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Abstract

When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the

electric field at the component location must be kept below a certain level in order to prevent the component

from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way

to set the electric field limit because it requires minimal information about the problem configuration. In

this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve

resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases

in input impedance when operating in a bounded region, and mismatches dictated by transmission line

losses. In addition, we consider mitigating effects resulting from limited antenna sizes.
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Electromagnetic Field Limits Set by the V-Curve

Larry K. Warne and Roy E. Jorgenson,

Electromagnetic Theory Dept. 1352,

and H. Gerald Hudson, Retired

Sandia National Laboratories

P. O. Box 5800

Albuquerque, NM 87185-1152

1 SUMMARY

This summary discusses the basis for the V-Curve to set limits on field levels and briefly touches on

issues relating to its use.

1.1 The V-Curve

The V-Curve is intended to serve as a bounding susceptibility curve for sensitive components, such

as electro-explosive devices, for which a power threshold can be set. The basic idea of the model is that

part of the attached wiring acts as an antenna, receiving power from a surrounding field, and part of the

wiring acts as a transmission line between the device load and the antenna. The right arm of the V-Curve

assumes the transmission line acts a transformer matching the antenna to the load, and the response is

dictated by the wavelength (or frequency) as well as the directivity gain of the antenna. The left arm of

the V-Curve assumes the transmission line is too short to effect matching (which typically occurs when the

length of the transmission line is shorter than a quarter wavelength). Figure 1 shows a summary of the

V-Curve model. To be conservative, the actual low frequency asymptote for capacitive antennas, depicted

by the dotted curve labeled as  in Figure 2, is usually replaced by the solid curve that intersects the

right arm at the minimum matching frequency. Each of these two arms then set out an allowed electric field

level as a function of frequency. The corresponding two straight curves (on a log-log electric field versus

frequency plot) extrapolate to an intersection, at the minimum matching frequency of the V as depicted by

the solid curve in Figure 2. Inductive loop antennas are also considered and demonstrated to lead to the

same general characteristics for the allowed magnetic field (taken to be implied by the standard V-Curve

requirement). Loops can be more efficient receivers at low frequencies, as depicted by the widely spaced

dots labeled by  in Figure 2 for very large loops, however reasonable antenna size constraints lead to

the standard V-Curve (and implied magnetic field) still being applicable.

1.2 Directivity Of Antennas

The directivity gain of the antenna is usually set to that of a resonant dipole. Short dipoles exhibit

nearly the same gain level. Up on the right side of the V-Curve (high frequencies) reasonable sized antennas

can exhibit directivity gains exceeding the simple dipole when the wave impinges near grazing. These

enhancements cause the actual susceptibility to fall below the right arm of the V-Curve, but occur in a

region where the allowed field levels are quite high, as depicted by the long dashed curve labeled by  in

Figure 2. In addition, dielectric (and other) losses in the matching transmission line may begin to play a

mitigating role in this frequency region. Another issue is the enhancement of gain caused by bringing a

neighboring conducting plane (ground plane) into the configuration. This ground plane causes a doubling

of the antenna gain, which could be incorporated into the basic V-Curve.
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Figure 2. Generic V-Curve and various issues discussed in this report.

1.3 Loss Limits On Matching

The typical V-Curve requirement assumes a lossless transmission line. However for realistic metallic

losses, we can place a bound on the quality factor of the matching network. For reasonable antenna size

limits these losses place an addition limit on the lowest frequency where conjugate matching is possible.

The resulting curve modifications, which tend to raise the bottom of the V, are depicted as the dashed

curve modification with label lim in Figure 2. This additional limit is useful not only to exhibit some of

the conservatism in the original V-Curve, but also to help mitigate effects which reduce the antenna input

impedance (such as operation in conducting enclosures).

1.4 Enclosures

The antenna circuit model used in the V-Curve calculation for received power involves the inverse of

the radiation resistance. This quantity results from the long range radiation field of the antenna. When the

antenna is operated in a bounded region or cavity (room or enclosure), this radiation resistance is modified

to reflect the losses in the walls of the room; in some situations the value can be reduced, dropping the

allowed level, as depicted by the bounding curve with label  in Figure 2. In this report we examine

two canonical cavities and this effect down near the bottom of the V (below the lowest resonant cavity

mode), as well as at high frequencies. At sufficiently high frequencies this effect is reduced due to overlap

of the resonant modes. Near the bottom of the V, this effect can be mitigated by the loss limits on

matching discussed above (which are made more difficult by the room). Nevertheless, there is a region

between these two limits where the room will likely cause a reduction in the input resistance of the antenna.

Measurements of the loss properties of typical rooms (quality factor of the resonances) are proposed so that

this can be more quantitatively assessed. In high quality factor cases another mitigating factor is that

the transmitter field is likely suppressed at the same frequencies as the receiver impedance. Taking this

into account requires the transmitter to be part of the problem (a two-port description rather then the

single-port receiver centric V-Curve), which is out of scope of the present report.
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2 INTRODUCTION

The V-Curve model places limits on field levels in the vicinity of susceptible devices that are attached

to cabling. The cabling couples the power due to the surrounding field into the susceptible device, which

acts as a load. Part of the cabling is assumed to act as a section of transmission line and part is assumed

to act as an antenna. Note that we are using the term “cabling” in a very general sense. The cabling could

consist of random conductors such as containers, wire and so forth that are accidently touching each other

and the susceptible devices, and could include metal holding fixtures in combination with test leads. The

topology of the entire system is shown in Figure 3.

The crucial feature of this three-part structure (antenna, transmission line and load) is that the

transmission line at a discrete set of frequencies can, in principle, match the antenna impedance at one end

to the load impedance at the opposite end. The V-Curve model provides a practical worst case by assuming

that the impedance matching occurs at every frequency above a “minimum” frequency (0) — the frequency

where the allowed field is the smallest. Above the minimum frequency the allowed field level rises because

the receiving cross section decreases with wavelength; below the “minimum” the field level rises because

of the antenna and load impedance mismatch. The allowed electric field levels calculated by this model

appear as a “V” shape on a log-log electric field versus frequency plot, which is the source of the model’s

name. Figure 4 shows a sketch of a V-Curve in relation to a typical susceptibility curve obtained by taking

more detailed information into account.

One of the model’s requirements is that the susceptible device must be characterized by a known,

allowed received power level . If the calculated power delivered to the load is less than  we assume

the susceptible device will not be damaged (or will not initiate — a “no-fire” level); above  it may be

damaged (or may initiate). We use a power threshold here in preference to a current threshold because

variations in impedance (from say the skin effect) may make the current a less reliable threshold in some

cases. The ability by an antenna to absorb power from an incident field is characterized by the antenna’s

gain parameter () so the gain of the portion of cabling acting as the antenna is another quantity required

by the V-Curve model. Fortunately,  does not vary widely for quite large variations of antenna geometry

over the range of frequencies where the V-Curve predicts the lowest field levels. This allows us to choose

a reasonable value for  even though the geometry is uncertain. The value of 0 is set by the length of

cabling that functions as a transmission line (). This quantity can be set conservatively by using the

longest length of cabling that could conceivably be available in the scenario. If the V-Curve is being applied

inside an enclosed space, the reflections from the walls of the room can also play a role; the room quality

factor () and volume ( ) can be used to assess the importance of this effect. All of the parameters that

go into the model will be be discussed in more detail in the remainder of the report. The ability of the

V-Curve model to give a reasonable bound for the field level without requiring detailed knowledge of what

could be a highly-variable geometry is its great strength.

The scientific justification and assumptions for the V-Curve used by Sandia were first documented in

an undated note written by R. L. Parker [1], although aspects of such bounding models have been discussed

previously [2]. It is included in this report for historical purposes in Appendix A. Appendix B [3] compares

the electric field bound calculated by the V-Curve to the bound calculated by other models. It is included

because the bound given by the V-Curve is not strictly a worst case bound. At high frequencies, say larger

than 1 GHz, there are situations where the receiving antenna could be many wavelengths long giving it a

somewhat higher gain and resulting in a lower allowed electric field than that predicted by the V-Curve

using a constant half-wavelength dipole gain. This typically does not result in a significant problem using

the V-Curve, however because, at high frequencies the level of field allowed by the V-Curve is large. This

situation is shown in Figures B-13 and B-14. The advantage of the V-Curve in terms of requiring minimal

information outweigh its inability to capture the strict bound at high frequencies. Nevertheless, it is

prudent to use caution if a proposed field level gets close to the V-Curve limit at frequencies greater than 1
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GHz. Another issue is the possible variation of the power level  with frequency, since this threshold is

frequently experimentally verified in ordnance at low frequencies.

Near the bottom of the V-Curve, for antennas of limited size, losses in the transmission lines responsible

for the matching place limits on how low the frequency can be before matching becomes impossible. This is

discussed and is a useful addition to the line length criterion in constraining the lowest matching frequency,

particularly in situations where the antenna input impedance is suppressed.

In the past V-Curves were developed for unbounded environments like what would be encountered

out-doors. Section 3 in this report discusses the V-Curve for an unbounded environment. The V-Curve

model for unbounded environments has been widely used to establish electromagnetic field specifications in

explosive handling areas. Often these areas consist of rooms with concrete walls containing reinforcing bar

which are electrically tied together to form a type of conducting boundary. When the area is enclosed by

conducting boundaries as shown in Figure 5 it is natural to ask about the effect of the bounded region on

the underlying theory of the V-Curve. This was first considered at Sandia in some internal reports [4], [5]

that are included as Appendices C and D. This report will attempt to estimate the effect of the bounded

region on the electromagnetic field specification in Section 6.

3 THE V-CURVE

This section reviews the standard V-Curve in an unbounded region [1], [3]. We assume in this section

that a receiving antenna is immersed in a plane field (generated a large distance away). Interactions

with a closely spaced transmitter, or other objects in the vicinity of the receiver (including boundaries of

the region), are not considered. The receiving circuit includes a section of transmission line between the

antenna and the load which facilitates matching if it is sufficiently long. We examine the resulting circuit

and what restrictions it places on the field surrounding the receiver. Note that the spirit of the V-Curve is

to place limits on the field surrounding the receiver, for an allowed received power to the load, with minimal

information on the details of the receiving setup.
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Figure 4. Form of a typical V-Curve (solid line) along with a susceptibility curve of a typical system

calculated with more detailed information (dashed curve). The V-Curve typically gives a lower bound to

the curves calculated with more detailed information.
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Figure 5. Typical geometry of receiving linear antenna in a cavity.
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Figure 6. Dipole dimensions and equivalent circuit.

3.1 Antenna and Transmission Line Circuit Representation

We begin by considering an electric dipole or capacitive antenna, but also briefly summarize the

inductive or loop antenna.

3.1.1 Capacitive Antenna

The receiving dipole antenna with length 2 can be described by an equivalent circuit model as shown

in Figure 6 [6], [7]. The open circuit voltage in the circuit is

 = − (1)

where the effective height is  and the electric field (in the  direction) along the antenna, without the

antenna present, is . The effective height for an electrically short dipole is the half length

 ∼  (2)

The effective height of a resonant half-wave dipole is

 ≈ 128 (3)

The impedance of the antenna has both a resistive and a reactive part (with harmonic time dependence

− suppressed)

 =  −  (4)

If the resistance of the conducting materials that make up the antenna is ignored then the resistive part is

the radiation resistance of the antenna
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 =  (5)

The electrically short dipole antenna has radiation resistance

 ∼ 0
()

2

6
= 

¡
2
¢

(6)

where 0 =
p
00 ≈ 120 ohms is the intrinsic impedance of free space, 0 = 4 × 10−7 H/m is the

magnetic permeability of free space, 0 ≈ 8854× 10−12 F/m is the electric permittivity of free space, and

the wavenumber is

 =  (7)

where  is the temporal frequency and  = 1
√
00 ≈ 3 × 108 m/s is the vacuum velocity of light. The

value of the radiation resistance for a resonant half-wave dipole is

 ≈ 73 ohms (8)

The reactance of the antenna is dependent on the antenna cross section and other geometrical features in

practical situations. The electrically short antenna has capacitive reactance

 ∼ −1 () = 
¡
−1

¢
(9)

whose capacitance is given by

 ∼ 20
Ω

(10)

where

Ω = Ω− 2 (1 + ln 2) (11)

and the fatness parameter of the dipole of radius  is

Ω = 2 ln (2) (12)

The resonant antenna has vanishing reactance

 = 0 (13)

3.1.2 Inductive Antenna

In the case of an electrically small inductive loop antenna the open circuit voltage is

 = 0 (−) (14)

where  is the component of magnetic field through the loop and the radiation resistance is

 ∼ 1

6
0
¡
2

¢2
= 

¡
4
¢

(15)

where the loop area is 
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Figure 7. Transmission line characteristics with attached load.

 = 2 (circular loop of radius )

= 2 (square loop of side length ) (16)

The input reactance is inductive

 ∼  =  () (17)

where the inductance is [8], [9]

 ∼ 0 [ln (8)− 2] (circular loop)

∼ 0

2 [ln ()− 077401284] (square loop) (18)

3.1.3 Transmission Line And Load

The transmission line and load are shown in Figure 7. The susceptible device is usually taken to be a

resistive load  =  with a relatively low value (1 ohm is typical). The connecting transmission line

section of length , characteristic impedance 0, and transmission line wave number , transforms the load

impedance  to the impedance looking into the transmission line [8]

 =  −  = 0

∙
 cos ()− 0 sin ()

0 cos ()−  sin ()

¸
(19)

Because the transmission line characteristic impedance (100 ohms is typical) is generally much larger

than the load impedance, this section of transmission line becomes an effective transformer (capable of

transforming the load to much larger impedances) when the transmission line electrical length approaches a

quarter wave

 ≈ 2 (20)

yielding the large value

 ≈ 20 (21)

Detuning off this particular frequency will introduce reactive elements useful for matching and will

eventually drop this value. Thus, this quarter wave criterion of the transmission line length can be taken to

conservatively set the minimum matching frequency as low as possible
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Figure 8. Equivalent circuit for the left-hand side of the V-Curve.

 = 0 (22)

for a given length of transmission line with known transmission line wavenumber; in other words it sets

the frequency of the minimum field level of the V-Curve joining the left and right arms of the “V”. The

minimum matching frequency is related to  in Equation 20 by

 = 0
√
 (23)

where  and  are the relative permeability and permittivity of insulation that forms the transmission

line section of the cabling (these may be effective quantities if this region is inhomogeneous).

Note that for shorter antennas (below resonant) the real part of the antenna impedance (the radiation

resistance) will already be smaller and could conceivably be of the same order as  (or smaller than the

load as in the inductive antenna below).

Conservation of power for a lossless transmission line means that the power delivered to the load is the

same as that delivered to the input terminals of the transmission line section

 =  = Re ( )

¯̄̄̄


 + 

¯̄̄̄2
=

 ||2
( + )

2
+ ( + )

2
(24)

where  is an RMS quantity.

3.2 Left Arm Of V-Curve

The left arm of the V-Curve assumes the transmission line is too short to accomplish matching.

3.2.1 Capacitive Antenna

The equivalent circuit in this case for the capacitive antenna is shown in Figure 8. Thus we have

 ∼  ||2 ∼  ||2 22 (25)

where we have assumed that the reactance of the antenna is much larger than . We are neglecting the

transmission line inductive reactance in series with the load in this circuit because of the low frequencies

and high level of capacitive reactance of the antenna (the transmission line is responsible for matching to

the right arm of the V-Curve, as discussed next). Note that we also define  in terms of its RMS value

rather than its peak value. For a fixed value of  (typically 1 W) we see that the allowed electric field
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level () is inversely proportional to the frequency. Thus for simplicity as well as to insure continuity with

the right arm of the curve (and because the reactive elements of the system are not precisely known) this is

typically written in terms of the V-Curve minimum frequency as

 ∼ (0)20 ||2 0 (26)

where 0 is effective area at the V-Curve minimum from the right arm description below.

3.2.2 Inductive Antenna

In the inductive antenna the capacitor of Figure 8 is replaced by an inductance  +  (the

transmission line also has a capacitive reactance across the load that we are ignoring)

 ∼  ∼  (27)

and in the lossless transmission line the line inductance is the inductance per unit length  times the length

 =  = 0

and the power at the load is again that fed into the line

 = 

¯̄̄̄
0 (−)

 + 

¯̄̄̄2
∼ 

2 + 2 ( + )
2
|0|2 (28)

In the unmatched case if  ( + )  , this power is initially constant in frequency, however as

one moves to lower frequencies, we eventually have  ( + )   and

 ∼ 22 |0|2  = 22 |0|2  (29)

We thus see again that the allowed field (in this case the magnetic field) is allowed to rise inversely

with frequency to maintain the same limit on received power. At low frequencies the electric and

magnetic fields are not necessarily connected by the free space impedance 0. Nevertheless, to get a

feel for how this inductive case compares with the capacitive case we associate 0 with the V-Curve

requirement on  and see that the power in the inductive case dominates the capacitive case as

(|0|0)
2
 (||0)

2 ∼ ¡|| 22Ω
¢2
, since we expect that 0  1Ω; the loop

is thus more efficient at low frequencies.

We will compare in the next section how these low frequency results compare to the standard left arm

of the V-Curve when they are extrapolated upward to the V-Curve minimum.

3.3 Right Arm of V-Curve

On the right arm of the V-Curve it is assumed that the transformer action of the connecting

transmission line section matches the load to the antenna, where the real parts are as shown in Figure 9.

Thus the transformed load is

 = ∗ =  +  (30)

3.3.1 Capacitive Antenna

This produces received power
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Figure 9. Equivalent circuit for the right-hand side of the V-Curve.
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 =
||2
4

=
||2
4

(31)

Noting that  = 
¡
2
¢
with  ∼  for the short antenna, and that  =  (2) =  (1) with

 ≈ 73 ohms for a resonant antenna, we see that for a fixed power level the allowed electric field is
proportional to frequency. This can be rewritten in terms of the effective area  of the antenna as

 =  ||2 0 (32)

where (here we are assuming that the electric field polarization is aligned for maximal coupling)

 =
||2
4

0 =
2

4
 (33)

where  is the directivity gain of the antenna. Note that the right hand side of (33) is derived in [10]

for an infinite space surrounding the antenna by a reciprocity argument. The value at the minimum

0 = 20 = 0 = 20 is

0 = 20 (34)

which is the quantity used in equation (26). The directivity gain  is 164 for a resonant antenna and is 15

for a short antenna.

It is instructive to ask, if we make the extrapolated low frequency result agree with the matched case

at the V-Curve minimum 0

3

2

20
4
||2 0 =  ∼  ||2 202 (35)

what is the required antenna dimension 2

2
µ
2

Ω

¶
∼
r

30
2

µ
20
4

¶
(36)

As we see in the example to follow, the frequency at the minimum is low enough that this is a very large

dipole antenna (for the larger load value  = 45 ohm and 0 = 8 MHz it is 2 (2Ω) ∼ 708 m2),
and hence the normal V-Curve definition will constitute an upper bound for typical capacitive antenna

dimensions.

3.3.2 Inductive Antenna

For the small inductive antenna we obtain the same result (with  = 15 and 0 ||2 the counterpart
of ||2 0)

 =
||2
4

=
|0|2
4

=
3

2

2

4
0 ||2 (37)

Because the loop pickup at low frequencies is larger than the dipole pickup, it is important to compare

the resulting levels with the extrapolation of this low frequency result toward the V-Curve minimum at 0
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3

2

20
4

0 ||2 =  ∼ 20
2
 |0|2  (38)

which means that the loop area for these to match is

 ∼
s
3

20

20
4

(39)

As we see in the example to follow, the frequency at the minimum is low enough that this is a fairly large

area loop (for the smaller load value  = 1 ohm and 0 = 8 MHz it is  ≈ 4 m2), and hence the normal
V-Curve definition (and implied magnetic field requirement) will constitute a bound able to accommodate

inductive loops up to this size.

3.4 An Example V-Curve And Choice Of Minimum

So to summarize the V-Curve we first substitute and re-arrange equation (32) to obtain for the right

hand side of the V-Curve

|| =
r
40
2

r



 (40)

Re-arranging equation (26) we obtain for the left hand side of the V-Curve

|| =
r
40
2

r




20


(41)

Note from the definition of power used in this report that  is RMS field and not the peak field. At

 = 0 both sides of the V-Curve meet at the value

|| =
r
40
2

r



0 (42)

where 0 is given by the equation

0 ≈ 

4
√


(43)

In calculating the V-Curve in an unbounded environment we only need to know three quantities: the

maximum power that is guaranteed not to damage or initiate the susceptible device ()  the directive

gain of the attached conductors that could function as the antenna ()  the maximum electrical length

of the attached conductors that could function as the matching transmission line (), which leads to

the establishment of the V-Curve minimum frequency (0). We then must keep the fields due to

electromagnetic emitters below this limit set by the V-Curve.

Let us assume that the no-fire level of the susceptible device is  = 45 mW and that the antenna

gain is that of a resonant half-wave dipole ( = 164)  We could then examine the electrical length of the

longest cables attached to this device and also determine if they have the potential for being even longer

due to touching other conductors in the operational area to set the minimum matching frequency 0 (the

bottom of the V). Because this frequency has traditionally been taken as (0 = 8 MHz), we instead work

backward to examine the implied cable length. For an air line ( =  = 1) equation (43) implies the

longest attached cable is near 937 m in length. For a cable having insulation with ( = 1  = 4) the

longest attached cable is half this length. Most cable insulation fall in this range of effective permittivities.

For 0 = 8 MHz the resulting V-Curve is shown in Figure 10.
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V-Curve for PL=45 mW, G=1.64, TL length =9.37 m in free space

Emin = 0.3 V/m at 8 MHz

Figure 10. V-Curve associated with a 45 mW device assuming a half-wave dipole as a receiving antenna

and 0 = 8 MHz.
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4 DIRECTIVITY OF ANTENNAS

This section considers practical antenna directivities exceeding the usual dipole level, arising from

either ground planes in proximity to the receiver or receiving antennas in the form of long wire dipoles.

These enhancements in antenna directivity gain, if included, would tend to reduce the allowed field levels

associated with the standard V-Curve.

4.1 Ground Plane Directivity Enhancement

Taking into account the fact that the sensitive device and cabling may be in the presence of a

conducting half-space such as a floor or ground if outside, this situation could be bounded by assuming

that the antenna gain is that of a quarter-wave monopole (→ 2 = 328) which would shift the field of

the previous V-Curve down by a factor of
√
2, i.e. min = 0212 V/m at 8 MHz.

4.2 Long Wire Antennas At Grazing Incidence

The directivity gain  of long wire antennas is maximized for fields impinging near grazing incidence

angles as demonstrated in Appendix B [3]. This reduces the allowed levels of field up on the right hand

section of the V-Curve if such lengths are present. An expression for the directivity of a dipole antenna of

length 2 that is simpler than that given by the Wiener-Hopf method in Appendix B is [11]

 =
2 () |max


(44)

The denominator of the directivity expression is given by

 =  + ln (2) + Ci (2) +
1

2
sin (2) [Si (4)− 2 Si (2)]

+
1

2
cos (2) [ + ln () + Ci (4)− 2Ci (2)] (45)

Ci () and Si () are the cosine and sine integrals given by

Ci () =

Z 

∞

cos ()


 (46)

and

Si () =

Z 

0

sin ()


 (47)

and  = 05772 is Euler’s constant. The numerator of the directivity expression is given by

 () =

∙
cos ( cos )− cos ()

sin 

¸2
(48)

where  is the angle with respect to the antenna axis and  () |max means we find the maximum value of

this function. A first guess at the maximum of  () for the standing wave antenna being considered here

can be taken as

max = arccos

µ
1− 

4

¶
(49)

which is the angle of the major lobe for a traveling wave antenna. Note that dielectric (and other) losses in

the connecting transmission line may become a mitigating factor in this high frequency region.

26



5 LOSS LIMITS ON MATCHING

The maximum transmission line length played a role above in setting the minimum frequency for which

matching of the load was possible. However, the antenna dimensions were only used to discuss the low

frequency behavior of the power and how this compared to the standard V-Curve. Nonetheless, the antenna

dimensions do play a role in the issue of matching near the bottom of the V-Curve once inevitable losses are

brought into the picture. This limitation to matching is an issue worth exploring since it is made even more

difficult by cavity loading effects discussed later in this report (and hence it can help to mitigate effects

resulting from the boundary, near the bottom of the V-Curve, when the antenna dimensions are limited).

5.1 Antenna Quality Factor

In a previous report [12], and later in an external publication [13], a limit on the quality factor of the

matching network to the antenna was introduced. The idea was that as the frequency is reduced, the

radiation resistance of the antenna rapidly decreases and hence the apparent antenna quality factor (input

reactance over input resistance) rapidly increases, requiring the matching network to exhibit a very high

quality factor (noting that for a conjugate match  = − and  =  = )

 = ||  =  (50)

Then if we force a limit on the load quality factor

 ≤ lim (51)

a conjugate match is no longer possible below a frequency  = 2.

5.1.1 Capacitive Antenna

The required quality factor for matching here is

 = ||  ∼ 1



∼ 3Ω

33
=
6 [ln (2)− 1− ln 2]

33
= 

¡
−3

¢
(52)

5.1.2 Inductive Antenna

For the small inductive antenna or a loop

 = ||  ∼ 



∼ 6 [ln (8)− 2]
33

= 
¡
−3

¢
(circular loop)

∼ 12 [ln ()− 077401284]
33

= 
¡
−3

¢
(square loop) (53)

Both of these are similar to the capacitive antenna (the half length  is approximately replaced by 13 or

by 213).
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5.2 Limiting Quality Factor Example

To choose the limiting quality factor we first imagine a transmission line having a large wire diameter

2 = 5 mm and a conductivity of copper  = 58 × 107 S/m, some height over a ground plane, with
characteristic impedance 0 ≈ 100 ohms, and propagation constant  ≈ 2 (index of refraction equal
to two). The quality factor of a resonance (here we take the frequency to be  (10 MHz) since we are

interested in frequencies near the bottom of the V-Curve)

 =  ≈  (1000) (54)

where for a low impedance load the line reactance per unit length is

 = 0 (55)

 =
p
0 (2) is the surface resistance (here we assume the material is nonmagnetic) and we took the

skin depth  =
p
2 (0) much smaller than the wire radius so that the resistance per unit length is

 ∼ 

2
(56)

From this example we take a limiting value on the transformed load quality factor typical of transmission

line systems

 ≤ lim = 1000 (57)

Suppose now we take the antenna dimensions to be of limited extent and inquire about the minimum

possible matching frequency. For example, if the dipole antenna has length 2 ≤ 1 m we find (we will take

2 = 5 mm and Ω ≈ 86)

 ∼ 3Ω

33
≤ lim (58)

implies that  ≥  = 28 MHz.

For the magnetic antenna we take 2 ≤ 125 m (we again take 2 = 5 mm)

 ∼ 12 [ln ()− 077401284]
33

≤ lim (59)

and find that  ≥  = 29 MHz.

We see from these results that loss puts restrictions on the lowest frequency for a conjugate match

when the antenna component of the receiving system has limited spatial extent. This can be helpful in

raising the bottom of the V-Curve. We next examine what the loaded transmission line implies about  .

5.2.1 Transmission Line Loss Example

Suppose we consider the limits on the value of

 = |Im ( )| Re ( ) (60)
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The contributions to the real part come from both the transmission line losses as well as the load. Let

us examine how large this quality factor can become and how it relates to these losses. Let us take the

transmission line to be characterized by the usual parameters per unit length  =  −   = − 

and write

 =
√
− = 0 + 00 ≈ 

√
 (1 +  (2) +  (2)) (61)

We presume that 00  0, and in addition that 00  1, so that

cos () ≈ cos ¡0¢− 00 sin
¡
0
¢

(62)

sin () ≈ sin ¡0¢+ 00 cos
¡
0
¢

(63)

and that

0 =
p
 = 00 + 000 ≈

p
 (1 +  (2)−  (2)) (64)

Then we can write

 = (
0
0 + 000 )

"

©
cos
¡
0
¢− 00 sin

¡
0
¢ª−  (00 + 000 )

©
sin
¡
0
¢
+ 00 cos

¡
0
¢ª

(00 + 000 )
©
cos
¡
0
¢− 00 sin

¡
0
¢ª− 

©
sin
¡
0
¢
+ 00 cos

¡
0
¢ª # (65)

Let us simplify the problem by ignoring dielectric losses  = 0. Then

 ≈ 
√
 (1 +  (2)) ≈ 

√
+ 

³
2
p


´
≈ 
√


µ
1 +



2

¶

≈ 0
µ
1 +



2

¶
(66)

0 ≈
p
 {1 +  (2)} ≈

p


µ
1 +



2

¶
≈  00

µ
1 +



2

¶
(67)

and

 = 00

µ
1 +



2

¶
⎡⎣

n
cos
¡
0
¢−  0

2
sin
¡
0
¢o− 00

³
1 + 

2

´n
sin
¡
0
¢
+  0

2
cos
¡
0
¢o

 00
³
1 + 

2

´n
cos
¡
0
¢−  0

2
sin
¡
0
¢o− 

n
sin
¡
0
¢
+  0

2
cos
¡
0
¢o
⎤⎦ (68)

In the case where we have a short circuit end condition  = 0
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 = −00
µ
1 +



2

¶"
sin
¡
0
¢
+  0

2
cos
¡
0
¢

cos
¡
0
¢−  0

2
sin
¡
0
¢#

=
−00

cos2
¡
0
¢
+
³

0
2

´2
sin2

¡
0
¢ µ1 + 

2

¶ ∙
sin
¡
0
¢
cos
¡
0
¢
+ 

0
2

¸

=
00

cos2
¡
0
¢
+
³

0
2

´2
sin2

¡
0
¢
"
− sin ¡0¢ cos ¡0¢+ 0+ sin

¡
0
¢
cos
¡
0
¢

2

+ 
0

(2)
2

#
(69)

We see in this case that the quality factor of  is

 = 2

¯̄̄
sin
¡
0
¢
cos
¡
0
¢− 0

(2)
2

¯̄̄
0+ sin

¡
0
¢
cos
¡
0
¢ ∼ 2

¯̄
sin
¡
20

¢¯̄
20+ sin

¡
20

¢ (70)

Finding the maximum of the function





µ
sin

+ sin

¶
=

 cos− sin
(+ sin)

2
= 0 (71)

gives

 = 0 44935  (72)

For → 0

sin

+ sin
→ 12 (73)

Thus the maxima are

 ≤  0555  (74)

In the case where we have an open circuit end condition  =∞

 = 00

µ
1 +



2

¶"
cos
¡
0
¢−  0

2
sin
¡
0
¢

sin
¡
0
¢
+  0

2
cos
¡
0
¢#

=
00

sin2
¡
0
¢
+
³

0
2

´2
cos2

¡
0
¢ µ1 + 

2

¶ ∙
sin
¡
0
¢
cos
¡
0
¢− 

0
2

¸

=
00

sin2
¡
0
¢
+
³

0
2

´2
cos2

¡
0
¢
"
 sin

¡
0
¢
cos
¡
0
¢
+

0− sin ¡0¢ cos ¡0¢
2

+ 
0

(2)
2

#
(75)

We see in this case that the quality factor of  is
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 = 2

¯̄̄
sin
¡
0
¢
cos
¡
0
¢
+ 0

(2)
2

¯̄̄
0− sin ¡0¢ cos ¡0¢ ∼ 2

¯̄
sin
¡
20

¢¯̄
20− sin ¡20¢ (76)

Finding the maximum





µ
sin

− sin
¶
=

 cos− sin
(− sin)2

= 0 (77)

gives the same second value of  = 44935, yielding  = 036. However, we see in this open circuited

case that for → 0, sin (− sin)→ 62 and thus we obtain the expected result from the capacitance

per unit length  of the open circuited transmission line

 → 3¡
0
¢2 =

1

3
→∞ (78)

But in this limit we have an electrically short section of line and the actual load resistance cannot be

ignored. The actual quality factor would become

 ∼  (79)

It seems reasonable therefore that a limit on the load quality factor can be set from losses and is close

to what was taken in the preceding section.

5.2.2 Antenna Loss

The antenna also has associated metal losses. The input resistance will have the additive term

 =
2

3



2
 (80)

 = 


2
(81)

where  = 2 or 4 is the loop perimeter. If the radiation resistance is suppressed, as discussed in the

next section, these contributions may become important.

5.3 Continuation For Lower Frequencies

If only the reactive elements are taken to be matched at lower frequencies

 = − (82)

than this conjugate match limit , then the received power is

 =
||2

( +)
2

(83)

Taking the input resistance to the antenna to be progressing toward small values at low frequencies, we

replace the input resistance to the transmission line with the smallest value possible (this lower limit for the

capacitive antenna leads to load powers that are decreasing for lower frequencies, but not for the inductive
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antenna, as discussed below)

 ≥ | | lim = || lim (84)

Then

 =
||2 || lim
(|| lim +)

2
=

4 || lim
(|| lim +)

2
[ () ()] (85)

where the load power at the minimum matching frequency is

 () =
||2

4 ()
(86)

5.3.1 Capacitive

Now for the capacitive antenna in free space the minimum matching frequency is (where

 =  = 
¡
2
¢
)

3 = 1
¡
lim

2
¢

(87)

and we can write the power

 () =
4 (lim)

[1 (lim) +]
2

h
()

2


i
=

4 ()
5h

()
3
+ 1
i2 (88)

or

 () =  ()     (89)

 () =
4

(1 + 2)
3

(90)

which has a peak at  = 5−13 ≈ 0585 and peak value  = 5539 ≈ 16. Thus the allowed field is
3556 ≈ 0785 of the point where matching is no longer possible. Note that this is shrinking only as  ()
below the match point versus the usual 

¡
2
¢
for the reactive mismatch of the left arm of the V-Curve.

This behavior is illustrated qualitatively as the dashed curve labeled as lim in Figure 2. Eventually for

shorter line lengths we would find  ≥ , and the 
¡
2
¢
behavior discussed previously. Nevertheless, it

exhibits limits set by losses with respect to the matching criterion, near the bottom of the V-Curve. If the

 →  is made smaller, as in the case of a cavity, then this has an even greater effect.

5.3.2 Inductive

In the case of an inductive antenna (where  =  = 
¡
4
¢
) the minimum matching frequency is

3 = 
¡
lim

4
¢

(91)

and we find
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 () =
4lim

[lim +]
2

h
()

4


i
=

4 ()
7h

()
3
+ 1
i2 (92)

or

 () = ()
2
 ()     (93)

The power received continues to grow as  (1) for frequencies below the match point , but at a rate

that is reduced versus the typical growth on the right arm of the V-Curve 
¡
12

¢
. Furthermore, unlike

the growing capacitive antenna reactance, the loop reactance diminishes as frequency is reduced and the

expression (84) rapidly fails, so that we reach the limit

 =  () (94)

sooner, below which we find the previous behavior (29).

The loss limits still reduce the coupled power near the bottom of the V-Curve, but not as dramatically

as in the capacitive antenna. The change in characteristics between the two antennas is thus similar to the

change associated with the standard V-Curve.

6 EFFECTS OF REGION BOUNDARY

Because the V-Curve is often applied to operations in rooms or enclosures, it is prudent to ask what

effect this has on the prior unbounded model; the directivity gain enhancement associated with a ground

plane in proximity, discussed in the preceding section, is an analogous boundary effect. The region

boundaries mean that the receiver input impedance can be affected by reflections from the walls of the

region; although the effective height of the antenna  can be modified as well by the cavity boundary, we

will focus on a very short dipole receiver where we can neglect this effect. The antenna directivity gain is

connected to these circuit quantities (33) and is thus being modified by the boundaries.

In addition, the field from the transmitter, whether outside or inside the bounded region will be

modified relative to the unbounded case (the presence of a transmitter can also affect the room quality

factor). In the spirit of the original V-Curve our focus will be on the receiver properties, and how they are

affected by the boundary reflections. Hence we are continuing to place limits on the allowed field at the

receiver. We will briefly consider the transmitter at the end of this section since the resonant effects can to

some extent mitigate the changes in the receiver properties, but this is not the main focus.

The bounded region will be taken to have a quality factor () and volume ( ). We are examining the

extension of the preceding model as the quality factor rises from small values to see when modifications

must be included in the receiver model. The short dipole receiver behavior will be assessed by examining

how the input impedance is affected by the cavity. For the matched case we write the received power from

the circuit model as

 =
||2
4

∼ ||2
4

=
||2
4

1


, short dipole (95)

We begin by a general discussion of the cavity behavior. Next we examine two canonical geometries,

spherical and rectangular cavities, where we focus on the fundamental cavity modes occurring down near

the minimum of the V-Curve [5], but also touch on high frequency limits of the sphere. We then discuss

these effects in more general cavities at higher frequencies.
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6.1 Description of Frequency Regions

The cavity field can be thought of as having three frequency regions. The lowest modes constitute the

fundamental mode region where the field is a standing wave that could, in principle, be accurately modeled

if the geometry of the cavity boundary and contents are known and taken into account. The square of

the field fluctuates in an ordered manner about a mean value with maxima, in three dimensions, reaching

perhaps eight times the mean. As we proceed to higher-order modes, the complexity of practical cavities

renders the field difficult to predict in a deterministic way (small perturbations change the field distribution

and the mode is made up of many plane waves or rays). This region has been denoted as the undermoded

region because it is still possible for the modes to be separate and discrete in frequency. Finally for very

high frequencies the cavity becomes highly overmoded with many overlapping modes. Figures 11 and 12

illustrate the spectra in the undermoded and overmoded regions respectively. Statistical treatments of the

field have been introduced at high frequencies. The parameter that describes the transition between under

and over moding is [14]

 =


2



h∆i ∼
3

2

(96)

where  is the radian frequency of a particular mode number   = , the quality factor of the mode

is  (may depend somewhat on ), the 3 dB width of a mode is , the cavity volume is  , and the

mean modal spacing for high frequencies is [15]

h∆i = +1 −  ∼ 23
¡
 2

¢
  →∞ (97)

We define

 =


2



h∆i =
3

2
(98)

where for large , the quality factor is assumed to be the mean value 

 ∼ 30
4

∼ 3
2




(for nonmagnetic materials) (99)

where  =
p
2 () is the skin depth in the wall,  is the wall conductivity, and the wall resistance per

square is  = 1 (). Thus for   1, the cavity is undermoded with separate and discrete spectra.

Alternatively for   1, the cavity is overmoded with overlapping spectra. The transition where the

modes begin to overlap is  =  (1). The input impedance of an antenna tends toward the fixed values of

the unbounded region as →∞, whereas it fluctuates with position and frequency for → 0.

As an example, for a cavity volume  = 500 m3 and assumed quality factor  = 100, we find  = 73

at 100 MHz.

6.2 Sphere Cavity

The canonical problem of a short dipole at the center of a spherical cavity of radius  with wall

impedance  =  (1− ) can be easily solved [16], [4]. The result for the normalized input impedance is

 = ( −)  = (0)  ||2 (100)

and
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w

undermoded (a<<1)

unity

Figure 11. Illustration of separate discrete spectra in the undermoded limit.

w

overmoded (a>>1)

unity

Figure 12. Illustration of overlapping spectra in the overmoded limit.
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 = ( −)  =

∙
−1
2

µ
1− 3

22
+

1

44

¶
sin (2)− 1



µ
1− 1

22

¶
cos (2)

− (0)

½µ
1− 2

22

¶
cos (2)− 1



µ
2− 1

22

¶
sin (2)

¾

+(0)
2

½µ
1− 1

22

¶
sin (2) +

2


cos (2)

¾¸
 ||2 (101)

where

 =

µ
1− 1

22

¶
sin () +

1


cos () +  (0)

½
cos ()− 1


sin ()

¾
(102)

where  is the ohmic loss of the antenna,  ∼ 1 () is the local capacitive reactance of a short

antenna given above, and  is the radiation resistance of the short antenna.

6.2.1 High Frequency Region

Simplifying for   1 and taking the limiting cases we find [4]

 ∼ 0   ∼ (− 12) (103)

 ∼ (−1)−1  ()   ∼ (− 12)

 ∼ 0   ∼  (104)

 ∼ ±0 (2)   ∼  (105)

the second set of two results being near resonance and the first two being between resonances, giving the

overall range

0    0 (106)

Note that the quality factor of the 01 mode is [8]

 = 0 (2)
£
 sin2 ()− 1 ()− 

¤
 ()

2
= [− 2 ()] 0 (2) (107)

where the modes  =  are the roots of

µ
1− 1

22

¶
sin () +

1


cos () = 0 (108)

or

tan () = 
h
1− ()2

i
(109)

For large  this becomes

 ∼ 0 (2) = (0)  = 3 (0)



(110)

and thus the preceding result can be written for higher frequencies as
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

2

  
2


(111)

||  


(112)

Unlike the general three-dimensional case introduced in the preceding section, the modal spacing in this

one-dimensional resonant case is fixed in frequency ∆ = ∆ ∼ , and the parameter  in this case

becomes

(1) =


2



h∆i ∼


2

(113)

The power balance extremes, discussed in the high frequency section below, reproduce the results (111) if

we take 0 = 1 (and (1)  1) giving (1)    1(1). The reflected field in this case has near

unit amplitude (this results in a two-to-one maximum to mean ratio of the standing wave field).

6.2.2 Fundamental Mode Region

It is important to examine the region near the first resonances of the cavity. The first resonance is at

()1 ≈ 274370727 and the denominator near resonance is minimized for small surface impedance

 ∼  (0)

½
cos ()− 1


sin ()

¾
≈ −10631 (0)  0 → 0 (114)

The input resistance then becomes

 = (0)  ||2 ≈ 08848 (0) (115)

which is only slightly less than the high frequency result (106). Noting that the quality factor is

1 ≈ 100738 (0) (116)

we can write this as

 
2411

()1
(117)

which is slightly greater than the high frequency result in terms of the quality factor (111). The second

resonance is near ()2 ≈ 6116764 with quality factor 2 ≈ 28949 (0), and the third is near

()3 ≈ 9316616 with quality factor 3 ≈ 4551 (0).

For low frequencies   1

 ∼ 2
3
−  (0)

1

3
22 → 2

3
    1 0  1 (118)

and

 ∼ (0) 

µ
2

3


¶2
≈
"
1

µ
2

3


¶2#−1
 21    1 0  1 (119)
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 ∼ 1
3

∙
2


+ (0)− 2 (0)

2

¸
 ||2 → 1

()
2
 1    1 0  1 (120)

Locating the maxima of the first term of  for 0 → 0 gives





∙µ
1− 1

2

¶
sin+

1


cos

¸
=

µ
1− 2

2

¶µ
cos− 1


sin

¶
= 0 (121)

or

 = ()0 = 0
√
2 4493409 7725252  (122)

The minimum point (maximum of the denominator in ) is ()01 ≈
√
2, for which the denominator

becomes

 ≈
h
1− 1 ()2

i
sin +

cos 



≈
h
sin
³√
2
´
+
√
2 cos

³√
2
´i

2 ≈ 060415  0 → 0 (123)

and

 ≈ 273973 (0) (124)

The preceding high frequency limits still bracket the values at the first resonance although the minimum

value (124) is more than two times larger than the high frequency range (106). The peak of the first terms

of  for ()02 = 4493409 has the value −097612

 ≈ 104953 (0) (125)

The peak of the first terms of  for ()03 = 7725252 has the value 0991726

 ≈ 1001676 (0) (126)

We see from these that we are approaching the lower high frequency limit. Unlike full three-dimensional

resonances this one-dimensional resonance has constant modal spacing and thus a fixed minimum  (for

fixed ).

If we were to choose the sphere radius to have a volume of 500 m3 we would arrive at  ≈ 49237
m. This gives a first resonance near 1 = 266 MHz, a minimum value at 01 = 137 MHz with value

 = 274 (0), a second resonance at 2 = 593 MHz, and a second minimum at 02 = 436 MHz with

value  = 105 (0), a third resonance at 3 = 900 MHz, and a third minimum at 03 = 749 MHz

with value  = 0). We will compare these values with calculations for the rectangular cavity given

in the next section. The main points of this section are that the reduction in the real part of the input

resistance  of the dipole is bounded at the low frequencies and that for the one-dimensional resonances

being examined this reduction in value persists to high frequencies.

6.3 Rectangular Cavity

The rectangular cavity conforms more to actual rooms encountered. The modes in a rectangular

cavity with perfectly conducting walls are simple sinusoids. However, when lossy walls are introduced a

perturbation approach is used to represent the vector potential as [17], [18], [19] (here we are approximately

ignoring the modes which are  with respect to the dipole direction even though the surface impedance
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of the walls will generate these)

 () = − 1

0

X


 ()
R

 (

0) ·  (0)  0

2 {1 + (1 + ) }− 2
(127)

¡∇2 + 2
¢
 = 0  ∇ · = 0 (128)

1



Z


 ·0 = 0 (129)

and the quality factor is

 =
0

R

 ·



I


 ·

≈  (130)

0 = ∇× (131)

where 0 is the Kronecker delta. Evaluation of this for a very short electric dipole with current distribution

 () = 1 (0) (1− | − 1| 1)  (− 1)  ( − 1)  (132)

gives

 () ∼ −1 (0)1
0

X


 () (1)

2 {1 + (1 + ) }− 2
(133)

The open circuit voltage on a second antenna is [6]

 = − 1

2 (0)

Z


1 · 2 (134)

where the subscript 1 indicates the field due to the first antenna and the subscript 2 indicates the

transmitter current due to the second antenna. The electric field in general is

 = −∇+  (135)

where the scalar potential in the Coulomb gauge satisfies Poisson’s equation in the cavity and

× = 0 on the walls (136)

Thus taking the second antenna to also be  directed

 ∼ 1 (0)

−12 +
1 (0)12

0

X


 (2) (1)

2 {1 + (1 + ) }− 2
(137)

where 12 is the mutual capacitance between the antennas arising from the scalar potential term. For

simplicity we take the scalar potential to be the same as the value without the cavity (assuming the cavity

walls are not near the antennas).
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Now if we take the antennas to be identical 1 → 2 = , divide by 1 (0) =  (0), and take the real

part, while evaluating for 2 → 1 = 0, we obtain the real part of the input impedance (the imaginary part

will lead to divergence for an infinitesimal dipole source)

 =  ∼ 2

3

X


¡
4

¢
32 (0)

|2 {1 + (1 + ) }− 2|2
(138)

For the rectangular cavity with dimensions 0 0 0 the eigenfunctions are simple sines and cosines,

and we write the normalization condition in the indices   as

Z


(  ) ·000 (  )  = 000000 (139)

Thus we have the  component

 =
p
8 (1 + 0)

q
1− ( (0))

2
sin (0) sin (0) cos (0) (140)

and magnetic field

0 ≈
p
8 (1 + 0)q

1− ( (0))
2

©
 (0) sin (0) cos (0)−  (0) cos (0) sin (0)

ª
sin (00) sin (00) cos (0) cos (00) (141)

with eigenfrequencies

2 = 2
2 = (0)

2
+ (0)

2
+ (0)

2
(142)

and quality factors

 =
1

4

µ
0


¶


"
(0)

2
+ (0)

2

(0)
2
(10 + 1 ((1 + 0) 0)) + (0)

2
(10 + 1 ((1 + 0) 0))

#
(143)

The normalized input resistance is

 ∼ 6

3

∞X
=1

∞X
=1

∞X
=0

¡
4

¢ h
1− ( (0))

2
i

¯̄
2 {1 + (1 + ) }− 2

¯̄2
8

1 + 0
sin2 (00) sin

2 (00) cos
2 (00) (144)

We see that this rectangular result has the same form as that given previously in the general case (138).

However, because the antenna only excites TM modes with respect to the  direction, and the TE modes

are missing from the problem (in the exact solution they are generated by the small wall impedance and
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could be significant near the resonances of these modes), the modal spacing is twice the average value given

previously for the general cavity. Let us define

() =


2



h∆i ∼
3

4

(145)

If the observation position is taken to be a position of symmetry in this rectangular cavity (such as the

cavity center) then many additional modes are eliminated in the expansion, and the effective value of ()

is decreased further, suppressing the values of .

A representative set of dimensions giving  = 500 m3 is 0 = 85 m, 0 = 6 m, and 0 = 98 m

( = 3862 m2). Note that

110 =

µ
30

4

¶
2

3

"
(00 + 00 + 00)

¡
20 + 20

¢
30 (0 + 02) + 30 (0 + 02)

#
≈ 1279 (146)

where  is the simple formula above (99). Suppose we consider an observation frequency  = 10 MHz,

which is below the first resonance 110 = 306 MHz. Keeping only the first mode at the cavity center gives

 ≈ 24110
3

4

(2 − 2110)
2
≈ 24 (0)

12793 2 (2 − 2110)
2
≈ 09 (0) (147)

This form is similar to the sphere result (124).

The quality factor in the preceding expansion was determined using a single cavity mode. Because the

modes are not, in general, orthogonal on the surface of the cavity [17], it is more accurate (particularly

observing between modes at low frequencies) to find the input resistance by integration of the square of

the magnetic field over the surface (between modes we can simplify the expression by dropping the quality

factor terms)

 =  | (0)|2 =  | (0)|2 = 

I


||2 

≈ 24

4
(0) | (0)|2

∞X
=1

∞X
=1

∞X
=0

22 (1 + 0)

2 {1 + (1 + ) }− 2
 (148)

where

 =

∞X
0=0

2

0 (1 + 00)

½³

0

´2
+
³

0

´2¾n
1 + (−1)+0o

2 {1 + (1− ) 0}− 20

sin2 (00) sin
2 (00) cos (00) cos (

000)

+

∞X
0=1

2

0

³

0

´³
0
0

´n
1 + (−1)+0

o
2 {1 + (1− ) 0}− 20
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sin2 (00) sin (00) sin (
000) cos2 (00)

+

∞X
0=1

2

0

³

0

´³
0
0

´n
1 + (−1)+0

o
2 {1 + (1− ) 0}− 20

sin (00) sin (
000) sin2 (00) cos2 (00) (149)

This is the quantity reported in the table below (the previous results are reported in parentheses).

6.4 Numerical Simulation Of Rectangular Cavity

Numerical simulations were also performed on the rectangular cavity. In this subsection we will compare

the value of  obtained analytically using equation (148) (and (144)) to that obtained numerically using

the boundary element code EIGER for an example rectangular cavity filled with free-space and again

dimensioned 0 = 85 m by 0 = 60 m by 0 = 98 m. We will examine  at 10 MHz, a frequency that

is below the lowest fundamental mode of this cavity and near the minimum frequency of the V-Curve.

The lowest fundamental modes of a PEC cavity with these dimensions occur at 2334 MHz (101)  2329

MHz (011)  and 3058 MHz (110) where we are designating modes that are transverse electric ()

or transverse magnetic () to the b direction. The dominant modes that are excited by the dipole are
, where the subscript is the direction of the dipole, which will be oriented either in b (0) or b
(0) directions. In the simulation we calculate  for a PEC dipole antenna dimensioned  = 01 m and

 = 1 mm and positioned at the center of the cavity with the two orientations. For convenience we have

taken  = 1 S/m (the results scale as  1 ∝
√
 for higher conductivities). We grid the walls of

the cavity with square elements 50 cm on a side (∼ 20 unknowns/wavelength at 30 MHz) and the dipole
with two linear elements. The unknowns on the elements are linear, edge-based functions. The results are

summarized in the table below. The last column gives  for a spherically shaped cavity (124), where the

frequency is taken at the first sphere minimum 137 MHz.

The analytic rectangular and numerical results are similar to each other, errors may be due to some of

the approximations mentioned previously. Since the b oriented antenna does not itself generate the  to b
modes, we expect  for this orientation to be smaller than for the b orientation and we see from the table

that this is indeed the case. Numerical results indicate that  is smallest in the center of the cavity and

increases as the antenna moves closer to the walls. This seems reasonable both because loss of the cavity

should increase as the current flowing on the wall being approached becomes larger to fulfill the wall’s

boundary condition, and the fact that moving off the center symmetry location brings more modes into

play. The fact that the analytical approach and numerical approach are similar in the center of the cavity

where the conditions are worst-case give us some confidence in the results.

Next we examine  between resonances. A b directed dipole in the center of the rectangular cavity
will excite the 110 at 3058 MHz and 112 at 4325 MHz (the 111 mode at 3420 MHz is not

excited because  has odd symmetry about the cavity center). For the b directed, centered dipole the
101 mode at 2334 MHz and the 103 mode at 4916 MHz are excited. We will take 37 MHz as

the approximate midpoint between the 110 and 112 resonances and between the 101 and 103
resonances. The results are shown in the following table (the sphere results were evaluated at the second

minimum 436 MHz). Unlike the previous table, in this case the b directed dipole has a smaller value of 
than the b directed dipole. This is because the modes excited by the b dipole are further away in frequency
from the chosen center point of 37 MHz than the modes excited by the b dipole.

Next we examine  between the next higher-order resonances. For a b directed, centered dipole, the
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103 mode at 4916 MHz and the 121 mode at 5515 MHz are excited. We will take 521 MHz as the

approximate midpoint between the two resonances for this polarization. A b directed dipole in the center
of the rectangular cavity will excite the 112 at 4325 MHz and the 310 at 5851 MHz. We chose the

frequency 509 MHz as the midpoint between these two resonances. The results are shown in the following

table (the sphere results are at the third minimum 749 MHz).

Frequency (MHz) Orientation  Analytic  Numerical  Spherical 
10 b 12 017 (0064) 015 0053

10 b 12 0089 (0028) 0062 0053

37 b 23 0065 (0076) 0061 0037

37 b 23 027 (024) 027 0037

521 b 28 075 (077) 074 0046

509 b 28 011 (013) 010 0046

Summarizing the preceding table: we see at 10 MHz that a factor of  = 006 reduction in input

resistance is possible for  ≈ 12 (the results scale as  1 ∝
√
 for higher conductivities); at 37 MHz

we observe a  = 006 reduction in input resistance possible for  ≈ 23 ( ≈ 161); and at 51 MHz a
reduction in input resistance  = 01 for  ≈ 28 ( ≈ 346).
6.4.1 Alternative Form Of Modal Expansion

An alternative form for the modal expansion

 () = − 1

0

X


 ()
R

 (

0) ·  (0)  0

2 +  (1 + )  − 2
(150)

with the quality factor at the  mode defined by

 =
0

R

 ·



I


 ·

(151)

where the surface impedance is now calculated at the modal resonant frequency

 =
p
0 (2) (152)

is sometimes used. Because of the cancellation of  in the denominator (150) and in the new definition of

 (151), the net effect is the replacement of , evaluated at the operating frequency , in the formula for

 (130) and (143) by  =
p
0 (2), evaluated at the resonant frequency . The received voltage

and input resistance are then

 ∼ 1 (0)

−12 +
1 (0)12

0

X


 (2) (1)

2 +  (1 + )  − 2

 =  ∼ 2

3

X


¡
3

¢
32 (0)

|2 +  (1 + )  − 2|2
The results in this case for the rectangular cavity with  =

p
0 (2), can then be written as
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 ∼ 6

3

∞X
=1

∞X
=1

∞X
=0

¡
3

¢ h
1− ( (0))

2
i

¯̄
2 +  (1 + )  − 2

¯̄2
8

1 + 0
sin2 (00) sin

2 (00) cos
2 (00) (153)

with modal quality factors

 =
1

4

µ
0



¶


"
(0)

2
+ (0)

2

(0)
2
(10 + 1 ((1 + 0) 0)) + (0)

2
(10 + 1 ((1 + 0) 0))

#
(154)

If this approach is adopted then the values in parenthesis of the table are changed to (013), (0076), (010),

(027), (081), and (015); the first two 10 MHz results are thus significantly improved versus the values from

the original form of the modal expansion (although there is some corresponding degradation in accuracy

for higher frequencies). For nondispersive wall surface impedances ( not dependent on frequency), either

of the two preceding forms of the modal expansion gives the same result. The preceding exact solution

of the spherical cavity can be used to develop insight as to the best form of the modal expansion to use

for dispersive wall surface impedances; however, even though the resulting residues forming the modal

expansion would lead to an evaluation of the surface impedance at the resonant frequencies  rather than

, there are additional contributions from branch cut integrals arising form the dispersive wall impedance.

6.5 High Frequency Cavities

At high frequencies the antenna input impedance takes on a stochastic character dependent on

frequency, location, shape and properties of the cavity [14], [20].

6.5.1 Modal Statistics In High Q Cavity

The cavity eigenvalues (resonant frequencies)  have spacings that can be described by a slowly

varying mean h∆i given previously times a random variable 

∆ = +1 −  = h∆i  (155)

The probability density function for the normalized spacing  is Poisson (exponential) when the cavity

geometry is simple (for example, separable cases where eigenvalue degeneracy occurs frequently) [21], [22]

 () = −  0   ∞ (156)

and is Rayleigh (Wigner) when the cavity is complex [21], [22]

 () =


2

−24  0   ∞ (157)

Complex geometry is typical of electromagnetic compatibility applications and thus the Rayleigh spacing is

more frequently encountered.

The cavity eigenfunctions are taken to be made up of a random collection of plane waves and modeled

by (all three components have similar statistics) a normal density [23], [21]
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 =
√
3 (158)

 () =
1√
2

−
22 (159)

which follows the chosen normalization [23]

3

Z ∞
−∞

2 ()  =

Z ∞
−∞

2 ()  = 1 (160)

The normalization is assumed to be the same throughout the cavity (homogeneity). Cavities can exhibit

deviations from this simple density (the modal spacings can also deviate) due to periodic ray trajectories

[21], [24], [25], [26], as well as proximity to the source (of course in low quality factor situations we would

also expect field inhomogeneity).

The correlation function for the modal components is different from that for scalar modes [21] and is

given by [27], [28]

 (1 2) =
h (1) (2)ip
h2 (1)i h2 (2)i

∼ 3
2

µ
1 +

1

2

2

21

¶
sin [ |1 − 2|]
 |1 − 2|

(161)

where the asymptotic symbol indicates the high-order modes.

Monte Carlo simulations can be used to determine properties of the input impedance [14], [20].

6.5.2 Power Balance Fit

To get a handle on the variability of the real part of the input impedance at high frequencies we make

use of a simple power balance approach coupled with a statistical fit for the underlying reflected field from

the wall. Defining the normalized impedance as [14]

 = ( − −)  =  −  (162)

These normalized quantities obey the equations

 = − Re
¡



¢rD
||2

E


= ( − 1) 
p
 (163)

 =
Im
¡



¢rD
||2

E


= 
p
 (164)

where 
 is the field at the antenna that has been reflected by the cavity boundary and

D
||2

E

= (1 )

Z


||2  (165)

is the volumetric mean of the square of the field. These two quantities,  and , represent the normalized

reflected field from the boundary and are random variables at high frequencies. The exact probability
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density functions are very complicated, but a simple fit is given by by the simple Gaussian density [29]

 () =
1p
22

−
2(22)  −∞   ∞ (166)

and the asymmetrical Gaussian density

 () =
1p
22

∙
1− √

2 + 4

¸
−

2(22)  −∞   ∞ (167)

which accounts for the fact that when the cavity is highly undermoded   1 the normalized reflected

field only has a positive real part near the modal peaks with resulting probability  (); it also accounts for

the highly overmoded limit   1 where the modes are overlapping and thus the density function becomes

a symmetrical Gaussian. Substitution of the relation between  and  gives a density function for . To

obtain values for  we can invert the quadratic equation to obtain

 =
³p

2 + 4+ 
´2

 (4) (168)

and

 = 
1

2

³p
2 + 4+ 

´
(169)

The density for the normalized real input impedance is then

 () =
1


p
22

−(−1)
2(22) (170)

In the overmoded limit →∞ both distributions become Gaussian

 () ∼ 1p
2

−(−1)
22 (171)

 () ∼ 1p
2

−
2
2 (172)

The approximate fit given in [29]

2 = arctan
³
1
√
4
´
+ 1

³
1 + 1

√
4
´

(173)

can be used for the variance. More exact results for this quantity can be found in [20].

6.5.3 Extreme Values

The impedance variations in the cavity can be bounded in a practical sense by taking extreme values

for the normalized reflected field statistics [14]. It is somewhat standard practice to take the three standard

deviation point of a Gaussian density

||  | |  0 = 3 (174)

Taking
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Figure 13. Fifty ohm Smith chart ( is suppressed in experiments) for 329 cm (2591 mm diameter)

monopole antenna in the wall of the mode stirred chamber. There are 4800 equally spaced frequency points

over a 10 MHz span centered at 220 MHz. This is the undermoded  ≈ 00609 region of the chamber. The
“bounding” dashed curve is from the power balance formulas.

− 
rD
||2

E


= ( − 1) 
p
  0

 (175)

generates the bounding (dashed curves) circles shown on the impedance Smith charts in Figures 13,14, and

15 (in these figures 0 = 3 was used). The experiments were carried out in the mode stirred chamber

cavity, which is a large rectangular room with a volume of  ≈ 313 m3, with a stationary (for these
experiments) mode stirrer. These experiments are one-port experiments where the scattering parameter

(reflection coefficient) 11 is measured and related to the antenna input impedance by means of the formula

11 =
 − 0

 + 0
(176)

where 0 = 50 ohms. The quality factor of this room 
¡
105
¢
is thought to be considerably higher than

typical rooms where the V-Curve is used. Nevertheless it constitutes a useful test of models. The monopoles

used for the impedance experiments had near resonant lengths for each of the frequency ranges used. The

extreme values produced by this level of reflected field are

1 +
1

2
2
0 −

sµ
1 +

1

2
2
0

¶2
− 1    1 +

1

2
2
0 +

sµ
1 +

1

2
2
0

¶2
− 1 (177)

|| 
sµ

1 +
1

2
2
0

¶2
− 1 (178)

The undermoded limit   1 gives 1
¡
2 +2

0 
¢
  

¡
2 +2

0 
¢
and 2 ||  2 +2

0 , which

is a large variation from the free space value  → 1 and  → 0. The overmoded limit   1 gives

(1−0
√
)    (1 +0

√
) and ||  0

√
. Thus if measurements of the cavity quality factor

place the cavity in the overmoded limit with   1 we may be able to show that the variation about the

mean

 = 1±0
√
 (179)

is acceptably small to justify the use of the free space impedance.
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Figure 14. Fifty ohm Smith chart ( is suppressed in experiments) for 7544 cm (2591 mm diameter)

monopole antenna in the wall of the mode stirred chamber. There are 801 equally spaced frequency points

over a 1 MHz span centered at 920 MHz. This is the transition  ≈ 216 region of the chamber. The

“bounding” dashed curve is from the power balance formulas.
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Figure 15. Fifty ohm Smith chart ( is suppressed in experiments) for 4325 mm (151 mm diameter)

monopole antenna in the wall of the mode stirred chamber. There are 801 equally spaced frequency points

over a 10 MHz span centered at 15 GHz. This is the overmoded  ≈ 1200 region of the chamber. The

“bounding” dashed curve is from the power balance formulas.
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The following table illustrates the lower extreme value (177) for  = 500 m3 and the frequencies

examined above for the rectangular cavity, along with 100 MHz, with an effective wall conductivity  = 1

S/m. The first entries do not agree as might be expected since this frequency is below the fundamental

resonance of the cavity (denoted by parentheses on these entries). The results at 37 MHz and 51 MHz

are not too far off from the preceding rectangular cavity values. Perhaps the preceding rectangular cavity

values achieved these low numbers due to the fact that we chose the symmetry point for evaluation, where

the impedance reached a minimum, or because of the regularity of the spectrum versus what would be

expected with a cluttered cavity (in addition to the predominance of only the  modes for the perfect

rectangular room). The small reduction at 100 MHz indicates that the modes are overlapping to a relatively

high degree.

 (MHz)   
10 12 (0061) (00047)

37 23 16 012

51 28 35 022

100 39 187 050

The numbers in this table can be scaled for other wall conductivities and corresponding room quality

factors. We do not know the quality factors of typical rooms, but suspect they may be fairly low due to

lossy wall materials. Measurement of these resonant quality factors would be helpful in pinning down the

issue. It may also be possible to examine the fluctuations of the input impedance of an antenna in these

rooms to get a feel for the issue. Material properties of the walls would also be useful.

6.6 Matching In Cavity

The low values of  near the V-Curve bottom could be cause for some concern with respect to

the original unbounded V-Curve. However, for limited size antennas, and limited quality factors of the

matching network, the result (58) will be modified to

 ∼ 3Ω

33
≤ lim = 1000 (180)

and thus pushes the minimum matching frequency upward. For the preceding example, with a dipole

antenna having length 2 ≤ 1 m (we will take 2 = 5 mm and Ω ≈ 86) and from the preceding table

setting  = 02, we find a minimum matching frequency of approximately  ≈ 50 MHz. The allowed
electric field level would thus be reduced by a factor of two (

√
02) (lowering the matched curve) at  ≈ 50

MHz, but certainly constituting less of an effect than otherwise might be anticipated without limits imposed

by the matching transmission line losses. Again, realistic estimates for the cavity effect based on loss

measurements are needed to make more definitive statements.

6.7 Transmitter Field In Enclosure

The V-Curve criterion, which sets a limit on the allowed field at the receiver, has focused our attention

on issues with the receiver, and in this section on the cavity effects associated with the input impedance.

However, there is a mitigating factor to these reductions in real input impedance associated with the field

of the source or transmitter. In situations where the quality factor of the room is significant, it was shown

that the minimum input impedance occurred between modes (or below the first mode). The second term of

the open circuit voltage (137), due to the cavity, will also tend to be suppressed in amplitude at precisely

these frequencies, leading to reductions in the field at the receiver (the absorption by the transmitter also

affects the input impedance of the receiver). To deal more quantitatively with this effect we would need to

bring the transmitter into the problem as illustrated in Figure 16 (making the problem a two-port instead
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Figure 16. Typical geometry of transmitting and receiving linear antennas in a cavity.

of single port problem [30], [31]). This is probably a reasonable extension of the overall bounding approach,

but because the present report is limited to the receiver V-Curve criterion, it is out of scope.

7 CONCLUSIONS

The V-Curve criterion has been summarized for an antenna (modeling exposed cabling attached to a

susceptible load) immersed in an incident field in an unbounded region in Section 3. The right arm (where

the antenna is assumed to be matched to the load) and the left arm (where the antenna is mismatched) are

both included. We discuss both electric dipole and magnetic loop antennas in this context. Although loops

can be more efficient at low frequencies, and are sensitive to the surrounding magnetic field, if reasonable

antenna size constraints are applied, the allowed magnetic field still falls above that implied by the standard

V-Curve when the free space impedance is used to connect the level of the electric field with the magnetic

field (the two fields may not actually be so connected at low frequencies, but we take the requirement to

imply a magnetic field limit also).

Higher antenna directivity gains, for example, as occur with a ground plane present, imply reduced

field levels versus the standard V-Curve, which are briefly discussed in Section 4. On the right arm of

the V-Curve at high frequencies, the directivity gain of a long wire antenna near grazing incidence can

exceed that of a resonant dipole and thus cause a lack of conservatism in the levels allowed by the standard

V-Curve. This usually occurs in the GHz region where the allowed field levels are quite high. In addition,

transmission line dielectric (or other) losses may play a role in mitigating this long wire effect.

To quantify additional conservatism in this model we consider losses of the wiring making up the

matching transmission line section in the V-Curve model in Section 5. It turns out that the required

quality factor for matching becomes very high if size constraints are placed on the antenna dimensions. The

effect of this is that conjugate impedance matches (as assumed on the right arm of the V-Curve) near the

bottom of the V-Curve become impossible. Hence the standard V-Curve near the bottom of the V is overly

conservative if antenna size is limited. This constraint is particularly useful to consider in the bounded

environment of a room or cavity, because the quality factor requirements on the matching network are even

more difficult, and hence some mitigation of the room effect takes place near the bottom of the V.
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To get a handle on an issue that challenges the conservatism of the model, Section 6 of the report

examines the receiving properties of a short linear antenna in a bounded region (room or cavity) and how

the real part of the input impedance of the antenna is affected by the wall reflections. Two canonical

cavities, a sphere and a rectangular room, are examined particularly near the first fundamental modes.

High frequency statistical variations and their extreme values are also considered. Reductions in the real

part of the antenna input impedance are the focus since this can suppress the level of the right arm of

the V-Curve. This is caused by the fact that the real part of the antenna input impedance is created by

losses in the room boundary rather than radiation to infinity. Quantification of the loss associated with the

room (for example, its quality factor Q) is required to set the possible variations that can be observed at

the antenna terminals and more quantitatively establish the effect on the right hand part of the V-Curve;

measurements of room losses are thus suggested. We also point out several mitigating factors to this effect.

One is the fact that the transmitter radiated field can be suppressed at the same frequencies as the receiver

impedance in high Q situations. Secondly, requirements on the quality factor of the matching network of

the V-Curve will become more severe in these cases and push up the minimum matching frequency of the

right arm of the V-Curve.

8 REFERENCES

[1] R. L. Parker, “Origin and Application of the ‘V’ Curve,” Sandia National Laboratories Internal

Report, unpublished, Appendix A of this report.

[2] P. F. Mohrbach, R. Thompson, R. F. Wood, and D. J. Mullen, “Monograph On Computation Of RF

Hazards, Report Prepared for NASA Goddard Space Flight Center by the Applied Physics Laboratory

of the Franklin Research Center, July 1968.

[3] R. E. Jorgenson, L. K. Warne, and M. E. Morris, “V-Curve Prediction of Allowable Field Strengths,”

Sandia National Laboratories Internal Report, to R. R. Carr, March 19, 1990, Appendix B of this

report.

[4] L. K. Warne, “Matched Receiving Antenna Inside a Cavity Resonator,” Sandia National Laboratories

Internal Report, January 29, 1991, Appendix C of this report.

[5] L. K. Warne, “Matched Receiving Antenna Inside a Cavity Resonator: Practical Interpretation,”

Sandia National Laboratories Internal Report, February 1, 1991, Appendix D of this report.

[6] E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems, Englewood

Cliffs: Prentice-Hall, Inc., 1968.

[7] S. A. Schelkunoff and H. T. Friis, Antennas Theory and Practice, New York: John Wiley & Sons,

1952.

[8] S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics,

New York: John Wiley & Sons, Inc., 1965, pp. 33, 286-297, 309-311.

[9] F. W. Grover, Inductance Calculations, New York: Dover Pub., Inc., 1973, p. 60.

[10] K. S. H. Lee and F. C. Yang, “Trends and bounds in RF coupling to a wire inside a slotted cavity,”

IEEE Trans. Electromagn. Compat., vol. 34, pp. 154-160, Aug. 1992.

[11] C. A. Balanis, Antenna Theory: Analysis and Design, Harper & Row, New York 1982, pp. 125,

376.

[12] L. K. Warne, T. E. Koontz, and K. C. Chen, “EM Penetration Bounds,” Sandia National Laboratories

Internal Report, August 5, 1988.

[13] K. S. H. Lee and L. K. Warne, “Bounding Of Voltage Responses,” AFWL Interaction Note 540, June

30, 1998.

[14] L. K. Warne, K. S. H. Lee, H. G. Hudson, W. A. Johnson, R. E. Jorgenson, and S. L. Stronach,

“Statistical Properties of Linear Antenna Impedance in an Electrically Large Cavity,” IEEE Trans. on

Antennas and Prop., Vol. 51, No. 5, May 2003.

51



[15] R. Balian and C. Bloch, “Distribution of Eigenfrequencies for the Wave Equation in a Finite Domain.

II. Electromagnetic Field. Riemannian Spaces,” Annals of Physics: 64, 271-307, 1971.

[16] S. A. Schelkunoff, Electromagnetic Waves, New York: D. Van Nostrand Co., Inc., 1957, pp.

294-299.

[17] R. E. Collin, Field Theory of Guided Waves, New York: IEEE Press, pp. 387-395, 1991.

[18] W. R. Smythe, Static and Dynamic Electricity, New York: Hemisphere Pub. Corp., pp. 541-545,

1989.

[19] L. K. Warne, H. G. Hudson, W. A. Johnson, R. E. Jorgenson, S. L. Stronach, and K. S. H. Lee,

“Input Impedance of Antennas in High Frequency Cavities, Sandia National Laboratories Report,

SAND2000-3112, Dec. 2000.

[20] X. Zheng, T. M. Antonsen, Jr., and E. Ott, “Statistics of Impedance and Scattering Matrices in

Chaotic Microwave Cavities: Single Channel Case,” Electromagnetics, Vol. 26, No. 1, Jan. 2006, pp.

3-35.

[21] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, New York: Springer-Verlag, Inc.,

1990.

[22] S. Deus, P. M. Koch, and L. Sirko, “Statistical properties of the eigenfrequency distribution of

three-dimensional microwave cavities,” Physical Review E, Vol. 52, No. 1, July 1995.

[23] T. H. Lehman, “A Statistical Theory of Electromagnetic Fields in Complex Cavities,” AFWL

Interaction Note 494, May 1993.

[24] T. M. Antonsen, Jr., E. Ott, A. Chen, and R. N. Oerter, “Statistics of wave-function scars,” Vol. 51,

No. 1, Physical Review E, January 1995, pp. 111-121.

[25] L. K. Warne, R. E. Jorgenson, J. D. Kotulski, and K. S. H. Lee, “Two Dimensional Unstable Scar

Statistics,” Sandia National Laboratories Report, SAND2006-7511, December 2006.

[26] L. K. Warne, R. E. Jorgenson, J. D. Kotulski, and K. S. H. Lee, “Time Harmonic Scar Statistics in

Two Dimensional Cavities,” IEEE AP-S International Symposium, June 11-15, Honolulu, HI, 2007.

[27] D. A. Hill, “Linear dipole response in a reverberation chamber,” IEEE Trans. Electromagn. Compat.,

vol. 41, pp. 365-368, Nov. 1999.

[28] L. K. Warne and K. S. H. Lee, “Some Remarks on Antenna Response in a Reverberation Chamber,

IEEE Trans. on Electromagn. compat., vol. 43, no. 2, May 2001.

[29] L. K. Warne, W. A. Johnson, and R. E. Jorgenson, “An Improved Statistical Model for Linear

Antenna Input Impedance in an Electrically Large Cavity,” Sandia National Laboratories Report,

SAND2005-1505, March 2005.

[30] L. K. Warne, H. G. Hudson, R. E. Jorgenson, W. A. Johnson, and K. S. H. Lee, “Receiving Properties

of Linear Antennas in High Frequency Cavities,” Sandia National Laboratories Internal Report,

October 7, 2002.

[31] X. Zheng, T. M. Antonsen, Jr., and E. Ott, “Statistics of Impedance and Scattering Matrices in

Chaotic Microwave Cavities with Multiple Ports,” Electromagnetics, Vol. 26, No. 1, Jan. 2006, pp.

37-55.

52



 

A-1 

Appendix A  Origin and Application of the ‘V’ Curve 

 

 The establishment of existing criteria for assembly/disassembly operations is 

based on a very simple dipole model commonly approximated by wiring used for 

interconnections of components associated with weapon systems.  The response for 

electro-explosive devices (EED's) takes the form of a 'V' as shown in Figure A1. The 

curve depicts the required field in Volts/meter to produce the 100% no-fire current in 

the EED. 

 

Right Arm of the 'V' Curve 

 The right arm of the 'V' assumes that the dipole is matched to the load.  This 

assumption is reasonable since there is usually a portion of a transmission line between 

the dipole formed by system wiring and the load (EED bridgewire).  By allowing 

frequency to be variable, the equivalent of a line stretcher exists between the dipole and 

the load.  A wide variety of loads is presented to the dipole as can be observed from the 

Smith Chart (Reference 1) shown in Figure A2 by following the extreme outside circle of 

the Chart.  This circle describes loads for a lossless transmission line and is normalized 

to the characteristic impedance of the line.  The actual load for this case must exist 

somewhere on the outer c1rcle.  Other loads would be described by circles of different 

radius. If the line is lossy, the loads presented to the dipole are described by a spiral 

from the actual load to the center of the chart as shown in Figure A2.  All loads are not 

possible by simply varying frequency for a fixed configuration since for this to be true, 

all points on the Smith Chart would have to be covered rather than those representing 

the curve. 
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Figure A1. Field Strength Limits During Assembly-Disassembly of Weapon 

Systems Based on a 100mA no-fire EED. 
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Figure A2. Smith Chart Showing Loads Reflected by a Uniform 

Transmission Line. 
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 Although a greater variety of loads is available from the lossy line due to spiraling 

rather than retracing the same curve of the lossless line, less power is delivered to the 

load since much of the energy is dissipated in the line.  In general, the most power will 

be delivered to the load by obtaining the best match on the lossless curve.  The lossless 

line curve assumes that the transmission line is uniform (constant characteristic 

impedance) between the dipole and the load.  In reality, such lines are usually made up 

of several different wire spacings representing several lines of different characteristic 

impedance.  As observed on the Smith Chart in Figure A3, these lines introduce steps in 

the circular path described by varying frequency.  A greater variety of loads is 

introduced by this factor, but as before, not all possible loads can be realized by varying 

frequency.  Where several trips around the Smith Chart are required to obtain the match 

(the line is long in terms of wavelength), line loss is usually an overriding factor. 

 

 In dealing with assembly/disassembly operations, numerous different 

configurations may be encountered.  Handling fixtures, test equipment, grounding 

schemes, variable exposure conditions, and changes due to removal of components are a 

few of the factors which affect these configurations.  These factors also lead to a variety 

of loads. Further, the criteria should be general for many different weapons systems.  

This factor will significantly increase the number of loads that could be encountered.  

Hence, it is concluded that the only reasonable bounding condition that can be chosen is 

a perfectly matched load for frequencies where transmission lines might be greater than 

one-half wavelength long. 
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Figure A3. Smith Chart Showing Effect of Transmission Lines on Reflected 

Loads as Frequency is Varied. 
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Dipole Effective Height 

 The following discussion centers on the dipole and its ability to capture energy 

from the field. In this discussion a dipole is considered to be an antenna formed by a two 

element collinear array. The elements do not have to be equal in length, but their 

separation points are considered to be the load terminals as shown in Figure A4. 

 

 

Figure A4. Pictorial Representation of a Dipole. 

 

 Since available analytical results are for h1 = h2, the discussion will center on this 

case, but it is believed that the results will extend to the more general case of h1 ≠ h2.  

The effective height of a dipole is a parameter derived from analysis (Reference 2) which 

describes generally the capability of an antenna for extracting energy from the field.  

More precisely for a symmetrical dipole: 

 

          (1) 
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 The effective height also expresses the pattern characteristics of the dipole.  In 

the low frequency reg10n where the dipole is short in terms of wavelength the pattern 

characteristic is approximately a cosine function in one plane and a constant for any 

fixed radius in an orthogonal plane, approximately described by the shape of a doughnut 

as shown in Figure A5, (Reference 3).  The following equation applies to a monopole 

short in terms of wavelength: 

 

    
       
  

      

                   

          

            

                              (Reference 4) 

 

Figure A5. Power Radiation Patterns of Short-Wire Antenna and Half-

Wave Dipole. 
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Since this pattern is essentially constant in the low frequency range, the effective height 

is constant as follows: 

 

       ⁄  

                             

 

 In the high frequency range the patterns vary considerably and the number of 

side lobes increases as frequency increases as typified in Figure A6 (Reference 4). 

 

 

Figure A6. Polar diagram showing strength of field radiated in various 

directions from an antenna consisting of a wire remote from the 

ground. These diagrams can be considered as cross sections of a 

figure of revolution in which the axis is the antenna. 
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 The effective height reflects these lobe changes in an oscillatory manner as shown 

in Figure A7 (Reference 5). 

 

 

Figure A7. Normalized Open-Circuit Voltage Transfer Function for Dipole 

Antennas 

 

 The plot in Figure A7 is the response for broadside incidence.  At any given 

frequency where a null occurs at broadside incidence, a ·peak of one of the lobes shown 

in Figure A6 can be realized by shifting the angle of incidence slightly.  The peaks in 

effective height decrease at approximately 6 dB/octave in the high frequency range as 

shown in Figure A7.  It is concluded that the effective height is constant in the low 

frequency range for broadside incidence and drops off slowly (cosine function) off 

broadside incidence.  In the high frequency region, the peaks of the effective height roll 



 

A-10 

off at 6 dB/octave with frequency and off broadside incidence the effective height varies 

through a series of peaks and nulls.  The peaks off broadside do not generally decrease 

as shown in Figure A6. 

 

Radiation Resistance and Maximum Power Transfer 

 The amount of power that a given source can deliver to a matched load is 

dependent on its open circuit voltage and its internal resistance.  

 

 For the dipole, resistance consists of wire resistance and radiation resistance. 

Except at very low frequencies radiation resistance will predominate.  At frequencies 

where radiation resistance predominates, resistance will 1ncrease as follows: 

 

     
   

 
 (
  

 
)
 

 (2) 

                      

             

                                 (Reference 6) 

 

 Figure A8 is a plot of the radiation resistance (Reference 5).  The radiation 

resistance is oscillatory but approaches a constant value in the high frequency limit. 
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Figure A8. Radiation Resistance of a Cylindrical Dipole 

 

 Combining the frequency varying characteristics of effective height and radiation 

resistance as they affect power transfer, the maximum power which can be transferred 

is: 

 

     
   

 

   
   

(    )
 

   
 (3) 

 

 Since it has been shown in the low frequency region that .effective height is 

constant as frequency is increased while radiation resistance increases as the square of 

frequency, the maximum power which can be transferred decreases at 6 dB/octave as 

frequency is increased.  In the high frequency region the effective height approximately 

decreases at 6 dB/octave while the radiation resistance is approximately constant.  

These characteristics suggest that a reasonably smooth 6 dB/octave decrease in 

maximum power transfer is available through the mid-frequency range also.  Figure A9 

is a plot of computed maximum power transfer as a function of frequency for a fixed 

length dipole using a code developed for data in Reference 7.  This is a remarkably 

smooth curve if one uses only the peaks in the high frequency region.  It is inferred from 

this curve that the maximum power transferred is independent of the length of the 
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dipole.  This is clarified by the following discussion.  It is well known that the power 

received by a resonant dipole is: 

 

       
     

  
   

     

   
 (4) 

               

              

 

 

Figure A9. Response of a Matched, Fixed Length Dipole 
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 In order to resonate the dipole it must be reduced in length directly as frequency 

1s increased.  Further, the power received decreases at 6 dB/octave as noted from 

equation 4 above.  Hence, a resonant dipole which must be varied in length follows the 

same curve as a fixed length dipole.  This leads one to the conclusion that the power that 

a dipole receives (or delivers to a matched load) is independent of the length of the 

dipole.  It is therefore fixed absolutely by frequency alone.  This, of course, excludes 

cases in the high frequency region where nulls occur, although a null can be shifted to a 

peak by turning either the dipole or the source direction slightly. 

 

 It should be emphasized that these conclusions have not been verified for an 

asymmetrical dipole but it is not anticipated that this increased generalization will 

produce different results.  Although results were presented primarily for broadside 

incidence it was shown that levels vary slowly off broadside incidence.  Further, 

antennas such as 'V's and arrays are conceivable with arbitrary wire arrangements, and 

these antennas are more efficient at collecting power from the field at certain specific 

frequencies.  Hence, the dipole model is not in itself a worst case, but simply a 

reasonably good representation for arbitrary weapon configurations. 

 

Left Arm of the 'V' Curve 

 The discussion has not covered the left arm of the 'V' of Figure A1.  The left arm 

would not exist if optimum matching could be maintained.  Both the dipole length and 

any interconnecting wiring forming a transmission line are limited in assembly areas.  

Somewhat arbitrarily, 8 MHz has been chosen as the frequency below which optimum 

matching cannot reasonably be achieved due to length constraints.  Since matching 

cannot be ach1eved and the dipole is also short in terms of wavelength, a mismatch 

which increases as frequency decreases can be expected.  This is illustrated by the 

equivalent circuit below: 
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 For EED's, the dipole impedance linearly increases as frequency is decreased 

above EED impedances which are typically five ohms or less.  For semiconductors, the 

forward resistance is often low while back resistances are high (Mega ohms).  The 

forward conducting region will result in more dissipation leading to the vaporization of 

leads than the back resistances up to a point where the forward resistance is: 

 

(     
  
 

  
) 

as shown below: 
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Since    is usually in the 1 - 50 ohm area and    in the Mega ohm area, equality of 

forward and reverse loss will occur when         and  

 

     
  
 

  
 (5) 

 

At lower frequencies, the 'V' curve 1s not applicable. 

 

 Hence, it is concluded that the left half or 'V' presently used for EED's also is 

applicable within the above constraint for CW failures of semiconducting devices.  Since 

the concepts developed for the matched dipole were independent of the load, the right 

half of the 'V' curve is also applicable to semiconductor devices. 

 

 

R. L. Parker, 1553 

Sandia National Laboratories 
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 Operated for the U.S. Department of Energy by 

 Sandia Corporation 

 Albuquerque, New Mexico 87185- 

 

 

 

 date:  March 20, 1990 
 

 to:  Ralph R. Carr, 7212 
  

 

 
 from: R. E. Jorgenson, L. K. Warne, M. E. Morris, 7553 

 

 

 
subject: V-Curve Prediction of Allowable Field Strengths 

 
 

Introduction 

 

When a weapon is assembled or disassembled or when a weapon has been severely 

damaged, wires connected to the interior of the weapon are exposed to 

electromagnetic fields that arise from sources such as hand-held communications 

equipment or mobile radar.  These situations are of concern, because some of the 

exposed wires are connected to electro-explosive devices (EEDs) that will detonate if 

the power delivered to them, due to the current induced on the wires by the fields, 

becomes too high.  It is necessary, therefore, to limit the strength of the 

electromagnetic fields in the environment or, equivalently, to fix a standoff distance 

within which transmitters above a given power level should not operate. 

 

A convenient way to bound the electromagnetic field strength is by means of a curve 

that shows, as a function of frequency, the maximum electric field intensity that can 

exist in the environment without causing an EED to explode.  Unfortunately, as 

shown in Figure B-1, the configurations of wires in the weapon system have a large 

degree of variation as the wire bundles are moved about the assembly area.  It is 

impossible and undesirable, therefore, to solve an actual problem rigorously, because 



B-3 

 

with every change in wire configuration a new problem would have to be solved.  A 

better approach would be to use a simple model that demonstrates the essential 

physics of the problem in order to find a least upper bound for the allowed field 

strength for most situations and then to solve a few typical wire configurations 

rigorously to ensure that these bounds are indeed realistic. 

 

 

Figure B-1.  Example of a wire configuration that may exist in a weapon system. 

 

The purpose of this memorandum is to provide a simple but realistic model of a 

bundle of wires connected to a 100-mA, no-fire EED and to document the 

assumptions made in constructing and solving this model.  The memorandum begins 

by simplifying the actual situation shown in Figure B-1 to that of a single dipole 

connected to an EED through a two-wire transmission line, as shown in Figure B-2.  

The assumptions on the model are then examined to see what parameters can be 

reasonably fixed.  Each assumption and its consequence are documented.  Next, 

further approximations are made to arrive at five mathematical descriptions of the 

model.  Each of these is discussed in turn:  a short dipole with no transmission line, 

the V-Curve, a short dipole with a transmission line, a long dipole with a transmission 

line, and the presently used resonant dipole with no transmission line.  The field 
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strength bounds predicted by each of these descriptions are compared with each 

other in the results section, and some conclusions concerning the V-Curve are drawn. 

 

Physical Model 

 

As discussed in the introduction, the actual physical situation shown in Figure B-1 is 

too variable to allow any general conclusions to be drawn from it.  Figure B-1 shows a 

bundle of wires exposed to an electromagnetic field.  Some of the wires could be 

separated from the main bundle, in which case they would act mainly as antennas 

that couple electromagnetic energy from the surrounding environment into the wire 

bundle.  The sections of wires in the bundle would not couple energy as efficiently as 

the separated wires, but could act as transmission lines to transport the energy to the 

EED.  The wires acting as transmission lines could be connected to various discrete 

devices along their length or could be connected to other wires.  The wires could also 

vary in cross section as a function of length, which would cause the characteristic 

impedances of the transmission lines to vary also. 

 

The first step in simplification is to break the wire bundle into three sections 

according to the main function of each section.  The wires separated from the bundle 

are assumed to act solely as antennas.  The wires in the bundle along with the discrete 

elements act as a transmission line system.  This section may match the impedance of 

the EED to that of the antenna so that the power transferred to the EED is 

maximized.  Energy coupled directly to the wires in the bundle from the external field 

is ignored.  The final section of the wire bundle is the EED itself, which is 

characterized by a 5-ohm resistive load. 
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Figure B-2.  Idealization of the general wire configuration to that of a dipole connected 

to a two-wire transmission line, which is, in turn, connected to an EED. 

 

The antennas formed by the separated wires are approximated as dipoles in free 

space.  Any variation of the wires from the dipole configuration is assumed to 

decrease the amount of energy coupled into the system.  The loop antenna is the dual 

to the dipole, so consideration of it would add no new physics to the problem.  Several 

wires acting as antennas could be connected to the same transmission line section 

forming an antenna array, which would increase the amount of energy coupled into 

the system, but these possibilities are ignored. 

 

The transmission line section's main function is to impedance match the load to the 

antenna.  This occurs at discrete frequencies for a simple transmission line of a given 

length.  The effect of placing discrete elements at points along the transmission line, 

adding tuning stubs (formed by wires connected to the transmission line) and varying 

the characteristic impedance of the transmission line as a function of length merely 

shifts the location of these matching frequencies.  Since the exact locations of these 

frequencies are not important in the calculation of a bound, the effects of the discrete 

elements and tuning stubs are ignored, and the transmission line section is 



B-6 

 

characterized by a two-wire simple transmission line.  The result of the above 

arguments is that the actual situation shown in Figure B-1 is simplified to that of 

Figure B-2—a single dipole is connected to a two-wire transmission line, which is, in 

turn, connected to a 5-ohm load. 

 

Assumptions 

 

The four components making up the simplified model are the incident field, the 

dipole, the transmission line, and the EED load.  This section documents the 

assumptions made on each component and determines which parameters of the 

problem can be realistically fixed. 

 

The incident field is assumed to be a plane wave, which implies that the source of the 

field is in the far-field of the dipole.  The wave is polarized so that the H field is 

perpendicular to the axis of the dipole (no polarization loss).  The frequency of the 

incident wave is between 10 MHz and 15 GHz.  The plane wave is incident at an angle 

such that it is in the main beam of the dipole pattern, which maximizes the amount of 

energy received by the dipole.  If the dipole is short (less than a wavelength), this 

direction is perpendicular to the antenna axis.  As the antenna becomes longer, this 

main beam moves toward the antenna axis. 

 

The dipole is made of uninsulated, perfectly conducting wire in free space.  The wire, 

which is an extension of the wire bundle, has a gauge between #16 AWG and #20 

AWG (radius between 6.454 x 10-4 meter and 4.059 x 10-4 meter).  The parameter in 

the calculations that depends on the antenna radius is the fatness parameter, which is 

calculated by the formula 

 

       (
  

 
) 

 

where h is the half-length of the dipole and a is the dipole radius.  The fact that the 

fatness parameter varies logarithmically with the wire radius justifies fixing the 
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radius of the antenna (and consequently that of the transmission line wires) at 

5.0 x 10-4 meter, which is approximately the radius of #18 AWG wire. 

 

The transmission line that connects the antenna to the EED is composed of two wires 

from the wire bundle. The wires are insulated from each other by a Teflon sheath 

(r = 2.1).  A bound on the transmission line characteristic impedance is needed to 

eliminate the possibility of a reactive match at very low frequencies.  In this 

memorandum, the transmission line will be assumed to consist of adjacent wires.  

The Teflon insulation on each of the wires is assumed to be as thick as the wire 

radius.  This means that the wires are separated from each other by approximately 

four wire radii, (i.e., 2.0 x 10-3 meter).  The transmission line impedance Zo depends 

on the logarithm of the separation distance between the lines since the wire radius 

has already been fixed in the fatness parameter calculation.  This means that, like the 

fatness parameter, the transmission line impedance can be fixed at a typical value 

 

     
   

√  
       (

 

  
)               

 

where b is the separation distance between the two wires. 

 

The EED is assumed to be a 100-mA, no-fire device.  It is assumed to have an 

impedance of 5 ohms and a power sensitivity threshold of 50 mW. 

 

Models 

 

The parameters that remain to be varied are the half-length of the dipole (labeled h in 

Figure B-2), the length of the transmission line (labeled tl in Figure B-2), and the feed 

position of the antenna (labeled F.P. in Figure B-2).  The following sections discuss 

each of the five mathematical models used to generate the curves in the results 

section. The first two models are simple and are candidates for setting the bounds of 

the incident E field.  The third and fourth models are more complex and will be used 

to verify the bounds set by the first two for typical cases.  The last model is a simple 

model and is being used presently. 
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Short Dipole, No Transmission Line 

 

In the short-dipole, no transmission line model, as shown in Figure B-4, the EED is 

connected directly to the dipole with no intervening transmission line.  The dipole is 

assumed to be short in terms of a wavelength, so that the current along the dipole has 

a triangular distribution with respect to length.  The antenna and load can be 

replaced by the equivalent circuit shown in Figure B-4.  The antenna is replaced by an 

open circuit voltage (Voc) in series with the radiation resistance (Rrad), capacitance of 

the antenna (Cant) and inductance of the antenna (Lant), all of which are defined in 

Appendix I of this memorandum.  The equation governing the curve is then 

 

       
 

 
 √
  
  
 [(       )

  (
            

     
)

 

]

   

        

 

where Pt is the power threshold of the EED (50 mW), RL is the resistance of the EED, 

and  is the radian frequency.  This model suffers from not accounting for any 

matching network between the antenna and the EED.  As will be seen in the results, 

this model will allow a larger field to exist in the environment than can be considered 

safe. 
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Figure B-3.  A short dipole connected directly to the EED. 

 

 

Figure B-4.  The equivalent circuit for the situation shown in Figure B-3. 
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V-Curve Calculation 

 

The V-Curve is the second type of simple model used to calculate the field bounds.  It 

is well established and includes the matching effect of the transmission line between 

the antenna and the EED.  In this model, the dipole is again considered to be short. 

The two arms of the V-shaped curve are generated by considering the model from two 

points of view.  Above a certain frequency, the transmission line is electrically long 

enough to have a chance to match the load impedance of the EED to the impedance of 

the antenna.  Since the transmission line configuration is so variable, the right arm of 

the V-Curve is generated by assuming that the transmission line perfectly matches the 

antenna to the load at all frequencies in this range.  This situation allows the 

maximum power to be transferred to the EED and represents the worst-case scenario 

in the context of a small dipole assumption.  The equivalent circuit for this case is 

shown in Figure B-5.  The antenna is modeled by a voltage generator (Voc) in series 

with the radiation resistance (Rrad).  The load presented to the antenna by the 

transmission line is equal to the radiation resistance since it is assumed to be 

perfectly matched.  The curve is governed by the equation 

 

       
 

 
√                

 

Therefore, the strength of allowed field increases with frequency at a rate of 6 decibels 

per octave.  The curve is fixed both in slope and y intercept. 

 

The left arm of the V-Curve is generated by assuming that below a certain frequency 

the transmission line is electrically so short that it will never match the impedance of 

the EED to that of the antenna.  The equivalent circuit is shown in Figure B-5b.  The 

antenna, which is modeled by a voltage generator (Voc) in series with the capacitance 

of the antenna (Cant), is connected directly to the EED impedance.  The radiation 

resistance and the inductance of the antenna are negligible at low frequencies.  The 

curve is governed for small ω by the equation:  
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Figure B-5a.  The equivalent circuit for the right arm of the V-Curve. 
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Figure B-5b.  The equivalent circuit for the left arm of the V-Curve. 

 

It can be seen, therefore, that the allowed strength of the incident field decreases with 

frequency at the rate of 6 decibels per octave.  The left-hand portion is only fixed in 

slope (it is taken to vary as l/ω) because, even at low frequencies, the inductance of 

the transmission line begins to cancel the capacitance of the antenna, and the power 

delivered to the EED is greater than that indicated by the above equation.  It remains 

to determine, therefore, the y intercept of the left arm, or equivalently, where in 

frequency the curve transitions from the left to right arm.  Through experimentation 

with the more rigorous models shown below, this frequency is determined to be the 

smaller of the two frequencies (a) where the transmission line is one-fourth of a 

wavelength long, as measured in Teflon, or (b) where f = 1/(2π Lant Cant). 
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Short Dipole with Transmission Line 

 

For the short-dipole with transmission line model, the antenna is again a short 

dipole.  The impedance presented to the antenna is represented by the transfer of 

load impedance using the transmission line formula, i.e., 

 

        
                     
                     

           

 

where 

 

      √            

 

The circuit is shown in Figure B-6.  The curves generated are governed by the equation 
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where 

 

Rin is the real part of Zin and Xin is the imaginary part of Zin. 

 

The values predicted by this model are inaccurate if the dipole becomes much longer 

than half a wavelength. 
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Figure B-6.  The equivalent circuit for a short dipole connected to the EED through a 

transmission line. 

 

Long Dipole with Transmission Line 

 

The long-dipole with transmission line model is the most rigorous of all the models 

examined.  The impedance presented to the antenna is calculated using the 

transmission line formula used in the "Short Dipole with Transmission Line" model 

discussed above.  The dipole is modeled more rigorously than in previous calculations 

so that the dipole can be several wavelengths long and can be fed asymmetrically.  

The quantities such as the impedance of the antenna and antenna pattern are derived 

from a Weiner-Hopf calculation and are discussed in Appendix I of this 

memorandum.  As the antenna increases in electrical length, the main beam of the 

antenna shifts from being broadside to the antenna axis to an angle closer to the axis 

of the antenna.  The amount of voltage available at the antenna terminals must be 

maximized by scanning the incident field over all possible incident angles (0 < θi < π).  

The circuit that results from these calculations is shown in Figure B-7.  The formula 

for the curve is given as 
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where Zant is the impedance of the antenna.     
 (       )    is the maximum current 

at the feed point zFP for all possible incident angles.  This model for the dipole is not 

valid when the dipole is less than 0.12 wavelength long because the Wiener-Hopf 

derivation is based on calculations for semi-infinite antennas. 

 

Resonant Dipole, No Transmission Line 

 

The resonant- dipole, no transmission line model traditionally has been used to 

calculate the bounds on the incident electric field.  The resulting curve is the same 

form as the V-Curve, but the levels predicted and the break frequency between the left 

and right arms are different.  The right arm is calculated by using the model in Figure 

B-8.  The physical length of the dipole is changed with frequency so that it is always a 

half wavelength long.  The dipole is connected directly to the EED with no intervening 

transmission line.  The resulting curve is governed by the equation 

 

       
  

        
√
  
  
 (       )            

 

where Rrad is the radiation resistance (73 ohms) of the half- wave dipole, f is the 

frequency, and Vc is the speed of light. This arm increases with frequency at the rate 

of 6 decibels per octave. 
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Figure B-7.  The equivalent circuit for a long dipole connected to the EED through a 

transmission line. (The long dipole is modeled using a Wiener-Hopf approach.) 

 

 

 

Figure B-8.  The equivalent circuit for the right arm of the presently used model. 
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The left arm of the curve decreases with frequency at the rate of 6 decibels per octave 

and is generated just like the left arm of the V-Curve.  The only remaining task is to 

pick the frequency at which the curve transitions from the left to the right arm.  This 

point is chosen at the frequency at which the original length of the dipole is a half 

wavelength.  So, whereas the transition frequency in the V-Curve depends on the 

length of the transmission line, the transition frequency in the traditional curve 

depends on the length of the dipole.  Since there is no transmission line in this model, 

there is no matching between the antenna and the EED.  This fact causes the bounds 

predicted by this model to be too liberal. 

 

Results 

 

Figure B-9 through Figure B-12 show plots of the bound on the electric field intensity 

as a function of frequency on a log-log scale as calculated by each of the first four 

models. The half-length of the dipole is fixed at 0.1 meter and the transmission line 

length is varied through the values 0.01, 0.1, 0.2, and 0.5 meter.  In all cases, the V-

Curve bounds the other three curves from below.  The transition frequency for the V-

Curve in Figure B-9 is equal to the frequency at which the dipole resonates since the 

dipole resonates at a lower frequency than the frequency at which the 0.01 meter 

transmission line is a quarter wavelength long.  As the transmission line length 

increases (Figure B-10 through Figure B-12), the transition frequency is set at the point 

at which the transmission line length is a quarter wavelength.  The short-dipole, no 

transmission line model provides a greatest upper bound on the field intensity and is 

therefore unsatisfactory.  The bounds predicted by the models with transmission lines 

oscillate between the values set by the no transmission line model and the V-Curve as 

the transmission line matches and mismatches the load to the antenna. 
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Figure B-9.  Curve showing the bound on the E field as a function of frequency as 

predicted by four different mathematical descriptions of Figure B-2.  The dipole half-

length is 0.1 meter.  The length of the transmission line is 0.01 meter.  The load is a 

50-mA, no-fire EED. 
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Figure B-10.  Same as Figure B-9 except the transmission line length is 0.1 meter. 
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Figure B-11.  Same as Figure B-9 except the transmission line length is 0.2 meter. 
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Figure B-12.  Same as Figure B-9 except the transmission line length is 0.5 meter. 
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If the dipole becomes electrically too long, as shown in Figure B-13 and Figure B-14, 

the V-Curve model begins to break down.  The maximum electric field predicted by 

the more exact long dipole model falls below that predicted by the V-Curve.  This is an 

area for future study.  It must be pointed out, however, that the failure of the V-Curve 

model is not drastic and that it can be used with a high degree of confidence as long 

as the dipole length is less than six wavelengths. 

 

Figure B-15 shows the effect of varying the position of the antenna feed from center-

fed to being fed halfway between the center and the end of the dipole.  The figure 

shows results for a typical case when the dipole has a half-length of 0.1 meter.  The 

position of the peaks and valleys shifts in frequency, but the overall trend remains 

unchanged.  It can be concluded, therefore, that the V-Curve provides a suitable 

bound for both symmetrically and asymmetrically fed dipoles. 

 

Figure B-16 compares the V-Curve predicted bounds to those predicted by the present 

model (half-wave dipole, no transmission line).  Although both models are similar in 

shape, the levels predicted by the present model are greater than both the V-Curve 

and the more exact short dipole with transmission line model at the frequencies 

where the transmission line performs a matching function.  This indicates that the 

effect of the transmission line must be accounted for in order to obtain a safe bound. 

 

Figure B-17 and Figure B-18 show the safe radius as a function of frequency predicted 

by the V-Curve and the current model.  A 1-W transmitter having an antenna with a 

gain of 3.5 would have to stay outside this radius to keep the field strength at the EED 

below the safe level.  Figure B-17 is the curve for a 100-mA, 5-ohm no-fire EED and 

Figure B-18 is for a 1-A, 1-ohm no-fire EED.  The safe distance predicted by the V-

Curve is an order of magnitude greater than that predicted by the present model.  All 

models used for this analysis are far-field models, which mean that the characteristics 

of the transmitting and receiving antenna are not affected by the proximity of each 

other.  This assumption breaks down when the half-length of the dipole is 1.5 meters 

and the distance between antennas is less than a meter.  The effect of being in the 

near-field of the dipole is an area of further study. 
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Conclusions 

 

The present model used in setting a bound on the field intensity and, consequently, 

the minimum transmitter standoff distance allowed near a damaged weapon is not 

conservative enough.  The V-Curve, on the other hand, provides conservative, yet 

realistic bounds for all cases unless the length of the dipole becomes greater than six 

wavelengths.  We recommend using the V-Curve, which is as simple to construct as 

the presently used model and provides a safer bound than this model. 
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Figure B-13.  Same as Figure B-9 except the dipole half-length is 0.5 meter. The E field 

bound predicted by the more exact long-dipole with transmission line model is less than 

that predicted by the V-Curve when the dipole length becomes greater than six 

wavelengths. 
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Figure B-14.  Same as Figure B-13 except the transmission line is 0.1 meter long. Again, 

the E field bound predicted by the long-dipole model falls below that predicted by the 

V-Curve. 
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Figure B-15.  Comparison of the E field predicted by the long dipole model for dipoles 

that are center-fed and dipoles that are asymmetrically fed. The overall bound level is 

the same although the positions in frequency of the peaks and valleys are shifted. 
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Figure B-16.  Bounds predicted by the present model (resonant dipole, no transmission 

line) compared to those predicted by the V-Curve and the more exact short-dipole with 

transmission line model. The half-length of the dipole is 1.5 meters, the transmission 

line is 3.0 meters long, and the EED is a 100-mA, 5-ohm no-fire. 
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Figure B-17.  The safe radius versus frequency as predicted by the present model 

(resonant dipole, no transmission line) compared to that predicted by the V-Curve for 

the same situation as Figure B-16. The transmitting antenna has an output power of 1 

W into an antenna having a gain of 3.5. 
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Figure B-18.  Same as Figure B-17 except the EED is a 1-A, 1-ohm no-fire device. 
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Appendix I 

Short and Long Dipole Calculations 

 

The short dipole is characterized by an open circuit voltage in series with a resistance, 

capacitance, and inductance.  These quantities are defined as 

 
                            volts 

            (
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            ohms 

       
     

(        )
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)  

  

 
)     henries 

 
Note that the current distribution along the dipole is in the form of a triangle that is 

maximum at the feed point and zero at the ends of the dipole.  eff is the effective 

length of the antenna, µo is the magnetic permeability of free-space, and o is the 

electric permittivity of free space. 

 

The current on the long dipole as a function of distance is calculated by launching a 

primary current on the antenna that is the same as the current existing on a similarly 

excited infinite, thin-wire antenna, i.e., 
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where ko is the free-space wave number, o is the impedance of free-space, 

 
        (   )        and 

          is the Euler constant. 

 
When the primary currents hit the end of the dipole, they are reflected back in the 

opposite direction. The form of the reflected currents can be obtained by applying a 
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Wiener-Hopf analysis to a wave incident on a semi-infinite antenna from its end. This 

gives the reflected current as 
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and E1 is the exponential integral of the first kind. 

 

These currents continue to reflect back and forth off the ends of the antenna to give 

two series, which can be summed to obtain the total current at z due to an applied 

unit voltage at zo, i. e., 
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where 
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The input admittance of the antenna will be 
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Using the above current distribution, the far field pattern as a function of the angle off 

the antenna axis (θi) and the feed point zo is 
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E1 is again the exponential integral of the first kind. 

 

The above expression leads to a received current at the feed point zo due to an 

incident plane wave having an electric field intensity of 1 V/m and having a 

propagation vector that makes an angle of θi with respect to the antenna axis, i.e., 

 
  
 (     )           (       )                     

 
The incident angle θi must be found that maximizes this current. 
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Appendix II 

Safe Distance Tables 

 

Safe distance must be maintained between mobile (including hand-portable) radio 

equipment and weapons involved in accidents to ensure that no weapon EEDs are 

initiated. Guidance provided below is based on the V-Curve calculations for a 

transmission line length of 3 meters (10 feet), which has been selected as an upper-

bound length for exposed weapon wiring. The transmission line is connected to a 

monopole. The transmitter is assumed to have all its power transmitted through a 

short monopole antenna. Older EEDs have 4.5-ohm bridgewires and 100% no-fire 

current ratings of 100 mA. More modern EEDs have l-ohm bridgewires and no-fire 

current ratings of 1 A. 

 

To use Tables 1 and 2, transmitter power and operating frequency of mobile 

communication equipment must be known. If the type of EED in the weapon is not 

known, the distance scale for 4.5-ohm, 100-mA devices should be used (Table 1). If 

neither the type of EED nor the power and frequency of the mobile equipment are 

known, a minimum distance of 378 meters (1260 feet) would be prudent. Observe 

safe distance until exposed wiring has been effectively shielded. 
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Table 1.  4.5-Ohm, 100-mA No-Fire Device (Distance in Meters) 

 

Transmitter 

Power 

Frequency (MHz) 

(Watts) 1 2 5 10 20 50 100 300 

1    10.8 16.9 6.8 3.4 1.2 

2    15.3 23.9 9.5 4.8 1.6 

5    24.2 37.7 15.1 7.5 2.5 

10    34.2 53.3 21.3 10.7 3.6 

20   24.2 48.3 75.4 30.2 15.1 5.0 

50   38.2 76.4 119.3 47.7 23.9 8.0 

100  21.6 54.0 108.1 168.7 67.5 33.7 11.2 

200  30.6 76.4 152.9 238.6 95.4 47.7 15.9 

500 24.2 48.3 120.9 241.7 377.8 150.9 75.4 25.1 

 

Table 2.  1-Ohm, 1-A No-Fire Device (Distance in Meters) 

 

Transmitter 

Power 

Frequency (MHz) 

(Watts) 1 2 5 10 20 50 100 300 

1    2.3 3.6 1.4 0.8 0.3 

2    3.2 5.1 2.0 1.0 0.4 

5    5.1 8.0 3.2 1.6 0.5 

10    7.3 11.3 4.5 2.3 0.8 

20   5.1 10.3 16.0 6.4 3.2 1.1 

50   8.1 16.2 25.3 10.1 5.1 1.7 

100  4.6 11.5 22.9 35.8 14.3 7.2 2.4 

200  6.4 16.2 32.4 50.6 20.2 10.1 3.4 

500 5.1 10.3 25.6 51.3 80.0 32.0 16.0 5.3 
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Date:  January 29, 1991 

 

To:  M. E. Morris, 7553 

 

 

 

From:  L. K. Warne, 7553 

 

 

Subject: Matched Receiving Antenna Inside a Cavity Resonator 

 

Introduction 

 

 This memo considers the question of whether the usual "V curve" requirement, 

based on a matched dipole antenna in an infinite free space, is applicable to the interior of 

a cavity formed, for example, by the walls of a building or the exterior case of a weapon 

system (The "V curve" is primarily used to set the allowable electromagnetic field levels 

in assembly areas where cabling is attached to hotwire electroexplosive devices.).  A 

simple canonical spherical problem is used to yield closed form solutions for this simple 

special case.  It is found that there can be significant reductions in the real part of the 

dipole input impedance resulting in significant increases in received power. 

 

Short Dipole in an Infinite Free Space: 

 

 The typical "V curve" requirement is based on a resonant matched dipole model.  

However, an electrically short dipole leads to very similar results and is much simpler to 

treat in the current problem.  Figure C-1 shows a circuit model for a center-driven 

electrically-short dipole of length 2 dh and radius a.  The circuit elements are 
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where Ω = 2 ln(2 dh/a) is the antenna fatness parameter, Eo is the incident field at the 

location of the antenna (in rms units),      √    ⁄        ohms is the free space 

impedance,      √     is the wavenumber,    is the permittivity of free space, and    

is the permeability of free space.  The load, in the matched case for maximum power 

transfer, is taken to have         ( ⁄     ) and           .  The power received by 

the load in the matched case is thus 
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Obviously the minimum value that Rant attains is important in determining a bound for 

Prec.  Using (1) and (2) in (4) and noting k = 2π/λ, where λ is the free space wavelength, 

we obtain the familiar result from antenna theory 
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where the directivity gain of a short dipole antenna is G = 3/2. 

 

Short Dipole in a Spherical Resonant Cavity: 

 

 We now consider the short dipole when placed at the center of a spherical 

enclosure of radius b as shown in Figure C-2.  The walls of the enclosure are lossy and 

are described by the impedance boundary condition 
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n x E = Zs n x n x H   , (6) 

 

where n is the unit inward normal to the sphere, E is the electric field vector, H is the 

magnetic field vector, and Zs is the surface impedance.  The dipole current density J is 

approximately 

 

J = I δ(x) δ(y) f(dh - │z│)/dh ez    , (7) 

 

where I is the current amplitude at the center, δ(x) is the delta function, ez is a unit vector 

in the z direction, f(u) = u for u > 0 and f(u) = 0 for u < 0.  In the limit as k dh, dh/b → 0 

we can take 

 

J = I dh δ(r) ez   , (8) 

 

where r is the three dimensional position vector. 

 

 The source vector potential (time dependence       is used throughout) in free 

space is 

 

  ( )      ∫  
 

(  ) 
   |      |

   |      |
           (9) 

 

The potential in this case only has a z component and is given for r > > dh by 

 

  
            

    

   
     (10) 

 

Using             we obtain 
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where r, θ, φ are the usual spherical coordinates. Using                we obtain 
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 The impedance boundary condition requires the addition of a solution of the 

source free Helmholtz equation 
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       (13) 

 

where R is a constant to be determined.  The associated fields are 
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 The boundary condition (6) becomes 
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which gives 
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 The real part of the antenna input impedance can be evaluated by means of the 

Poynting vector method.  The time average power input to the antenna terminals is 

 

        (   )     (    ) | |
      (18) 

 

where Zant is the antenna input impedance and again rms units are used for I.  But the 

time average power supplied to the antenna is radiated away and absorbed by the sphere 

at r = b; thus 

 

        [∫               
 

 
]     (19) 

 

where the radial component of the Poynting vector is 
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     (20) 

 

 Carrying out (19) at r = b, so that (16) can be used in (20), we obtain 
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Inserting (17) and referring to (18) gives 
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where Rrad in (22) is given by (1).  Thus the right-hand side of (22) represents a 

multiplicative correction to Rrad which defines the real part of the input impedance Rant. 

 

 To obtain a feel for the size of (22) let us simplify it by allowing the spherical 

cavity to be several wavelengths in radius (kb is large) 

 

    

    
    (    ⁄ ) |   (  )    (    ⁄ )    (  )| ⁄     (23) 

 

Now for small surface impedances Zs < < ηo, typical of metallic conductors, the 

minimum of (23) occurs when sin(kb) equals unity 

 

        ⁄     (    ⁄ )     (24) 

 

Obviously the quantity in (24) can be quite small compared to unity and thus we would 

expect the received power (4) to be increased considerably.  However, it must be noted 

that other losses in specific cavities of interest (losses resulting from radiation through 

apertures or lossy dielectrics) must actually be included to obtain realistic estimates of the 

decrease in Rant.  Nevertheless, this simple canonical model does point out the need for 

further consideration of this important problem. 

 

 For illustration purposes if we take σ = 2.61 x 10
7
 S/m for commercial aluminum 

and f = 800 MHz (note Re(Zs) = Rs = √   (  )⁄ ) Re(Zs/ηo) ≈ 1/185
2
.  This means that 

the standard “V curve” electric field value at 800 MHz, 0.2 V/m (800 MHz/8 MHz) ≈ 

20 V/m is reduced by a factor of 185 to 0.1 V/m.  Figure C-3 gives a rough sketch of the 

resulting curve.  Of course we emphasize again in practical cases other losses must be 

included which will raise the level of the dashed curve. 
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Conclusions: 

 

 It has been demonstrated by means of a simple canonical problem, consisting of a 

short dipole at the center of a spherical cavity, that the real part of the input impedance 

can be decreased significantly from the value when the dipole is situated in empty space.  

This implies that the received power into a matched load is considerably increased 

relative to that predicted by the "V curve. "  Several questions remain to be answered 

before use can be made of such a result: 1) how do other losses including aperture 

radiation and dielectric loss influence the result; 2) how does the special geometry 

assumed here generalize; 3) how do limitations on the matching network of the load 

(typically a transmission line), including losses, influence the result. 
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Figure C-1.  Circuit model for an electrically short dipole of length 2 dh and radius a with 

attached load. 
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Figure C-2.  Electrically-short dipole of length 2 dh at the center of a spherical enclosure of 

radius b with impedance boundary condition at the spherical enclosure. 
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Figure C-3.  Typical “V curve” (solid) with modification introduced for commercial 

aluminum wall material (dashed). 

 

 



D-1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix D  1991 Memorandum to Marvin Morris 
 

 

  



D-2 
 

 

Date:  February 1, 1991 

 

To:  M. E. Morris, 7553 

 

 

 

From:  L. K. Warne, 7553 

 

 

Subject: Matched Receiving Antenna Inside a Cavity Resonator: Practical Interpretation 

 

Introduction 

 

 This memo attempts to interpret the results of [1] from a practical point of view for real 

geometries.  The discussion here is of a somewhat qualitative nature because the quantitative 

details in a more realistic geometry have yet to be worked out.  Nevertheless the considerations 

given are believed to put the previous memo [1] in the proper perspective. 

 

 The real part of the input impedance Rant = Re(Zant) to an infinitesimal dipole of length 

2 dh placed at the center of a spherical cavity of radius b with surface impedance Zs was 

calculated in [1] to be 
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where Rrad is the radiation resistance of the infinitesimal dipole in free space 

 

       
  

  
(    )     (2) 

 

the wavenumber is    √       the impedance of free space is    √    ⁄ ,    is the free 

space permeability, and    is the free space permittivity. 

 

 Reference [1] discussed the simplification when kb was large.  However, in general if 

 

   (  )       , (3) 

 

then (1) becomes 

 

    

    
    (    ⁄ )  , (4) 

 

the same result given in [1] for kb large.  But an empty perfectly conducting spherical 

resonator has TMn01 modal solutions for [2] 

 

   (  )    
  

  (  ) 
  . (5) 

 

Equation (1) at the frequencies (5) becomes 

 

    

    
    (    ⁄ ) |

  

  
|
 

(  
 

    
 

 

    
)  . (6) 

 

 Now for small     ⁄  the result (4) indicates that there is a decrease in the real part of the 

input impedance whereas the result (6), at a different set of frequencies, yields an increase in the 
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real part of the input impedance.  To explain these results, note the field components generated 

by the boundary are [1] 

 

  
       

    

   
[   (  )  

 

  
   (  )] (  )   , (7) 
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   (  )] (   )   . 

 (8) 

 

 Notice that if kb satisfies (5) then   
  = 0 at r = b. However for small Zs the total field   

  

+   
   0 (where   

  is the field resulting from a dipole in empty space [1]) at r = b.  This 

means that the constant R becomes very large and the magnetic field (7) is very large at r = b.  

This results in large power dissipation at the wall and thus the large value of the observed real 

part of the input impedance (6). 

 

 Alternatively if kb satisfies (3) then   
    at r = b (This is also true as long as we are well 

away from the resonant frequencies (5).).  The constant R can be taken as an order unity quantity 

and the total magnetic field at the wall is relatively small.  Thus the power dissipation at the wall 

is small and the real part of the input impedance is the relatively small quantity (4). 

 

 This idealized geometry allows these limits to exist even if kb is large.  However in a real 

cavity, which has a finite size antenna and possibly complex structure, many modes other than 

TMn01 (represented by (7) and (8)) will be excited when kb is large.  As the number of resonant 

modes grows with kb, the resonant frequencies tend to overlap as a result of the broadening due 

to the finite losses at the walls (It is no longer possible to be well away from the modal resonant 

frequencies.).  Many of these modes will thus have large values of the tangential magnetic field 

at the cavity walls.  Thus it appears it is not possible in real situations with large kb to achieve the 

small values of the real part of the input impedance (6).  The solution considered in [1], because 

of the high degree of symmetry, is basically a one dimensional radial solution; whereas, the three 
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dimensional character of practical geometries results in a very much larger number of resonant 

modes at high frequencies. 

 

 This multimode problem is not present when kb is order unity.  However the question of 

whether limitations on the matching network to the antenna (usually a transmission line) 

severely limits the power received in this case still remains to be answered. 

 

Conclusions: 

 

 It has been pointed out that in large realistic cavities the multimode nature of the field is 

likely to prevent achieving situations where the real part of the input impedance becomes small.  

This may not be the case, however, when the frequency is low enough that the cavity is operating 

in the range of its lowest order modes (the wavenumber times the cavity dimension is order 

unity). 
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