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To February 24-25 A2e HFM planning meeting participants: 
 
A2e HFM Objective 
Accurately predict, assess and optimize wind plant performance utilizing High 
Performance Modeling (HPC) tools developed in a community-based, open-source 
simulation environment to understand and accurately predict the fundamental physics 
and complex flows of the atmospheric boundary layer, interaction with the wind plant, 
as well as the response of individual turbines to the complex flows within that plant 
 
One of the focuses of the February meeting is to identify the important physics 
(phenomena) that should be simulated by our high fidelity models, assess the 
capability of our models to represent these physics, and to perform a gap analysis of 
model development, verification, and validation needs associated with the more 
important physics. The gap analysis provides structured information to help in the 
planning of an integrated A2e HFM/Experimental program to meet the objective 
stated above. The identification and ranking of this phenomena and the 
corresponding gap analysis is one of the more important considerations when 
utilizing models of complex systems (such as a wind plant).  
 
To help expedite the discussions, we will develop a simple table (called a 
Phenomenon Identification Ranking Table, PIRT) listing the important phenomenon 
in the first column, followed by columns with our assessments of the importance of 
the phenomena relative to the HFM objective (ranked High, Medium, Low), ability of 
our mathematical models to represent the phenomena, followed by the verification 
and validation evidence that the computational algorithms solve the mathematical 
models and represent the behavior of the physics as required to meet the HFM 
Objective. A simple gap analysis can then be performed based on this information. 
The PIRT is the most commonly used approach for characterizing model capability 
and model/validation needs from a physics perspective. This tool was first 
developed by the nuclear power industry, and has become the standard approach to 
addressing model capability needs from a planning perspective for complex, multi-
physics engineering models.  
 
The attached document is PART 1 of a validation directed planning document that 
we are developing. Chapter 3 provides a more detailed description of, and 
guidelines for the use of the PIRT (worth reading before the meeting). We will also 
provide copies of a consolidated PIRT showing rankings for a limited number of 
phenomena, and a PIRT listing more phenomena with the rankings left blank. These 
were developed by others in the A2e program and can be used as a reference for our 
discussion.  We suggest that you consider using this second PIRT as a starting point 
for your discussions, revising phenomena as appropriate and assigning your own 
rankings. 
 
The first day of the meeting will have breakout group meetings that will allow the 
meeting attendees to provide input to the gap analysis by completing the PIRT.  The 
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breakout session leads will facilitate this process, and several people who are 
familiar with the gap analysis process in regards to the PIRT will provide support.  
The breakout sessions during the morning of the second day will give attendees a 
chance to provide direct input to the experimental planning process by identifying 
detailed quantities of interest and the associated measurements that are needed to 
validate models for the intended applications.  The final breakout sessions of the 
meeting will focus on how different aspects of the models impact simulation 
software development. 
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1.0 Introduction and Background 
 

1.1 What is a validation directed program? 
A model validation directed program focuses on the development and execution of 
combined computational modeling/experimental tasks specifically designed to 
assess predictive capability of computational or analytical models for specific 
applications in a focused, well-structured, and formal manor. The applications that 
are typically targets of these formalized approaches are those that involve multiple 
physics on multiple scales, for which the predictive capability of the computations 
models can have significant economic, environment, or safety impact.  

1.2 Role of computational modeling in the decision process 
The relative importance of computational modeling and experimental work on the 
design or qualification of a system design varies from application to application. In 
some cases, computational models provide critical information during the design of 
a system whereas qualification is based on test data of a prototype of the final 
design. In other cases, modeling and testing serve complementary roles where the 
testing is performed under limited conditions due to economic and other 
constraints, and modeling is utilized to extend the assessment to other untested 
conditions. For other cases, modeling serves as the primary source of evidence that 
a system design meets requirements. Often, the system is a one of a kind, and the 
scale of the system is such that prototypes at the full scale will not be built. As the 
impact of modeling on the decision process increases, the importance of evaluating 
model capability using experimental data increases.  
 
As computational models mature, computational resources increase in capability 
(i.e. High Performance Computation), and full-scale prototype development 
becomes less practical due to the complexity of the desired engineered systems, the 
role of experimental work shifts from providing data for system testing to providing 
data for model validation. As a result, the formalization of the process to maximize 
effectiveness of experimental work to support model validation becomes a primary 
driver in program planning and execution.  

1.3 What is validation? 
ASME V&V10-2006 (ASME, 2006) defines model validation to be “the process of 
determining the degree to which a model is an accurate representation of the real 
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world, from the perspective of the intended uses of the model.” This statement can 
be broken down into several concepts: 
 
• Validation is a measure of accuracy in representing the real world as 

approximated by measurements from validation experiments. As stated in ASME 
V&V 20-2009 (ASME, 2009), “There can be no validation without experimental 
data with which to compare the results of the simulation.”  
 
Validation is a necessary component in the process of providing evidence of 
model suitability. Validation is not a binary statement about whether a model is 
valid or invalid, but rather a critical component in the overall assessment of the 
suitability of the computational model for the intended application. Other 
evidence of model suitability includes the Phenomena Identification and Ranking 
Table (PIRT) (Oberkampf and Roy, 2010) and the Predictive Capability Maturity 
Model  (PCMM) (Oberkampf, et. al, 2007) discussed in later chapters. 
 

• Validation focuses on an intended application, which limits the conditions for 
which the model is to be evaluated. Because computational models are usually 
intended to be predictive, validation may assess model accuracy for conditions 
that are different than those for the application.  
 

• When validation experiments cannot be performed at the conditions of the 
intended application, validation should be performed over a hierarchy of 
experiments designed to test the various features of the computational model 
that are important to the application. While not providing direct evidence of 
model validity at the application conditions, the tests over the validation 
hierarchy provides evidence that the capabilities of the computational models 
have been assessed.   

1.4 Purpose of this document 
The purpose of this document is to provide guidance on the processes of validation 
driven program planning and execution that are based on methodology developed 
over the years by various organizations such as NASA, DoE and various AIAA and 
ASME codes and standard organizations (AIAA, 1998, ASME, 1998, 2006a, 2006b, 
2009, Oberkampf et al., 2007, Pilch et al, 2001, Trucano et al., 2002) to help ensure 
that the model assessment process is complete and rigorous. Because the 
development of a validation process for a particular application relies heavily on 
Subject Matter Expertise (SME) to design a validation program that is reasonable 
given the resources (time, personnel, computational and experimental resources, 
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and funding), the present document will emphasize the SME driven planning 
processes as well as data driven validation procedures.  
 
The development and execution of this process requires well integrated team 
planning among those responsible for programmatic needs, computational model 
developers, model users, and experimentalists, and should consider the needs of the 
eventual customers of the modeling capability and results. The communication and 
tight coordination between these team members is one of the more significant 
benefits of this process, greatly increasing the chances of a successful model 
validation dataset and campaign. 
 
The methodology presented in this document addresses the approach used to 
engage scientific/engineering subject matter experts to characterize and prioritize 
the issues associated with model prediction for the intended application. The 
development of a business plan to accomplish the results of the scientific planning is 
beyond the scope of this document and not addressed. However, the customers 
(internal such as program directors or external such as commercial users of the 
resulting software) of the modeling efforts are included into the planning process as 
the customer defines the requirements for the models and the anticipated scenarios 
to which the models will be applied, as well as understands resource limitations of 
the program.  
 

1.5 The Process for Validation Directed Programs 
The validation directed program and experimental planning processes are 
summarized in Figure 1.1. This figure is based on that presented by Trucano et al. 
(2002). The content in the upper blue box represents the integrated program 
planning that defines, justifies, and prioritizes the hierarchy of validation 
experiments. The lower blue box represents the design, execution, and 
computational modeling of specific validation experiments that have been identified 
for the validation hierarchy.  
 
At the completion of the validation program planning (upper box), one should have 
a definition of the quantities of interest that are to be predicted at the system level 
(e.g., some measure of performance, model based environmental specifications or 
impact, or the probability that the a system remains safe), an assessment of the 
physics that must be adequately modeled to predict these quantities, a high level 
identification of the types of experiments required to address questions of 
predictive capability of the computational models, the preferred scale of these 
experiments (both physical scale and complexity), a prioritization of these 



 
 

 
 

9 

experiments, and the associated planning document. One should think of this 
planning as a living process, with on-going changes expected due to knowledge 
gained from the execution of the validation experiments, additional model 
development efforts, and due to program resource reallocation.  
 
 
Figure 1.1. Validation directed program planning and implementation   
 
Implementation of the steps indicated in Figure 1.1 should occur in the order 
shown. This figure is based on ongoing computational/experimental programs that  
were originally designed for scientific discovery rather than for model validation 
and have generally evolved through a less formal process. As the focus of these 
programs move from scientific discovery and associated model building, to 
prediction of performance of complex engineered systems using computational 
models, the formalization of the validation process helps focus the program goals, 
prioritize program needs, and adds transparency to the program decision process. 
 



 
 

 
 

10 

Because many of the items addressed in the sub-boxes of Figure 2.1 rely heavily on 
expert opinion (all items in the upper blue box), the entire planning and execution 
process is very team centric. The make-up of the teams can vary, depending on the 
specific items being addressed in the various boxes. More specialized teams are 
often appropriate for the items in the lower box, especially if the validation 
hierarchy requires diverse types of experiments and models.  

1.6 Validation versus Credibility 
Validation requires the comparison between simulation model output and 
experimental data. Such comparisons provide direct evidence of the ability of a 
model to simulate the correct physics, for the conditions tested. Engineering 
computational models are often developed to provide predictions of behavior for 
scenarios different from those for which validation data are available. As a result, 
the credibility of the model for the application scenarios requires some expert 
judgment.  
 
The first step in assessing credibility is to identify what phenomena is important to 
be adequately captured by the model to meet the goals of its intended use. A well-
accepted process to identify and rank the important phenomena is the Phenomena 
Identification Ranking Table (PIRT, Oberkampf and Roy, 2010). This table is 
developed using subject matter experts and identifies the important phenomena, 
classifies the phenomena as high, medium, or low importance; characterizes the 
current state of the computational model to represent this phenomena, and 
provides a gap analysis. An extended version of the PIRT will be introduced in the 
next chapter that provides additional information for program planning.  
 
The assessment of model credibility for the phenomena identified by the PIRT for a 
specific application is based on sound modeling practices.  Formal processes have 
been developed that break down these practices into six main elements (Oberkampf 
et. al., 2007). These are 
 
1. Representation or geometric fidelity – are representation errors corrupting the 

simulation conclusions. For example, does the simplification used to represent 
bolts in a finite element analysis significantly affect the simulation results?  

2. Physics and material model fidelity – how science-based and accurate are the 
physics and material models? Note that results of science-based models may be 
more credible that non-science-based models at conditions other than those for 
which they were tested or calibrated. 
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3. Code verification, including software quality assurance activities – are software 
errors or algorithm deficiencies corrupting the simulation results? Are 
sufficiently formal processes in place to minimize the risk of such errors, such as 
nightly regression runs to look for unintentional changes in code output due to 
code development; and code verification test suits to test code predictions 
against known analytical solutions.  

4. Solution verification – are human procedural errors or numerical solution errors 
corrupting simulation conclusions? – What steps have been taken to ensure that 
user input errors have been eliminated, what evidence is there that the equation 
solvers converge, and what steps have been taken to characterize the 
uncertainty in predictions due to lack of grid convergence (i.e. for finite 
difference/volume/element algorithms)? 

5. Validation – how accurate are the integrated physics and material models. Model 
validation is an experimental data based assessment of model accuracy, for the 
conditions of the validation tests, which typically involves coupled physics or 
other phenomenological effects. 

6. Uncertainty quantification and sensitivity analyses – what is the impact of 
variability and uncertainty on system performance and design margins? The 
sources of these uncertainties include environmental uncertainties such as those 
that affect the initial and boundary conditions of the system, model parameter 
uncertainties such as used in material property relationships or other calibrated 
behavior, numerical uncertainties due to lack of grid convergence, and model 
form uncertainties identified through validation tests and through expert 
judgment. 

 
These six elements are discussed in more detail in a later chapter in Part II of this 
document. The characterization of the overall risk of using a model for prediction is 
summarized in Figure 1.2. The left leg of the figure represents the assessment of the 
important phenomena for the application (PIRT) and the credibility of the 
computational model based on the six elements considered. This leg represents an 
assessment based largely on human judgment. The right leg represents the sources 
of uncertainty that are rolled up to the application prediction. These uncertainties 
include model parameter, numerical grid convergence, and model form uncertainty 
uncovered by the validation experiments and other sources. The overall risk of 
using the model, given model predictions of performance (or safety) margins, their 
uncertainty, and the credibility assessment can be notionally characterized as 
shown in Figure 1.3. Note that risk of using model results when the model predicts 
large design margins relative to the model’s estimated uncertainty is less than that if 
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the model predicts small margins relative to the estimated uncertainty. Model 
results for which the assessment of credibility is higher will likely result in less risk 
than results for which little credibility has been established based on the six 
elements discussed above.  
 
The focus of this report is on the validation directed modeling/experimental R&D 
program planning and implementation and not on assessing risk for the users of the 
models. However, one should keep in mind that the ultimate goal is to provide the 
customer with not only predictions, but with information to help identify what the 
risks are of using the model in the decision making process.  

1.7 Report Organization and Scope 
This document is designed to be use as a guide to the implementation of the process 
summarized in Figure 2.1. The guide will focus on the ‘how’ through a step-by-step 
procedure. References will be provided to the literature that lead to the 
development of this process, as well as literature that addresses specific technical 
aspects of the process.  The remainder of this document will be divided into two 
parts. Part 1 addresses the integrated program planning illustrated in the upper 
blue box of Figure 2.1. Part 2 addresses issues associated with specific validation 
experiment design, model validation (a quantitative process), model credibility (a 
judgment process) and issues of uncertainty associated with the lower blue box of 
Figure 1.1. Part 2 of this document is not included in the present release. 
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Figure 1.2. Risk of Using a Model for Application 
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Figure 1.3: Risk Associated with Computational Simulation, green – low risk, 
yellow – intermediate risk, red – high risk. The Predictive Capability Maturity 
Model (PCMM) is an expert elicitation tool used to assess simulation credibility 
(discussed in Chapter 11). M and U are the margin, and the uncertainty in the 
margin, between the predicted performance and performance requirements. 
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Part 1: Integrated Program Planning 
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2.0 The Objective 
 
 

• The modeling objectives specifies in precise terms 1) what the model will be used for, 
2) the predicted quantities of interest, and 3) the role of the model in the design 
decision process for the customer. 
 

• The modeling objectives serve as the basis for modeling and experimental program 
planning and implementation. 
 

• The development of the objective requires close collaboration between the customers 
of the model results, experimentalist, model developers and model users.  

 
2.1 The Modeling Objective 
The first step of integrated program planning is to define the objective or objectives of the 
computational simulation for the application. All further efforts discussed in the document 
will be based on the objective or objectives. The analyst requires a clearly stated objective 
to know what is expected of their models and what quantities will actually be used by a 
customer for design decision. The experimentalist will provide calibration, 
characterization, and validation data to the modelers to meet the modeling objective. The 
objective clarifies to the customers exactly what the modeler will provide which allows the 
customer to assess how the model will support the customer for the design, planning, and 
implementation process.  
 
Example Objectives: 
 

1. The computational simulation will be used as a scoping tool to predict the 
thermodynamic efficiency of various potential engine designs. Prototype engines will 
be built and tested for the most promising designs to confirm thermodynamic 
efficiency.  
 

2. The loss of safety due to breach of a specific design of a storage tank, when exposed to 
a known range of jet fuel based pool fire scenarios, is to be predicted using the 
computational model. The qualification of the tank will be based on one tank / pool 
fire test deemed most stressing based on simulation results. The integrity of the tank 
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for other fuel types and wind conditions will be assessed using the computational 
model. 

 
3. Computation will be used to predict the daily power output of a wind plant, given the 

inflow conditions, terrain, and plant configuration. Computation will be the primary 
source of power output estimates prior to construction of the plant. 

 
Note that each example specifies 1) what is to be predicted, 2) the scenario, and 3) the 
impact of the prediction on the decision process. The first two items are required to define 
the intended use. The last item specifies the impact that the computational model has on 
the final design and informs the modeler as to the rigor that must be exercised in 
developing, validating, and using the computational model. 
 
Also note that none of the statements puts a 
quantitative specification on the allowed error in the 
prediction. If a quantitative specification is required, 
then the modelers and the customers must work 
together to develop a ‘reasonable’ specification (see 
side box).  
 
Often, the meaning of terms in the objective needs 
further definition. The term ‘breach’ in the second 
example objective is nebulous. Does this mean the 
initiation of breach, or a crack of more than one inch, 
or a crack of sufficient size to depressurize a 
container in a defined amount of time? A 
computational model may not be able to predict 
breach with high accuracy. The model may be able to 
satisfactorily predict the initiation of plastic 
deformation, which can be used as an indicator of 
breach. In this case, objective 2 could be redefined as 
follows: 
 

1. The loss of assured safety due to breach, as 
indicated by the initiation of plastic 
deformation, of a specific design of a storage 
tank, when exposed to known range of jet fuel 
based pool fire scenarios, is to be predicted 
using the computational model. The 
qualification of the tank will be based on one 

A cautionary note on specifying 
model accuracy in an Objective 
 
The ability to specify model 
accuracy requirements at this early 
planning stage is very difficult and 
seldom accomplished. While 
ballpark estimates of the prediction 
uncertainty are required to establish 
if the role of modeling is appropriate 
for the application, a specific pass-
fail uncertainty specification can be 
counter-productive. Often the 
customer and modelers do not know 
the margins of safety that an actual 
design will have, or the details of the 
actual scenario. Designs that have 
large margins of safety can tolerate 
larger uncertainty in model 
predictions. Other applications can 
possess large uncertainties in the 
input conditions (such as 
uncertainty in inflow conditions), 
which greatly effects model 
prediction uncertainty. Customers 
are primarily interested in knowing 
how large the prediction uncertainty 
is, so that the design can build in 
enough margin to accommodate this 
uncertainty.  
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tank / pool fire test deemed most stressing based on simulation results. The integrity of 
the tank for other fuel types and wind conditions will be assessed using the 
computational simulation. 

 
The phrase ‘assured safety’ are conditions for which we are confident the system is safe, 
rather than conditions at which the system transitions from safe to not safe. Note that the 
redefined objective provides enough information so that the modelers understand what is 
to be expected of the model in sufficient detail that they can take the next step, that of 
identifying and ranking the physics required to successfully model the quantity of interest 
for the scenarios of interest. The process to identify and rank the important physics is the 
topic of the next chapter.  
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3.0 Phenomena Identification Ranking Table 
 

• Provides a structured approach to prioritize physical and other model related 
phenomena for an intended application1   
 

• Identifies gaps between technical requirements and models, code capabilities, 
and V&V activities 
 

• Focuses limited resources on prioritized activities that will assess or improve 
the predictive accuracy 

3.1 PIRT: Background 
The next step in developing a V&V plan is to identify the physics and non-physics 
based phenomena that are important to represent in the computational model to 
meet the Objective defined in the previous chapter. Formalized methodology to 
identify and rank such phenomena was developed by the nuclear power industry 
(Shaw, et al, 1988, Wilson and Boyach, 1998) and has been adapted by other 
organizations such as the DoE nuclear weapons community (Trucano et al., 2002, 
Pilch et al, 2001), and V&V Code and Standards committee (ASME, 2006) and 
authors (Oberkampf and Roy, 2010). The basic tool used for this process is the 
Phenomena Identification Ranking Table (PIRT).  
 
The goal of a PIRT is to ensure both sufficiency2 and efficiency. Sufficiency is 
provided through a process of consensus building by expert elicitation for an 
intended application. Efficiency is provided through prioritization of the phenomena 
and gap analysis of the simulation and experimental capabilities. 
 

                                                        
1 Some of the content in this chapter was taken directly from PIRT: How To 
developed by Amalia Black for internal use at Sandia National Laboratories 
(SAND2013-6285P). Dr. Black is a co-worker of the first author of the present report 
and gave us permission to use this content unquoted.  
2 Sufficiency - The goal of model assessment is to assess whether the model is 
sufficient for the intended application. Note that this does not necessarily require 
that the assessment of the model be for all phenomena touched by the application 
(i.e. completeness), but rather for the phenomena that is considered to have a 
significant impact on the prediction of the QoIs for the intended application.   
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3.2 Who? 
The PIRT is developed based largely on subject matter expert (SME) consensus 
opinion. The PIRT development team should be broad based with the team 
comprised of modelers, developers, code users, experimentalist, as well as the 
customers who are familiar with the application as defined by the objective. The 
inclusion of a Validation and Verification (V&V) specialists is beneficial as they are 
familiar with many of the processes that have been developed for V&V that are 
directly relevant to the assessment of model capability. Because the results of the 
PIRT will be used for program planning, the ‘quality’ of the team is paramount to the 
success of a planning effort.  
 
Expert elicitation by its nature is subjective, but can benefit by utilizing information 
through a variety of objective methods, such as sensitivity analyses and numerical 
grid studies using the model, and existing validation results.  

3.3 What? 
The PIRT is a table that lists the important phenomena in the left column as 
identified by the team, and continues with a column characterizing importance of 
the phenomena, and one or more columns addressing the capability of the model to 
represent these phenomena. A gap analysis is performed with the results indicated 
by color codes (i.e. a stop light scheme). Additional columns can be added to the 
PIRT to suit program needs.  For the present work, additional columns are added to 
aid in program planning. These include a description of the issues associated with 
the identified gaps, proposed responses to mitigate the effect of the gaps, and 
priority of the responses from a programmatic point of view.    

The PIRT is based on information gathered from all relevant sources and should be 
updated as activities progress. The initial elicitation approach serves to build 
consensus in the technical community by soliciting and accommodating a broad 
spectrum of perspectives. 

3.4 Scope 
Identifying all of the phenomena that are relevant at the application scale for 
complex applications can be a daunting and even counter-productive task. The team 
should focus on those phenomena that are important to the Objective that may be 
inadequately represented by the model. The phenomena considered should be those 
that are important on the scale of the application. Examples of types of phenomena 
that may not be well represented by the computational model are listed in Table 3.1. 
Note that uncertainty quantification can be considered as a phenomenon, if the  
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Table 3.1 Examples of Phenomena for inclusion in PIRT 

Type Issues Potential Responses 

Physics Important physics 
inadequately represented 
by model 

Model development or experimental 
characterization to better represent 
the phenomena 
 
Model validation to assess the 
uncertainty associated with the 
inadequately represented physics 

 Not clear if important 
phenomena is adequately 
represented by model 

Model validation experiments 
designed to incorporate the effect of 
the phenomena 

 Interactions between 
important phenomena 

Model validation experiments that 
include the desired interactions  

 Ranking of importance of 
phenomena included in 
model 

Sensitivity analysis to rank importance 
for the application quantities of 
interest (QoI) 

Model and 
Geometric  
Fidelity 

Sub-components that 
affect prediction of 
application QoI poorly 
represented (e.g. 
fasteners represented by 
tied surfaces, e.g. fully 
welded) 

Sensitivity analysis on subsystem level 
with higher fidelity model to assess 
impact of underrepresented 
components  

 Geometric fidelity 
insufficient to represent 
behavior (e.g. stress 
concentrations around 
fillets) 

Sensitivity analysis on subsystem level 
with higher fidelity model to assess 
impact of under-resolved geometry 

 Grid resolution may be 
insufficient to capture 
behavior 

Grid studies (solution verification) to 
characterize uncertainty due to grid 
resolution 

 Fidelity issues due to de-
featuring in model due to 
elimination of sub-

Sensitivity analysis on impact of de-
featuring  
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components  
Characterization Inadequate material 

property characterization 
Material property characterization 
experiments (research existing and/or 
develop new) 

 Inadequate inflow, 
boundary condition, or 
site characterization 

Refine characterization of inflow, 
boundary and site conditions to the 
required fidelity using experimental or 
other techniques 

 Inadequate 
characterization of model 
parameter uncertainties  

Characterize from experimental data, 
data provided in literature, or from 
new experiments 

Uncertainty 
Quantification 

Uncertainty in model 
prediction not adequately 
characterized due to large 
run times of model 

Approximate methods such as the use 
of surrogates, or more advanced UQ 
propagation techniques, to reduce run 
times 

 
 
ability to predict the impact of natural variability on the quantities of interest is 
important to the application. 

3.5 The Expanded PIRT 
While many forms of the PIRT exist (Oberkampf and Roy, 2010), a form that is 
useful for program planning at multiple physicals scales is summarized in Table 3.2. 
Note that this table lists phenomena that are of high or medium importance to the 
prediction of the Quantities of Interest (QoIs) for the application for which the 
models are suspect in their ability to represent, the issues associated with 
representing the phenomena, and suggested responses to address these issues, 
including scale of possible tests. The inclusion by scale allows one to define a 
validation hierarchy for the tests listed in the last column. Not all issues are 
associated with tests, such as the need to perform a UQ study, a grid convergence 
study, or improve site characterization for use in the model. Guidelines for the 
ranking are provided in the information boxes following Table 3.2. 
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Table 3.2 Expanded Phenomenon Identification Ranking Table 
 

 
 
 
 
 
 
 
 

Phenomenon  Importance at 
Application Level 

Model Adequacy Planning 
Priority 

Issue Response 
including 

scale 
Physics  Code Val 

Phenom. 1 Medium Low Medium Low Medium Environment 
source terms 
inadequate 

Source term 
development 
followed by 

validation test 
at system scale 

Phenom. 2 High Uncertain Medium Low High Validation 
required 

Validation test 
for phenomena 

at laboratory 
scale using 
XXX… test 

facility 
Phenom. 3 Medium Medium Medium Medium Low   

Phenom. 4 Medium Medium Low Medium High Grid not 
converged 

Formalized 
grid 

convergence 
studies for sub-

system to 
estimate 

uncertainty 
Phenom. 5 High Uncertain Medium Low High Validation 

required 
Validation test 
at laboratory 

scale using a … 
test apparatus 

Phenom. 6 High Low NA - Data 
based 
model 

Low High Data to 
calibrate 

constitutive 
models 

required 

Look for 
suitable data in 
the literature. 

If such data 
does not exist, 

perform 
experiments at 

laboratory 
scale to 

develop data to 
calibrate 

constitutive 
equations. 

Validate based 
on 

independent 
experiments at 

subsystem 
scale. These 
experiments 
should be … 
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Guidelines for Importance Ranking 

High: First order importance of the phenomena. Model adequacy, code adequacy, 
and validation adequacy should be at the “High Level”. 
Medium: Second order importance of the phenomena. Model adequacy, code 
adequacy, and validation adequacy should be at least the “Medium Level”. 
Low: Low order importance of phenomena. Not necessary to model this phenomena 
with high fidelity for this application.  
Uncertain: Potentially important. Importance can be explored through sensitivity 
study, discovery or validation experiments; and the PIRT revised. 
 

Guidelines for Assessing Physics Model Adequacy 

High: A mature physics-based model or correlation-based model is used that is 
believed to adequately represent the phenomenon over the full parameter space of 
the application 
Medium: Significant discovery activities have been completed. At least one candidate 
model form or correlation form has emerged and is used that is believed to 
nominally capture the phenomenon. 
Low: No significant discovery activities have occurred and model form is still 
unknown or speculative, or the model is known to provide poor representation of 
the phenomena. 
Response: Inadequacies are addressed through an explicitly stated strategy. This 
may include further model development, acceptance of the inadequacy, the parallel 
use of alternate plausible models, the use of stylized bounding models, or other 
documented strategies. 
 

Guidelines for Assessing Code Adequacy 

High: The intended mathematical model is implemented in the code. An adequate 
regression suite is run routinely, and there are specific problems in the regression 
suite that test the implementation of the specified model. Verification problems 
have been run that test the correctness of the numerical implementation. Enabling 
code features are fully operational. There are no outstanding (reported) bugs or 
issues that can undermine usage of the model. 
Medium: The intended model is implemented in the code. There is an inadequate 
regression suite or the regression suite does not specifically touch the phenomena 
of interest. The verification suite does not address the specific numerical 
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implementation for the application. Certain enabling code features are not fully 
functional. There are no outstanding (reported) bugs or issues that can undermine 
credibility of the proposed calculations. 
Low: The intended model is not implemented in the code. The regression suite or 
the verification suite inadequate. Certain enabling code features are not functional 
preventing the calculation from being run. There are out- standing code bugs or 
issues that must be resolved before model usage. 
Response: Inadequacies are addressed through an explicitly stated strategy. This 
may include acceptance of the inadequacy, workarounds, or other documented 
strategies. 
 

Guidelines for Assessing Validation Adequacy 

High: Comprehensive validation evidence to use the model for the intended 
application. Numerical errors and predictive uncertainties of the model or 
correlation are quantified over the full parameter space of the application or over 
the parameter space of the database and the degree of extrapolation to the 
application is quantified and justifiable. The database used to condition the 
computational model is relevant to the application. 
Medium: Partial validation support for model use in the intended application. Some 
validation evidence exists, but there are known gaps for phenomena of moderate or 
high importance. Numerical errors are unknown. Non-statistical comparisons of 
experiment data such as tabular comparisons or data trace overlays are employed. 
The degree of extrapolation (if any) may not be quantified. The database may not be 
fully relevant to the application. 
Low: Insufficient validation support for model use. No significant comparisons with 
experiment data or ad hoc comparison of experiment “pictures” with prediction. 
The database is not relevant to the application. 
Response: Inadequacies are addressed through an explicitly stated strategy. This 
may include acceptance of the inadequacy, workarounds, or other documented 
strategies. 
 

Gap Assessment 

The gap assessments can be indicated within the PIRT with green, yellow, and red 
stoplight color coding as shown in Table 3.2. Gaps are defined as shortcoming 
between the importance level and the current model, code, validation or material 
adequacy. 
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Green means that there is no gap, i.e., current adequacy is at the same level as the 
importance level. For example, a phenomenon with medium importance that has 
medium adequacy would be colored green. Yellow means that the adequacy is one 
step below the importance level, and red means the adequacy is two steps below the 
importance level. Blue is assigned to phenomena whose importance is currently 
unknown. The color code also denotes priority by which gaps should be addressed 
from a scientific perspective; that is, resources should first be focused on red and 
then yellow, while green requires no new resources. 

 
Guidelines for Issues and Responses 

The last two columns of the expanded PIRT provide more information of the issues 
associated with modeling of the phenomena and the specific responses planned to 
address the issues. These columns should be completed prior to the planning 
priority column (see box below). The expanded PIRT addresses the types of 
experiments that must be performed for characterization and for validation across 
the scales (or complexity) of the validation hierarchy. A graphical view of this 
hierarchy is shown in Figure 3.1 for the scales associated with wind plants. The 
validation hierarchy is discussed further in the next section. 
 

Guidelines for Planning Priority 

The gap assessment is based on scientific and engineering subject matter expert 
opinion and does not consider the resource required to address the issues listed in 
the PIRT. The priority for planned activities ideally follows the gap assessment 
results, with the gaps denoted by red generally receiving the highest priority from a 
planning/resource perspective. One method to denote planning priority is to specify 
the anticipate time line of each activity (by quarter, or by year). Some significant 
gaps may require more resources than are available (time, experimental facility, 
computational resources) and as a result, be planned for later in the program (i.e. 
lower planning priority). 
 
The program planning priority will be heavily impacted by the availability of 
resources. While the subject matter experts can take the first cut at prioritizing the 
work, the final priority will be very dependent on organizational resources, the 
needs and resources of the program directors, and the customers. As a result, 
program decision makers must be included in prioritization process as they will 
understand resource limitations that will likely have a significant impact on the 
planning prioritization results.  
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3.6 Validation Hierarchy 
The expanded PIRT is the initial step in identifying the validation hierarchy. 
Generally, suites of experiments are performed over a validation hierarchy for 
complex applications. These are often of three types; material characterization 
experiments, ensemble validation experiments, and accreditation experiments. 
Ensemble tests can include separate effects tests (designed to test specific physics), 
integrated effects tests (designed to test interacting physics). Data from material 
characterization experiments are used to calibrate constitutive models, or to test 
calibrated models, are generally less expensive to perform, and can produce more 
and higher quality data (i.e., over multiple material samples). Ensemble validation 
experiments represent suites of experiments designed to test a computational 
model’s ability to represent various aspects of the physics or subsystems relevant to 
the application. They generally do not represent the full complexity of the target 
application of the model. Data and corresponding computational predictions are 
compared to assess computational model performance. These experiments may or 
may not provide sufficient data to characterize variability across similar tests. 
Generally, these experiments are more expensive, producing less data of perhaps 
lower quality.  Accreditation tests can involve sub-system or full system testing with 
application hardware under conditions more closely representing the design 
conditions or regulatory requirements of the target application. Such experiments 
are typically expensive, resulting in very limited data that may have very limited 
validation quality. Figure 3.1 illustrates one representation of the validation 
hierarchy. The complexity of the physics represented increases as one moves from 
the base of the triangle to the top. The layers illustrated range from material and 
constitutive properties characterization test (i.e. stress-strain curve, temperature 
dependent thermal conductivity), to separate effects of physics tests (elastic 
response, thermal radiation), to integrated effect/physics tests (coupled conduction 
and convection heat transfer), to sub-system tests (typically engineered sub-
systems with behavior defined by coupled physics), to full systems at the top of the 
hierarchy. The experiments in a layer may represent the same physics evaluated 
under different conditions, or may represent different physics at the same or 
different conditions expected for the application. Other authors define the layers in 
the hierarchy differently, but the concept is the same. For example, Oberkampf and 
Roy (2010) denote the layers in the hierarchy as 1) unit problem tier at the base, 2) 
benchmark tier, 3) subsystem tier, and 4) system tier. Other discussions on the 
validation hierarchy are provided by Pilch et al. (2001), Trucano et al. (2002), ASME 
and (2006b). 
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Figure 3.1: The validation hierarchy 

 
 
Figure 3.2 represents a general relationship between the complexities of the 
experiments relative to the location in the hierarchy. Note that material 
characterization experiments generally use geometrically simple material samples 
and are ideally performed over the range of environmental conditions (for example, 
the temperature range) expected for the target application. Ensemble validation 
experiments represent more geometric and physical complexity, but are often not 
performed over the full range of environmental conditions expected for the target 
application. For example, ensemble validation experiments may be performed 
under lab conditions that do not represent the full complexity of conditions 
expected during the operation of the system (e.g. during a flight). Finally, because 
fewer accreditation experiments can be performed due to their expense, and 
because they are performed for a limited number of conditions, they cannot 
represent the entire design space of the intended application of the computational 
model. They may be useful as “acceptance” tests for the computational model. 
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Figure 3.2: Experimental Hierarchy Complexity (based on Hills et al. 2008) 
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4.0 High Level Program Planning based on the PIRT  
 
 
• The planning of the program is based heavily on issues and responses identified 

in the expanded PIRT and on the resource and other limitations of the program. 

• Many of the program limitations are not scientific, such as the lack of sufficient 
funding, impact of funding cycles, lack of experimental capability, lack of 
sufficient computational resources, or insufficient model capability to meet the 
goals in the desired time frame. 

• Planning often requires significant compromise and can result in exploring other 
approaches (such as qualification based on testing) to meet the customers’ 
needs. 

 
With the completion of the 1) Objective and the 2) extended PIRT, one can initiate 
more detailed planning to address the responses identified in the PIRT. This 
planning can lead to more specific tasks for 1) model development, 2) exploration of 
issues that may have an impact on prediction, 3) characterization experiments and 
the development of characterization methodology for the required inputs for the 
computational model, and model validation experiments to assess predictability for 
those issues that are of concern. 
 
Because it is rare that a program has the resources to address all significant items 
identified in a PIRT, or in some cases to address even some of the high priority 
issues, compromises must be made during the planning process. The formal 
processes for such planning is outside the scope of this document and is very 
dependent on organizational structure and resources, funding sources, the 
organization’s historic approach to planning, and the needs of their customers. 
Decision making planning teams often include senior scientist/engineers who can 
provide scientific input on the compromises that result when key issues that have 
been identified as concerns in the PIRT are either left unaddressed or delayed to 
later in the program, and can recommend other approaches to meet program goals. 
 
Part II of this document assumes that the decisions have been made as to the types 
of experiments to be executed (or at least planned). Part II specifically addresses 
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collaborative methodology to develop individual validation experiments to support 
the objective defined in Chapter 2 of Part I. 
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5.0 Summary 
 
 
This document summarizes recommended best practices associated with a model 
validation directed experimental/modeling program. These practices utilize tools 
that have been developed for the modeling of complex engineered systems, such as 
hydrodynamic modeling for nuclear power plants, safety analysis of nuclear 
weapons, and aerospace design (commercial and NASA); as well as guides, and 
codes and standards that have been developed by various international 
organizations. The recommended practices consider two aspects of a validation 
directed experimental/model program; 1) program planning and 2) model 
validation experiments. 
 
Part 1 of this document focuses on the utilization of a Phenomena Identification 
Ranking Table (PIRT) for program planning. The PIRT was originally developed for 
the nuclear power plant industry, and is presently widely used across many 
industries when computational multi-physics modeling of engineered systems is 
central. The development of a PIRT by a team of subject matter experts provides a 
structured, transparent, and collaborative approach to plan a joint 
computational/experimental program. The team identifies the important 
phenomena that should be captured by the model for an intended application; ranks 
the phenomena as high, medium, or low importance; and assesses current ability to 
use computational modeling to represent the phenomena. The results are the used 
to perform a gap analysis, identifying the phenomena for which the importance is 
high or medium, but the ability to represent the phenomena by the model is thought 
to be low or medium. This gap analysis prioritizes the phenomena that should be 
addressed by a model development/validation program.  
 
Part 2 focuses on the design of validation quality experiments to address the issues 
and experiments identified by the PIRT in Part 1, as well as other issues associated 
with validation and model credibility. Part 2 of this document is not included in the 
present release, although a summary of it is included here. The design and execution 
of validation quality experiments requires tight integration between the 
experimentalist and the modelers to insure that the experimental results can be 
unambiguously modeled.  The safest way to insure this is to model the experiment 
during the design phase. This not only insures that the quantities (initial and 
boundary conditions, material properties, configuration, etc.) required to model the 
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experiment have been identified, but also allows the model to be used to optimize 
the experimental design from a validation perspective.  
 
Uncertainty plays a key role in validation, and the quantification of uncertainty 
should receive significant attention. Formalized methodology to characterized 
uncertainty in experimental measurements, in model predictions, and in validation 
assessments of model prediction error has been developed by various international 
organizations and documented in guides or codes and standards. These approaches 
are summarized here, and should be used if possible.   
 
A model validation exercise quantifies agreement between model prediction and 
experimental observation for the conditions of the experiments. Models are often 
used to predict system response for conditions other than those of the validation 
exercise. As a result, judgment must be used as to the relevance of the model 
verification and validation evidence bases for the application. To formalize and 
communicate the completeness of this evidence, the Predictive Capability Maturity 
Model (PCMM) was developed for computational simulation for the nuclear 
weapons industry. The PCMM is currently being modified and adapted by other 
industries as the PCMM serves as a comprehensive expert elicitation tool, which 
asks questions that are relevant to the use of a computational model for high 
consequence applications. This tool summarizes computational model 
maturity/completeness based on 6 main elements; representational and geometric 
fidelity, physics and material fidelity, code verification, solution verification, model 
validation, and uncertainty quantification and sensitivity analysis.  A brief overview 
of this tool is provided in the previous chapter (not included in the present release).  
 
Overall, the decision to use a computational model to support the design and 
qualification of a complex engineered system requires the integration of technical 
data (experimental and computational), significant engineering and programmatic 
judgment, and technical and resource limited compromises. The processes 
discussed here provide some formalism to the design and execution of a 
computation model development/validation program that is used to develop the 
evidence basis that a computational model is suitable to the intended application. 
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