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Abstract 
 
Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power 
regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent 
conservatism in regulatory metrics (e.g., allowable operating conditions and technical 
specifications) which are built into the regulatory framework by quantifying both the total risk 
profile as well as the change in the risk profile caused by an event or action (e.g., in-service 
inspection procedures or power uprates). 
 
Dynamical Systems (DS) analysis has been used to understand unintended time-dependent 
feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback 
loops can be characterized and studied as a function of time to describe the changes to the 
reliability of plant Structures, Systems and Components (SSCs). While DS has been used in 
many subject areas, some even within the PRA community, it has not been applied toward 
creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades 
depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-
out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear 
fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more 
meaningful risk insights, greater stakeholder confidence in risk insights, and increased 
operational flexibility.  
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1. INTRODUCTION 
 
1.1 Purpose of this report 

Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory 
and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in 
regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into 
the regulatory framework by quantifying both the total risk profile as well as the change in the risk 
profile caused by an event or action (e.g., in-service inspection procedures or power uprates). 

Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in 
both industrial and organizational settings. In dynamical systems analysis, feedback loops can be 
characterized and studied as a function of time to describe the changes to the reliability of plant 
Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even 
within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs 
(with time scales ranging between days and decades depending upon the analysis). Understanding 
slowly developing dynamic effects on SSC reliabilities may be instrumental in ensuring a safely and 
reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile 
will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and 
increased operational flexibility.    

DS modeling of aging and maintenance can easily allow for the inclusion of various failure regimes, 
including “bathtub” effects, as well as accounting for unintended damage during maintenance to 
connected systems. It is possible that such correlations can be derived from the failure data reported by 
the U.S. Nuclear Regulatory Commission as part of their system reliability studies. Aging and 
maintenance dynamic models examine the evolving basic component reliabilities with time. Traditional 
PRAs utilize Markov Models to predict time-dependencies of component failure and repair, but these 
methods are typically only used for constant failure and repair rates and are typically averaged over a 
mission time before being included in the fault tree. DS models allow the decision maker greater 
flexibility in making risk-informed decisions by adjusting the fidelity of the model to meet their needs.   
In addition to modeling various failure behaviors and maintenance strategies, decision frameworks can 
be included in which maintenance rates can vary as a function of predicted system reliability and costs. 
A general DS PRA analysis organizational scheme can be seen in Figure 1-1.   

It is hypothesized that metrics from a DS model of a nuclear plant, such as time-dependent SSC 
reliability, can provide input to a dynamically restructured PRA. The coupling between PRA and DS 
will both remove non-conservative approximations and improve stakeholder confidence in PRA.  

1.2 Structure of this report 

This report consolidates the results from a number of papers created using funding from the DS PRA 
LDRD project. Extensions of each paper are incorporated in an appendix sub-section for each paper 
when applicable. Chapter 2 overviews the DS PRA approach using System Dynamic (SD) models when 
analyzing the Oconee High Pressure Injection system (primarily from SAND2012-5500C).  Chapter 3 
describes how DS modeling can improve our current Safety Relief Valve (SRV) stochastic failure 
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modeling methodologies (primarily from SAND2013-3684C). Due to an equipment delay1, planned 
case studies using the MELCOR Three Mile Island deck were not able to be conducted. Instead, Chapter 
4 overviews how the DS SRV failure approach impacted an FY13 discrete dynamic event tree analysis 
for an iPWR (primarily from SAND2013-8324). Finally Chapter 5 discusses general conclusions which 
can be drawn from the work reported in this LDRD.  

 

 

Figure 1- 2. Overall proposed dynamic system probabilistic risk assessment methodology 

 

 
 

1 Near the end of FY15, Center 6230’s Linux cluster, Bankston, suffered fatal hardware failure which resulted in a new Linux 
system being procured. Unfortunately the new system not installed in enough time to complete an appropriate case study. 
Any case study would require the use of SNL’s job scheduling software, ADAPT, which is not compatible with the 
MELCOR windows clusters. MELCOR runs in serial (one job per thread) which would not allow efficient simulation on 
SNLs larger distributed Linux clusters.  
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2. METHODOLOGY FOR INCORPORATING DYNAMIC BEHAVIOR INTO 
FAULT TREES USING SYSTEM DYNAMICS  

 
2.1 Overview 
 
This chapter explores the primary techniques used to conduct DS PRA analysis for nuclear power plants. 
Sections 2.2 thorough 2.4 provide the overall methodology for how the SD toolkit can be used to 
examine both slowing and quickly evolving changes to the basic event probabilities in fault trees. These 
sections were extracted from SAND2012-5500C. Section 2.A provides a small case study exploring the 
implications of pump aging on the in-accident time dependent performance of the High Pressure 
Injection System (HPIS).  
 
2.2 Methodology 
 
The approach explored in this chapter combines two analytical techniques: 

1. Quasi-static Fault Trees with average time dependencies, e.g., HPIS Fault Tree in Figure 2-1, and  
2. Dynamic methods with explicitly model time dependent changes in system behavior.  

Each method employs unique computational tools and codes which will need to be utilized to maximize 
the usefulness of the output. 

 
Figure 2-1. Reproduction of the Oconee High Pressure Injection System (HPSI) Fault Tree [5] [6]. 
Circled basic event probabilities can either be time averaged representations (Traditional) or be 

dynamic variables informed by SD models. 
 

2.2.1 Fault Tree Formulation 
 
The Fault Trees, which along with Event Trees comprise the building blocks of a nuclear PRA, compute 
average system failure probabilities from basic event probabilities. These basic event probabilities are, 
in turn, estimated directly from failure data. Some of these estimates can hide dynamic behavior through 
assumptions. For example, the failure-to-start probability for a pump is assumed to be independent of 
the number of demands on the pump instead of accumulating damage, and thus increasing the 
conditional failure probability, as the pump demands increase. Other estimates can hide dynamics 
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through discretization in time. For example, the failure-to-run probability for a pump is averaged over a 
given time interval instead of evolving the plant risk profile as the pump operates. Thus, each basic 
event probability, which has only one value that is propagated through the tree, fails to account for 
degradation due to use, as well as other parameters. In traditional PRAs, the resulting unreliability 
estimate is calculated by summing failure probabilities from all Minimum Cut-Set (MCS) in the system. 
Each MCS is a unique minimum group of component failures in the system which can cause overall 
system failure. For example, in the High Pressure Injection System (HPIS) modeled in Figure 2-2, one 
example of MCSs would be the failure of all three high pressure injection pumps. Eq. 1 is the 
mathematical formula for system unreliability using MCS. 

𝐹𝐹𝑠𝑦𝑠 = 𝑃𝑟 ��𝑀𝐹𝐹𝑆𝑛

𝑁

𝑛=1

� Eq. 1 

In Eq. 1, Fsys is the system failure probability, P(*) is the probability transformation from Boolean logic 
to probability, and MCSn is the nth MCS. While these quasi-static representations of plant risk can be 
modeled in codes such as Saphire [6], it is hypothesized that dynamic  models of basic event 
probabilities, such as making the probability of a given MCSn a function of multiple parameters 
including time,  may lead to a more accurate representation to evolving plant risk. 

Dynamic models simulate time dependent changes in system behavior. System codes such as MELCOR 
or RELAP have been used in safety analysis to estimate the probabilistic response of complex systems. 
While these codes offer important insights concerning thermal-hydraulic, neutronic, and material 
changes during an accident, they generally are only used to calculate a branch probabilities within a 
given accident sequence. More general dynamic models can be created using SD modeling methods 
which can model both variations in basic event probabilities as well as branch probabilities. While SD 
models are typically created graphically, as shown in Figure 2-2, they ultimately reduce to a system of 
differential equations generalized in Eq. 2.  

�
�̇�1 = 𝑘1 + 𝑘2𝑥1 + 𝑘3𝑥2 + ⋯

⋮
�̇�𝑁 = 𝑘𝑖 + 𝑘𝑖+1𝑥1 + 𝑘𝑖+2𝑥2 + ⋯

� Eq. 2 

In Eq. 2, 𝑥𝑖 is the state variable I, 𝑥�̇� is the differential of state variable I, and ki are constants which 
describe the relationships between variables. These variables can estimate both physical properties (e.g., 
temperatures, pressures, and flow-rates) and non-physical properties (e.g., probabilities and damage). 
Once the dynamic equations are integrated with the fault tree logic structure, both traditional PRA (e.g., 
importance measures) and dynamic analysis techniques (e.g., phase diagrams and bifurcation analysis) 
can be applied. Thus, these more generic dynamic modeling methods will allow the flexibility to model 
slowly evolving phenomena, such as aging or maintenance of components, while still allowing the 
analysts to examine the implication of those phenomena on system performance.  

 

2.2.2 Dynamic Reliability Models  
 
Dynamic models can interface with the PRA through many different approaches. For this study, the 
focus will be to identify plausible behavior modes for systems undergoing maintenance and aging, along 
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with dynamic events (e.g. startup, shutdown) that might benefit from analysis of reliability dynamics.  In 
order to accomplish this goal, three different dynamic models are utilized: 

1. Functional – How does the system work? 
2. Aging and Maintenance – How does time affect component performance? 
3. Operational – What decisions can the operator make given the information available?  

 

2.2.2.1 Functional Dynamic Models 
 
Functional dynamic models examine how a system operates to complete its mission. While traditionally 
PRAs only examine interdependencies through cut-sets and common cause factors, a functional dynamic 
model examines the system holistically. Figure 2-2 shows a functional dynamic model of the Oconee 
HPIS. This model is currently being coupled with the fault tree in Figure 2-1 to capture dynamic 
changes in plant risk upon system actuation.  

While the fault tree can help assemble a functional dynamic model, the dynamic model is less rigid than 
the fault tree in determining success or failure of the system. For example, the fault tree shown in Figure 
2-1 requires that one of the three trains of pumps not fail in order for the HPIS to succeed, but the fault 
tree views even partial loss of capacity as a failure. The functional dynamics model can simulate the 
performance of multiple degraded systems (through environmental effects or aging) acting 
cooperatively, a success path cannot easily be found through traditional fault trees. Additionally, the 
functional dynamics model can help identify and interrogate potential conditional and common cause 
failure modes within the system.  

 
Figure 2-2. Schematic System Dynamic Model of the Functional Behavior of the Oconee HPIS.
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This functional model can interface with the aging/maintenance and operational models, but in 
general the time scale of interest for the functional model is much shorter and thus only a loose 
coupling between the dynamic models are expected.  

 

2.2.2.2 Aging and Maintenance Dynamic Models 
 
Aging and maintenance dynamic models examine the evolution of basic component reliabilities with 
time. Traditional PRAs utilize Markov Models to predict time-dependencies of component failure 
and repair, but these methods are typically only used for constant failure and repair rates and are 
typically averaged over a mission time before being included in the fault tree [7].  

SD modeling of aging and maintenance can easily allow for the inclusion of various failure regimes, 
including “bathtub” effects [7], as well as accounting for unintended damage during maintenance to 
connected systems. It is possible that such correlations can be derived from the failure data reported 
by the U.S. Nuclear Regulatory Commission as part of their system reliability studies [5] [8]. This 
data analysis effort will be conducted during the next year of this study.  

In addition to modeling various failure behaviors and maintenance strategies, decision frameworks 
can be included in which maintenance rates can vary as a function of predicted system reliability and 
costs [3] [4]. Because this project does not have requisite expertise in group decision analysis, these 
areas will not be examined in detail as part of this project.  

  

2.2.2.3 Operational Dynamic Models 
 
Operational dynamic models examine system behavior when a component fails during steady-state 
operation. These models are similar to the aging and maintenance models, but differ due to the 
shorter time scale of interest and the higher potential for damage to adjacent systems. This additional 
potential for damage may be caused by additional propagated stresses in the system due to the initial 
component failure or by unintentional damage during maintenance being conducted under stress and 
time constraints.    

One potential application of the operational dynamic model relates to applications of Reg. Guide 
1.177 [9].  Reg. Guide 1.177 discusses a risk-informed approach to modifications to Technical 
Specifications, e.g., how long the power plant has to repair specific safety related components before 
the plant must shutdown. Due to increased maintenance efforts at the plant, the short-term potential 
for unintended damage to SSCs may potentially increase. Additionally, after the component has been 
repaired there may be an additional increase in unreliability as the newly repaired component resets 
to the “infant-mortality” failure regime [7]. These short-term increases in system unreliability are not 
currently captured in traditional Fault Tree analysis but can be incorporated through the dynamic 
system models.  
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2.3 Conclusions 
 
A dynamic approach to calculating basic event probabilities can help improve confidence in PRA 
metrics as well as make better risk-informed decisions as the nuclear fleet moves to extend their 
operating licenses. Functional, aging and maintenance, and operational models can all be useful in 
capturing component damage modes which are neglected from traditional PRA analysis. 
Understanding these dynamic modes may influence decisions made by both plant operators and 
regulators.  

In future work, the functional, aging and maintenance, and operational models of the Oconnee HPIS 
will be created and analyzed to illustrate the importance of incorporating dynamics into fault tree 
analysis. This paper presents a functional model of the Oconnee HPIS which is currently being 
coupled with a traditional fault tree to provide dynamic system reliability estimates.  
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2.A Preliminary Results 
  
This appendix discusses an initial assessment of aging impacts on HPIS performance using DS PRA 
modeling. A full modeling effort would model changes in component reliabilities using smaller DS 
models such as the one shown in Figure 2-3. These models will be plugged the basic event 
probabilities as shown in Figure 2-4 to calculate the age dependent reliability of the HPIS upon 
demand. Such models would need MELCOR derived time dependent variables, e.g., Temperature 
Pressure, Chemistry, in order to change the failure rate as a function of accident progression.  
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Figure 2-3. Simple DS model for migration in the average pump failure rate.  

 

 
Figure 2-4. HPIS Fault Tree with Failure to Start and Failure to Run events highlighted.  

 
 
Unfortunately, the computational resources were never available to fully link the DS models to the 
Three Mile Island MELCOR model. As a result, a simplified aging model derived from [5] was 
applied to the primary coolant pumps to examine first order aging effects. The results can be seen in 
Figure 2-5 and Figure 2-6 for various mission times. Before the HPIS system is activated, there is 
almost no change to plant risk due to pump aging. This is due to the large amount of redundancy in 
the initial fault tree, much of which is not effected by aging. When the system activates, success and 
failure of values and tanks (and failure to start probabilities for the HPIS pumps) are removed from 
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the reliability equation leaving only the aging pumps to dominate the conditional probability of 
failure. As can be seen from Figure 2-6, extending pump lifetime from 40 to 60 to 80 years has the 
potential of increasing the probability of failure anywhere from a factor of 2 to a factor of 10, 
depending on the number of pumps which successfully actuated and the age of the system. This 
initial result suggests that while aging may not affect the overall risk of a nuclear power plant, it may 
affect accident management due to the reduction in redundant systems. Thus, the authors suggest 
that the implications of aging should be included in any attempt to manage severe accidents.     

 
 

 
Figure 2-5. Dynamic conditional failure probability for the HPIS with a 30 min mission time at 

40, 60 and 80 years of operation.  
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Figure 2-6. Dynamic conditional failure probability for the HPIS with a 25 hour mission time 

at 40, 60 and 80 years of operation. 
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3. DYNAMIC MULTI-MODAL SAFETY RELIEF VALVE STOCASTIC 
FAILURE MODEL 

ABSTRACT 

Safety Relief Valves (SRVs) are an important component of the safety case for a Light Water 
Reactor (LWR). The number and types of SRVs in LWRs vary from plant to plant, but they 
generally operate to perform the same safety function. During accidents in which the coolant 
pressurizes beyond a predetermined set-point, the SRV will open, releasing coolant from the 
primary system and into the containment. Once enough coolant has been released to lower the 
coolant pressure, the SRV will reset. This cycle will continue until pressure drops and remains 
below the set-point or until the SRV fails in either a Failed to Open (FTO) or Failure to Close 
(FTC) mode. These failures can be caused either through cyclic loading or as a result of thermal-
induced stresses from the coolant passing through the valve. SRV failures can be important, 
because an SRV that has FTC will cause a small “Loss of Cooling Accident”, which may 
depressurize the system or simply leak coolant out of the RCS. Alternatively, SRVs that have 
FTO will allow system pressure to rise until it reaches the next SRV set-point. If the pressure is 
not reduced through the successful operation of other safety systems, either creep rupture 
elsewhere in the system, such as in the steam line, or high-pressure core damage may occur. 
While some SRV failure data is recorded in NUREG/CR-6928, the spread of the epistemic 
uncertainty distributions for FTO and FTC are wide. These large uncertainties may cause an 
analyst to be overconfident in the results of a severe accident simulation that uses only point-
estimates calculations of FTO and FTC.  
 

3.1 Introduction 
 
This paper reviews a DS SRV stochastic failure fault tree which can be used to implement a 
Discrete Dynamic Event Tree (DDET) assessment of nuclear power plant accident response 
[1][2]. The results presented in Sections 3.1-3.5 were published in SAND2013-3684C. Section 
3.A presents follow-on work to generalize a single SRV failure model to multiple staged SRVs.   

Application of the DDET methodology requires both the determination of the branching criteria 
and the quantification of branching probabilities. This paper will review the process for 
determining both the branching criteria and the probabilities for SRV failure. The timing of SRV 
failure (either in the open or closed position) has been demonstrated to be an important 
bifurcation parameter in severe accident response [3] [4] and therefore an important uncertainty 
to quantify in a DDET analysis.  

This paper discusses cyclic loading-induced SRV failures and ignores thermal creep-induced 
failures. Thermal creep has been demonstrated to be an important failure mode [3] but will need 
to be examined separately. Finally, it should be noted that the majority of cyclic loading SRV 
failure data is taken from plant experience and not from controlled experiments [5]. Complete 
sticking of the SRV has not been recorded in plant operation, requiring the use of partial failure 
data and large resulting uncertainties in this study. The limitations of the underlying SRV-failure 
database should be taken into account when interpreting the results of a DDET analysis using the 
cyclic loading failure methodology described below.  
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3.2 DDET Approach with SRV failures 
 
DDETs are an accelerated uncertainty propagation methodology that uses dynamic programming 
to build an event tree [6][5]. In a DDET analysis, the user pre-determines set-points that 
correspond to the initiation of an uncertain dynamic system response (e.g., component failure). 
These set points tell the dynamic analysis code (e.g., MELCOR) to stop in the middle of a 
simulation so that the uncertain parameter can be modified. Multiple simulations are then 
initiated with each simulation using: 

1. A different value for the uncertain parameter, and  

2. An associated branch weight corresponding to the degree of uncertainty that the varied 
parameter was intended to represent.   

Ultimately, acceleration is experienced, because uncertainties in late-accident phenomena do not 
need to be simulated from transient initiation. Instead, one simulation can progress late into a 
transient, and then branch into multiple simulations to evaluate uncertainties in these late 
accident phenomena. Figure 3-2 illustrates a schematic representation of one dynamic situation 
that branches into many simulations as branching criteria are experienced. 

Branching criteria can be defined across a wide array of system and code parameters. In the 
Analysis of Dynamic Accident Progression Trees (ADAPT) DDET driver code [3], the only 
limitation imposed on how branching criteria are defined is that all branching criteria need to be 
set before the DDET analysis is conducted. Thus, if the number of SRV cycles is a branching 
criterion, the number of cycles before the subsequent branch needs to be determined a priori and 
cannot be changed by the dynamic code. 

In general, a DDET analysis is conducted using the following procedure: 
 

1. Create stable dynamic model (e.g., the model needs to be robust enough to not crash 
when variables are changed mid-simulation)  

2. Decide key uncertain parameters of interest, such as: 

a. Off-site power restoration time 

b. Decay Heat levels 

c. SRV failure timings 

3. Create and discretize cumulative distribution functions for key parameters. This process 
is similar to traditional Latin-Hypercube sampling, except that each simulation is not 
started from the same point in time. 

4. Program the binary branch points into the DDET code. 

5. The DDET code starts, stops, and branches dynamic simulations, as necessary. 

Appropriately creating and discretizing the uncertain dynamic parameters (i.e., Step 2 above) is 
extremely important in a DDET analysis. A robust DDET analysis will examine all epistemic 
(i.e., state of knowledge) and/or aleatory (i.e., random) uncertainties in the dynamic parameter of 
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interest. The general approach for determining and discretizing uncertainties for cyclic SVR 
failures is described below.  

First, the types of uncertainties related to cyclic SRV failure were considered. Cyclic SRV failure 
is typically modeled as a binomial distribution describing the random failure of the SRV. This 
binomial model is dependent on the “per-cycle” failure probability. The likelihood that an SRV 
will survive until cycle N is modeled as the Negative-Binomial distribution. Because cyclic SRV 
failures are rare, the industry’s knowledge of the “true” per-cycle failure probability is low, and 
yields a high epistemic uncertainty for the per-cycle probability [5]. Each of these uncertainties, 
the aleatory failure model and the epistemic per-cycle failure probability, should be evaluated as 
part of an uncertainty analysis.   

Figure 3-2 plots the cumulative SRV failure probability as a function of SRV cycles for the 
16.6th, 50th, 83.3rd percentile estimates of the per-cycle SRV failure probability. The mean 
cumulative SRV failure probability is also plotted. The governing equations are described in 
Section 3.2.2. The thick, orange horizontal lines represent the 16.6th, 50th, 83.3rd percentiles of 
the family of negative binomial distributions. When the horizontal lines intersect the 16.6th, 50th, 
83.3rd percentile negative binomial curves, nine intersection points are formed (only seven 
intersection points are shown in Figure 3-2 to the limited number of cycles shown). These nine 
intersection points represent three random failure points for each of the three representative 
estimates for the “true” per-cycle failure probability. The dashed blue lines relate the intersection 
point to the associated estimate regarding the number of SRV cycles. While the analysis 
described in this report only discretizes the epistemic and aleatory uncertainties into three bins 
each, a robust analysis would discretize each distribution until the final decision metrics do not 
appreciably change. If, in the course of the dynamic analysis, the SRVs are not simulated to 
cycle past a given number, any branch points that predict failure at a higher number of SRV 
cycles are not simulated. Thus, the DDET’s ability to abstain from creating unnecessary 
branches can greatly decrease the runtime for the total analysis.    

While both epistemic and aleatory uncertainties were analyzed to estimate SRV failures, the need 
to analyze each type of uncertainty can be “variable specific.” For instance, failure rates on 
components with large quantities of data may only require aleatory uncertainties to be analyzed, 
because the epistemic uncertainty would be de minimis. Alternatively, uncertainties relating to 

 
Figure 3-1. A schematic representation of one dynamic situation that branches 

into many simulations as branching criterion are experienced. 

 

Time 

New 
simulations 
are branched 
mid-transient 
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physical parameters (e.g., core degradation rates, mass flow rates) would only have epistemic 
uncertainties to analyze. 

 
3.2.1 Safety Relief Valve Branch Point Quantification Methodology 
 
During transient simulations in MELCOR, appropriately estimating the number of SRV cycles 
before SRV failure is important to producing a defensible safety analysis. This section describes 
SRV failure modes, and provides a stochastic model that can be used to estimate the number of 
the SRV cycles at which failure occurs (n). While a diverse array of SRV configurations exists, 
in general SRVs open and close to relieve high primary-system pressure by releasing primary 
coolant into the containment or suppression pool. NUREG/CR-6928 identifies three cycling 
failure modes: 

• Failure To Open (FTO) – The SRV fails in the closed position.  

• Failure To Close (FTC) – The SRV fails in the open position.  

• Fail To Close after passing Liquid (FTCL) (a subset of FTC) –. This failure mode was 
not supported by the database used to supply data in NUREG/CR-6928, and was, 

 
Figure 3-2. Aleatory and epistemic distribution  
discretization for Safety Relief Valve failures. 
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therefore, excluded from the stochastic analysis. It is assumed that FTCL consequences 
are subsumed by the FTC consequences.   

It is assumed that the primary uncertain variable of interest is the number of SRV cycles 
(demands) that occur before failure of the SRV in either the FTO or the FTC mode. Failure is 
assumed to occur due to the inherent variability in the SRV cycling process. A parameter p 
denotes the probability of obtaining a failure on each demand. “p” will henceforth be referred to 
as the “per-cycle failure probability”. It is further assumed that each demand on the SRV is 
independent of previous demands. Thus, p is constant for each demand on the SRV (i.e., the p is 
independent of cycle number, temperature, etc.). This is a Bernoulli process. 

Because each cycle is assumed to be independent, the probability of failing on the Nth cycle is 
the product of the probability of failing on that cycle, p, multiplied by the probability of success 
in the previous (n-1) cycles: 
   
 𝑓(𝑛|𝑝𝑝) = 𝑃(𝑁 = 𝑛|𝑝𝑝) = 𝑝𝑝(1 − 𝑝𝑝)𝑛−1, 0 ≤ 𝑝𝑝 ≤ 1, 𝑛~[1,2,3 … ] Eq. 3 
 
This distribution describes the aleatory uncertainty about how many successful cycles will occur 
before failure at cycle N, given the parameter p. (In probability space, this is the probability 
distribution function (pdf) of the geometric distribution for p.) 

The cumulative distribution function (cdf) of the geometric distribution expresses the likelihood 
that the valve will fail before N cycles: 
 
 𝐹𝐹(𝑛,𝑝𝑝) = 𝑃(𝑁 ≤ 𝑛|𝑝𝑝) = 1 − (1 − 𝑝𝑝)𝑛, 0 ≤ 𝑝𝑝 ≤ 1,𝑛~[1,2,3 … ] Eq. 4 
 
However, there exists a large uncertainty about the value of p for SRV failures. This epistemic 
(i.e., state of knowledge) uncertainty for the per-cycle failure probability is modeled as a beta 
distribution. 

The distributions for the per-cycle failure probabilities of the failure modes listed above are 
shown in Table 3-1. It should be noted that the SRV failure data used in NUREG/CR-6928 are 
fairly scarce. The FTO data was deemed sufficient for an Empirical Bayes analysis; however, the 
cumulative partial failure did not exceed 0.3 (α) was thus changed to 0.3 by the NUREG/CR-
6028 authors. The β shape parameter reported in NUREG/CR-6028 is adjusted to preserve the 
mean of Empirical Bayes FTO distribution. FTC failure data is extremely scarce, so a Simplified 
Constrained Non-Informative Distribution was generated by producing a Jefferies mean of the 
industry data and using an assumed fraction failure of 0.5 (α) [5].   
 

Of these failure modes, only FTO and FTC were used in the SRV failure analysis. Instead of 
using the mean FTO and FTC values in this analysis, the entire FTC and FTO beta distributions 
were sampled to determine the number of cycles expected until SRV failure. By assuming the 

Table 3-1. Selected industry distributions for variability of FTC and  
FTO per cycle failure probabilities for SRVs [5] 

Failure Mode Distribution Type Α β 
FTO Beta 0.3 38.9 
FTC Beta 0.5 628.2 
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independence of the FTO and FTC failure modes, a small probability of a total failure probability 
greater than 1.0 exists. Given the relatively small values of the FTC and FTO probabilities 
defined by the α and β parameters shown in Table 3-1, this non-physical result should not affect 
the final results. 
 
3.2.2 Stochastic SRV Failure Modeling  
 
To simplify the analysis, it is assumed that each trial of the binomial failure model refers to a 
complete cycle of the SRV (open and closed). Thus, the probability of failure, p, for each is 
defined in Equation 1 as the sum of the (assumed) independent FTO and FTC distributions. In 
reality, FTO and FTC are dependent parameters, because if the valve FTOs it cannot then FTC. 
While this assumption does introduce a small degree of error into the overall calculation, 
typically the per-cycle FTC and FTO probabilities are small enough to ensure that the error 
introduced by this dependency is negligible. In Eq. 5, 𝑝𝑝 is the failure probability for each cycle, 
𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 is the failure to open probability for each cycle, and 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 is the failure to close probability 
for each cycle. Note: Lower case variables denote values within a distribution; upper case 
variables denote distributed variables.  

Because the uncertainty propagation is conducted via Monte Carlo sampling, the differential 
transformations needed to normalize the distribution following the transformation of variables is 
not included in this derivation. Instead, the final distribution will be normalized numerically.   

Historically, the mean of 𝑝𝑝 was used to determine the cumulative distribution function of SRV 
failure, i.e., 𝑃(𝑁 ≤ 𝑛|𝑝𝑝), but the non-linear nature of Eq. 5 prevents the high and low estimates 
of 𝑝𝑝 from canceling each other out and producing the mean 𝑃(𝑁 ≤ 𝑛|𝑝𝑝). Using the mean 𝑝𝑝 to 
attempt to produce the mean 𝑃(𝑁 ≤ 𝑛|𝑝𝑝) is referred to as the “Flaw of Averages” [7]. A more 
rigorous approach would be to sample from the distributions for 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹  and 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹  to obtain a range 
of values for p, and thus  𝑃(𝑁 ≤ 𝑛|𝑝𝑝) curves. A given realization of 𝑃(𝑁 ≤ 𝑛|𝑝𝑝) can be found 
by sampling 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹  and 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 from the distributions πPFTO(pFTO) and 𝜋PFTC(pFTC), respectively. 
Thus, a given realization would produce a cumulative SRV failure curve using Eq. 6a. The 
corresponding cumulative failure distributions for the state of SRV can be determined by 
multiplying 𝑃�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� by the fractional component of each failure mode. This can 
be seen in Eq. 4a and 4b.   

 

 𝑃�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� = 1 − �1 − �𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖��
𝑛

 Eq. 5 

   
 𝑃𝐹𝐹𝐹𝐹𝐹𝐹�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� = �1 − �1 − �𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖��

𝑛
� ∗

𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖
𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖

 Eq. 6a 

   
 𝑃𝐹𝐹𝐹𝐹𝐹𝐹�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� = �1 − �1 − �𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖��

𝑛
� ∗

𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖
𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖

 Eq. 6b 

The expected value, or mean, of the PFTC�N ≤ n�pFTOi, pFTCi� curves can be calculated using 
Eq. 7. All distribution sampling, mean, and percentile calculations were conducted using intrinsic 
functions in MATLAB [8].  
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𝐸[𝑃(𝑁 ≤ 𝑛)] =

1
𝑚
∗�𝑃(𝑁 ≤ 𝑛|𝑝𝑝𝑖)

𝑚

𝑖=1

=
1
𝑚
∗�1 − �1 − �𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖��

𝑛
𝑚

𝑖=1

 
Eq. 7 

Figure 3-3, Figure 3-4, and Figure 3-5 show the mean, 16.6th, 50th, and 83.3rd percentiles of the 
epistemic variations in P(N ≤ n|pFTO, pFTC), 𝑃𝐹𝐹𝐹𝐹𝐹𝐹(𝑁 ≤ 𝑛|𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹), and 
𝑃𝐹𝐹𝐹𝐹𝐹𝐹(𝑁 ≤ 𝑛|𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹), respectively. While the epistemic FTO and FTC probabilities are 
assumed to be independent, they are related (𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 = 𝑝𝑝) in each epistemic sample. Thus, 
while the expected value of the sum of both the FTO and FTC equal the expected value of all 
SRV failures, the percentiles cannot be expected to follow the same combinatorial rules.   

In these plots, the y-axis shows the aleatory uncertainty for each curve. Figure  and Figure also 
show the FTC aleatory failure curve used in Surry SOARCA analysis [3]. The Surry SOARCA 
analysis provides only a point estimate of the per-cycle failure probability, and further assumes 
that the SRVs can only fail in the open state. To determine the Best Estimate of the number of 
SRV cycles before failure, Surry SOARCA assumed that failure of the SRV occurs at the 50th 
percentile of the aleatory failure distribution, or 256 cycles. The Surry SOARCA estimate tracks 
closely with the 50th percentile epistemic estimate of 𝑃(𝑁 ≤ 𝑛|𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹) in Figure 3-3, but 
under-predicts the 50th percentile epistemic estimate of 𝑃𝐹𝐹𝐹𝐹𝐹𝐹(𝑁 ≤ 𝑛|𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 ,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹) in Figure 3-4 
and over-predicts the 50th percentile epistemic estimate of 𝑃𝐹𝐹𝐹𝐹𝐹𝐹(𝑁 ≤ 𝑛|𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹) in Figure 3-
5. While there is no mathematical rational causing the SOARCA Surry results to track closely to 
either the 50th epistemic percentile or the mean failure curve, these curves do provide a 
reasonable point of reference between the two studies.   

Figure 3-6 shows the sensitivity of the predicted number of SRV cycles before failure to aleatory 
and epistemic uncertainty. As can be seen, the lower quartile of epistemic uncertainty produces 
the highest variability in potential SRV cycles until failure. Reducing this epistemic uncertainty 
with additional failure data would greatly decrease the total uncertainty, while predicting the 
number of cycles until SRV failure.     
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Figure 3-3. Aleatory SRV Failure (FTO+FTC) Probabilities are plotted as a function of 

SRV cycles (1 Cycle = Open + Close). The mean, 16th, 50th, and 83rd percentiles of the 
epistemic failure distribution are plotted. For comparison, the Point Estimates (P.E.) for 

the SOARCA Surry and Peach Bottom FTCs, and the NUREG/CR 6928 aleatory 
distributions (which were calculated using the mean cycle failure frequency) are also 

shown.    
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Figure 3-4. Aleatory SRV FTO Probabilities are plotted as a function of SRV cycles  

(1 Cycle = Open + Close). The mean, 16th, 50th, and 83rd percentiles of the epistemic failure 
distribution are plotted. For comparison, the Point Estimate (P.E.) SOARCA for the Surry 

and Peach Bottom FTC and the NUREG/CR 6928 aleatory distributions, which were 
calculated using the mean cycle failure frequency, are also shown.    
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Figure 3-5.  Aleatory SRV FTC probabilities are plotted as a function of SRV cycles  

  (1 Cycle = Open + Close). The mean, 16th, 50th, and 83rd percentiles of the 
epistemic failure distribution are plotted. 
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Figure 3-6. Number of SRV cycles before predicted failure, 
 plotted as a function of epistemic and aleatory uncertainty. 

 
3.2.3 Selection of Branch Points 
 

While conducting a DDET analysis, multiple SRV cycle-until-failure numbers need to be 
calculated a priori to the MELCOR simulations. The easiest approach is to divide both the 
epistemic and aleatory uncertainties into equally weighted segments, then choose the 
probabilistic number of SRV cycles that represent the statistical mid-point of each segment. For 
example, if an analyst wants three epistemic branches and three aleatory branches for each 
epistemic branch, the three sections would occupy the following regions in epistemic probability 
space: 0 and 0.33, 0.33 and 0.66, and 0.66 and 1.0. The representative epistemic percentiles for 
each branch would then be 0.17, 0.5, and 0.83, respectively. Next, the aleatory space would be 
discretized into three regions with three corresponding representative values for each region (i.e., 
0.17, 0.5, and 0.83). 

Branch points developed using the SRV failure curves in Figure 3-2 can be found in Table 3-2. 
While the number of epistemic and aleatory regions need not be equivalent (or equal to 3), and 
because the relative size of each region is left to the analyst’s judgment, the basic approach to 
selecting branch points, as described in this document, is applicable for all dynamic SRV failure 
applications.   
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3.3 Conclusions 
 
This paper describes a methodology for selecting SRV cyclic loading branch points for DDET 
analysis. The timing of an SRV failure has been demonstrated to be important to severe accident 
response actions; SRV status may even affect severe accident management response. Future 
work will focus on 1) creating joint conditional probability distributions for 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹, given 
𝑝𝑝, and 2) creating a unified method for combining the cyclic loading failure mode with the SRV 
creep failure mode to support DDET analysis.  
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3.A  Multi-Valve Extension of Safety Relief Valve Cyclic Failure 
Analysis  
 
For a single-SRV, it can be shown that the cumulative failure probabilities for a given sample (i) 
of the FTO and FTC probabilities are given by:  
 
 𝑃�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� = 1 − �1 − �𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖��

𝑛
 Eq. 8 

 𝑃𝐹𝐹𝐹𝐹𝐹𝐹�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� = 1 − �1 − �𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖��
𝑛
∗

𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖
𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖

 Eq. 9a 

 𝑃𝐹𝐹𝐹𝐹𝐹𝐹�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� = 1 − �1 − �𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖��
𝑛
∗

𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖
𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖

 Eq. 10b 

 
Most nuclear reactor systems have multiple SRVs with staged set points to ensure that FTO of 
one valve does not prevent pressure relief from occurring. The subsequent valve would then 
continue to cycle until it fails or until pressure drops and remains below the setpoint. Any valve 
FTC could cause the reactor to depressurize sufficiently to stop further SRV cycling.. It should 
be noted that all SRVs are assumed to be redundant and independent but not diverse, thus the 
per-cycle failure probabilities are perfectly correlated for all SRVs in a sample. Mathematically, 
this process can be explained by Eq. 11, where j denotes the number of redundant valves cycling 
and i denotes a sampled valve. 
 
 𝑃𝑗�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖�

= 𝑃𝐹𝐹𝐹𝐹𝐹𝐹
𝑗−1�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� � 1 − �1 − �𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖��

𝑛
� 

Eq. 11 

 𝑃𝐹𝐹𝐹𝐹𝐹𝐹
𝑗 �𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� = 𝑃𝑗�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� ∗

𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖
𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖

   Eq. 12a 

 𝑃𝐹𝐹𝐹𝐹𝐹𝐹
𝑗 �𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� = 𝑃𝑗�𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖� ∗

𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖
𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖 + 𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖

 Eq. 13b 

 

The expected value, or mean, of the PFTC�N ≤ n�pFTOi, pFTCi� curves can be calculated using 
Eq. 14. All distribution sampling, mean, and percentile calculations were conducted using 
intrinsic functions in MATLAB.  
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𝐸�𝑃𝑗(𝑁 ≤ 𝑛)� =

1
𝑚
∗�𝑃𝑗(𝑁 ≤ 𝑛|𝑝𝑝𝑖)

𝑚

𝑖=1

 Eq. 14 

 
𝐸�𝑃𝐹𝐹𝐹𝐹𝐹𝐹

𝑗 (𝑁 ≤ 𝑛)� =
1
𝑚
∗�𝑃𝐹𝐹𝐹𝐹𝐹𝐹

𝑗 �𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖�
𝑚

𝑖=1

 Eq. 15a 

 
𝐸�𝑃𝑗(𝑁 ≤ 𝑛)� =

1
𝑚
∗�𝑃𝐹𝐹𝐹𝐹𝐹𝐹

𝑗 �𝑁 ≤ 𝑛�𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖,𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹𝑖�
𝑚

𝑖=1

 Eq. 15b 

It should be noted for a small number of SRV cycles, any SRV can exist in one of three states: 
functional, failed closed, or failed open. Figure 3-7 shows the state diagram for the transition 
matrix of a three valve system. States 4 and 5 are terminal end states, State 5 can only be reached 
when all three valves fail in the closed position (FTO) and State 4 can be reached from any valve 
state. It is assumed that valves cannot be recovered after a failure event occurs. The probability 
of existing in states 1 through 5 sums to unity (Eq. 16) and as the number of valve cycles 
approach infinity, the probability of states 1 through 3 approach zero and the probability of 
existing in states 4 and 5 sums to unity (Eq. 17). Figure 3-8 expresses the state transition diagram 
in Figure 3-7 as an SD model for incorporation into a DS PRA analysis as shown in Chapter 2.   
 

 
Figure 3-7. Three valve state transition diagram. Annotations near the transition lines 

show the split fraction of the probability mass vector for a given cycle, not the probability 
mass as a function of n. 
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lim
𝑛→∞

�𝑃𝑗(
3

𝑗=1

𝑁 ≤ 𝑛) = 0,

lim
𝑛→∞

�𝑃𝑗(
5

𝑗=4

𝑁 ≤ 𝑛) = 1

 Eq. 17 

 

 
Figure 3-8. Three valve system dynamics diagram.  

 
Figures 3-9 through 3-11 show summarize the sampling described in this Section 3.A for the 
three valve system shown in Figure 3-8. Figure 3-9 shows the mean valve states as a function of 
valve cycles. Figure 3-10 shows the horsetails of the independent identically distributed (iid) 
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samples from the epistemic FTO and FTC distributions. Figures 3-11 and 3-12 show the mean, 
5th, 50th, 95th percentiles for the FTC (4) and FTO (5) end states respectively.  
 
 
 
 

 
Figure 3-9. Important mean probability states for a 3 valve system. The black light blue 
and green curves represent the probability of existing in states 1, 2 and 3, respectively. 

The yellow curve represents the probability of existing in any SRV cycling state as a 
function of SRV cycles. The red curve represents probability of a valve existing in State 5 

as a function of SRV cycles. The blue curve probability of a valve existing State 4 (i.e., 
State 1 to 4 transition + State 2 to 4 transition + State 3 to 4 transition).  
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Figure 3.10 - Horse-tail plot of iid samples of the FTO and FTC probabilities from 

NUREG/CR-6928 for any valve FTC (stuck open, State 4). Note that while 7533 samples 
are plotted, the range of FTC curves covers nearly 10 orders of magnitude, illustrating 

the large degree of uncertainty in the FTC and FTO estimates. 
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Figure 3-11. Illustration of the uncertainty around the mean FTC estimate (i.e., probability 

of existing in State 4) 

 
Figure 3-12. Illustration of the uncertainty around the mean FTO estimate (i.e., probability 

of existing in State 5)  
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4. SRV CYCLING IMPLIATIONS FOR A MELCOR IPWR MODEL 
WITH CVCS OPERATOR INTERACTION 

 
Section 4 overviews how the LDRD-funded SRV stochastic failure model outlined in Section 3 
was successfully modified to enhance the Discrete Dynamic Event Tree (DDET) analysis of a 
generic iPWR MELCOR model [1]. These results presented here are pulled from SAND2013-
8324 which recognized the importance of, and subsequently incorporated, the independently 
developed SRV failure model described in Section 3.    
 
4.1 Impact of SRV failure on unmitigated accident progression  
 
A generic iPWR MELCOR model was developed for DS PRA study. This iPWR model features 
an Emergency Core Cooling System (ECCS) composed of Depressurization Valves (DVs) and 
Feed Valves (FVs) to allow natural circulation to transfer heat between the reactor and the 
ultimate heat sink. The results of the iPWR DDET study indicate that failure of FVs in the closed 
position provides a challenge to the system’s accident response, while also reducing the 
combinatory effect of the DDET analysis by limiting the number of additional branches to 
analyze due to SRV failure. Thus, accidents relating to FV failure-to-open were selected for the 
initial study accident study, followed by accidents relating to DV failure-to-open. A summary of 
core damage states for various branches can be seen in Table 4-1.  
 

Table 4-1. Summary of findings from DDET Study [1]. 
DVs fail to open on signal (FVs functional) 

# of available SRV cycles SRV fails closed SRV fails open 

12 Core damage with high 
decay power only Core damage 

58 No core damage Core damage 

114 No core damage No core damage 

FVs fail to open on signal (DVs functional) 

# of available SRV cycles SRV fails closed SRV fails open 

12 Core damage Core damage 

58 Core damage Core damage 

114 Core damage Core damage 

DVs and FVs fail to open (total ECCS failure) 

# of available SRV cycles SRV fails closed SRV fails open 

12 Core damage Core damage 

58 No core damage Core damage 

114 No core damage No core damage 
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The dynamic effects of SRV failure timing and state on two-phase water level can be seen in 
Figure 4-1, reactor vessel pressure in Figure 4-2, and containment pressure in Figure 4-3. Note 
the non-linear dynamics related to the functional SRV cycling time and the subsequent time until 
vessel. This behavior is due to increased heat transfer through the containment and lower decay 
heat generated later in the accident. Eventually, these dynamic cooling and heating effects will 
allow the graceful failure of SRVs, first in the closed and then in the open position. These trends 
will impact the time available to operators before they are forced to take extraordinary measures 
that will impact the performance shaping factors which can influence the likelihood of human 
error.  
 
 

 
Figure 4-1. RPV water level for DV-failure scenarios for various SRV operation. 

 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Tw
o-

ph
as

e 
w

at
er

 le
ve

l r
el

at
iv

e 
to

 R
PV

 b
ot

to
m

 (m
)

Time (hr)

12 cycles, fails closed, low decay power
12 cycles, fails closed, high decay power
12 cycles, fails open (high or low power similar)
44 cycles, fails closed, low decay power
44 cycles, fails closed, high decay power (containment overpressure)
44 cycles, fails open (high or low power similar)
58 cycles, fails closed (high or low power similar)
58 cycles, fails open (high or low power similar)
long term SRV cycling (80+ cycles) - no SRV failure

TAF

BAF

Dashed lines: no core damage for 7 days
Solid lines: core damage predicted

30 



 

 
Figure 4-2. RPV pressure for DV-failure scenarios for various SRV operation. 

 

 
Figure 4-3. Containment pressure for DV-failure scenarios for various SRV operation. 
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4.2 Effects of Operator Action on Accident Progression  
 
The DDET analysis further examined the impact of an operator aligning the Chemical Volume 
and Control System (CVCS) to introduce more cooling water into the iPWR while potentially 
opening a containment bypass pathway.  
 
Depending upon the ECCS operation, decay power, and SRV operation, the operator failure 
branches with no CVCS injection and an uncontrolled letdown leak can lead to core damage, 
RPV damage (overpressure and lower head melt-through), and significant radionuclide releases 
to the environment, even for ECCS-failure branches that normally avert these end states with no 
operator action (e.g. branches with extended SRV cycling). To highlight these comparisons for 
the DV-failure scenario, Table 4-2 shows how decay power and SRV operation drive various 
bifurcations in plant end states for scenarios with no operator action. 
 
 

Table 4-2. Accident bifurcations for DV-failure case study with no operator action; end 
states after 7 day simulation. 

DV-failure scenario: bottom FVs available, no operator action 

Decay 
power 

Number of 
SRV 

cycles 

SRV 
failure 

position 
Core 

damage? 
RPV 

damage? 
Containment 

failure? 
Enviro. 

Release? 

Low 

12 Closed No Yes: OP No No 
12 Open Yes No No No 
44 Closed No No No No 
44 Open Yes No No No 
58 Closed No No No No 
58 Open Yes No No No 

Over 80 NA No No No No 

High 

12 Closed Yes Yes: OP No No 
12 Open Yes No No No 
44 Closed No Yes: OP Yes: OP No 
44 Open Yes No No No 
58 Closed No No No No 
58 Open Yes No No No 

Over 80 NA No No No No 
OP = overpressure failure 
 
Table 4-3 shows the impact that operator failure actions (CVCS leak and no charging) have on 
the accident end states. RPV lower head failure (melt-through) occurs for DV-failure scenarios 
with operator failure action at 1 hour, which is before any SRV branches are predicted to occur. 
Compared to Table 4-2 with no operator actions, Table 4-3 depicts how the CVCS leak can lead 
to core damage and environmental releases for several branches that normally avert one or both 
of these undesirable end states. It also worth noting that the 44 SRV cycle branch (failing closed) 
with high decay power still averts core damage and environmental releases due to the 
containment overpressure failure, even with the CVCS leak occurring at 5 hours. Successful 
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operator action always prevents core damage if the action branch occurs before significant core 
uncovering can initiate damage. 
 
Table 4-3. Accident bifurcations for DV-failure case study with operator failure branches; 

end states after 7 day simulation. 
DV-failure scenario: bottom FVs available, operator failure branch at 1 hour 

Decay 
power 

Number of 
SRV 

cycles 

SRV 
failure 

position 
Core 

damage? RPV damage? 
Containment 

failure? 
Enviro. 

Release? 
Low NA NA Yes Yes: MT No Yes 
High NA NA Yes Yes: MT No Yes 
DV-failure scenario: bottom FVs available, operator failure branch at 5 hours or on low RPV 

water level 

Decay 
power 

Number of 
SRV 

cycles 

SRV 
failure 

position 
Core 

damage? RPV damage? 
Containment 

failure? 
Enviro. 

Release? 

Low 

12 Closed Yes Yes: OP No Yes 
12 Open Yes No No Yes 
44 Closed Yes2 No2 No2 Yes2 
44 Open Yes No No Yes 

Over 441 NA Yes No No Yes 

High 

12 Closed Yes Yes: OP No Yes 
12 Open Yes No No Yes 
44 Closed No2 Yes: OP2 Yes: OP2 No2 
44 Open Yes No No Yes 

Over 441 NA Yes No No Yes 
OP = overpressure failure, MT = melt-through failure 
1 The first 58-cycle branch occurs at 6.4 hours for low decay power and 5.03 hours for high decay power; 
thus the RPV depressurization via the CVCS letdown leak at 5.0 hours for operator failure branches 
occurs first and prevents SRV branches beyond 44 cycles. 
2 With high decay power and 44 SRV cycles (failing closed), the unanticipated containment overpressure 
failure (flooding the RPV and containment with reactor pool water) prevents core damage and 
environmental releases even with an uncontrolled CVCS letdown leak. Conversely, the low decay power 
branch does not over-pressurize the containment, and therefore no pool water floods into the RPV/core to 
prevent damage and environmental releases. 
 
 
Table 4-4 shows that the FV-failure scenario exhibits much simpler divisions in plant end states 
for various combinations of branching parameters. The operation of the DVs precludes most of 
the SRV branches from occurring. The operator failure branches simply affect the FV-failure 
scenarios by opening a containment bypass flow path, permitting environmental releases for 
branches that normally have zero releases for the 7 day simulation time. Again, successful 
operator action before core damage always results in end states with no core damage. 
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Table 4-4. Accident bifurcations for FV-failure case study; end states after 7 day 
simulation. 

FV-failure scenario: top DVs available, no operator action 

Decay 
power 

Number of 
SRV 

cycles 

SRV 
failure 

position 
Core 

damage? 
RPV 

damage? 
Containment 

failure? 
Enviro. 

Release? 

Low 
12 Closed Yes No No No 
12 Open Yes No No No 

Over 351 NA Yes No No No 

High 
12 Closed Yes No No No 
12 Open Yes No No No 

Over 351 NA Yes No No No 
FV-failure scenario: top DVs available, any operator failure branch 

Decay 
power 

Number of 
SRV 

cycles 

SRV 
failure 

position 
Core 

damage? 
RPV 

damage? 
Containment 

failure? 
Enviro. 

Release? 

Low 
12 Closed Yes No No Yes 
12 Open Yes No No Yes 

Over 351 NA Yes No No Yes 

High 
12 Closed Yes No No Yes 
12 Open Yes No No Yes 

Over 351 NA Yes No No Yes 
1DV operation around 1-2 hours due to high RPV pressure, high containment pressure, or low RPV water 
level (i.e. for operator failure branches at 1 hour) precludes SRV cycling beyond about 35 cycles. 
Therefore, the SRV branches for 44 cycles and above are never simulated in the FV-failure scenario. 
 
4.3 Conclusions  
 
The iPWR DDET study again illustrates how a dynamic uncertainty model can impact the 
evolving risk of a nuclear facility during an accident progression. Here, SRV cycling time 
provides more opportunity for heat transfer and longer decision times for failure to open events. 
While detailed study of these results will be need to conduct probabilistic risk management to 
determine when operator action is appropriate, dynamic changes to the SRV failure likelihood 
will suggest that different actions may be taken for the same set of failures due to timing 
variations.      
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5. CONCLUSIONS 
 
DS PRA provides powerful tools for evaluating evolving risks to nuclear power plants and may 
be especially powerful in evaluating the risk of nuclear facilities during accident management. 
Existing research at SNL on probabilistic accident management both have benefited from the 
techniques developed in this LDRD to dynamical quantify changing probabilities in both the 
long (e.g., plant life extensions) and short (e.g., accident mitigation) time frames.  

Chapter 1 outlined the initially proposed DS approach to PRA. Chapter 2 explored that approach 
in greater detail and conducted an initial scoping evaluation of how aging risk may present 
themselves during risk management problems while hiding themselves in the results of overall 
risk assessments. Chapter 3 explored a new DS PRA derived stochastic SRV failure model. This 
model’s potential has been recognized as important modeling improvement for current and future 
DOE and NRC studies. Chapter 4 presented initial iPWR DDET results using the DS PRA SRV 
fault tree to inform operator action decision-making.  

The work of this LDRD will be extended into two program areas in DOE’s NE7. These area are 
the advanced Small Modular Reactor (aSMR) program and DOE’s Light Water Reactor 
Sustainability (LWRS) program. Through SNL’s future programs with the aSMR program, DS 
PRA models of sodium reactor SSCs will be created explore uncertainties in the accident 
response of small sodium reactors to beyond design basis conditions. Under a slightly longer 
time horizon, potential new projects in the LWRS program may desire accident guidance to be 
tailored to both the long term degraded conditions of the plant as well as the rapidly evolving 
degradation of components and instruments during off-normal conditions. As demonstrated in 
this report, DS PRA is an excellent tool for provide these types of risk insights.   
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