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Abstract

The physical foundations and domain of applicability of the Kayenta constitutive model are pre-
sented along with descriptions of the source code and user instructions. Kayenta, which is an
outgrowth of the Sandia GeoModel, includes features and fitting functions appropriate to a broad
class of materials including rocks, rock-like engineered materials (such as concretes and ceram-
ics), and metals. Fundamentally, Kayenta is a computational framework for generalized plasticity
models. As such, it includes a yield surface, but the term “yield” is generalized to include any
form of inelastic material response (including microcrack growth and pore collapse) that can result
in non-recovered strain upon removal of loads on a material element. Kayenta supports optional
anisotropic elasticity associated with joint sets, as well as optional deformation-induced anisotropy
through kinematic hardening (in which the initially isotropic yield surface is permitted to translate
in deviatoric stress space to model Bauschinger effects). The governing equations are otherwise
isotropic. Because Kayenta is a unification and generalization of simpler models, it can be run us-
ing as few as 2 parameters (for linear elasticity) to as many as 40 material and control parameters
in the exceptionally rare case when all features are used. For high-strain-rate applications, Kayenta
supports rate dependence through an overstress model. Isotropic damage is modeled through loss
of stiffness and strength.
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Chapter 1

Introduction

(a) (b) (c)

Figure 1.1. Kayenta continuous yield surface. (a) three-
dimensional view in principal stress space with the high pressure
“cap” shown as a wire frame, (b) the meridional “side” view
(thick line) with the cap shown on the more compressive right-
hand side of the plot using cylindrical coordinates in which z points
along the compressive [111] direction, and (c) the octahedral view,
which corresponds to looking down the hydrostat (onto planes per-
pendicular to the [111] direction).

Simulating deformation and failure of a variety of materials is at the core of a broad range
of applications, including exploration and production activities for the petroleum industry, struc-
tural integrity assessment for civil engineering problems, and penetration resistance and debris
field predictions for the defense community. Constitutive models are required for metals, natural
geological materials (such as limestone, granite, and frozen soil), rock-like engineered materials
(such as concrete [94] and ceramics [3]). A common feature is the presence of microscale flaws
such as porosity (which permits inelasticity even in purely hydrostatic loading) and networks of
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microcracks (leading to low strength in the absence of confining pressure, non-negligible nonlinear
elasticity, rate-sensitivity, and differences in material behavior under triaxial extension compared to
triaxial compression). Kayenta was originally developed for rock mechanics [34], but it was later
generalized to include other features common in metals models (such as classical Drucker-Prager
yield with power-law hardening and a high-pressure equation of state).

For computational tractability, and to allow relatively straightforward model parameterization
using standard laboratory tests, Kayenta strikes a balance between first-principals micromechanics
and phenomenological, homogenized, and semi-empirical modeling strategies. The over-arching
goal is to provide a unified general-purpose constitutive model that can be used for a broad range
of materials over a wide range of porosities and strain rates. As a unified theory, Kayenta can si-
multaneously model multiple failure mechanisms, or (by using only a small subset of the available
parameters) it can duplicate simpler idealized yield models such as classic von Mises plasticity
and Mohr-Coulomb failure. Thus, exercising this model can require as many as ⇠ 70 parameters
for extremely complicated materials to only 2 or 3 parameters for idealized simplistic materials.
The model parameters are defined in the nomenclature table (Appendix B). Appendix A gives
step-by-step instructions for using experimental data to assign values to Kayenta parameters.

Kayenta overview

Kayenta adopts and extends numerous features from seminal work of Schwer and Murray [81].
For example, a Pelessone function [72] is used to generate a continuously differentiable “cap” yield
function for porous media. Relatively new hardening functions are used to accurately predict the
competition between dilatation from microcracking and compaction from pore collapse that is
observed in standard triaxial testing (where compaction initially prevails, but then smoothly tran-
sitions to shear-induced dilatation). For stress paths that result in brittle deformation, failure is
associated ultimately with the attainment of a peak stress and work-softening deformation. Tensile
or extensile microcrack growth dominates the micromechanical processes that result in macro-
scopically dilatant (volume increasing) strains even when all principal stresses are compressive.
At low pressure, porous brittle materials can fail by shear localization and exhibit strain-softening
behavior. At higher pressures, they can undergo strain-hardening deformation associated with
macroscopically compactive volumetric strain (i.e., void collapse). Features and limitations of
Kayenta are summarized below.

Features of Kayenta

Because it is a unification of simpler models, Kayenta has a large number of material parame-
ters and control parameters (page 230). However, only subsets of these parameters are used in any
given simulation. For example, only two parameters (shear and bulk modulus) are needed to re-
duce Kayenta to linear elasticity. An additional parameter (yield strength) is needed for Kayenta to
replicate the idealization of von Mises plasticity. Further parameters are needed to account for non-

20



linear elasticity, pressure dependence of strength, rate-dependence, porosity, and other advanced
features. In other words, the number of parameters increases with the desired sophistication of the
constitutive model. Where possible, reasonable default values are used for any material parameters
that are unspecified by the user.

Depending on how the model parameters are set, Kayenta is capable of any of the following
model features

• Linear and nonlinear, associative or non-associative Drucker-Prager plasticity.

• Linear and nonlinear, associative or non-associative Mohr-Coulomb plasticity.

• Linear or nonlinear, associative or non-associative Willam-Warnke plasticity.

• Von Mises perfect plasticity option as a special case.

• Tresca perfect plasticity option as a special case.

• Sandler-Rubin two-surface cap plasticity (approximated).

• Three-invariant, mixed hardening, continuous surface cap plasticity.

• Three Lode-Angle functions (i.e., non-circular or circular octahedral yield profile).

• The triaxial extension/compression strength ratio can be either a constant or it can be computed
internally to vary realistically with pressure.

• Linear or non-linear elasticity.

• Rate-independent or strain-rate-sensitive yield surface.

• Linear or nonlinear peak shear failure threshold marking the onset of softening.

• Linear or nonlinear peak shear failure threshold for fully damaged material.

• Linear or nonlinear kinematic hardening accounting for a Bauschinger effect. The nonlinear option
is similar to a power law model in that the amount of hardening decreases with monotonic loading.
The linear option is used in verification testing.

• Nonlinear compaction function (pressure-volume) with isotropic hardening.1

• Flexibility that permits reducing the model (and the number of required parameters). to classical
failure models.

• Pressure- and shear-dependent compaction (similar to p-a models hydrostatic loading, but general-
ized to include shear effects in general loading).

• Damage to zero strength or to a general damaged-strength state, including formulations for aleatory
uncertainty [21, 55, 85] that allow strength to be statistically variable and scale dependent.

1Isotropic hardening does not imply a uniform expansion of a yield surface in stress space. Isotropic hardening
means that the yield function evolves in such a manner that it continues to depend only on stress invariants. For
example, the isotropic hardening associated with pore collapse leads to a “stretching” of the yield surface along the
hydrostat in stress space.
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• Ubiquitous (homogenized) jointing in which the elastic stiffness is reduced from a network of pre-
existing oriented faults. An isotropic option applies to joints of uniformly random orientations. An
orthotropic option allows joints aligned with a rectangular grid. A more general anisotropic option
allows specification of four joint sets of user-specified orientations (strike and dip).

• Kayenta has been parameterized and tested for tensile loading of titanium alloy and silicon-carbide
ceramics in unnotched charpy, brazilian indirect tension, and fragmenting taylor anvil tests [56, 55],
though the majority of validation testing has been in compression.

Limitations of Kayenta

• Support for orthotropic or anisotropic jointing is available only as a compile option; the theory and
implementation for anisotropic joints is discussed in a separate report [20]. The Kayenta version
described in this report treats the material as initially isotropic. Kinematic hardening is the only
mechanism for deformation-induced anisotropy.

• The elasticity model is hypoelastic rather than hyperelastic.

• While the hydrostatic crush curve is quite general, only an elliptic cap function is available for mod-
eling shear effects on pore collapse and other mechanisms of plastic volume reduction. Alternative
cap models (such as the Gurson function) can be incorporated in future revisions if needed.

• The host code is responsible for satisfying frame indifference (by calling Kayenta using conjugate
reference stress and strain rate measures). See page 135.

• Kayenta is designed to be easily installed into a “host code,” which refers to a finite element code or
any other code that solves the partial differential equations of mass and momentum balance. Kayenta
may be installed as a classical local model if it is to be applied in a limited capacity to predict ma-
terial response up to the onset of softening. However, if Kayenta’s damage response functions (loss
of strength and stiffness) are to be used to predict post-peak softening, then the host code is respon-
sible for handling the change in type of the governing equations to ensure mesh independence. This
additional burden on the host code possibly includes calling Kayenta with appropriately perturbed
statistical variations and scale effects in the material parameters [23]. See page 109.

• Compared with simple idealized models (which are well known to give unsatisfactory results in non-
trivial structural applications), Kayenta is computationally intensive, though less so than many other
models of comparable complexity.

• Kayenta is limited to deformations for which the principal directions of reference stretch do not rotate
significantly, though large volume changes are permitted. Arbitrarily large rotations are permitted if
the host code manages the reference stress and strain measures properly (see page 43).

• Although Kayenta supports a pore collapse curve having convexity that changes sign, such curves are
allowed only under compaction, not pore growth (see page 86).

Kayenta predicts observed material response, without explicitly addressing how the material
behaves as it does. Kayenta reflects subscale inelastic phenomena en ensemble by phenomeno-
logically matching observed data to interpolation functions. Considerations guiding the structure
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of Kayenta’s material response functions are (1) consistency with microscale theory, (2) computa-
tional tractability, (3) suitability to capture trends in characterization data, and (4) physics-based
judgements about how a material should behave in application domains where controlled experi-
mental data cannot be obtained.

Fundamentally, Kayenta is a generalized and unified plasticity model. Here, the term “plas-
ticity” is defined very broadly to include any mechanism of inelastic deformation. Primarily, the
source of inelastic deformation in geological materials (or in rock-like materials such as concrete
and ceramics) is growth and coalescence of microcracks and pores. Under massive confining
pressures, inelasticity could include plasticity in its traditional dislocation sense or, more gener-
ally, might result from other microphysical mechanisms (internal locking, phase transformation,
twinning, etc.). Equations governing generalized plasticity a mathematical formalism, as well as
solution methods and limitations in shock physics, are summarized in Reference [13].

Kayenta is phenomenological and semi-empirical because the physical mechanisms of inelastic
material behavior are handled in an ensemble manner, without explicitly partitioning and modeling
each possible contributor to the inelasticity. Kayenta makes no explicit reference to microscale
properties such as porosity, grain size, or crack density. Instead, the overall combined effects of
the microstructure are modeled by casting the macroscale theory in terms of macroscale variables
that are realistic to measure in the laboratory. For example, inelastic compaction followed by shear-
enhanced dilatation has long been attributed to an initial phase of void collapse followed later by
microcracks opening in shear. Kayenta is exceptionally capable of matching this type of observed
compaction/dilatation data, and it does so without demanding that the user supply information
about essentially unknowable porosity or microcrack distributions within the material.

Being a generalized plasticity model, Kayenta presumes that there exists a convex contiguous
“elastic domain” of stress states for which the material response can be construed to be elastic.
The boundary of the elastic domain is called the yield surface. When loading is severe enough
that continuing to apply elasticity theory would produce a stress state lying outside the yield sur-
face, the material response will instead be inelastic and a different set of equations must then be
solved. Aside from supporting kinematic hardening, Kayenta is isotropic, which means that the
criterion for the onset of plasticity depends only on the three principal values of the stress tensor,
(s1,s2,s3), but not on the principal directions. Consequently, as illustrated in Fig. 1.1 (pg. 19),
the yield surface may be visualized as a 2D surface embedded in a 3D space where the axes are
the principal stresses. The elastic domain is the interior of this surface. The hydrostat is the
[111] direction, along which all three principal stresses are equal. Any plane that contains the
hydrostat is called a meridional plane. Any “side view” cross-section of the yield surface on a
meridional plane is called a meridional profile. Any plane perpendicular to the hydrostat is called
an octahedral plane, and any cross-section of the yield surface on an octahedral plane is called an
octahedral profile.

Mathematically, the yield surface may be expressed in terms of a yield function f (s1,s2,s3).
When hardening is permitted, the yield function additionally depends on internal state variables
that quantify the underlying microstructure (e.g., porosity). Points on the yield surface satisfy f = 0
and therefore, because the equation f (s1,s2,s3) = 0 is phrased in terms of three independent
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Figure 1.2. Distinction between a yield surface and the limit
surface. This sketch shows meridional profiles of an initial yield
surface along with hardened yield surfaces that might evolve from
the initial surface. All achievable stress states (and therefore all
possible yield surfaces) are contained within the limit surface.
Fig. 1.1(b), for example, depicts a family of yield surfaces, all
bounded by the limit surface.

variables, the yield surface may be visualized in the 3D Cartesian space, called stress space.2
When the yield function additionally depends on internal state variables, different values for the
internal state variables result in different yield surfaces in stress space. Points within the elastic
domain satisfy f < 0. Brittle materials are very weak in tension, but they can deform elastically
under a much broader range of stress states in compression. Consequently, the elastic domain
(and therefore its boundary, the yield surface) resides primarily in the compressive part of stress
space where all three principal stresses are negative. Thus, the typical rock yield surface shown
in Fig. 1.1(a) is actually being viewed from the compressive [111] direction. The “cap” part of
that yield surface (shown as a wire frame in Fig. 1.1) reflects the fact that, unlike solid metals,
inelasticity can occur in rocks even under purely hydrostatic compression as a consequence of
void collapse.

A yield surface is the boundary of elastically obtainable stress states, whereas a limit surface
is the boundary of stresses that are quasi-statically obtainable by any quasistatic means, elastic
or plastic. Points outside the limit surface can be reached only transiently in dynamic loading
via viscoplastic rate dependence. Points outside a yield surface might be attainable through a
hardening process, but points outside the limit surface are not attainable via any quasistatic process.

Points on the limit surface define the onset of material softening. Consequently, a state on the

2Some people prefer that this be called Haigh-Westergaard space [62] so that the phrase “stress-space” may be
reserved for the higher-dimensional space defined by the set of all tensors that commute with the stress tensor.
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limit surface is attainable at least once, but might not be attainable thereafter. The Sandia Geo-
Model [33], which was the predecessor to Kayenta, allowed prediction of the material response
only up to the limit state. The GeoModel did not simulate subsequent softening because softening
induces a change in type of the partial differential equations for momentum balance, which there-
fore requires a response from the host code to alter its solution algorithm (perhaps by inserting void
or by activating special elements that accommodate displacement discontinuities). Shortly after the
documentation for the GeoModel was released, a beta, research-only, revision (called BF13) was
developed to allow loss of strength and stiffness. This revision, which would have been nonphysi-
cal if applied in a local deterministic context, was used in combination with statistical uncertainty
and scale effects to mitigate (not eliminate) mesh-dependencies as described on page 109.

By definition, the initial limit surface is regarded as fixed — it does not evolve (i.e., move
around in stress space) as a yield surface can. Since the limit surface contains all attainable stress
states, it follows that the set of all possible yield surfaces is contained within the limit surface (see
Fig. 1.2). Plasticity induces microstructural changes that permit the yield surface to evolve through
time, effectively changing the initial material into a mechanically different material. A material
can have an infinite number of yield surfaces generated via various path-dependent hardening pro-
cesses, but it can have only one peak limit surface. Limit surface characterization is accomplished
by performing numerous experiments all the way to the point of material rupture (catastrophic fail-
ure). Each such experiment can have only one peak stress state. Post-peak softening in a material
might lead to a stress at rupture that is smaller than at the peak, but it is the collection of peak — not
rupture — stress states that defines the limit surface. Of course, mapping out the limit surface for
a given material requires using a new sample for every experiment, which itself introduces uncer-
tainty regarding variability in material composition and microstructure. Within the main Kayenta
subroutines, the limit surface (and each yield surface) is treated as a sharp threshold boundary, but
Kayenta’s theoretical and computational framework is specifically designed to allow each finite el-
ement to be assigned statistically variable and scale-dependent strength, consistent with laboratory
observations. This approach allows these limit and yield thresholds in stress space to be “fuzzy” to
better account for natural material variability. Softening is then accomodated by allowing the limit
surface to collapse (so that previously attainable stress states are no longer possible).

The set of all possible yield surfaces is contained within the peak (pre-softening) limit surface.
Porous materials are capable of inelastic deformation even under purely hydrostatic loading. Con-
sequently, porous materials tend to have closed convex yield surfaces. Once all pores are crushed
out, however, a material can withstand an unlimited amount of pressure. Thus, as indicated in
Fig. 1.2, the limit surface for any material will always enclose an open convex set of attainable
stress states.

Despite being originally developed for geological applications, Kayenta is truly a unification of
many classical plasticity models. For example, by using only a small subset of available parame-
ters, Kayenta can be instructed to behave precisely like a classical hardening or non-hardening von
Mises model, in which case the yield surface becomes a cylinder centered about the [111] direc-
tion. Other classical models such as Drucker-Prager plasticity, Tresca theory, maximum principal

3which stood for Brannon-Fossum model #1 and was so named to indicate that the aim was to mimic capabilities
of the Johnson-Holmquist model [52] called JH1.
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stress theory, and Mohr-Coulomb theory are also supported in Kayenta by using the simplified
input sets summarized in Appendix B. Replicating analytical results from simplified theories is an
important aspect of verification of Kayenta. However, full use of a majority of Kayenta features is
often required to adequately validate the model for realistic rock-like materials.

To describe in greater detail how Kayenta supports its broad range of micromechanisms of
failure in a mathematical and computational framework, Chapter 2 and Chapter 3 first summa-
rize our notation and outline some important concepts and conventions about the nature of stress.
Chapter 4 describes Kayenta theory (elasticity, yield surface definition and evolution, etc.). The
computational algorithm, subroutines, and plottable output will be discussed in Chapter 8, followed
by software quality assurance in Chapter 9. Chapter 10 and Chapter 11 summarize verification and
validation tests that have been completed to date for a variety of materials. Model parameters (as
well as descriptions of internal state variables and other symbols used in this report) are defined
in Appendix B, along with sample input sets for realistic and idealized materials. Instructions for
determining appropriate model parameters from laboratory data are provided in Appendix A.
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Chapter 2

Notation

Typesetting conventions

Throughout this report, blue variables are user input parameters and green variables are inter-
nal state variables available for plotting in the numerical implementation. At the discretion of the
host code in which Kayenta is run, several other field variables (e.g., stress) may be additionally
available for plotting.

Vector and tensor equations will be presented using indicial Cartesian notation in which re-
peated indices within a term are understood to be summed from 1 to 3 while non-repeated indices
are free and take values 1 through 3. Upon occasion, vectors and tensors will be written in sym-
bolic or “direct” notation in which the number of “tildes” beneath a symbol equals the tensorial
order of that variable. For example, s, v⇠, and T

⇠⇠
would denote a scalar, a vector, and a tensor,

respectively.

Vector and Tensor notation

For this report, the following standard operations and definitions from vector and tensor analy-
sis will be employed:

Dot product between two vectors: u⇠ •v⇠ = u1v1 +u2v2 +u3v3 = ukvk. (2.1)

Dot product between a tensor and a vector: y
⇠
= A

⇠⇠
•x⇠ means yi = Aikxk. (2.2)

Dot product between a tensor and a tensor: C
⇠⇠
= A

⇠⇠
•B
⇠⇠

means Ci j = Aik •Bk j. (2.3)

Kronecker delta: di j =

(

1 if i = j
0 if i 6= j

. (2.4)

Identity tensor: I
⇠⇠

is the tensor whose i j components are di j

and whose component matrix is therefore the 3⇥3 identity matrix. (2.5)
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Inner product between two tensors: A
⇠⇠

:B
⇠⇠
= Ai jBi j. (2.6)

Magnitude of a vector: kv⇠k=
p

vkvk =

v

u

u

t

3

Â
k=1

v2
k . (2.7)

Magnitude of a tensor: kA
⇠⇠
k=

p

Ai jAi j =

v

u

u

t

3

Â
i=1

3

Â
j=1

A2
i j (2.8)

Trace of a tensor A
⇠⇠

: trA
⇠⇠
= A11 +A22 +A33 = Akk. (2.9)

Deviatoric part of a tensor: A
⇠⇠

dev = A
⇠⇠
� 1

3
(trA

⇠⇠
)I
⇠⇠

, or Adev
i j = Ai j �

1
3

Akkdi j. (2.10)

First invariant (trace) of a tensor A
⇠⇠

: IA
1 = trA

⇠⇠
= Akk. (2.11)

Second invariant of a tensor A
⇠⇠

: JA
2 =

1
2

tr[(A
⇠⇠

dev)2]. (2.12)

Third invariant of a tensor A
⇠⇠

: JA
3 =

1
3

tr[(A
⇠⇠

dev)3]. (2.13)

Throughout this report, invariants of the stress tensor s

⇠⇠
will be written without the superscript

identifier. For example, J2 means the same thing as J2
s . Kayenta supports kinematic hardening

in which the shifted stress tensor x

⇠⇠
is defined x

⇠⇠
= s

⇠⇠
�a

⇠⇠
is the backstress tensor (defined

later). The invariants I1, J2, J3 in the non-hardening theory will become Ix

1 , Jx

2 , Jx

3 when kinematic
hardening is used.

In materials modeling, tensors are often regarded as higher-dimensional vectors. The inner
product between two tensors, A

⇠⇠
and B

⇠⇠
, is isomorphic to (i.e., geometrically analogous to) the

dot product between two vectors. This permits the “magnitude” of a tensor, the “direction” of a
tensor, and the “angle” between two tensors to be defined in manners analogous to ordinary vector
definitions. For example, the yield surface is a boundary in six-dimensional stress space, and the
normal to this surface is a tensor found by differentiating the yield function with respect to stress.
The angle between two tensors can be used to quantify non-normality (i.e., misalignment of the
yield normal and flow direction tensor).

The derivatives of a scalar-valued function f that depends on a second-order tensor T
⇠⇠

as well
as depending on a scalar are given by s are given by

∂ f
∂T
⇠⇠

is a second-order tensor with ij components
∂ f
∂Ti j

. (2.14)

∂ f
∂ s

is a scalar. (2.15)

Other derivatives are defined similarly. For example, the derivative of a second-order tensor A
⇠⇠

with respect to another second-order tensor B
⇠⇠

is a fourth-order tensor with ijkl components ∂Ai j
∂Bkl

.
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The most important fourth-order tensors in Kayenta theory is the plastic tangent stiffness tensor,
formally equal to the derivative of the stress rate with respect to the strain rate. In numerical imple-
mentations, manipulation and construction of fourth-order tensors is often avoided by exploiting
applicable (or presumed) material symmetries.
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Chapter 3

The Stress Tensor

This section defines the stress tensor, its principal values, its invariants, and its sign conven-
tion. This chapter describes four canonical stress paths used to parameterize Kayenta: hydrostatic
(HYD), triaxial compression (TXC), triaxial extension (TXE), and shear (SHR). For transient dy-
namics, Kayenta additionally requires Hugoniot and/or Kolsky (split Hopkinson) bar data to pa-
rameterize the viscoplasticity.1 This chapter defines the distinction between the spatial Cauchy
stress and the unrotated “reference” stress. In preparation for a detailed discussion of Kayenta
theory, this chapter closes with a detailed description of “stress space” and Lode coordinates.

The stress tensor s

⇠⇠
, is defined such that the traction vector t⇠ (i.e., force per unit area),

acting on any given plane with unit normal n⇠, is given by

t⇠ = s

⇠⇠
•n⇠. (3.1)

Of course, the traction and normal vectors may be described in terms of their Cartesian com-
ponents, {t1, t2, t3} and {n1,n2,n3} with respect to an orthonormal basis. The stress tensor has a
3⇥3 Cartesian component matrix such that the above equation may be written in matrix form as

2

4

t1
t2
t3

3

5=

2

4

s11 s12 s13
s21 s22 s23
s31 s32 s33

3

5

2

4

n1
n2
n3

3

5 , (3.2)

or in indicial form as
ti = si jn j, (3.3)

where (recalling the implied summation convention) the repeated index “j” is understood to be
summed from 1 to 3 and the non-repeated “free” index “i” appearing in each term takes values from
1 to 3 so that the above equation is actually a compact representation of three separate equations
(one for each value of the free index).

The stress is symmetric, which means that si j = s ji. In continuum mechanics, and in this
report, stress is taken positive in tension. This sign convention can be the source of considerable
confusion, especially when discussing stress invariants. For example, the trace of the stress, I1, is

1Until rate dependence is discussed separately in Chapter 7, all incremental or rate equations in this report are un-
derstood to apply only under quasistatic loading and may therefore be regarded as “inviscid” equations. Incorporating
viscoplastic rate dependence requires, as a pre-requisite, solution of these quasistatic inviscid equations.
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positive in tension. However, brittle materials have very low strength in tension. Consequently,
most of the functions defined in this report are nontrivial over only a small range of the tensile
states where I1 is positive. On the other hand, most of Kayenta functions are non-trivial over a
relatively large range of compressive states where I1 is negative. To help manage the sign conven-
tion problem, we will introduce a new notation that an over-bar on a variable denotes the negative.
Specifically, for any variable x,

Definition of the “over-bar” x ⌘�x . (3.4)

In our plots of any variable that varies as a function of I1, we will usually employ an abscissa
of I1, which (being the negative of I1) is positive in compression. Any variable typeset with an
overbar will be positive more often than negative in most applications.

The principal stresses are the eigenvalues (s1,s2,s3) of the stress matrix, positive in tension.
Their negatives (s1,s2,s3) are positive in compression.2 When cast in terms of the principal
basis (i.e., the orthonormal eigenvectors of the stress matrix), the diagonal components of the
stress matrix will equal the principal stresses, and the off-diagonals will be zero.

The stress deviator S
⇠⇠

is the deviatoric part of the stress (see Eq. (2.10)):

S
⇠⇠
= s

⇠⇠
� 1

3
(trs

⇠⇠
)I
⇠⇠
. (3.5)

Loosely speaking, the stress deviator is a tensor measure of shear stress. An overall scalar
measure of shear will be defined later. The quantity 1

3(trs

⇠⇠
) is called the mean stress, and we

will denote it by p. The negative of the mean stress, p = �p, is called the pressure, and is
positive in compression. Noting that the mean stress (or pressure) is simply a multiple of I1, its
value is an invariant, meaning that the sum of diagonal stress components will have the same
value regardless of the orthonormal coordinate system used to describe the stress components. The
principal directions of the stress deviator are the same as those for the stress itself, and the principal
values for the stress deviator are related to the principal stresses by

s1 = s1 �
1
3
(s1 +s2 +s3), (3.6a)

s2 = s2 �
1
3
(s1 +s2 +s3), and (3.6b)

s3 = s3 �
1
3
(s1 +s2 +s3). (3.6c)

The trace of S
⇠⇠

is zero, which implies that the numerically largest principal value of any nonzero
stress deviator will always be positive and the smallest will always be negative. In model param-
eterization tests, a sufficiently high confining pressure p is typically superimposed on the stress
deviator to make all principal stress components compressive even though the principal deviatoric
stresses always have mixed signs (see page 35).

2Of course, if principal stresses are ordered such that s1  s2  s3, then the barred principal stresses will be
ordered s1 � s2 � s3.
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Stress invariants

The trace operator is an invariant, which means its value will be the same regardless of which
orthonormal basis is used for the stress components. Being symmetric, the stress tensor has a total
of three independent invariants:

I1 = trs

⇠⇠
= s1 +s2 +s3, (3.7a)

J2 =
1
2

tr(S
⇠⇠

2) =
1
2
(s2

1 + s2
2 + s2

3), and (3.7b)

J3 =
1
3

tr(S
⇠⇠

3) =
1
3
(s3

1 + s3
2 + s3

3). (3.7c)

The fact that these invariants are computed from the stress tensor s

⇠⇠
is sometimes emphasized by

typesetting them as Is

1 , Js

2 , and Js

3 . Similarly defined invariants for some other tensor x

⇠⇠
would be

typeset as {Ix

1 ,J
x

2 ,J
x

3 }. Invariants for a tensor a

⇠⇠
would be written {Ia

1 ,J
a

2 ,J
a

3 }, and so forth. Any
invariant written without a clarifying superscript should be understood to be a stress invariant.

The mean stress p is defined to be the average of the principal stresses, whereas pressure p is
just the negative of mean stress:

mean stress: p =
I1

3
pressure: p =

I1

3
, where I1 ⌘�I1. (3.8)

Superimposing an extra pressure P on any stress state causes the pressure to increase from p to
p+P, while having no effect on the stress deviator and therefore no effect on the second and third
invariants. Because the stress deviator S

⇠⇠
has a zero trace, it can be shown that J3 also equals

the determinant of the stress deviator so that J3 = s1s2s3, and the second invariant can be written
alternatively as J2 =�(s1s2 + s2s3 + s3s1).

Eq. (3.7b) shows that the invariant J2 is never negative, which permits us to define a supple-
mental stress invariant, the signed equivalent shear stress t as

t = sgn[
p

J2,J3]. (3.9)

The “transfer of sign” operator3 is defined

sgn[x,y] =

(

|x| if y � 0
� |x| if y < 0

. (3.10)

As defined, the equivalent shear stress will have a numerical sign that is positive in triaxial exten-
sion states (defined below), negative in triaxial compression, and it will be identically equal to the
applied shear stress if the stress tensor happens to be in a state of pure shear (also defined below).

3which is an intrinsic function in most computing languages
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For clarity, the values of the invariants have been shown here in terms of the principal values
of the stress and its deviator. However, because the trace operation gives the same result regardless
of which basis is used, the invariants are computed in practice directly from fully-populated 3⇥3
component matrices, thereby avoiding the need for an expensive eigenvalue analysis.

Derivatives of the stress invariants

For isotropic material modeling, each scalar-values function of stress, f(s
⇠⇠
), is presumed to

depend only on the principal stress values, not on the principal stress directions. Equivalently, the
function f(s

⇠⇠
) is isotropic if and only if it may be expressed alternatively as a function of the three

stress invariants I1, J2, J3. In situations where the derivative of f with respect to stress is required,
the chain rule can be applied as follows:

∂f

∂si j
=

∂f

∂ I1

∂ I1

∂si j
+

∂f

∂J2

∂J2

∂si j
+

∂f

∂J3

∂J3

∂si j
. (3.11)

In symbolic tensor notation, this expansion is written as

∂f

∂s

⇠⇠
=

∂f

∂ I1

∂ I1

∂s

⇠⇠
+

∂f

∂J2

∂J2

∂s

⇠⇠
+

∂f

∂J3

∂J3

∂s

⇠⇠
. (3.12)

Because the three invariants are each proper functions of the stress tensor, their derivatives may be
computed in advance:

dI1

ds

⇠⇠
= I

⇠⇠
= the identity tensor (3.13a)

dJ2

ds

⇠⇠
= S

⇠⇠
= dev(s

⇠⇠
) = the stress deviator (3.13b)

dJ3

ds

⇠⇠
= T

⇠⇠
= dev(S

⇠⇠
2) = the “Hill” tensor (3.13c)

Thus, Eq. (3.12) may be written

∂f

∂s

⇠⇠
=

✓

∂f

∂ I1

◆

I
⇠⇠
+

✓

∂f

∂J2

◆

S
⇠⇠
+

✓

∂f

∂J3

◆

T
⇠⇠
. (3.14)

Of particular interest is the trace of the above expression, tr
✓

∂f

∂s

⇠⇠

◆

. Since both S
⇠⇠

and T
⇠⇠

are

deviatoric, the result is

tr

 

∂f

∂s

⇠⇠

!

= 3
✓

∂f

∂ I1

◆

. (3.15)
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The factor of 3 appears simply because tr I
⇠⇠
= 3. This, by the way, is a good example of the

fallibility of indicial notation. Specifically,

tr

 

∂f

∂s

⇠⇠

!

=
3

Â
k=1

∂f

∂skk
6= ∂f

∂Â3
k=1 skk

. (3.16)

Special stress states

This section defines the four main stress states that are used to parameterize Kayenta. These
are hydrostatic loading (HYD), triaxial compression (TXC), triaxial extension (TXE), and shear
(SHR). The purpose of Kayenta is to interpolate realistically between known material response at
these canonical states to describe material behavior under general stress states.

HYDROSTATIC (HYD)

Loading is “hydrostatic” when components of the stress tensor are of the form

[s
⇠⇠
] =

2

4

�p 0 0
0 �p 0
0 0 �p

3

5 for hydrostatic stress states. (3.17)

In practice, the pressure p is usually compressive (and therefore positive). Hydrostatic testing is
very important to parameterization of Kayenta because it indirectly characterizes the influence of
material porosity. When hydrostatically loaded to a high pressure and then unloaded, a non-porous
material will trace through the same stress states on both the loading and unloading curves. A
porous material, on the other hand, will unload along a different path. If possible, hydrostatic
testing for Kayenta should be conducted to sufficiently high pressures to compress out all pores, as
indicated in Fig. 3.1.4

When a material is loaded under hydrostatic tension instead of compression, inelastic response is
again possible, but the mechanism of failure is catastrophic growth and coalescence of microcracks,
resulting in material softening and, ultimately, complete loss of load carrying ability.

TRIAXIAL (TXC and TXE)

Loading is “triaxial” whenever two principal stresses (denoted sL and called the “lateral”
stresses) are equal to each other, but distinct from the third “axial” principal stress (denoted sA).

4 Kayenta parameter p3 is the logarithmic (Hencky) residual volumetric strain after full void collapse. It is related
to initial porosity f0 by p3 = ln[1/(1� f0)], or p3 ⇡ f0 if f0 is small. Assuming the matrix material is plastically
incompressible, the time-varying porosity during pore collapse can be inferred from Kayenta output variable e

p
v (plot

keyword EQPV). Specifically, f = 1� (1�f0)ee

p
v = 1� exp[�(e p

v +f0)].
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Figure 3.1. Typical hydrostatic (pressure vs. volumetric
strain) compression data. Total pore collapse is achieved when
the unloading curve (here shown as nonlinearly elastic) is tangent
to the loading curve. In this case, the residual volumetric strain
approximately equals the initial porosity.

Thus, with respect to the principal basis,

[s
⇠⇠
] =

2

4

sA 0 0
0 sL 0
0 0 sL

3

5 for triaxial stress states, (3.18)

and

[S
⇠⇠
] =

sA �sL

3

2

4

2 0 0
0 �1 0
0 0 �1

3

5 for triaxial stress states. (3.19)

Also,

I1 = sA +2sL for triaxial stress states, (3.20a)

J2 =
1
3
(sA �sL)

2 for triaxial stress states, and (3.20b)

J3 =
2

27
(sA �sL)

3 for triaxial stress states. (3.20c)

The signed equivalent shear stress for triaxial loading is

t =
sA �sLp

3
(3.21)

The invariants defined here may be written alternatively in terms of compressive stress measures
as

I1 =
p

3t +3sL (3.22a)

J2 = t

2 (3.22b)
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J3 =
2
p

3
9

t

3 (3.22c)

where
t =

sA �sLp
3

. (3.23)

Figure 3.2. Triaxial compression (TXC) and triaxial extension
(TXE) Two principal stresses (the lateral stress) are equal. For
TXC, the axial stress is more compressive than the lateral stress.
For TXE, the axial stress is less compressive than the lateral stress.
In the labels, s = �s ; stress s is positive in tension while stress
s is positive in compression.

The term “triaxial” is a bit of a misnomer because there are not really three independent loads
applied — the lateral stresses are equal. These experiments are normally performed on cylindrical
test specimens with the lateral load supplied by a pressure bath. For triaxial compression (TXC)
the axial stress is more compressive than the lateral stress. For triaxial extension (TXE) the axial
stress is not necessarily tensile — it is merely less compressive than the lateral stress. For TXC,
the specimen changes shape such that its length-to-diameter ratio decreases. For TXE, the length-
to-diameter ratio increases even though the length and diameter might individually both decrease.
Uniaxial stress compression (also called unconfined compression) is a special form of TXC in
which the axial stress is compressive and the lateral stress is zero. Uniaxial stress extension is a
special form of TXE in which the axial stress is tensile and the lateral stress is zero. Uniaxial
strain compression, which is typical in flyer-plate impact experiments is a special case of TXC in
which the axial stress is compressive, while the lateral strain is zero (making the lateral stress also
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compressive, but less compressive than the axial stress). Biaxial tension is a special case of TXC
in which the lateral stress is tensile and the axial stress is zero. Biaxial compression is a special
case of TXE in which the lateral stress is compressive and the axial stress is zero. According to
Eq. (3.21), the signed shear stress satisfies t > 0 for TXC, whereas t < 0 for TXE. Consequently,
Eq. (3.22) shows that J3 > 0 (and hence J3 < 0) for TXC, while J3 < 0 (and hence J3 > 0) for TXE.
Of course, J2 > 0 for both TXC and TXE because it is the square of t .

In typical triaxial experiments, the lateral stress is held fixed (via a pressure bath) while only
the axial stress is varied. In this case, Eq. (3.22) implies that

dt

dI1
=

1p
3

for triaxial stress loading with fixed lateral stress. (3.24)

Being easily achieved in the laboratory, TXC and TXE data are essential to parameterize
Kayenta. In a typical triaxial test, the material is first loaded hydrostatically in a pressure bath
until all three principal stresses reach a compressive pressure Pbath. Thereafter, the lateral stresses
are held fixed at this value (sL = Pbath) while the axial stress is then increased beyond Pbath. For
some experiments, the axial stress might be increased only until the stress difference reaches a
given value, after which all stresses are again increased by equal amounts. These are called con-
stant stress difference (CSD) experiments. Typically, these experiments are run to the point of
material failure. Periodic partial unloading during a test reveals yielding if the unloading stress-
strain curve has a noticeably different slope than the loading curve (without unloading, it would be
impossible to definitively distinguish plasticity from non-linear elasticity).

As illustrated in Fig. 3.3, a series of TXC experiments at various bath pressures and/or stress
differences results in a family of (I1,t) stress-at-yield points that map out the TXC meridional
profile of Kayenta yield surface. Similar experiments under TXE map out the TXC meridional
profile. Usually, the TXE failure envelope will be shaped similarly to the TXC envelope, but lower
in magnitude because, at a given value of I1, the value of

p
J2at failure is generally lower for

TXE than for TXC. A plot of the failure envelope in t vs. I1 space is essentially equivalent to
the meridional “side” view of the yield surface Fig. 1.1(b), except with the axes scaled differently.
The TXE experiments are mapping out the cross-section of the yield surface along which pres-
sure varies while staying on the “base” of the triangular octahedral profile in Fig. 1.1(c) (pg. 19),
whereas TXC experiments reveal how the apex of the triangle varies with pressure. For metals,
there is little difference between the stress intensity required to initiate failure in TXC compared to
TXE. However, for brittle materials, the difference is quite noticeable and (according to idealized
microphysical theories) can be attributed to internal frictional resistance to shear crack growth.
Because friction increases with pressure, the material strengths in TXC and TXE tend to increase
with pressure but in approximately the same proportions so that the ratio of TXC strength to TXE
strength is approximately pressure independent. Consequently, the TXE profiles shown in Fig. 3.3
are shaped identically to the TXC profiles except smaller in magnitude.

Another form of triaxial loading, commonly used for dynamic material testing, is uniaxial
strain, in which the lateral strain eL is held constant. If the lateral strain eL is held constant while
continuing to compress axially, the lateral compressive stress sL will increase to prevent lateral
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Figure 3.3. Triaxial and CSD load paths. The material is first
compressed hydrostatically to a pre-selected bath pressure Pbath;
at this point, the value of the first stress invariant is I1 = �3Pbath

and therefore I1 = 3Pbath. When the triaxial leg begins, the lateral
stress is held constant (sL = Pbath) while the axial stress is varied.
This causes both the first and second invariants to change such that
the path in this stress plot is a straight line with slope 1/

p
3. For sim-

ple triaxial loading, the stress difference is increased until material
failure occurs. For CSD loading, the stress difference is increased
to a pre-selected value, and then held fixed while all stress compo-
nents are thereafter varied equally until failure occurs.
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motion. For uniaxial strain, ėL = 0, and therefore Hooke’s law5 in rate form reduces to

Uniaxial strain: ṡA =

✓

K +
4
3

G
◆

ėA and ṡL =
n

1�n

ṡA =

✓

K +
2
3

G
◆

ėA. (3.25)

where K and G are, respectively, the tangent elastic bulk and shear moduli.

For uniaxial strain, the rate of the signed equivalent shear stress and the rate of the first stress
invariant are

Uniaxial Strain: ṫ =
2GėAp

3
and İ1 = 3KėA (3.26)

and therefore the path through stress space is a straight line with slope

dt

dI1
=

1p
3

2G
3K

=
1p
3

✓

1�2n

1+n

◆

for triaxial stress with fixed lateral strain, (3.27)

where n is Poisson’s ratio. Contrast this with the shallower slop of 1p
3

in Fig. 3.3. Since Poisson’s
ratio typically varies between 0 and 1

2 ,6 this result shows that the trajectory in the meridional
profile will generally have a shallower slope (and possibly even be curved for non-linear elastic or
porous media) under uniaxial strain loading than under uniaxial stress loading. This result should
make some intuitive sense. Uniaxial strain experiments are conducted by applying increasing
levels of compression in the axial direction while holding the lateral strain fixed. As the axial
strain is compressed, the material “wants” to expand laterally, but is not permitted to — a lateral
compressive force prevents this outward motion. This constraining lateral compression makes I1
larger than it would be when lateral expansion is unconstrained. The larger I1 results in a shallower
slope in the stress trajectory.

Fig. 3.4 illustrates the distinction between uniaxial stress and uniaxial strain in quasistatic load-
ing of a classical nonhardening von Mises material. The initial slope C = K+ 4

3G in uniaxial strain
(called the constrained modulus) is steeper than Young’s modulus E because of the lateral con-
finement in uniaxial strain. During plastic loading, uniaxial stress response for a nonhardening
von Mises material has a zero slope because material is free to flow laterally. However, in uni-
axial strain, lateral flow is prevented, causing the slope during plastic loading to equal the bulk
modulus K, consistent with compression of a fluid and not to be confused with hardening. The
classical nonhardening von Mises model is a useful idealization for performing verification tests
of numerical implementations, but it is not usually predictive of realistic behavior of most mate-
rials. Most materials are nonlinearly elastic. Furthermore, most materials exhibit some degree of
plastic hardening, which would increase the slope during plastic loading in both uniaxial stress
and uniaxial strain. Hardening also alters the yield threshold upon load reversal. Consequently, the

5The general form of Hooke’s law, applicable to any form of triaxial loading, is given in Eq. (4.11). Eq. (3.25) is a
special case of Eq. (4.11) in which ėL = 0, with Eq. (4.13) used to express Young’s modulus E and Poisson’s ratio n

in terms of K and G.
6Strictly speaking, positive definiteness of the elastic stiffness tensor merely requires �1 < n < 1

2 . Whereas nega-
tive Poisson’s ratio has been observed in man-made materials with re-entrant microstructures, it has not (to our knowl-
edge) been reported for naturally occurring materials. Performance of Kayenta has not been verified for materials with
negative Poisson’s ratio.
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Figure 3.4. Contrast between uniaxial stress and uniaxial
strain for quasistatic loading of von Mises material. The ini-
tial slope C = K + 4

3 G in uniaxial strain (called the constrained
modulus) is steeper than Young’s modulus E because of the lateral
confinement in uniaxial strain.
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separation between load and unload lines for realistic materials is not determined exclusively by
strength, as labeled in Fig. 3.4 for the unrealistic von Mises material. Many materials, especially
rocks and concretes, furthermore exhibit pressure-dependence of the yield strength. If the material
is nonhardening, then pressure-dependence of yield will alter the post-yield slope in uniaxial strain
loading, but it will not affect the slope in uniaxial stress loading.7

SIMPLE/PURE SHEAR and PRESSURE-SHEAR LOADING (SHR)

A material is in a state of simple shear with respect to a given coordinate system if the stress
matrix in that system is of the form

[s
⇠⇠
] = [S

⇠⇠
] =

2

4

0 s 0
s 0 0
0 0 0

3

5 for simple shear, (3.28)

where s is the shear stress. The eigenvalues of this matrix are {s,�s,0}. In general, any stress state
that is deviatoric with one eigenvalue being zero is said to be a pure shear [62]. (Thus, simple
shear is a special type of pure shear). For an isotropic material model like Kayenta, yield depends
only on the principal stresses, so there is no practical difference between simple and pure shear
(except when the model is anisotropic because of kinematic hardening, see Fig. 4.1).

For conducting material characterization experiments, pure shear of the form

[s
⇠⇠
] = [S

⇠⇠
] =

2

4

s 0 0
0 �s 0
0 0 0

3

5 for pure shear, (3.29)

is most convenient. For brittle materials, pure shear is difficult to attain because one of the eigen-
values is always tensile. Frequently, pure shear is superimposed with enough confining hydrostatic
pressure to make all principal stresses negative (compressive). Specifically, superimposing the
hydrostatic loading of Eq. (3.17) onto the shear stress of Eq. (3.29), gives a state of combined
pressure-shear (SHR) loading:

[s
⇠⇠
] =

2

4

s� p 0 0
0 �s� p 0
0 0 �p

3

5 for combined pressure-shear loading. (3.30)

The invariants for combined pressure-shear loading are

I1 =�3p for combined pressure-shear loading (3.31a)

J2 = s2 for combined pressure-shear loading (3.31b)

J3 = 0 for combined pressure-shear loading (3.31c)

t = |s| . (3.32)
7The lack of confinement in uniaxial stress precludes the increase in pressure that would be needed to show the

effects of pressure dependence.
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Spatial and Reference stress (frame indifference)

Figure 3.5. Spatial, Material, and unrotated frames. The
unrotated frame, in which Kayenta operates at the element level
(where the rotation tensor is found from the polar decomposition
of the deformation gradient), removes bulk material rotation to
keep only material rotation relative to the material itself. Once
the stresses in the unrotated frame are found, they are re-rotated
into the current configuration.

The spatial Cauchy stress tensor defined in Eq. (3.1) is the “familiar” stress tensor used in
everyday engineering applications. Let us now denote that stress by s

⇠⇠
spatial. The elasticity compo-

nent of solids models requires knowledge of both the initial and current configurations. Moreover,
the principle of material frame indifference demands that if a second problem were considered
that had the same initial configuration, but a current configuration that is identical to the current
configuration of the first problem, except also rigidly rotated, then the predicted spatial stresses for
the second problem should be identical to those of the first problem, except rigidly rotated by the
same amount (see Fig. 3.5). This concept is quite different from a mere basis change because the
initial configuration is identical for both problems.

Satisfying material frame indifference in a spatial context can be computationally expensive
and error-prone because anisotropic internal state variables (such as directions of material fibers
or orientation of the backstress) must be rotated into the spatial frame, and special “objective”
rates must be integrated in constitutive models. A mathematically equivalent (and numerically
more accurate and efficient) strategy instead applies the constitutive model within an unrotated
reference configuration (see Fig. 3.5). With this approach, rotation of internal variables is not
required, and all rates that appear in the constitutive model are more easily integrated true rates
instead of co-rotational rates.
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If R
⇠⇠

is the proper orthogonal tensor (found from a polar decomposition of the deformation)
that characterizes the material rotation, then the unrotated stress is simply

s

⇠⇠
unrotated = R

⇠⇠
T •s

⇠⇠
spatial •R

⇠⇠
(3.33)

By working in the unrotated reference configuration, Kayenta predicts the stresses for the non-
rotating problem. Upon receiving Kayenta’s update of the unrotated stress, the host code then
rotates the predicted stress back into the spatial frame. Roughly speaking, this approach will give
results identical to a spatial constitutive model that is cast in terms of polar objective rates.

For problems involving massive material rotation (e.g., turbine blades, vortices, tumbling rock
fragments, etc.), the “unrotation” strategy can give considerably more accurate answers because
the host code may, optionally, use the rotation tensor R

⇠⇠
n at the beginning of the time step when

computing the starting value of s

⇠⇠
unrotated, but then the host code may use R

⇠⇠
n+1 at the end of the

step when recasting the updated value of s

⇠⇠
unrotated (output of Kayenta) to the spatial frame. Hence,

this approach supports so-called strong objectivity [76] in a very natural way.

Throughout the remainder of this report, the stress s

⇠⇠
must be understood to be the unrotated

stress s

⇠⇠
unrotated. Likewise all other vector or tensor variables (such as the strain rate) mentioned

in this report are understood to be cast in the unrotated configuration (material frame). Any host
code that uses Kayenta must (1) perform these unrotation operations, (2) call Kayenta, and then
(3) re-rotate the result back to the spatial frame upon return. For more information, see page 136.

Lode coordinates

By definition, any isotropic yield function may be expressed in terms of the principal stresses
(s1,s2,s3). Therefore, the yield surface may be visualized in a 3D space for which the Cartesian
coordinates are these principal stresses. The value of the yield function f (s1,s2,s3) must be
independent of the ordering of the eigenvalues. Therefore, as seen in Fig. 1.1 (pg. 19), the yield
surface must have 120� rotational symmetry about the [111] (hydrostat) direction and reflective
symmetry about the TXE and TXC axes in the octahedral plane (i.e., the view looking down the
[111] axis).

The principal Cartesian coordinates (s1,s2,s3) comprise an adequate choice for character-
izing stress space, but the yield function is often cast in terms of different independent variables to
exploit the yield surface’s natural symmetries optimally. The natural symmetries suggest instead
using cylindrical (r,q ,z) coordinates — called Lode cylindrical coordinates — for which the
z-axis is parallel with the [111] symmetry axis. We have placed a bar on the symbol q for the
angular coordinate because we intend to define it so that it will be positive in TXC and negative
in TXE. A constant q plane is a meridional plane, and a plot of r vs. z at a given value of q is
called a meridional profile. Because most of the yield surface resides in the compressive domain
where z < 0, we will usually display meridional profiles as r vs. z (where z =�z). Any constant-z
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plane is an octahedral plane, and any cross-section looking down the [111] axis (i.e., on a plane
of constant z) is in an octahedral profile. Meridional and octahedral profiles are illustrated in
Fig. 1.1 (pg. 19).

In this report, the Lode angle q is defined so that it equals zero in SHR. It varies from �30�
in TXE to +30� in TXC. Superimposing pressure on a stress state changes only the axial z-
coordinate, leaving the octahedral (r,q) coordinates unchanged, which makes Lode coordinates
a natural choice when decomposing tensors in to their isotropic and deviatoric parts. The radial
r coordinate equals the magnitude of the stress deviator. The z coordinate is proportional to the
mean stress. The angular coordinate is a measure of the relative proportions of the principal values
of the stress deviator. Thus, as the Lode angle varies from �30� to +30�, the stress transitions
through TXE, SHR, and TXC states. Cylindrical Lode coordinates are especially useful because
they may be expressed in terms of stress invariants, thereby eliminating the need for an eigenvalue
decomposition.

The axial z-coordinate is positive on the tensile part of the hydrostat, so z is positive on the
compressive hydrostat. We define the Lode angle q to be positive in TXC and negative in TXE.
The change in variables from principal coordinates to Lode coordinates permits the yield function
f (s1,s2,s3) to be alternatively expressed in the form f (r,q ,z). When phrased in terms of Lode
coordinates, the yield function needs to be defined only over a 60� sextant on any octahedral plane.
The symmetry properties of the yield surface may be used to reconstruct the octahedral profile over
the full range from 0� to 360�.

Performing these necessary but tedious coordinate transformations from principal stresses to
cylindrical Lode coordinates, it can be shown [62] that the cylindrical Lode coordinates may be
determined directly from the I1, J2, and J3 scalar stress invariants, eliminating the need for an
eigenvalue analysis. Specifically,

r =
p

2J2 (3.34a)

sin3q =�J3

2
(

3
J2
)3/2 (3.34b)

z =
I1p

3
(3.34c)

The square root coefficients are merely by-products of the coordinate transformations. For
example, since the z-coordinate is the projection of the stress onto the [111] axis, the

p
3 appears

because the magnitude of the [111] vector is
p

3. The Lode radius r is zero if J2 = 0. Also, the
Lode angle q is undefined when J2 = 0, which should not be too disturbing since the angular
coordinate for any cylindrical system is undefined when the point in question lies on the symmetry
axis (which, in this case, is the [111] hydrostat).

Later, when we give the mathematical formulation for Kayenta yield function, it will be phrased
as f (r,q ,z). Using the above formulas, the yield function is ultimately implemented in the form
f (I1,J2,J3). The invariant J3 influences only the Lode angle. When simpler yield models (Drucker-
Prager) are independent of the third stress invariant, they are therefore independent of the Lode
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angle, which makes their octahedral yield profile a circle. Kayenta must include a non-circular
yield profile to reproduce TXE/TXC strength differences clearly evident in the data for geological
materials. Thus, Kayenta must necessarily use all three Lode coordinates (equivalently, all three
stress invariants).

Octahedral yield profile visualization

Given a yield function f (r,q ,z), yield profiles may be generated by solving f = 0 to obtain r
expressed as a function of (q ,z). A meridional profile is generated by plotting r vs. z at a fixed
value of q . An octahedral profile, which corresponds to a yield surface cross-section at a given
value of z, describes how the Lode radius at yield varies with the Lode angle. Rather than plotting
r vs. q , octahedral profiles are obtained by parametrically plotting Cartesian coordinates

x1 = r cosQ and x2 = r sinQ (3.35)

Here, Q is an angle that varies over the full range from 0 to 360�. The Lode angle q , which is
permitted to vary only over the range from �30� to +30�, is generated from the full-range angle
Q by the sawtooth function

q =
1
3

arcsin[sin(3Q)] (3.36)

With q known, the value of corresponding Lode radius r can be found from the yield con-
dition, and finally, the family of (x1,x2) points on the octahedral yield profile may be generated
parametrically as Q varies from 0 to 360�, as illustrated in Fig. 3.6.

Meridional yield profile visualization

To draw a geometrically accurate meridional cross-section of the yield surface, the profile
should be plotted as r vs. z for a given value of q . Typically, we will plot the TXC (q = 30�)
profile. Using the r and z Lode coordinates as the axes in a meridional plot ensures that lengths
and angles in the meridional profile will equal corresponding lengths and angles in stress space.
Many times, however, we will depict a geometrically distorted view of the meridional profile by
instead plotting t vs. I1, where the signed equivalent shear stress t equals ±

p
J2, depending on

whether the loading is closer to TXE or TXC. Recalling from Eq. (3.34a) and Eq. (3.34c) thatp
J2 = r/

p
2 and I1 =

p
3z, a plot of t vs. I1 is equivalent to changing the aspect ratio of an r vs.

z plot by a factor of
p

6 = 2.45, as illustrated in Fig. 3.7. Thus, whenever we plot the meridional
profile as t vs. I1, keep in mind that the actual meridional cross-section in stress space is smaller
in width by a factor of 2.45. Meridional profile distortion is an issue only when ascertaining the
direction of the yield surface normal. Fig. 3.7 shows that the normal to the yield profile in a
distorted plot does not correspond to the normal in stress space.
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Figure 3.6. An octahedral yield profile. Geological materials
tend to be stronger in TXC than in TXE, which is why the TXC
axes are always on an apex of the rounded triangle (i.e., farther
from the origin, corresponding to higher strength). The Lode angle
r alternates cyclically from �30� in TXE to +30� in TXC because
the yield threshold must be independent of the eigenvalue ordering.
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Figure 3.7. Distortion of the meridional profile when using
non-isomorphic stress measures. Only a plot of r vs. z will re-
sult in a geometrically accurate depiction of a meridional cross-
section of stress space for which angles and lengths are preserved.
The middle plot shows the magnitude of the stress deviator plot-
ted against the pressure, resulting in a plot eccentricity ratio of
1/

p
3 = 0.577. The last plot shows the equivalent shear stress plot-

ted against the first stress invariant, for a plot eccentricity ratio ofp
6 = 2.45.

Closed-form solution for ordered eigenvalues

Recalling that Lode cylindrical coordinates merely represent a coordinate change from the
principal coordinates (s1,s2,s3) to a new set of coordinates (r,q ,z), it follows that inverse trans-
formation formulas should exist for obtaining the principal stresses from Lode coordinates. Each
distinct sextant in Fig. 3.6 merely corresponds to a different eigenvalue ordering. Regardless of the
sextant in which the stress resides, q = 30� falls on the pi-plane axis corresponding to the smallest
eigenvalue, whereas q = �30� falls on the axis of the largest eigenvalue. Therefore, transforma-
tion formulas that convert cylindrical coordinates back to Cartesian coordinates only need to be
defined over the range from �30� through +30� to determine the ordered eigenvalues.

Letting the compressive eigenvalues be ordered s3  s2  s1, the tensile eigenvalues must be
ordered s3 � s2 � s1, and the inverse transformation formulas are

low: s1 =
zp
3
� rp

2



cosq +
sinqp

3

�

=
I1

3
�
p

J2



cosq +
sinqp

3

�

(3.37a)

middle: s2 =
zp
3
+

r

2
3

r sinq =
I1

3
+

2p
3

p
J2 sinq (3.37b)

high: s3 =
zp
3
+

rp
2



cosq � sinqp
3

�

=
I1

3
+
p

J2



cosq � sinqp
3

�

. (3.37c)
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These formulas constitute a closed-form solution for the ordered eigenvalues of any real sym-
metric 3⇥3 matrix, not just a stress.8 Using these formulas, any yield function that is stated in
terms of principal stresses, f (s1,s2,s3), can be immediately re-cast into a form expressed in
terms of stress invariants, f (I1,J2,J3), which is more convenient for plasticity modeling because it
can be differentiated without an eigenvector analysis (see Eq. (3.12)). For example, any material
model that seeks to initiate failure when the largest tensile principal stress s3 reaches a critical
value, s

crit
3 , can do so by simply substituting Eq. (3.37c) into the failure criterion, s3 = s

crit
3 . The

above closed-form solution for ordered eigenvalues is applied in Appendix B (page 229) to convert
the Mohr-Coulomb theory of failure into a formulation expressed in terms of stress invariants, as
required in Kayenta.

8The solution quoted here is equivalent to the closed form solution derived by Malvern [66] via a trigonometric
substitution. Malvern’s angle a is a Lode angle, but defined to be zero in TXE and 60� in TXC.
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Chapter 4

Kayenta theory

Being a generalized plasticity theory, Kayenta is founded upon an additive decomposition of
the strain rate ė

⇠⇠
into separate contributors: ė

⇠⇠
e from elastic straining and ė

⇠⇠
p from inelastic straining:

ė

⇠⇠
= ė

⇠⇠
e + ė

⇠⇠
p. (4.1)

Geomechanics modelers often refer to the inelastic strain as the “plastic strain”, so it must be
understood that they generalize the term “plasticity” to mean any form of inelastic deformation,
including but not necessarily exclusive to the tradition dislocation-based meaning of plastic flow.
Kayenta permits the host code to employ any definition of the strain so long as its rate is conjugate
to the stress s

⇠⇠
in the sense that the work rate per unit volume is given by

s

⇠⇠
:ė
⇠⇠
. (4.2)

To satisfy the principle of material frame indifference, the host code must cast the stresses and
strain rates in an unrotated configuration. At present, all implementations of Kayenta have approx-
imated the strain rate by the unrotated symmetric part of the velocity gradient:

ėi j ⇡
1
2

✓

∂vm

∂xn
+

∂vn

∂xm

◆

RmiRn j, (4.3)

where v⇠ is the velocity vector, x⇠ is the current spatial position vector, and the tensor R
⇠⇠

is the
rotation from the polar decomposition of the deformation gradient. The conjugate stress is the
unrotated Cauchy stress defined in Eq. (3.33). Henceforth, all references to the stress si j and the
strain rate ėi j must be understood to be the unrotated stress and strain rate.

All Kayenta material parameterizations to date have been based on the above approximation
for the strain rate. Using a different choice for the conjugate stress and strain rate measures would,
of course, entail adjusting material parameters appropriately. The strain rate in Eq. (4.3) is an
approximation because, for general deformations, it is not precisely equal to the rate of any proper
function of the deformation.1 The approximate strain rate in Eq. (4.3) exactly equals the unrotated
logarithmic (Hencky) strain rate for any deformation having stationary reference principal stretch
directions, and it is an excellent approximation to the Hencky strain rate even when principal
stretch directions change orientation as long as the shear strains remain small (volumetric strains

1Paths can be devised for which the starting and ending configurations are identical, but the time integral of ėi j
does not evaluate to zero [15].
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may be arbitrarily large) [16, 17]. For geological applications, material rupture generally occurs
well before shear strains become large, so Eq. (4.3) is a prudent choice for the strain rate measure.
If, however, the model is to be subjected to significant cyclical loading (e.g., fatigue), then a proper
strain rate should be used instead of Eq. (4.3) even if the distortional strains are always small.

Elasticity

Kayenta supports both linear and nonlinear hypoelasticity.2 Kayenta presumes the material is
elastically isotropic and that the elastic stiffness tensor Ci jkl is itself isotropic (i.e., deformation-
induced elastic anisotropy is not included). Consequently, the stress is governed by a rate form of
Hooke’s law:

ṡi j � ȧi j =Ci jkl ė
e
kl � l̇

⇤Zi j. (4.4)

Here, the backstress tensor a

⇠⇠
is used to define the location of the origin in stress space in order to

model the Bauschinger effect (cf.[83]). Conventional plasticity models incorporate the backstress
only into the definition of the yield function, but Kayenta also includes the backstress in the elastic
model to reproduce the experimentally observed phenomenon that plastic loading can become so
severe that unloading is actually a partially inelastic process. The above formulation supports this
possibility by allowing the origin of stress space to translate so far that the initial origin of stress
space falls outside of the evolved yield surface. Accordingly, we include the backstress in both the
yield model and the elastic model. The Z tensor, which is likewise rarely seen in other plasticity
models, accommodates a self-consistent treatment of elastic-plastic coupling as described in [13]
Because the elastic tangent stiffness tensor, Ci jkl , is presumed to be isotropic, Eq. (4.4) can be
written as two separate and much simpler equations, one for the volumetric response and the other
for the deviatoric response:

ṗ = Kė

e
v (4.5)

and
Ṡi j = 2Gġ

e
i j. (4.6)

Here, G and K are the tangent shear and bulk elastic moduli; p is the pressure (negative of the
mean stress); ė

e
v is the volumetric elastic strain rate computed by the trace operation,

ė

e
v = ė

e
kk, (4.7)

Si j is the stress deviator; and ġ

e
i j is the deviatoric part of the elastic strain rate, defined

ġ

e
i j = ė

e
i j �

1
3

ė

e
v di j. (4.8)

We have used the overbar (which, recall, simply denotes the negative of a variable) in our equation
for the pressure-volume response because the mean stress is typically compressive (negative) in
most applications of Kayenta and therefore p and e

e
v are typically positive. Of course, Eq. (4.5)

2“Hypoelastic” means the stress can be written as a function of the strain, but is not derivable from an energy
potential. When a potential exists, then the formulation is “hyperelastic”.
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remains valid for volumetric expansion (ee
v < 0) and tensile mean stresses (p < 0) as well. No

overbar is used in Eq. (4.8) because deviatoric tensors always have eigenvalues of mixed signs.

For linear elasticity, the user merely specifies constant values for the bulk modulus K and the
shear modulus G. For nonlinear elasticity, the moduli are stress-dependent tangent moduli (i.e.,
slopes of the tangents to the stress-strain curves). Three parameters are available for fitting the
nonlinear tangent bulk modulus K to laboratory data obtained from unloading curves in hydro-
static compression. Similarly, three parameters are available for fitting the nonlinear tangent shear
modulus G indirectly from triaxial test data. Additional elastic parameters are available for mate-
rials whose elastic properties are affected by inelastic deformation (see Eq. (4.33) and Eq. (4.34)).
Step-by-step instructions for determining elastic properties from measured data are provided in
Appendix A.

Nonlinear elasticity

At the user’s option, Kayenta supports nonlinear elasticity by permitting the elastic tangent
moduli to vary with the stress according to

K = b0 +b1 exp
✓

� b2

|I1|

◆

(4.9)

G = g0



1�g1 exp(�g2
p

J2)

1�g1

�

. (4.10)

In these equations, the bk and gk parameters are material constants determined via nonlinear re-
gression fitting to the unloading portions of hydrostatic compression and triaxial compression ex-
periments, as described in Appendix A.3 Further descriptions of the physical meanings of the
parameters in these equations are given Appendix B. Kayenta’s functional forms for the nonlinear
elastic tangent moduli are phenomenological to permit tight empirical fits to experimental data for
a wide variety of materials. Suitability of these functions for fitting material data is demonstrated
in Chapter 10 and Chapter 11, starting on page 195.

Incidentally, it can be shown that an elasticity model of the form in Eq. (4.4) is hyperelastic
(i.e., derivable from an isotropic elastic potential) if and only if the shear modulus is constant and
the bulk modulus depends at most only on I1. Because Eq. (4.34) permits the shear modulus to
vary, Kayenta is hypoelastic if g1 6= 0.

Assigning values to the elastic constants

The bulk modulus K is determined from the local tangent of the elastic part of a pressure
vs. volumetric strain plot obtained from hydrostatic testing. Rather than determining the shear

3The generalized nonlinear elasticity formulas on page 63 may be used when elastic properties appear to be affected
by inelastic deformation.
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modulus directly from a shear loading experiment (where geomaterials tend to be weak), the shear
modulus is typically found indirectly from triaxial loading data. For triaxial loading, the stress
rates are related to the strain rates by4

ėA =
ṡA �2nṡL

E
and ėL =

�nṡA +(1�n)ṡL

E
(4.11)

where E and n are, respectively, Young’s modulus and Poisson’s ratio. If E and n are known, then
the bulk modulus K, the Lamé modulus l , and the shear modulus G may be determined from the
well-known elasticity equations [41],

K =
E

3(1�2n)
l =

En

(1+n)(1�2n)
G =

E
2(1+E)

. (4.12)

Because Kayenta casts its elasticity model in terms of the bulk modulus K and the shear modulus
G, the following formulas are convenient for converting various combinations of elastic constants
into expressions involving only K and G (see, for example, Ref. [41], page 139):

l = K � 2
3

G n =
3K �2G

2(3K +G))
E =

9KG
3K +G

(4.13)

E
n

=
18KG

3K �2G
l

n

=
2
3
(3K +G)

n

1�n

=
3K �2G
3K +4G

(4.14)

E
1�n

=
18KG

3K +4G
2G+l = K +

4
3

G G =
3KE

9K �E
(4.15)

K +
4
3

G =
E(1�n)

(1+n)(1�2n)
Uniaxial strain modulus — see Eq. (3.25). (4.16)

Eq. (4.11) implies that triaxial experiments conducted under constant lateral stress (ṡL = 0) satisfy

ṡA = E ėA. (This applies if lateral stress is constant.) (4.17)

A fixed lateral stress implies that ṡA = ṡA � ṡL. Thus, when a stress-strain curve is obtained by
plotting the stress difference sA�sL against the axial strain eA for a triaxial loading experiment in
which the lateral stress is fixed, the local tangent of the curve equals Young’s modulus E. With the
bulk modulus K having been obtained separately from hydrostatic test data, Eq. (4.15) may then
be used to determine the tangent shear modulus G.

The elastic limit (yield surface)

Like most plasticity models, Kayenta begins each solution phase (i.e., each time step) by ten-
tatively presuming that the loading is elastic. This produces a trial elastic stress, which is then

4Here, we are writing Hooke’s Law in rate form to allow for the possibility that the elastic moduli might be
nonlinear. Thus, the elastic properties used here are the tangent moduli (i.e., based on the local slope of an elastic
stress vs. strain curve).
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checked to see if it is inside or on the yield surface. If so, the tentative assumption of elasticity
is validated and the actual updated stress is set equal to the trial elastic stress. If, on the other
hand, the trial elastic stress falls outside the yield surface, then the tentative assumption of elastic
response was wrong, and the solution phase is then solved anew using the equations governing
inelastic deformation. Before discussing these inelastic governing equations, we must first charac-
terize the yield surface itself. We will begin by discussing yield surfaces in some generality and
then progressively work towards the precise functional form for Kayenta’s yield surface.

Mathematically, Kayenta is a generalized plasticity model. The term “plasticity” is broadened
to include not only the usual flow of material via dislocations (a phenomenon that has actually been
observed in brittle materials when they are loaded under extraordinarily high confining pressure),
but also any other mechanisms that lead to a marked departure from elasticity. Examples include
crack growth, void collapse, or perhaps even phase transition. Rather than explicitly tracking each
of these microscale failure mechanisms explicitly, the “yield” surface itself characterizes them
all in an ensemble phenomenological manner. If the stress state (s1,s2,s3) is “not too severe”,
then material response will be elastic and therefore reversible (non-dissipative). Once the stress
becomes critically severe, however, the material will undergo irreversible structural changes that
manifest as inelastic strains (nonrecoverable upon removal of the load). The material response is
elastic whenever the stress is on the inside of the yield surface. If continuing to apply elasticity
theory would move the stress into regions outside the yield surface, then plasticity equations are
applied.

Kayenta’s yield criterion and yield function are

Kayenta Yield Criterion:
q

Jx

2 =
[Ff (I1)�N]

p

Fc(I1,k)

G(q x

)
. (4.18)

Kayenta Yield Function: f (s
⇠⇠
,a
⇠⇠
,k) = Jx

2 G2(q
x

)� [Ff (I1)�N]2Fc(I1,k). (4.19)

The remainder of this chapter is devoted to motivating the functional forms of these equations and
defining the numerous variables that appear in them. Briefly, the yield function f is defined such
that elastic states satisfy f < 0. The yield criterion corresponds to f = 0. The “building block”
functions Ff and G are used to describe the elastic limit caused by the presence of microcracks,
whereas the function Fc accounts for strength reduction by porosity. Commonly assumed in the
damage-mechanics models [22], the function Ff represents the ultimate limit on the amount of
shear the material can support (i.e., Ff represents the softening initiation limit threshold, sketched
in Fig. 1.2, resulting exclusively from microcracks). The material parameter N characterizes the
maximum allowed translation of the yield surface when kinematic hardening is enabled, in which
case Jx

2 is the second invariant of the shifted stress tensor x

⇠⇠
= S

⇠⇠
�a

⇠⇠
, where a

⇠⇠
is the backstress.

When kinematic hardening is disabled (i.e., when N is specified to be zero), the backstress will
be zero and therefore Jx

2 would be simply the invariant of the stress deviator. The function Ff
describes the limit strength, whereas Ff �N defines the yield threshold associated with cracks,
which can evolve toward the limit surface via kinematic hardening as explained later in the context
of Fig. 4.7. The function G(q x

), where q

x is the Lode angle of the shifted stress, is used to account
for differences in material strength in triaxial extension and triaxial compression. By appearing as
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a multiple of [Ff �N]2, the function Fc accommodates material weakening caused by porosity.
The function Fc depends on an internal state variable k whose value controls the hydrostatic elastic
limit, as explained later in the context of Fig. 4.4, Fig. 4.5, and Fig. 4.16.

The principal goal of this section is to describe the physical motivations of Kayenta’s yield
criterion cited in Eq. (4.18). This criterion describes the geometrical shape of the yield surface in
stress space. For rocks and rock-like materials, the yield surface will have a shape similar to the
one illustrated in Fig. 1.1 (pg. 19).5 Fig. 1.1(b) shows a “side” meridional profile of the yield
surface in bold, along with a family of other profiles from which the yield surface might have
evolved over time (via continuously varying values of the k internal state variable); Fig. 4.7 shows
a similar plot when kinematic hardening is allowed. Very little of the yield surface in Fig. 1.1(b)
exists in the tensile domain (left side of the meridional plot), implying that materials of this type
are very weak in tension.

Fig. 1.1(c) shows the yield surface profile from a perspective looking down onto a plane —
called an octahedral plane — that is perpendicular to the [111] symmetry axis and therefore rep-
resents a cross-section of the yield surface at a given pressure. Since the onset of yield must not
depend on the ordering of the principal stresses, the yield surface for any isotropic yield model
possesses 120� rotational symmetry about the hydrostat (i.e., the [111] axis), as well as reflective
symmetry about any of the triaxial compression or triaxial extension axes labeled TXC and TXE in
Fig. 1.1(c). As seen in Fig. 1.1(c), the octahedral profile is somewhat triangular in shape. This pe-
riodic asymmetry corresponds to differences in the failure limit under triaxial compression (TXC)
and triaxial extension (TXE). Because the yield surface is farther from the origin on a TXC axis
than on a TXE axis, this material has higher strength in TXC than in TXE. The G(q) function
characterizes the shape of the octahedral profile because r is proportional to 1/G(q). The size of the
octahedral profile at various pressures is governed by the functions Ff and Fc.

Elastic stress states are “inside” the yield surface ( f < 0). Stress states for which f = 0 are said
to be “on the yield surface”. Like classical plasticity models, the yield surface in Kayenta charac-
terizes the point of departure from elastic to inelastic behavior. If applying elasticity theory would
result in an updated stress that falls outside the yield surface ( f > 0), then plasticity equations must
be applied. Recall that the theory outlined these sections pertains to quasistatic loading. Therefore,
stress states outside the yield surface are unachievable except through a hardening evolution of the
internal state variables (k and/or a

⇠⇠
) corresponding to a fundamental change of the underlying mi-

crostructure of the material. Stresses outside the limit surface are unachievable by any quasistatic
means.

The internal state variable k controls the location of the yield cap (wire frame in Fig. 1.1(a) on
page 19). When k increases in response to pore collapse, octahedral profiles that pass through the
cap will expand isotropically (i.e., the octahedral profile changes size, but not shape, and it does so
without translating in stress space). The amount of isotropic expansion or contraction varies with
pressure in such a manner that the family of yield surfaces corresponding to various values of k is

5At the user’s option, Kayenta parameters can be set to alternatively duplicate classical idealized von Mises or
Mohr-Coulomb theory. Doing this would be inappropriate when modeling real materials, but it can be useful in
benchmark testing.
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bounded by the shear limit surface,
p

J2 = Ff (I1)/G(q).

Figure 4.1. Backstress and shifted stress.

Though not needed in many applications, Kayenta supports kinematic hardening for which the
symmetry axis of the yield surface is permitted to shift in stress space so that the invariants in the
yield function are based on the shifted stress tensor, defined

xi j ⌘ Si j �ai j. (4.20)

As illustrated in Fig. 4.1, the backstress ai j is a deviatoric tensor-valued internal state variable that
defines the origin about which the yield surface is centered. When the backstress tensor changes,
the yield surface translates in stress space, thereby supporting deformation-induced anisotropy
(Bauschinger effect) in a limited capacity. The backstress is initially zero, but then evolves accord-
ing to an evolution equation described in detail on page 91. Kayenta is otherwise fully isotropic,
both elastically and plastically. Consequently, the yield function is isotropic with respect to the
shifted stress deviator xi j, implying that it depends on the invariants of the shifted stress deviator,
as well as I1 and an internal state variable k that characterizes isotropic hardening caused by void
collapse or softening caused by porosity increases. Specifically, Kayenta’s yield function is of the
form

f = f (I1,J
x

2 ,J
x

3 ;k), (4.21)

where
Jx

2 =
1
2

trx

⇠⇠
2 and Jx

3 =
1
3

trx

⇠⇠
3. (4.22)

In this section, we seek to describe the size and shape of the yield surface at an instant frozen in
time. Thus, we will focus on how the yield function depends mathematically on the stress invariants
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(I1,J
x

2 ,J
x

3 ), with the internal state variables (k and a

⇠⇠
) regarded as constants. The means by which

the yield surface evolves in response to time variation of k and/or a

⇠⇠
is discussed separately.

Before discussing the physical foundations of Kayenta’s yield function in Eq. (4.19), we will
first discuss qualitative features of any yield function of the more general form in Eq. (4.21). Given
that an isotropic yield function possesses alternating 30� symmetry about the [111] direction in
stress space, the yield function in Eq. (4.21) is most naturally cast in terms of the cylindrical Lode
coordinates as

f = f (r,q ,z;k), (4.23)

where these Lode coordinates are defined with respect to the kinematically shifted origin in stress
space. For any given values of q , z, and k , there must exist only one radius r that is a solution to
f (r,q ,z,k) = 0 (otherwise, the yield surface would not be convex). Thus, without loss in general-
ity, elastic stress states for any isotropic yield function always can be characterized in the general
functional form

r < g(q ,z;k), (4.24)

where g(q ,z;k) is regarded as a material function determined from experimental data and is intro-
duced here only to discuss the structure of isotropic yield functions in generality (i.e., Kayenta has
an implied “g” function, but does not construct one explicitly). The yield function corresponding
to Eq. (4.24) may be written

f = r2 � [g(q ,z;k)]2 (Any isotropic yield function can be written in this form.) (4.25)

At present, Kayenta assumes that the shape of the octahedral yield profile is the same at all
pressures — only its size varies with pressure.6 Moreover, Kayenta presumes that the shape of
the octahedral yield profile is constant in time (i.e., it does not evolve to any different shape in
response to plastic deformation even though it can permissibly vary in size and translate in stress
space). Consequently, Kayenta’s yield function is structured such that g(q ,z;k) is separable into
the product of two distinct functions, one depending only on q and the other depending only on z
and k , permitting Eq. (4.24) to be structured in the general form:

r < h1(q)h2(z;k) (This form results from a separability assumption.) (4.26)

As was the case with the g function, h1 and h2 have been introduced here only to illustrate the basic
structure of Kayenta’s yield function. Kayenta’s specific formulations will be discussed soon. A
degree of ambiguity exists in the definitions of h1 and h2 because they may be replaced respectively
by hh1 and h2/h for any scalar h without loss in generality. To remove this ambiguity, the function
h1 is scaled such that it merely describes the shape of the octahedral profile (i.e., the view of the
yield surface looking down the [111] direction). The function h2 defines the meridional profile of
the yield function, and therefore this function also defines the size of the octahedral profile.

Kayenta aims to model rocks and rock-like brittle materials. The mechanical behavior of such
materials is typically driven by two underlying mechanisms: porosity and microcracks. To date,

6Some evidence suggests that the octahedral yield profile should in fact vary in shape from strongly triangular at
low pressures to nearly circular at extraordinarily high pressures [48]. Consequently, Kayenta’s current assumption of
a constant octahedral profile shape might change in future releases.
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microphysical research has focused on the effects of only one of these mechanisms at a time.
Fig. 4.2(a) shows the qualitative shape of the meridional profile typically that is predicted when
only porosity is considered. In this case, the meridional yield profile is a “cap” function that is
essentially flat like a von Mises profile for a large range of pressures (z is proportional to pres-
sure), and then the profile drops to zero when pressure becomes large enough to collapse voids.
Fig. 4.2(b) shows the general shape of a meridian profile that is typically predicted for theories
that consider only the influence of microcracks without considering porosity. Microcracks lead to
low strength in tension, but strength increases as pressure is increased because pressure generates
additional friction at crack faces, thereby reducing the shear load suffered by the matrix material.
Kayenta unifies these separate microscale theories to obtain a combined porosity and microcrack
model, as sketched qualitatively in Fig. 4.2(c). Loosely speaking, Kayenta obtains the combined
meridional yield function by multiplying the individual porosity and microcrack profiles (and scal-
ing the ordinate appropriately to match data).

(a) (b) (c)

Figure 4.2. Qualitatively meridional profile shapes resulting
from (a) porosity alone, (b) microcracks alone, and (c) porosity
and microcracks in combination.

To date, the combined effect of voids and microcracks remains a poorly developed branch of
materials constitutive modeling. Some early models simply asserted that a material is elastic (safe
from yield) if and only if it is safe from both crack growth and void collapse, with each criterion
tested separately. However, as illustrated in Fig. 4.3(a), this approach results in a discontinu-
ous slope in the meridional yield profile and fails to account for interactions between voids and
cracks. Kayenta [Fig. 4.3(b) ], phenomenologically permits cracks and voids to interact in a way
that results in a continuously differentiable meridional profile, making Kayenta better suited for
reproducing observed data.

Kayenta achieves a combined porous+cracked yield surface by multiplying the fracture func-
tion r f (z) in Fig. 4.2(b) times the cap function rc(z) in Fig. 4.2(a) so that

r(z)is proportional to r f (z)rc(z). (4.27)

The proportionality factor depends on the Lode angle q so that the equivalent shear stress at yield
(which, recall, is simply a constant multiple of r) can be made lower in TXE than in TXC. Cap
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(a) (b)

Figure 4.3. Distinction between two-surface upper-bound
models and Kayenta.

functions depend on the porosity level (which controls where the cap curve intersects the z-axis).
The curvature of a cap function controls the degree to which porosity affects the shear response.
Although Kayenta does not explicitly track porosity, it does include an internal state variable k that
equivalently accounts for the presence of porosity. As explained later (in page 80), the value of k

and one additional material constant, R, determine both the cap curvature and the location where
the cap intersects the hydrostat (the z axis). Thus, the cap function rc(z) implicitly depends on k

and R.

Recalling that the Lode cylindrical radius r equals
q

2Jx

2 and the Lode axial coordinate z is
proportional to I1, Kayenta implements the notion of multiplying fracture and cap functions by
using Eq. (3.34) to express Eq. (4.27) in terms of stress invariants instead of Lode coordinates, so
Kayenta’s yield criterion is of the form

q

Jx

2 =
f f (I1) fc(I1)

G(q)
. [G also varies with I1 if user parameter Y =�1] (4.28)

Comparing with Eq. (4.18), the f and F functions are related by

f f = Ff �N and fc =
p

Fc (4.29)

The invariant Jx

2 is computed using the shifted stress tensor x

⇠⇠
⌘ S

⇠⇠
�a

⇠⇠
, where is the deviatoric

tensor-valued backstress that is nonzero only when kinematic hardening is enabled. Thus, in addi-
tion to depending explicitly on the stress tensor, the yield criterion depends implicitly on material
constants and on two internal state variables, k (mentioned earlier) and a

⇠⇠
.
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The fracture function f f characterizes the cracking-related portion of the meridional yield pro-
file. Kayenta’s cap function fc is normalized to have a peak value of 1. The function G(q) charac-
terizes the Lode angle dependence of the meridional profile and is normalized to equal 1 in triaxial
compression (q = 30�). At different Lode angles, G usually has values greater than 1, which (be-
cause it is a divisor in Eq. (4.28) reduces equivalent shear strength. Rather than regarding G as
a strength reducer, it can be alternatively interpreted as a stress intensifier. Qualitatively, these
functions are typically shaped as shown in Fig. 4.4.

(a) (b) (c)

Figure 4.4. Basic shapes of the three key functions that char-
acterize the composite shape of the yield surface. (a) Lode an-
gle dependence, (b) porosity cap curve, (c) limit failure curve. The
Lode angle function G(q) is the reciprocal of the radius in the
octahedral plane, making it best regarded as a stress intensifier;
G(q) is normalized to equal 1 in triaxial compression, which im-
plies that it must equal 1/Y in triaxial extension (where Y is the
TXE/TXC strength ratio). Shear influence on void collapse be-
gins at the point where the cap function branches into an ellipse.
Since the cap function is multiplied by the fracture curve, this tran-
sition point also marks where the composite Kayenta failure sur-
face branches away from f f , beyond which macroscale response
is influenced simultaneously by both cracks and voids. For pure
(shear-free) hydrostatic compression, void collapse begins at the
point where the ellipse intersects the horizontal. Only the function
f f has dimensions of stress (the others are dimensionless).

As explained on page 69, the precise expression for the G function is determined by user-
specification of two parameters: the TXE/TXC strength ratio Y and an integer-valued option
(J3TYPE), which controls the manner in which the octahedral profile radius varies from the value
1/Y at TXE to 1 at TXC. As explained below, the porosity (cap) function fc is defined by two
parameters: the initial intersection p0 on the horizontal axis and the eccentricity or “shape factor”
R for the ellipse (i.e., the width to height ratio of the ellipse). As explained on page 81, Kayenta
internally computes evolution of the cap function resulting from void collapse. As explained on
page 69, the very important f f function, which reflects influence of microcracks, is determined by
fitting triaxial compression data to an exponential spline [up to five parameters (a1, a2, a3, a4, N)].
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Standard experiments (needed to assign values to these parameters) are discussed in Appendix A.
The remainder of this chapter is dedicated to providing further details about the three key functions
fc, f f , and G used in Kayenta.

The cap function, fc

Under compression, the pores in a material can irreversibly collapse, thereby resulting in per-
manent (plastic) volume changes when the load is removed. Plastic volume changes can occur for
porous media even if the matrix material is plastically incompressible. Permanent volume changes
can also occur if a material undergoes an irreversible phase transformation. Kayenta supports
plastic volume changes, but it does so without explicitly modeling the underlying microphysi-
cal mechanisms. Nonetheless, Kayenta does reflect the influence of micromechanical theory by
phenomenologically incorporating plastic volume changes observed in hydrostatic loading. To
motivate Kayenta’s cap theory, we will explain the equations and their qualitative features in the
context of porosity, but keep in mind that any other microphysical compactive mechanisms are
equally well accommodated by the phenomenological cap model.

The cap function fc accounts for the presence of pores in a material by controlling where
the yield function will intersect the I1 axis in compression. This intersection point corresponds
to J2 = 0 and, because we are considering compressive states, we will denote the value of I1 at
the intersection point by I1 = X , where X/3 is the pressure (positive in compression) at which
inelastic deformation commences in purely hydrostatic loading for a given level of porosity. As
voids compress out, the value of X will change, as explained later when we discuss the evolution
equations for Kayenta’s internal state variable k . Porosity also degrades material shear strength
because, recalling Eq. (4.28), the cap function effectively reduces the nonporous yield strength,
defined previously by the fracture function f f .

Figure 4.5. Kayenta cap function
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Kayenta employs a cap function7 defined

f 2
c (I1,k) =

8

>

>

<

>

>

:

1 if I1 < k

1�
⇣

I1�k

X�k

⌘2
otherwise.

(4.30)

Neither k nor X are user-supplied material parameters. Instead, these variables are computed inter-
nally within Kayenta code by enforcing consistency with more intuitive user-supplied parameters
obtained from hydrostatic testing (see page 81).

The equation of the elliptical portion of the cap curve is

f 2
c +

✓

I1 �k

X �k

◆2

= 1. (4.31)

The intersection point X will be later related to the value of k so that knowledge of the internal
state variable k will be sufficient to compute a value for X . For now, while describing the geometry
of the yield surface, both k and X should be regarded as internal state variables whose values are
computed internally in Kayenta using evolution equations discussed later. Rather than using fc
directly, recall that Kayenta uses the function Fc that is simply the square of fc given in Eq. (4.30):

Fc = f 2
c . (4.32)

Elastic-plastic coupling

The cap model is used when the material being studied contains enough porosity (or highly
compliant second phase inclusions) so that inelastic volume reduction becomes possible through
irreversible reduction of void space. Intuitively, one might expect the elastic moduli to stiffen
as voids collapse, but the material might actually become more elastically compliant as shown
in Fig. 10.4 (a phenomenon that might be explained, for example, by rubblization of a ligament
network). Regardless of its microphysical origins, the elastic moduli are permitted to vary with
plastic strain by generalizing the nonlinear elastic moduli expressions in Eq. (4.9) and Eq. (4.10)
to

K = fK
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G = fG
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!)

. (4.34)

In the absence of joints, the scale factors fG and fK equal 1.0; otherwise, they are computed
internally within Kayenta as described in a separate sequel report [20]. In the above equations,

7evaluated in the code by a Pelessone [72] function, f 2
c (I1,k) = 1� (I1�k)(|I1�k|+(I1�k))

2(X�k)2
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g

p
equiv is the equivalent plastic shear strain (which, for proportional loading,8 is conjugate to the

equivalent shear stress,
p

J2), and e

p
v is the plastic compaction volume change. Mathematically,

g

p
equiv =

Z p
2kġ

⇠⇠
pkdt (4.35)

e

p
v =

Z

tr(ė
⇠⇠

p)dt. (4.36)

Though defined mathematically as stated, Kayenta computes the plastic volume change, e

p
v indi-

rectly, as explained later in the context of Eq. (4.69).

Meridional shear limiter function, Ff

In a loose sense, the previous sub-section (page 62) described Kayenta’s cap function fc by con-
sidering a material that contained pores, but no cracks. In this sub-section, we describe Kayenta’s
fracture function f f by considering a material that contains microcracks but no porosity. Numerous
microphysical analyses (as well as a preponderance of data) suggest that, for microcracked media,
the onset of “yield” depends on all three stress invariants, which implies that the yield function for
microcracked media must depend on all three cylindrical Lode coordinates. Kayenta supports this
singularly common prediction of microscale damage theory. Though they differ in specific details,
microphysical damage theories and laboratory observations for brittle materials also tend to share
the following qualitative features:

• At a given mean stress, yield in triaxial extension (TXE) occurs at a lower stress than in
triaxial compression (TXC), which implies that octahedral yield profiles are generally trian-
gular (or distorted hexagon) in shape, with the triangle apex being located on TXC axes, as
sketched in Fig. 1.1(c) (pg. 19).

• Brittle materials are very weak in tension. This implies that the meridional yield profile
will include few if any tensile stress states. Brittle materials are also vulnerable to shear
cracking at low pressures, but they become able to support increasingly large shear stresses
as pressure is increased because friction at crack faces helps reduce the shear load that must
be suffered by the matrix material itself. Thus, in the absence of porosity, the meridional
profile is expected to monotonically increase with pressure.

• When microscale theories regard brittle crack fracture to be the only failure mechanism,
they predict that the material strength (i.e., the Lode radius at failure) will increase monoton-
ically with increasing pressure, so that the meridional profile expands in an ever-expanding

8Proportional loading is a movement of stress through stress space along a stratight-line trajectory. Mathematically,
the stress varies with time according to s

⇠⇠
(t) = C

⇠⇠
+b (t)K

⇠⇠
in which C

⇠⇠
and K

⇠⇠
are constant tensors, and b (t) is a

time-varying scalar loading parameter. Consider, for example, an experiment involving an initial hydrostatic pre-stress
pressure p, following by axial loading in which the lateral stresses are held constant at the prestress pressure while the
axial stress sA(t) varies with time. This is proportional loading for which C

⇠⇠
=�pDIAG[1,1,1] for the constant initial

pre-stress, K
⇠⇠
= DIAG[1,0,0] for the axial loading direction, and b (t) = sA(t)+ p for the changing axial stress.
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cone-like shape like the limit surface in Fig. 1.2. Microphysical idealizations such as Mohr-
Coulomb theory predict the meridional profile is a straight line whose slope is directly related
to the friction coefficient. When microscale theories allow for both crack growth and ductil-
ity of the matrix material, they predict that the increase in strength from friction will continue
only until ductile yield (at extraordinarily high pressures) becomes more likely; such theo-
ries correspond to a meridional yield profile that is cone-like at low to moderate pressures
but asymptotes to a zero slope (like a von Mises cylinder) at high pressures.

Given the wide variety of microscale predictions for the meridional profile, Kayenta is equipped
with a four-parameter exponential spline that is capable of replicating any of these microphysical
idealized theories, as well as actual observed material yield and rupture response at low and mod-
erate pressures (i.e., at pressures well below the cap elastic limit) so that observed data primarily
reflect microcrack damage rather than combined cracking with pore collapse (covered elsewhere
in this report).

In the meridional plane (i.e., at a given value of the Lode angle), the yield surface character-
izes the transition boundary for inelastic flow. Stress states that were, at one time, outside the yield
surface might become realizable through hardening evolution of the yield surface. However, the
allowable amount of hardening is not unbounded. At some point, the material will fail catastrophi-
cally (i.e., rupture). Often, the stress at rupture is smaller than the peak stress. Stress-strain curves
might or might not exhibit post-peak softening, depending on whether or not the experiment is
stress-controlled or strain-controlled.

The peak stress (not the stress at rupture) defines the stress-carrying limit of the material. As
first mentioned on page 24, the limit surface is the boundary of all stress states that the material is
capable of supporting. Many of these achievable stress states can be reached only through inelastic
processes. Appendix A (STEP 4 on page 220) describes in detail how to determine the limit surface
from experimental data. Mathematically, the limit surface is characterized by a limit function that
is similar in form to the yield function. Specifically, the limit surface is defined by F(s

⇠⇠
) = 0,

where

F(s
⇠⇠
) = J2(s⇠⇠

)�
F2

f [I1(s⇠⇠
)]

G2[q(s
⇠⇠
)]
. (4.37)

The limit function F(s
⇠⇠
) depends only on s

⇠⇠
, not on any internal state variables. A yield function

f (s
⇠⇠
,a
⇠⇠
,k), on the other hand, depends on the backstress tensor a

⇠⇠
and on the scalar internal state

variable k . Unlike a yield surface, which can evolve over time because it depends on time-varying
internal state variables, the limit surface is fixed in stress space. The yield function is presumed to
share some qualitative features with the shear limit surface, but depends additionally on internal
state variables as follows:

f (s
⇠⇠
,a
⇠⇠
,k) = J2(x

⇠⇠
)�

n

Ff [I1(s⇠⇠
)]�N

o2
Fc(I1(s⇠⇠

),k)

G2[q(x
⇠⇠
)]]

, where x

⇠⇠
⌘ S

⇠⇠
�a

⇠⇠
. (4.38)
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When examining experimental data, it is generally easier to determine the maximum limit point
than the point at which plasticity first begins. Consequently, Kayenta provides an empirical fitting
function Ff for the limit surface in the meridional plane, and the initial meridional yield surface
is simply Ff �N, reduced perhaps by a cap function Fc if the material initially contains voids.
Comparing Eq. (4.38) with Eq. (4.37) reveals that the yield surface inherits its octahedral profile
shape (i.e., its Lode angle dependence) from the limit surface. The size of the yield octahedral
profile is generally smaller than the limit surface profile because of the multiplier (cap) function
Fc, which represents the effect of porosity. The yield surface origin is also offset from the limit
surface origin by an amount governed by the kinematic hardening backstress tensor a

⇠⇠
. The limit

surface always has a [111] symmetry axis passing through the actual (not kinematically shifted)
origin in stress space. When kinematic hardening is enabled, the yield surface has a symmetry axis
parallel to [111] that is off-set so that it does not pass through the origin.

Figure 4.6. Kinematic hardening. The user defines parameters
(a1, a2, a3, a4) for the ultimate shear limit surface. The initial yield
surface is identical except shifted down by a user specified amount
N. Kinematic hardening allows the initial yield surface to translate
until reaching the ultimate failure surface (at which point, the host
code must initiate “element death” or preferably microphysically
justifiable strategy for supporting macroscale softening.

When advancing the solution, the initial meridional profile can harden kinematically and/or
isotropically. The equations governing yield surface evolution are designed to permit only a limited
amount of hardening. As sketched in Fig. 4.6, the initial yield surface is permitted to translate
upward in the meridional plane by no more than a user-specified limit N.
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When the yield surface has reached the limit surface and when the stress itself lies on the limit
surface, the material will begin to soften. At that point, a constitutive-level description of material
response no longer remains possible; the host code must intervene by inserting void or by invoking
special elements capable of supporting displacement discontinuities or by accounting for statistical
variability and scale effects as described on page 109. The limit surface marks the point at which
a continuum material model is inadequate to characterize macroscale material response because
softening localization becomes possible. Before reaching the limit surface, material response is
handled entirely by Kayenta with no need for host code intervention.

Figure 4.7. Yield surface evolution with both microcracking
and porosity. For real materials, that contain both cracks and
voids, it is difficult to identify a single envelope for the combined
porous/cracked fracture yield function f f . However, ultimate fail-
ure data can be more readily mapped out.

The shifted shear limiter function Ff (I1)�N defines how the shear stress at yield varies with
pressure for a nonporous, but microcracked, material in its initial (virgin) state. When this micro-
crack yield function is combined with the cap function Fc(I1,k) the actual shear stress at yield is
further reduced because porosity makes inelasticity possible even for purely hydrostatic compres-
sion (i.e., loading along the I1 axis). Kayenta evolves this combined porous yield function in such
a way that the yield surface grows up to the limit surface.

Kayenta’s behavior after reaching the limit surface depends on the value of the user control
parameter “SOFTENING”. Properly, the host code should allow scale-dependent softening and
localization as discussed on page 109. If SOFTENING = 0.0, then Kayenta will treat the limit
surface as if it were a nonhardening yield surface (making its post-peak predictions robust and
mesh insensitive but probably not realistic). This option is used in many of the Kayenta verifica-
tion tests where softening is not desired (and nonhardening analytical solutions are available). If
SOFTENING > 0.0, then Kayenta will allow the material to soften as described in Chapter 5 on
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page page 99.

Figure 4.8. Shear limiter function (unshifted and shifted).
The shifted function should be regarded as a nominal shape of
the yield surface in the meridional plane, although porosity fur-
ther lowers and distorts the meridional yield profile by multiplying
the shifted shear limit function by Fc.

Kayenta supports modeling microcracked material by providing flexible fitting functions that
can reproduce octahedral and meridional yield profiles observed for real materials. In particular,
the shear limit function used in Kayenta is of the form

Ff (I1) = a1 �a3e�a2I1 +a4I1 , where I1 =�I1 shear limit surface in TXC. (4.39)

where the ak are user-specified material parameters determined from experimental data as ex-
plained in Appendix A. The initial (nonporous) meridional yield profile is

f f (I1) = Ff (I1)�N initial yield surface (non-porous). (4.40)

where N is the user-specified shift parameter. Therefore, a1�N is the zero pressure intercept of the

nonporous meridional yield surface on the
q

Jx

2 axis. Frequently, N is taken to be zero. The shear
limiter function, Eq. (4.39), asymptotes to a linear envelope, as indicated in Fig. 4.8. To force the
material to obey a von-Mises type yield response at extremely high pressures, the slope coefficient
a4 is merely set to zero.

Let us now explain why the shear limiter function has the general shape depicted in Fig. 4.8.
Then we will list constraints on the model parameters necessary to achieve this shape. Brittle
materials fail at very low shear stresses when the pressure is low, but they are able to sustain higher
levels of shear stress without failing if loaded under higher confining pressures. Consequently,
the shear limiter function is expected to increase monotonically with pressure. Or, since I1 is
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proportional to the pressure, Ff is expected to increase monotonically with I1. Furthermore, a
fundamental tenant from plasticity theory is that the yield function must be semi-convex, which
implies that the second partial derivative of Ff (I1) must be negative or zero. When we speak of
the “shear” stress at failure, we are effectively speaking of the value of the Lode radius at failure
corresponding to the Lode angle for the stress state. For any cylindrical coordinate system —
including the Lode system — the radius must always be non-negative and therefore Ff is defined
only over the domain for which it yields positive values. Finally, in its virgin state, any material
should be unfailed at zero stress, which means that the origin must fall below the meridional yield
profile. All of these physical considerations lead to the following constraints on allowable values
for the parameters:

a1 �a3 �N � 0 unloaded virgin material must be below yield (4.41a)
a2a3 +a4 � 0 non-negative slope at low pressures (4.41b)

a2 � 0 convexity condition (4.41c)
a3 > 0 positive Lode radius (4.41d)
a4 � 0 non-negative slope at high pressures. (4.41e)

Specific values for these model parameters are determined from triaxial test data, as explained in
Fig. 3.3 (pg. 39) (and in Fig. A.4 and Fig. A.5 of Appendix A). Sample fits of Kayenta’s shear
limit function to data can be found in Fig. 10.1 (pg. 196) and Fig. 10.5 (pg. 200). Incidentally,
a2a3 + a4 < 1/

p
3 for most materials (1/

p
3 is typical for sand). In some cases (as when using

automatically determined third-invariant dependence of the model), the lower bound in Eq. (4.41b)
is additionally subjected to an upper bound based on the slope for triaxial compression in Fig. 3.3:
namely, a2a3+a4  1/

p
3 (this condition, when needed, is imposed by over-riding user-prescribed

values for the principal stress cutoff parameter CUTPS).

The complete Kayenta yield function

Eq. (4.28) is the yield criterion. The yield function f must be negative for all elastic states (in-
side the yield surface), zero for all stress states satisfying the yield criterion (on the yield surface),
and positive for all stress states (outside the yield surface) that cannot be reached except through
an inelastic process — if at all. For computational reasons, Kayenta’s yield function is based on
the square of Eq. (4.28):

f = G2(q
x

)Jx

2 � f 2
f (I1) fc

2(I1,k). (4.42)

When kinematic hardening is used, the stress invariants, q

x and Jx

2 , are those for the kinematically
shifted stress tensor, x

⇠⇠
⌘ S

⇠⇠
�a

⇠⇠
. Otherwise, when kinematic hardening is disabled, these are simply

the stress invariants. Of course, I1is the first invariant Is

1 of the stress tensor s

⇠⇠
. (Since backstress

a

⇠⇠
is deviatoric, Ix

1 = 0).

The building block functions f f and fc are implemented in Kayenta in a slightly altered form
by being expressed in terms of the shear limit function Ff and an alternative (computationally more
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efficient) cap function Ff :
f f (I1) = Ff (I1)�N (4.43)

fc(I1;k) =
p

Fc(I1,k). (4.44)

The first of these equations allows the user to specify a maximum amount, N, that the yield function
is permitted to translate under kinematic hardening. Thus, the function Ff can be regarded as a
“limit” or “softening” envelope, beyond which stresses can never be reached quasistatically (not
even via hardening). The second equation recasts the fc function as the square root of a different
function Fc for computational reasons. The second equation also shows explicitly the presence of
the internal state variable k related to the isotropic hardening part of Kayenta associated with void
collapse. The internal state variable k marks the branch point where combined porous/cracked
yield surface deviates from the nonporous yield surface. As explained on page 81, this branch
point is determined internally within Kayenta in a manner that ensures consistency with measured
hydrostatic data.

In terms of the new building block functions, the critical Lode radius in triaxial compression
(TXC), where G(q) = 1, may be expressed as a function of the Lode axial coordinate z as

rTXC =
p

2


(Ff (
p

3z)�N)
q

Fc(
p

3z,k)
�

. (4.45)

Plotting rTXC vs. z (at a given value of k) will produce a geometrically accurate visualization of
the meridional yield profile. Often we instead plot

p
J2 vs. I1 to label the axes with more broadly

recognized stress measures, but in doing so we are actually showing a geometrically distorted view
of the yield profile, as explained on page 46.

Substituting Eq. (4.43) and Eq. (4.44) into Eq. (4.42) gives the yield criterion cited at the
beginning of this section [Eq. (4.18)].

The “J3TYPE” Lode-angle function, G

This section describes available functional forms for the Lode angle dependence function G(q).
This function controls the shape of the octahedral yield profile. Since this function controls only
the shape, not size, of the octahedral profile, its magnitude is inconsequential. The G function is
normalized to equal unity in TXC (q = +30�).9 At other Lode angles, G(q) > 1. Thus, since
G(q) appears in the yield function as a multiplier of Jx

2 , it acts as a pseudo stress raiser, causing
yield to occur at smaller values of J2 at Lode angles differing from the fiducial (TXC) angle where
G(q) = 1. To ensure convexity of the octahedral yield profile, the Lode angle function must satisfy

G00(q)+G(q)� 0. (4.46)

A hallmark trait of rocks and rock-like materials (concrete, ceramics, etc.) is a higher strength
in triaxial compression than in triaxial tension at any given mean pressure. Loosely speaking, this

9With this normalization, the f f meridional function then quantifies the pressure-varying size of octahedral profiles
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characteristic results from friction at crack faces being able to carry a larger portion of the load un-
der compression, therefore sparing the surrounding matrix material from having to carry the entire
resolved shear stress at crack tips. Classical Mohr-Coulomb theory, which is supported by Kayenta
primarily for comparisons with idealized analytical solutions, has an octahedral profile in the shape
of a distorted hexagon, causing considerable computational difficulties when dealing with the ver-
tices. The computational attractiveness of removing yield surface corners has motivated numerous
proposals of smoothed three-invariant models for frictional materials [4, 10, 60, 67, 98], and Lade
[59] was among the first efforts to additionally include curvature in the meridional plane. Ac-
cording to Borja, et al. [9], there is evidence that smoothed yield surfaces capture mechanical
response more accurately than vertex models, but these authors point to no data to back up this
claim. Kayenta presently supports three yield-type options (specified by a value of 1, 2, or 3 for
the user parameter, J3TYPE):

1. Gudehus (an efficient smoothed profile, with restrictions on convexity)

G(q) = 1
2



1+ sin3q +
1
Y
(1� sin3q)

�

.

To satisfy the convexity requirement of Eq. (4.46), the strength ratio must be between
7
9 < Y < 9

7 .

2. Willam-Warnke (a relatively inefficient smooth profile with no convexity constraints)

G(q) = 4(1�Y2)cos 2
a

⇤+(2Y�1)2

2(1�Y2)cosa

⇤+(2Y�1)
q

4(1�Y2)cos2
a

⇤+5Y2 �4Y
,

where a

⇤ = p

6 +q . The Willam-Warnke option is convex for 1
2  Y  1

3. Mohr-Coulomb (distorted hexagon polygon)

G(q) = 2
p

3
3� sinF

✓

cosq � sinFsinqp
3

◆

.

Here, the internal friction angle F is the angle of the failure envelope in the Mohr-diagram
(tanF = µ , where µ is the coefficient of friction). Within Kayenta, F is determined from
the user-supplied strength ratio by sinF = 31�Y

1+Y . The Mohr-Coulomb option is convex for
1
2  Y  2.

4. Automatic selection of the pressure-dependent strength ratio. If Y is set = �1, then any
value for J3TYPE is ignored and instead the octahedral profile is defined by the Willam-
Warnke function with a pressure -dependent strength ratio. Specifically, the strength ratio is
set to be coupled to TXC meridional profile slope according to Eq. (B.19).

The Gudehus and Willam-Warnke options both correspond to fully differentiable yield func-
tions (no vertices). The Mohr-Coulomb option (which is available principally for comparisons
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with analytical solutions) is differentiable everywhere except at triaxial states where yield surface
vertices require special numerical handling.10

Recognizing logistical constraints of most laboratories, Kayenta presumes that experimental
data are available at most only for a limited number of canonical loading paths: perhaps triaxial
extension (q = �p/6), perhaps simple shear (q = 0), and almost certainly triaxial compression
(q = p/6). Regardless of which yield-type (Gudehus, Willam-Warnke, or Mohr-Coulomb) is
selected, the shape of the octahedral yield profile is described, in part, by user specification of a
parameter Y, equal to the triaxial extension/compression (TXE/TXC) strength ratio at a given
pressure. Kayenta presumes that only the size of the octahedral yield profile — not its shape
— varies with pressure. Consequently, the strength ratio Y equals its user-specified value at all
pressures and throughout the entirety of the simulation (i.e., Y is a constant, not a time varying
internal state variable). Appendix A gives instructions for inferring a value of Y from experimental
data.

These three options are distinguished by how the octahedral yield profile varies in stress space
in the transition from TXE to simple shear to TXC at a fixed pressure. Graphs of the octahedral
yield profile corresponding to any of the above options may be constructed by parametrically
plotting

x = r cosQ y = r sinQ (4.47)

Here,r =
p

2
G(q)

, where q =
1
3

arcsin(sin3Q). (4.48)

The angle Q varies from 0 to 360�, and therefore q varies between �30� and +30�.

As illustrated Fig. 4.9, the Mohr-Coulomb model (J3TYPE= 3) interpolates linearly in octa-
hedral stress space, resulting in a distorted hexagon if 1

2 < Y < 1, a perfect hexagon (Tresca) if
Y = 1, and a triangle if Y = 1

2 . For a detailed explanation of the Mohr-Coulomb formulation, see
Appendix B (page 229). The Mohr-Coulomb model has yield surface vertices at q =±p/6, which
results in extra computational effort to determine plastic strain rates in triaxial states. The Gudehus
and Willam-Warnke options, on the other hand, involve no yield surface vertices, which speeds up
computations. The Gudehus option is the default because of its computational simplicity, but it
supports only a limited range of TXE/TXC strength ratios, the Willam-Warnke option should be
used if a rounded but strongly triangular octahedral yield profile is desired. Appendix A (step 6)
provides guidance for selecting the Lode angle option most appropriate for matching experimental
data.

Kayenta subsumes many simpler (classical) models as special cases. For example, if failure
is hypothesized to occur when the largest principal stress (or strain) reaches a critical value, then
the octahedral yield profile will be a triangle. If, on the other hand, failure is presumed when the
equivalent shear stress reaches a critical value, independent of the Lode angle (like a von Mises or
Drucker-Prager criterion), then the octahedral yield profile is a circle, which can be modeled with

10Kayenta averages directions on either side of the vertex if the strain rate points within the limiting (Koiter) fan of
unit normals. If the strain rate points within a sextant of the octahedral plane, then the normal in that sextant is used.
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(a) (b) (c) (d)

Figure 4.9. Octahedral yield profiles, plotted at allowable val-
ues of the strength ratio. (a) Gudehus, J3TYPE= 1, (b) Willam-
Warnke, J3TYPE= 2, (c) Mohr-Coulomb, J3TYPE= 3, (d) Com-
parison. The comparison plot corresponds to a strength ratio of
Y = 0.8. The G(q) function is defined so that all models return a
value of 1 in triaxial compression

the Gudehus option. As a rule, any classical failure criterion that is expressed directly in terms of
the principal stresses will imply an appropriate J3TYPE option (and an appropriate value for the
TXE/TXC ratio), but such criteria will also imply functional constraints on the meridional failure
function f f as well, which requires appropriate Kayenta inputs to mimic. Simplified Kayenta input
sets, corresponding to these classical special-case idealized theories may be found at the end of
Appendix B.

Octahedral profile plots like the ones shown in Fig. 4.9 are most illuminating from a qualitative
perspective. However, for parameterizing Kayenta to quantitative laboratory data, simple plots of
G vs. q are more useful. Fig. 4.11 shows the G(q) functions for each of the J3TYPE options. In
all cases, the lower bound on G is 1.0 at TXC.

Advancing the solution (groundwork discussion)

So far, we have discussed how some microphysically based, but generally oversimplified the-
ories can be used to predict theoretical shapes of yield or failure surfaces. Kayenta implicitly
captures microscale phenomena by using macroscale measurable variables in phenomenological
manner. Direct use of idealized theories would require initializing and evolving microscale quan-
tities (such as porosity) that are impractical to measure in the laboratory. Therefore, the algebraic
structure of functions used in Kayenta is guided by idealized microscale theories, but recast in
terms of directly measurable macroscopic variables. Simplified failure criteria help guide choices
for interpolation functions to be fitted to real observed data that likely reflect the specific phenom-

73



-0.4 -0.2 0.2 0.4

1.05

1.1

1.15

1.2

1.25

ī�ș��í��

TXE SHR TXC

0í�� / 6 � / 6

(a)

-0.4 -0.2 0.2 0.4

1.2

1.4

1.6

1.8

2
ī�ș��í��

TXE SHR TXC

0í�� / 6 � / 6

(b)

-0.4 -0.2 0.2 0.4

1.2

1.4

1.6

1.8

2
ī�ș��í��

TXE SHR TXC

0í�� / 6 � / 6

(c)

Figure 4.10. Lode angle function (for various y strength ra-
tios) plotted vs. the Lode angle varying from 30� (TXE) to
+30� (TXC). The larger the value of G, the smaller the radial dis-
tance to the octahedral yield profile and therefore the smaller the
shear failure strength. The Gudehus (a) and Willam-Warnke (b)
options both predict lowest strength (largest value of G) at TXE,
whereas Mohr-Coulomb (c) theory predicts lowest strength at an
intermediate Lode angle somewhere between TXE and TXC. For
example, when Y = 1, Mohr-Coulomb theory reduces to Tresca
theory and the lowest strength (highest G) occurs at the zero Lode
angle (pure shear).
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ena considered in microscale idealizations and possibly some other “unknown” sources of inelastic
flow.

Microphysical theories are also used to guide how Kayenta treats the partitioning of inelastic
flow, once it begins. For example, most theories of inelastic flow (including Kayenta) presume that
the total strain rate ė

⇠⇠
can be partitioned additively as

ė

⇠⇠
= ė

⇠⇠
e + ė

⇠⇠
p, (4.49)

where ė

⇠⇠
e represents the elastic (or recoverable) part of the strain rate and ė

⇠⇠
p denotes the “plastic”

part of the strain rate. More correctly, ė

⇠⇠
p represents the inelastic strain rate, which reflects contri-

butions from any and all sources of inelastic material response. Many classical theories presume
that the direction of the plastic strain rate is parallel to the normal to the yield surface. In this
case, since the normal to the yield surface can be obtained by the gradient of the yield function
f (s

⇠⇠
,a
⇠⇠
,k), the plastic part of the strain rate is presumed to be of the form

ė

p
i j = l̇

✓

∂ f
∂si j

◆

a

⇠⇠
,k

, (4.50)

where l̇ is a multiplier (called the consistency parameter) determined by demanding that the
stress must remain on the yield surface during inelastic loading. The subscripts on the partial
derivative merely indicate that the internal state variables are held constant. When the plastic
strain rate direction is determined from the stress gradient of the yield function, as shown here, the
model is said to be “associative” (to indicate that the plastic strain rate is associated with the yield
function11).

While Kayenta does support associativity at user request, many researchers report that normal-
ity tends to over-predict the amount of volumetric plastic strain [82]. Therefore, non-normality
is supported in Kayenta as well. For non-normality, the user specifies a flow function g(s

⇠⇠
,a
⇠⇠
,k)

such that12

ė

p
i j = l̇

✓

∂g
∂si j

◆

a

⇠⇠
,k

. (4.51)

The above references to a yield function or flow function suffer a conceptual shortcoming
that neither of these functions is unique [12]. For example, a von Mises yield function can be

11For materials that exhibit elastic-plastic coupling, the terms “associativity” and “normality” can have distinct
meanings, depending on whether the portion of the total strain rate attributable to rates of elastic moduli is absorbed
into the elastic strain rate or the inelastic strain rate. When the coupling terms (from rates of elastic moduli) are
incorporated into the inelastic strain rate, normality and associativity are not interchangeable terms. If the coupling
terms are incorporated into the elastic strain rate, then associativity and normality are interchangeable, but at the cost
that the elastic strain rate ceases to be an exact differential with respect to deformation.

12While considerable data does exist to suggest that the inelastic strain rate is not directed normal to the yield surface
for some materials, such behavior is not well understood. The mathematical validity of assuming existence of a non-
associated flow potential function has been called into question by Sandler, Rubin, and Pucik [74, 78]. Burghardt [26]
has independently confirmed their assertions that such a model is inherently unstable, nonuniquely liberating energy
from quiescent pre-stressed states. The instability arises from the fact that any classically non-associative model admits
plastic waves that travel faster than elastic waves [19].
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f (s
⇠⇠
) =

p

(J2)� k, where k is the yield stress in shear, or it may be written f (s
⇠⇠
) = J2 � k2. Both

of these functions have the same yield surface, which is the set of stress states satisfying f (s
⇠⇠
) = 0,

but these different yield functions have different gradients. Thus, neither the gradient ∂ f/∂s

⇠⇠

nor its magnitude F := k ∂ f
∂si j

k is unique. Despite the non-uniqueness of a yield function and its
gradient, the unit normal tensor, defined by the ratio of these two expressions,

N
⇠⇠

:=
∂ f

∂si j

F
where F := k ∂ f

∂si j
k (4.52)

is unique when evaluated at the yield surface.

Non-uniqueness issues are exacerbated with respect to the flow function since the gradient of
the flow function is not usually even evaluated at a zero isosurface. Formally, in analogy to the
above equation, we defined a unit flow direction tensor as

M
⇠⇠

:=
∂g

∂si j

G
where G := k ∂g

∂si j
k (4.53)

With this definition, the flow model in Eq. (4.51) may be written as

ė

p
i j = l̇G Mi j.= l̇

⇤Mi j, (4.54)

where we have introduced an alternative consistency parameter defined by

l̇

⇤ = l̇G . (4.55)

This alternative consistency parameter is unique, and thus physically meaningful, despite the fact
that it is the product of two factors (l̇ and G ) that are themselves nonunique. This is one of the
key differences between Kayenta and its predecessor, the Sandia GeoModel. In the GeoModel, the
plottable output variable called DCSP was equal to l̇ . In Kayenta, the output variable of the same
name is now l̇

⇤ and thus it has significant physical meaning: it is magnitude of the plastic strain
rate tensor!

The first release of the Kayenta User’s guide did not discuss issues associated with ambiguity
of yield and flow function gradients. As indicated in [12], the nonuniqueness of a yield function
does not produce a nonunique final result for updated field variables, but it is nevertheless helpful
to instead phrase all equations in terms of the unique part of the yield function gradient (namely,
the unit tensor in the direction of this gradient when it is evaluated on the yield surface). The
conversion of the old notation to the new notation required, for example, required searching the
old documentation for all occurances of ∂ f

∂si j
and making the substitution ∂ f

∂si j
= FN

⇠⇠
, where F is

the magnitude of the yield function gradient (nonunique) and N
⇠⇠

is the unit tensor in the direction
of the yield function gradient (which is unique when evaluated on the yield surface). Similar
substitutions were made to convert the old User Guide notation to the current version, as listed in
Table 4.1
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Table 4.1. Substitutions required to convert nonunique plasticity
to unique values that can be compared between different codes

Conventional Preferred
∂ f
∂s

⇠⇠
= FN

⇠⇠
�

�

�

�

�

�

�

�

∂ f
∂s

⇠⇠

�

�

�

�

�

�

�

�

= F

∂g
∂s

⇠⇠
= G M

⇠⇠
�

�

�

�

�

�

�

�

∂g
∂s

⇠⇠

�

�

�

�

�

�

�

�

= G

l̇ = l̇

⇤

G
c = c

⇤FG
H
⇠⇠

a

= H
⇠⇠
⇤
a

G

h
k

= h⇤
k

G

The plastic strain rate ė

⇠⇠
p includes both deviatoric and isotropic parts. If the flow potential depends

on the first invariant I1, then applying Eq. (3.15), the volumetric plastic strain rate is

ė

p
v = tr ė

⇠⇠
p = l̇

⇤(trM
⇠⇠
) (4.56)

The plastic strain rate points normal to the isosurface g= 0.13 If the flow function is associative,
then the plastic potential function is identical to the yield function and the plastic strain rate will
therefore point normal to the yield surface. Flow surface vertices reside at points where the flow
potential is non-differentiable, in which case the plastic strain rate points within a “cone of limiting
normals” (Koiter fan) at the vertex and is determined through additionally considering the trial
elastic stress rate associated with the total strain rate.

In Kayenta, the functional form of g is the same as that of f , but with different values for
material constants. Specifically, the flow potential g can be made to differ from the yield function
by assigning values to aPF

2 , aPF
4 , RPF , and YPF that differ from their counterpart parameters (a2, a4,

R, Y) used to define the yield surface. For associativity, the potential function parameters should
be given values identical to their counterparts in the yield function. Nonassociativity is included
in Kayenta primarily as a “legacy” feature to allow Kayenta to emulate other classical plasticity
models that use nonassociativity to match experimental data for which associativity “over predicts”
the amount of plastic dilatation. As pointed out in [14], there are many ways that a constitutive
model might seem to be nonassociative when, in fact, it is not. A sophisticated associative plasticity
model can include features such as elastic-plastic coupling [65], thermo-plastic coupling [92],
and/or induced anisotropy [64] that would make its predictions seem to be non-associative in the

13Because the current stress might not reside on the isosurface g = 0, Kayenta projects the stress to the nearest point
on this isosurface. The need for such revisions is rarely recognized in plasticity programs (and casts doubt on the very
notion flow potentials).
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context of simpler models. Stated differently, experimental data that appear to be non-associative
might actually be simply implying a need for more sophistication in the model used to interpret
the data. These and additional cautions about tenuous phyisical foundations of non-associative
plasticity are summarized in [18].

If continuing to apply elasticity theory would result in a predicted stress lying outside the yield
surface, the governing equations are no longer elastic. At this point, the strain rate is decomposed
into two parts, elastic plus plastic, as mentioned in Eq. (4.49). The stress rate is determined by
applying elasticity. That is,

ṡi j =Ci jkl ė
e
i j =Ci jkl(ėi j � ė

p
i j), (4.57)

where Ci jkl denotes the isotropic tangent elastic stiffness tensor. In Eq. (4.57), our goal is to
compute the stress rate. The current state is known, and therefore the instantaneous stress state
and elastic moduli are known. In numerical implementations of constitutive models, the strain rate
is known (it is provided by the host code after solution of the momentum equation). Thus, the only
unknown in this equation is the plastic strain rate. Eq. (4.51) allows us to compute the direction
of the plastic strain rate from the known instantaneous stress state. Thus, after substitution of
Eq. (4.51) into Eq. (4.57), the stress rate can be written

ṡi j =Ci jkl ė
e
i j =Ci jkl

h

ėi j � l̇

⇤Mi j

i

. (4.58)

Everything on the right-hand-side of this equation is known except the value of the consistency
parameter, l̇

⇤.

A recent and fundamental change in Kayenta revises Eq. (4.58) to be instead

ṡi j � ȧi j =Ci jkl ė
e
i j =Ci jkl

h

ėi j � l̇

⇤Mi j

i

(4.59)

where ai j are components of the backstress tensor. With this revision, the backstress becomes
the center for elasticity as well as the center for the yield surface. This revision allows the yield
surface to translate under kinematic hardening in such a way that zero stress might eventually
become a point outside the yield surface, as observed in some laboratory experiments [25]. The
documentation in this section continues to be based on the formulation in Eq. (4.58).

The consistency parameter is obtained by demanding that, not only must the stress be on the
yield surface during plastic loading ( f = 0), it must also remain on the yield surface throughout a
plastic loading interval. Thus, ḟ = 0 during plastic loading. The yield function f depends on the
stress, but it also depends on the isotropic hardening internal state variable, k and (if applicable)
on the kinematic hardening backstress state variable tensor ai j. Thus, the assertion that ḟ = 0 can
be written via the chain rule as

ḟ =
∂ f

∂si j
ṡi j +

∂ f
∂k

k̇ +
∂ f

∂ai j
ȧi j = 0. (4.60)

The first term may be simplified through application of Eq. (3.14). The last two terms reflect the
fact that the yield surface can evolve in shape and translate in stress space during inelastic loading.
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Dividing both sides of Eq. (4.60) by F gives

Ni jṡi j +
∂ f
∂k

F
k̇ +

∂ f
∂ai j

F
ȧi j = 0. (4.61)

In what follows, we will present “evolution equations” that govern how the state variables
change in response to plastic flow. It will be argued that the evolution of each internal state vari-
able should be proportional to the plastic strain rate. Equivalently, these rates must be proportional
to our unknown plastic consistency parameter l̇

⇤. By substituting Eq. (4.58) and these soon-to-be-
derived evolution equations for the internal state variables into Eq. (4.60) we will be able to solve
Eq. (4.60) for the consistency parameter l̇

⇤. Once the consistency parameter is known, it can be
substituted into Eq. (4.58) to obtain the stress rate, which may then be integrated numerically to
update the stress. With the consistency parameter l̇

⇤ known, then rates of internal state variables
(ISVs) become known through their evolution equations, allowing the ISVs themselves to be up-
dated to the end of the timestep. Thus, the key to advancing the solution is to now derive in detail
the internal state variable evolution equations.

Evolution equations

Eq. (4.60) may be used to determine the plastic consistency parameter l̇

⇤ if hardening evolution
laws can be found for which the rate of each internal state variable (k and ai j) is proportional to
l̇

⇤. Once the plastic consistency parameter is known, the evolution laws may be integrated through
time to model the time varying hardening evolution of the yield surface.

As indicated in Fig. 4.11, isotropic hardening (governed by k and related to void collapse)
causes a change in size of octahedral yield profiles, while kinematic hardening (governed by the
backstress tensor ai j) produces a translation of all octahedral yield profiles. In general, both types
of hardening can occur simultaneously.

In this section, we will derive explicit expressions for an isotropic hardening modulus h⇤
k

and
a kinematic hardening tensor, H

⇠⇠
⇤
a

, such that the evolution of the internal state variables may be
written in the forms

k̇ = h⇤
k

l̇

⇤, (4.62)

and

ȧ

⇠⇠
= H

⇠⇠
⇤
a

l̇

⇤. (4.63)

Later, substituting these expressions into Eq. (4.60) will lead to an expression for the plastic con-
sistency parameter l̇ . Once the consistency parameter is known, the above equations can be them-
selves integrated through time to update k and a

⇠⇠
.
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Figure 4.11. Hardening mechanisms. At a given pressure,
isotropic hardening entails an increase in size, kinematic harden-
ing translates the yield surface, and compound hardening includes
both mechanisms. Softening corresponds to a yield surface con-
traction.

Evolution equation for the porosity-related internal state variable, k

We begin this section with some background discussion about the meaning of the internal
state variable k , connecting it to some classical microphysical theories for purely porous (non-
cracked) materials. Kayenta’s re-interpretation of k for both porous and cracked materials will
lead ultimately to an evolution law of the desired form, k̇ = h⇤

k

l̇

⇤ where h⇤
k

is called the isotropic
hardening modulus.

In Kayenta, void collapse commences at different pressures depending on the amount of shear
stress present. The effect of shear stress on void collapse is characterized by the cap function
illustrate in Fig. 4.5. Even though void collapse depends on shear stress, characterizing this effect
requires only specification of two numbers k and X on the hydrostat [see Fig. 4.5 ]. In Kayenta, k

and X are presumed to be interrelated so that knowledge of X is sufficient to compute the value of
k . We will discuss this relationship later. For now, we will focus on how the hydrostat intercept X
should increase as porosity is reduced.

If a material is capable of permanent volume change (i.e., if hydrostatic testing exhibits nonzero
residual plastic volumetric strain e

p
v upon releasing the pressure), then the material likely contains

voids. The hydrostat intercept X is proportional to the critical “elastic limit” pressure required to
initiate irreversible void collapse. Therefore, the larger the porosity, the smaller X will be. As
porosity is crushed out, the hydrostat intercept will move to the right so that increasing pressure
will be required to continue crushing out the pores. Recognizing that e

p
v is an indirect measure

of porosity changes, our first goal is to describe how the relationship between e

p
v and X can be

inferred from hydrostatic test data. Then we will discuss the relationship between k and X . With
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these two relationships in hand, we will ultimately assert that

k̇ =

✓

∂k

∂X

◆✓

∂X

∂e

p
v

◆

ė

e
v , (4.64)

from which substitution of Eq. (4.56), during hydrostatic compression or compaction dominated
processes, will give the evolution equation in the desired form,

k̇ = h⇤
k

l̇

⇤, where h⇤
k

=

✓

∂k

∂X

◆✓

∂X

∂e

p
v

◆

tr(M
⇠⇠
). (4.65)

During dilatation-dominated processes, a different form is used for h⇤
k

(see Eq. (4.76)).

Relationship between X and ė

p
v (cap curvature model)

If the matrix material for a porous medium is plastically incompressible, then it can be shown
[68] that the unloaded porosity P (i.e., the innate porosity at the rest state, not the slightly differ-
ent porosity that reflects reversible elastic porosity reduction under loading) evolves under plastic
loading according to

Ṗ = (1�P)ė p
v , (4.66)

where P is the void volume in a sample divided by the total volume of the sample (both volumes
are those in the unloaded state), and ė

p
v is the trace of the logarithmic plastic strain rate. To second

order accuracy, Eq. (4.66) implies that the change in porosity is approximately equal to the plastic
volumetric strain:

P�P0 ⇡ e

p
v . (4.67)

Considering only hydrostatic loading, early research on pore collapse focused on deriving
and/or experimentally measuring so-called “crush curves” in which porosity in a material is plotted
as a function of the applied pressure, as in Fig. 4.12. Kayenta uses a similar curve, but inferred
directly from hydrostatic stress-strain data so that porosity measurements are not necessary. By us-
ing the cap function, Kayenta incorporates the results from this specialized hydrostatic experiment
into the general theory in such a manner that pore collapse will commence at lower pressures in the
presence of shear. Recall that the cap function, loosely speaking, represents material response in
the absence of microcracks. Porous-only theories typically predict meridional cap profiles similar
to Kayenta’s cap function. For example, Gurson [43] reported the following upper-bound yield
criterion (expressed in terms of Lode cylindrical coordinates):

r = k

s

fv2 +1�2 fv cosh
✓

zp
2k

◆

, (4.68)

where k is a constant (the yield stress of the matrix material) and fv is the porosity. Being inde-
pendent of the Lode angle, the Gurson yield function is a circle in the octahedral plane; Gurson’s
meridional profile is compared with Kayenta’s cap function in Fig. 4.13 for various porosities. As
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Figure 4.12. A conventional porosity crush curve (dashed)
and state path (solid). Porosity is constant until a critical elastic
limit pressure is reached. Thereafter, porosity is reduced as pres-
sure is increased.

porosity goes to zero, the meridional profile approaches the pressure insensitive von-Mises profile
for the matrix material (in other words, in the absence of microcracks, the yield surface becomes
a cylinder in stress space as the porosity goes to zero). This property holds only in the absence of
microcracks. When microcracks are later included, the common envelope of yield surfaces will be
the shear fracture curve Ff .

Under Gurson theory, the key material properties are microphysical (the yield stress k for the
matrix material and the porosity fv), which are difficult to measure directly. To obtain analytical
results, these theories must resort to over simplistic assumptions about the matrix material and
pore morphology (i.e., Gurson theory presumes perfectly spherical voids arranged in a perfectly
periodic array). Finally, microphysical theories are typically upper bounds, which are of limited
use in applications since the tightness of the bound is unknown.

Rather than directly using models like Gurson theory, Kayenta is guided by the general trends
they predict. Except at extremely high porosity, the Gurson model predicts that the cap surface will
be essentially flat for a large range of pressures (z-coordinates). The loss in shear strength caused
by pores is pronounced over only a small range of pressures near the hydrostatic limit pressure.
This region (beyond which the yield surface noticeably branches down to zero) is called the cap
region. As seen in Fig. 4.13, Gurson theory predicts the yield surface will evolve with porosity
in such a manner that the cap essentially translates along the pressure (z) axis — the curvature
of the cap region does not change significantly. Kayenta supports these general trends by using
a computationally simpler Rubin-Sandler cap function which is simply constant until a critical
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Figure 4.13. The Gurson theory for porous yield surfaces
compared with Kayenta cap function at various values of the
internal state variable k . Qualitatively, the theories are similar.
When microcrack effects are included, Kayenta forms a pressure-
dependent envelope, as in Fig. 1.1(b) (pg. 19), instead of the hori-
zontal von-Mises-like envelope shown here.

branch pressure is reached, after which the cap function drops to zero along an ellipse. The cap
curve evolves by simple translation along the hydrostat without changes in cap curvature.

In the Gurson model, the current location of the translated cap is a function of the matrix
yield stress and the porosity. Rather than using essentially unknowable matrix properties like these
as internal state variables, Kayenta recognizes that the appropriate location for the cap can be
determined directly from hydrostatic compression test data and the branch point at which shear
begins to affect pore collapse is presumed in Kayenta to translate with the hydrostatic limit point.
Thus, characterizing how the entire cap function evolves in response to plastic loading boils down
to characterizing how the hydrostat intercept point (i.e., where the cap intersects the z-axis) evolves.

Kayenta presumes that it is experimentally tractable to obtain pressure vs. volumetric strain
data. If possible, the experiment should be run to the point of total pore collapse (as in Fig. 3.1
on page 36). The elastic response of the material must be first determined by fitting the unloading
curve to the nonlinear elasticity fitting function in Eq. (4.9). “Copies” of the elastic unloading
function may be superimposed anywhere on the hydrostatic pressure vs. total strain data. As
indicated in Fig. 4.14, the elastic unloading curves can be used to determine a shift distance that
must be applied at any given pressure to remove the elastic part of the strain. After applying these
shifts, the pressure vs. total strain plot is converted to a pressure vs. plastic strain plot, called an
X-function. The X-function in Fig. 4.14 asymptotes to infinity when the plastic volume strain (i.e.,
the change in porosity) has reached its maximum value corresponding to all of the pores having
been crushed out. Rotating the X-curve and shifting the origin produces a classical crush curve
in which porosity is plotted as a function of pressure. Kayenta never explicitly refers to porosity.
Instead, the plastic volumetric strain is employed as an indirect measure of porosity changes.
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(a) (b) (c)

Figure 4.14. Relationship between (a) hydrostatic pressure vs.
volumetric strain data, (b) Kayenta X-function, and (c) a tradi-
tional porosity vs. pressure crush curve. Test data are pressure
vs. total volumetric strain. Once the elastic unloading curves have
been parameterized to Kayenta fitting functions, the elastic strain
at each pressure value may be subtracted from the total strain to
generate the X-function. This function asymptotes to a limit value
for the plastic strain when all voids have crushed out (and plastic
volume changes therefore become negligible). The limit strain is
approximately the initial porosity in the material. Rotating the X-
plot 90� and moving the origin as shown will produce a traditional
porosity vs. pressure crush curve.
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Parameterizing Kayenta so that it will adequately model the changes in the yield surface re-
sulting from pore collapse requires converting hydrostatic pressure vs. volumetric strain data as
illustrated in Fig. 4.14 to obtain a classical porosity vs. pressure crush curve in which the poros-
ity is plotted as a function of the pressure p. Specialized parameterization software is available
from the model developers to perform this conversion task and to fit the resulting crush curve to
an exponential spline (see Appendix A). The plastic volume strain of a virgin (pre-deformation)
material is zero. Therefore the user-specified parameter p3 is approximately equal to the initial
porosity in the material. As pressure is increased from zero, the crush curve (Fig. 4.14(c)) shows
that the porosity remains unchanged for a while until an elastic limit pressure PE is reached. Con-
tinuing to apply increasing pressure beyond this elastic limit results in irreversible pore collapse
and therefore reduction in porosity. Kayenta allows fitting the post yielding part of the crush curve
according to the crush curve spline formula,

p3 � e

p
v = p3e�(p1+p2x )x , where x = X � p0 = 3(p�PE). (4.69)

Here, p0, p1, p2, and p3 are fitting constants. Referring to the porosity vs. pressure crush curve,
these parameters are interpreted physically as follows:

• p0 equals �3PE , where PE is the elastic limit pressure at the initial onset of pore collapse.

• p1 equals |s0|/(3p3), where s0 is the initial slope of the porosity vs. pressure crush curve
(see Fig. 4.14).

• p2 is an optional fitting parameter that may be used if a measured crush curve has an inflec-
tion point (i.e., initially concave down, transitioning to concave up at high pressures).

• p3 is the maximum achievable plastic volume strain, which corresponds approximately to
the initial porosity in the material. Complete crushing out of all pores in the material is
recognized in the hydrostatic pressure vs. total strain curve if the elastic release curve is
tangent to the loading curve.

Eq. (4.69) coincides with hydrostatic test data only during pore collapse. During the initial elastic
loading, Eq. (4.69) describes the dashed line in Fig. 4.14, which is not required to coincide with
the data. At pressures above the elastic limit (x > 0), Eq. (4.69) may be used to compute the plastic
volumetric strain according to

e

p
v = p3

h

1� e�(p1+p2x )x
i

, where x = X � p0 = 3(p�PE) (4.70)

This relationship may be differentiated to obtain the derivative dX
de

p
v

needed in Eq. (4.65). Now all

we need to compute the isotropic hardening modulus h⇤
k

is the relationship between k and X so
that we can substitute the derivative dk

dX into Eq. (4.65).

Incidentally, to mimic the crush curve implied in Gurson’s porosity model [43], Fossum’s pa-
rameters should be set as follows:

p1 =
�q2

6Y
, p2 = 0, p3 = ln

✓

1
1�q1f0

◆

(4.71)
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where f0 is the initial porosity (void volume fraction) and Y is the uniaxial yield strength of the
matrix material. The parameters q1 and q2 are Tvergaard’s adjustments [93] to Gurson’s model
(both equal to 1 in Gurson’s original model).

The P2 parameter and its implication on pore growth

Laboratory data for hydrostatic loading is often like that sketched in Fig. 4.14, where the onset
of pore collapse corresponds to a smooth change in slope of the stress-strain diagram rather than
the abrupt slope discontinuity illustrated in Fig. 4.14. The corresponding crush curve (porosity vs.
pressure) is therefore initially concave down before transitioning to concave up. For monotonic
compression, this behavior is reproduced in Kayenta by having a nonzero p2 parameter. The
dashed lines, in Fig. 4.14 and Fig. 4.15 are the crush curves defining the relationship between
plastic volume strain (which is related to porosity) and pressure for pressures exceeding the elastic
limit PE .

Figure 4.15. A soft “knee” in the onset of pore collapse re-
quires a nonzero value of the p2 parameter, but the resulting
crush curve (dashed line) is reasonable only for P > PE .

Kayenta faithfully reproduces the crush curve in compression. In practice, however, a load path
might involve compression followed by tension, in which case the porosity would need to initially
decrease and then subsequently increase. In a traditional porosity model, this is usually modeled
by assuming that the tensile crush curve is a copy of the compressive crush curve, (perhaps with a
scalar reduction factor applied to pressure, as indicated in the inset figure). In the tensile domain,
the porosity would move upward along the dashed crush curve. However, when p2 is nonzero
to model the soft bend at the onset of failure, the crush curve has an unrealistic upper bound on
porosity — pores cannot grow beyond the initial porosity! The problem lies in the attempt to model
the softly bending “knee” in experimental data at the onset of pore collapse. This knee corresponds
to heterogeneous material response at the microscale in the transition where only a portion of the
solid matrix material is deforming plastically [27]. However, Kayenta presumes that deformation
is either elastic or plastic, with no transition region. To correctly model the “knee” and tensile pore
growth, Kayenta would need to be enhanced to include two yield surfaces: one marking the onset
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of plasticity at the microscale and another corresponding to fully developed plasticity throughout
the solid matrix.

Relationship between k and X (cap curvature model)

For a purely porous material, Fig. 4.13 suggests that k is simply smaller than X by a fixed
amount. Therefore, knowing X is sufficient to determine k . For a material that contains both pores
and microcracks, the relationship between the branch point k and X is similar, but influenced by
the pressure sensitivity of the fracture function. Recall that the continuously differentiable merid-
ional yield function f is constructed by multiplying a function f f times a cap porosity function
fc. Qualitatively, the fracture function f f marks the onset of shear crack growth, with significant
pressure strengthening being the result of friction at crack faces. This yield envelope function f f
might be lower than the ultimate shear limit envelope Ff if kinematic hardening is allowed. The
cap porosity function fc intersects the hydrostat (I1-axis) at X , marking the point at which pres-
sure under hydrostatic loading would be sufficient to induce pore collapse. Variation of the cap
function with shear stress (along the ellipse) merely reflects an expectation that pore collapse will
commence at a lower pressure than the hydrostatic limit when shear assisted.

Isotropic hardening in Kayenta is cast in terms of the branch point located at I1 = k (or, equiv-
alently, I1 = k) where the yield function f begins to deviate from the envelope function f f . The
height of the branch point b in Fig. 4.16 is considerably lower than the peak height B.

Between the branch and the peak, material response begins to be influenced by porosity, but
is still shear crack (dilatation) dominated, and therefore plastic volume increases because of crack
bulking. Between the peak and the hydrostatic limit point X , porosity dominates the material
response, resulting in plastic volume compaction (from pore collapse). At the critical zero-slope
point on the yield surface, material response is influenced equally by both cracks and pores so that
no net volume change is apparent at the macroscale.

Two-surface models [i.e., Ref. [79]] typically construct and evolve the yield function by mak-
ing direct reference to the ratio A/B, which (referring to Fig. 4.16) is typically smaller than unity.
Kayenta, however, constructs and evolves its yield function based on the ratio R ⌘ a/b, which is
typically larger than unity. This distinction between the two ratios is important to emphasize in
publications and presentations to avoid confusion between Kayenta and conventional two-surface
models.

Guided both by trends in observed data and by microphysical theories (e.g., Fig. 4.13), Kayenta
presumes that hardening proceeds such that the ratio between the distances a and b labeled in
Fig. 4.13 remains always equal to a user-specified constant R. The axis labels in Fig. 4.16 indi-
cate that a = X � k and b = Ff (k). Therefore the cap eccentricity (also called the cap shape
parameter) R = a/b is given by R = (X �k)/Ff (k) or, solving for X ,

X = k +RFf (k). (4.72)
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Figure 4.16. Continuously differentiable Kayenta yield func-
tion and some characteristic dimensions. The ratio a/b is usually
larger than 1, whereas A/B is usually smaller than 1. The bold blue
curve is Ff f f . The dashed yield curve is Fc fc.
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When written without the overbar denoting the negative, this equation becomes

X = k �RFf (k). (4.73)

This expression is evaluated internally within Kayenta coding to determine X as a function of the
internal state variable k . Differentiating both sides of this equation with respect to k gives

dX
dk

= 1�RF 0
f (k). (4.74)

The k evolution law

Substituting Eq. (4.74) into Eq. (4.65) gives

k̇ = h⇤
k

l̇

⇤, (4.75)

where the “isotropic hardening parameter” h⇤
k

is

h⇤
k

= meld
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hardening modulus
z }| {
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⇠⇠
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!

�

(4.76)

where meld denotes an operator that was, in previous versions of this manual, merely a “min”
operator, but which now imposes a smoothed transition from one of the arguments to the other
based on a weighted average within the code. As this operation was introduced to smooth the
numerical transition, and is currently lacking adequate physical basis, the details of the operator
will be omitted in this version of the user’s guide, pending subsequent research into understanding
the microscale physics of dilatation under triaxial compression. The last term of this hardening
model was originally developed to accurately predict dilatation in TXC loading, and it continues
to meet that goal quite well. However, the consequence of matching TXC data so well is that the
model predicts a hydrostatic strengthening of the material which is almost certainly non-physical.
A means to retain good prediction in TXC while avoiding anomalous hydrostatic strengthening is
discussed in [64].

Eq. (4.76) is subject to the constraint, 0 > h⇤
k

> �•.14 For numerical convenience, this con-
straint is replaced by 0 > h⇤

k

G > �0.01b0
2, where b0 is the initial bulk modulus. The derivative

dX
de

p
v

is found from crush-curve data fitted to Eq. (4.70).

14When using the overbar to denote the negative, Eq. (4.75) may be written k̇ = h⇤
k

ġ subject to 0 < h⇤
k

< •. Thus,
since is never negative, this constraint ensures that k will never decrease. Physically, this is equivalent to demanding
that porosity must always decrease. Increases in porosity (i.e., softening) cannot be accommodated at the material
constitutive level — to avoid mesh dependencies of the solution, softening must be handled at the field scale by the
host code. See page 99.
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Figure 4.17. Meridional plane in which the magnitude of the
stress deviator “r” is plotted against �z (which is proportional
to the pressure “p”) The yield surface (solid) marks the onset of
inelastic flow. Under continued inelastic loading, the yield surface
hardens (expands and/or translates) toward the shear limit surface
(dashed).
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The first term in the meld function of Eq. (4.76) dominates when the stress state falls on the
“compaction dominated” part of the yield surface, labeled in Fig. 4.17, while the second term
dominates in the dilatation regime. The second term in the minimum function is guided by trends
in observed data.

Even under monotonic loading, the relative position of the stress state on the yield surface can
move from compaction to dilatation regimes. Fig. 10.6 (pg. 201) shows a triaxial compression
load path (angled red arrow) that falls initially on the porosity (compaction) dominated portion of
the yield surface, which therefore results in plastic volume reduction and an isotropic expansion of
the yield surface. Compaction from void collapse and dilatation from crack bulking are relatively
balanced in the vicinity of the critical point. After the stress passes through the critical point,
the hardening modulus h⇤

k

in Eq. (4.76) transitions from its compaction-dominated value to the
dilatation-dominated value.

Evolution equation for the kinematic hardening backstress tensor

Kayenta supports kinematic hardening, but is otherwise isotropic. Kinematic hardening entails
using a shifted stress tensor x

⇠⇠
= S

⇠⇠
�a

⇠⇠
in the yield function instead of the actual stress. The tensor

internal state variable a

⇠⇠
is called the backstress, and it is computed using evolution equations

described here. In the current version of Kayenta a

⇠⇠
is a deviatoric tensor, but it is possible to

accommodate effective stress theories for fluid in the pore space by allowing the backstress to
include an isotropic part [45].

Recall that the yield criterion with kinematic hardening is given by

Jx

2 = [Ff (I1)�N]2Fc(I1), (4.77)

where Jx

2 is the second invariant of the shifted stress,

x

⇠⇠
= S

⇠⇠
�a

⇠⇠
. (4.78)

The backstress tensor a

⇠⇠
is initialized to zero. Upon onset of yielding, the backstress evolves in

proportion to the deviatoric part of the plastic strain rate:

ȧ

⇠⇠
= HGa(a

⇠⇠
)ġ
⇠⇠

p, (4.79)

where ġ

⇠⇠
p = devė

⇠⇠
p = dev

⇣

l̇

⇤M
⇠⇠

⌘

. (4.80)

Hence, comparing with Eq. (4.63), the kinematic hardening modulus tensor is given by

H
⇠⇠
⇤
a

= HGa(a
⇠⇠
)dev

⇣

M
⇠⇠

⌘

, (4.81)

where H is a material constant and Ga(a
⇠⇠
) is a scalar-valued decay function designed to limit the

kinematic hardening such that Ga �! 0 as approaches the shear limit surface, Ff (I1). Since the
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yield function itself is defined in terms of Ff (I1)�N, the maximum kinematic translation that can
occur before reaching the limit surface equals the model offset parameter N. Kayenta uses the
Ga function to “slow down” the rate of hardening as the limit surface is approached so that H

⇠⇠
⇤
a

will equal zero upon reaching the limit surface. Specifically, Kayenta uses the following decay
function:

Ga(a
⇠⇠
) = 1�

p

Ja

2
N

, where Ja

2 =
1
2

tra

⇠⇠
2. (4.82)

Kinematic hardening causes the octahedral profile to translate so that it no longer remains centered
at the origin (See Fig. 4.11). Consequently, the yield surface will appear to have translated upward
in the meridional plane that contains the backstress (see Fig. 4.18). The translation distance equals
p

Ja

2 and Eq. (4.82) prevents this distance from ever exceeding the user-specified offset limit N.
Of course, on the meridional plane perpendicular to the backstress, the meridional profile will not
appear to have translated.

Figure 4.18. The effect of kinematic hardening on the merid-
ional plane that contains the backstress. According to the hard-
ening rule, this meridional profile is permitted to translate in devi-
atoric stress space by as much as a shift parameter N. This is actu-
ally a 2D slice of 6D stress space; think of this as a snow-cone cup
shifted away from its original symmetry axis: this view is like a
“side view” showing maximum shift distance, but a different view
(as from above) might show no shift at all.

92



Advancing the solution (final step, consistency parameter)

Recall from Eq. (4.61) that the consistency parameter l̇

⇤ is determined from the consistency
condition, ḟ = 0, applied during plastic loading intervals. Specifically,

Ni jṡi j +
∂ f
∂k

F
k̇ +

∂ f
∂ai j

F
ȧi j = 0. (4.83)

Recall the key equations governing the rates of the field and internal state variables:

ṡi j =Ci jkl ė
e
kl =Ci jkl ėkl �Ci jkl ė

p
kl (4.84a)

ȧi j = Ha⇤
i j l̇

⇤ (4.84b)

k̇ = h⇤
k

l̇

⇤ (4.84c)

ė

p
i j = l̇

⇤Mi j. (4.84d)

With these, the consistency condition in Eq. (4.60) becomes

FNi jCi jkl

⇣

ėkl � l̇

⇤Mkl

⌘

+
∂ f

∂ai j
Ha⇤

i j l̇

⇤+
∂ f
∂k

h⇤
k

l̇

⇤ = 0. (4.85)

From which it follows that
l̇

⇤ =
1

c

⇤Ni jCi jkl ėkl, (4.86)

where

c

⇤ = Ni jCi jklMkl �
∂ f

∂ai j

F
Ha⇤

i j �
∂ f
∂k

F
h⇤

k

. (4.87)

Numerical implementation for elastic isotropy

The Kayenta subroutines for isotropy exploit the fact that the second-order tensors in the pre-
vious section all commute with the stress. For example, N

⇠⇠
·s
⇠⇠
= s

⇠⇠
·N
⇠⇠

. Accordingly, these tensors
share a common set of eigenvectors, denoted by p⇠1

, p⇠2
, p⇠3

. Let P

⇠⇠ 1
, P

⇠⇠ 2
, and P

⇠⇠ 3
denote the

corresponding eigenprojectors, defined by

P

⇠⇠ i
= p⇠i

⌦p⇠i
(no sum on i) (4.88)

Then any tensor A
⇠⇠

having these eigenvectors can be expressed in spectral form as

A
⇠⇠
= A1P

⇠⇠ 1
+A2P

⇠⇠ 2
+A3P

⇠⇠ 3
(4.89)

where the Ai are the eigenvalues. In this form, the eigenvalues may be interpreted as Cartesian
coordinates in a 3D principal space, with the eigenprojectors serving as the corresponding basis.
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Since this is true for all tensors that commute with the stress, it is, of course, true for the stress
itself:

s

⇠⇠
= s1P

⇠⇠ 1
+s2P

⇠⇠ 2
+s3P

⇠⇠ 3
(4.90)

In this sense, the stress is regarded as a 3D vector within the space spanned by the stress’s own
eigenprojectors. This geometrical interpretation allows us to depict the yield surface in 3-D in
principal stress space, as shown in Fig. 1.1. As is evident in that figure, an isotropic yield surface
has a degree of symmetry about the hydrostat, thus motivating a change of basis analogous to
setting up a cylindrical coordinate system with the axial direction aligned with the hydrostat. As
pointed out in [14], an alternative basis is the Lode basis, E

⇠⇠r
, E
⇠⇠

q

, and E
⇠⇠z

, which corresponds to
a simple change of basis that has E

⇠⇠z
aligned with the hydrostat. In other words, E

⇠⇠z
is merely the

identity divided by its own magnitude,
p

3. The E
⇠⇠r

is a unit tensor aligned with the stress deviator.
The third base tensor E

⇠⇠
q

plays a role similar to the angular base vector in an ordinary cylindrical
coordinate system. The unit Lode basis tensors may be found directly from the stress tensor (or
shifted stress if using kinematic hardening) by the following formulas taken from [14]:

E
⇠⇠r

= Ŝ, E
⇠⇠

q

=
T̂ � (sin3q)Ŝ

cos3q

, and E
⇠⇠z

=
I
⇠⇠
kI
⇠⇠
k . (4.91)

In terms of the Lode basis, any tensor A
⇠⇠

that commutes with stress may be written as

A
⇠⇠
= ArE⇠⇠r

+A
q

E
⇠⇠

q

+AzE⇠⇠z
(4.92)

Analogous to the position vector in a cylindrical system, stress tensor has a zero q coordinate, so
that its expansion in terms of the Lode basis is

s

⇠⇠
= srE⇠⇠r

+szE⇠⇠z
(4.93)

Other tensors, generally will have a non-zero q component. This is true, for example, of the yield
surface normal if the yield function includes third invariant dependence. The numerical implemen-
tation of Kayenta theory strongly draws on this Lode cylindrical basis to improve efficiency of the
calculations. In particular, when the elastic stiffness is isotropic (having bulk modulus K and shear
modulus G), the operation Ci jklAkl becomes simply

C
⇠⇠⇠⇠

: A
⇠⇠
= 3KisoA

⇠⇠
+2GdevA

⇠⇠
= 3KAzE⇠⇠z

+2G(ArE⇠⇠r
+A

q

E
⇠⇠

q

) (4.94)

Moreover, since the Lode basis is a unit basis, the magnitude of A
⇠⇠

is found quite naturally by

kAk=
q

A
⇠⇠

: A
⇠⇠
=
q

A2
z +A2

r +A2
q

(4.95)

The inner product between two tensors that commute with stress is similarly written in perfect
analogy with the dot product of vectors in cylindrical coordinates. For example, the operation
Ni jCi jklMkl in Eq. (4.87) reduces simply to

3KNzMz +2G(NrMr +N
q

M
q

) (4.96)
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Within the source code itself, recalling that N
⇠⇠

is the unit tensor in the direction of the gradient of
f , the three Lode components Nr, N

q

, and Nz are denoted FR, FT, and FZ, and they are normalized
such that FR2 + FT2 + FZ2=1. The Lode components of the flow direction are similarly named
with “F” replaced with “G”.

Formal equivalence with oblique return algorithms

With the plastic parameter determined from Eq. (4.87), the stress rate in Eq. (4.84a) may be
written

ṡi j = ṡ

E
i j �

A⇤
i jB

⇤
klṡ

E
kl

c

⇤ , (4.97)

where
ṡ

E
i j =Ci jkl ėkl (trial elastic stress rate) (4.98)

A⇤
i j =Ci jklMkl and B⇤

kl = Nkl. (4.99)

In Kayenta, the stress state is updated through direct integration of Kayenta plasticity equations.
However, for our upcoming discussion of rate dependence, it is important to understand that the
update formula in Eq. (4.97) implies that the stress may be alternatively integrated through time by
first computing a trial elastic stress ṡ

E
i j at the end of the timestep which may be projected back to

the yield surface (which itself has been updated to the end of the step) to determine the final stress.
If the trial elastic stress falls outside the yield surface, plastic flow must have occurred during at
least part of the solution interval. Therefore, after evolving the internal state variables appropriately
to update the yield surface to the end of the step, it can be shown that Eq. (4.97) implies that the
stress at the end of the step may be found by obliquely projecting the trial elastic stress back onto
the updated yield surface. Because A

⇠⇠
is not generally proportional to B

⇠⇠
, the projection is oblique

to the yield surface even if plastic normality is used. As explained in Chapter 7, the trial stress is
projected only partly back to the yield surface whenever rate sensitivity is applied.

Quasistatic inelastic tangent stiffness tensor

For any constitutive model, the inelastic tangent stiffness Ti jkl is a fourth-order tensor formally
equal to the derivative of the stress rate with respect to the total strain rate. That is,

ṡi j = Ti jkl ėkl . (4.100)

Therefore, comparing this equation with Eq. (4.97) and Eq. (4.98), Kayenta’s tangent stiffness is
given by

Ti jkl =Ci jkl �
1

c

⇤P⇤
i jQ

⇤
kl quasistatic tangent modulus (4.101a)
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where

P⇤
i j =Ci jklMkl, (4.101b)

Q⇤
kl = Ni jCi jkl, (4.101c)

and

c

⇤ = Ni jCi jklMkl �
∂ f

∂ai j

F
H⇤GaMi j �

∂ f
∂k

F
h⇤

k

. (4.101d)

The tangent stiffness is major symmetric Ti jkl = Tkli j only for associative models ( f = g).15

Stability issues

The last term in Eq. (4.101a) is subtracted from the positive-definite elastic stiffness Ci jkl ,
so inelastic flow can potentially make the inelastic tangent stiffness tensor Ti jkl non-invertible. In
other words, the tangent stiffness tensor might eventually have a zero eigenvalue, marking the onset
of softening (yield surface contraction). Whether or not the occurrence of a zero tangent stiffness
results in stress-strain softening (i.e., a change from a positive to negative slope in a stress-strain
plot) depends on the loading direction. For example, if the strain rate is orthogonal to the null space
of a non-invertible tangent stiffness tensor, then no stress-strain softening will be observed and no
change in type of the momentum equation will occur even if the yield surface is contracting.

A standing wave (i.e., a non-moving discontinuity in displacement or velocity) is another form
of material instability that has been extensively studied in the literature. The acoustic wave speeds
(i.e., the speed at which inelastic perturbations can propagate through a material in the direction of
a given unit vector n⇠) are given by c =

p

x/r , where x denotes the eigenvalues of the second-order
acoustic tensor,

a jk = niTi jklnl. (4.102)

Thus, for Kayenta, substituting Eq. (4.101) into Eq. (4.102),

a jk = ae
jk �

1
c

⇤ p⇤jq
⇤
k (4.103)

where
ae

jk = niCi jklnl = the elastic acoustic tensor, (4.104)

and
p⇤j = niCi jklMkl and q⇤k = Ni jCi jklnl . (4.105)

If the plastic tangent stiffness Ti jkl is not major symmetric, then the acoustic tensor will not be sym-
metric. In this case, not only are standing waves (x = 0) possible, but so are imaginary wave speeds
(flutter instability). A complete spectral analysis of acoustic tensors of the form in Eq. (4.103) is

15Actually, equivalence of associativity and normality holds only in the absence of elastic-plastic coupling. When
elastic moduli can change in response to plastic loading, an associative ( f = g) model will not exhibit normality and
will not have a major-symmetric tangent stiffness [33].
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provided in Ref. [19], where every possible ordering of the inelastic wave speeds relative to elastic
wave speeds is derived and where every possible acoustic eigenvector is presented. Physically, the
eigenvector characterizes the velocity jump direction. If the eigenvector is parallel to the wave
propagation direction n⇠, then the wave is a compression wave. If the eigenvector is perpendicular
to n⇠, the wave is a shear wave. For elastic materials, these are the only two possible kinds of waves,
but for inelastic tangent tensors of the form Eq. (4.101), other modes are possible.

For rate dependent materials, the question of material stability must be examined anew because,
as explained in the next section, the dynamic tangent stiffness tensor is generally stiffer than the
quasistatic tangent stiffness.
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Chapter 5

Softening

In Kayenta, softening refers to a progressive loss of strength and stiffness.

User-de!ned fully-failed limit surface

(like sand)

initial limit surface

J2

I1

Figure 5.1. Softening regarded as progressive limit surface
collapse. Kayenta applies concomitant damage, which is progres-
sive degradation of elastic stiffness. By default, the fully failed
limit surface emulates cohesionless sand.

The limit surface in Fig. 1.1 (pg. 19) is treated as stationary prior to the onset of softening.
As is commonly done in other engineering softening models [22], Kayenta supports softening by
allowing the limit surface to collapse as sketched in Fig. 5.1. To initiate softening, the stress state
must reach the limit surface. Thereafter, because the limit surface collapses, the stress state cannot
reach the same peak state ever again.1 Once a state on the limit surface has been reached, the
material undergoes irreversible softening and damage, thus degrading its load carrying capacity.
The fully failed material loses essentially all resistance to loading in tension, but it retains as much
strength in compression as is specified by the user. If the user specifies no fully failed limit strength
parameters, Kayenta defaults to a limit surface that is typical of sand.

1The framework can be modified if, in the future, material healing (i.e., recovery of strength following damage) is
desired. However, the current implementation does not support healing.
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Strength and Stiffness Degradation in Softening

Figure 5.2. Alternative parameterization of the limit curve.

The initial and fully failed limit surfaces are described through user specification of the four
parameters labeled in Fig. 5.2.2 Those slope and intercept parameters are specified via input
keywords ending in “I” for the initial limit surface and ending in “F” for the final surface. The
dynamically collapsing limit surface is an interpolation between the initial and final surfaces such
that

FSLOPE = (1�D)⇤ (FSLOPEI)+D ⇤ (FSLOPEF) (5.1a)
PEAKI1 = (1�D)⇤ (PEAKI1I)+D ⇤ (PEAKI1F) (5.1b)
STREN = (1�D)⇤ (STRENI)+D ⇤ (STRENF) (5.1c)

YSLOPE = (1�D)⇤ (YSLOPEI)+D ⇤ (YSLOPEF) (5.1d)

Here, “D” is an interpolation parameter called “damage.” Initially, D = 0, and D goes to 1 as
softening progresses. Rather than having any physical significance per se, the damage D is merely
an interpolation parameter. The microphysical processes are accommodated indirectly through the
evolution equations for D . Internally, the code uses a “coherence” parameter called COHER, which
is merely 1�D .

Evolution of D should be determined from sound physical arguments and direct fitting of ob-
served softening data to physically justified fitting functions. In practice, however, the evolution of
damage might be ad hoc, often because it is recognized that even so-called first-principles models
of damage introduce their own non-physical idealizations that fail to realistically account for all

2which are internally converted to the four “a” parameters in Eq. (4.39).
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sources of microphysical damage.3 Kayenta falls somewhere in-between these extremes by basing
its time-to-failure fitting function on the isotropic part of more complicated microcracking theories
(e.g., [28, 70]). Qualitatively, the conventional notion of a damage parameter, D , is

damaged elastic stiffness = (1�D)⇤ (initial elastic stiffness) (5.2)

In other words, 1�D (which we call “coherance” or COHER) is simply the ratio of current stiffness
to initial stiffness.4 This definition, of course, suggests that there should be different levels of dam-
age for different loading modes (such as uniaxial stress contrasted with shear). This expectation is
accomodated in the general framework of first-principles self-consistent microcrack damage theo-
ries, where the fourth-order elastic compliance tensor C�1

i jkl (=inverse of the fourth-order stiffness)
it typically taken to be related to the initial compliance tensor Ci jkl

�1
0 by a formula of the following

form [53, 28, 70]:
C�1

i jkl =Ci jkl
�1
0 +Â

c
(`3Ai jkl)c, (5.3)

The summation over “c” extends over the number of microcracks within the specimen, `3 is the
crack size cubed (or squared in 2-D problems), and Ai jkl is a texture tensor depending only on
the intact elastic properties and the crack orientation. This type of statistical crack formulation is
clearly more sophisticated than a simple isotropic damage model, but the state-of-the-art for such
models still has not matured to the point of being both practical and realistic (e.g., not based on an
assumption of an isotropic linear-elatic matrix, not based on simplified crack shapes, not assuming
growth of a crack within its own plane, etc.5). Among the tractibility challenges, for example,
practical binning schemes are needed to reduce summations over literally thousands or millions of
cracks to sums over a smaller number of “bins” of cracks [91, 46]. This approximate number of
cracks in the summation is based on a “rule of thumb” that, at least for armor ceramics, there are
⇠ 1012 cracks per cubic meter (and finite elements in engineering applications are typically larger
than a few millimiters in breadth). The actual number of cracks within a specimen is dictated by a
Poisson process [91], which (along with statistical variability in orientation and size) represents an
irreducible variability in the underlying micromorphology within a representative volume (i.e., a
finite element), which in turn gives rise to “aleatory uncertainty” in the stiffness and strength prop-
erties of the medium. A theoretical challenge in these models is the need to extend them to include
large-deformation effects such as anisotropic nonlinear (and possibily unstable) Poisson expansion
effects that would, for example, provide a physical basis for dilatation observed in triaxial com-
pression experiments [64].6 Kayenta currently supports anisotropy only in its joints option (for
intrinsic anisotropy from, say, rock layering [20]) and in its standard backstress kinematic harden-
ing option. It does not currently support induced (i.e., developed) anisotropy caused by oriented

3Despite the current non-predictiveness of many “first-principles” damage models, it is nevertheless crucial to
support such efforts, as they guide the overall structure of the empiricisms used in Kayenta. Moreover, these models
are continuuing to overcome obstacles (such as the need for specialized binning algorithms for tracking evolving crack
populations [46]) that currently prevent their widespread use in engineering applications.

4Contrast this definiton of damage, which quantifies stiffness degradation, to softening, which quantifies strength
degradation. Kayenta treats these as concomitant effects, both determined from COHER.

5These models often address one or two of these limititions, but not all of them.
6This dilatation is currently fitted remarkably well via Kayenta’s hardening theory, but this might be a simple case

of fitting one experiment (triaxial compression) at the cost of being predictive for other loading modes — especially
non-proportional loading, where the stress trajectory is tortuous [18].
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damage. Accordingly, Kayenta’s isotropic damage model is formed by considering the isotropic
(non-tensorial) form of Eq. 5.3 and comparing it with Eq. 5.2 along with an assumption that crack
size is initially infinitesimal and grows at a fixed rate so that `= ˙̀ tgrow in which ˙̀ is a constant and
tgrow is the total amount of time that a crack has been growing. These simplifying considerations
suggest that the time variation of coherence, 1�D , should be of roughly of the form

1�D = 1�D =
1

1+
⇣

tgrow

tfail

⌘k , (5.4)

where (as explained in detail below) tfail is a scale-dependent time-to-failure parameter, k is an
exponent controling speed of failure, and tgrow is the length of time that the stress state has been
at the limit surface (i.e., at the peak attainable stress threshold marking onset of softening and
damage). That is, once the stress state has reached the initial limit surface, an internal variable
called TGROW is incremented such that it equals the amount of time that the stress state has been at
the limit surface. As tgrow increases, the limit surface itself (and the elastic stiffnesses) are degraded
according to microphysically inspired evolution equations that are summarized within this chapter.

By setting SOFTENING=1, the time-to-failure parameter, TFAIL, marks the point at which
the material has lost half of its stiffness and is halfway between its intact and fully-damaged
strength capacity. This parameter implicitly provides a scale-dependent and rate-dependent strain-
to-failure, predicting “dwell” times in impact dynamics that naturally increase with the speed of the
projectile. By setting SOFTENING=3, Kayenta includes a truly constant strain-to-failure option
to facilitate comparing Kayenta with other models that do not include this form of rate-dependent
dwell. In that case, FAIL0 is no longer treated as a constant — it is instead automatically and con-
tinually re-set by the code to induce material failure at the user-prescribed strain-to-failure value
based on whatever strain rate exists at any given moment in time.

The constant time-to-failure option (invoked by setting SOFTENING=1) should be used if dam-
age waves are observed to propagate at a fixed speed, independent of loading rate. In that case,
it is helpful to imagine that damage corresponds cracks propagating across a finite domain. If the
crack or damage wave growth speed ( ˙̀) is approximately constant,7 then tfail may be interpreted
as roughly the amount of time required for a steadily growing crack to traverse a distance of one
meter. Rather than defaulting to 1 meter, some host codes will require user-supplied values of
tfail to also be accompanied by the corresponding spatial scale. Regardless of these syntax details,
the host code (in a proper implementation of Kayenta) will automatically scale the value of tfail

according to each actual element size. In this way, damage propagates at a mesh-insensitive speed
[85]. Confirming proper constant-speed damage propagation is an important verification test to be
performed by code users (not just developers).

Within Kayenta, the time tgrow (called TGROW in the source code) is incremented only when
the stress state is at the limit surface. Consequently, output graphics colored by TGROW can be
more interesting and informative than relatively binary (nearly two color) plots of COHER. A plot
of TGROW illustrates the “sequence” of damage through time so that currently failing zones show
as a different color from previously failed zones. Hiding material for which COHER falls below

7This approximation is accurate in impact applications, where the stress-intensity factor is typically high.
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some threshold value sometimes effectively illustrates “cracks”, but it can give a false impression
of loss of load-carrying capacity in zones that (like a comminuted region) are fully damaged but
still able to resist compressive loads and to transmit waves. A useful alternative to hiding damaged
zones is to simply show them in a darker hue.

The exponent k is referred to by its source code name: FSPEED. This exponent controls how
rapidly the coherence drops from 1 to 0. Some classical damage theories, such as the first Johnson-
Holmquist (JH1) model, impose a nearly instantaneous accumulation of damage after a short de-
lay.8. Such theories of “sudden” falure are emulated in Kayenta by using a large (> 10) value
of FSPEED; a more gradual decay (for which TFAIL is the half-damaged time) is acheived by
using a smaller value of FSPEED. The choice k = 3 would correspond to an isotropic version of
3-D statistical damage theories that set the elastic compliance based on randomly oriented “penny
shaped” cracks. The choice k = 2 would emulate an isotropic version of 2D damage models in
which cracks are treated as slits extending out of the plane. Since Kayenta does not include the
induced anisotropy of these more sophisticated models, obtaining reasonably predictive simula-
tions from Kayenta requires a fine mesh so that induced anisotropy is captured through explicitly
resolved heterogeneity of localized damage on the grid.

In summary, Eq. (5.4) provides a smooth transition from 100% coherent material (D = 0) to
complete loss of coherence. The transition has a period of time during which coherence stays
nearly 1 (called the “dwell phase,” followed by a relatively rapid descent to zero. Our two-
parameter coherence-reduction formula allows the user direct control over both the dwell time
(through the input parameter TFAIL, and the rate of descent (through the parameter FSPEED,
which is the exponent k). In this way, Kayenta may be made to emulate various damage mod-
els in the literature. The SOFTENING parameter provides additional support for emulating other
damage theories, making Kayenta a convenient multi-purpose framework in which to explore rel-
ative merits of competing models. Such freedom is provided because physically derived damage
progression equations appear to be an open research question.

By setting SOFTENING=1, the user instructs Kayenta to apply a purely time-based damage
evolution function based on the previously described notion that cracks tend to grow at a fixed
speed regardless of loading rate. If crack growth speed is regarded as constant, a finite amount
of time must pass before a crack finishes propagating across a finite element domain. When
SOFTENING=1, this time delay (tfail) is treated within Kayenta as a material constant. To acheive
a constant damage propagation rate on the finite-elment grid, the host code must apply appropriate
scaling of this parameter based on the mesh size.

Once the initial limit surface has been reached, the limit surface then begins to collapse. As
illustrated in Fig. 5.3, the rate of collapse is controlled by the user through parameters TFAIL
(tfail) and FSPEED (k). The parameter tfail specifies the amount of time that must pass with the
stress state at the limit surface before the limit surface collapses to a point halfway between the
intact (initial) and fully-failed surfaces. This parameter plays a role similar to the “plastic strain
to failure” used by other models such as the Johnson-Holmquist models, JH1 and JH2 [52]. By
using a “time to failure” parameter tfail, the Kayenta damage model has the property that apparent

8The delay itself is controlled in Kayenta by the values of SOFTENING and TFAIL
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1-D

large f

small f

t TGROW

speed

speed

fail

Figure 5.3. Time-based damage evolution. The plottable out-
put variable TGROW is the time tgrow in Eq. (5.4), and FSPEED is
the exponent k in the same equation. The first image provides a no-
tional interpretation of tfail and FSPEED, while the second image
is a specific numerical example.

strain to failure will increase with strain rate. The “failure speed” parameter k is provided merely to
allow softening to proceed quickly when k is large (> 30) or more gradually when k is small (< 5).
This parameter therefore allows Kayenta’s softening to emulate either the JH1 or JH2 models and
other similar models. As illustrated in Fig. 5.4(a), the time delay tfail is analogous to the plastic-
strain-to-failure used in other dynamic damage models such as the Johnson-Holmquist model [52].
However (unlike these other models), by using a fixed time delay, both plastic-strain-to-failure and
energy of failure automatically increase with increased loading rate.

In addition to losing limit strength, a softening material also loses elastic stiffness. At present,
the Kayenta model presumes that the stiffness remains isotropic as damage proceeds. An appropri-
ate proposal to improve Kayenta would include support for orthotropic degradation of the elastic
moduli. In the current isotropic elastic damage framework, the elastic moduli are degraded us-
ing the isotropic part of the damaged compliance proposed by Dienes et al. [28], which is very
similar to other effective moduli formulations [53, 70]. Dienes’s damage compliance is expressed
in terms of an overall measure of crack size. As mentioned earlier in the context of limit sur-
face collapse, we contend that the rate of limit surface collapse is also tied to crack growth speed.
Therefore, Dienes’s compliance reduction formulas are accordingly converted to functions of the
damage parameter D . The fact that the limit surface collapses according to the coherence (1�D)
is implicitly expressing a critical failure strain model as a stress-based criterion. This approach
positions the model well for future enhancements that could introduce anisotropic softening by
using a Tsai-Wu transformation of the limit function, wherein the stress sent to an isotropic limit
function is replaced by a transformed stress, s

⇤
i j = Li jkl(skl �akl) in which Li jkl is an anisotropic

transformation tensor (equal to the initial stiffness acting on damaged compliance) and akl is a
shift tensor (equal to the kinematic backstress that is already part of Kayenta).
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(a)
p

J2 vs. I1 stress space (black line is the uniaxial strain path) (b) Axial stress vs. axial strain for
uniaxial strain loading

Figure 5.4. Demonstration that a time-to-failure criterion
leads to apparent plastic-strain-to-failure. For this test case,
the failed limit surface was specified to mimic the failed surface
in the Johnson-Holmquist ceramic model [52] (namely, the ini-
tial limit surface is the green high-strength envelope and the failed
surface is the von-Mises-like surface parallel to the I1 hydrostat at
about 1/5 the initial strength). Shown are (a) path through stress
space and (b) stress-strain response for uniaxial strain loading,
each illustrating an apparent plastic strain to failure (dwell) with
this time-to-failure model.
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In addition to the decrease in the elastic stiffness, a pressure dependence is used to give an
undamaged response in compression and a softened response in tension. The transition is made
between the two using a linear interpolation of the intact and damaged bulk moduli. The interpo-
lation is defined as follows:

K =

8

>

>

<

>

>

:

Kintact if I1 �Kintact
100

Kdamaged � I1
Kintact

100
(Kintact �Kdamaged) if � Kintact

100 < I1 < 0

Kdamaged if I1 � 0

(5.5)

The ad hoc factor of 100 was included to provide a smooth transition between tensile and com-
pressive responses (i.e., it is not based on any rigorous physics).

Details of the damage evolution equations will not be further discussed here because they are
continually undergoing revision to include physics-based evolution models and to achieve better
convergence properties when invoking aleatory uncertainty in strength (see [55]).

Accumulated-Damage Framework

The Accumulated-Damage framework is built upon the preexisting time-to-failure softening
framework and is automatically used when a strain-to-failure model is selected. It interfaces with
the preexisting framework by initializing the time-to-failure user input tfail to unity and by using
the state variable TGROW as the damage value D .

Models using linear accumulation of damage, such as Johnson-Cook fracture, define the dam-
age variable D such that D is initially assigned a value of zero and then is allowed to increase
monotonically up to a value of unity; in many of these models, no loss of strength or stiffness
occurs until D = 1. Kayenta’s “accumulated damage” option mimics these models closely except
that D does not have an upper bound.

The original Kayenta softening framework allows for a relatively gentle transition from a intact
material to a failed material. The accumulated-damage framework leverages this implementation
so that the sudden loss of strength will not cause instabilities in the simulation. Please see Fig. 5.3
for a diagram depicting the loss of strength.

When the accumulated-damage framework is used k must be set to reflect the expected rate
of the loss of strength and the expected loss in strength and stiffness prior to D equalling unity.
A suggested minimum value of k is 10 which corresponds to approximately 75% of the softening
to occur within the range 0.9  D  1.1. However, for a nearly instantaneous transition it is
suggested that k be set to at least 30 which ensures that 90% of the softening occurs within the
range 0.95  D  1.05.

This approach can be contrasted with cohesive-type (cf.[71]) models that might also use a
parameter called damage, but which predict material degradation even when D ⌧ 1. For clarity,
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special note should be made that (in Kayenta) the damage parameter D (actually stored as TGROW)
does not directly control the loss of strength or stiffness but is used to compute COHER.

Implemented Fracture Models

The strain-to-failure models of interest may all be viewed as belonging to the linear accumula-
tion of damage class of models. Models of this class update damage according to

D = Â De

p

e

f , (5.6)

where the strain-to-failure e

f may be a time-varying value and depend on the material state (stress,
stress rate, strain, strain rate, temperature, etc.).

The Kayenta framework has been expanded to allow the user to mimic a variety of strain-
to-failure models by using this implementation (similar strain-to-failure models could quickly be
implemented). This is demonstrated by the addition of one contemporary and two classical strain-
to-failure fracture models. These three models are distinguished by their theories for setting a value
to e

f :

• Constant Equivalent-Strain-at-Failure: strain-to-failure is, as the name implies, a constant
given by a user-supplied parameter D1.

e

f = D1 (5.7)

The parameters are mapped: D1 = FAIL2.

• Johnson-Cook Fracture [50]: strain-to-failure is a function of a dimensionless pressure-stress
ratio s

⇤ (which we have been referring to as stress triaxiality h), a dimensionless strain
rate ė

⇤ (i.e., normalized by a reference strain rate ė0), and a dimensionless homologous
temperature T ⇤.

e

f =
h

D1 +D2eD3s

⇤
i

[1+D4 ln ė

⇤] [1+D5T ⇤] (5.8)

s

⇤ =
sm

se
ė

⇤ =
ė

ė0
T ⇤ =

T �Troom

Tmelt �Troom
(5.9)

In these formulas, the eight user-supplied parameters are D1 . . .D5, ė0, Tmelt, and Troom.

The parameters are mapped: D1 = FAIL2, D2 = FAIL3, D3 = FAIL4, D4 = FAIL5,
D5 = FAIL6, ė0 = FAIL7, Tmelt = FAIL8, Troom = FAIL9.

• Xue-Wierzbicki Fracture [95]: strain to failure depends on stress triaxiality h , and the Lode
parameter

e

f = D1e�D2h �
⇣

D1e�D2h �D3e�D4h

⌘

(1�x

m)n (5.10)
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3J2
3 h =
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3J2

m = 2 Round
✓

1
2n

◆

(5.11)

Here, the five user-supplied material parameters are D1...D4 and the hardening exponent n
(which is assigned the same value as the hardening exponent used in power law plasticity
theory).

The parameters are mapped: D1 = FAIL2, D2 = FAIL3, D3 = FAIL4, D4 = FAIL5,
n = FAIL6. The Xue-Wierzbicki Fracture model does not allow fracture when the stress
triaxiality is below �1

3 . However, when FAIL7 is nonzero, then the cutoff is removed.

The parameters in the above equations are all described in the Model Parameters section, Sec-
tion B.1, of this document.

The value of e

f can change with respect to the stress state. However, Kayenta supports vis-
coplasticity and tracks the quasistatic stress and the dynamic stress concurrently. The quasistatic
stress always resides within the limit surface while the dynamic stress is not confined by the limit
surface. Only when viscoplasticity is used do these two stress values differ. Because of these two
potentially different stress values, one of them must be chosen for use in these newly implemented
models. At high rates, the dynamic stress is the actual stress being carried by the element, making
it the preferred choice for the stress-dependent strain-to-failure theory.

Spall Pressure and Void Insertion

The SPALLI1 user parameter allows mitigating excessively tensile stress states by limiting
the magnitude of I1. When set, Kayenta ensures that the value of I1 does not exceed that of
SPALLI1. The process by which excessive tensile states are limited is conceptually similar to the
radial return of Von-Mises plasticity. However, rather than scale the magnitude of the stress devi-
ator, Kayenta scales I1 such that I1  SPALLI1. In this way, SPALLI1 can be conceptualized
as a “spall pressure” and the scaling of I1 as an isotropic return. Unlike the case of radial return,
however, the resultant volumetric inelastic strain, given by

de

spall =
Itrial
1 �SPALLI1

3K
(5.12)

where 3K is the current bulk modulus, is not accumulated, but is returned to the host code where
it is to be treated similar to void. In this case, de

spall is returned in the EOS4 variable and CRACK
set to �1 to alert the host code.

This information is provided to the host code, but Kayenta does not require any specific im-
plementation. Please consult your host code’s documentation to determin how, if at all, nonzero
values of EOS4 are handled.
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Implementation Requirements for Softening

It is well known that softening induces a change in type of the governing equations An ini-
tially quasistatic problem becomes hyperbolic, perhaps marking the onset of localized failure and
unstable structural collapse. An initially dynamic problem loses hyperbolicity, marking the onset
of localized failure and also resulting in damage waves that propagate slower than shock waves.
Without intervention from the host code, the change in type of the governing equations in a local
constitutive model will result in non-physical dependency of the solution on the mesh resolution.
One means of reducing this problem is to introduce spatial perturbations and scale effects in the
strength of the material that are consistent with the following laboratory observations:

• large variability in strength in low-pressure experiments

• a tendency for small specimens to have higher ultimate strength than large specimens

• reduced variability and scale effects at high pressure

These qualitative observations suggest that the deterministic limit surface should be perturbed
as illustrated in Fig. 5.5, where all uncertainty and scale effects have been imposed in the (Ipeak

1 )
I

limit surface parameter. For details, see [85].

At time zero, before calculations begin, a random number R (uniformly distributed in the range
from 0 to 1) is generated at each finite element in the simulation. This random number is converted
into a non-uniform scale-dependent Weibull-perturbed realization for (Ipeak

1 )
I

at each element by

(Ipeak
1 )

I
=

^
(Ipeak

1 )
I
"

eV lnR
V ln(1/2)

#1/m

(5.13)

where
^
(Ipeak

1 )
I

is the user-defined median value of the tensile spherical strength measured (or in-
ferred) at a known user-specified specimen volume eV , and m is the “Weibull modulus” that quanti-
fies the extent of variability. Within a simulation, the volume V is the finite element volume, so this
formula accounts for scale effects by assigning a higher strength (on average) to finite elments that
are smaller than eV . Since this variability is imposed on the “spherical” tensile (Ipeak

1 )
I
, it produces

a non-Weibull scale dependence in axial tensile strength as illustrated in Fig. 5.5(b) and Fig. 5.6(b).
This non-Weibull character of scale dependence of strength is well known [6].

Some applications of the damage model with statistical uncertainty and scale effects are illus-
trated in Fig. 5.7 and Fig. 5.8. Although incorporation of uncertainty and scale effects does reduce
mesh sensitivity in some cases, one must be warned that it does not eliminate mesh sensitivity alto-
gether. Brazilian indirect tension simulations, in particular, continue to suffer from an unacceptable
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(a) (b)

Figure 5.5. Incorporation of uncertainty and scale effects in
damage. This figure depicts the character of uncertainty and scale
effects expected for a quasibrittle material such as rock. (a) Signif-
icantly variability is imposed at low pressure by statistically vary-
ing the (Ipeak

1 )
I

parameter. (b) corresponding scale effects ensure
that small specimens are stronger, on average, than large speci-
mens.

(a) (b)

Figure 5.6. The strength size effect in “directed-Weibull” the-
ory varies with stress space trajectory. Whereas strength can
increase with bound for small samples in isotropic tension, it sat-
urates to a classical plasticity limit for non-hydrostatic loading of
tiny samples (relative to aggregate size).
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level of mesh sensitivity [61]. Even though the predictions of trends in the statistics of Brazilian
failure are very similar to laboratory observations, the quantitative median strength continues to
be mesh dependent and therefore non-predictive. A step towards resolving this problem, at least
for the onset of softening, imposes specialized run-time “relocalization” revisions of the element
strength are required to compensate for inability of low-order element shape functions to capture
stress concentations within an element [55]. This work constitutes a purely numerical motivation
for nonlocality of material strength.9

(a) (b)

Figure 5.7. Spall with strength variability and scale effects.
The left plot shows intact material. The right plot shows material
velocity with clear variability.

Further verification and validation of this approach to softening may be found on page 161.

9Reference [55] states that using higher-order elements did not significantly reduce errors on coarse meshes, but
that assertion might have been errant since its case-study sample simulation essentially treated the Gauss-point stresses
as piecewise constant. An appropriate avenue of future work would be to properly impose relocalization using the
actual non-constant stress field on the element; if successful, this approach would apply a form of nonlocality using
information that is local to each element and hence readily parallelized.
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Figure 5.8. Brazilian simulation with variability and scale
effects. Plot of intact material.
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Chapter 6

Equation of State: Application.

This section outlines the modifications that have been made to Kayenta to include thermal
response due to deformation in accordance with the first and second laws of thermodynamics.
Currently, the thermal version of Kayenta, referred to as Thermal-Kayenta, can now demonstrated
to reproduce single-element response curves for the Johnson-Cook thermoplasticity model with
Mie-Grüneisen equation of state under strain-controlled compression, pure shear, and uniaxial
strain.

This section is a collection of verbatim or paraphrased excerpts from the Sandia National Lab-
oratories technical report [40] by Fuller et al.; please refer to this report for details on thermome-
chanics for thermoelastic and thermoplastic solids.

Constitutive Models for Thermoplastic Materials

This chapter reviews the essential aspects of thermal theories for the Sandia National Labo-
ratories’ Kayenta plasticity model, Kayenta’s option for emulating Johnson-Cook plasticity, and
Kayenta’s implementation of Mie-Grüneisen equation of state.

Kayenta

Please refer to Chapter 4, for a detailed explanation of Kayenta yield functions and the harden-
ing stress tensors.

Johnson-Cook Plasticity

In classical Johnson-Cook plasticity [49, 50], the flow stress is given by the empirical relation
Eq. (5.8). In addition to publishing detailed procedures for choosing values for the material con-
stants D1. . . D5 and sm, Johnson and Cook published large tables of calibration data for a wide
range of materials. This, combined with the model’s simplicity, has led to the Johnson-Cook flow
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rule to becoming one of the most widely used thermoplasticity formulations today. It is also avail-
able as a built in material definition in nearly every commercial finite element code, furthering its
use nearly 25 years after its introduction. Regular use notwithstanding, the Johnson-Cook flow
stress model is, at its core, a hardening von-Mises type flow rule with strain rate hardening and
temperature dependence included through the multipliers [1+D4 ln ė

⇤] and [1+D5T ⇤]. It is well
established that the overly-simplistic Von-Mises flow rule is insufficient for modeling complex
phenomena and materials [63, 83]. Wright [101] argues that the temperature term should be con-
sidered unsatisfactory because it either vanishes at Troom (m > 0) or is infinite there (m < 0); and
that for the common case that m = 1, the initial thermal softening is determined solely by the mag-
nitude of the melt temperature Tmelt All three of these cases are physically unlikely, particularly in
the case where the functional form of the temperature dependence of the yield strength changes
due to phase changes within the material.

Furthermore, the Johnson-Cook flow stress model is empirical and, thus, its performance is
highly dependent on its calibration data. In other words, simulations performed outside of the
class of problems used for calibrating the model should be considered highly suspect. This leaves
a large hole in the models usefulness as calibration data typically only exists for few 1 of the
infinitely many loading paths.

For a comparison of the Johnson-Cook model with other thermoplasticity models as imple-
mented in the University of Utah’s Uintah MPM code see [5].

Mie-Grüneisen Equation of State

The outline of the Mie-Grüneisen equation of state closely follows the treatment given by
Drumheller [30] which can be consulted for further details. Strictly speaking, the Mie-Grüneisen
equation of state is not a thermoplastic model, but an equation of state relating energy, density, pres-
sure, and temperature. However, the Mie-Grüneisen equation of state is an important component
in many thermoplasticity models as it is used to compute the bulk response of the thermoplastic
material undergoing large compressive deformation.

In the Mie-Grüneisen solid, it is assumed that the internal energy can be decomposed additively
into “cold” and “thermal” parts

u = uc(r)+uT (r,s) (6.1)
It is further assumed that the thermal energy can be decomposed multiplicatively in its arguments
so that

ln
u�uc

u0
=
Z

r

r0

g(r 0)

r

0 dr

0+
Z s

s0

1
cv(s0)

ds0 (6.2)

where g(r) and c(s) are functional forms of the Grüneisen parameter and the specific heat. 2

Equation Eq. (6.2) now describes the equilibrium energy of the Mie-Grüneisen solid. The partial
1Calibration data is typically only available from uniaxial strain, uniaxial stress, and dynamic torsion tests.
2In this section g refers to the Grüneisen parameter, which should not be confused with the shear strain used in
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derivative of Eq. (6.2) with respect to J gives
✓

1
u�uc

◆✓✓

∂u
∂J

◆

u
� duc

dJ

◆

=�g

J
(6.3)

Simplifying Eq. (6.3),
1
r0

(
∂u
∂V

)s =
1
r0

duc

dV
� 1

r0
cvT gr (6.4)

where V is the specific volume and we have used u�uc = uT = cvT .3 Multiplying Eq. (6.4) by r0,
the equilibrium pressure in a Mie-Grüneisen solid is defined as

p = pc + pT (6.5)

where

p =� ∂u
∂V

pc =�∂uc

∂V
pT = rgcvT

(6.6)

Using shock Hugoniot data as a reference instead of the cold state, the pressure in Mie-Grüneisen
solid is given by

p = pH + g0r0 (u�uH)

T = TH +
1
cv

(u�uH)
(6.7)

where pH , uH , and TH are the Hugoniot pressure, energy, and temperature, respectively which are
determined from the Hugoniot. The Hugoniot is given by

vs = cs + s1vp +
s2

cs
v2

p (6.8)

where cs, s1, and s2 are constants determined by experiment.

A detailed description of the Mie-Grüneisen solid and derivations of Eq. (6.7) and Eq. (6.8)
can be found in Chapter 4 of [30].

Incorporating Thermal Effects in Kayenta: Initial Development

In the previous chapters, overviews of thermomechanics of solids, Kayenta, and Johnson-Cook
constitutive models were made. As previously noted, the equation of state in previous releases of

other sections.
3The relation uT = cvT can be seen by taking the partial derivative of Eq. (6.2) with respect to s
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Kayenta was purely mechanical and could not adequately predict material response to deformation
when thermal effects were non-negligible, as in metals. It also goes without saying, that these
previous releases of Kayenta did not satisfy the balance and dissipation laws given in Chapter 2 of
[40]. Nevertheless, Kayenta’s extensive feature set and ability to reduce to a number of classical
plasticity models make it an attractive base model to which thermal effects can be included.

In this section, an overview of the implementation of thermomechanics in Kayenta will be
made. To distinguish this version of Kayenta from previous versions which had no thermody-
namic considerations, it will be referred to as “‘Thermo-Kayenta’”. In the sections that follow,
descriptions of how thermomechanics is implemented in Thermo-Kayenta will be given.

Thermal Softening

Because Thermo-Kayenta presumes that the material, its stiffness tensor Ci jkl , and Grüneisen
tensor are isotropic, the stress rate in Eq. (2.40) of Fuller et al. [40], is decomposed additively into
isotropic and deviatoric responses

ṫ

⇠⇠
=�K⇤

ėvI
⇠⇠
+2G⇤devė

⇠⇠ (6.9)

where K⇤ and G⇤ are the effective tangent bulk and shear moduli, respectively and devė is the
strain deviator defined in the usual way as

devė = ė � 1
3

ėvI
⇠⇠

(6.10)

The temperature response, in general, is given by

Ṫ = Ṫ (K, ė) (6.11)

The specific forms of Ṫ (K, ė) and the effective bulk and shear moduli are determined by the
value of the user input IEOSID. If IEOSID=0 (default), then the effective moduli are computed
by

K⇤ = K(I1)

✓

1� r

2

r0
T cvg

2
◆

G⇤ = G(J2)

(6.12)

and
Ṫ (K, ė) =� r

r0
T gėv (6.13)

where K(I1) and G(J2) are the standard non-linear elastic tangent bulk and shear moduli functions
already in Kayenta (see Eq. (4.9) and Eq. (4.10)). If g = 0, Eq. (6.12) reduces to the same bulk
modulus functions used in previous releases of Kayenta.
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Note that the effective bulk modulus in Eq. (6.12) is the standard isentropic bulk modulus
and requires that K(I1) be the isothermal bulk modulus. However, as explained in the Kayenta
User’s Manual, the nonlinear function K(I1) returns a value which is an interpolation between the
isothermal and isentropic bulk moduli. Thus, if IEOSID= 0, it is recommended that either: 1) g

be set to zero if B1�B2 are non-zero, or 2) B1�B2 be set to zero if g is non-zero.

If IEOSID= 0 and B1�B2 are set equal to zero, Thermo-Kayenta reduces to thermoelasticity
as explained in [40], Chapter 2 of Fuller et al..

If IEOSID= 1, the effective tangent elastic moduli are computed from an equation of state
specified in the subroutine EOSMODULI. Currently, Thermo-Kayenta uses SNL’s Kerley Mie-Grüneisen
equation of state which takes as input the current density and energy and returns the updated pres-
sure, temperature, and soundspeed. K⇤ and G⇤ are then computed by

K⇤ = rcs
2

G⇤ = 3K⇤ 1�2n

2(1+n)

(6.14)

where cs is the bulk speed of sound in the material and n is Poisson’s ratio and is assumed to be
constant.

If IEOSID = 3, Kayenta optionally calls the host code for the Elastic moduli (if supported by
the host code).

If IEOSID = 5 or 6, Kayenta computes the elastic bulk and shear moduli using updated equa-
tions of state developed by Tom Dewers and Pania Newell at SNL. These state of these equations
of state is currently currently in flux and are under active development. Contact the Kayenta de-
velopers for more information.

To date, every installation of Kayenta has approximated the strain rate by the symmetric part
of the velocity gradient, D

⇠⇠
. Thus, u is updated internally in Thermo-Kayenta by

u =
1
r0

t

⇠⇠
:D
⇠⇠

(6.15)

Thermoelastic Limit

If the trial elastic stress found in the previous section lies outside of the yield surface given by
Eq. (4.18), the tentatively presumed elastic loading is invalidated and the solution to the equations
governing thermoplastic loading must be solved. For the case of a thermoplastic material, the yield
criterion in Eq. (4.28) is modified to allow for thermal softening in a way similar to Johnson-Cook
plasticity by including a non-dimensional multiplier in the yield function, as follows:

q

Jx

2 =
f f (I1) fc(I1,k)

G(q x

)
(1� (T ⇤)m) (6.16)
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For the case that fc = 1 and G = 1, Eq. (6.16) reduces to
q

Jx

2 = (a1 �a3 exp[�a2I1]+a4I1)(1� (T ⇤)m) (6.17)

where m is taken to be the same user specified constant as in Johnson-Cook plasticity. T ⇤ is defined
in the same way as in the Johnson-Cook plasticity model:

T ⇤ =
T �T0

Tm �T0
(6.18)

Evolution Equations

Kinematic Hardening Backstress Tensor

If kinematic hardening is enabled, the evolution of the backstress in a thermoplastic material is
revised from Eq. (4.79) to include thermal effects as follows:

ȧ = ėH
?
a

(6.19)

where H?
a

is given by

H
?
a

= Hg(a⇤)dev
∂j

∂x

(6.20)

and
g(a⇤) = g(a)(1� (T ⇤)m) . (6.21)

Plastic Temperature Evolution

Currently, all plastic work is converted to heat, thus the temperature evolves according to

Ṫ = Ṫ trial +
1
r0

✓

r0T g +
1
cv

I1

◆

ė

p
v +

1
cv

dev(ṫ)
⇠⇠

:devė

p
�

(6.22)
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Chapter 7

Rate Dependence

The governing equations discussed so far are rate independent, so they only apply for qua-
sistatic loading. Under high strain rates, the elastic response of a material occurs almost instan-
taneously, but the physical mechanisms that give rise to observable inelasticity can not proceed
instantaneously. Materials have inherent “viscosity” or “internal resistance” that retards the rate at
which damage can accumulate. For example, cracks grow at a finite speed — they cannot change
instantaneously from one size to another. If a stress level is high enough to induce crack growth,
then the quasistatic solution for material damage will not be realized unless sufficient time elapses
to permit the cracks to change length. Likewise, void collapse takes finite time. Simple inertia also
contributes to rate dependence. During the time that cracks are growing towards the quasistatic so-
lution, the stress will drop down towards the quasistatic solution. Until sufficient time has elapsed
for the material to equilibrate, the stress state will lie outside the yield surface. If the applied strain
is released any time during this damage accumulation (or plastic flow) period, then the total dam-
age (or plastic strain) will be ultimately lower than it would have been under quasistatic loading
through the same strain path.

Viscoplasticity model overview

The evolution of the yield function, and the very character of the inelastic deformation itself,
can be dramatically altered by the rate at which loads are applied. In the limit of extraordinarily
high load rates (as near the source of an explosion), material response is essentially elastic because
insufficient time exists for plasticity to fully develop. At high strain rates, the equation of state
(i.e., the pressure-volume part of the elasticity) plays the predominant role in material response. To
allow for rate dependence, an overstress model is used. The user specifies a relaxation parameter
governing the characteristic speed at which the material can respond inelastically. If the loads are
applied over a time interval that is significantly smaller than the characteristic response time, then
essentially no inelasticity will occur during that interval. If, on the other hand, the loads are applied
slowly (as in quasistatic testing), then inelasticity will be evident.

Kayenta uses a generalized Duvaut-Lions [31, 14] rate-sensitive formulation, illustrated qual-
itatively in Fig. 7.1. Consider a loading increment Dt during which the strain increment is pre-
scribed to be De

⇠⇠
. Two limiting solutions for the updated stress can be readily computed: (1) the

low-rate (quasistatic) solution s

⇠⇠
L which is found by solving the rate-independent Kayenta equa-
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tions described previously, and (2) the high-rate solution s

⇠⇠
H corresponding to insufficient time

for any plastic damage to develop so that it is simply the trial elastic stress. As explained below
and illustrated in Fig. 7.1, the Duvaut-Lions rate formulation is based on a viscoplastic differential
equation, the solution of which shows that the updated stress will be (approximately) a linear in-
terpolation between the low-rate quasistatic plasticity solution s

⇠⇠
L and the high-rate purely elastic

solution s

⇠⇠
H . In other words, there exists a scalar h between 0 and 1 that depends on the strain rate

such that
s

⇠⇠
⇡ s

⇠⇠
L +h(s

⇠⇠
H �s

⇠⇠
L). (7.1)

The update for internal state variables is structured similarly, but uses a somewhat different
weighting factor, as explained below. For both the stress and internal state variable updates, the
interpolation factor h varies from 1 at high strain rates (when Dt is small) to 0 at low strain rates
(when Dt is large), as illustrated in the graph inset of Fig. 7.1, where the abscissa is normalized by
a factor t called the material’s “characteristic” response time. At the end of this chapter, we will
describe how Kayenta assigns a value for the characteristic material response time t . Incidentally,
for simplicity, Fig. 7.1 shows a stationary yield surface. In general, the yield surface will evolve in
size or translate according to the hardening rules described earlier.

A time interval Dt is deemed to be “long” if Dt � t . A time interval is “short” if Dt ⌧ t . Soon
we solve the viscoplastic equations to prove that, if the initial stress is on the yield surface, then
the high-rate scale factor internal state variable (ISV) is

h =
1� e�Dt/t

Dt/t

. (7.2)

This is also the rate factor for the stress at the onset of yielding when s

⇠⇠
and s

⇠⇠
low coincide.

At the end of a viscoplastic step, the final stress state will not lie on the yield surface. We will
prove that, in this case, the scale factor is smaller than the value cited in Eq. (7.2). Consequently,
the “attraction” that the dynamic stress has for the quasistatic solution increases somewhat as the
stress moves farther from the yield surface.

Referring to Eq. (7.2), the h weighting factor is large when the time step is significantly smaller
than the characteristic time required for the material’s plasticity solution to develop. Effects of
plasticity are apparent in Kayenta only when the time interval is long or when the characteristic
material response time is short so that h will be small. In this case, according to Eq. (7.1), the
solution will be near the quasistatic (low-rate) solution s

⇠⇠
L.

Fig. 7.1 illustrates that the viscoplastic solution will follow a trajectory that is similar to the
quasistatic solution except displaced from the yield surface. Consequently, experimental data for
high-rate loading scenarios have the appearance of inducing a higher yield stress in the material.
Unlike some plasticity models, Kayenta does not alter the material yield stress as a function of
strain rate. Instead, the overstress model accomplishes the same effect in a much more physically
justifiable manner.
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Figure 7.1. Rate dependence. For a given strain increment, two
limiting solutions can be readily found. The “low rate” solution
s

⇠⇠
L, which lies on the yield surface, is the solution to the rate inde-

pendent Kayenta governing equations. The high rate solution s

⇠⇠
H

is simply the trial elastic stress. The actual updated rate-dependent
viscoplastic stress s

⇠⇠
falls between these two limiting case solu-

tions so that s

⇠⇠
= s

⇠⇠
L +h(s

⇠⇠
H �s

⇠⇠
L). The inset graph shows how

the scale factor h varies with the loading interval. If the loading in-
terval is long relative to the material’s characteristic response time
t , then sufficient time exists to fully develop plastic response and
the updated solution therefore coincides with the quasistatic solu-
tion s

⇠⇠
L. If the loading interval is considerably shorter than the

material’s characteristic response time, then the solution will be
the high-rate elastic solution.
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Viscoplasticity model derivation

In the context of viscoplasticity, an inviscid (rate-independent) solution s

⇠⇠
L for the stress is

presumed to exist. Likewise inviscid (rate-independent) solutions qL are presumed available for the
internal state variables, here denoted collectively by “q”. These limiting case solutions are merely
the solutions of the rate-independent Kayenta equations described in earlier chapters. Viscous
effects are incorporated by presuming that the strain rate is decomposed as the sum of an elastic
part ė

⇠⇠
e plus a viscoplastic part ė

⇠⇠
vp:

ė

⇠⇠
= ė

⇠⇠
e + ė

⇠⇠
vp. (7.3)

The viscoplastic part of the strain rate includes both the usual plastic strain rate from the qua-
sistatic (low-rate) solution as well as additional (retarding) contributions resulting from viscosity.
The viscoplastic strain rate is governed by

ė

vp
i j =

1
t

C�1
i jkl[skl �s

low
kl ] (7.4)

The fourth-order tensor C�1
i jkl is the elastic compliance (inverse of the stiffness), t is a material

parameter called the relaxation time, and s

⇠⇠
low is the rate-independent stress solution whose value

at the beginning of a time increment Dt is tracked as an extra state variable (called QSSIGXX,
QSSIGYY, etc. in Appendix B).1 At the end of the time interval, s

⇠⇠
low ultimately has the value s

⇠⇠
L,

which is found by integrating the rate-independent Kayenta equations from the earlier chapters.
During viscoplastic loading, each internal state variable q is presumed to vary according to

q̇ =
�1
t

[q�qlow]. (7.5)

Here qlow is the value of the internal state variable (k or a

⇠⇠
) throughout the time interval, initially be-

ing equal to q0 at the beginning of the step, and (through application of Kayenta’s rate-independent
equations in earlier chapters) ultimately equalling the low rate solution qL at the end of the step.
Like the inviscid quasistatic stress, the inviscid quasistatic ISVs (QSEL, QSBSXX, etc.) must be
tracked as distinct extra state variables.

The stress rate is, as usual, given by the elastic stiffness acting on the elastic part of the strain
rate: ṡi j =Ci jkl ė

e
kl . Thus, using Eq. (7.3)), the stress rate may be written

ṡi j = ṡ

high
i j � 1

t

(si j �s

low
i j ), where ṡ

high
i j ⌘Ci jkl ėkl . (7.6)

Here, ṡ

high
i j is the elastic trial stress rate, and therefore s

high
i j is the time varying elastic trial stress

that ultimately equals the high-rate solution s

H
i j at the end of the step.

1The “low” or “inviscid” stresses must be tracked independently. They cannot be inferred by projecting the actual
stress onto the yield surface. Attempting to do so causes undesirable results in rate-dependent load-unload cycles.
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Eq. (7.6) is a set of linear first-order differential equations which may be integrated exactly over
a time step with the use of integrating factors [42] provided that s

low
i j is known as a function of

time throughout the time step. In principle, we would need to solve the rate independent equations
analytically over the entire time step to integrate Eq. (7.6) exactly, but this is not tractable in
practice. In what follows, we will describe how the time history of s

low
i j can instead be well

approximated over the step. First, let’s introduce a change of variables by defining

ui j ⌘ si j �s

high
i j , (7.7)

so that the governing equation for the stress rate may be written

u̇i j =�1
t

(ui j +s

high
i j �s

low
i j ). (7.8)

This equation can be solved exactly if the time variation of s

⇠⇠
high �s

⇠⇠
low is known throughout the

time step.2 Time variation of s

⇠⇠
low is governed by known quasistatic rate equations. Consequently,

the dynamic accuracy can be maximized by presuming that the rate of s

⇠⇠
low is constant over the

step so that s

⇠⇠
low itself is approximated to vary linearly over the step.

Recall that the final solution s

⇠⇠
H �s

⇠⇠
L can be presumed known at the end of the step because

s

⇠⇠
H is found by integrating the elasticity equations and s

⇠⇠
L is found separately by integrating the

inviscid quasistatic plasticity equations. Similarly, the difference s

⇠⇠
high � s

⇠⇠
low is known at the

beginning of the step because s

⇠⇠
high is s

⇠⇠
at the beginning of the step and s

⇠⇠
low is retrieved from

the saved quasistatic stress extra state variable array. The high-rate stress s

⇠⇠
high is simply the elastic

trial stress. Thus, it varies linearly through time from its initial to final value (with small higher-
order nonlinearities if the strain rate and/or elastic moduli are not constant). The quasistatic stress
rate ṡ

⇠⇠
low is an oblique projection of the trial stress rate onto the yield surface, so s

⇠⇠
low also varies

approximately linearly through time (with nonlinear effects from flow potential surface curvature
being higher order). Thus, we may call on the mean value theorem to assert that

(s
⇠⇠

high �s

⇠⇠
low)⇡ (s

⇠⇠
H �s

⇠⇠
L)

✓

t � t0
Dt

◆

+(s
⇠⇠

high
0

�s

⇠⇠
low
0

)

✓

1� t � t0
Dt

◆

(7.9)

With this approximation, the ODE in Eq. (7.8) may be solved exactly. Since s

⇠⇠
high
0

equals s

⇠⇠
low
0

at
the beginning of the step, the initial condition is that ui j = 0 when t = t0. Integrating the ODE,
evaluating the result at the end of the step, and applying the definition of ui j to obtain the updated
solution for si j eventually gives

s

⇠⇠
FINAL = s

⇠⇠
L +RH(s⇠⇠

H �s

⇠⇠
L)+ rh(s⇠⇠

high
0

�s

⇠⇠
low
0

) , (7.10)

where

RH =
1� e�Dt/t

Dt/t

and rh = e�Dt/t �RH (7.11)
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Figure 7.2. High-rate weighting factor at various initial
states. The largest weight factor (upper red curve) applies when
the initial stress is on the yield surface. The factor is lower if the
initial state is already off the yield surface at the beginning of the
step.

With the presence of the last term, the solution in Eq. (7.10) is not precisely of the form shown
in Eq. (7.1) unless s

⇠⇠
high
0

= s

⇠⇠
low
0

. As seen in timestep “n�1” in Fig. 7.1, the initial values for the
“high” and “low” rate paths coincide only at the onset of plasticity. Eq. (7.10) can be put into the
form of Eq. (7.1) if we approximate that s

⇠⇠
high
0

�s

⇠⇠
low
0

is parallel to s

⇠⇠
H �s

⇠⇠
L. With this assumption,

Eq. (7.1) becomes
s

⇠⇠
FINAL = s

⇠⇠
L +h(s

⇠⇠
H �s

⇠⇠
L), (7.12)

where
h = RH + rh° (7.13)

and

° ⌘
ks

⇠⇠
high
0

�s

⇠⇠
low
0

k

ks

⇠⇠
H �s

⇠⇠
Lk (7.14)

Fig. 7.2 shows how the weighting factor h varies with the stress difference ratio ° appearing in the
last term of Eq. (7.13). For plastic loading, ° equals 0 only when the initial state is on the yield
surface. Otherwise, beyond this onset of yielding moment, ° increases, eventually asymptoting
to 1 under steady strain rates. The lowering of the rate factor h caused by nonzero ° makes the
dynamic stress more strongly attracted to the quasistatic solution as the distance between them
increases.

2Ref. [14] provides a slightly different formulation for solving the same set of governing equations; that publication
might clarify what is given here in this chapter.
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For the rate dependent update of internal state variables, Eq. (7.5) can be integrated analytically
if the time variation of q over the step is approximated by qlow = qH +(qL � qH)(t � t0)/Dt. The
resulting solution for q is

qFINAL = qL +RH(qH �qL) , (7.15)

where the high-rate weight factor RH is the same as in Eq. (7.11). The weight factor RH for the
internal state variables differs from the weight factor h for the stress because the two problems
have different initial conditions. Recall that the material responds elastically at extremely high
rates. Hence, because the internal state variables can evolve only when plasticity occurs, the high
rate solution qH for any internal state variables is simply its value at the beginning of the time
increment.

Limiting case

If a strain rate is held constant for a long enough period then the difference between the dynamic
stress si j and the inviscid stress s

L
i j will sometimes reach a steady-state value in the laboratory. In

this case, the equations outlined in this chapter imply that this steady state stress difference is given
by

si j �s

L
i j =

t

c

Pi jQmnėmn, (7.16)

where c , Pi j, Qi j are defined in Eq. (4.101).

In the very simplified context of non-hardening von Mises plasticity, this equation becomes

si j �s

L
i j = (2Gt)Si jSmnėmn, (7.17)

where G is the shear modulus and S is a unit tensor in the direction of the stress deviator. For
example,

[Ŝ] =
1p
2

2

4

0 1 0
1 0 0
0 0 0

3

5 for simple shear (7.18)

[Ŝ] =
1p
6

2

4

2 0 0
0 �1 0
0 0 �1

3

5 for uniaxial (axisymmetric) loading (7.19)

Therefore, in the case of simple shear for non-hardening von Mises plasticity, Eq. (7.17) implies
that

s12 �s

L
12 = 2Gtė12 for simple shear (7.20)

s1 �s

L
11 =

4G
3

tė11 for uniaxial (axisymmetric) loading (7.21)

These simple analytical results can be used to trend-test the numerical implementation of rate
sensitivity, as described in Fig. 7.3. See Fig. 3.4 (pg. 41) for an explanation of the post-yield slope
even though the material is non-hardening.

Time histories for the overstress and the three strains (elastic, plastic, and total) are contrasted
in Fig. 7.4.
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Figure 7.3. Rate dependence in uniaxial strain loading of a
nonhardening pressure-insensitive material. In the stress-strain
plot, the normalizer is the quasistatic uniaxial yield stress. The
dynamic (black) stress-strain plot exhibits an apparent increase in
strength relative to the quasistatic (dashed blue) solution. This
rate-induced stress difference is plotted in the second figure (nor-
malized by the peak value), where the dashed red line shows the
analytical asymptote envelope from Eq. (7.21). This calculation
included a lower strength in tension (interestingly, the difference
between dynamic and quasistatic strengths is higher in tension).
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Figure 7.4. The effect of strain rate in uniaxial strain.
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Assigning a value to the characteristic material time

Kayenta permits the user to control the value of the characteristic time through the use of up to
seven parameters, T1 through T7. In the present build of Kayenta, these T-parameters are used to
assign a value of the characteristic time according to the following formulas:

t =

(

f (ėequiv) if e

p
v � 0

T6 f (ėequiv)(1+< T7(I1 +T5)>
2) if e

p
v < 0 and I1  T5

(7.22)

where

f (ėequiv) =

8

<

:

T1 if T2 = 0

T1

⇣

1
t

ref
ė

equiv

⌘T2
if T2 6= 0

, (7.23a)

ė

equiv = kė

⇠⇠
k, (7.23b)

and

< x >=

(

0 if x  0
x if x > 0

(Macaulay brackets.) (7.24)

Here, t

ref is a constant equal to 1.0 s. If a constant characteristic time t is desired, then set T1 = t ,
and all other T’s to zero. Fig. 7.3 used a constant t , as did the simple-shear rate-dependent simu-
lation shown in Fig. 9.9(b) (pg. 158). Suitability of this model of rate-dependence for predicting
laboratory data is illustrated in Fig. 10.9 (pg. 204). The branch in the above formulas, giving
different characteristic times depending on whether the material is plastically dilatating (e p

v � 0)
or plastically compacting (e p

v < 0), is motivated by an observation that materials tend to have a
greater rate sensitivity in compaction relative to dilatation [35].

Kayenta’s formulas for characteristic response time continue to be in a state of flux in order to better
support user-specification of laboratory data for the apparent steady-state strength as a function
strain rate, which is what is typically available in the literature [90]. These revisions may result
in interpretations of the T-parameters that differ from what is documented above. Therefore, since
this aspect of the model is in flux, users of 2011 and later builds of Kayenta should consult with
the model developers for assigning rate dependence parameter values. Previous versions of this
manual warned about incompatibility between softening and overstress modeling, but the current
version allows both damage and rate dependence to be active simultaneously.

Thermodynamics considerations

In pre-2009 builds, Kayenta’s equation of state was incorporated within the purely mechani-
cal model — it contained no thermal terms (i.e., terms involving material properties such as the
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specific heat and Grüneisen parameter). Nonetheless, Kayenta’s nonlinear elasticity model had
been moderately well fitted to Hugoniot shock data. In thermodynamics, pressure is typically ex-
pressed as a function of two variables: the density rand a thermal variable (usually temperature or
entropy). For example,

p = f (r,T ) (7.25)

In thermodynamics, you can always use a purely mechanical equation of state if you restrict
the class of allowable problems so that one or two of the thermal variables are inter-related in some
known way. If, for example, you restrict attention to isothermal loading, then the pressure will
be expressible in the form p = F(r), where the “material constants” in the equation (such as the
bulk modulus) must be set to their isothermal values. Likewise, if you can consider only adiabatic
loading, then the pressure is again expressible as a mechanical function if the parameters such as
the bulk modulus are set to their adiabatic values.

Through the above rather hand-waving reasoning, the pre-2009 builds of Kayenta (called the
Sandia GeoModel) were able to perform adequately under high rate shock loading. Recent work
has included incorporation of any user-specified equation of state (see page 107). This work has in-
cluded verification that Kayenta can (with appropriately matched parameters) reproduce the high-
rate thermoelastic-plastic material response predicted using the Johnson-Cook plasticity model in
conjunction with a Mie-Grüneisen equation of state.
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Chapter 8

Kayenta Numerical Solution scheme

Aside from kinematic hardening and limited elastic anisotropy from joints, Kayenta is isotropic
and therefore the yield function depends only on principal stresses. An eigenvalue analysis is
avoided by casting the yield function in terms of stress invariants. The principal stress directions
(eigenvectors) are not needed to evaluate the yield function. For any isotropic elasticity model,
however, evolution of plastic response must allow for rotation of principal stress directions caused
by the elastic portion of the loading. Thus, the governing equations must be cast in incremental
tensorial form, requiring all six independent components of symmetric tensors to be passed to the
model. Careful numerical integration schemes [9] are required to ensure accuracy and conver-
gence.

This chapter begins with a description of how Kayenta is to be used within a host (finite-
element) code, followed by a discussion of the influence of material softening on field-scale sta-
bility (i.e., stability of the spatial finite-element solution, not stability of Kayenta’s internal time
integration algorithm). Next, Kayenta installation instructions are provided that describe the pub-
lic1 subroutines and memory requirements. Following a summary of plotable Kayenta output,
Kayenta’s time integration algorithm is briefly summarized.

Role of Kayenta within a finite-element program

Kayenta is designed for use in host codes (typically finite-element programs) that solve the
momentum balance PDE,

∂si j

∂x j
+ fi = rai, (8.1)

where si j is the spatial Cauchy stress tensor (denoted s

⇠⇠
spatial in Eq. (3.33)), x j is the spatial position

vector, fi is the body force per unit volume, r is the mass density, and ai is the material acceleration
that is related to the spatial velocity field by material time derivative

ai =
∂vi

∂ t
+

∂vi

∂x j
v j =

Dvi

Dt
=

✓

∂vi

∂ t

◆

X⇠
. (8.2)

1i.e., called directly from the host code.
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Here, X⇠ is the time-zero reference position vector, which serves to identify Lagrangian mate-
rial points. The spatial position vector x⇠ is related to the reference position X⇠ through the
deformation mapping function, such that the deformation gradient tensor is

Fi j =

✓

∂xi

∂Xi

◆

t
. (8.3)

The stress and velocity fields (as well as displacement or velocity boundary conditions) are known
at the beginning of each time step, so that application of Eq. (8.1) permits evaluation of the ac-
celeration field. In most host codes, the updated position of a material particle is computed to
second-order accuracy with respect to the time step Dt through application of

x⇠
n+1 = x⇠

n +

 

∂x⇠
∂ t

!n

X⇠

Dt +
1
2

 

∂

2x⇠
∂ t22

!n

X⇠

(Dt)2 (8.4)

or

x⇠
n+1 = x⇠

n +v⇠
nDt +

1
2

a⇠
n(Dt)2. (8.5)

Equivalently,

x⇠
n+1 = x⇠

n +v⇠
n+ 1

2 Dt, (8.6)

where v⇠
n+ 1

2 ⌘ v⇠
n +

1
2

a⇠
nDt. (8.7)

Different codes might differ in the details.2

To date, all installations of Kayenta have approximated the unrotated strain rate by the unro-
tated symmetric part of the velocity gradient defined in Eq. (4.3), evaluated at the half-step by
using the velocity field in Eq. (8.7). Kayenta integrates the unrotated strain rate to predict the un-
rotated stress at the end of the step, which must then be rotated into the spatial configuration by the
host code. As mentioned on page 44 (and clarified later in this chapter), optimizing the accuracy
of the spatial solution for problems involving massive material rotation requires the host code to
apply its un/rotation operations using polar rotation tensors that are consistent with the part of the
time step (beginning, half, or end) at which un/rotation operations are required.

Of course, once Kayenta and any other constitutive models in the problem have been applied
to determine stresses at the end of a time step, Eq. (8.1) may be integrated again to update the
acceleration field, thus launching a new timestep cycle.

2For example, material point method (MPM) codes typically solve the momentum equation on an overlaid grid.
The grid accelerations from the discretized equations of motion are mapped to particles (using standard FEM mapping
on the grid), where particle velocities are updated by integrating particle acceleration. Next, particle velocities are
mapped back to the grid to obtain grid nodal velocities for evaluating the velocity gradient needed by the constitutive
model. Particle positions are updated by mapping grid velocities to the particles and then integrating the particle
velocity through time [86].
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Spatial stability (mesh dependence/loss of strong ellipticity)

As rock deforms inelastically, the initial yield surface (lower curve in Fig. 4.17) evolves toward
— and is not permitted to evolve beyond — the limit surface (upper curve in Fig. 4.17). If the stress
reaches the limit surface, the rock has, in a loose sense, failed catastrophically. More correctly,
Kayenta has reached the limit of its applicability because large scale cracking and subsequent
loss in strength cannot be modeled locally at the constitutive level. Material softening generally
produces a change in type of the momentum equation, requiring intervention from the host code
to change its solution scheme appropriately (for further details, see page 96). In the GeoModel
predecessor to Kayenta, the state variable “CRACK” was a flag equaling 1.00 whenever a principal
stress (or I1) cut-off has been applied or 2.00 when the stress has reached the limit surface and can
harden no further; otherwise “CRACK” equals 0.0. In either case, a positive value of “CRACK”
marks the onset of softening. In the current version of Kayenta, the meaning of the “CRACK” flag
is in flux and should be regarded as a developer’s flag not of interest to users.

Because Kayenta comes equipped with its own criteria for failure, this model should not
be used with other fracture models such as a maximum principal stress criterion. Instead, the
“CRACK” flag should be queried by the host code to determine when it is appropriate to add void
(when pressure is tensile) or to apply discontinuous shear displacement element shape functions
(when pressure is compressive) or to apply any other appropriate response3 to material softening
that will ensure localization response that converges as the spatial mesh size is reduced. However,
since Kayenta’s treatment of material softening, along with its update and usage of the “CRACK”
flag, are under current development, host code owners should consult with the model developers
for guidance on proper implementation of material softening. Also see page 109.

If the host code fails to activate any special response when the “CRACK” flag becomes nonzero,
Kayenta will continue to run, but its predictions are suspect. Without a meaningful host-code re-
sponse to failure, Kayenta will handle the inelastic response at the limit state in a manner similar
to non-hardening plasticity (i.e., rather than properly softening down away from the limit state,
Kayenta will force the stress to dwell at the limit state). To summarize, Kayenta is intended to
model only the portion of material response that is appropriate to compute at the local constitu-
tive level. Kayenta sends flags back to the host code at the onset of softening (a non-local phe-
nomenon). The host code is responsible for responding appropriately to these flags by initiating
material softening.

3Chapter 5 describes a field-scale softening strategy that introduces a length scale based on Weibull perturbations
of the material strength field, which is especially appealing because (unlike so-called element death or cohesive zone
models) it can be easily justified physically. Specifically, softening results from sub-grid-scale flaw clustering, which
are expected to have a Weibull (or nearly Weibull) distribution in spherical loading conditions. Even if not Weibull-
distributed, the statistics and associated scale sensitivity of strength can be parameterized via standard laboratory-scale
experiments. Early preliminary investigations [7] have shown that spatial statistics in strength leads to very realistic
fragment patterns that, with inclusion of scale effects, are less mesh sensitive than purely deterministic theories.
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Kayenta files, subroutines, memory requirements, and model in-
stallation requirements

This section is a software requirements specification that must be followed by anyone who in-
stalls Kayenta into a host code.4 Kayenta is designed to be implemented into multiple host codes
without any revision of the source code. As described below, the model has three public5 subrou-
tines (KAYENTA_CHK, KAYENTA_RXV, and KAYENTA_CALCS). To support portability, Kayenta
conforms to Sandia’s Model Interface Guidelines (MIG) [24]. Therefore, the model presumes that
calculations entail three distinct phases, the first two of which are performed at start-up while the
last one is applied for every element at every timestep:

1. User input. Kayenta requires the host code to acquire user input values and save them into
a single array using the keywords and ordering listed in Appendix B. This property array
must be passed to the subroutine KAYENTA_CHK for “domain certification” (i.e., verifying
that input values fall within allowable ranges, as explained on page 143). Additionally, the
routine KAYENTA_CHK sets defaults for unspecified user inputs; this routine might even
change user-specified values if necessary to ensure self-consistency of material properties.

2. Storage. To be portable, Kayenta does not actually allocate storage for internal state vari-
ables (ISVs, also called “Extra Variables”) — this is the responsibility of the host because
data lay-out varies from code to code. Kayenta provides a list of storage requirements by
requiring the host code to call subroutine KAYENTA_RXV. This routine returns physical di-
mensions, initial values, plot keywords, and advection requirements for each internal state
variable. To use this routine, the host code loops over these “storage-request” lists that were
returned by KAYENTA_RXV to then actually allocate the storage, define plot options, and
initialize the ISV fields.6

3. Execution. Every cycle, KAYENTA_CALCS must be called to update the stress to the end
of the step. Detailed descriptions of the input-output arguments are provided below.

Kayenta must, upon occasion, relay messages to the user or terminate the calculation. Log
message protocols and bombing procedures vary among host codes. For portability, Kayenta fol-
lows MIG guidelines by calling subroutines LOGMES, FATERR, or BOMBED whenever it needs

4Any deviation from these model installation instructions (as well as any modification of Kayenta source code
itself) may result in loss of technical support. Model installers who believe that a deviation from these instructions is
warranted are encouraged to contact Kayenta developers.

5i.e., routines that are called directly from the host code. All other routines in Kayenta are private and should not
be called by the host. To serve codes that re-mesh, one additional public routine, KAYENTA_state, is available that
will repair advection errors.

6Historically, host-code developers have often opted to brute-force Kayenta’s internal variable arrays by writing
their own native internal variable allocation coding. To our experience, however, this short-term gain has invariably
been a poor decision in the long run. Doing this part correctly by looping over output from KAYENTA_RXV produces
very clean, compact, and easily maintained host-code wrappers that support a plug-and-play paradigm for new Kayenta
releases.
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to relay messages to the user, log fatal errors, or terminate calculations, respectively. These rou-
tines are not part of Kayenta source code. Because these actions require host-code responses that
vary from code to code, these routines must be written and maintained by the host-code architects.
Likewise, a routine called TOKENS (explained in MIG documentation and used only in the extra
variable request routine) is expected to pre-exist in the host code. Any host code that already sup-
ports MIG models will already have these MIG-utilities in their repository. Host code architects of
non-MIG-compliant codes may request sample MIG-utilities that they may customize to suit their
own code’s protocols for information passing and code termination.

Kayenta source code is available in both FORTRAN 77 and 90. To date, large-scale production
codes have used the F77 version to best ensure portability, so those routines will be described here.
The F90 routines, which are not significantly different, are generated from the F77 master files to
ensure consistency.

Arguments passed to and from Kayenta’s driver routine

The following list describes variables passed between the host code and Kayenta’s driver rou-
tine (KAYENTA_CALCS):

Input

• NBLK: The number of cells or finite elements to be processed. Parallel codes send only one
cell at a time (NBLK=1). Vectorized codes send more than one element at a time (NBLK>1).

• NINSV: The number of internal state variables for Kayenta.

• DT: The time step

• UI: the user-input array, filled with real numbers, as summarized at the top of the nomencla-
ture table in Appendix B and also summarized within the source code prolog itself.

• GC: Global constants

• DC: Derived constants

• SIG: The unrotated Cauchy stress tensor at time n. The six independent components of the
stress must be passed in the ordering {s11,s22,s33,s12,s23,s31}. Within the FORTRAN,
this array is dimensioned “SIG(6, NBLK)” so that the stress components for any given
finite element are in six contiguous memory locations.

• D: The unrotated strain rate tensor, preferably evaluated at time n+ 1
2 because Kayenta treats

the strain rate tensor as constant over the entire interval. Most codes approximate the strain
rate tensor as the unrotated symmetric part of the velocity gradient (see Eq. (4.3)). Compo-
nent ordering and contiguous storage are the same as for stress.
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• SV: the internal state variable array containing reals, as described in the nomenclature table
in Appendix B.

Output

• SIG: The unrotated stress tensor at time n+ 1. The component ordering is the same as
described above.

• SV: The internal state variable array (updated to time n+1)

• USM: Uniaxial strain (constrained) elastic modulus equal to H = K+ 4
3G. The host code may

use the USM output to compute an upper bound on the wave speed (
p

H/r , where r is mass
density) when setting the timestep.

These arguments require unrotation of spatial stress at time n, unrotation of the strain rate at
time n+ 1

2 , and rotation of the updated stress back to the spatial frame at time n+1. For problems
involving significant material rotation, this requires using three different polar rotation tensors [32].
Even for moderate rotation problems, it is unacceptable to use the rotation tensor evaluated at time
n+ 1

2 for all three operations [54, 56].

Plottable Output

In addition to the stress, any variable in the SV state variable array is available for plotting. The
plot keywords (and ordering of variables in the SV array) are listed in Nomenclature Appendix B.

As mentioned earlier, the “CRACK” flag may be plotted to visualize softening regions. The
“INDEX” flag may be plotted to locate regions that are deformed inelastically (the meaning of this
output varies to support code debugging; currently it is a flag that indicates what part of the yield
surface is active). To visualize regions that are currently deforming inelastically, the “SHEAR”
variable should be plotted.

The “SHEAR” variable is an informational output, equal to zero during elastic cycles and equal-
ing a measure of normality of the trial elastic stress rate during plastic intervals. Specifically, as
illustrated in Fig. 8.1, “SHEAR” ranges from zero when the trial stress rate is tangent to the yield
surface to unity when it is normal to the yield surface; an intermediate value of “SHEAR” indicates
oblique plastic loading relative to the yield surface. While “SHEAR” quantifies the plastic load-
ing direction relative to the yield surface, the internal state variable “DCSP”, which is the plastic
consistency parameter l̇

⇤, may be plotted as a measure of the magnitude or intensity of plastic
loading.

The “EQDOT” variable may be plotted to gain an overall sense of intensity of the current strain
rate. Small values of “EQDOT” correspond to relatively quiescent regions. Plotting “EQPS” will
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(a) (b) (c)

Figure 8.1. Meaning of the “SHEAR” output variable. This
calculation uses a von Mises yield surface. The strain rate remains
in triaxial extension for half of the calculation, which is why the
Lode angle (a) is initially constant at �30�. During this interval,
the stress reaches the yield surface and continues to push directly
against it, which is why SHEAR (c) jumps to and holds at 1.0.
Halfway through the problem, the strain rate direction is changed
in stress space [as indicated by arrows in (b)] to move the stress
toward triaxial compression. At the beginning of this transition,
SHEAR first jumps to 0.5 where the normal and tangential com-
ponents are equal, and moves back toward 1.0 as the tangential
component decays.
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show equivalent plastic shear strain, while “EQPV” gives plastic volume strain (and is roughly
equal to the porosity change from inelastic void collapse).

The stress invariant “I1” is three times the negative of pressure. “ROOTJ2” may be regarded
as a scalar measure of effective shear stress and is proportional to the radial coordinate of the stress
in the octahedral plane. The Lode angle, “LODE”, quantifies the angular location of the stress in
the octahedral plane, and it varies from 30 for triaxial compression to �30 for triaxial extension
(0 for simple or pure shear). If kinematic hardening is enabled, “BACKRN” quantifies the distance
that the origin of the octahedral profile has shifted in stress space.

The complete list of other (less useful) plotable output is in Appendix B.

Kayenta algorithm

Kayenta presumes that the strain rate is constant throughout the entire step, and the stress is
integrated as follows:

Rate independent (inviscid) part of the viscoplasticity equations

STEP 1 To guard against unpredictable host-code advection errors (or similar corruption of the up-
dated state from the last time step), apply a return algorithm to ensure the initial stress is on
or inside the yield surface.

STEP 2 Compute the nonlinear elastic tangent moduli appropriate to the stress at time n. When run-
ning the isotropic model, this step evaluates the shear and bulk moduli according to Eq. (4.9)
and Eq. (4.10) or Eq. (4.33) and Eq. (4.34). When running with the orthotropic joints option,
this step determines the seven independent elastic moduli for the orthotropic fourth-order
tensor (see [20]).

STEP 3 Apply Hooke’s law in rate form (ṡi j =Ci jkl ėkl) to obtain the elastic stress rate at time n.

STEP 4 Integrate the elastic stress rate using first-order differencing to obtain an estimate for the trial
elastic stress at the end of the step. Compute the invariants of this trial stress for substitution
into the yield function.

STEP 5 Evaluate the yield function at the trial elastic stress. If the yield function evaluates to a
negative number, the trial elastic stress is accepted as the final updated stress, and the inviscid
algorithm returns (i.e., go to STEP 18). Otherwise, continue.

STEP 6 To reach this step, the trial elastic stress state was found to lie outside the yield surface.
At this point, the time step is divided into an internally determined number of subcycles
(which may be increased by setting SUBX>0 or decreased by SUBX<0. All subsequent steps
described below this point apply to the smaller time steps associated with subcycles.
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STEP 7 Evaluate the gradients of the yield function for eventual use in Eq. (4.86).

STEP 8 Evaluate the flow potential gradients for eventual use in Eq. (4.99) and Eq. (4.97)

STEP 9 Evaluate the isotropic hardening coefficient h⇤
k

in Eq. (4.75).

STEP 10 Evaluate the numerator in the consistency parameter defined in Eq. (4.86).

STEP 11 Evaluate the denominator in the consistency parameter defined in Eq. (4.86).

STEP 12 Evaluate the Ga function in Eq. (4.79).

STEP 13 Apply Eq. (4.86) to obtain the consistency parameter.

STEP 14 Use forward differencing (within the subcycle) to integrate Eq. (4.75) and Eq. (4.79), thereby
updating the internal state variables, k and ai j. Similarly integrate Eq. (4.97) to advance the
stress to the end of the subcycle.

STEP 15 The above steps directly integrate the governing equations through the end of the subcycle,
so the updated stress will be in principle already on the yield surface. However, guard against
slight round-off and integration errors by applying an iterative return correction to place the
stress exactly on the yield surface.

STEP 16 Increment the subcycle counter, and save the partially updated inviscid internal state vari-
ables.

STEP 17 If subcycles remain to be evaluated, go to STEP 7. Otherwise, continue to STEP 18

Viscous part of the viscoplasticity equations

STEP 18 The previous set of steps govern computation of the equilibrium state. Now apply Eq. (7.22)
to compute the characteristic material response time.

STEP 19 Using the trial elastic stress corresponding to an update to the end of the time step, apply
Eq. (7.10) to compute the dynamic stress. Apply Eq. (7.15) to similarly compute the dynamic
values of internal state variables to account for rate sensitivity.

STEP 20 Save the values of the internal state variables into the state variable array.

STEP 21 STOP.

139



This page intentionally left blank.



Chapter 9

Software “confidence building” activities

This chapter describes progress towards Software Quality Assurance (SQA), which encom-
passes a broad range of activities including code maintenance, documentation, and (most impor-
tantly) code verification. “Code verification” is defined by the IEEE [47] as “formal proof of
program correctness” in the sense that the governing equations are numerically solved correctly
within a tolerable degree of accuracy. Model validation1 will not be discussed until Chapter 11.

We make no claims at this point that Kayenta software has been exhaustively verified. In
other words, we cannot state with absolute certainty that the governing equations presented in this
report are in fact solved correctly. One might challenge the Verification and Validation (V&V)
community to prove that “formal proof of program correctness” is even possible. Realistically, the
confidence one can place in the veracity of any model prediction can be based only on the extent to
which documented evidence suggests that the equations are solved correctly. It seems acceptable,
therefore, to speak of varying degrees of progress towards verification,2 or, more generally, varying
degrees of SQA. In this sense, Kayenta has undergone a higher level of SQA than is normally
applied to modern material constitutive models of comparable complexity.3 Even though we claim
that Kayenta’s verification and SQA status is above average, we do not assert that such activities
have progressed to the point where we consider the job “finished”. Here in this chapter, we aim
only to build confidence in Kayenta by summarizing some of the SQA activities that have been
applied to Kayenta to date (a comprehensive detailed discourse would fall well outside the scope
of this report).

Once a constitutive model is installed within a host code, it becomes only a single component

1Whereas “Verification” seeks to confirm that the equations are solved correctly without questioning their appropri-
ateness, “validation” compares model predictions against experimental data to determine whether or not the equations
themselves are indeed suitable for the application.

2Suppose, for example, that one constitutive model has been verified for both uniaxial strain and simple shear,
whereas another one has been tested only in uniaxial strain. If these are the only tests, neither model is “well verified,”
but the first one is certainly better verified.

3 From a practical (rather than philosophical) standpoint, the complexity of a model must be considered when
speaking about how well a model has been validated. With a given level of financial and computational resources,
solids models cannot be tested to the same level of certainty as fluids models. Conclusively demonstrating only first-
order accuracy of an anisotropic solid constitutive model would require more than twenty times the effort needed to
verify first-order accuracy of a simple fluids model (this follows because a general anisotropic stiffness tensor has 21
independent components, and therefore 21 independent strain paths would be required to conclusively verify accuracy;
moreover comprehensive testing for solids models requires coordinate invariance tests that are not needed for scalar
fluids models).
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of a much larger and different model (the finite-element code). Constitutive SQA should include
ensuring that the model can be installed and run in a variety of host codes, but verification of the in-
stallation is primarily a host code (not constitutive) responsibility. Constitutive SQA in the context
of larger-scale model integration is limited to providing adequate model installation instructions
(including operational constraints), delivering correct solutions to the constitutive governing equa-
tions, and ensuring that the model will, wherever feasible, “trap” invalid calling arguments (much
as a compiler “traps” IEEE errors such as division by zero).

Numerical schemes for solving field PDEs (such as Navier-Stokes equation or Maxwell’s elec-
tromagnetism equations) have received considerable attention in the V&V literature, while verifi-
cation of constitutive models has been relatively ignored. Constitutive models are sub-components
within field-scale calculations. As such, a partitioning of responsibility for SQA is needed. (As
an analogy, note that the quality assurance responsibilities for a turn-signal manufacturer must be
different from those of an automobile manufacturer.) Constitutive verification aims to build con-
fidence that the model will return correct solutions to the governing equations, presuming that the
host code sends inputs falling within the admissible domain for the model. SQA may addition-
ally include some checking of the inputs themselves, as long as doing so does not compromise
efficiency. When a host code sends inadmissible inputs (such as corrupted strain rates caused by
mesh entanglement, advection, or artificial viscosity errors), then correcting such errors is not the
responsibility of a constitutive modeler unless it can be proved by the host code developers that
such errors originated from constitutive model output errors.

Similarly, because Kayenta is a local constitutive model (i.e., because it does not solve space-
time PDEs), demonstrating convergence with respect to the spatial mesh is not a Kayenta veri-
fication responsibility. It is well known that mesh dependence can occur when local constitutive
models permit material softening. Therefore, we regard suppression of softening as an implicit
software requirement specification unless our customers (finite-element code teams) have imple-
mented the code infrastructure that is needed to properly handle the change in type of their gov-
erning PDEs that occurs upon softening. Unless such enhancements are made at the host code (not
constitutive) level, Kayenta’s applicability domain is limited to predicting only the onset of catas-
trophic failure, not its subsequent evolution into macroscale fragments and fractures. If host code
enhancements are implemented as described on page 109, then Kayenta’s applicability domain is
marginally expanded into the softening realm, but it must be understood that nonphysical mesh
sensitivities might still be present in certain calculations. In short, models for softening continue
to be an active research area.

In the lexicon of Ref. [57], “static” SQA testing is a prerequisite to the verification process that
encompasses tests that are performed without running the code. To date, Kayenta has undergone
the following static SQA:

• Independent4 line-by-line review of the source code. The source code was aggressively

4Here, “independent” (which is not synonymous with “unbiased”) means that the source code has been inspected
by an individual who has not written the code. Kayenta code inspection was first performed by Brannon (the first
author of this report) upon joining this modeling effort at the beginning of fiscal year 2003-04. Subsequent new code
revisions and enhancements have been reviewed by the member of the Fossum-Brannon team who did not write the

142



inspected to locate and remove possibilities for IEEE errors (e.g., trying to take the ArcSin
of a number larger than unity,5 dividing by zero, etc.). Another goal was to confirm that the
equations being solved in the code were indeed the equations documented in this report.

• Model domain certification (preventing “Garbage In =) Garbage Out”). No function
or set of equations is well posed without a domain of applicability. The domain for Kayenta
includes constraints on run-time subroutine arguments (e.g., the backstress must be devia-
toric) as well as constraints on the input parameters (e.g., the bulk modulus must be posi-
tive). Except where computational efficiency would be degraded, SQA includes appraising
quality of both user input and run-time arguments sent from the host code. A new routine
(KAYENTA_CHK) was recently added to Kayenta that terminates calculations if the user-
input falls outside allowable ranges. Run-time testing of this routine is discussed in the next
section. Direct run-time testing of time varying subroutine arguments is computationally
inefficient, so Kayenta’s domain certification for variable calling arguments relies primar-
ily on our model installation instructions (page 134), which serve as software requirement
specifications that must be obeyed by the host code developers.

• Portability and version control. Kayenta has been designed such that it can be imple-
mented in multiple host codes without altering the source code, thus allowing Kayenta de-
velopers to maintain a single master version. A host code owner who faithfully obeys the
model installation instructions on page 134 may update Kayenta by simply replacing three
fortran files (posted on WebFileShare under keyword “Kayenta”) with the latest Kayenta re-
lease and then recompiling. Each Kayenta release is identified by a six digit code6 that prints
to the screen at run time. Kayenta has been compiled on multiple platforms (Sun, Dell, and
HP workstations or clusters running Linux and/or Windows) in multiple host codes (Alegra,
Presto, Pronto, JAS3D, and two independent drivers) using multiple commercial compilers
(gnu, pgf77, pgf90, and Compaq visual fortran). The source code compiles without warnings
when using stringent SQA options (such as -Wall -O3 in the gnu compiler).

• Model documentation. This report is the first publication that describes the numerical
algorithm, provides input definitions, and gives model installation instructions that describe
how SQA responsibilities are partitioned between the model and the host code.

• Technical support. Two stand-alone single-cell codes that exercise Kayenta under pre-
scribed strain and stress paths were previously available to help host (finite-element) code
owners verify their Kayenta installations and to assist in parameterization. One of these
drivers was geared towards code debugging, while the other was more for parameteriza-
tion. The best parts of these two drivers have now been absorbed into a unified and much-
expanded constitutive model driver called “MatModLab” [39]. Kayenta includes a “problem-
resolution” feature that generates a debugging file (kmm.barf) and terminates calculations
whenever unacceptable solution quality is detected. The debugging file may be emailed to
Kayenta team, who can import it into their driver to resolve the problem quickly.

new code.
5This can happen because of slight round-off errors, as in ASIN(1.0000001).
6The code’s build identification number is simply the release date in the form “yymmdd”. For example, “Kayenta

version 1.0 build 090217” was released in 2009 on Feb. 17.
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So-called “dynamic” SQA refers to tests performed by actually running Kayenta. Some of the
dynamic SQA activities to date are summarized here. A detailed documentation of all Kayenta
SQA would require a second report itself, so the following list should be regarded as simply an
overview. A small number specific examples will be given later.

• Model domain certification: The “KAYENTA_CHK” feature for checking quality of user
inputs was tested by confirming that Kayenta would abort when intentionally sent invalid
inputs. As explained below, the “kmmbarf” problem-resolution feature can often indirectly
trap invalid forcing functions (caused, for example, by mesh entanglement). However, the
responsibility for sending valid forcing functions to Kayenta remains the onus of the host
code, not Kayenta.

• Run-time monitoring of the solution quality: The problem-resolution (kmm.barf) feature
has been verified to (1) detect “Garbage Out” predictions such as negative plastic work, (2)
terminate calculations, and (3) write a debugging file that can be emailed to model developers
to determine whether the problem was caused by bad user input, bad arguments passed from
the host code, or a bug in the internal coding.

• Driver regression testing: Two stand-alone drivers are available for exercising Kayenta in a
homogenous deformation field.7 Considerable dynamic testing was performed using our re-
search (non-production) model driver that allows visualizing (and algebraically processing)
the output within Mathematica [99]. The other driver [75], which runs either from a com-
mand line or from an Excel front-end (see Fig. 9.1), is now also deployed in the WISDM
materials information database [44], allowing the predictions of Kayenta to be compared
directly against experimental calibration data. These drivers have been used to assemble a
suite of regression tests (hydrostatic loading, two types of shear loading, uniaxial strain, uni-
axial stress, biaxial plane stress, and numerous mixed load-unload problems using a variety
of input parameters), several of which are simple enough to admit analytical solutions for
verification purposes. The driver regression problems (15 problems to date) are all re-run
and inspected for undesirable changes whenever any change is made to Kayenta.

• Trend testing: Engineering judgement was used to ensure that solutions vary as expected
when parameters change. For example, Fig. 8.1 depicted a simple trend test in which analyt-
ical (exact) arguments could be used to prove that the “SHEAR” should equal 1.0 at the onset
of yielding and should dwell at 1.0 until the loading direction changes, after which it should
drop instantaneously to 0.5 and then asymptote to 1.0. Similarly, Fig. 7.3 and Fig. 9.9(b) con-
firmed that increasing Kayenta’s characteristic response time (see Eq. (7.22)) would indeed
produce the analytically predicted increase in the apparent strength of the material. These
tests were quite valuable because they allowed correction of a serious bug in an earlier ver-
sion of Kayenta where the response trend upon load reversal was clearly flawed. Trend and
robustness testing also demands that Kayenta must predict qualitatively reasonable trends
when subjected to deformations that exceed what is expected in applications (e.g., massively

7Stand-alone testing obviates many constraints and sources of non-constitutive errors in production finite-element
simulations (artificial viscosity, hour-glassing, time-step control, boundary-condition errors, code compilation and
run-time overhead, etc.).
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Figure 9.1. Screen shot of the MS Excel interface for
Kayenta’s material-model driver (MMD). This tool serves as
a reliable platform for exercising Kayenta under homogeneous de-
formations in a simplified host code architecture that is free from
solution corruption caused by unneeded finite-element code fea-
tures such as artificial viscosity, wave motion, contact algorithms,
etc.
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large elongations or pressures). For example, one problem in our driver regression suite
verifies that load/unload curves do indeed asymptote toward each other under hydrostatic
compression as sketched in Fig. 3.1 and verified in Fig. 9.1. Many other trend tests such
as these have been conducted, but (for lack of space) will not be described in detail in this
report.

• Symmetry testing: Consistent predictions were verified for identical loading applied in
different directions (e.g., uniaxial strain in the 1-direction compared with the 2-direction).
Consistency has also been tested for stress paths that intersect the yield surface at symmet-
rically equivalent points and for trial stress rates that by design do not produce tangential
stress rates.

• Extensive comparison testing:8 To date, Kayenta has been implemented in five finite-
element codes: (ALEGRA [11][100], PRESTO [58], JAS3D [8], EPIC [51], legacy PRONTO3D
[88]). A disturbing number of discrepancies (e.g., wave arrival times differing by as much
as 10% or peak stresses differing by almost an order of magnitude) have been identified by
comparing predictions for the same problem simulated by different finite-element codes. In
all but a few cases, these discrepancies have been traced to host-code-level (not constitutive-
level) errors (e.g., hour-glassing, handling of boundary conditions, artificial viscosity, time-
step control, etc.). Resolving such discrepancies is the model verification responsibility of
the host code owners, not Kayenta developers.9 The ability of Kayenta to reduce to sim-
pler models (e.g., nonhardening elastoplasticity) has often proved invaluable in determining
if a simulation problem originates from Kayenta or elsewhere in the host code. When, for
example, an undesired feature in a calculation persists even when Kayenta is run using sim-
plified parameters, a comparison test can be performed using the existing (presumably better
verified) independent version of that model within the finite-element code. We have, for ex-
ample, often compared a host code’s standard elasticity model with Kayenta run in an elastic
mode. In one instance where a discrepancy was traced to Kayenta, it was attributed to failure
of the code owner to follow Kayenta installation instructions (page 134). In a few cases,
comparison testing did indeed reveal Kayenta bugs that have since been corrected.

• Comparison with exact analytical solutions: Analytical solutions are not available to ver-
ify all of Kayenta’s features acting simultaneously. However, each Kayenta feature has been
individually verified to ensure that the promised quantitative material response is delivered
(e.g., accurate tracking of a specified porosity crush curve, exact apparent strengthening
in high rate loading, etc.). Depending on how the model parameters are set, Kayenta can
be idealized to a form for which some problems admit exact solutions. One example is
that of a linear Mohr-Coulomb material with an associative or a non-associative flow rule
in homogeneous loading. This class of problems was recently studied in a verification and

8Testing a numerical model in multiple host codes has been vital to our SQA process. If two codes agree, then no
conclusion may be drawn. If, however, two codes predict different answers, then at least one of them is not solving the
equations properly (or is not solving the same equations). Resolving such discrepancies has time and again expedited
bug identification and resolution.

9Incidentally, the disquieting frequency of bugs originating within the host code (not the constitutive model) reit-
erates the importance of specialized constitutive model drivers in constitutive model verification. Constitutive models
should not use finite-element codes as their primary verification platform.

146



benchmarking activity sponsored by the Defense Threat Reduction Agency (DTRA) through
its Advanced Concepts Technology Demonstration (ACTD) Project. These exercises were
part of a larger Verification and Validation (V&V) effort to increase confidence in prediction
of low-yield nuclear damage of underground (tunnel) facilities in jointed (in situ) rock mass.
The problems are designed to increase in complexity, by invoking additional physics in the
material models, until a level is reached that is deemed sufficient to model precision field
tests. This work will be described in further detail later in this chapter.

• Method of manufactured solutions (MMS): The MMS method of SQA entails first solv-
ing an inverse problem in which simple (e.g., quadratically varying) analytical time histories
for the response functions are substituted into the governing differential operators to obtain
(probably with the assistance of a symbolic mathematics program such as Mathematica) an
expression for the input functions that would produce the pre-specified response function
[57][77][80]. The numerical model is then sent this analytically determined input function
to verify that the original (pre-selected) response function is recovered. For Kayenta, using
MMS would require pre-selecting an analytically simple stress history to determine a strain
history to use as input in the numerical simulation. Solving the inverse problem is usually
prohibitively difficult because Kayenta’s differential operators are “branched” (one set is
used during elastic deformation, while another is used during plastic loading, and the inter-
nal state variable evolution equations themselves are coupled to the location of the stress on
the current yield surface). However, the inverse problem is tractable for extremely simplified
model parameters. In particular, one such exercise (developed as part of an ACTD verifi-
cation activity [84]) involved plane stress deformation of a non-associative Mohr-Coulomb
material. Strictly speaking, this verification problem was an instance of MMS because plane
stress entails specification of one of Kayenta’s outputs (the out-of-plane stress). An analyti-
cal solution was found for the strains required to produce plane stress results. These strains
were then used to drive Kayenta in a single element strain-controlled driver, where it was
confirmed that the predicted out-of-plane stress was zero (on the order of 10�5 relative er-
ror, which was comparable error in the prescribed strain table). Moreover, as illustrated in
Fig. 9.2, the in-plane stresses agreed with the analytical result (with similar relative error).
Details of the strain path and the analytical solution, which are available upon request, are
likely to be documented in a future journal article.

• Order-of-convergence:10 Time steps for complicated plasticity models often must be much
smaller than the time step used by the host (finite-element) code. Kayenta’s governing equa-
tions change upon reaching yield, and this transition typically occurs somewhere in the mid-
dle of the host code’s time step, which implies that the constitutive model must break the
step into elastic and plastic parts. Moreover, further subcycling within the constitutive model
is required to avoid “drift” of internal state variables into non-physical or inconsistent do-
mains.11 Subcycling complicates the meaning of a convergence study performed at the host

10The term “order-of-convergence” is preferred over “order-of-accuracy” because a converged solution is never
necessarily a correct solution. For example, if the return direction is incorrect in a classical predictor-corrector plas-
ticity scheme, then the algorithm will converge, but to the wrong result. Kayenta, by the way, does not use a return
method — it explicitly integrates the equations, using subcycling to assist with the change of governing equations
upon yielding.

11Of course, higher-order integration is also an option, but the total computational overhead sometimes exceed
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code level. Preliminary tests (see page 148) indicate that each subcycle within Kayenta is
first-order convergent, but (recall the last footnote on page 141) we have not yet performed
sufficient tests to consider this claim fully verified for a broad variety of load paths. Subcy-
cling in Kayenta has been massively improved over c2004 versions. Problems that formerly
took 2000 code steps to converge to an acceptable accuracy12 can now be run to the same
pointwise accuracy in only 10 apparent host-code steps (internally, Kayenta still might run as
many as ⇠2000 subcycle steps, but this improvement in allowable host-code step size is es-
sential in field-scale finite-element simulations). Options for implicit integration in Kayenta
(e.g., [36]) have not yet been fully developed.

Preliminary convergence testing

Let F(x) denote a fine-resolution solution curve (e.g., stress as a function of strain) correspond-
ing to N evenly spaced time steps. Let f (x) denote a coarser solution corresponding to n < N time
steps. In both cases, the continuous curves F(x) and f (x) are here regarded as piecewise linear
interpolations between discrete function values at the timesteps. Both curves are normalized by
the peak value of F(x).

The “integrated discrepancy” is defined
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1
2

(9.1)

The “pointwise discrepancy” is defined similarly except that the sum ranges to n instead of N:
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(9.2)

Fig. 9.4 shows that the basic algorithm without subcycling is first-order accurate. Fig. 9.4 and
Fig. 9.3 show that subcycling makes the solution nearly pointwise converged (discrepancy ⇡ 2�6)
even for inordinately coarse calculations of 1 to 3 time steps. This highly desirable behavior can
be of paramount importance when the model is run in finite-element codes that take large steps.

that of a well-written subcycling algorithm. Moreover, higher-order integration algorithms are notoriously difficult
to maintain when the governing equations themselves are being revised during parallel development of the physical
theory.

12At this stage in our ongoing verification process, it is adequate to use so-called “eyeball norm” assessment of
accuracy in which solutions are compared visually by plotting them together. This easy assessment method simply
bounds the discrepancy between two seemingly overlaying plots to be less than differences perceptible to the human
eye relative to the size of the graph.
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Figure 9.2. MMS verification of Mohr-Coulomb idealization.
This plot shows the motion of the principal in-plane stresses in re-
sponse to a prescribed strain path. The simulation (thin black line)
overlays the analytical solution (thick orange line), with computed
relative error in the predicted stresses on the order of known error
in boundary conditions.
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Figure 9.3. Subcycling test for hydrostatic loading. The or-
dinate is the first stress invariant I1 and the abscissa is volumetric
strain ev. Red is without subcycling. Green is with subcycling.
Black, F(x), corresponds to 215 time steps.
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Figure 9.4. Rate of convergence. The dashed blue line (shown
for reference) has a slope exactly equal to �1. As seen, subcy-
cling provides significantly reduced discrepancy when the number
of code steps is too small to have reached the convergence purely
from code stepping. Subcycling therefore allows the host finite-
element code to take large steps (usually dictated by a Courant sta-
bility condition if it is using an explicit solver), while the Kayenta
constitutive model automatically takes smaller steps if it detects
very large strain rates; the subcycling is needed to obtain reason-
able updates of internal variables and hence accurate predictions
of stress at the end of the host-code step.
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Verification: single-element problems (regression suite)

A single-element problem is one for which the stress and strain fields do not vary in space.
As summarized below, this section presents four different single-element load paths, each sepa-
rately solved using two different Kayenta parameter sets (associative and non-associative linear
Mohr-Coulomb — see Appendix B, page 268). To determine corresponding sets of material pa-
rameters for Kayenta, the linear Mohr-Coulomb parameters were used to create simulated data
pairs for the limit state and plastic potential functions. Following the instructions in Appendix A,
Kayenta was then fitted to these data pairs to determine the limit-state parameters Y, a1, a2,
a3, a4 and non-associative material parameters {YPF, aPF

2 , aPF
4 }. The compaction parameters

{R, RPF , p0, p1, p2, p3} were selected such that no compaction occurred over the stress range
specified for the load paths. Likewise, hardening and rate dependence were disabled. Results are
summarized in Fig. 9.5 through Fig. 9.8.

epsz

epsz

sigx=0

sigy=sigx
sigx

epsy=0

TXC0
Point sigx=sigy epsz

1 0 0.000000
2 0 0.005000
3 0 0.003274

TXC20
Point sigx=sigy epsz

1 0 0.000000
2 20 0.000310
3 20 0.005000
4 20 0.002060

RTX100
Point sigx=sigy epsz

1 0 0.000000
2 100 0.001548
3 100 -0.005000
4 100 -0.002295

PSTRN
Point epsz

1 0.000000
2 0.010000
3 0.008391

• Simple load paths clearly demonstrate
basic model response

• Run for both full and partial associativ-
ity

• Triaxial Compression

– Activates compression meridian

– Same load path as a real lab test

• Reduced Triaxial Extension

– Activates extension meridian

– Same load path as a real lab test

• Plane Strain

– Activates meridians at Lode an-
gle(s) (triaxiality) between com-
pression and extension
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(a)

(b)

Figure 9.5. Single Element Verification Results, Uncon-
fined compression. Exact (black) solutions compared with alegra
Kayenta simulation (pink). (a) lateral strain vs. axial strain (b)
Stress vs. strain.
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(a)

(b)

Figure 9.6. Single Element Verification Results, 20 MPa tri-
axial compression. Exact (black) solutions compared with alegra
Kayenta simulation (pink). (a) lateral strain vs. axial strain (b)
Stress vs. strain.
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(a)

(b)

Figure 9.7. Single Element Verification Results, Reduced tri-
axial extension. Exact (black) solutions compared with alegra
Kayenta simulation (pink). (a) lateral strain vs. axial strain (b)
Stress vs. strain.

155



Table 9.1. Mohr-Coulomb Parameters for single-element ver-
ification testing

Parameter(material Properties Symbol Associative Non-associative
Young’s Modulus E 31.0 GPa 31.0 GPa
Poisson’s Ratio n 0.26 0.26
Friction angle F 29� 26�
Dilation angle w 29� 14�
Cohesion S0 15.7 MPa 15.7 MPa
Dry bulk density r 2.34 MPa/m3 2.34 MPa/m3

(a)

(b)

Figure 9.8. Single Element Verification Results, Plane Strain.
Exact (black) solutions compared with alegra Kayenta simulation
(pink). (a) lateral strain vs. axial strain (b) Stress vs. strain.
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Discussion

In Fig. 9.8, predictions of Kayenta overlay the analytical results.13 Though not yet proved con-
clusively, we contend that the slight discrepancy apparent in Fig. 9.5 and Fig. 9.6 arises not from
constitutive model errors, but instead from host code errors in the handling of stress boundary con-
ditions. The fully strain-controlled problem (Fig. 9.8) exhibits no significant solution discrepancy.
However, moderate error is apparent in Fig. 9.5 and Fig. 9.6, which involve two stress boundary
conditions (the lateral stresses). Like most constitutive models, Kayenta takes strain rate as input
and returns updated stress as output. If the host finite-element code handles stress boundary con-
ditions improperly, then it will have slight errors in the strain rate that it sends to Kayenta, thereby
causing predictions to deviate slightly from analytical solutions. Such errors are not uncommon
when dynamic finite-element codes are used to attempt to simulate homogeneous deformations.14

To reiterate, we believe boundary condition errors in the host code (not Kayenta) are responsible
for the solution errors, and we anticipate re-running these simulations in a true constitutive model
driver to verify this claim.

Other single-element tests

Whenever the source code is changed, we perform approximately 20 single-feature single-
element verification checks for each of our regression tests performed under loading that is simple
enough to admit analytical solutions.

Fig. 9.9(a) depicts results from a hydrostatic loading simulation in which plastic volumetric
strain (EQPV) is plotted against pressure (I1/3). The thick yellow curve in Fig. 9.9(a) is the crush
curve [Eq. (4.69)] determined independently by user specified values of Kayenta parameters p1,
p2, p3. The predicted volumetric strain ė

p
v (black line in Fig. 9.9(a)) is verified to remain zero until

the pressure reaches the crush curve, after which it drops along the crush curve as it should. The
stress-strain curve (inset in Fig. 9.9(a)) unloads correctly to the user-specified peak strain parameter
p3. For non-hydrostatic loading, we have verified (undocumented trend-test) that shear-enhanced
pore collapse causes inelasticity to commence prior to the pressure reaching the crush curve.

Fig. 9.9(b) simultaneously verifies Kayenta’s ability to predict an apparent increase in strength
under dynamic loading and its ability to predict different strengths in triaxial extension vs compres-
sion. In that problem, pressure dependence of yield was suppressed and the TXE/TXC strength
ratio was set to 1/2, resulting in a tensile strength half as large as the compressive strength.15

13Precisely quantifying verification error lags far behind other more important constitutive SQA priorities, so we
will be satisfied here and throughout this chapter with assessing agreement between computed and analytical results
via a so-called “eyeball metric”, where the error is nebulously bounded by what can be perceived visually, given the
plot size.

14The only way to ensure a precisely homogeneous deformation in a dynamics finite-element code is to bypass
solution of the momentum equation. More correctly, homogeneous loading requires a body force f⇠ identically equal
to particle acceleration a⇠, making the momentum equation trivial.

15The TXE/TXC strength ratio applies to TXE and TXC states at the same pressure. When pressure dependence of
yield is allowed, the TXE peak in a verification test like this will not and should not be 1/2 the magnitude of the TXC
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(a) (b)

Figure 9.9. Other single-element tests. (a)Crush curve and hy-
drostatic loading verification. (b) Rate dependence TXE/TXC ra-
tio verification for triaxial load/unload.

Verification: Hendren & Ayier pressurized cylinder

The problem depicted below, solved for subcases of associative and non-associative flow, in-
volves a circular tunnel in a Mohr-Coulomb material loaded in a plane strain configuration. A
DTRA contractor provided the analytical solutions. The material parameters are the same as those
used in the previous verification problems.

peak.
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a

r
p(t)

time, t

p(t) 150 MPA

Geometry
Tunnel radius a 1 m 1 m

Far field radius b 10 m 10 m

Loading
Internal pressure pa 1 m 1 m
Far field pressure pb 0�50MPa 0�150MPa

The results in Fig. 9.10 show that Kayenta solutions agree with analytical results. Though
not confirmed conclusively, the very slight discrepancies are hypothesized to result from differ-
ent strain definitions used in Kayenta and the analytical solution (or possibly host code traction
boundary condition issues similar to those discussed earlier).

Elastic free-field wave form (finite-element verification)

This section describes a field-scale test for verifying installation of Kayenta in host finite-
element codes. As emphasized earlier, verifying a constitutive model is distinct from verifying
its implementation within a finite-element code. After a constitutive model becomes one of many
components within a much larger finite-element model, the potential sources of solution error
expand to now include boundary conditions, artificial viscosity, and other aspects of the host code’s
method of solving the partial differential equation that governs momentum balance.

As indicated in Fig. 9.11, a time varying velocity (identical to the one later discussed on
page 207) was applied at the boundary of a spherical cavity (radius 204 m). Kayenta’s yield
features were disabled to allow predictions for the velocity at the outer radius (470 m) to be com-
pared with an analytical elasticity solution.16 Implementations of Kayenta in two finite-element
codes were tested. One code was unable to reproduce the correct response because of bugs in roller
boundary conditions. Fig. 9.12 demonstrates that the second code (JAS3D) was capable of repro-
ducing the analytical solution well enough to suggest that Kayenta is performing correctly. While
the moderate solution error might be attributable to the analytical solution’s presumption of small

16Aldridge’s analytical solution [2] is expressed in terms of integrals that are evaluated numerically in the frequency
domain using independent software provided by Aldridge.
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(a)

(b)

(c)

Figure 9.10. Hendron & Ayier verification problem. Exact
(dash) solutions compared with alegra Kayenta simulation (solid).
(a) Tunnel closure vs. far-field pressure (b) Stress components vs.
normalized range, (c) strain components vs. normalized range.
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Figure 9.11. Spherical cavity geometry.

strains, further study (by the code owners, not Kayenta developers) is warranted to determine if the
solution errors result from under-integration, or some other aspect of the finite-element model such
as artificial viscosity (both codes’ solutions were strongly affected by artificial viscosity — default
settings for artificial viscosity were insufficient to reproduce the analytical results). This elasticity
verification problem is revisited and generalized in the plasticity validation test on page 207, where
code predictions are compared with data.

Softening verification and validation

Softening and failure is a relatively new capability within Kayenta. As such, the softening and
failure implementation is still under development, and its verification and validation is incomplete.
This section summarizes only some basic trend testing.

The softening capabilities of Kayenta should be used only in conjunction with additional mea-
sures taken within the host code to mitigate mesh sensitivity associated with the change in type of
the governing equations that occurs upon the onset of softening. As discussed in Chapter 5 and
illustrated in Fig. 9.13, one means of mitigating mesh dependence allows development of localized
failure by introducing statistical variability and scale effects in strength.

When statistical uncertainty is incorporated in a simulation, verification and validation testing
becomes considerably more difficult since one must run a statistically significant number of sim-
ulations to check for convergence of results toward an analytical distribution function. One such
study, summarized in Fig. 9.14, used the FAILSTAT user control parameter (see page page 230)
to verify that the onset of failure under nominally homogeneous loading in spherical tension was
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Figure 9.12. Finite-element vs. analytical/numerical elastic
wave velocity at 470 meters from a velocity spherical cavity
source at 204 meters.
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Figure 9.13. Reduced mesh dependence and improved accu-
racy in dynamic indentation (tungsten carbide sphere impact-
ing SiC-N ceramic at 500 m/s). All simulations show intact mate-
rial at the same moment in time, but at three mesh resolutions. All
use the Kayenta damage model with the same median properties.
Simulations in the bottom row merely allow the material proper-
ties to deviate from the median based on experimental evidence for
aleatory uncertainty and size effects.
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indeed consistent with the user specified failure line in Weibull space. The ordinate in a Weibull
plot is the indicated transformation of the complementary cumulative probability Ps which may be
interpreted as the probability the sample is safe at the specified stress level. The abscissa is the
log of the stress normalized by the median failure stress. Fig. 9.14 also shows a very light level of
validation by illustrating that observed deviations of measured strength data from a Weibull line
are finite sampling effects consistent with similar deviations in finite sampling of exactly Weibull
distributed data.

(a)

(b) (c)

Figure 9.14. Reduction in sampling error with number of
data points. (a) compares experimental data against numerically
generated failure strengths that are exactly Weibull distributed with
the same Weibull modulus. (b) and (c) show simulated data for
the onset of failure (using the “FAILSTAT” control parameter) for
three mesh resolutions to demonstrate that the failure statistics are
mesh insensitive and approach the Weibull distribution as the num-
ber of realizations is increased.

Users should always assess believability of their simulations by performing mesh sensitivity
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analysis. This verification and validation practice is even more essential in any softening or failure
simulation. Accounting for statistical variability and scale effects appears to be necessary for ob-
taining realistic predictions of material failure. However, in the interest of full disclosure, it should
be noted that variability and scale effects are not sufficient to ensure mesh insensitive results. Our
simulations of Brazilian failure (see Fig. 5.8) produced failure statistics having trends consistent
with laboratory data, but the quantitative median strength was found to be mesh dependent.

Verification of Accumulated Damage Framework

This section explains the verification procedure for the new strain-to-failure damage frame-
work. It is a collection of verbatim or paraphrased excerpts from the thesis [87] by M. Swan.

Any constitutive model, no matter how long it has been in use, should undergo regular verifi-
cation and validation testing. Verification, in this sense, refers to the act of ensuring that the model
has been correctly implemented and connected to the host code while validation ensures that the
model’s predictions match experimental observations. The importance of verification testing for
all usage conditions cannot be overstated. Verification testing proves that a model’s predictions
can be trusted for the specific usage scenarios where the constitutive assumptions are met. How-
ever, when a model is not implemented correctly, its results cannot be trusted; the only way to
build confidence in a model is to do verification testing. Ideally, verification testing is done by
using the constitutive equations to derive an analytical solution and compare that to the computed
approximation to make certain that the model is behaving appropriately. Even when analytical
solutions are not tractable, verification testing is applied to confirm expected trends in the results
and appropriate numerical behavior such as convergence and stability.

For this research, an integral part of which is to enable fast prototyping of recently devel-
oped fracture models with linear accumulation of damage, verification is of the utmost importance
as this research lays a foundation for future models to be implemented. Specifically, the new
strain-to-failure damage framework (along with the three initial models to be included: the con-
stant equivalent-strain-to-failure (CESF), Johnson-Cook [50] (JC), and Xue-Wierzbicki [95] (XW)
fracture models) is being implemented into Kayenta, a computational framework for generalized
plasticity models. Kayenta was a natural choice for this research as it is already part of numerous
codes in use by private companies and government laboratories domestically as well as abroad.
Because Kayenta is already in daily use by many researchers and is installed on many clusters,
some of them frequently utilizing thousands of processors per simulation, these models can be im-
plemented and evaluated in large-scale applications with very little time spent on the model/host
code interface. However, before running simulations with millions of elements, it is necessary to
do extensive single-element testing.

Kayenta’s primary benchmarking and single-element testing framework is called MatModLab
[39]. MatModLab is a flexible, easily extensible framework written in Python that supports a user-
defined mixture of stress and strain control, as well as a user-defined electric field (for ferroelectric
and piezoelectric models). Because of the great flexibility and ease of use of MatModLab, it is
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adopted in this research to verify the implementation of these three fracture models into Kayenta.
In the case of the JC and XW fracture models, it is very important to maintain proportional loading
along a constant stress triaxiality and Lode angle (which corresponds to the set of stress states
falling on a straight line passing through the origin in Haigh-Westergaard principal-stress space).
Because the verification problems that we are looking at involve softening (loss of strength and
stiffness), it is very difficult to maintain proportional loading throughout the simulation while
maintaining a nonzero strain rate because of the collapsing limit surface.

Given that constitutive models are invariably written such that strain or strain increment is the
input, with updated stress and internal variables being the outputs, MatModLab can iteratively
solve an inverse problem to determine the strain increments required to achieve a prescribed stress
or stress increment. In the verification plots to follow, it will be seen that MatModLab performs
well in prescribed-stress proportional loading cases of triaxial extension, triaxial compression, and
pure shear. However, maintaining proportional loading for stress states that are not in the preceding
list is much more difficult for specific values of stress triaxiality. Artifacts from this shortcoming
of MatModLab (not Kayenta or the implementation of the fracture framework) can be identified
by noise in the EQPS value at a given COHER value. Fig. 9.18 (which will be shown later) depicts
this instability well as all the failure strain realizations from the single element tests for the CESF
model should be at an intersection of the grid lines representing the analytical solution.

Table 9.2. A list of values used to parameterize the models for
the verification plots. The fracture models all used parameters
published in Ref. [95]. All values in MKS.

Material Parameters for Al 2024-T351
von Mises K G Y

71.5⇥109 28⇥109 283⇥106

CESF e

f

0.21
JC Fracture D1 D2 D3 D4 D5

0.13 0.13 -1.5 0.0 0.0
XW Fracture D1 D2 D3 D4 n

0.87 1.77 0.21 0.01 0.153

The verification tests in this chapter are analyzed in much the same manner as the laboratory
tests used to calibrate the Xue-Wierzbicki model [95]. Also, these analyses use the user inputs that
Wierzbicki proposed for Aluminum 2024-T351 and are included in Table 9.2. In particular, most
of the verification tests in this chapter are performed on states of plane stress since Wierzbicki
states that all of his specimens failed in states of plane stress. The primary measurement from a
given simulation or experiment is the equivalent plastic strain at failure. Wierzbicki [95] makes the
assumption that all strains (volumetric and deviatoric, elastic and plastic) are plastic, but classic
fracture models (e.g., the Johnson-Cook [49] and Wilkins [97] fracture models) use only the devi-
atoric part of the plastic strain to compute the equivalent plastic strain. Because of this precedent,
the Kayenta implementation of the three fracture models will be based on the equivalent deviatoric
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plastic strain.

Equivalent strain at failure is often plotted against the two most likely independent variables,
namely the stress triaxiality and the Lode parameter. These two values loosely represent J2and J3
dependence, respectively. While the dependence of fracture on J2is well known, current publica-
tions are increasingly reporting that J3 dependence is nonnegligible for fracture prediction.

Though some research efforts using servo-controlled axisymmetric loading have shown promise
in achieving controlled movement of the stress state through stress space [18], triaxiality and the
Lode parameter are difficult to keep constant (as required for proportional loading) during labora-
tory tests. Because of this, the averages of both the triaxiality and Lode parameter are computed
(in both the experiment and simulated analysis) through an equivalent-strain-weighted average:17

havg =
1
e

f

e

f
Z

0

hde (9.3)

xavg =
1
e

f

e

f
Z

0

x de (9.4)

The XW and the quasi-static, isothermal JC fracture models both assume proportional loading
to failure for the analytical solution to be valid. As Wierzbicki and others have used the strain-
weighted average technique to parameterize the models, we will use it to include the effects of
slight nonproportional deviations in loading for the single-element tests.

In many of the verification figures to follow, there is a comparison of the effect of k on the
accuracy of the fracture prediction. As discussed earlier, k controls how quickly the material
loses strength; low values of k dictate that softening proceeds slowly while large values implies
near-instantaneous softening. The gradual nature of the loss of strength calls into question when,
precisely, a material transforms from intact to fractured. The upcoming figures and discussion
compare the value of plastic strain when COHER= 0.5 with the failure strain e

f in the three frac-
ture models. For each single-element test reported in the upcoming figures, there are three points
that convey the range over which the material is softening. As the loss of strength occurs over
relatively few time steps, we use a linear interpolation of the independent variable COHER to de-
termine the equivalent plastic strain at exact values of coherence. Time step size has been reduced
to help in minimizing errors from the linear interpolation, but some small amount of error still
exists.To generate plane stress states, the ratio of the nonzero stresses was determined by realizing
a distribution of equally spaced angles ranging from [p/4,5p/4] and using each angle realization
f in

s1

s2
=

cosf

sinf

(9.5)

This gives a ratio of unity for both p/4 and 5p/4, which correspond to biaxial tension and
biaxial compression, respectively (see Table.(2.1), in [87]). Because the material is isotropic, it is

17In Eq. (9.4), (x ) is the deviatoric state parameter and not to be confused with the shifted stress used in the other
parts of the document. (h) is a measure of triaxiality.
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not necessary to generate angle realizations for the full circle. However, the framework has been
tested extensively to verify that material isotropy is maintained. For states of plane stress with the
ratio of the nonzero stresses as defined above, the stress triaxiality h is given by

h =
cos(f)+ sin(f)

3
q

1� 1
2 sin(2f)

(9.6)

As seen in Fig. 9.15, stress triaxiality h is nearly linear with respect to f . However, the slight
nonlinearity (especially at the extremes) will produce slightly nonuniform spacing in triaxiality
realizations when the angle f is sampled uniformly. This accounts for the minor spacing irregular-
ities in many of the upcoming figures.

The root-mean-square error (RMS error or the standard deviation of error) is presented as a
quantitative method to determine the accuracy of the framework. For each triaxiality realization,
a single element simulation was performed. The analytical value of e

f (as determined by the
triaxiality realization) is compared with the simulated value of e (EQPS) when COHER = 0.5.
Thus, the RMS error encompasses the errors introduced by the proportional stress implementation
of MatModLab as well as the fracture framework error.

Figure 9.15. A comparison of triaxiality versus proportional-
ity angle for plane stress states.
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Constant Equivalent-Strain-at-Failure Verification

The scatter evident in Fig. 9.16, where k = 5, is caused by the previously mentioned diffi-
culty of maintaining proportional loading for those particular values of the Lode parameter. When
k = 50 the accuracy and precision of predicted equivalent plastic strain at fracture are much in-
creased, giving excellent agreement with the analytical solution (in this case e

f = 0.21, shown by
the black line) considering that, during the loss of strength in prescribed stress simulations, strain
rate increases dramatically. The RMS error between the analytical solution and the EQPS values
when COHER= 0.5 and k = 50 in Fig. 9.18 is 0.000059, or approximately 0.03%.

This model is a very good indicator of the overall accuracy of the fracture framework, especially
as it is a simple model without peaks or cusps in e

f versus h and x space.

As previously mentioned, the triaxiality realizations were generated by varying the angle f in
the plane stress (s2 vs. s1) space. As f is varied, not only does triaxiality change, but the Lode
parameter varies as well. Therefore, Fig. 9.16 and Fig. 9.17 show variation of strain-to-failure with
respect to both triaxiality and the Lode parameter.

Johnson-Cook verification

As seen in Fig. 9.19, Fig. 9.20, and Fig. 9.21, the JC fracture model verification results are
similar to those of the CESF model. The same difficulties in maintaining proportional loading
(and the corresponding scatter in predictions) are encountered, particularly for low values of k.
The single-element tests and the analytical solution agree within a standard deviation of 0.0032.
As the e

f value varies with respect to h , this error can be approximated as 1.0% assuming an
average e

f value of 0.3. As it is necessary for the new code to be considered well-verified for these
problems, the analytical solution (black line in Fig. 9.19) lies within the range of EQPS between
COHER = 0.75 and COHER = 0.25 for the entire domain of interest. This test of the quasi-static,
isothermal JC model shows that, for a more complicated model with h dependence, the framework
can still predict failure close to analytical solution.

Xue-Wierzbicki Verification

The XW model posed some challenges to the verification framework. While the form of the
fracture locus in h space is functionally similar to that of the JC model, the coefficients in the
exponential are much larger and predict unreasonably high fracture strains for Lode angle param-
eters extremely close to +1 or �1 (see Fig. 9.23; this accounts for the anomalous strain spikes in
Fig. 9.22).

In the verification realizations in Fig. 9.22(a), Fig. 9.22(b), and Fig. 9.24 the cusps of the
analytical solution are difficult to reproduce. This is due, in part, to the averaging process (see
Eq. (9.3) and Eq. (9.4)) to determine the values of h and x to plot the computed EQPS against.

169



(a)

(b)

Figure 9.16. A comparison of accuracies of equivalent plastic
strains (EQPS) at failure for different values of k using the constant
equivalent-strain-at-failure fracture model.(a) k = 0.5. (b) k = 50.
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(a)

(b)

Figure 9.17. 3D Comparison of equivalent plastic strain (EQPS)
at failure for different values of k versus strain-averaged triaxiality
and Lode parameter using the constant equivalent-strain-to-failure
fracture model.(a) k = 5. (b) k = 50.
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Figure 9.18. This plot demonstrates the limitations of MatMod-
Lab in maintaining proportional loading for certain values of h and
x (with k = 50). However, for verifying the accuracy of the frac-
ture framework, the results are very good for all points displayed
(the RMS error is approximately 0.03%).
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(a)

(b)

Figure 9.19. Comparison of accuracies of equivalent plastic
strains (EQPS) at failure for different values of k verses strain-
averaged triaxiality using the Johnson-Cook fracture model.(a)
k = 0.5. (b) k = 50.
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(a)

(b)

Figure 9.20. 3D Comparison of equivalent plastic strain (EQPS)
at failure for different values of k versus strain-averaged triaxiality
and Lode parameter using the Johnson-Cook fracture model.(a)
k = 5. (b) k = 50.
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Figure 9.21. This plot demonstrates the limitations of MatMod-
Lab in maintaining proportional loading for certain values of h and
x (with k = 50). However, for verifying the accuracy of the frac-
ture framework, the results are very good for all points displayed
(the RMS error is approximately 0.93%).
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The bulk of the cause of the discrepancies at the cusps is the linear accumulation of damage with
slight deviations in h and x . This difficulty is reflected in the RMS error (error = 0.027) between
the realizations and the analytic solution. However, the EQPS error goes down to 0.0028 when
values on the cusps (e f > 0.5) are neglected.

Verification for the XW model at stress triaxialities below �1
3 is entirely academic as the model

assumes a fracture cutoff at h = �1
3 . As this is primarily a verification for the strain-to-failure

framework, this region was included to push the limits of reasonable EQPS values at fracture for
highly specific stress states.
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(a)

(b)

Figure 9.22. Comparison of accuracies of equivalent plastic
strains (EQPS) at failure for different values of k using the quasi-
static, isothermal Xue-Wierzbicki fracture model.(a) k = 0.5. (b)
k = 50.
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(a)

(b)

Figure 9.23. 3D Comparison of accuracies of equivalent plas-
tic strain (EQPS) at failure for different values of k versus strain-
averaged triaxiality and Lode parameter using the Xue-Wierzbicki
fracture model. (a) k = 5. (b) k = 50.
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Figure 9.24. For proportional loading, the plotted dots are ex-
pected to lie on the gridlines. Clearly, this plot demonstrates the
limitations of MatModLab in maintaining proportional loading for
certain values of h and x (with k = 50). However, for verifying
the accuracy of the fracture framework, the results are very good
for all points displayed (the RMS error is approximately 0.022%).
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Thermo-Kayenta Verification

We now review the results of simulations using Thermo-Kayenta and verify those results
against identical simulations run using the Johnson-Cook plasticity model. Two types of verifi-
cation tests were run: single element simulations using uniaxial, isotropic, and isochoric displace-
ment controlled strain paths and a multi-element Taylor impact simulation.

All single element Johnson-Cook simulations were performed by Joseph Bishop on SNL’s
ALEGRA using identical Mie-Grüneisen equation of state subroutines while the single element
Thermo-Kayenta simulations were performed in Prof. Rebecca Brannon’s stand alone material
driver, MED. Both the Johnson-Cook and Thermo-Kayenta Taylor impact simulations were per-
formed in LS-Dyna.

In the following simulations, the following material properties were used in the models indi-
cated:

A B C m n T0 Tm
90 MPa 292 MPa 0.025 1.09 0.31 298 K 1356 K

Table 9.3. Material properties used in the Johnson-Cook flow
model

K G A1 R H T1
137 GPa 53.0 GPa 112.5 MPa 22.5 MPa 750 Gpa -

Table 9.4. Material properties used in Thermo-Kayenta

r0 c s1 g0 cv
8960.0 kg/m3 - 1.5 1.99 383.0 J·kg/K

Table 9.5. Material properties used in the Mie-Grüneisen equa-
tion of state

Isotropic Deformation

Since Thermo-Kayenta, as does SNL’s installation of Johnson-Cook plasticity in ALEGRA,
presumes plastic incompressibility, comparison of isotropic deformation is used to verify calcu-
lations and installation of the equation of state in Thermo-Kayenta. For each of the following
comparisons, the following prescribed volumetric strain path was used:
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Figure 9.25. Prescribed isotropic strain path for Thermo-
Kayenta.

The results, shown in Figure 9.26, show a high level of agreement between the two models,
which is not surprising since both use identical Mie-Grüneisen equation of state subroutines.
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Figure 9.26. Isotropic deformation - comparison of mate-
rial response. Comparison of Thermo-kayenta with ALEGRA for
isotropic deformation. (a) Energy. (b) Pressure. (c) Pressure Vs.
Volumetric strain. (d) Temperature.
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Isochoric Deformation

In the previous comparisons, the response of the equation of state dominated the material re-
sponse because of the isotropic nature of the deformation. In the following comparisons, an iso-
choric deformation is compared and the strength model will dominate the results. Isochoric defor-
mation is also a good indicator if the deviatoric energy is being updated properly. The following
strain path was used in each simulation:
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-0.0005

 0
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ε

ε11
ε22, ε33

Figure 9.27. Prescribed isochoric strain path for Thermo-
Kayenta.

In the following pages, the following features of Thermo-Kayenta will be compared with sim-
ulations run in ALEGRA through the same strain path. Each feature is enabled by adjusting the
previously given parameters as indicated.

• Elastic response, A = 1090 MPa

• Yield, B = 0 MPa, C = 0, Tm = 1090 K

• Yield with thermal effects, B = 0 MPa, C = 0

• Yield with thermal and hardening effects, C = 0

• Yield with rate effects, B = 0 MPa, Tm = 1090 K

We will begin, however, with a comparison of each of the separate features in Thermo-Kayenta.
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In Fig. 9.28, hardening, thermal, and rate effects on yield in Thermo-Kayenta are compared.
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Figure 9.28. Comparison of features in Thermo-Kayenta for
isochoric deformation.

The following trends are observed in Fig. 9.28:

• Because of the limited final strain, the change in temperature is negligible for this simulation,
thus, the difference between yield and yield with thermal effects is also negligible.

• When hardening is enabled, the strength of the material increases with plastic strain.

• When rate dependence is enabled, the apparent strength is higher than when not enabled.
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Figure 9.29. Comparison of the elastic response in Thermo-
Kayenta with ALEGRA for isochoric deformation. (a) Energy.
(b) Pressure. (c) Maximum Shear stress Vs Shear strain. (d) Tem-
perature.

In these, and all of the plots of isochoric strain that follow, the non-negligible pressure in the
ALEGRA simulations is due to the pressure being updated directly by the Mie-Grüneisen equation
of state, where pressure is allowed to vary with energy, even in the absence of volumetric strain. In
Thermo-Kayenta, the pressure is updated according to ṗ = Kev, thus no pressure change is seen in
the Thermo-Kayenta simulations. Similarly, in ALEGRA, the temperature is computed from the
equation of state, whereas the temperature is computed from (6.22) in Thermo-Kayenta. With the
exception of these two plots, all other quantities are in good agreement.
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Figure 9.30. Comparison of the yield response in Thermo-
Kayenta with ALEGRA for isochoric deformation. (a) Energy.
(b) Pressure. (c) Maximum Shear stress Vs Shear strain. (d) Tem-
perature.

Again, there is near perfect agreement between the two simulations, with the exception of the
pressure and temperature plots, due to the reasons previously outlined. In the regions of plastic de-
formation, the temperatures in the two simulations increase identically, indicating that ALEGRA,
like Thermo-Kayenta, converts 100% of plastic work to heat.
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Figure 9.31. Comparison of Thermo-Kayenta with ALEGRA
for isochoric deformation with yield and thermal effects en-
abled. (a) Energy. (b) Pressure. (c) Maximum Shear stress Vs
Shear strain. (d) Temperature.

With thermal effects enabled, near perfect agreement is again obtained.
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Figure 9.32. Comparison of Thermo-Kayenta with ALEGRA
for isochoric deformation with yield and hardening effects en-
abled. (a) Energy. (b) Pressure. (c) Maximum Shear stress Vs
Shear strain. (d) Temperature.

As in the previous isochoric simulations, the pressure and temperature results from ALEGRA
are not agreement with those calculated from Thermo-Kayenta, due to reasons already described.
In this simulation, however, there is also a discrepancy in the shear stress response. This is at-
tributed to the difference in the implementation of material hardening in the two models. Because
Thermo-Kayenta has its roots in modeling geological materials, the material is only allowed to
harden to a limiting surface, at which points the hardening saturates. This behavior is responsible
for the asymptoting stress response in Fig. 9.32(c). In Johnson-Cook plasticity, the material is
allowed to harden with plastic strain indefinitely. Power-law hardening (cf., [14]), which would
allow for the stress state to harden beyond what is currently possible in Kayenta is currently being
tested in Thermo-Kayenta.
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Figure 9.33. Comparison of Thermo-kayenta with ALEGRA
for isochoric deformation with yield and rate effects enabled.
(a) Energy. (b) Pressure. (c) Maximum Shear stress Vs Shear
strain. (d) Temperature.

With rate effects enabled in ALEGRA, plastic deformation commences immediately, resulting
in much smaller values for energy, temperature, and axial stress than expected. Surprisingly, after
unloading, the material response seems to correct itself and return to expected values. This behav-
ior is due, in part, to the fact that the Johnson-Cook elastic-plastic model does not have a cutoff
value for the strain rate, meaning that for strain rates less than one, the rate term, [1+D4 lne

⇤], can
possibly return a negative value depending the value of D4. In fact, if D4 is large enough, the neg-
ative rate term can cause the yield stress to vanish or become negative, which is what occurred in
these simulations. A cutoff value for e

⇤ of one will be implemented in future releases of ALEGRA
to avoid this situation.
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Taylor Impact

Thermo-Kayenta was installed in LS-Dyna and Taylor impact simulations were performed.
The following plots compare the results from Thermo-Kayenta with LS-Dyna’s built in Johnson-
Cook using LS-Dyna’s Mie-Grüneisen equation of state for identical simulations. The results of
each are compared against experimental data measured by Wilkins and Guinan [96]. The following
data were used for each simulation:

Material Copper
Initial temperature 298 K
Initial length 23.47 mm
Initial diameter 7.62 mm
Impact velocity 210 m/s
Physical time simulated 100 µs

Table 9.6. Data used in for Taylor impact simulations per-
formed in LS-Dyna

Results

Comparisons of the results from the end of the simulations using Thermo-Kayenta with Johnson-
Cook and experimental data are shown in Figures 9.34 to 9.36. In Fig. 9.34, temperature contours
for Thermo-Kayenta and a comparison of the displacement profile with experimental data are
shown. In Fig. 9.35 and Fig. 9.36, displacement profiles and temperature contours from Thermo-
Kayenta and Johnson-Cook are compared.

While the discrepancy in the height and width of the deformed profile is not significant be-
tween the two simulations, the discrepancy in the peak temperature (⇡ 31%) is. The source of the
discrepancies is most likely related to the limiting value placed on the stress due to the hardening
scheme in Thermo-Kayenta. Since Ṫ µ t:ġ , it is expected that the temperature will be lower in the
Thermo-Kayenta simulations as the stress reaches this limiting value. When the hardening scheme
in Kayenta is adjusted to allow for power law type hardening we expect the temperature levels to
be in better agreement.
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Temperature (K)

Figure 9.34. Displacement profile for Thermo-Kayenta at the
end of the simulation. The red dots represent the experimental
profile as given in [96].
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Bar Impact Simulation 

Model 

A copper cylinder at 298 K is fired at a rigid anvil at 210 m/s. The copper cylinder has a length 

of 23.47 mm and a diameter of 7.62 mm. 

Simulation specifications 

Input file name: /csm/local/KayentaDyna/input_samples/bar-

impact_jc/bar-impact.k 

Command used to run input file: Kayentadyna i=bar-impact.k ncpu=8 

Number of nodes:  4641 

Number of elements: 3750 

Example runtimes: 

 

6 mins 34 secs 

(Dual Intel Xeon Quad Core 2.4 GHz) 

Physical time simulated: 100 !s 

Results 

Figure 1 shows a snapshot of the simulation computed using the Johnson-Cook model. The 

brown dots represent the experimental profiles as given by Wilkins and Guinan (1973). 

 

 

 

Fig. 1: Bar impact simulation. Elements colored according to temperature. 

Thermo-KayentaJohnson-Cook

Figure 9.35. Comparison of the displacement profile for
Thermo-kayenta and Johnson-Cook. The red dots in each plot
represent the experimental profiles as given in [96].
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Figure 9.36. Comparison of the temperature contours for
Thermo-Kayenta and Johnson-Cook.
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Chapter 10

Parameterization (calibration)

Appendix A provides some step-by-step guidance on experiments and analysis procedures re-
quired to characterize (calibrate) a material for Kayenta. This chapter summarizes the results of
applying those procedures to find parameter sets for a variety of materials. This chapter offers
laboratory evidence that has served to motivate our choices of fitting functions. If you are working
with a simplistic material (or a complex material subjected to simple loading conditions), then only
a small subset of Kayenta’s available material parameters are needed, so it is important to realize
that Kayenta’s number of parameters varies with the complexity of the problem. Typical values for
Kayenta’s material constants are found in the material-specific datasets of Appendix B.

Nonlinear elasticity

Figures 10.2 and 10.3 demonstrate the ability of Kayenta’s nonlinear elasticity fitting functions
[Eq. (4.10) and Eq. (4.9) ] to reproduce nonlinear elasticity data. Parameters were assigned using
the least-squares model calibration tools described in Appendix A.

Elastic-plastic coupling

For some materials, elastic moduli are unaffected by inelastic deformation. However, Fig. 10.4
shows data for a material whose elastic properties are affected by inelasticity. Modeling this effect
requires using the enhanced moduli fitting functions, Eq. (4.33) and Eq. (4.34), which permit the
shear and bulk moduli to vary with equivalent plastic strain (determined from data by the residual
strain upon unloading to a zero stress, as explained in Appendix A). For Kayenta to be considered
a good fit to data, the simulated unloading curves merely need to be parallel to experimental un-
loading curves (not necessarily overlapping unless the data and simulation unload from the same
strain).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10.1. Meridional limit curves for some materials al-
ready parameterized to Kayenta
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Figure 10.2. Nonlinear elasticity in shear. This figure shows
Kayenta’s fit to concrete data [94] from the unload portion of a
triaxial compression test conducted at a confining pressure of 200
MPa. Here, the principal stress difference is plotted against the
principal strain difference, thereby making the slope equal to twice
the shear modulus.

Triaxial Compression

The most important set of experiments to fit a model to Kayenta is triaxial compression at a
variety of confining pressures, which determines the A parameters for the limit surface. Results of
such fitting efforts are summarized in Fig. 10.1 (compare these with Fig. 1.2 and Fig. 3.3).

Triaxial compression (TXC) and triaxial extension (TXE) testing is integral to parameterization
of Kayenta. By performing a series of tests, as described in Fig. 3.3, the limit state (onset of
softening) can be mapped out. For example, Fig. A.6 (pg. 222) shows raw data from a a suite of
TXC tests, indicating how the peak values in each test provide one data point on Kayenta’s limit
surface Fig. A.6. Data from a similar set of experiments for concrete, along with Kayenta’s least-
squares fit of Eq. (4.8) are shown in Fig. 10.5. Fig. 10.1 shows similar plots for other materials.
Appendix A describes the least-squares fitting procedures in more detail.

Recall that triaxial testing normally begins with a hydrostatic “load-up” phase, indicated by
the horizontal red arrow Fig. 10.6 (where

p
J2 = 0). During the hydrostatic leg, deformation is

initially nonlinearly elastic until the virgin yield surface is reached, at which time microscale stress
concentrations caused by the presence of pores become too large to resist elastically. Continuing
to push the hydrostatic stress to higher levels results in inelastic pore collapse with associated
hardening (expansion) of the yield surface. In Fig. 10.6, the target hydrostatic stress state for
a given experiment (which marks the transition from the hydrostatic leg to the triaxial leg) was
P = 400MPa, giving an I1 value of �1200MPa. Pressure-volume data taken during the hydrostatic
leg may be used to determine Kayenta parameters {p0, p1, p2, p3 } by following instructions
in Appendix A. Because multiple triaxial experiments must be performed to fully characterize a
geological material, variations observed during hydrostatic loading from different tests can be used
to quantify the material property variability.
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Figure 10.3. Nonlinear elasticity in hydrostatic loading. This
figure shows Kayenta’s fit to concrete data [94] from the unload
portion of a hydrostatic compression test from 200 MPa. Here, the
slope equals the bulk modulus.
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(a)

(b)

Figure 10.4. Elastic-plastic coupling: deformation-induced
changes in elastic moduli (Salem Limestone). (a) the tangent
bulk modulus can change in response to changes in porosity (i.e.,
volumetric plastic strain). (b) Likewise, the tangent shear modulus,
especially at low shear stresses, can change in response to plastic
deformation.
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Figure 10.5. Shear failure limit curve compared with concrete
data. Ref. [94].

After the hydrostatic leg, the triaxial leg (angled red arrow in Fig. 10.6) commences by in-
creasing the axial load on the specimen while holding the lateral stress constant. As explained on
page 39, the stress path follows a straight trajectory in the meridional plane with a slope given by

d
p

J2

dI1
=

1p
3

(10.1)

The transition from hydrostatic to triaxial loading is reflected by a pronounced change in slope
in the stress-strain plot of Fig. 10.6. As the axial stress is increased during the triaxial leg, the
yield surfaces continues to harden outward even more, now further assisted by the presence of
a nonzero stress deviator. In Fig. 10.6 the slope of the yield surface is initially negative at the
stress state (i.e., where the straight red load path and curved blue yield surface lines intersect).
Consequently, the outward normal to the yield surface during this early part of the triaxial phase
has both a deviatoric component and a compressive isotropic component. When the normal to the
yield surface is compressive, the inelastic volumetric strain will be compressive as well. However,
the isotropic component of the yield surface normal changes direction towards the end of the
triaxial leg (i.e., the local slope of the yield surface changes sign), which means that the inelastic
volumetric strain is dilatational (expanding) even though all stress components are compressive.
The “critical state” at which the yield surface has a zero local slope on the load path marks the
onset of shear-enhanced dilatation. Thus, as illustrated qualitatively in Fig. 10.7 and explained in
detail in Appendix A, triaxial loading is used to determine parameters in Kayenta that govern yield
surface evolution and cap curvature.
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Figure 10.6. Progression of the hardening yield surface (fam-
ily of blue lines) under a triaxial compression test (red path),
illustrated with correspondence of the meridional plane to the
stress-strain diagram. The straight red line segments shown show
this two-stage stress trajectory (hydrostatic loading followed by
triaxial loading) in the meridional plot of

p
J2 (which is propor-

tional to the effective shear) versus I1. Shear-enhanced dilatation
corresponds to reaching a zero local yield slope.
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(a) (b) DiGiovanni & Fredrich [29]

Figure 10.7. Shear-enhanced dilatation under compression.
The exaggerated schematic shows that crack faces must overcome
surface incompatibilities — they cannot slip over each other with-
out opening even if they are in compression. Moreover, frag-
ments of broken material can become lodged in the crack face
and cause crack opening by their rotation. Crack kinking (in the
direction of Mode I loading) further contributes to the dilatation
associated with crack opening. The dark regions in the micro-
graph [29] are pores (which collapse under sufficient pressure).
The cracks in inclusions produce “micro-rubble” that ultimately
generates, through rotation, inelastic volume increase under shear
loading even if all principal stresses are compressive.
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Physically, an increase in inelastic volume during compression (which is quite commonly ob-
served for brittle materials) is typically attributed to the growth of microcracks under shear. As
the surfaces of these cracks move relative to one another, the crack must open up (dilatate) both to
overcome geometric incompatibilities in their surface roughness and to permit crack kinking. This
interpretation of shear-enhanced dilatation is illustrated schematically and through SEM imaging
in Fig. 10.7.

Parameterization: Rate dependence

Kayenta’s relaxation parameters {T1, . . . , T7} may be determined through a series of lab-scale
laterally-confined Kolsky bar tests (Fig. 10.8) in which a sample is subjected to uniaxial compres-
sion at various strain rates.

Figure 10.8. Kolsky (split Hopkinson) bar apparatus used to
obtain data in Fig. 10.9

Fig. 10.9 shows results for a series of Kolsky (split Hopkinson) bar strain-rate tests conducted
on unconfined compression specimens of Salem Limestone [37]. The peak stress in each exper-
iment is used to assign values of Kayenta relaxation parameters to properly correlate apparent
strength with strain rate. As seen, the unconfined compressive strength increases with strain rate
and is well accommodated by Kayenta theory.

For a discussion of how the data in Fig. 10.9 are used to assign values to {T1, . . . , T7}, see
Appendix A.
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Figure 10.9. Suitability of Kayenta’s overstress rate-
dependence model to match observed data. The top plot shows
model predictions of stress-strain behavior at various strain rates.
The bottom plot shows corresponding Kolsky (Hopkinson) bar un-
confined compressive strength as a function of strain rate
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Chapter 11

Building confidence in the physical theory

In a weak sense, demonstrating (as we did in the previous chapter) that Kayenta is capable of
being parameterized from controlled laboratory data lends some credibility to the physical foun-
dations of the model. However, truly validating a model after its parameters have been deter-
mined from standard laboratory data requires showing that the model can, without any change in
pre-calibrated parameters, predict material response under different (non-calibration) loading sce-
narios. Ideally, to validate a constitutive model (not its implementation into a host finite-element
code), one would prefer to compare the model predictions against test data from homogeneous
loading experiments that were different from the homogeneous loading tests conducted for cali-
bration.

Thorough testing of any material constitutive model along with its implementation in a host
code must, of course, include simulation of applications for which model predictions can be com-
pared with structural response measurements. The goal is to assess the degree to which the inte-
grated model (i.e., its installation into a host code) is capable of predicting material system response
to non-trivial loading scenarios.

Parameterization entails fitting to a subset of discrete points in parameterization data tables
(e.g., as described on page 197, the limit function is parameterized by using only the peak stress
values, not all values measured in the test). Model validation therefore includes assessing the fitted
model’s ability to interpolate well between other points in these stress-strain response curves (i.e.,
points that were not used in calibration). Similarly, Kayenta’s rate dependence parameters are
determined by using only the peak stress values in Kolsky bar experiments. Therefore, the model’s
ability to match the other data points in those experiments is a validation test.

In addition to merely ensuring that all data in parameterization tests are well modeled, a better
validation test should exercise the model in application domains in which multiple physical mech-
anisms are acting simultaneously. The goal is to assess whether or not Kayenta parameterization
instructions in Appendix A can lead to a high-quality set of material model properties that are
predictive in general loading scenarios. This chapter describes some validation problems that have
been studied to date. In all cases, these problems were run using only the single Kayenta parame-
ter set obtained from calibrating to other data for the material — no parameter adjustments were
made to improve model agreement for these tests.
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Post-calibration Triaxial loading

The nonlinear elasticity Eq. (4.9) and Eq. (4.10) are parameterized from shear and hydrostatic
unloading data. The shear limit function Eq. (4.39) parameterized through peak states in triaxial
testing. The crush curve Eq. (4.69) parameterized through purely hydrostatic testing. Once pa-
rameterized in this way, Kayenta may be applied to predict the irreversible plastically-hardening
stress-strain response at a variety of other stress paths. For example, Fig. 11.1 compares Kayenta
predictions with simple triaxial data at various confining pressures (these simulations all use a
single set of Kayenta parameter values).

(a) (b)

Figure 11.1. Post-calibration Triaxial loading (a) Kayenta pre-
diction of uniaxial strain loading. (b) Kayenta predictions of tri-
axial stress-strain response at various confining pressures. From
Ref. [94]. The ability of a single parameter set to agree so remark-
ably well with this suite of data is a validation.

Field-scale penetration

Fig. 11.2 shows results from a pre-test prediction of depth of penetration and displacement
histories. In tests like these, material constitutive models are often considered “above average” if
they are predictive within 20%. As seen, Kayenta performed exceptionally well by this metric.
However, attaining even marginally good agreement with laboratory data for dynamic fracture
and fragmentation historically has required setting material properties to values appropriate to the
scale (i.e., physical size) of the problem and the size of finite elements used in the simulation,
which precludes any ability to assert convergence of such simulations with mesh refinement. This
problem was addressed by Strack, Leavy, and Brannon [85] by including automated statistical
variation in Kayenta’s strength properties, with concomitant scale effects so that (as observed in
laboratory experiments for virtually any brittle or quasi-brittle material; cf. [6]). As seen in Fig.
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11, statisical perturbation and scale effects permit Kayenta to predict realistic symmetry-breaking
radial fracture patterns.

Free field wave form for spherical shock loading

Fig. 11.6 shows displacement and velocity histories for an underground test in which a wave
propagates from an explosive point source. A measured velocity history at a point 204 meters
from the source was used as the velocity boundary condition of the simulation. The goal was to
predict a second measured velocity history at a point 470 meters from the source (see Fig. 11.5).
Unlike the similar elasticity verification test described on page 207, this validation test used elastic-
plastic field-scale parameters that were determined by applying Kayenta’s calibration procedures
described in Appendix A (back-fitting alteration of these independently determined calibration
parameters was disallowed, as should be the case for any validation test).

Kayenta (along with its implementation within the host finite-element code, JAS3D) comes far
closer to matching data than simpler models such as non-hardening von Mises plasticity, indicating
that Kayenta’s advanced physical features (especially pressure sensitivity) are important. Because
Kayenta falls short of a compelling agreement with data, further study is warranted. Unlike the
verification study presented on page 207, this validation simulation is over-predicting peak veloc-
ity. As was the case in the verification study, code predictions were strongly affected by artificial
viscosity, suggesting that disagreement with data might be rooted in host code problems as much as
shortcomings of Kayenta. Of course, natural spatial variability of in-situ rock (which is neglected
in the simulation) may play a role, as might the response time of gauges used to acquire the data,
or myriad other possible error sources.

This concludes our overview of preliminary validation testing. More extensive model valida-
tion activities have been ongoing, results of which are available in the open literature.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 11.2. After Kayenta was fitted to laboratory-scale ma-
terial property tests, it was used to predict projectile penetra-
tion depth using spherical cavity expansion analysis.
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Figure 11.3. Radial cracking in dynamic indentation. X-ray
computed tomography image of top surface cracking and corre-
sponding simulation (right) from a 385 m/s impact of a WC sphere
on a SiC-N cylinder. Of paramount imporantance is the demon-
stration that the general character of these predictions (i.e., the
number and spacing of radial cracks) is much less sensitive to
mesh size and mesh texture than deterministic simulations using
the same model [61, 85].
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Figure 11.4. A notional depiction of statistical variability in
strength used in Fig. 11 and similar simulations. Instead of a
single set of strength parameters, corresponding to a single deter-
ministic limit surface, a damage-capable installation of Kayenta is
required to use statistically variable strength such that small ele-
ments are stronger, on average, than large elements. As seen in
this sketch, the imposed variability decreases with increasing con-
fining pressure. Details of this advanced use of the Kayenta model
are provided in [85].

Roller BC

Roller BC

204 m
470 m X m

TBCGeomechanics modelV
1°

Figure 11.5. Spherical cavity geometry.
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Figure 11.6. Kayenta + JAS3D finite-element prediction
(blue) vs. measured (red) velocity and displacement at 470 me-
ters from a spherical cavity velocity source at 204 meters.
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Chapter 12

Closing Remarks

This user’s guide has elucidated the physical foundations, domain of applicability, numerical
methods, and user inputs for Sandia’s general-purpose Kayenta plasticity and damage model. This
model was developed in response to the need for a predictive model that could be used for a
wide range of applications while maintaining numerical tractability in the context of Sandia’s solid
mechanics finite-element software. A significant advantage (and simultaneously drawback) of
Kayenta is that it includes a large selection of model features (hardening, damage, first and third
invariant dependence, etc.) that are commonly found in other models; having these all available in
a single model permits users to explore importance of various potentential constitutive behaviors
to various applications of interest.

Three key applications for this work are in projectile penetration research, analysis of hard and
deeply buried targets, and reservoir-scale modeling of formation compaction caused by pore pres-
sure drawdown during oil or gas production. With the emergence of the capability to simulate the
large-scale mechanical behavior of complex geosystems by virtue of recent advances in software
and hardware, Sandia recognized the need to enhance the material modeling capabilities for geo-
materials. A large-scale, long-term effort was begun that brings together activities in laboratory
testing, basic research, software development, verification, validation, documentation, and quality
assurance. The goal is to provide a rock mechanics predictive capability that fully accounts for
the complex nature of in situ rock masses. The Kayenta model additionally includes constitutive
features common to (and increasingly common to) plastic flow and fracture of metals.

Kayenta is a genuine unification and generalization of simpler models. As such it is capa-
ble of meeting the needs of almost any structural application involving geomaterials. So-called
“first-principles” microscale theories have influenced the general model framework, but it is rec-
ognized that such formulations themselves include unrealistic assumptions (such as linear matrix
materials, non-interactions, non-phase transformations, etc.). Accordingly, physically motivated
phenomenological judgements about relations between stress and strain have been given ultimate
priority to more accurately match observed laboratory behavior.

In the laboratory, most rocks exhibit nonlinear elastic deformation upon unloading and re-
loading, hysteresis loops, different behavior in extension than in compression, strain-rate sensi-
tivity, pressure dependence, and post-peak softening. Moreover, high porosity rocks under com-
pressive mean stresses and non-zero deviatoric stresses, involve a complex interplay of deforma-
tions from competing mechanisms including pore collapse and microcrack-microvoid develop-
ment, which occur simultaneously allowing macroscopic pre-failure dilatation to occur even as
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pores continue to collapse. In addition, the strain-rate sensitivity of some porous rocks depends
on the predominant deformation mechanism, e.g., the strain-rate sensitivity of shear and exten-
sional failure is different from that of pore collapse, and the strain-rate sensitivity itself may be
pressure dependent. This report summarizes the progress toward achieving a realistic rock consti-
tutive theory that can be calibrated via standard laboratory experiments and is numerically tractable
for massively parallel calculations using tens of millions of three-dimensional finite elements and
loading conditions that involve ground shock and other non-quiescent processes. Some recent
model enhancements (not documented in previous Kayenta documentation) include: pressure de-
pendence of the extension/compression strength ratio, softening and failure (fracture), anisotropic
jointed rock behavior (as observed in situ), and natural spatial variability resulting observed scale
sensitivity of strength, localization of failure (such as radial cracks in an an otherwise axisymmet-
ric indentation), and accommodation of any user-specified nonlinear thermal equation of state for
high-pressure applications. While Kayenta has achieved many stated objectives to date, there is
still much to be accomplished. Current model-enhancement activities (to be documented in future
reports) include: effective stress theory to accommodate fluid in pore space, induced elastic and
inelastic anisotropy (which supplements the existing Kayenta formulations for intrinsic rock-joint
anisotropy and kinematic hardening (backstress).
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Appendix A

Parameterizing Kayenta

The following steps describe how to determine values for parameters used in Kayenta. Previ-
ously available parameterization software (e.g., HYDROFIT, SHEARFIT, etc.) is no longer main-
tained; any modern spreadsheet application can perform the same tasks of nonlinear constrained
least-squares fitting. In MS Excel, the relevant plug-in function is called “SOLVER”. Freely avail-
able optimization software, such as DAKOTA [1] at http://dakota.sandia.gov/documentation.html,
might also be convenient.

STEP 1 Use hydrostatic pressure vs. total volumetric strain data to obtain the nonlinear elastic
bulk modulus parameters (b0, b1, and b2) as well as the crush curve parameters p0, p1,
p2, p3.

İp

p

v

İv
tot

Figure A.1. Elastic legs (dashed) and plastic legs (solid) in
hydrostatic loading.

It is assumed that tabular data from hydrostatic loading are available such that one column
is total volumetric strain e

tot
v and another column is pressure p. It is also assumed that the

experiment includes elastic unloading curve(s), which are the dashed lines in the sketch of
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Fig. A.2. Referring to Fig. A.2, the first step is to separate the data for elastic legs (dashed)
and plastic (solid) legs.

The elastic data must be fitted to the bulk modulus parameters in Eq. (4.9),

K = b0 +b1 exp
✓

� b2

3p

◆

, where 3p = I1 (A.1)

For each elastic leg (dashed lines in Fig. A.2), subtract the plastic strain for that leg (i.e.,
the strain at zero pressure) to create an elastic strain column e

e
v . Using only the data from

elastic legs, generate a new column containing the local slope K = Dp/(De

e
v ). The slopes at

successive points should be averaged to retain data alignment, so that the two data columns
K and p can be fitted to Eq. (A.1) via nonlinear least squares fitting of the parameters b0, b1,
and b2. Each elastic leg should be separately fitted in this way. If it is found that the values
for b0, b1, and b2 are significantly different for different elastic legs, then additional fitting
parameters, b3 and b4, in Eq. (4.33) of the main text are available to improve the fits.

The inelastic legs (solid line in Fig. A.1) are used to determine the parameters in the crush
curve, Eq. (4.70) of the main text:

p3 � e

p
v = p3e�(p1+p2x )x , where x = X � p0 = 3(p�PE) (A.2)

Using the data from inelastic legs, create a data column X = 3p. To fit to the above function,
a new data column must be generated for the plastic volume. To do so, interpolate data on
the nearest elastic leg to find the elastic strain e

e
v associated with the pressure. Subtract the

elastic strain, e

e
v , from total strain, e

tot
v , to obtain the plastic strain e

p
v . Now that you have

data columns for e

p
v and X , apply nonlinear least squares fitting of Eq. (A.2) to obtain p0,

p1, p2, p3. To assist with initial guesses for the fitting, note that the peak inelastic volume
strain, p3, roughly equals the initial porosity. Refer to Fig. 4.14 for guidance on how to set
initial guesses for the other crush parameters.

STEP 2 Use triaxial compression data to obtain the shear modulus parameters g0, g1, and g2.
This step determines the parameters in Eq. (4.10),

G = g0



1�g1 exp(�g2
p

J2)

1�g1

�

(A.3)

Arrange the triaxial data as a two-column table, the first column being the axial strain eA and
the second column being the stress difference (sA �sL). Then use nonlinear least squares
regression analysis to obtain the shear modulus parameters g0, g1, and g2.

As illustrated in Fig. 3.3 in the main text, triaxial testing is typically performed as a two-stage
process in which the material is first compressed hydrostatically to a given pressure. Then,
during the second (triaxial) leg, the lateral stress is held fixed while the axial stress is varied.
Only the elastic unloading data in triaxial legs should be used for determining the nonlinear
elastic shear modulus parameters. As explained on page 54, the plot of stress difference
(sA �sL) vs. axial strain eA will have a slope equal to Young’s modulus E. Rather than
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Figure A.2. Ideal hydrostatic parameterization data. The un-
loading portion is used to obtain the elastic bulk modulus param-
eters b0, b1, and b2. With these parameters, the loading portion of
the data can be converted to a crush curve (see Fig. 4.14) to obtain
the crush parameters p0, p1, p2, and p3 For this material (a ce-
ramic powder, zircoa), the initial elastic loading curve is so small
in comparison to the scale that it is not visible.
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Figure A.3. Less-preferable hydrostatic parameterization
data. Like the data for the material shown in Fig. A.2, this hy-
drostatic compression test (for frozen soil) was conducted nearly
to full pore collapse, but the loading curve shows signs of material
creep, which is not included in Kayenta.
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Figure A.4. Data representative of a triaxial compression pa-
rameterization test. The slope of the unloading curve is the non-
linear tangent Young’s modulus. Through standard moduli con-
version formulas from linear elasticity, the previously determined
bulk modulus parameters are used to obtain the elastic shear mod-
ulus parameters g0, g1, and g2.
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directly using Young’s modulus E as a user-specified material parameter, Kayenta requires
the shear modulus G. Recall that the nonlinear elastic bulk modulus K was found previously
in STEP 1. The shear modulus G can be found from K and E by using the standard linear
elasticity formula, G = 3KE

9K�E , cited in Eq. (4.15). If fitting to rock data, Poisson’s ratio,
n = 3K�E

6K , is typically in the neighborhood of 0.2 (this is a useful sanity check).

STEP 3 (optional) maintain a record of all peak stress states ever measured for every available
quasistatic load-to-failure experiment ever performed for the material of interest. The
softening threshold (peak limit) envelope is the boundary of any and all stress states qua-
sistatically achievable for the material, including both elastically obtainable stress states and
stress states that can be reached only through inelastic deformation. Unlike a yield surface,
which is the boundary of elastically obtainable stresses (and which therefore will, in general,
evolve as the microstructure is altered in response to inelastic deformation), the limit enve-
lope is fixed in time (see Fig. 1.2 on page 24). All achievable yield surfaces (an infinite set)
are contained within the single limit envelope. Characterizing the limit envelope requires nu-
merous different experiments. Typically, each individual experiment has precisely one stress
state at which the second stress invariant J2 achieves a peak value. If the material softens
before rupturing, the value of J2 at failure might be lower than J2

peak. It is the peak that is of
interest, not the post-softening value at failure.

For every available quasistatic load-to-failure experiment, find the stress state at which J2
is larger than for any of the other stress states in that experiment. Construct a table of data

triplets (I1
peak,

q

Jpeak
2 , q

peak), where I1
peak and q

peak are the values of I1 and q at the stress
state for which J2 is at its peak value. The number of entries in your peak stress table will
equal the number of experiments run to failure. The goal here is to gather sufficient data to
parameterize both the Lode angle function G(q) and the shear limit envelope in Eq. (4.39),

Ff (I1) = a1 �a3e�a1I1 +a4I1 , where I1 =�I1 shear limit surface in TXC. (A.4)

STEP 4 Use peak stresses from a family of triaxial compression tests to determine the shear
failure envelope parameters a1, a2, a3, and a4.
Recall that the Ff function represents a peak shear limit envelope in the meridional plane for
which

p
J2 is plotted against I1 for triaxial compression (TXC) stress states. Thus, the set

of all stress states ever observed in TXC (Lode angle q = +30�) must fall below the curvep
J2 =Ff (I1), modulo experimental scatter. Stated differently, this curve defines boundary of

all stress states that ever have been (or ever can be) observed in quasistatic TXC loading. A
sufficient number of TXC experiments must be conducted under various confining pressures
so that the bounding surface begins to take form. On other meridional planes (i.e., at other
Lode angles), Kayenta presumes the bounding curve is adequately described by

p
J2 =

Ff (I1)

G(q) ,
which simply means that Kayenta presumes that the limit function at non-TXC Lode angles
is simply a scalar multiple of the TXC function. Once the Ff function has been determined
in this parameterization step, the peak stress data at other Lode angles will be used later to
determine the G proportionality function.
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Using only the TXC (q = 30�) data create a scatter plot of all ever-achieved TXC values of
J2and I1. A scatter plot of all TXC stress data measured at various confining pressures might
look somewhat as sketched below:

Figure A.5. A family of TXC tests conducted to failure. The
boundary of data points defines the Ff function. All other (sub-
peak) data points fall below this line. Plots like the are shown for
various materials in Fig. 10.1

In Fig. A.5, the peak data pairs (darkened dots) correspond to the q

peak
= 30� values from

your table of peak-stress invariants collected in STEP 3. A suite of actual TXC experiments
for porcelanite is shown in Fig. A.6, along with further illustration of how discrete peak
points from these experiments are transferred to a limit surface meridional plot for fitting to
Eq. (A.4).

Once enough TXC experiments have been conducted for a well-defined shear limit boundary
to emerge, the next step is to determine values of a1, a2, a3, and a4 that best fit the Ff function
to this boundary.

Given triaxial stress difference sA �sL vs. axial strain data, Eq. (3.22) and Eq. (3.23) show

that value of J2 at peak is given by
q

Jpeak
2 = |sA�sL|peak

p
3

and the value of I1 (i.e., the trace

of the stress) at peak equals I1
peak

= 3sL +(sA �sL)peak, where sL is the (constant) lateral

confining pressure. The (I1
peak,

q

Jpeak
2 ) data pairs from TXC experiments (i.e., those for

which q

peak
=+30�) are used to fit the parameters in Eq. (A.4) via constrained optimization

software of your choice. The software must include the constraints on page 69 of the main
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Figure A.6. TXC stress-strain plots and extraction of their peak
values to construct the meridional limit curve (data are for porcelan-
ite). Top plot, each shear stress

p
J2 vs. axial strain plot has exactly one

peak value, as labeled. The value of I1 at this peak is found by applying

Eq. (3.22), I1 =
p

3t +3sL with t =
q

Jpeak
2 and sL equal to the lateral

confining pressure for the test. Bottom plot, the peak states are transferred
to a plot of

p
J2vs. I1 for fitting to the Ff meridional limit function.
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text. Refer to Fig. 4.8 to help decide appropriate initial guesses for a1, a2, a3, and a4. If
the data suggest a linear envelope at high pressures, then your first guess for a4 should be
an approximation of the slope of this envelope. If in doubt, take a4 = 0.0 (i.e., assume
the data asymptote to a constant value as pressure goes to infinity). Your first guess for a1
should approximate the zero-pressure value of the linear asymptote line (extrapolate visually
if necessary). Set a3 to equal a1 minus your best estimate for the actual ordinate intercept of
the low-pressure data (again, extrapolate if necessary). Finally, set a2 to equal an estimate
for the initial (low-pressure) slope of the data divided by a3.

STEP 5 Use peak stresses from a family of triaxial extension tests to determine the extension to
compression ratio Y. This step applies only if you have data for triaxial extension TXE,
which is rare.

Sometimes, it might be impractical — or overly expensive — to obtain TXE data. In this
case, an engineering approach for estimating Y presumes that it obeys the same coupling to
the meridional profile slope as predicted in classical Mohr-Coulomb theory. Using Eq. (A.4)
to set the TXC slope in Eq. (B.19) in Appendix B, an estimate for the pressure-varying
strength ratio is

Y =
1

1+
p

3
h

a4 +a2a3e�a2I1

i (A.5)

When TXE data are unavailable, set the parameter Y equal to �1 to instruct Kayenta to use
this formula as a “best guess” of the strength ratio.

If TXE data are available, then (as was done above for TXC tests) construct a table of (I1
peak,

q

Jpeak
2 ) data pairs corresponding to peak attained stresses in triaxial extension (TXE). These

are the data pairs in your peak data table from step 3 that correspond to q

peak
= �30�. For

each of these TXE data pairs, compute

Y =

q

Jpeak in TXE
2

Ff (I1
peak in TXE

)
(A.6)

where Ff is the TXC shear limit function parameterized in the previous step. Of course, each
TXE experiment is likely to result in slightly different values for Y. At present, Kayenta
presumes that the TXE/TXC ratio Y is constant. Therefore, set the Kayenta parameter Y
equal to the average of each Y computed using Eq. (A.6) for each available TXE experiment.
Alternatively, compare the measured data with the theoretical prediction in Eq. (A.5). If the
prediction from Eq. (A.5) fits the data better than an assumption of a constant strength ratio
Y, then simply specify the strength ratio as �1 in the model input.

STEP 6 Determine the appropriate Lode function option J3TYPE. This step applies only if data
are available for the peak stress under non-TXC loading. If such data are unavailable, then
choose J3TYPE= 2.
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Recall that Kayenta’s function G(q) defines the shape of the octahedral profile shape for
Lode angles spanning the range from TXE (q = �30�) to TXC (q = +30�). Kayenta’s
parameter J3TYPE (see page 70) dictates the functional form to be used for the G function.
Non-triaxial data are difficult to acquire. If no such data are available, you will need to use
engineering judgement as to an appropriate choice for J3TYPE. This parameterization step
aims to guide the choice in the happy circumstance that non-triaxial data are available.

As illustrated in Fig. 4.10, Kayenta’s G function is defined to equal 1 in TXC and 1/Y in
TXE. Large values of G correspond to small shear strengths. In this model parameterization
step, all available peak-state data obtained in non-triaxial loading paths are considered to
help decide an appropriate choice for the J3TYPE option. Looping over your table (collected

in STEP 3) of “all-observed” peak stress invariant triplets (I1
peak,

q

Jpeak
2 , q

peak), especially
those at non-triaxial states, create a new two-column table of (q , G) data pairs, where

G =
Ff (I1

peak
)

q

Jpeak
2

(A.7)

By comparing a scatter plot of these (q , G) data to the graphs in Fig. 4.10, an appropriate
choice for J3TYPE should be more clear. To assist in the decision, it might be easier to
instead scale the ordinate as shown in Fig. 4.7. By overlaying data with the family of plots
in Fig. 4.7 an appropriate choice for J3TYPE should be apparent, as illustrated in Fig. 4.8.
If non-triaxial data are unavailable (a common problem), select J3TYPE= 1 if the material
is judged to be moderately ductile; otherwise, select J3TYPE= 3.

STEP 7 Hardening parameters. In the previous steps, we determined Kayenta parameters that
define the outer limit surface. No stress state outside this fixed (non-evolving) limit surface
can be achieved through any load path. Consequently, the infinite set of all possible yield
surfaces must be contained within this limit envelope. Unlike the limit surface, which bounds
all possible stress states, the yield surface merely bounds the set of elastically obtainable
stress states. Unlike the limit surface, a yield surface evolves (hardens) through time as
a result of microstructural changes induced in the material under inelastic loading. The
initial yield surface is typically much smaller than the limit surface (see Fig. 1.2 in the main
text). Isotropic hardening permits the initial yield surface to expand on octahedral planes (by
amounts that vary with pressure) up until the limit surface is reached. Kinematic hardening
permits the yield surface to translate in stress space until the limit surface is reached. Both
types of hardening may occur simultaneously.

As a rule, the amount of kinematic hardening relative to total stress is high at lower pressures.
Therefore, kinematic hardening data are best inferred from unconfined compression tests. In
the previous parameterization steps, we determined crush parameter values (p0, p1, p2),
elastic parameters , the limit surface parameters (b0, b1, b2, g0, g1, g2), and J3TYPE. Now
these values should be used in a finite-element (or single cell driver) implementation of
Kayenta, to obtain a simulated table of axial stress vs volume strain to compare with available
experimental data. The goal is to determine values for unknown Kayenta parameters through
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Figure A.7. The Lode function information originally shown
in Fig. 4.10 of the main report, now displayed with a trans-
formed ordinate. Knowing that G = 1/Y in TXE and G = 1 in
TXC, it makes sense to scale the ordinate as shown so that, regard-
less of the value of Y, the scaled ordinate equals 1 in TXE and 0 in
TXC. With this scaling, all Gudehus Lode functions overlap; the
others vary with Y.

a systematic simulation sequence. As a first guess, set the “yet-to-be-determined” Kayenta
parameters as follows:

• offset RN= N = 0 (i.e., suppress hardening)

• kinematic hardening parameter HC= 1e5

• shape parameter CR= R = 10

• plastic potential function parameters for non-associativity A2PF==A2, A4PF==A4,
RKPF=RK, CRPF=CR (i.e., tentatively assume associativity)

• joint spacing RJS= `s = 0.0

• rate sensitivity parameters T1 through T7= 0.0 (no rate sensitivity).

Run the finite-element code for unconfined compression and output axial stress vs. volu-
metric strain (EVOL). It is unlikely that this result will replicate observed unconfined com-
pression data on the first try. We ultimately hope to assign values to the above parameters
so that the volume strain will “turn around” as Fig. 10.6 (even though axial strain increases
monotonically, the volume strain turns around because of the lateral bulking strains).

The phenomenological fitting functions employed in Kayenta are designed to extrapolate
reasonably well into regions where data are not available, but these functions are also se-
lected in part for computational tractability and they therefore serve only as approximations.
Consequently, there will be modeling error. Ideally, one should use regression fitting pro-
cedures to select Kayenta hardening parameters that minimize modeling error relative to
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Figure A.8. A sketch of how data might be distributed at
non-triaxial states. In this contrived example, most of the data
at non-triaxial states falls in the red Willam-Warnke region and
therefore J3TYPE = 2 would be appropriate for this material. In
practice, data at non-triaxial Lode angles are rarely available. In
this case, the user must resort to engineering judgement to decide
which J3TYPE option to select.
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Figure A.9. Sketch of axial stress vs. strain.
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available data. We have already described the systematic process for fitting the elastic data,
the crush curve data, and the limit state data. However, no similar fitting procedure has yet
been developed to determine the hardening parameters. Consequently, for these parame-
ters, exploratory manual “trial and error” must be used. For this step, a means of running
Kayenta in “single element” (homogeneous loading) must be available. The single element
driver must be able to support stress boundary conditions similar to the boundary conditions
used in the laboratory for triaxial compression testing.

In the following, we will be exploring adjustments of CR, RN, and HC to try to achieve a
strain “turn around” at the correct (observed) strain and stress for triaxial loading.

If no turn around is apparent in your simulation of the TXC experiment, try decreasing CR.
Continue decreasing CR until turn around occurs. If you still get no turn around, bring down
the initial yield surface. The intercept on the ordinate on the meridional profile is located atp

J2 = a1 �a3. Try increasing N to a value no larger than a1 �a3 (our initial guess of N = 0
presumed that the initial yield surface coincided with the shear limit surface. By setting N
to a nonzero value, we are now permitting kinematic hardening). You will likely see “turn
around” start to occur.

Now that a turn-around is visible, the parameters need to be adjusted to fit the compression
and dilatation phases. Try changing HC. Increasing (say, doubling) HC will increase the
strain value at which turn-around occurs. Lowering HC lowers the turn-around strain. If you
continue to have trouble getting turn around, double check that you have correctly entered
the previously determined (known) parameter values. If the turn-around stress is too high,
try lowering HC.
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Figure A.10. Sketch of axial stress vs. strain.

Once shear-induced dilatation (turn-around) has been adequately modeled for unconfined
TXC, go then to high-confinement data. Try changing CR (e.g., from 7 to 10 if computed
peak strain is too large).

Go back to unconfined, and work on HC and RN.
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Continue to go back and forth until you are satisfied with both confined and unconfined
results.

Below: There is a stand-alone model driver that can provide a so-called "shotgun" explo-
ration of the effect of changing a variety of model parameters at once to predict several re-
sponse curves from which the user can select the one that best matches data. As mentioned
earlier, this procedure clearly could benefit from automation!

STEP 8 RATE DEPENDENCE PARAMETERS: Unlike rate-dependence theories that treat strength
as a function of strain rate, Kayenta’s Duvaut-Lion overstress model treats strength as a func-
tional of strain rate.1 Figure 10.9 shows that high-rate loading causes the stress to asymptote
to a higher values. Under conditions of constant strain rate, the stress asymptotes to a steady-
state value, which is (under such conditions) an actual function of strain rate, from which
Kayenta’s T-parameters may be found. As mentioned in the main text on page 203, it is
hoped that future revisions of Kayenta will have the rate dependence parameters be taken
directly from standard data for rate dependence that reports apparent steady-state strength
as a function of strain rate in uniaxial loading (cf.dynamic increasing factor “DIF” curves in
[90], which are essentially fits to data such as in the bottom plot of Fig. 10.9). Kayenta’s rate
dependence parameters currently must be set via trial end error, but the procedure for doing
so is fairly straightforward. For each stress-strain plot in Fig. 10.9, for example, you would
begin by set all T-parameters to zero except T1, and then you would find the value of T1 that
best matches the steady-state strength. After this is done for each of the different curves
(each at different strain rates), you will have obtained values of T1, which is equivalent to
finding values of the characteristic time t needed at each strain rate. Once this information
for t as a function of strain rate is determined, you simply fit it to Eq. (7.22) to obtain proper
values of T1 and T2 to match the entire suite of tests with a single parameter set (i.e., without
having to change T1 for each strain rate as was done during the fitting process). We know
that we are dealing with the e

p
v > 0 branch of Eq. (7.22) because the volumetric curves in

Fig. 10.9 are showing an increase in volumetric strain. Other loading scenarios, such as
plate-slap experiments or Kolsky bar tests with high lateral confinement, might involve com-
paction (in which case, the characteristic time might be longer by a factor as much as 3);
such data would be fitted in a similar manner (i.e., finding the constant t required to fit each
experiment, and then fitting those constant values to the second branch of Eq. (7.22) to the
actual conditions of each experiment. In summary, the fitting procedure is straightforward,
which means that the steps ar moderately clear without necessarily being easy.

This concludes our guidance for parameterizing new materials to Kayenta. Further revisions
of this manual will likely include additional tips and parameterization experiment suggestions.

1A model that has strength as a function of strain rate generally cannot predict the transient (curved) parts of
the stress-strain plots in Fig. 10.9. A model that treats strength as a function of strain rate would go straight up to
the apparent steady-state strength without any bend in the curve. Such behavior is not only clearly at odds with
observations, but it also causes numerical problems if the strain rate is suddenly “cut off” to zero because that would
put the strength instantly to a lower value and thus would make the stress state itself fall in the inadmissible domain
outside of the yield surface. This is why most models of this sort impose an artificial requirement that the stress must
drop down over a few computational time steps. Overstress models, on the other hand, automatically drop the stress
over a finite physical time.
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Appendix B

Nomenclature and Data Sets

This appendix contains three tables defining (1) model parameters, (2) plottable variables, and
(3) other symbols or acronyms used internally within this manual. In each table, the first column
shows the typeset symbol for the variable. The next column contains the ASCII string used for the
variable in code input files and/or within the source code. In the SI units column, a “1” indicates
that the variable is dimensionless. A “—” indicates that dimensions vary, while N/A means dimen-
sions are not applicable. The defining equation (or page number) in the last column of the tables
cites the location in this report where the quantity is defined or discussed.

Reminder: in mechanics, stress and strain are typically taken positive in tension. However, in
applications, they are taken positive in compression. To manage this potentially confusing conflict
of conventions, recall

Definition of the “over-bar” x ⌘�x (B.1)

For example, I1denotes the trace of stress (positive in tension). Therefore, I1 ⌘�I1 is positive
in compression.

MODEL DEVELOPERS: The keywords and their placement in the user input array of the
source code is defined in the header file called Kayenta_pnt.h. That file is the master file for
defining user inputs and also for defining pointers to variables in the internal state variable array.
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B.1 Model Parameters (User Input)

Symbol ASCII
Name Name and meaning SI

Unit
Defining
Equation

b0

PROP(1)
(B0)
BKMOD

Initial elastic bulk modulus. The tangent bulk
modulus is given by

K = b0 +b1 exp
✓

� b2

|I1|

◆

This formula is for a non-jointed material without
elastic-plastic coupling. The entry for b3 shows
the more general formula that accounts for these
additional effects.

Pa
Eq. (4.9)
Eq. (A.1)
page 273

b1

PROP(2)
(B1)

High pressure coefficient in nonlinear elastic (in-
tact) bulk modulus function (see above formula).
For linear elasticity, set b1 = 0. For nonlinear
elasticity, set b1 so that the Bulk modulus K will
asymptote to a value b0 +b1 at high pressures.

Pa Eq. (4.9)
Eq. (A.1)

b2

PROP(3)
(B2)

SMOD,SHMOD

Curvature parameter in nonlinear elastic (intact)
bulk modulus function (see above formula). For
linear elasticity, set b2 = 0. For nonlinear elas-
ticity, set b2 to a small value to transition rapidly
from the low pressure bulk modulus to the high
pressure modulus. Larger values of b2 will result
in a broader transition range.

Pa Eq. (4.9)
Eq. (A.1)

b3

PROP(4)
(B3)

Coefficient in nonlinear elastic bulk modulus to
allow for plasticity-induced changes in the elas-
tic properties. To neglect this effect, set . When
this parameter is nonzero, the elastic tangent bulk
modulus is computed by

K = fK

⇢

b0 +b1 exp
✓

� b2

|I1|

◆�

�b3 exp

 

� b4
�

�

e

p
v
�

�

!

�

Pa Eq. (4.33)

b4

PROP(5)
(B4)

Power in nonlinear elastic bulk modulus to allow
for plasticity-induced changes in the elastic prop-
erties. To neglect this effect, set b4 = 0. Other-
wise, see above formula.

1 Eq. (4.33)
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g0

PROP(6)
(G0)

Initial elastic shear modulus. The tangent shear
modulus is computed by

G = g0



1�g1 exp(�g2
p

J2

1�g1

�

This formula is for a non-jointed material without
elastic-plastic coupling. The entry for g3 shows
the more general formula that accounts for these
additional effects.

Pa Eq. (4.10)
Eq. (A.3)

g1

PROP(7)
(G1)

Parameter used to define the elastic (intact) shear
modulus at large shears (see above formula).
Specifically, the shear modulus will asymptote
to a value g0/(1� g1) as shear stress increases.
Must be less than 1.0. For linear elasticity, set
g1 = 0. For the shear modulus to increase with
shearing, set 0 < g1 < 1. For the shear modulus
to decrease with shearing, set g1 < 0.

1
Eq. (4.10)
Eq. (A.3)

g2

PROP(8)
(G2)

Curvature parameter in nonlinear elastic (intact)
shear modulus function (see above formula).
Must satisfy g2 � 0. For linear elasticity, set
g2 = 0. For nonlinear elasticity small values of
g2 cause the shear modulus to transition rapidly
from its initial value g0 to its high shear value
g0/(1� g1). Larger values of g2 make this tran-
sition more gradual.

Pa�1 Eq. (4.10)
Eq. (A.3)

g3

PROP(9)
(G3)

Coefficient in nonlinear elastic shear modulus to
allow for plasticity-induced changes in the elas-
tic properties. To neglect this effect, set g0 =
0. When nonzero, the tangent shear modulus is
computed by

G = fG

⇢

g0



1�g1 exp(�g2
p

J2)

1�g1

�

�g3 exp

 

� g4

g

p
equiv

!

�

Pa Eq. (4.34)

g4

PROP(10)
(G4)

Power in nonlinear elastic shear modulus to al-
low for plasticity-induced changes in the elastic
properties. To neglect this effect, set g4 = 0. Oth-
erwise, see above formula.

1 Eq. (4.34)
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`s

PROP(11)
(RJS) Joint spacing. Set this parameter to zero if the

material has no geological (or rock-like) faults.
m cf. [20]

Gs

PROP(12)
(RKS)

Joint shear stiffness. Set this parameter to zero
if the material has no geological (or rock-like)
faults.

Pa m�1 cf. [20]

Ks

PROP(13)
(RKN)

Joint normal stiffness. Set this parameter to zero
if the material has no geological (or rock-like)
faults.

Pa m�1 cf. [20]

a1

PROP(14)
(A1)

Constant term in the fitting function for the
meridional profile, Ff (I1) = a1 �a3e�a2I1 +a4I1,
for the ultimate shear limit surface. Here, I1 =
� trs

⇠⇠
and therefore I1 is three times the pres-

sure. At zero pressure, Ff (I1) = a1 �a3 while at
high pressure (large I1), Ff (I1)⇠ a1+a4I1. Thus,
a1 is the vertical intercept of the linear asymp-
tote, whereas is the vertical intercept of the limit
function itself. These parameters define the ulti-
mate limit curve, at which the maximum possi-
ble hardening has occurred and softening is im-
minent. The initial onset of yield is described by
f f (I1) = Ff (I1)�N. Thus if fitting to data for
yield onset, recognize that the constant term will
be lower than a1 by an amount N.

Pa Eq. (4.39)
Eq. (A.4)

a2

PROP(15)
(A2)

Curvature decay parameter in the fitting func-
tion for the meridional profile, Ff (I1) = a1 �
a3e�a2I1 + a4I1. Keep in mind that I1 = �3p,
where p is pressure. Set a2 = 0 for a linear merid-
ional profile as in Mohr-Coulomb theory. Assign
a2 a large value to quickly asymptote to the high-
pressure profile slope.

Pa�1 Eq. (4.39)
Eq. (A.4)

a3

PROP(16)
(A3) Parameter in the shear limit meridional fit func-

tion, Ff (I1) = a1 �a3e�a2I1 +a4I1.
Pa Eq. (4.39)

Eq. (A.4)
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a4

PROP(17)
(A4) High-pressure meridional slope parameter in the

fit function, Ff (I1) = a1 �a3e�a2I1 +a4I1.
1

Eq. (4.39)
Eq. (A.4)

p0

PROP(18)
(P0)

Value of I1 at the onset of pore collapse for hy-
drostatic compression of virgin material. This
parameter will be negative because I1 is negative
in compression. In the lexicon of traditional p-
a crush models, this variable would equal �3PE ,
where PE is the elastic limit pressure in hydro-
static compression. In early (pre-2003) publica-
tions about Kayenta, this parameter is denoted
X0.

Pa Eq. (4.69)
Eq. (A.2)

p1

PROP(19)
(P1)

One third of the slope of a porosity vs pressure
crush curve at the elastic limit. In early (pre-
2003) publications about Kayenta, this parameter
is denoted D1.

Pa�1 Eq. (4.69)
Eq. (A.2)

p2

PROP(20)
(P2)

Extra fitting parameter for hydrostatic crush
curve data, used when the crush curve has an in-
flection point. In early (pre-2003) publications
about Kayenta, this parameter is denoted D2.

Pa�2 Eq. (4.69)
Eq. (A.2)

p3

PROP(21)
(P3)

Asymptote (limit) value of the absolute value of
the plastic volume strain. This parameter is ap-
proximately equal to the initial porosity in the
material and may be inferred from hydrostatic
crush data. In early (pre-2003) publications about
Kayenta, this parameter is denoted W .

1
Eq. (4.69)
Eq. (A.2)
page 35

R
PROP(22)
(CR)

Shape parameter that allows porosity to affect
shear strength. R equals the eccentricity (width
divided by height) of the elliptical cap function,
so it is the ratio a/b (not A/B) in Fig. 4.16. This
parameter affects the stress level at which dilata-
tion will occur in triaxial compression. If di-
latation is occurring too soon, increase the value
of R. Decreasing R will decrease the influence
of porosity on shear strength and therefore en-
hance the effect of void space creation associ-
ated with crack growth. To replicate older classi-
cal pore collapse models (which initiate pore col-
lapse only at a critical pressure, regardless of the
level of shear stress), set R to a very small num-
ber.

1
Eq. (4.72)
page 273
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Y
PROP(23)
(RK)

TXE/TXC (triaxial extension to compression)
strength ratio. Convexity of the yield surface re-
quires that 1/2  Y  2 (or 7/9  Y  9/7 if us-
ing J3TYPE=1). Real materials generally satisfy
1/2  Y  1. To instruct Kayenta to automat-
ically assign a pressure-dependent strength ratio
according to Eq. (B.19), enter “RK=�1.0”.

1
Eq. (A.5)
page 70

N
PROP(24)
(RN)

Off-set parameter. Must be non-negative. Set
N = 0 to suppress kinematic hardening. For prob-
lems with kinematic hardening, the backstress in-
variant

p

Ja

2 will not be permitted to grow any
larger than N. The initial yield surface is de-
fined by F initial

f (I1,N) = Ff (I1)�N, where Ff de-
scribes the shear limit surface (softening thresh-
old). Roughly speaking, the shear strength can
increase by an amount N before softening will
commence.

Pa
Eq. (4.40)
page 92
page 224

H
PROP(25)
(HC)

Kinematic hardening parameter. Set H = 0 and
N = 0 to suppress kinematic hardening. Other-
wise, this parameter affects how “quickly” the
yield surface evolves toward the ultimate shear
failure surface.

Pa Eq. (4.79)
page 224

PROP(26)
(CTPSF)

For host codes that include a void-insertion op-
tion (invoked in ALEGRA, for example, by
defining I1SOFTLIM), then the variable repre-
sents fracture cut-off of principal stress. Other-
wise, this variable is free.

Pa N/A

Icut
1

PROP(27)
(CUTI1)

Tensile cut-off in allowable value of the first
stress invariant I1. If the first invariant I1
(which is proportional to the negative of pressure)
reaches this cut-off value in tension, the isotropic
part of the stress is replaced with this value. In
early versions of code [33], this parameter was
required as an ad hoc patch to avoid “false elas-
tic domains” or pathological yield function con-
tours disruptive to convergence (cf.[12]). These
algorithmic issues prevented the older predeces-
sor model from damaging all the way to zero ten-
sile strength. Kayenta does not suffer this short-
coming. Now this input parameter is available if
you really want an I1 cutoff, but leaving it un-
specified is the best choice (the code will auto-
matically set it equal to PEAKI1.

Pa cf. [12]
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—
PROP(28)
(CUTPS)

Principal stress tensile cut-off. If a predicted
principal stress is found to exceed this value, then
it is replaced with this value. See discussion re-
garding the state variable “CRACK” in the next
table.

Pa N/A

T1

PROP(29)
(T1)

Primary rate dependence parameter in the
Duvaut-Lions overstress model. To specify a
constant intrinsic material response time, set this
user input equal to the characteristic response
time. Use the other “T” parameters to enable de-
pendence on strain rate and pressure.

s Eq. (7.22)

T2

PROP(30)
(T2) Rate dependence parameter. See main text. s�1 Eq. (7.22)

T3

PROP(31)
(T3) Rate dependence parameter. See main text. 1 Eq. (7.22)

T4

PROP(32)
(T4) Rate dependence parameter. See main text. s�1 Eq. (7.22)

T5

PROP(33)
(T5) Rate dependence parameter. See main text. Pa Eq. (7.22)

T6

PROP(34)
(T6) Rate dependence parameter. See main text. s Eq. (7.22)

T7

PROP(35)
(T7) Rate dependence parameter. See main text. Pa�1 Eq. (7.22)
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—
PROP(36)
(J3TYPE)

Integer-valued control parameter for specifying
the desired type of 3rd-invariant yield surface:

1. Gudehus

2. Willam-Warnke

3. Mohr-Coulomb

1 page 70

aPF
2

PROP(37)
(A2PF)

Potential function parameter (=A2 for associa-
tive). Assign this parameter in the same way you
would assign a value to a2, except that this pa-
rameter is used to generate the flow potential sur-
face (i.e., the plastic strain rate will be normal to
the flow potential surface). If aPF

2 is unspecified
or zero, it will be automatically set equal to a2.

Pa�1 page 77

aPF
4

PROP(38)
(A4PF)

Potential function parameter (=A4 for associa-
tive). Assign this parameter in a manner similar
to a4 except that this parameter will be used to
generate the flow potential. If aPF

4 is unspecified
or zero, it will be automatically set equal to a4.

1 page 77

RPF
PROP(39)
(CRPF)

Potential function parameter (=CR for associa-
tive). Flow potential analog of the yield surface
parameter R. If RPF is unspecified or zero, it will
be automatically set equal to R.

1 page 77

YPF
PROP(40)
(RKPF)

Potential function parameter (=RK for associa-
tive). Flow potential analog of the yield surface
parameter Y. If YPF is unspecified or zero, it will
be automatically set equal to Y.

1 page 77

—
PROP(41)
(SUBX)

Subcycle control parameter. If zero, Kayenta will
select an appropriate default subcycle step size,
called DTSUB in the source code. If SUBX is
nonzero, then Kayenta’s default subcycle incre-
ment will be multiplied by 10SUBX (ten raised
to the power). If, for example, you want the
code to decrease DTSUB by a factor of 10, then
set SUBX = 1. If you want the subcycle size
DTSUB to altered by a factor “x”, then set SUBX to
the base ten log of “x” [That is, SUBX=log10 x =
(lnx)/(ln10)].

1
page 138
page 147
Fig. 9.3
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—
PROP(42)
(DEJAVU)

Not truly a user input. This is set equal to 1.0
when the input parameters have been checked
(and altered for self consistency) by Kayenta’s in-
ternal data check routine. To bypass data check
(which is not advisable), the user may set DE-
JAVU=1.0. Otherwise, this parameter should be
left unspecified (i.e., defaulted to zero)

1 N/A

tfail
PROP(43)
(FAIL0)
TFAIL

For option SOFTENING=1, tfail is a material-
specific (and scale-dependent) characteristic fail-
ure time. Loosely speaking, it represents the
amount of time required for an element to lose
half of its initial strength and stiffness. A proper
implementation of Kayenta requires user specifi-
cation of tfail to be accompanied by a reference
element size so that the host code can automat-
ically adjust the value of TFAIL to be larger
for larger elements and smaller for smaller ele-
ments. Syntax for specifying the scale will vary
with host code. Rule of thumb: if the reference
element is of width w and if the crack growth
speed is ccrack (which is typically a fraction of the
Rayleigh wave speed), then tfail should be on the
order of w/ccrack.

s Eq. (5.4)
Fig. 5.3

k
PROP(44)
(FAIL1)
FSPEED

For option SOFTENING=1, this parameter con-
trols the rate at which damage proceeds. Large
FSPEED (> 30) will result in a sudden loss of
strength and stiffness, whereas small FSPEED
(< 5) will produce a more gradual softening pro-
cess. A microphysically based choice for 3-
D problems would use a value of 3, but fitting
to actual data usually gives better results when
much larger values are used. To emulate the first
Johnson-Holmquist damage model (JH1), use a
large value. Smaller values emulate the JH2
model.

1
Eq. (5.4)
Fig. 5.3

—
PROP(45)
(FAIL2)

Depending on SOFTENING:
SOFTENING = 3, value of the constant equiva-
lent strain to fracture.
SOFTENING = 4, parameter D1 from the
Johnson-Cook fracture model.
SOFTENING = 5, parameter C1 from the Xue-
Weirzbicki fracture model.

1
Eq. (5.7)
Eq. (5.8)
Eq. (5.10)
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—
PROP(46)
(FAIL3)

Depending on SOFTENING:
SOFTENING = 4, parameter D2 from Johnson-
Cook Fracture.
SOFTENING = 5, parameter C2 from Xue-
Weirzbicki Fracture

1
Eq. (5.8)
Eq. (5.10)

—
PROP(47)
(FAIL4)

Depending on SOFTENING:
SOFTENING = 4, parameter D3 from Johnson-
Cook Fracture.
SOFTENING = 5, parameter C3 from Xue-
Weirzbicki Fracture.

1
Eq. (5.8)
Eq. (5.10)

—
PROP(48)
(FAIL5)

Depending on SOFTENING:
SOFTENING = 4, D4 from Johnson-Cook Frac-
ture.
SOFTENING = 5, C4 from Xue-Weirzbicki
Fracture.

1
Eq. (5.8)
Eq. (5.10)

—
PROP(49)
(FAIL6)

Depending on SOFTENING:
SOFTENING = 4, D5 from Johnson-Cook Frac-
ture.
SOFTENING = 5, N from Xue-Weirzbicki Frac-
ture.

1
Eq. (5.8)
Eq. (5.10)

—
PROP(50)
(FAIL7)

Depending on SOFTENING:
SOFTENING = 4, Reference strain rate ė0 from
Johnson-Cook Fracture.
SOFTENING = 5, Toggle cutoff from Xue-
Weirzbicki Fracture. A nonzero value disables
the fracture cutoff.

1
Eq. (5.8)
Eq. (5.10)

—
PROP(51)
(FAIL8)

Depending on SOFTENING:
SOFTENING = 4, Melt temperature from
Johnson-Cook Fracture.

1 Eq. (5.8)

—
PROP(52)
(FAIL9)

Depending on SOFTENING:
SOFTENING = 4, Room temperature from
Johnson-Cook Fracture.

1 Eq. (5.8)

(Ipeak
1 )

I
PROP(53)
(PEAKI1I) Theoretical initial tensile limit of I1 for intact ma-

terial.
Pa Eq. (5.1b)

(tY )I
PROP(54)
(STRENI) Initial high-pressure strength intercept for intact

material.
Pa Eq. (5.1c)
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(sF)I
PROP(55)
(FSLOPEI) Failed high-pressure strength intercept. Pa Eq. (5.1a)

(Ipeak
1 )F

PROP(56)
(PEAKI1F)

Theoretical failed tensile limit of I1. If unspeci-
fied, defaults to zero (i.e., failed material has no
tensile strength).

Pa Eq. (5.1b)

(tY )F
PROP(57)
(STRENF) Failed high-pressure strength intercept. Pa Eq. (5.1c)

—
PROP(58)
(SOFTENING)

If zero, then the limit surface is treated as a
non-hardening yield surface. If SOFTENING
is a nonzero integer, then material softening
(loss of strength and stiffness) is applied. The
SOFTENING parameter specifies the approach to
be used for softening. These options are:
1 = time-to-failure.
2 = {reserved for developers}
3 = constant equivalent strain to failure.
4 = Johnson-Cook failure.
5 = Xue-Wierzbicki failure.

1 page 67

(sF)F
PROP(59)
(FSLOPEF)

Initial slope of the failed TXC limit surface. If
unspecified, defaults to a value appropriate to
sand.

Pa Eq. (5.1a)

—
PROP(60)
(FAILSTAT)

FAILSTAT is a control parameter available for
verification testing. Setting it equal to 1.0 will
stop the code at the onset of material failure
when softening is enabled. Noting the stress state
at this stopping point allows generating failure
statistics that can be compared with the failure
statistics specified in user input. If it is set to
�1, the code will generate a so-called barf file
with the information pertaining to the material
state at the first instance of material failure. (See
page 143 for information on barf files.)

1 N/A
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—
PROP(61)
(IEOSID)

Equation of state ID. Set to 0 (default) for stan-
dard Kayenta bulk and and shear moduli func-
tions, 1 for the bulk modulus to be updated by
the Mie Gruüneisen equation of state, and 3 for
the bulk modulus to be updated by an equation
of state supplied by the host code. See host code
developers about functionality. Other values of
EOSID are used to enable the calculation of the
elastic bulk and shear moduli using equations of
state that are currently under development. See
the Kayenta developers for the current state of
these newer equations of state

1 page 116

PROP(62)
(EVLEOS) 1 N/A

PROP(63)
(DILATIM)

Limit on plastic dilatation. When set, the max-
imum value of plastic dilatation As this value of
plastic dilatation is reached, plastic flow becomes
more deviatoric to retard further accumulation of
plastic dilatation.

1 N/A

n

PROP(64)
(NU)
POISSON

Poisson’s ratio. Only meaningful if EOSID is 1
or 3. When specified, the elastic shear modulus is
computed from the equation of state response for
the bulk modulus and Poisson’s ratio (using the
assumption of isotropy of the elastic stiffness). If
instead the shear modulus is given, Poisson’s ra-
tio is computed at startup from the equation of
state computed bulk modulus and shear modu-
lus at initialization. Poisson’s ratio is presumed
to remain constant throughout the remainder of
the simulation and is used to compute an updated
shear modulus from the equation of state bulk
modulus.

1 N/A

(sY )I
PROP(65)
(YSLOPEI) High-pressure slope of the initial limit surface. Pa Eq. (5.1d)

(sY )F
PROP(66)
(YSLOPEF) High-pressure slope of the failed limit surface. If

unspecified, defaults to 0.0.
Pa Eq. (5.1d)

Fig. 5.2
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—
PROP(67)
(SPALLI1)

The value of I1 beyond which the stress state will
never be allowed. This differes from PEAKI1
in that Kayenta computes the amount of strain
corresponding to stress increments beyond this
value, and then Kayenta sends a request for the
host code to insert void or to invoke any other
similar control of tensile deformation control.

Pa Eq. (5.12)

—
PROP(68)
(FREE08) Not used — control for research testing of new code. N/A

—
PROP(69)
(FREE07) Not used — control for research testing of new code. N/A

—
PROP(70)
(FREE06) Not used — control for research testing of new code.

—
PROP(71)
(FREE05) Not used — control for research testing of new code.

—
PROP(72)
(FREE04) Not used — control for research testing of new code.

—
PROP(73)
(FREE03) Not used — control for research testing of new code.

—
PROP(74)
(FREE02) Not used — control for research testing of new code.

—
PROP(75)
(FREE01) Not used — control for research testing of new code.
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If Kayenta is compiled to include theory for joints, additional user inputs are required, as listed
here. Documentation of joints is available only in relatively obscure conference proceeding (See
Ref. [20], available upon request). Each of the following input keywords is appended with 01,
02, or 03 to indicate the joint normal direction. For example, SPACE02 is the spacing of joints
whose normal points in the 2-direction. For orthotropic joints, the three directions are aligned with
the coordinate directions used by the host code. To specify any other orientations and/or to model
non-orthotropic joint sets, see the next table of this Appendix.

Symbol ASCII
Name Name and meaning SI

Unit
Defining
Equation

PROP(--)
(CKN) Initial joint normal stiffness. Pa m�1 cf. [20]

PROP(--)
(VMAX) Maximum joint closure. m cf. [20]

PROP(--)
(SPACE) Joint spacing. m cf. [20]

PROP(--)
(SHRSTIFF) Initial shear stiffness. Pa m�1 cf. [20]
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B.1.1 Other input parameters (available only in special builds)

When Kayenta is compiled with -D KMM_ANISOTROPIC to include up to four arbitrarily
oriented joint sets, the relevant user parameters are the same as those listed above for orthotropic
joints plus two inputs for specifying joint orientation:

Symbol ASCII
Name Name and meaning SI

Unit
Defining
Equation

PROP(--)
(STRIKE) Initial Joint strike angle. rad cf. [20]

PROP(--)
(DIP) Initial Joint dip angle. rad cf. [20]

With the generally anisotropic option, all joint parameter keywords are appended with 1, 2, 3,
or 4 to indicate the joint ID number. For example, SPACE2 is the spacing of joints in the second
joint set.
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Kayenta has the option of using a true equation of state to compute elastic moduli, requiring
additional EOS input parameters as given in the table below:

Symbol ASCII
Name Name and meaning SI

Unit
Defining
Equation

PROP(--)
(TMPRXP)

Homologous temperature exponent, used to con-
trol rate of thermal softening. Thermal softening
is a feature that is not available in the current pub-
lic release of Kayenta.

1 Eq. (5.8)

Tmelt

PROP(--)
(TMPRM0)
TMELT0

Initial melt temperature used in thermal softening
model. Thermal softening is a feature that is not
available in the current public release of Kayenta.

K Eq. (5.8)

r0
PROP(--)
(RHO0) Initial density. Used only if EOSID is 1 or 3 kg m�3 Eq. (6.4)

PROP(--)
(TMPR0) Initial temperature. Used only if EOSID is 1 or 3 K

cs
PROP(--)
(SNDSP0) Initial sound speed m s�1 Eq. (6.8)

cv
PROP(--)
(CV) Specific heat at constant volume (required input) J kg�1 K�1 Eq. (6.7)

g

PROP(--)
(GRPAR) Grüneisen parameter 1

page 114
Eq. (6.12)
Eq. (6.13)
Eq. (6.22)

s1
PROP(--)
(S1)

Linear US-UP coefficient Used only if EOSID is
1 or 3

1
page 115
Eq. (6.8)

PROP(--)
(EOS01)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

PROP(--)
(EOS02)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

PROP(--)
(EOS03)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3
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PROP(--)
(EOS04)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

PROP(--)
(EOS05)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

PROP(--)
(EOS06)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

s2
PROP(--)
(EOS07)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

page 115
Eq. (6.8)

PROP(--)
(EOS08)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

PROP(--)
(EOS09)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

PROP(--)
(EOS10)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

1

PROP(--)
(EOS11)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3

PROP(--)
(EOS12)

Derived EOS parameter, set by the EOS at
startup. Used only if EOSID is 1 or 3
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B.2 Internal State Variables (Plottable Output)

Symbol ASCII
Name Name and meaning SI

Unit
Defining
Equation

k

SV(1)
(KAPPA)
ELN
EL

The value of I1 at which the meridional yield
profile first branches away from the crack failure
surface and begins to morph into the cap function
associated with porosity. Recalling that k = k ,
the internal state variable k typically will be
negative. As a rule of thumb: increasing the
user-input parameter R will increase k (and
therefore decrease k). Recalling Fig. 4.16, k is
not the point at which the meridional profile has
a zero slope — it is the branching location. The
zero slope point is reached at a higher pressure.
Isotropic hardening is controlled by the evolution
of k . In Kayenta physics source code, k is
denoted by ELN or by EL in the subcycling.

Note: future builds of Kayenta are antici-
pated to replace the KAPPA output variable with
the X variable in Fig. 4.5.

Pa
Eq. (4.30)
Eq. (4.73)
Fig. 4.5

—
SV(2)
(INDEX)

Indicator for the nature of plastic loading (this
output is used primarily by code developers for
debugging)

1 page 136

ė

equiv
SV(3)
(EQDOT)

L2 (Frobenius) norm of input strain rate tensor.

ė

equiv =
p

ėi jėi j s�1 Section 8

I1

SV(4)
(I1) First stress invariant (positive in tension). Pa Eq. (3.7a)

p
J2

SV(5)
(ROOTJ2)

Square root of the second stress invariant
p

J2 (al-
ways positive). This the equivalent shear stress in
the material.

Pa
Eq. (3.7b)
Eq. (3.9)
page 136
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a11

SV(6)
(ALXX) 11 component of the backstress Pa page 91

page 78

a22

SV(7)
(ALYY) 22 component of the backstress Pa page 91

page 78

a33

SV(8)
(ALZZ) 33 component of the backstress Pa page 91

page 78

a12

SV(9)
(ALXY) 12 component of the backstress (= 21 compo-

nent)
Pa page 91

page 78

a23

SV(10)
(ALYZ) 23 component of the backstress (= 32 compo-

nent)
Pa page 91

page 78

a31

SV(11)
(ALXZ) 31 component of the backstress (= 13 compo-

nent)
Pa page 91

page 78

Ga

SV(12)
(GFUN)

Kinematic hardening decay function, equal to 1.0
initially and then decays down to 0.0 as the max
allowable kinematic hardening (determined by
the shift parameter ) is approached.

1
Eq. (4.82)
page 91

g

p
equiv

SV(13)
(EQPS)
EQP

Equivalent uniaxial plastic shear strain (conju-
gate to

p
J2). Specifically, g

p
equiv =

R

p
2kġ

⇠⇠
pkdt,

where ġ

⇠⇠
p is the deviatoric part of the plastic strain

rate ė

⇠⇠
p.

1 Eq. (4.35)

e

p
v

SV(14)
(EQPV) Equivalent plastic volume strain: e

p
v =

R

tr ė

⇠⇠
pdt. 1 Section 8
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k0

SV(15)
(EL0)

Legacy output, not of interest to users equal to
the calculated initial value for k (the cap branch
value of I1). This is not really an internal state
variable. It was originally introduced to prevent
the cap from contracting past its initial value in
response to pore expansion. Such behavior is
now allowed but potentially unstable. Its value
will remain constant throughout the calculation.
Keep in mind: k is typically positive and there-
fore k ⌘�k is typically negative.

This output variable will be unused in fu-
ture builds of Kayenta that replace the KAPPA
state variable with the X variable in Fig. 4.5.

Pa Fig. 4.16

h⇤
k

SV(16)
(HK) (Isotropic hardening parameter) Proportionality

factor appearing in the relationship k̇ = l̇

⇤h⇤
k

.
Eq. (4.76)

e

tot
v

SV(17)
(EVOL) Total volume strain,

R

tr ė

⇠⇠
dt. 1 page 136

p

Ja

2

SV(18)
(BACKRN)

Square root of the second backstress invariant.
This is like the equivalent shear stress, except ap-
plied to the backstress. The value of BACKRN is
not permitted to exceed the user specified limit
value of N

Pa Eq. (4.82)
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—
SV(19)
(CRACK)

Flag indicating that the material has reached a
stress at which softening (loss of load-carrying
capability) should engage. CRACK is zero in non-
softening regions. It equals 1.0 if a tensile cut-off
(CUTI1 or CUTPS) has been reached. It equals
2.0 if the limit surface has been reached (i.e.,
when no further kinematic hardening can oc-
cur). If CRACK is nonzero, Kayenta has reached
the limit of its applicability and all subsequent
Kayenta predictions might be nonphysical. When
CRACK becomes nonzero, Kayenta continues to
run by holding the stress at its limit state rather
than allowing the stress to drop as it should (i.e.,
Kayenta runs like a classical plasticity model af-
ter CRACK becomes nonzero). Kayenta never ac-
tually softens because doing so would result in
mesh-dependent solutions without host-code in-
tervention. For these types of problems, a more
advanced beta version of Kayenta should be re-
quested.

1 page 136

—
SV(20)
(SHEAR)

Flag equal to 0.0 if the material response is elas-
tic. Otherwise, if positive, the response is plastic.
The value ranges from 0.0 if the trial stress rate is
tangent to the yield surface to 1.0 if the trial stress
rate is normal to the yield surface (i.e., pushing
directly against it).

1
Fig. 8.1

page 136

f
SV(21)
(YIELD)

F
Value of the yield function. Pa2 Eq. (4.42)

q

SV(22)
(LODE)

Lode angle in degrees ranging from �30 in triax-
ial extension to +30 in triaxial compression. The
Lode angle is frequently denoted b in other pub-
lications about Kayenta.

deg
Eq. (3.34)
page 136

s

L
11

SV(23)
(QSSIGXX) Internal Kayenta variable (quasistatic “low”

stress)
Pa Eq. (7.10)

s

L
22

SV(24)
(QSSIGYY) Internal Kayenta variable (quasistatic “low”

stress)
Pa Eq. (7.10)
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s

L
33

SV(25)
(QSSIGZZ) Internal Kayenta variable (quasistatic “low”

stress)
Pa Eq. (7.10)

s

L
12

SV(26)
(QSSIGXY) Internal Kayenta variable (quasistatic “low”

stress)
Pa Eq. (7.10)

s

L
23

SV(27)
(QSSIGYZ) Internal Kayenta variable (quasistatic “low”

stress)
Pa Eq. (7.10)

s

L
31

SV(28)
(QSSIGZX) Internal Kayenta variable (quasistatic “low”

stress)
Pa Eq. (7.10)

l̇

⇤
SV(29)
(DCSP)

Plastic consistency parameter, equal to the mag-
nitude of the plastic strain rate. This interpreta-
tion applies because Kayenta uses a normalized
flow direction and a unit normal to the yield sur-
face.

1/s
Eq. (4.51)
Eq. (4.86)

kL

SV(30)
(QSEL)

Internal Kayenta variable (quasistatic “low”
value of k). In Eq. (7.15), qL stands for any inter-
nal state variable. This is the particular instance
for which qL = kL, which is the quasistatic value
of the isotropic hardening ISV.

Pa Eq. (7.15)

a

L
11

SV(31)
(QSBSXX) Quasistatic backstress. In Eq. (7.15), qL stands

for a

L
i j.

Pa Eq. (7.15)

a

L
22

SV(32)
(QSBSYY) Quasistatic backstress. In Eq. (7.15), qL stands

for a

L
i j.

Pa Eq. (7.15)

a

L
33

SV(33)
(QSBSZZ) Quasistatic backstress. In Eq. (7.15), qL stands

for a

L
i j.

Pa Eq. (7.15)
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a

L
12

SV(34)
(QSBSXY) Quasistatic backstress. In Eq. (7.15), qL stands

for a

L
i j.

Pa Eq. (7.15)

a

L
23

SV(35)
(QSBSYZ) Quasistatic backstress. In Eq. (7.15), qL stands

for a

L
i j.

Pa Eq. (7.15)

a

L
31

SV(36)
(QSBSZX) Quasistatic backstress. In Eq. (7.15), qL stands

for a

L
i j.

Pa Eq. (7.15)

tgrow
SV(37)
(TGROW)

Total time during which the material has been un-
dergoing progressive damage. This output may
be regarded as an “age of damage”. As such,
a color plot of this variable will reveal not only
damaged material, but it also suggests the failure
sequence.

s Fig. 5.3

1�D
SV(38)
(COHER)

Coherence = 1�damage
The value ranges from 1 for an intact material to
0 for fully failed material.

1
Eq. (5.1b)
Fig. 5.3

SV(39)
(TMPR) Temperature K

SV(40)
(TMPRM) Temperature K

SV(41)
(SNDSP) Speed of sound m s�1

SV(42)
(RHO) Density kg/m3
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SV(43)
(ENRGY) Energy J/kg

SV(44)
(ALPHAMG) Free variable for EOS ISV

SV(45)
(EOS1) Free variable for EOS ISV

SV(46)
(EOS2) Free variable for EOS ISV

SV(47)
(EOS3) Free variable for EOS ISV

SV(48)
(EOS4) Free variable for EOS ISV

SV(49)
(RTJ2IN)

p
J2 invariant of the plastic stress state

e

eqdot
SV(50)
(ACCSTRAIN)

Accumulated equivalent softening strain. Accu-
mulated only when softening is active and the
stress state is on the yield surface.

e

eqdot = e

eqdot + ė

equiv ⇤dt

.

1

B.2.1 Other plottable parameters (available only in special builds)

The following variables are available if Kayenta is compiled with special compile options.

252



Symbol
ASCII
Name Name and meaning SI

Unit
Defining
Equation

(TGROWCTPS) Just like TGROW but controls the contraction of
the limit surface along the hydrostatic axis.

(COHERCTPS) Just like COHER but controls the contraction of
the limit surface along the hydrostatic axis.

(JNTOPN1)
Joint Opening for the first joint set. m cf. [20]

(JNTOPN2)
Joint Opening for the second joint set. m cf. [20]

(JNTOPN3)
Joint Opening for the third joint set. meter cf. [20]

(JNTOPN4) meter cf. [20]

(SPALL1)

(ELNUM)

Element number flag used for model develop-
ment host code debugging. If ELNUM is neg-
ative at initialization, Kayenta writes a MatMod-
Lab input file for deformation history of an ele-
ment numbered ELNUM. Use of ELNUM is cur-
rently only supported in the Alegra host code.
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B.3 Other Symbols (used only in this report)

Symbols are listed here only if they appear in multiple locations throughout this User’s Guide
(or if they are local variables specifically used in the source code).

Symbol ASCII
Name Name and meaning SI

Unit
Defining
Equation

Ci jkl Fourth-order elastic stiffness tensor Pa Eq. (4.4)

di j DELTA Kronecker delta 1

Dg

p
i j

DEIJPL

Deviatoric plastic strain increment defined as

Dg

p
i j =

✓

ė

p
i j �

1
3

ėkkdi j

◆

Dt 1

De

p
v VOLPLAS Plastic volume strain increment = ė

p
kkDt 1

DFDSIG Derivative of the plastic potential with respect to
stress

—

t time sec

Dt DT time increment sec

E Young’s modulus Pa Eq. (4.12)

f f
The part of the meridional yield profile function
associated with microcracks: f f = Ff �N

Pa Eq. (4.29)
Fig. 4.6

Ff FF Meridional shear limiter function Pa Eq. (4.39)

fc
The part of the meridional yield profile function
associated with porosity: fc =

p
Fc

1
Eq. (4.29)
Fig. 4.5
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Fc FC Meridional nominal yield function (Pelessone
function)

1
Eq. (4.32)
Eq. (4.30)

f

PHI Friction angle (for Mohr-Coulomb theory) 1 Eq. (B.3)

g G Flow potential function Pa2 Eq. (4.51)

G GAMMAP Octahedral yield shape function (depends on
J3TYPE)

1 page 70

Ha

i j ,H⇠⇠
a

Kinematic hardening modulus tensor Pa Eq. (4.81)

HY D Acronym: Hydrostatic loading. The stress is di-
agonal (no shears).

page 35

I1 RI1 First stress invariant, I1 = trs

⇠⇠
. This is positive in

tension.
Pa Eq. (3.7a)

I1 Negative of I1. This is positive in compression Pa Eq. (3.7a)

J2 RJ2

Second stress invariant, J2 =
1
2 trS

⇠⇠
2 (never nega-

tive). Geometrically,
p

2J2 equals the magnitude
of the stress deviator, and it therefore equals the
“length” of the projection of the pseudo stress
vector in 3D Haigh-Westergaard (stress) space
onto the octahedral-plane (i.e.,

p
2J2 is the Lode

radius).

Pa2 Eq. (3.7b)

Jx

2
RELJ2ZP Second invariant of the shifted stress Pa2 Eq. (4.22)

page 28

J3 RJ3
Third stress invariant, J3 = 1

3 trS
⇠⇠

3. This is posi-
tive when the stress deviator is closer to TXE than
to TXC.

Pa3 Eq. (3.7c)

J3
Negative of J3. This is positive when the stress
deviator is closer to TXC than to TXE.

Pa3 Eq. (3.7c)

Jx

3
RELJ3ZP Third invariant of the shifted stress Pa3 Eq. (4.22)

page 28
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k
This symbol is used in various contexts, so its
intended meaning should be taken to be local to
whatever chapter it appears in.

— (various)

n

RNU Poisson’s ratio 1 Eq. (4.12)

p

Mean stress, p = 1
3 trs

⇠⇠
= I1

3 . The mean stress is
positive in compression. The pressure p, which
is positive in compression is the negative of the
mean stress: p =�p.

Pa

p
Pressure = negative of mean stress, p=�1

3 trs

⇠⇠
=

I1
3

Pa Eq. (3.8)
page 33

P Porosity (unloaded). 1 Eq. (4.67)

PONE Code parameter equal to 1.0 1

PTWO Code parameter equal to 2.0 1

PFOUR Code parameter equal to 4.0 1

R
⇠⇠ Polar rotation tensor 1

Eq. (3.33)
Eq. (4.3)

r Mass density kg/m3

S
⇠⇠ Stress deviator, S

⇠⇠
= s

⇠⇠
� 1

3(trs

⇠⇠
)I
⇠⇠

Pa Eq. (3.5)

s

⇠⇠ The stress tensor. Pa Eq. (3.1)

SHR

Acronym: Shear loading (one principal value of
the stress deviator is zero and the others are there-
fore negatives of each other). SHR applies even
when all principal stresses are compressive — all
that matters is the nature of the stress deviator.

N/A page 42
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T XE

Acronym: Triaxial extension: Two “lateral” prin-
cipal stresses are equal and the distinct eigen-
value is more tensile than the lateral stresses. A
stress state can be in TXE even when all prin-
cipal stresses are compressive — the axial stress
merely needs to be less compressive than the lat-
eral stresses.

N/A page 37

T XC

Acronym: Triaxial compression (two “lateral”
principal stresses are equal and the distinct
eigenvalue is more compressive than the lateral
stresses)

N/A page 37

T
⇠⇠

The Hill tensor, defined to be the deviatoric part
of S

⇠⇠
2 and therefore given by T

⇠⇠
= S

⇠⇠
2 � 2

3J2I
⇠⇠

Pa

Ti jkl Plastic tangent stiffness tensor Pa Eq. (4.101)

t

Signed equivalent shear stress, t = sgn
⇥p

J2,J3
⇤

.
This equals ±

p
J2. It is positive when J3 � 0, and

negative when J3  0.
Pa Eq. (3.9)

t

Negative of t . This is positive when the stress is
closer to TXC, and negative when closer to TXE

Pa Eq. (3.4)

t

TAU Characteristic material response time sec Eq. (7.4)

q

x RLODE

Lode angle associated with the shifted stress ten-
sor x

⇠⇠
= s

⇠⇠
�a

⇠⇠
(q x

= 30� when a

⇠⇠
is TXC and

q

x

= +30� when x

⇠⇠
is TXE). When this vari-

able is requested as output, its value is given in
degrees (not radians).

rad Eq. (3.34)

sin3q

x SIN3BTAP Sine of three times the Lode angle q

x . 1 Eq. (3.34)

x

⇠⇠
ZETA

Shifted stress tensor, x

⇠⇠
= s

⇠⇠
� a

⇠⇠
. When kine-

matic hardening is activated, the yield surface
origin will be at x

⇠⇠
= 0

⇠⇠
instead of at the zero stress

origin. The backstress tensor a

⇠⇠
represents the

amount by which the origin has translated.

Pa page 91

fK FK Bulk modulus reduction factor for ubiquitous
jointing.

1 Eq. (4.33)

257



fG FG Shear modulus reduction factor for ubiquitous
jointing.

1 Eq. (4.34)

N
⇠⇠

Yield surface unit normal, equal to the gradient of
the yield function divided by its own magnitude.

1 Eq. (4.52)

M
⇠⇠

Flow surface unit normal, equal to the gradient of
the flow function divided by its own magnitude.

1 Eq. (4.53)

F

Magnitude of the derivative of the yield func-
tion w.r.t. stress. This scalar can have ambigu-
ous units because yield functions themselves are
ambiguous [12]; the units here correspond to the
yield function used in Kayenta.

Pa Eq. (4.52)

G Magnitude of the derivative of the flow function
w.r.t. stress.

Pa Eq. (4.53)
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B.4 Datasets

This section cites parameters for some materials that have already been fit to Kayenta. Datasets
undergo continual refinement as additional material data become available, so consult the model
developers to obtain the latest values. This section concludes with simplified datasets for mimick-
ing simpler classical theories (von Mises plasticity, Mohr-Coulomb theory, etc.)

B.4.1 Dataset for Salem Limestone

$
$ Kayenta parameters for Sidewinder Tuff
$ Units are SI
B0 = 4.0e9 $Pa
B1 = 6.5e9 $Pa
B2 = 0.1e9 $Pa
G0 = 3.69e9 $Pa
A1 = 496.83e6 $Pa
A2 = 6.293e-10 $1/Pa
A3 = 481.08e6 $Pa
A4 = 1.e-10 $Dimensionless
P0 = -70.e6 $Pa
P1 = 1.8e-11 $1/Pa
P2 = 2.15e-19 $1/Pa^2
P3 = 0.08 $strain
CR = 15.0 $Dimensionless
RK = 0.7 $Dimensionless
CUTI1 = 3.e6 $Pa
CUTPS = 1.e6 $Pa
J3TYPE = 3 $Dimensionless

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.
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B.4.2 Dataset for Sidewinder Tuff

$
$ Kayenta parameters for Sidewinder Tuff
$ Units are SI
B0 = 4.0e9 $Pa
B1 = 6.5e9 $Pa
B2 = 0.1e9 $Pa
G0 = 3.69e9 $Pa
A1 = 496.83e6 $Pa
A2 = 6.293e-10 $1/Pa
A3 = 481.08e6 $Pa
A4 = 1.e-10 $Dimensionless
P0 = -70.e6 $Pa
P1 = 1.8e-11 $1/Pa
P2 = 2.15e-19 $1/Pa^2
P3 = 0.08 $strain
CR = 15.0 $Dimensionless
RK = 0.7 $Dimensionless
CUTI1 = 3.e6 $Pa
CUTPS = 1.e6 $Pa
J3TYPE = 3 $Dimensionless

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.
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B.4.3 Dataset for lab scale intact Climax Granite

$
$ Kayenta parameters for Lab-scale Intact Climax Granite
$
B0 = 43.00e9 $Pa
B1 = 750.0e9 $Pa
B2 = 100.0e9 $Pa
G0 = 34.73e9 $Pa
A1 = 1355.e6 $Pa
A2 = 3.43e-10 $1/Pa
A3 = 1328.e6 $Pa
A4 = 3.82e-2 $Dimensionless
P0 = -556.e6 $Pa
P1 = 9.e-14 $1/Pa
P2 = 0. $1/Pa^2
P3 = 0.05 $strain
CR = 227.5 $Dimensionless
RK = 0.72 $Dimensionless
RN = 17.0e6 $Pa
HC = 150000.e6 $Pa
CUTI1 = 30.e6 $Pa
CUTPS = 10.e6 $Pa
J3TYPE = 3 $dimensionless

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.
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B.4.4 Dataset for field scale jointed Climax Granite

$
$ Kayenta parameters for field-scale JOINTED Climax Granite
$
B0 = 43.00e9 $Pa
B1 = 750.0e9 $Pa
B2 = 100.0e9 $Pa
G0 = 34.73e9 $Pa
RJS = 0.06 $Meters (Joint spacing)
RKS = 8.0e10 $Pa/Meter (Joint shear stiffness)
RKN = 1.6e11 $Pa/Meter
A1 = 1379.e6 $Pa
A2 = 6.51e-11 $1/Pa
A3 = 1328.e6 $Pa
P0 = -556.e6 $Pa
P1 = 9.e-14 $1/Pa
P2 = 0. $1/Pa^2
P3 = 0.05 $strain
CR = 227.5 $Dimensionless
RK = 0.80 $Dimensionless
RN = 17.0e6 $Pa
HC = 150000.e6 $Pa
CUTI1 = 30.e6 $Pa
CUTPS = 10.e6 $Pa
J3TYPE = 3 $dimensionless

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.
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B.4.5 Dataset for 23MPa Concrete

The following values are taken primarily from [94]. In that publication, the symbols b0, b1, etc. are used
for what we denote G0, G1, etc. The a parameters in that publication are denoted as B parameters in this
User’s Guide.

B0 = 5.5e9 $Pa
B1 = 28.78e9 $Pa
B2 = 0.623e9 $Pa
G0 = 1.9026e9 $Pa
G1 = 0.890513 $Dimensionless
G2 = 3.55e-9 $1/Pa
A1 = 1255.7e6 $Pa
A2 = 1.93e-10 $1/Pa
A3 = 1248.2e6 $Pa
P0 = -1.067e8 $Pa
P1 = 7.66e-10 $1/Pa
P2 = 3.88e-20 $1/Pa^2
P3 = 0.1538 $Dimensionless(strain)
CR = 10.0 $Dimensionless
RK = -1. $Dimensionless
RN = 3.0e6 $Pa
HC = 1.0e11 $Pa
CUTI1 = 3e6 $Pa
CUTPS = 1.e6 $Pa
J3TYPE=2

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.
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B.4.6 Dataset for Conventional Strength Portland Concrete

B0 = 1.0954e10 $Pa
G0 = 7.5434e9 $Pa
A1 = 4.26455e8 $Pa
A2 = 7.51e-10 $1/Pa
A3 = 4.19116e8 $Pa
A4 = 1.0e-10 $Dimensionless
P0 = -1.95520e8 $Pa
P1 = 1.2354e-9 $1/Pa
P3 = 0.065714 $Dimensionless(strain)
CR = 12.0 $Dimensionless
RK = -1. $Dimensionless
CUTI1 = 3.0e6 $Pa
CUTPS = 1.0e6 $Pa
J3TYPE=2

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.
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B.4.7 PARTIAL Dataset for Johnson-Cook verification tests

$
$ JC parameters taken from Johnson1985 for steel 4340
$ This input showcases von Mises plasticity with
$ Johnson-Cook fracture.

B0 = 159.0e9 $Pa
G0 = 77.0e9 $Pa
P0 = -1.0e+99 $Pa
CR = 0.001 $Dimensionless
RK = 1.0 $Dimensionless
RN = 0 $Pa
HC = 0 $Pa
CTI1 = 1.e99 $Pa
CTPS = 1.e99 $Pa

STRENI = 792.0e6 $Pa
YSLOPEI = 0.0 $Dimensionless
PEAKI1I = 1.0e+99 $Pa
FSLOPEI = 0.0 $Dimensionless

$ Default behaves like a sand
STRENF = 0.0 $Pa
YSLOPEF = 0.0 $Dimensionless
PEAKI1F = 0.0 $Pa
FSLOPEF = 0.0 $Dimensionless

FAIL1 = 7.0 $Dimensionless

FAIL2 = 0.05 $Dimensionless
FAIL3 = 3.44 $Dimensionless
FAIL4 = -2.12 $1/Pa
FAIL5 = 0.002 $Dimensionless
FAIL6 = 0.61 $1/Kelvin
FAIL7 = 1.00 $1/Sec
FAIL8 = 1793.0 $Kelvin
FAIL9 = 298.0 $Kelvin

SOFTENING = 4.0 $Dimensionless
J3TYPE = 1.0 $Dimensionless

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.
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B.4.8 Datasets for mimicking classical (simplified) models

Kayenta is truly a unification of many simpler theories. By appropriately setting parameters, Kayenta
can be made to exactly replicate results from simpler idealized theories, as illustrated below.
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Figure B.1. Other yield surface shapes supported by Kayenta.
The grid lines shown on these sketches correspond to lines of con-
stant z and constant q .

In most finite-element codes, you can modify an existing data set (e.g., one for a real material) by simply
redefining a material parameter in a separate input line, leaving the original value unchanged. By deviating
from a correct input set to a “toy” input set in this way (rather than over-writing preferred values), you can
retain a record of what the material parameters should be, thereby mitigating unintentional dissemination of
physically bad input sets.

The following specialized input sets use an “aprepro” syntax to show where you need to provide val-
ues. Specifically, all required or computed values appear in braces {}. Specify numerical values wherever
“VALUE” appears, and then ensure all other values in braces are computed as shown (they can be computed
by hand or piped into aprepro).

Von-Mises material

Von Mises theory can be duplicated by using the following simplified set of Kayenta input values:

$
$ Kayenta parameters for replicating non-hardening von Mises plasticity
$
A1 = {yield_stress_in_shear = VALUE}
B0 = {linear_elastic_bulk_modulus = VALUE}
G0 = {linear_elastic_shear_modulus = VALUE}
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(a) Von Mises (b) Max stress (c) Max shear (Tresca) (d) Mohr-Coulomb

Figure B.2. Classical simplified octahedral profiles. None
of these models adequately describes rock failure surfaces, but
the failure surfaces for real rocks sometimes share some qualita-
tive features with these models, depending on the level of confin-
ing pressure. In these figures, the axes represent projections of
the compressive principal stress axes onto the octahedral plane,
taking stress to be positive in tension. For the max stress and
Mohr-Coulomb models, the size of the octahedral profile increases
with pressure. For all of these models, the meridional profile is a
straight line.

J3TYPE = 1 $Use Gudehaus, which is capable of a circular octhedral profile
RK = 1 $Set TXE/TXC ratio = 1.0 to make a circlular octahedral profile
P0 = -1.e99 $make yield in hydrostatic compression impossible
CUTI1 = 1.e99 $set pressure cut-off to ŞinfinityŤ
CUTPS = 1.e99 $set principal stress cut-off to ŞinfinityŤ
CR = 0.001 $minimize the size of the curved part of the cap

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.

Maximum Principal Stress failure

The very simplistic fracture criterion that initiates failure when the largest principal stress reaches a
critical value can be modeled in Kayenta by using the following parameter set:

$ Kayenta parameters for duplicating a maximum principal stress criterion
$
${max_allowed_principal_stress = VALUE}
B0 = {VALUE} $bulk modulus
G0 = {VALUE} $shear_modulus
P0 = -1.e99 $ turn off the cap function
J3TYPE=3
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A1={SQRT(3)*max_allowed_principal_stress}
A4={1/SQRT(3.0)}
RK = 0.5
A4PF = {1/SQRT(3.0)}
RKPF = 0.5

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.

Tresca

The simplistic criterion that a material fails when its largest shear stress reaches a critical value can be
modeled by using the following Kayenta parameters:

$ User must specify values in braces
$
B0 = {bulk_modulus}
G0 = {shear_modulus}
P0 = -1.e99 $ turn off the cap function
J3TYPE=3
A1={2.0*yield_stress_in_shear/sqrt(3.0)}
RK = 1.0
RKPF = 1.0

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.

Mohr-Coulomb

Classical Mohr-Coulomb theory for brittle failure can be derived from an idealization that the material
contains a large population of equal sized cracks. Being all the same size, any given crack loaded in pure
shear will fail (grow) if the resolved shear stress t on the crack face exceeds a critical threshold value S0. If
a crack face is additionally subjected to a normal compressive stress sN , then the applied shear tneeded to
induce crack growth must be larger than S0 by an amount t

fric = µsN , where µis the coefficient of friction.
Stated differently, a given crack is safe from failure if

t � t

fric = S0 (B.2)

or, recalling that t

fric = µsN ,

t � tanFsN , where tanF ⌘ µ (B.3)

This criterion must be satisfied by all cracks in the material. Since Mohr-Coulomb theory arises from
an idealization that the material contains a large population of cracks (uniformly random in orientation), a
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Figure B.3. A stress at the limit state under Mohr-Coulomb
theory.
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material is safe from failure under general stress states only if all points on the Mohr’s diagram for the stress
fall below the “failure line” defined by t = S0 + tanFsN . Failure is therefore deemed to occur when the
outer Mohr’s circle first “kisses” the failure line. Working out the geometry of Fig. B.3, a circle of radius R,
centered at sN =C, will be tangent to the failure line if and only if

R = S0 cosF+C sinF (B.4)

For the outer Mohr’s circle,

R =
s1 �s3

2
and C =

s1 +s3

2
(B.5)

or, removing the overbars (defined such that s k =�sk),

R =
s3 �s1

2
and C =

�(s3 +s1)

2
(B.6)

Substituting these into Eq. (B.4) gives

s3 �s1

2
= S0 cosF� s3 +s1

2
sinF (B.7)

This is the Mohr-Coulomb failure criterion cast in terms of principal stresses. Eq. (3.7a) and Eq. (3.7b)
on page 33 of the main report imply

s3 �s1

2
=
p

J2 cosq (B.8a)

s3 +s1

2
=

I1

3
�

p
J2p
3

sinq (B.8b)

Therefore, the stress invariant version of Eq. (B.7) is

p
J2 cosq = S0 cosF� I1

3
sinF�

p
J2p
3

sinq sinF (B.9)

or, solving for
p

J2,

p
J2 =

S0 cosF� I1
3 sinF

cosq � 1p
3

sinq sinF
(B.10)

Recall from Eq. (4.39) that Kayenta’s limit function Ff fits the triaxial compression (TXC) meridional
profile to the following functional form
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p
J2 = a1 �a3e�a2I1 +a4I1 in TXC(q = 30�) (B.11)

In triaxial compression (TXC), the Lode angle is q = 30� so that

cosq = cos30� =
p

3
2

and sinq = sin30� =
1
2

(B.12)

Therefore, Eq. (B.10) specializes to TXC loading as

p
J2 =

2
p

3
3� sinF

✓

S0 cosF� I1

3
sinF

◆

(Mohr-Coulomb in TXC) (B.13)

Being careful to note that , comparing this result with Eq. (B.11) implies that Kayenta’s limit surface
parameters for Mohr-Coulomb theory should be set as

a1 =

 

2
p

3
3� sinF

!

S0 cosF (B.14a)

a2 = 0 (B.14b)
a3 = 0 (B.14c)

a4 =

 

2
p

3
3� sinF

!

sinF
3

(B.14d)

Therefore, the general Mohr-Coulomb criterion in Eq. (B.10) may be written in the form required for
Kayenta as

p
J2G(q) = f f (I1) fc(I1),

where f f (I1) = a1 +a4I1, fc(I1) = 1

and G(q) = 2
p

3
3� sinF

✓

cosq � sinFsinqp
3

◆

(B.15)

Naturally, J3TYPE = 3 is appropriate (see page 70). A classic Mohr-Coulomb material has no cap; to
make the cap function fc always equal 1, the cap and crush curve features should be disabled as described on
page page 275. Classical Mohr-Coulomb theory is meant to apply to brittle rupture, so kinematic hardening
should be disabled as described on page page 275. An appropriate value for the TXE/TXC strength ratio Y
must be determined by evaluating Eq. (B.10) in TXE where q =�30�:

p
J2 =

2
p

3
3+ sinF

✓

S0 cosF� I1

3
sinF

◆

(Mohr-Coulomb in TXE) (B.16)
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The TXE/TXC strength ratio is then given by the ratio of the right-hand sides of Eq. (B.16) and
Eq. (B.13):

Y =
3� sinF
3+ sinF

Note: The Inverse relationship is sinF = 3
✓

1�Y
1+Y

◆

(B.17)

For this classical Mohr-Coulomb theory, the slope of the TXC meridional profile, dJ2
dI1

, equals sinF.
Therefore, may be eliminated from Eq. (B.14d) and Eq. (B.17) to reveal that the TXE/TXC strength ratio is
coupled to the slope of the TXC meridional profile according to

Y =
1

1+
p

3A
, where A ⌘

✓

∂J2

∂ I1

◆

q=30�
=

1p
6

✓

dr
dz

◆

q=30�
(B.18)

In other words, in Mohr-Coulomb theory, the strength ratio cannot be specified independently from the
slope of the meridional profile. On page 273, this relationship is applied to non-Mohr-Coulomb models to
support a pressure varying strength ratio.

Incidentally, the Mohr-Coulomb G function in Eq. (B.15) may be written

G(q) = cos(q �q 0)

cos
�

p

6 �q 0
� (B.19)

where

q 0 =�arctan


sinFp
3

�

=�
p

3
✓

1�Y
1+Y

◆�

(B.20)

Here, q 0 is the Lode angle at which the material has the lowest shear strength (i.e., the angle where the
yield surface is closest to the origin).

Below, we show the skeleton required for setting Kayenta inputs to run classical Mohr-Coulomb the-
ory. This input set also shows how to set parameters if you wish to run with non-associativity (where the
flow potential function differs from the yield function only by having a different value for F). Values for
(a1, a2, a3, a4) and for (aPF

2 , aPF
4 ) are set by using Eq. (B.14). Values for Y and YPF are set by using

Eq. (B.17).

$ Kayenta parameters for duplicating a classical Mohr-Coulomb material
$ in BOTH the octahedral and meridional profiles.
$
$ Replace the four occurances of "VALUE" in this file with the appropriate
$ Mohr-Coulomb parameter. You may generate Kayenta input parameters
$ by using the command "aprepro this_file output_file". Preferably, if
$ your finite element code supports embedded aprepro directives, then
$ drop this file DIRECTLY into your finite element Kayenta input block.
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$
$ {friction_angle = VALUE} $angle "phi" in Kayenta Appendix B
$ {dilation_angle = VALUE} $for associativity, this equals "phi"
$
$ {cohesion = VALUE} $parameter "S_sub0" in Kayenta Appendix B
$ $This equals yield stress in simple shear.

$ Let Aprepro compute some helper quantities
$ {scalef = 2.0*sqrt(3)/(3.0-sin(friction_angle))}
$ {scaleg = 2.0*sqrt(3)/(3.0-sin(dilation_angle))}
$
B0 = {VALUE} $bulk modulus
G0 = {VALUE} $shear modulus
J3TYPE=3 $Mohr-Coulomb octahedral option
A1 = {scalef*cohesion*cos(friction_angle)}
A2 = 0.0
A3 = 0.0
A4 = {scalef*sin(friction_angle)/3.0}
RK = {(3.0-sin(friction_angle))/(3.0+sin(friction_angle))}
A4PF = {scaleg*sin(dilation_angle)/3.0}
RKPF = {(3.0-sin(dilation_angle))/(3.0+sin(dilation_angle))}
P0 = -1.e99 $ turn off the cap and crush-curve features
CR = 0.001 $ prevent cap influence on shear response

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.

Pressure-varying strength ratio

If (unlike Mohr-Coulomb theory) the meridional profile is curved, then the user can set RK = 1 to
instruct Kayenta to use Fig. B.4, this feature allows a smooth transition from a Mohr-Coulomb distorted
hexagon (or triangle) at low pressures to a von Mises circle at high pressures.

To conclude this appendix, sub-input sets are summarized for controlling various features of Kayenta.

Sub-input set for linear elasticity

B1 = 0.0
B2 = 0.0
B3 = 0.0
B4 = 0.0
G1 = 0.0
G2 = 0.0
G3 = 0.0
G4 = 0.0
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(a)

(b) (c)

Figure B.4. Pressure varying strength ratio (enabled by set-
ting RK = �1.0). At low pressure, this material (SiC-N) has a
meridional slope nearly equal to A = 1/

p
3, for which Eq. (B.18)

gives a strength ratio of 1/2, which is appropriate for a maximum
principal stress failure criterion. At high pressures, the meridional
slope approaches zero, for which Eq. (B.18) gives a strength ra-
tio of 1, which (with J3TYPE= 2) corresponds to a circular (von
Mises) octahedral profile.
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Set B0 to the constant bulk modulus and set G0 to the constant shear modulus. To additionally disable
any form of plasticity, set A1 to a very large number and disable cut-offs as well as the cap and crush curve
as described below.

Sub-input set for “turning off” all rate dependence

T1 = 0.0
T2 = 0.0
T3 = 0.0
T4 = 0.0
T5 = 0.0
T6 = 0.0
T7 = 0.0

For LINEAR rate dependence, set T1 to the material’s characteristic response time and all other T
parameters to zero.

Sub-input set for disabling kinematic hardening

HC=0.0
RN=0.0

Sub-input set for associativity

CRPF=0.0
RKPF=0.0
A2PF=0.0
A4PF=0.0

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters. If not, as-
sociativity requires that all parameters that end in “PF” be set equal to their yield parameter counterparts.

Sub-input set for disabling cap and crush curve

P0 = -1.e99 $put the cap at infinity
P1 = 0.0
P2 = 0.0
P3 = 0.0 $set porosity to zero
CR = 0.001 $minimize the size of the curved part of the cap
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This list presumes that your implementation of Kayenta sets defaults for unlisted parameters. Kayenta’s
internal user-input processor and initializer will recognize these inputs as “cap disablers” and adjust the
model appropriately.

Sub-input set for disabling tensile cut-off limits

CUTI1 = 1.e99 $ set pressure (I1) cut-off to "infinity"
CUTPS = 1.e99 $ set principal stress cut-off to "infinity"

This list presumes that your implementation of Kayenta sets defaults for unlisted parameters.
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