplete.  In general, complete data are more informative than 

incomplete data.  However, more time and effort may be needed to acquire complete data.  

Methods for analyzing a data set that includes incomplete data differ from methods for analyzing 

complete data (see e.g., [1] and [13]). 

 

3.1. Parametric Approach for Characterizing Reliability via Life 
Testing at Use Conditions 

 

Here, test data obtained at use conditions are used to estimate the parameters of a probability 

distribution.  It is assumed that some failures can be observed in a reasonable short time during 

normal use, such as in the case of incandescent light bulbs.  While this is grossly unlike NW 

applications of interest at Sandia (where products are fielded for decades), it is useful for 

illustrating the parametric approach without acceleration.  The test data might be complete or 

incomplete.  For example, consider a case where complete test data (testing units to failure) are 

used to fit an exponential model, where 𝐹(𝑡) = 1 − 𝑒𝑥𝑝(−𝜆 ∙ 𝑡) represents the proportion of 

units that fail prior to time t.  Here, 𝜆 (hazard rate) is the model parameter.  The test data are used 

to obtain an estimate of 𝜆, given by �̂�. The fitted model, �̂�(𝑡) = 1 − 𝑒𝑥𝑝(−�̂� ∙ 𝑡), is then 

evaluated with respect to the requirement (𝑡∗) in order to predict reliability.  That is, the 

proportion of units that have a failure time exceeding 𝑡∗ is estimated to be   �̂� = 1 − �̂�(𝑡∗) =

𝑒𝑥𝑝(−�̂� ∙ 𝑡∗). It is assumed that the units tested are selected at random from the population of 

interest.  It is also assumed that the model form is accurate.   

Figure 1 illustrates a case where n=30 units are tested to failure (i.e. actual failure times are 

observed) and analyzed assuming an exponential distribution.  The failure times are indicated by 

black *’s. The fitted model, (1 − �̂�(𝑡), is indicated by the thick blue curve.  The average failure 

time in this case is �̅� = 2,648 hours. The requirement in this case is 𝑡∗ = 100 hours.  Here the 

estimated hazard rate is �̂� =
1

�̅�
= 4.052 ∙ 10−4, so that �̂� = 𝑒𝑥𝑝(−�̂� ∙ 𝑡∗) = 0.960. By assuming 

an exponential distribution, one can construct a 100 ∙ (1 − 𝛼)% upper confidence bound for 

hat bound is given by the inequality, 𝜆 < �̂� ∙
𝜒1−𝛼,   2∙𝑛

2

2∙𝑛
 , where 𝜒1−𝛼,   2∙𝑛

2  is the (1 − 𝛼) 

percentile of a chi-squared distribution with 2 ∙ 𝑛 degrees of freedom. Thus, a 95% upper 

confidence bound for the hazard rate is 𝜆𝑢𝑏 = 5.34 ∙ 10−4.  It follows that a 95% lower 

confidence bound for R is 𝑅𝑙𝑏 = 𝑒𝑥𝑝(−𝜆𝑢𝑏 ∙ 𝑡∗) = 0.948. Note that the failure times used in this 

example were simulated from an exponential distribution with 𝜆 = 0.0005.  Thus,  𝑅 =

𝑒𝑥𝑝(−0.05) = 0.951.  Figure 2 illustrates the use of a probability plot and the Anderson-Darling 
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statistic to judge the adequacy of the exponential model assumption.  Here, as expected, there is 

no evidence to reject that assumption (p-value = 0.279).  

 

Figure 1. Predicting reliability from fitted exponential model.                                             
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Figure 2. Probability Plot. 
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There are similar approaches for estimating reliability (and establishing lower bounds) for other 

distributional models, many with multiple parameters (see e.g., [1]).  The Weibull model, where 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 [−(𝑡
𝛼⁄ )

𝛽
] represents the proportion of units that fail prior to time t, is often 

used to model failure-time data.  Both of the model parameters ( and ) can be treated as 

unknown and estimated by the failure-time data.  Alternatively, one might assume that  is 

known (e.g., see page 70 in [14]).   The Weibull model, which is a flexible generalization of the 

exponential model, will be referred to later in this document.   

Sandia examples which may be associated with time-dependent reliability (albeit at a much 

longer time scale: decades rather than hours) are related to corrosion (e.g., moisture inadvertently 

sealed inside of integrated circuits, degradation of energetics due to contamination), stress 

voiding of integrated circuits (where voids gradually grow in size until an open circuit condition 

occurs in a via, resulting in failure of the component), and electrical component performance 

changes due to exposure to low-dose radiation.  When functional test failures have been 

observed in these cases, the failure times have been left-censored and thus the parametric model 

was not used due to large uncertainty in failure times.  Accelerated tests may be useful to 

investigate such degradation processes although it has also been observed that sometimes 

increasing the level of a stress factor actually serves to prevent rather than induce these defects 

more quickly (a notable example being stress voiding). 

 

 

3.2 Nonparametric Approach for Characterizing Reliability via Life 
Testing at Use Conditions 

The example in the previous sub-section illustrates a parametric approach for estimating 

reliability, since it involves a model with parameters.  Note that there are ways to characterize 

the failure time distribution without assuming a parametric model (hence a nonparametric 

approach).  While such methods naturally require fewer assumptions, they are generally useful 

only for interpolation.  For instance, consider the empirical cumulative distribution function of 

the failure times, denoted by �̂�(𝑡).  To illustrate, consider the example in the previous section.  

Figure 3 compares the complementary empirical cumulative distribution function, 1 − �̂�(𝑡), 

with 1 − �̂�(𝑡) based on the exponential model.  In this particular case, the estimate of reliability 

given by 1 − �̂�(𝑡∗) is a special case of the Kaplan-Meier estimator [15] since the failure time 

data are complete.  Note that the general form of the Kaplan-Meier estimator can be used with 

certain types of incomplete data as well.  Other related approaches are in Chapter 3 in [13]. 
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Figure 3. Probability of success: 1 − �̂�(𝑡)   (blue) and 1 − �̂�(𝑡) (red). 

Note that it is not necessary to parameterize (or even characterize 𝐹(𝑡) over a range of t) in order 

to establish a lower bound for reliability.  Again, suppose that the lifetime requirement is given 

by 𝑡∗.  Also assume that units are tested to the requirement.   As a result of the testing, one might 

only know whether (or not) a unit failed prior to the requirement.  In this case suppose that a 

number of units (n) are tested (at use conditions) to the minimum time-to-failure requirement.  

Depending on the number of units tested and the number of failures observed (m), one can claim 

(with a certain level of confidence) that some level of reliability has been demonstrated.  For 

example, suppose that seventy units have been tested (n=70) with no failures observed prior to 

the requirement (m=0).  Then, one can claim (with caveats discounting changes in performance 

during later production as well as assumptions regarding test efficacy) that the reliability is at 

least 0.99 with 50% confidence.  This claim can be made since if the reliability was less than 

0.99, the probability that we would have observed at least one failure is at least 0.50.   In general, 

with n units tested with m failures observed, we can claim with 𝐶 ∙ 100 % confidence that the 

reliability is at least R if 1 − ∑ (
𝑛
𝑘

) ∙ 𝑅𝑛−𝑘 ∙ (1 − 𝑅)𝑘𝑚
𝑘=0 ≥ 𝐶.  This confidence statement is 

based only on the binomial distribution of successes/failures.  The only assumptions are that the 

units tested are selected at random (therefore representative) from the population of interest and 

that tests performed on a sample would detect a defect if one were present.  Nothing is assumed 
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about the probability distribution of failure times.  Therefore, such a nonparametric approach is 

often considered the most robust approach for demonstrating reliability of fielded product since 

its accuracy is not impacted by incorrect assumptions regarding the underlying distribution 

(including population homogeneity, which is seldom observed) and it does not depend upon 

time-of-failure information (seldom available for NW components because they reside in 

dormant storage).  This approach is often used by Sandia reliability engineers to provide a lower 

bound for a component’s reliability and is referred to here as the “nonparametric-binomial 

approach.”   However, disregarding information about the distribution (if available and credible) 

can result in a conservative bound.  To illustrate, based on the data in Figure 1, suppose that we 

had observed only whether units passed or failed the 100 hour requirement.  If so, we would 

have n=30 and m=1.  Without presuming a distributional form, we would only be able to claim 

with 95% confidence that the reliability exceeds 0.851.  Clearly, this bound is not as precise as 

the one developed earlier which used complete data and a presumption of the model form in its 

development. The added precision is a direct consequence of the complete data and the added 

assumption.  One must decide if the risk of making this assumption (possibly overstating 

reliability) is outweighed by the benefit (increased precision).  Note also that testing to a fixed 

requirement offers no ability to assess performance at a more demanding requirement (or 

stressful condition).  

3.3 Parametric Approach for Characterizing Reliability via Accelerated 
Life Testing  

 

Engineers are driven to perform accelerated tests in order to minimize cost and save time due to 

constraints associated with budget and schedule.  When accelerated testing is used to assess 

reliability, additional knowledge/assumptions are required.  First, subject-matter experts need to 

identify the dominant failure modes/mechanisms that can occur within normal use conditions.  

Next, a relevant process for accelerating the identified failure modes (manifested in terms of a 

controllable stress factor) needs to be established.  Finally, an accurate model providing a 

quantitative relationship between the onset of failure and stress level needs to be developed.  

This model must be valid across the range of conditions where it is developed and applied (use 

conditions through accelerated conditions) in order to have utility in predicting reliability at use 

conditions from data acquired at accelerated conditions.  In general the wider this range of 

conditions is, the less likely it is that the model will be sufficiently accurate. 

When accelerated testing is used in conjunction with a parametric probability model, the 

parameters of the probability model are presumed to be functions of one or more stress factors.  

For example, consider the exponential probability model used in conjunction with an Arrhenius 

relationship between the hazard rate and temperature.  That is,  in the exponential model 

depends on absolute temperature (T) via the relation 𝜆(𝑇) = 𝛼 ∙ 𝑒𝑥𝑝 (−
𝛽

𝑇
).  Effectively the 

model is that of an age-rate defect and increased temperature is being used to emulate increased 
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age.  Temperature is the stress factor while  and  are model parameters to be estimated.  The 

Arrhenius relation can be useful for modeling the effects of thermally activated mechanisms 

associated with various materials (e.g., growth of layers/films on an exposed surface).  Such a 

relationship might also be a reasonable model for corrosion growth in NW components.  

Changes in electrical properties (e.g., resistance) or mechanical properties (e.g., tensile strength) 

giving rise to failure might be well approximated by an Arrhenius relationship (see Section 3.5).  

Other commonly used stress models include variations of the inverse power relationship (law).  

A generic representation of this relationship is 𝜏(𝑆) = 𝛼
𝑆𝛾⁄ , where 𝜏(𝑆) is the lifetime of a 

product as a function of the stress level (S).  Typically, these relationships are empirically based 

and are often associated with mechanical stresses (level-of-stress acceleration). The parameters 

(𝛼 and 𝛾) depend on the product and need to be estimated experimentally.  Specific examples of 

this generic form are the Coffin-Manson relationship and Palmgren’s equation.  The Coffin-

Manson relationship models fatigue failure of metal subjected to thermal cycling. In this 

relationship, the number of cycles-to-failure (N) is given by 𝑁 = 𝐴
(Δ𝑇)𝐵⁄ , where Δ𝑇is the 

temperature range of the thermal cycle and A and B are model parameters to be estimated.  

Palmgren’s equation is used in applications where life is assessed in terms of the level of 

mechanical load.  At Sandia, the inverse power relationship combined with a Weibull model has 

been used to model the lifetime of a capacitor as a function of applied voltage [16]. In terms of 

damage (or degradation), the model might be expressed as 𝛿(𝑆, 𝐶) = 𝐶
𝑆𝛾⁄ , where  represents 

the level of damage and C represents the number of cycles (or amount of time). 

These models, applicable to level-of-stress acceleration, are particularly relevant for 

investigating margin to mechanical stress (e.g., shock/vibration) that might occur during the 

transportation or use of NW components.  

Escobar and Meeker [5] and Nelson [2] describe a number of other accelerating factors and 

models (both empirical and physical).  Some of these models involve multiple stress factors.  For 

example, Escobar and Meeker [5] discuss an extended Arrhenius relationship that involves both 

temperature and voltage (V).  In this case, 𝜆(𝑇) = 𝛼 ∙ 𝑒𝑥𝑝 (
𝛽1

𝑇
) ∙ 𝑒𝑥𝑝(𝛽2 ∙ 𝑙𝑜𝑔(𝑉)) ∙

𝑒𝑥𝑝 (𝛽3 ∙
𝑙𝑜𝑔(𝑉)

𝑇
).  Thomas et al. [17] describe accelerated testing of lithium-ion cells using both 

temperature and resting state-of-charge as accelerating factors.   

Most models relating the onset of failure to stress relate to exposure to a constant stress level.  

However, in real applications stress can be variable.  For example, the product may operate 

outside and thus be subject to a variable temperature environment.  In some of these cases, it 

might make sense to consider an accumulated damage model that can be responsive to variable 

stress.  One model that was developed is Miner’s rule [18]. Miner’s rule supposes a product can 

tolerate only a certain amount of damage, 𝐷∗.  If a unit experiences damages  𝐷𝑖  𝑓𝑜𝑟 𝑖 =

1,2, ⋯ , 𝑛 , the total damage on the unit is assumed to be additive.  That is, 𝐷𝑐𝑢𝑚 = ∑ 𝐷𝑖
𝑛
𝑖=1  .  The 
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product will fail to operate if 𝐷𝑐𝑢𝑚 ≥ 𝐷∗. This model, which is deterministic, is known to be 

inadequate for metal fatigue (and other situations) as it does not consider the effect of varying the 

sequence/order of the 𝐷𝑖′𝑠 (e.g., see [19]). A number of experts in the physical and engineering 

sciences have developed other deterministic cumulative damage models for various situations 

(see e.g., [1] [4]).  Statisticians have helped to transform these deterministic models into 

probabilistic versions (e.g., see [19]).  Examples of statistical approaches for modeling the 

effects of exposure to variable thermal environments are given in [20] and [21].  

In general, regardless of the particular combination of probability model / stress relationship that 

is used, estimates of the model parameters (e.g.,  and  in the case of an Exponential/Arrhenius 

model) need to be obtained.  The most straightforward way to do this is via an experiment in 

which failure time data (either complete or incomplete data) are acquired at several accelerated 

levels of the stress factor (e.g., temperature).  The reliability as a function of time can be 

predicted by using the estimates of the model parameters.  For example, in the case of the 

Exponential/Arrhenius model, �̂� = 𝑒𝑥𝑝(−�̂�(𝑇𝑢𝑠𝑒) ∙ 𝑡∗), where �̂�(𝑇𝑢𝑠𝑒) = �̂� ∙ 𝑒𝑥𝑝 (
�̂�

𝑇𝑢𝑠𝑒
) , �̂� and �̂� 

are the parameter estimates, and Tuse is the nominal use temperature.  One could conceive of this 

example as being illustrative of level-of-stress acceleration.  On the other hand, if 𝑇𝑠𝑡𝑜𝑟𝑎𝑔𝑒 is 

substituted for 𝑇𝑢𝑠𝑒, then the example could be representative of aging-rate acceleration. Nelson 

[2] discusses a number of other commonly used probability model /stress relationship 

combinations (e.g., Weibull/Power Law model).  In all cases, the underlying models are fully-

parameterized. The accuracy of a reliability prediction, �̂�, based on the underlying models 

depends on the accuracy of all of the assumptions associated with both the probability model and 

the stress relationship.  The precision of the reliability prediction depends on the uncertainty of 

the estimated model parameters which in turn depends on the specifics of the experiment(s) used 

to estimate model parameters (including the number of units tested and whether or not 

sufficiently complete data were acquired).  In addition, the accuracy and precision will depend 

heavily on how far the use condition must be extrapolated from the accelerating conditions.  

Various statistical methods can be used to estimate the model parameters, predict reliability, and 

assess model accuracy.   

 
3.4 Parametric/Binomial Approach for Characterizing Reliability via 

Accelerated Life Testing 
 

In many cases, it is not practical to use a strict nonparametric approach to demonstrate reliability 

with testing at use conditions as in section 3.2 due to prohibitive requirements on the number of 

units to be tested.  In addition, it may be perceived that full characterizations of the probability 

and stress models via experimentation are unnecessary due to existing knowledge regarding the 

model parameters.  Within this context, a mixed parametric/nonparametric approach has been 
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proposed (and used) at Sandia and elsewhere.  It has been claimed to be a means to “demonstrate 

reliability” to a particular requirement with accelerated testing. 

The basis for this approach is provided by the “Parametric Binomial” or “Lipson” equality (see 

Lipson and Sheth [22]).  This approach provides a mathematical framework to tradeoff the 

sample size of a test with its duration.  That is, with strong assumptions concerning the 

underlying model, one can claim to “demonstrate reliability” by testing fewer units(𝑁†), each for 

a longer duration (𝑡†).  The Lipson equality, which blends both parametric and nonparametric 

statistics, assumes that the age-rate mechanism for the dominant failure mode produces times-to-

failure (or cycles-to-failure) that are distributed according to a Weibull model.  The assumption 

of a Weibull model reflects the parametric part of the “Parametric Binomial” equality.  The 

Weibull shape parameter, , is assumed to be known to be above a lower bound.  With these 

assumptions, one can demonstrate that the fraction of units that will fail the mission life 

requirement (𝑡∗) is less than 1 − 𝑅 with confidence 𝐶 ∙ 100 %., if 𝑁† units are tested without 

failure each to a duration  𝑡† = 𝑡∗ ∙ √
𝑁∗

𝑁†

𝛽
 .  Here, from Section 3.2,  𝑁∗ represents the required 

number of units to be tested at use conditions without failure to 𝑡∗ in order to demonstrate a 

reliability level of R with confidence 𝐶 ∙ 100 %.  Note that the benefit (in terms of reducing the 

sample size) increases as the assumed value of  increases.  For example, in the case of an 

exponential distribution (i. e. , 𝛽 = 1), 𝑡† = 𝑡∗ ∙
𝑁∗

𝑁†
 .  Thus, assuming an exponential model, we 

must test units sufficiently long without failure such that 𝑡† ∙ 𝑁† ≥ 𝑡∗ ∙ 𝑁∗.   

 

This approach has been applied to various situations at Sandia.  For example, in a capacitor 

sampling plan, 6 units per lot over an anticipated production run of 15 lots are planned to be 

subjected to a 3600VDC stimulus for 20 hours.  Assuming an exponential failure time model (or 

any other Weibull distribution with 𝛽 ≥ 1 … implying a non-decreasing hazard function) and 

that no breakdowns are observed in the 1800 unit-hours of testing, we will have 66% confidence 

that the probability of a unit breaking down during a 1-hour 3600VDC stimulus is no more than 

0.0006.  In the case of another component, it was conjectured that the time-to-failure is 

distributed according to a Weibull distribution with 𝛽 = 3.5.  It is required that the component 

operates following 14 hours of stress caused by temperature cycling.  It was desired to 

“demonstrate” that the probability of a unit breaking down prior to 14 hours of stress is no more 

than 0.045.  Using the binomial success/failure model, one would need to test 𝑁∗ = 15 

representative units without failure to 𝑡∗ = 14 hours to “demonstrate” that the reliability exceeds 

0.955 with 50% confidence.  Apparently, it was desired to test only 𝑁† = 2 units.  By using the 

Lipson equality (conservatively using 𝛽 = 2.0), it was suggested that the 0.955 reliability could 

be demonstrated if the two test units functioned after 𝑡† = 38.3 hours of stress = 𝑡∗ ∙ √
𝑁∗

𝑁†

𝛽
 .  Of 

course, such an assertion requires that the Weibull model holds (with 𝛽 ≥ 2.0) and that failures 

due to other types of defectiveness (i.e., infant mortality) are inconsequential.   



23 
 

  

In general, the validity of the “Parametric Binomial” approach depends on knowledge of the 

distributional form and the associated parameter (shape parameter in the case of a Weibull 

distribution).  Even if the Weibull model form is accurate, use of an optimistic assessment of 𝛽 

(by assuming a larger value than truth) will result in an invalid inference regarding R. Thus, it is 

important to recognize that  is difficult to estimate experimentally with meaningful precision.  

For example, even with a sample size of 30 failure times (complete data),  can only be 

estimated to within a relative standard error of about 15%.  Incomplete data are much less 

efficient for estimating .  The effect of over-estimating  is illustrated as follows.  Suppose that 

is assumed to be 2.0 when in fact 𝛽 = 1.0.  In this case, the test time suggested by the Lipson 

equality (for the assumed value of ) will need to be multiplied by the factor√
𝑁∗

𝑁†
 in order to be 

appropriate for the true value of .  Furthermore, a significant disadvantage of this approach is 

that “defect-related failures (which might occur in only a small proportion of units) might not 

show up in the sample” (p.249 in [1]).  This is particularly important if 𝑁† is reduced to a very 

small number, as in the previous example where 𝑁† = 2.  The historical experience with NW 

components as fielded is that unreliability is, in fact, dominated by defects due to non-

homogeneous production (materials and/or processes).  Design robustness to various stressors is 

of course important, but practitioners of this approach risk radical misunderstanding if they 

believe that this approach alone can “demonstrate reliability” of the product as fielded. 

 

With additional assumptions, the “Parametric Binomial” approach can be further extended to 

provide additional testing flexibility (and even greater acceleration).  Suppose that we first use 

the “Parametric Binomial” approach to specify a smaller sample that is to be tested longer. 

However, suppose that 𝑡† is still unacceptably large.  If we assume knowledge of the relationship 

between the life of a product and the stress level, we might be able to reduce the test time (of the 

reduced sample) to an acceptable level by increasing the stress level.  For example, suppose that 

the life of a product depends on the stress level through the inverse power law, 𝜏(𝑆) = 𝛼
𝑆𝛾⁄  

with 𝛾 > 0.  As in Section 3.2, assume that 𝑁∗ represents the required number of units to be 

tested without failure to 𝑡∗ at the use stress condition (S*) in order to demonstrate the reliability 

target, R.  Using the “Parametric Binomial” approach, one might demonstrate the reliability 

target, R, using  𝑁† units tested to 𝑡† using the stress level 𝑆† = 𝑆∗.  If 𝛾 is known and the stress 

level is increased to 𝑆‡ > 𝑆†, then would could reduce the time on test to 𝑡‡ =  𝑡† ∙
𝑆†

𝛾

𝑆‡
𝛾 .  Thus, we 

would have effectively demonstrated the original reliability requirement by testing  𝑁‡ = 𝑁† 

units (under stress 𝑆‡) without failure to 𝑡‡.  This approach could easily be applied to other life-

stress relationships (e.g., Arrhenius) associated with acceleration via the aging-rate of a product, 

or the level of stress under which a product operates. 
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This approach (which is general, simple, and easy to explain) may be enticing as it apparently 

offers a rapid and inexpensive way to demonstrate sufficient margin.  However, it assumes 

specific knowledge relating to the acceleration factor as well as the distribution of failure times.  

By itself, the small set of tests (at accelerated conditions) provides no ability to assess the 

necessary modeling assumptions or uncertainty. 

 

3.5 Parametric Approach for Characterizing Reliability via Accelerated 
Degradation 

 

Accelerated degradation tests can be used to study the age-rate degradation of product 

performance at both use and accelerated conditions over time (see e.g., Chapter 21 in [1] and 

Chapter 11 in [2]).  This form of testing can provide significantly more information than other 

forms of accelerated tests.  However, in order to be effective, such testing must involve one or 

more measures of performance that relate to the state-of-health of the units.  Thus, such an 

approach requires a high level of knowledge about the product.  Failure is usually associated 

with a certain level of the performance measure.  For example, suppose that the performance 

measure (e.g., resistance in an electrochemical cell) increases as the state-of-health of the product 

decreases.  Then failure occurs when the performance measure increases beyond some critical 

limit.  The goal is to model the progression of the degradation measure across stress conditions 

and time in order determine a product’s useful life.   This requires two models.  The first, 

referred to here as a degradation model, expresses the expected performance level versus the 

time and conditions under which a product has been aged. This model can be empirical, 

chemistry/physics-based, or some combination of both.  A wide variety of model forms are 

possible.  In practice, the specific form of the model that is used will depend on the particular 

technology and set of stress factors.  By itself, this model can be used to assess margin.  A 

second model, referred to here as an error model, accounts for the observed variability about the 

expected performance due to measurement error and the intrinsic differences in performance 

across test units.  The second model can be used to assess the accuracy of the first model as it 

represents the experimental data.  Together, the two models can be used to assess reliability 

assuming there is a known relationship between reliability and the measure.  

 

For example, Figure 4 shows a fitted degradation model superimposed on experimental data [6].  

The semi-empirical degradation model, reflecting the relative change in the discharge resistance 

of an electrochemical cell, is of the form 𝜇(𝑡; 𝑇) = 1 + 𝑒𝑥𝑝 {𝛼 +
𝛽

𝑇
} ∙ 𝑡1/2, where t represents 

time and T represents absolute temperature.  The ratio defined by dividing the discharge 

resistance of a cell at time t by the discharge resistance of the cell at t = 0 is denoted by 𝜇(𝑡; 𝑇). 

In this example, cells were aged at various temperatures and were periodically measured.  The 

measurements were not degrading to the units under test.  Note, however, that a similar (yet less 

informative) approach could be used when testing is destructive.  Of course, use of 
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nondestructive measurements can reveal the degradation paths of individual units (whereas 

destructive measurements cannot).  For this example, a 30% resistance rise represents the critical 

performance threshold.  Based on the fitted degradation model, the expected cell life is slightly 

more than six months when aged at 55  C.  In this case, the fitted model was developed based on 

the data acquired at 40  C, 47.5  C, and 55  C.  The model suggests a 12.6 year life (on average) 

for cells aged at the use temperature, 30  C.  One can validate/assess the model at the use 

temperature by comparing the predicted behavior at 30  C (red curve) with the observed data at 

30  C (red ‘+’s).  This illustrates that accelerated degradation tests offer an improved ability to 

assess a model when compared to accelerated life tests (where data at use conditions are not 

often acquired).  Furthermore, one could use the degradation model in combination with the error 

model (and the distribution of initial resistance values across units) to predict the proportion of 

cells that meet a resistance requirement for a specified time and temperature (i.e. reliability, 

presuming a credible requirement has been defined). 

 

Figure 4. Fitted Degradation Model with Experimental Data 

To summarize, the value of degradation tests is clearly stated in [23] … “For the same amount of 

test time, degradation data always contain more information than the failure-time data and thus 

provide more precise estimates, particularly when there are few or no failures. Degradation data 

have another advantage in that they provide much more information for assessing the adequacy 

of an acceleration model.”  While the data obtained from an accelerated degradation experiment 
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have much intrinsic value, a credible performance requirement is needed in order to turn the 

degradation information into a reliability estimate. 

 
3.6 Bayesian Approaches for Characterizing Reliability via 

Accelerated Testing 
 

There are Bayesian analogs for characterizing reliability with accelerated testing.  For example, 

Hamada et al. [23, pp.239-241] illustrate how one might use a combined Weibull/Arrhenius 

model to assess the lifetime of a hypothetical mechanical component subjected to temperature 

stress.  In this case a prior distribution is assigned to the Weibull shape parameter () directly.  

The characteristic life () is defined in terms of the Arrhenius parameters which are also 

assigned priors.  Hamada et al. [24] also gives a Bayesian perspective on accelerated degradation 

testing.  The relationship between the Bayesian approach and other approaches depends on the 

particular prior (or set of priors) that is chosen.  For example, if the prior is sufficiently 

concentrated, the result of the Bayesian approach will likely resemble the result of the 

“Parametric Binomial” approach where parameters are assumed to be known.  If the priors are 

sufficiently diffuse, the Bayesian approach might resemble the various parametric approaches 

that were discussed in Sections 3.3 and 3.5.  It would seem that the Bayesian approach can 

provide added value if the priors are based on information previously acquired from testing 

components that are similar to the component of interest (when considering materials and failure 

mechanisms). 
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4. DISCUSSION 
 

Various methods for characterizing reliability using accelerated tests were described and 

illustrated in Sections 3.3 thru 3.6.  It is interesting to compare the assumptions and attributes of 

the various approaches and identify potential pitfalls associated with their use.  

The general methods for characterizing reliability are associated with various assumptions.  

When any of these methods are used to characterize performance, a tacit assumption is that the 

test units are representative of the totality of production (an assumption that is impossible to 

justify if units come only from pre-production lots).   To the extent that they are not 

representative represents a significant risk!  That is where techniques such as Highly Accelerated 

Stress Screening (HASS) may be useful (but beyond the scope of this document). 

Each of the methods assumes a specific form for an underlying probability distribution.  Any use 

of data acquired at accelerated conditions for making quantitative inferences about performance 

at use conditions requires additional assumptions regarding the relationship between stress level 

and performance.  The “Parametric/Binomial” approach (Section 3.4) also assumes/asserts 

specific values for parameters of the distributions.  The other approaches allow for estimation of 

the parameters via the experimental data.  The other approaches also allow for the quantification 

of the statistical uncertainty regarding the model parameters (or functions of the model 

parameters).   

A desirable attribute of an accelerated testing approach is the ability to assess model 

assumptions.  The most direct way to assess assumptions is with experimental data acquired 

during the accelerated testing.  One might also rely on data acquired from other related 

experiments.  Such experiments might definitively reveal the dominant failure 

modes/mechanisms that occur.  Other experiments might provide the basis for assuming a 

specific stress/performance relationship (e.g., activation energy).  In the case of the 

“Parametric/Binomial” approach, there is little if any ability to assess assumptions.  The 

“Parametric/Accelerated-Life” approach (Section 3.3) provides some ability to assess model 

assumptions (at least at conditions where experimental data were acquired).  However, in general 

when using this approach, data are not acquired at use conditions so that it is not possible to 

validate the models assumptions at use conditions.  The “Parametric/Accelerated-Degradation” 

approach (Section 3.5) provides improved ability to assess model assumptions (including at 

conditions where experimental data were acquired). 

Another desirable attribute is robustness to changes in requirements and/or use conditions. 

Ideally, one would like the test results to be applicable to perturbations of the 

requirements/conditions.  This can be helpful if requirements and/or use conditions change and 

become more demanding.  In the case of the “Parametric/Binomial” approach, there is no ability 

to assess margin or make inferences concerning performance for more demanding requirements.  
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Inferences drawn from the “Parametric/Binomial” approach are specific to a particular 

requirement.  With the other approaches, there is at least the possibility of using the fitted models 

to make inferences concerning performance at more demanding requirements/conditions.     

There are various risks associated with using any approach for accelerated testing.  Meeker and 

Escobar [25] and Meeker et al. [23] identify a number of “pitfalls” when using accelerated 

testing to make predictions about product performance at use conditions. Many of the pitfalls 

arise from an incomplete knowledge of the failure mechanisms (e.g., multiple (unrecognized) 

failure modes, and multiple factors affecting degradation).  This is an important concern for 

accelerated testing of MC-level components in particular, which are a complex combination of 

materials in different geometries and environments.  In some of these cases, it is difficult to 

imagine that a simple model can be used to accurately predict performance.  

Other pitfalls arise from the fact that test units may not fully represent the population due to 

changes in production or some other special aspect of the test units (e.g., modification of the test 

unit to enable measurement).  Still others arise from the fact that laboratory tests do not always 

reflect use conditions.  In many cases, test units are often only exposed to isothermal conditions, 

when in fact, the thermal environment can be highly variable (even unknown).  There is 

significant risk of inaccuracy in cases when model parameters are asserted or assumed (e.g., 

“Parametric/Binomial”) based on published or previously used values for similar 

products/materials.  For example, Nelson [2 p. 253] comments that in many cases acceleration 

factors (based on assumed model parameter values) “are company tradition and their origins may 

have been long forgotten.” 

Perhaps the biggest risk has to do with the intrinsic nature of an accelerated test.  That is, 

accelerated tests are performed at conditions more extreme than use conditions.  Statistical 

models (whether physically or empirically based) used to predict behavior at use conditions must 

extrapolate to use conditions.  Inaccuracies in the models will naturally be magnified when 

extrapolated to use conditions.  Use of extreme levels of acceleration exacerbates the effects of 

these inaccuracies.  Even if the models are accurate, statistical uncertainty in the estimates of the 

model parameters will result in significant uncertainty in predictions at use conditions.  Again, 

extreme levels of acceleration amplify the problem.  Independent of whether or not the models 

are accurate, computer codes can provide predictions (and in some cases, estimates of 

uncertainty) at use conditions without regard to the level of acceleration.  Thus, indiscriminate 

acceptance of the output from these codes without a careful assessment of model accuracy is a 

significant risk. 

In other cases, extreme acceleration activates failure modes not observed at use conditions.  In 

such cases the effects can vary, but in general results in an inaccurate extrapolation (often anti-

conservative).   For example Bernstein et al. [26] studied the degradation behavior of parachute 

materials using an accelerated aging experiment using tensile strength as a degradation measure.  

During this study, tensile strength data were obtained from nylon parachute specimens thermally 
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aged at 138, 124, 109, 99, 95, 80, 64, 48, and 37°C for up to 5.5 years.  An Arrhenius plot 

derived from the experimental data reveals significant nonlinear behavior indicating a change in 

mechanism (see Figure 5).  The y-axis of this plot (shift factor)) is proportional to the 

degradation rate.  The x-axis of this plot represents inverse absolute temperature.  In this case if 

the high temperature data were used to predict life at use conditions, the prediction of life would 

be “too high by many orders of magnitude” [26].  That is, projecting the line from the highest 

three temperatures (on the left-side of the plot) to use conditions (on the right side of the plot) 

would underestimate the shift factor (degradation rate).  Thus, it is very risky to use extreme 

levels of acceleration to predict performance at use conditions.  Also, the value of a degradation 

study (having a wide range and large number of acceleration levels) is clearly illustrated by this 

example.     

 

 

Figure 5 – Nylon thermal-oxidative shift factor plot. (Copied from Figure 22 in [26])   
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5. SUMMARY AND RECOMMENDATIONS 
 

Accelerated testing involves testing products at higher than normal levels of stress.  The degree 

of acceleration is reflected by how far the test conditions are from normal use conditions.  When 

the degree of acceleration is large, it is risky to extrapolate test results in a quantitative way to 

use conditions due to model inaccuracies, etc.  However, in a qualitative context, such tests 

(deemed highly accelerated) can be useful to find and fix problems during design and 

preproduction (HALT).  Due to schedule and budget constraints, there is pressure to use 

accelerated testing at extreme levels of stress, where the relationship between those levels and 

normal levels of stress is unknown, in order to make quantitative inferences.  The extreme levels 

might be a result of using a “canned”, “cookie-cutter” approach (e.g., “Parametric Binomial”) 

where the relationship between stress and life is assumed (model and parameter values) in order 

to minimize the number of units to test and/or minimize the amount of time units need to be on 

test.  Use of these approaches requires assumptions that may be difficult to justify so that the use 

of extreme levels in such cases may be without a sufficient basis. Once test data are acquired, 

computer software will rapidly provide quantitative predictions (right or wrong) based on the 

user’s assumptions.  Due to the nature of accelerated data, which are often incomplete (either 

right or left or interval censored), model assumptions and parameter uncertainties are often 

difficult to assess.  Thus, quantitative inferences based on such experiments and data analysis are 

difficult to substantiate and can lead to incorrect inferences that mislead decision-makers.   

Rather than using a “canned” approach for planning and analysis, it is recommended that 

engineers follow a highly collaborative approach that will lead to experiments and analyses that 

are tailored for the specific product.  Expertise from a variety of sources is needed.  Key is the 

product engineer who is knowledgeable about the intended use of the product as well as the use 

environments/stresses that are expected during the products life. Collaboration between the 

product engineer and materials experts is needed to identify the dominant failure 

modes/mechanisms that can occur within normal use.  Rationale for selection of a particular 

model should be developed based upon careful consideration of failure mechanisms that are 

known or suspected.   A relevant process for accelerating the identified failure modes 

(manifested in terms of one or more controllable stress factors) needs to be established.   A test 

engineer should be consulted in order to identify relevant measurements.  A statistician should be 

consulted in order to assist in the planning of efficient experiments and to analyze the 

experimental data (including assessment of model adequacy and uncertainty).  There may be 

some synergistic benefits accrued by coordinating the planning and analysis of HALT tests (find 

and fix) with tests used to make quantitative inferences [27]. The planning process should 

recognize the extensive literature associated with accelerated tests and, if possible, focus on the 

measurement of informative degradation data (rather than the relatively uninformative failure 

data).  While in some cases it may not be possible to identify and develop a relevant degradation 

measure, it is well worth some additional time and effort to try.  If it is not possible to use a 
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degradation approach, it is worthwhile to consider the additional information gained by 

conducting tests to failure versus testing to a requirement.   

In summary, accelerated testing can be very useful as a qualitative tool for finding and fixing 

problems during design and preproduction (HALT).  With sufficient knowledge (e.g., well 

understood failure mechanisms and reasonable modeling assumptions), accelerated testing can 

also be useful for making quantitative inferences regarding performance at use conditions.  Note 

that modeling assumptions will inherently involve some level of risk.  Naturally, the assumptions 

become more critical (and risky) as accelerated conditions become further removed from the use 

conditions.  Additional risk is incurred as the assumptions are farther removed from knowledge.    

Decision makers need to understand the assumptions, the level of knowledge, and the 

concomitant risks.  
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