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Abstract 

This report demonstrates versatile and practical model validation and uncertainty 

quantification techniques applied to the accuracy assessment of a computational model of 

heated steel pipes pressurized to failure. The “Real Space” validation methodology segregates 

aleatory and epistemic uncertainties to form straightforward model validation metrics 

especially suited for assessing models to be used in the analysis of performance and safety 

margins. The methodology handles difficulties associated with representing and propagating 

interval and/or probabilistic uncertainties from multiple correlated and uncorrelated sources in 

the experiments and simulations including: 

 material variability characterized by non-parametric random functions (discrete 

temperature dependent stress-strain curves);  

 very limited (sparse) experimental data at the coupon testing level for material 

characterization and at the pipe-test validation level; 

 boundary condition reconstruction uncertainties from spatially sparse sensor data;  

 normalization of pipe experimental responses for measured input-condition differences 

among tests and for random and systematic uncertainties in 

measurement/processing/inference of experimental inputs and outputs;  

 numerical solution uncertainty from model discretization and solver effects.  
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1. Introduction 
 

A current project at Sandia National Laboratories is the modeling of stainless-steel pressure 

vessel response at high pressures and temperatures, up to initiation of failure ([1]). The first 

vessels to be modeled are simple pipe geometries. It is desired to test a temperature-dependent 

constitutive model of stainless-steel response over large ranges of pressures and temperatures, 

ramp rates, and large temperature gradients on the pipes. Figures 1.1 and 1.2 portray some of the 

associated “pipe bomb” (PB) hardware and experiments and coupled thermal-mechanical 

modeling. Only details of PB geometry and experimental conditions and results important to the 

model validation procedures and comparisons in this report are presented herein. Further details 

of the design of the hardware and experiments, and execution and results of the larger set of  

experiments, are given in [2].  

 

Controlled nitrogen pressurization of the pipe is accomplished via pressure supply tanks. The 

pipe is heated by a hot inconel plate, creating a hot spot on the pipe. The pipe is pressurized until 

it bursts at the hot spot, tearing back along upper and lower thickness-transition shoulders in the 

pipe, leaving “butterfly wings” as shown in Figure 1.1. The pipe is approximately 14 inches high 

and 3.5-in. in diameter, with mid-region wall thickness of nominally 0.02 in. and upper & lower 

shoulder-region thicknesses of nominally 0.05 in. For safety reasons the inner slug (shiny silver) 

fills up most of inside volume of the pipe, lessening the explosive energy built up prior to pipe 

breach failure.  
 

The project required the formulation and development of an approach for including the 

significant temperature dependence of strength (stress-strain response) of 304L stainless steel 

over the temperature range of interest, nominally 25C to 800C. Information on the mathematical 

and algorithmic formulation of the temperature-dependent multilinear elastic-plastic (MLEP) 

constitutive model for material behavior is available from [3], [4]. The constitutive model is used 

within the Sierra solid mechanics code [5] (massively parallel 3-D implicit nonlinear quasi-

statics) to model pipe response in the tests. 

 

Development of the constitutive model required new experimental characterization of stress-

strain behavior with material coupon round-bar tension tests (see [2]) performed at temperature 

levels spanning the range of interest. Several nominally identical replicate tests were performed 

with new material samples for each test to characterize the effects of material variability on 

exhibited strength at the tested temperatures. The measured stress-strain curves for the 

investigated temperature levels are presented in Section 2 of this report.  

 

For each measured stress-strain curve, optimization techniques were used to solve the inverse 

problem of obtaining best-fit transformed stress-strain curves for the constitutive model. The 

inverse problem and solution procedures and results are briefly described in Section 2 and are 

more fully documented in [3].  

 

For uncertainty quantitication (UQ) purposes it is important to note that each stress-strain curve 

comprises a discrete random function that has no readily identifiable parametric relationship to 

other stress-strain curves at that temperature. A novel UQ approach based on just a few samples 

from a larger population of discrete random processes or functions is described in Section 2 that 

compensates for limited (sparse) numbers of material tests. 
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Figure 1.1  Model validation experiments. 
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Section 3 describes the project’s finite-element (FE) models, geometries, mesh and solver 

choices, and calculation verification studies to characterize discretization related solution errors. 

The FE model and simulations employed in the constitutive model material characterization/  

inversion procedure are described. These simulations emulate the cylinder test specimens’ 

response, through deformation (“necking”) and failure in the tension tests. Various versions of 

the heated pressurized pipe models and simulations employed in the study are also described.   

 

Section 4 describes the use of modeling and simulation to help design the PB validation 

experiments and thermocouple locations to minimize errors and uncertainty associated with the 

experiments and modeling of the boundary conditions from spatially sparse sensor information.  

 

Section 5 presents the PB validation experiments and simulations, their uncertainties, and 

processing of results and uncertainties for comparison within a “Real Space” model validation 

framework. A major aspect of the processing of model predictions and experimental results 

involves accounting for small numbers of tests at the material characterization level which 

populates the constitutive model, and at the pipe validation testing level. Ultimately, uncertainty 

ranges of experimental and predicted 0.025 and 0.975 percentiles of response (failure pressure) 

are compared. Analysis and interpretation of the comparisons are provided. 

 

Section 6 closes with a brief summary of the main findings and conclusions from this work. 

Some observations are also made on the Real Space validation methodology features and 

capabilities for handling the challenging PB validation problem as compared to some other 

validation methodologies in the literature.   
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2. Quantification and Propagation Of Material Behavior Variability 
And Epistemic Uncertainty Associated With The Constitutive 
Model 

 

2.1  Experimental stress-strain variability of tested material samples 
 

Figure 2.1 shows elements of the rod tensile tests and results from which the stress-strain curves 

for the constitutive model were derived. Several replicate tests at each of the temperatures 

indicated were conducted, through necking and failure of the rod specimens.  
 

   
 

Figure 2.1  Rod tensile test material samples and measured stress-strain curves at the labeled 

temperatures. (Note: “RT” in the plot stands for “room temperature”, nominally 20C).  
 

The cylindrical material samples were cut and machined from the same 304L stainless steel 

tubular stock (3.5 in. dia., ¼ in. wall thickness) that the validation-experiment pipes were 

machined from. The rod specimens are 3 in. long and have a long thin “gage” section of 

diameter 1/8 inch (see [2] for detailed drawings). The specimens were vacuum annealed at 

1000C for 30 minutes to produce the same anneal conditions present in the pipe vessels. The 

ends of the cylinders were displaced in axially opposing directions to produce axial tension at 

an engineering strain rate of 0.001/s, slow enough to be considered quasistatic and estimated 

from hand calculations to be representative of pipe wall membrane strain rates in the PB 

validation tests. Measured axial displacement and resisting force were transformed to the 

experimental “engineering stress-strain” response curves plotted in Figure 2.1. More details of 

the testing apparatus, experimental conditions, measurement and control instrumentation and 

calibration, etc., are given in [2]. 

 

The tubular stock stress-strain curves were found to differ significantly in shape from a prior 

study’s stress-strain curves from cylinders machined from 304L bar stock (see [2]). The strain 

hardening characteristics and strain level at failure differed significantly at every test 

temperature. For placing appropriate validation judgments on the constitutive model, this 

confirms the importance of populating the constitutive model with coupon-level 

characterizations of the same material used in the pipe-level validation experiments.  
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2.2 Inverse calculations to convert from measured stress-strain curves to 
constitutive model stress-strain curves 

 

For each measured “engineering” stress-strain curve, optimization techniques were used to 

solve the inverse problem of determining the constitutive model’s corresponding “true” stress-

strain curve ([3]). This enables a FE model of the cylinder to reproduce the measured 

engineering stress-strain response in the tension tests. An example is presented in Figure 2.2. 

Thus, the modeled cylinder deforms and necks when pulled to experimentally measured 

displacement and resisting force vs. time, in a manner that closely matches the test results. See 

Appendix A for the derived True-Stress True-Strain curves at each temperature. 

 

The script used to perform the inversion/optimization was adagio_MLEP_Fitting_sjg.pl, written 

by Tim Shelton (1542). The following is the file of input parameters to the script. 

 
#### Material Parameters 

Young's Modulus = 24.7e6 

Yield Stress = 13100.0 

Poisson’s Ratio = 0.32 

 

#### Test Specimen Parameters 

Test Geometry = try26.g  ### Cannot be test_gage.g 

Test Input Template = run.i  ### Cannot be test_gage.i 

Displaced Nodeset = 12 

Force Monitor Nodeset = 2 

Displacement to Engineering Strain Conversion Factor = 2.471626 ## 

(1/Modeled_Gage_Length) 

Load to Engineering Stress Conversion Factor = 1466.772  ### 

(1/Modeled_Gage_Area) 

Engineering Stress Strain Data = Test26.txt 

 

#### Resolution Parameters 

Number of Point before UTS = 11 

Number of Point after UTS = 7 

Stress Tolerance = 10.0 

Slope Tolerance = 0.1 

 

#### Executable 

Executable = /projects/sierra/linux/install/4.26.1/bin/adagio 

#Executable = /usr/netpub/perl-

netcdf/programs/material_fitting/adagio/exe/adagio_dp_linux-gcc-4.2.4-ip_opt.x 

NCPU = 1 
 

The solid mechanics code Adagio[5] was used for the FE model forward simulations in the 

inversion procedure. In section 3.1 a discussion of the cylinder model FE mesh and solver 

discretization choices indicates that model results are insensitive to significant perturbations 

from the model’s discretization settings used in the inversion procedure. Therefore the cylinder 

model mesh and solver settings are presumed adequately refined for the inversion purposes 

here.   
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Figure 2.2  Relationship between experimental and constitutive-model stress strain curves obtained from 

a tensile test. The red curve is the Cauchy-Stress/Logarithmic-Strain “True-Stress/True-Strain” curve 

appropriate for the constitutive model. The black curve is the engineering-stress/engineering-strain curve 

from the test. The red curve is inversely calculated such that its use with the constitutive model in FE 

simulations of the cylinder tensile test yields the calculated green stress-strain curve which closely 

matches the experimental (black) stress-strain curve.  

 

 

The material inversion procedure involves many steps and decision points where analyst 

judgment is used. To check the sensitivity of inversion procedure results to different analysts 

applying the procedure we asked Nicole Breivik (1524) to see if she could reproduce one of the 

constitutive model True-Stress/True-Strain curves from the set produced by Gerald Wellman 

(see Appendix A). Wellman was retired at the time of our request to Nicole, but she was 

familiar with the inversion procedure from applying it on other projects. The stress-strain curve 

for Test 25 at 700C was used for the reproducibility test. Figure 2.3 summarizes the results. 

Breivik’s and Wellman’s results are virtually identical up to about 230% strain (using the same 

~two-year old version of Adagio that Wellman used). Breivik obtained essentially identical 

results whether using old version of Adagio or the most current release version when she 

performed the study in June 2012. Switching the Adagio solver hourglass-control option from 

the default elastic_modulus to modulus=pronto significantly impacts the stress-strain curves 

and critical tearing parameter values that correspond to material failure in the tension tests, but 

only for high strain/plasticity levels beyond ~270% strain. Section 3.1 further discusses 

sensitivity of results to hourglass controls in the inversion procedure.  

 

The bottom line for PB analysis is that results were effectively reproduced up to about 230% 

strain. This far exceeds strain levels at the point of pipe structural failure initiation in our 

calculations. Therefore, differences in True-Stress/True-Strain curves that occur for strains 
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>230% due to different analysts or hourglass control options in the solver are not pertinent to 

the results in this document.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.3  Constitutive model True-Stress/True-Strain curves from Test 25 @ 700C for test of 

inversion procedure reproducibility as applied by different analysts.  
 

 

2.3 Incorporating multiple stress-strain curves of material variability and 
accompanying uncertainty from small numbers of material tests  

 

Note from Figure 2.1 that the numbers of material variability tests (numbers of stress-strain 

curves at each temperature) are relatively small. When only a few samples of a random variable 

or function are available, these will usually significantly misrepresent the randomness properties 

of the source of variability that was sampled. The variability properties of the source (full 

population of random values or functions) generally cannot be accurately constructed from just 

a few samples of the population. Thus, substantial epistemic “sampling uncertainty” exists in 

addition to the aleatory uncertainty due to stochastic variability in the source population.  
 

The likely error that accompanies sparse sampling has a bias toward underestimating the true 

full-population variance (at least for distribution types and combinations investigated in [9] – 

[11]). This is unconservative and therefore undesirable for many engineering purposes. If a 

structure or pressure-vessel model were perfect in every other way, use of the constitutive 

model would likely underestimate the (strength or displacement) response variance of the real 

system. In design and risk analysis one would normally want to avoid such underestimation.  

 

Two approaches were tried to avoid underestimation of the larger-population variability. The 

first approach is presented in Appendix A. It assumes that the variability of stress-strain curves 
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at a given temperature can be parameterized. Then the parameter range corresponding to 

variations between the curves can be appropriately increased to correct for small-sample 

underestimation bias. The adjusted parameter range representing material curve variability 

could then be propagated through the pipe response model along with the other parametric 

uncertainties in the model. Hence UQ for the stress-strain curve variations would be in the 

familiar regime of parametric UQ. Then various established UQ techniques could be used like 

Monte Carlo sampling, response surface approaches, linearized probabilistic uncertainty 

popular in experimental uncertainty analysis, or the more recent approaches of polynomial 

chaos and stochastic expansions. However, the attempted parametric representation of material 

curve variability failed an important “sanity test” for physical consistency as shown in 

Appendix A.  

 

Consequently, a different approach was devised and implemented. The uncertainty associated 

with material curve variability is decoupled from the other (parametric) uncertainties in the 

problem. It is represented and propagated alone, as described here. After propagation it is 

combined with the other (propagated) parametric uncertainties as described in section 5.2. 
   
The approach treats the stress-strain curves at a given temperature as discrete random functions 

with no readily identifiable parametric relationship between them. Yet the approach recognizes 

that the stress-strain curves issue from the same temperature-characteristic population of 

discrete random functions. Furthermore, because usually only a small number of experimental 

curves of behavior are available, the approach mitigates chances of underestimating the full-

population variability with relatively few data samples. Figure 2.4 conveys the approach for a 

random variable, but the idea also applies to random functions. 

Employing the approach at right in Figure 2.4, the multiple stress-strain curves at a given 

temperature are individually propagated through the applicable system model (here the PB 

model) to yield corresponding samples of output quantities of response such as displacement, 

failure pressure, etc. Tolerance Intervals of the response quantities are then constructed from the 

response samples for further analysis purposes as explained below.  

This approach also accommodates propagation of model parameter sets that are discrete (are not 

parametrically continuous). For instance, in electronics modeling applications the Gummel-

Poon (GP) model parameters (often 10 or more) are determined unique to each particular device 

tested. When multiple repeat tests on nominally identical devices are performed, the resulting 

sets of GP parameters define different points in the parameter space. However, the parameter 

space is generally not considered to be continuous (e.g. [12]). The model is generally not 

“trusted” to yield suitable results when run with parameter values at other points in the space, 

e.g. at points interpolated on a line between any two established points/parameter-sets in the 

space. Hence device-to-device and other experimental variability resident in the discrete GP 

parameter sets can be treated by the paradigm illustrated at right in Figure 2.4.  
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Figure 2.4  Two ways of propagating uncertainty from sparse samples of an input random variable. In 

the approach at left the sparse samples of the input quantity are fit with a tolerance interval (explained 

below) that is then propagated to an uncertainty of response. (Alternatively, an equivalent Normal PDF 

fitted to the tolerance interval is propagated.) The approach at right individually propagates each sample 

of the input quantity and then forms a tolerance interval (and equivalent Normal PDF, see Figure 2.7) 

from the propagated results.   

 

Considering the samples of output response on the vertical axis at right in the figure, various 

approaches can be taken to compensate for small numbers of samples. Investigations were 

undertaken in [9]-[11]. It was found that a classical statistical Tolerance Interval approach (e.g. 

[13]) provides reliably conservative estimates of the combined epistemic and aleatory 

uncertainty associated with limited data. The approach is also very easy to use. The approach 

[14] also worked well for sparse samples in many cases, but is somewhat more involved to 

implement and its performance remains to be broadly tested and characterized because the 

method is very new. The rather common practice of simply fitting the random data with a 

normal distribution was found to be risky. It produces results skewed toward being non-

conservative, especially if the sampled distribution is a Normal distribution.  

For the purposes here the Tolerance Interval (TI) approach was used. The length of tolerance 

intervals accounts for both the epistemic and aleatory elements of uncertainty due to  limited 

samples of data. Hence, TIs are characterized by two user-prescribed attainment levels: one for 

“coverage” of a subset of the variability, and one for statistical “confidence” in covering or 

bounding at least that subset of variability.  For instance, a 0.95-coverage/0.90-confidence TI 

prescribes lower and upper values of a range of response that is said to have at least 90% odds 

that it covers or spans the 0.025 and 0.975 percentiles of the “true” probability distribution (or 

probability density function, PDF) from which the random samples were drawn, for a large 

array of PDF types.   

A 0.95/0.90 TI is constructed by multiplying the calculated standard deviation  ̃ of the data 

samples by the following factors f in Table 2.1 to create an interval of total length 2f  ̃, where 

the interval is centered about the calculated mean   ̃of the samples. Table 2.1 and Figure 2.5 
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reveal that the TI size decreases quickly with the number of data samples. For 0.95/0.90 TI a 

knee in the rate of uncertainty decrease per added sample occurs somewhere between 4 to 6 

samples, with the rate of decrease being fairly small after 8 samples. The tolerance interval has 

an asymptotic standard-deviation multiplier of 1.96 for an infinite number of samples. This 

gives a TI that corresponds to the exact 0.95 central percentile range of a Normal PDF with µ 

and σ the same as   ̃and  ̃ from the ∞ samples. That is, the multipliers f for 0.95/0.90 TI are 

effectively constructed from randomly sampling a Normal PDF a number of times M in each of 

a large number of random trials and finding the multiplier fM that gives TI which, in 

approximately 90% of the trials, span the true generating Normal PDF’s 0.025 to 0.975 

percentile range.  

 

Table 2.1  0.95/0.90 Tolerance Interval Factors (standard deviation multipliers) vs.  # of 

samples of random quantity. (Selected results from tables in [13].) 
 

# samples f0.95/0.90 

2 18.80  

3 6.92 

4 4.94 

5 4.15 

6 3.72 

8 3.26 

12 2.86 

20 2.56 

30 2.41 

40 2.33 

∞ 1.96 

 

 

 

   
Figure 2.5  Multiplier on calculated standard deviation used to form 0.95/0.90 Tolerance Interval ranges 

vs. number of random samples. (Figure reproduced from [15], ignore confidence interval curve.)  
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Although constructed with respect to Normal PDFs, 0.95/0.90 TI will also span, with 

approximately 90% odds, the 0.025 to 0.975 percentile ranges of many other PDF types when 

sparsely sampled. This has been empirically established in [10], [11] for uniform and right-

triangular PDFs and for PDFs resulting from convolving various types of PDFs as depicted in 

Figure 2.6. 

For subsequent uncertainty representation and analysis purposes a Normal PDF is constructed 

such that its 0.025 and 0.975 percentiles coincide with the end points of the established 

0.95/0.90 Tolerance Interval (see Figure 2.7). The Normal PDF therefore has approximately 

90% odds that its 0.025 and 0.975 percentiles contain the 0.025 and 0.975 percentiles of the true 

PDF from which the random samples come (for a large array of PDF types). Furthermore, 

because the constructed PDF is Normal, its characteristically long tails will have extended 

percentiles like 0.01 and 0.99 that in most cases extend beyond the same percentiles of the true 

PDF from which the data samples come. This was found in [9]-[11] to be true for all tested PDF 

types and combinations in Figure 2.6.  

 
Figure 2.6  Test matrix for PDF representation study in [10], [11]. 

 

The TI approach described here is presumed to likely (at the said odds) exaggerate the effects of 

the actual material variability. Such exaggeration can sometimes be egregious when very few 

samples are involved, depending on the particular samples obtained (see [9] – [11]). The 

Pradlwarter-Schueller approach [14] has much smaller chances of egregious conservatism but 

averaged only 70% reliable in bracketing the true 0.025 to 0.975 percentile ranges of the PDF 

shapes and combinations shown in Figure 2.6 (compared to an average of 92% reliability for 

TI). 

2.4 Results for constant-temperature pipe bombs  
 

At each material characterization temperature T in Figure 2.1 the derived constitutive model 

stress-strain curves are used in simulations of the pipe vessel held at uniform temperature T and 

pressurized at a linear ramp rate of 1psi/sec until pipe wall failure is indicated. (The rate of 
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linear pressure rise is representative but does not impact these quasi-static failure pressures; 

creep is not an aspect of the current constitutive model and is assumed to be unimportant in the 

PB tests, based on a test for creep effects ([16]).) The pipe model, mesh and solver settings, pipe 

ends fixturing/loading conditions, simulations, and failure criteria are described in section 3.2. 

Table 2.2 gives the calculated failure pressures for the runs at the various characterization 

temperatures. The results at a given temperature are listed in order of predicted failure pressures 

and this orders the effective strengths of the stress-strain curves at that temperature. Note that 

because structural response depends on the history or path that a given stress-strain curve 

entails, it is not clear a priori how the curves rank in effective strength in a given application 

until application-model simulations are run. 

 

For the six predicted failure pressures at 20C the mean is 1482 psi and the standard deviation σ 

is 3.97 psi. Table 2.3 lists these summary statistics and those for the other characterized 

temperatures. As indicated in the table, the upper and lower extents of the 0.95/0.9 tolerance 

intervals (TIs) are determined by adding/subtracting the quantity fσ to/from the mean failure 

pressure, where the appropriate values of f are found in Table 2.1. The tolerance intervals are 

plotted in Figure 2.7. 

 

 

 
 

Figure 2.7  95% coverage / 90% confidence Tolerance Intervals from variation of pipe failure 

pressures at various pipe temperatures (for uniform temperature throughout pipe). Individual failure 

pressures predicted with the various stress-strain curves are plotted as red crosses. At 600C an 

illustrative Normal PDF constructed from the 0.95/0.9 TI is depicted. 
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Table 2.2  Predicted pipe failure pressures at listed temperatures where stress-strain curves were 

                   characterized (entries sorted from highest to lowest failure pressures). 

 
Test and 

Temperature 
Fail 

Pressure  
% Equiv. 
Plastic  

Tearing 
parameter 

Hours of 
runtime 

(degrees C) (psi) Strain  (192 CPUs) 

     

try5-20 1485.2 57.50% 2.04 0.324 

try6-20 1485.0 54.90% 1.54 0.348 

try3-20 1484.5 60.10% 2.14 0.368 

try39-20 1483.9 58.70% 2.09 0.402 

try4-20 1482.8 57.10% 2.03 0.308 

try40-20 1474.8 55.50% 1.96 0.309 

     try14-100 1227.1 58.60% 2.09 0.441 

try36-100 1226.3 55.90% 1.98 0.335 

try16-100 1225.3 56.10% 1.99 0.31 

try37-100 1222.9 54.90% 1.95 0.284 

try15-100 1208.7 52.80% 1.86 0.546 

     try11-200 1102.1 52.90% 1.66 0.335 

try34-200 1089.9 44.20% 1.32 0.453 

try13-200 1088.6 46.90% 1.43 2.26 

try12-200 1085.8 42.60% 1.26 2.62 

try35-200 1081.7 40.20% 1.17 0.342 

     try33-400 1014.0 38.40% 1.03 0.369 

try17-400 1010.3 39.40% 1.06 0.393 

try18-400 1007.2 38.60% 1.02 0.325 

try19-400 1005.7 43.20% 1.2 0.312 

try32-400 1001.9 37.30% 0.986 2.479 

     

try24-600 884.7 52.30% 1.52 0.359 

try23-600 880.1 49.00% 1.39 2.54 

try22-600 869.2 40.90% 1.1 0.361 

     try25-700 714.0 61.70% 1.88 0.431 

try27-700 704.2 60.60% 1.83 0.443 

try26-700 703.7 60.50% 1.84 0.431 

     try31-800 448.8 64.50% 1.89 0.414 

try29-800 448.0 50.10% 1.32 0.476 

try30-800 440.8 63.20% 1.82 0.431 
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Table 2.3  Statistics of predicted failure pressures at temperatures where stress-strain curves 

                  were characterized. 

 
Temperature mean, µ std.dev., σ upper & lower upper & lower 

 

fail 
pressure (psi) 

extents of  
0.95/0.9 TI 

extents of 
0.95/0.9 TI 

 
(psi) 

 
 

(psi) 

   
  

20C 1482.70 3.97 µ + 3.72σ = µ + 1% = 1497.5 

  

= 0.27% of 
mean  µ - 3.72σ = µ - 1% = 1467.9 

     

     100C 1222.06 7.63 µ + 4.15σ = µ + 2.6% = 1253.7 

  

= 0.63% of 
mean µ - 4.15σ = µ - 2.6% = 1190.4 

     

     200C 1089.62 7.65 µ + 4.15σ = µ + 2.9% = 1121.4 

  

= 0.7% of 
mean µ  - 4.15σ = µ - 2.9% = 1057.9 

     

     400C 1007.82 4.59 µ + 4.15σ = µ + 1.9% = 1026.9 

  

= 0.46% of 
mean µ - 4.15σ = µ - 1.9% = 988.8 

     

     600C 878.00 7.96 µ + 6.92σ = µ + 6.3% = 933.1 

  

= 0.91% of 
mean µ - 6.92σ = µ - 6.3% = 822.9 

     

     700C 707.30 5.81 µ + 6.92σ = µ + 5.7% = 747.5 

  

= 0.82% of 
mean µ - 6.92σ = µ - 5.7% = 667.1 

     

     800C 445.87 4.41 µ + 6.92σ = µ + 6.8% = 476.4 

  

= 0.99% of 
mean µ - 6.92σ = µ - 6.8% = 415.4 
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2.5 Extension to other pipe bomb application conditions 
 

In later validation simulations with the PB model, differences exist vs. the initial and boundary 

conditions underlying the TIs in Figure 2.7, such as wall thickness, fixturing/loading conditions 

on the pipe ends, pressure loading history, and non-uniform pipe temperature. A two-part 

approach explained in the following two sections is used to represent PB failure pressure 

variability under these different initial and boundary conditions. 

 

2.5.1 Temperature dependence of material variability, parameterized in terms of high & low 

strength material curves 

 

Consider a pipe simulation with the same pressure and end-loading conditions underlying the 

results in Figure 2.7. But now let the pipe have a spatially uniform temperature that increases in 

time. Let the simulation start at the first characterization temperature (20C) in the material data 

set. When the pipe temperature rises from 20C to 100C the stress-strain curves characterized at 

20C gradually become less applicable and the stress-strain curves at the next characterization 

temperature of 100C gradually become more applicable until at 100C they are exclusively the 

applicable curves. This prompts a generalized question of how to “best” (best balance of 

effectiveness and economics) weight or transition between two sets of stress-strain curves from 

two adjacent characterization temperatures that bracket the local pipe temperature. The word 

‘local’ is used here because the general problem involves alternatively or in combination a 

temperature field that varies in space. In general, how does the simulation model represent 

material constitutive behavior for local pointwise pipe temperature (in time and space) that lies 

between adjacent characterization temperatures at which stress-strain curves exist? 

 

If a single stress-strain curve exists at each bracketing temperature, then the procedure in [3] is 

employed to linearly interpolate the stress-strain state from the bracketing stress-strain curves, 

given the local temperature and the bracketing curve temperatures. However, when multiple 

stress-strain curves of material variability exist at each bracketing temperature, it must be 

decided how to handle this. The issues and our approach are discussed next.  

 

Consider a PB simulation with a spatially uniform temperature pipe that increases from 20C to 

200C over time. Figure 2.8 is an illustrative representation (not to scale) of the TIs and 

underlying PB failure-pressure data points for the first three material characterization 

temperatures in Table 2.2 and Figure 2.7. Each dot on each TI in Figure 2.8 corresponds to a 

particular stress-strain (s-s) curve. The temperature transient in the simulation can be negotiated 

with the interpolation scheme [3] after selecting one dot/s-s curve at each of the relevant 

characterization temperatures, 20C, 100C, and 200C. Several possible selection combinations 

are shown in Figure 2.8. Vastly more combinations exist. One could think about sampling all 

combinations (“exhaustive” sampling) and running a PB simulation for each combination. This 

would amount to 6x5x5 = 150 runs of the PB model. With the full set of material data there 

would be 20,250 combinations/runs for a simulation involving a uniform pipe temperature that 

increases from 20C to 800C. This is clearly unaffordable and is not necessary anyway in the 

present circumstances. Alternatively, a random sampling of say 30 to 50 random combinations 

could be performed. This might be affordable in some circumstances, but not for validation 
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simulations to be described in Section 5. Hence the following two-run “bounding” approach 

was taken.  
 

Consider a local region of material on the pipe. At a given characterization temperature, say 

20C, this local region has particular stress-strain properties with an effective strength variability 

reflected by the six data samples at 20C in Figure 2.8. Consider a case where the effective 

strength of the local material lies near the highest dot at 20C. If the local material region 

undergoes a temperature transition from say 20C to 200C, it is physically plausible
2
 that a local 

material region with a high relative effective strength at the starting temperature 20C will retain 

high relative effective strength as it transitions temperatures to 200C. Thus, a material 

realization with effective strength that starts in the neighborhood of the highest-strength dot at 

20C will tend to correlate with the highest-strength dots at 100C and 200C. So the HS “high 

strength” combination path in Figure 2.8 is reasoned to be a highly physically reasonable 

combination. Similar reasoning is applied to the lowest dots at 20C, 100C, and 200C (LS “low 

strength” path).  

 

 
Figure 2.8  Illustrative (not to scale) 0.95/0.9 Tolerance Intervals and underlying PB failure pressure 

data (for uniform pipe temperature) for the first three material characterization temperatures in Table 2.2 

and Figure 2.7. Several possible combinations (“paths”) of material stress-strain curves are shown that 

could be used in a computational simulation to negotiate a temperature transition over the depicted 

temperature range.  

 

 

Material realizations corresponding to mid-range dots at 20C in Figure 2.8 will also tend to 

correlate with the mid-range dots at 100C and 200C. PB response in simulations using mid-

range path combinations is assumed to be bounded by the consistently high strength (HS) and 

consistently low strength (LS) combinations. Therefore computational resources are not 

expended investigating moderate paths. 

 

                                                 
2
 This assumes that material weakening mechanisms and %weakening are roughly similar with increasing 

temperature whether the material is initially of higher, medium, or lower relative strength. 
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So far we have not discussed spatial material variability in the pipe. Figure 2.9 illustrates some 

possible combinations at three neighboring (> millimeters apart) locations on the pipe at 

uniform temperature 20C. Any of an exhaustive number of possible combinations would seem 

to be equally likely. To bound this problem we assume that PB simulation results from 

consistently high strength (HS) and consistently low strength (LS) combinations in Figure 2.9 

would bound the simulation results from any other possible combinations like the others shown 

in Figure 2.9. Due to lack of time and resources we have not verified this assumption, but 

recommend that it be assessed in future projects that would seek to rely on this assumption.  

 

 
 
Figure 2.9  Illustrative 0.95/0.9 Tolerance Intervals and underlying PB failure pressure data for three 

neighboring locations on the pipe at uniform temperature 20C. (not to scale) Several possible stress-

strain curves exist at each of three sample locations on the pipe. Some possible combinations of the 

stress-strain curves at these locations are shown that could be used in a computational simulation of a 

uniform-temperature 20C pipe. However, only the HS and LS combinations are used in the present 

work.      

 

 

We use similar reasoning for steady or transient spatially non-uniform temperature fields. 

Consider a spatial temperature transition between 20C and 200C at two locations on the pipe. 

Figure 2.8 applies to this spatial temperature transition (and not just for the temporal transition 

previously considered with the figure). For spatial temperature transitions, strong correlation of 

ss-curve strengths is not expected between different locations because of physical material 

variations that can occur from point to point. Then any ss-curve computational path 

combinations are physically plausible such as all those shown in Figure 2.8. Again, we assume 

that the consistently high strength (HS) and consistently low strength (LS) combinations bound 

the simulation results from any other possible combinations. But we acknowledge that a 

spatially stochastic uncertainty representation would be relevant here and may even be 

necessary for certain analysis requirements. A follow-on investigation is recommended. We 

conclude similarly for spatially varying pipe wall thickness in section 5.3. 
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Thus, in view of the constraints in this project, material variability effects are parameterized in 

terms of just two simulation runs of the PB model. One simulation uses only the high strength 

stress-strain curves at each characterization temperature, using the methodology [3] to transition 

between the HS s-s curves. The other simulation uses only the low strength s-s curves at each 

characterization temperature. It is next explained how this parameterization is used in Section 5 

to scale PB failure pressure variability TIs in Figure 2.7 to TIs for the validation application 

conditions. 

 

2.5.2 Scaling of PB failure pressure variability to new application conditions 

 

Let the HS and LS simulations described above yield respective failure pressures P_fail-HS and 

P_fail-LS. These define a range of predicted failure pressure given by 

   

   Δ = P_fail-HS  ‒  P_fail-LS.                   Eqn. 2.1 

 

For the case of a pipe at uniform temperature 700C, the range Δ700Cunif = P_fail-HS700Cunif  ‒  

P_fail-LS700Cunif can be determined from the results in Table 2.2. This range is labeled in Figure 

2.10 on the left TI, which corresponds to the 700C uniform-temperature PB tolerance interval 

defined in Table 2.3. The 700C-uniform TI is composed of three segments (Llower-700Cunif, 

Δ700Cunif, Lupper-700Cunif) as shown in Figure 2.10.  

 

The separation of the TI into three segments according to the HS and LS simulation results is 

handy for scaling the TI to other application conditions as illustrated in Figure 2.10. For 

example, let TIapp700C at right in Figure 2.10 be for a non-uniform temperature pipe where 

failure occurs at the pipe hot spot with temperature 700C at its peak. In validation simulations 

with the PB model, several things will differ from the Figure 2.7 conditions, such as pipe wall 

thickness, pressure loading history, non-constant temperature, and end fixturing conditions on 

the pipe. Even if the failure point is at 700C at the time of failure, the calculated HS and LS 

failure pressures will differ (perhaps greatly) from the values  

P_fail-HS700Cunif  and  P_fail-LS700Cunif in Table 2.2 for the 700C uniform-temperature pipe. But 

the spans Δ700Cunif and Δapp700C in Figure 2.10 both issue from the same sets of low-strength 

and high-strength stress-strain curves. Therefore it is ventured that the spans Δapp700C and 

Δ700Cunif scale with each other. The scaling factor is 

  

S = Δapp700C / Δ700Cunif.                      Eqn. 2.2 

 

Everything on the right side of Equation 2.2 is obtainable from Table 2.2 and the HS and LS 

simulation results under the new application conditions. The lengths of the other segments that 

make up the TIs in Figure 2.10 are assumed to scale similarly. Mirroring Eqn. 2.2,  

   S = Lupper-app700C /Lupper-700Cunif or 

 

Lupper-app700C  =  S × Lupper-700Cunif.                   Eqn. 2.3 
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Analogously,  

 

Llower-app700C  =  S × Llower-700Cunif.                   Eqn. 2.4 

 

Then TIapp700C is fully defined by the three known segments (Llower- app700C, Δapp700C, Lupper-

app700C) as shown in Figure 2.10. Tolerance intervals constructed this way come from a loose 

but traceable basis of .95-coverage/.90-confidence TIs at “nearby” points in the problem 

parameter space. Because of several assumptions made in the construction, including 

interpolation and extrapolation (see next paragraph), it cannot be assured that the constructed TI 

are likely be a conservative 95% range of failure pressure variation due to the underlying 

material property variability. We cannot assign a confidence level to the likelihood of 

conservatism, but we consider it to be a reasonable working estimate and use the lower and 

upper ends of the interval for .025 and .975 percentiles of a constructed Normal PDF of failure 

pressure variability in the new application, as indicated in Figure 2.10. 

 

 
Figure 2.10  Proposed scaling between 0.95/0.9 Tolerance Intervals parameterized by failure pressures 

calculated with low and high strength material curves for (at left) a uniform-temperature pipe at 700C 

and (at right) a non-uniform temperature pipe where failure occurs at pipe hot spot with temperature 

700C.  

 

 

This procedure can be applied for the general problem where the failure temperature is some 

value T between the specific characterization temperatures in Figure 2.7. Then the subscript 

700C in the above equations is replaced by the applicable temperature T.  The span ΔTunif in the 

new version of Eqn. 2.2 is linearly interpolated from the spans at the immediately surrounding 
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characterization temperatures in Figure 2.7. The upper and lower segment lengths Lupper-Tunif 

and Llower- Tunif are likewise interpolated.  

 

Note that in the PB validation simulations, which involve both spatially and temporally varying 

temperature fields, the HS and LS predicted failures generally do not occur at exactly the same 

location or at exactly the same temperature. But failure locations and temperatures are within 

tenths of a percent for the HS and LS simulations so the average predicted failure temperature 

Tavg-app is used in the above procedure, where the applicable subscripts are related by 

 Tunif = Tavg-app.  
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3. FE Models, Geometries, Mesh and Solver Choices, 
and Calculation Verification 

3.1  Cylinder tension test simulations 
 

Here we consider the FE model and simulations of the cylindrical test specimens in the 

constitutive model material characterization/inversion procedure described in section 2.2. Given 

the geometry and testing conditions described in section 2.1 the simulations emulate cylinder 

response, through the necking and failure processes depicted in Figure 2.2.  

 

The geometry and mesh of the corresponding FE model are shown in Figure 3.1. Only a 1-in. 

middle portion of the gage length is considered, where the loading and stress-strain response is 

considered to be axisymmetric. The FE model consists of only a ~2.77% portion of this 1-in. 

middle section of gage length, invoking symmetry to model a 20-degree portion and only the 

top half as shown. The model’s radial dimension is 1/16 (0.0625) in. at the top cross-section, 

varying linearly to 0.0620 in. at the bottom. The bottom cross-section is modeled slightly less 

than actual so that computed failure will dependably occur at this minimum cross-section 

location.  

 

 
Figure 3.1  FE model geometry and mesh for modeled section of circular cylinder in tension tests.  

 

 

By seeding the location of most deformation (thus failure) in this way, a mesh can be tailored 

for the simulations. Linear 8-node hexagonal finite elements are used. The mesh is most dense 

in the severe necking region. In this region the mesh is graded so that grid density increases 

substantially where approaching the mid-length plane of symmetry. Necking entails substantial 

axial stretching and radial compression of elements. To compensate, the initial mesh that the 
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simulations start from is made with axially compressed and radially stretched elements as 

shown. The mesh resolution appears to be adequate when compared to the meshes in a mesh 

sensitivity study for a similar material inversion problem described in Appendix B.  

 

Table 3.1 lists the Adagio solver settings used for the simulations. The mesh and solver settings 

were chosen and used in the material inversion procedure by now-retired coauthor of this report, 

Gerald Wellman, based on years of experience performing similar material inversion procedures 

for similar types of cylinder coupon tension tests. In writing this report we did not have explicit 

records of any mesh or solver sensitivity studies that Wellman performed for the present work, 

but we recall reassurances from him that mesh and solver effects on the produced true stress-

strain curves were well controlled to be insignificant. We do not know whether these statements 

were based on actual mesh and solver studies performed for the present work, or based purely 

on mesh and solver choices from adequacy studies he performed over the years in similar work.  

 

In any case, the mesh and solver settings were also deemed adequate by Nicole Breivik in a 

spot-check of reproducibility of the inversion procedure and results (see Figure 2.3 and its 

caption). Furthermore, the discretization sensitivity study in Appendix B, including sensitivity 

to element aspect ratios and to hourglass control options, also provides circumstantial evidence 

for the adequacy of the mesh and solver settings in the present work.  

 

Given these arguments we assume that an adequate FE model and mesh and solver settings 

were used in the material inversion procedure which produced the constitutive model stress-

strain curves used in the pipe-level simulations. 
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Table 3.1  Settings for Adagio solver algorithm and error tolerances in FE calculations of cylinder 

behavior in tension tests. 

 

  begin solid section solid_1 

    strain incrementation = midpoint_increment 

    hourglass rotation = scaled 

  end solid section solid_1 

 

    #---------- Time Step Control ---------- 

    begin time control 

      begin time stepping block p0 

        start time = 0.0 

        begin parameters for adagio region region_1 

          time increment = <TIME_INCREMENT> 

        end parameters for adagio region region_1 

      end time stepping block p0 

      termination time = <END_TIME> 

    end time control 

 

      #--------- Solver --------- 

      begin solver 

        begin cg 

          Target relative Residual = 1e-6 

          Acceptable relative Residual = 5e-6 

          Target Residual = 1e-6 

          Acceptable Residual = 5e-6 

          Maximum Iterations = 2000 

          Minimum Iterations = 1 

          Orthogonality measure for reset = .5 

          iteration print = 10 

          begin full tangent preconditioner 

          end full tangent preconditioner 

        end 

      end solver 

 

3.2   Isothermal pipe bomb simulations at the material characterization 
temperatures 

 

Isothermal PB simulations were performed to calculate the pipe failure pressures in Table 2.2. 

When the uniform-temperature pipes are pressurized to failure, a state is reached where the 

material can no longer resist the next increment in applied pressure. This is termed the 

‘structural instability’ point ([17]). In the PB simulations this coincides with a mathematical 

instability, signified by the Adagio calculation going numerically unstable (unable to converge, 

[17]). The instability occurs because the Adagio quasi-statics governing equations have no 
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inertial terms to balance the increment in pressure force by an acceleration of the material when 

its strength can no longer resist the internal pressure and the pipe bursts.  

 

Identifying the burst pressure by arriving at the quasi-statics instability point is sufficient for our 

purposes here. If one wants to calculate the ensuing structural breakup of the pipe, the SIERRA 

structural dynamics code Presto can be used. It has the required inertial terms for continuation 

of the simulation from a starting point just prior to quasi-statics instability and continuing 

through structure breakup. Such continuation was demonstrated in a FY10 ASC Level2 

Milestone, as reported in [3].    

 

Figure 3.2 shows representative Adagio calculation results associated with Table 2.2. A 

signature difficulty in these calculations is the large computational expense required to creep up 

to the structural instability point. As this point is neared, the solver must work harder to advance 

by taking smaller time-steps and performing more iterations per timestep to solve the 

increasingly nonlinear material response and force-balance problem.  

 

 

 
Figure 3.2  Representative Adagio calculation results associated with this section and  

Table 2.2. (EQPS is the ‘equivalent plastic strain’ of the material.) 
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The large majority of CPU time is spent in the final stages of the event. Alternate approaches 

are being investigated ([18]) to more efficiently identify the structural/mathematical instability 

point or to identify alternative indicators of material damage and critical failure values. The 

latter approach would ideally suspend the calculation at a point simultaneously low on the CPU 

cost curve and near the final failure pressure. Such a point occurs, for example, at the sharp 

knee in the curve of the lower left CPU plot in Figure 3.2. This point is very near the ending 

(instability) time in the simulation, and because pressure is linearly ramped with time in these 

simulations, the knee also corresponds to a pressure that is very near the final pressure at 

calculation failure. 

 

3.2.1 Geometry and Mesh 

 

The FE model has a pipe wall thickness of 0.02 in. and 4 finite-elements through the thickness 

of the wall. Mechanical end-loading conditions are fixed. The full-geometry model is shown at 

left in Figure 3.3 (see [2] for detailed drawings). For the calculations in section 3.3 a geometry 

change was made in the modeled length of the pipe. The full length of the PB cylinder is 14 

inches. The truncated model at right in Figure 3.3 contains only the middle 10.8 inch section of 

the pipe as shown. Most of the thick-walled shoulder regions at either end are truncated because 

previous simulations found they are so strong relative to the thin-wall sections of the pipe that 

truncating them does not materially affect failure pressure results. This reduces the finite-

element count by about 30%. To further save on computational resources a 1/8 section of the 

truncated geometry was used that takes advantage of the symmetry of geometry and uniform-

temperature and fixed-end boundary conditions in the problem. See Figures 3.4 and 3.5 for 

details on the mesh structure and element aspect ratios.  

 

In section 3.4 we investigate effects of different mesh densities and element aspect ratios for 

simulations of the spot-heated PB experiments. From that investigation we infer that the mesh 

in Figures 3.4 and 3.5 appears quite adequate for simulations of uniform-temperature 

pressurized pipes described in this section. These simulations are used to calculate the failure 

pressures in Table 2.2. 
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PB geometry, full length = 14 in. 
modeled portion of PB, 

truncated to 10.8 in. 

 

 

Figure 3.3  Actual and truncated-model pipe geometries. Full length of pipe is 14 inches. Modeled 

portion omits 1.6 inches from each end of pipe, leaving ¼ in. length of stiffening collar at pipe ends. 

This decreases the finite-element count by almost 30%. 

 

 

 

 

 

 
 

Figure 3.4  Finite element mesh of 1/8 symmetry model of truncated pipe section shown in Figure 3.3. 

The 1/8 symmetry model contains 200,322 8-node linear hex elements. Grid density increases 

significantly in going from truncated end of pipe to mid-length of pipe. Grid density also increases in 

going from back of pipe to front of pipe. (The front-to-back grid density variations were imposed in 

anticipation of simulating scenarios with the hot spot from non-uniform heating conditions in the PB 

experiments, but different meshes were ultimately used, see section 3.5).   
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Figure 3.5  Mesh with four elements through the thickness of the pipe wall. The starting aspect ratios of 

the elements at pipe mid-length are 4:4:1 in the radial, axial, and circumferential directions respectively.  
 

 

3.2.2 Solver, control settings, and error tolerance refinement study 

 

For the PB simulations the conjugate gradient (CG) solver in Adagio was used with the FETI 

(finite-element tearing and interconnecting) pre-conditioner. The solver settings in Table 3.2 

were used to produce the uniform-temperature PB results in Table 2.2.  
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Table 3.2  Solver error tolerances and algorithm controls in uniform-temperature PB calculations. 

 

Solver Error Tolerances CG 

 

Target relative residual 1.00E-06 

 

Acceptable relative 

residual 2.00E-04 

 Max iterations 10,000 

 Min iterations 3 

 

Max cutback 10 

 

cutback factor 0.5 

 

Growth factor 1.1 

 

Iteration window 100 

 

Target iterations 400 

 

Max multiplier 100 

 

Min multiplier  1.00E-12 

 Max timestep 1.0 

 

Hourglass Effective 

Moduli Elastic  

   

  FETI 

 Residual Norm Tolerance 1.00E-03 

 Iteration updates 125 

 

The settings in Table 3.2 were arrived at by performing the solution cost vs. accuracy study 

summarized in Table 3.3. Selected cases from Table 2.2 are considered in Table 3.3. The cases 

span a large temperature range from 20C to 700C and the stress-strain curves at each 

temperature yield closely coinciding failure pressures. This provides a tough test for the solver 

variants in Table 3.3: Can the strength orderings of the selected stress-strain curves be 

accurately determined despite the small separations in the failure pressures, and is this 

successfully done at the low end 20C and high end 700C temperatures?  

 

The error tolerances in column two of Table 3.3 are customary for Adagio analyses according to 

Wellman and Dempsey experiences balancing calculation cost and accuracy in many analysis 

projects prior to PB. Relatively small average differences of about 2.8 psi or 0.24% exist 

between results in the 2
nd

 column and in the 3
rd

 column where error tolerances are significantly 

stricter. But a difference in curve-strength orderings occurs for try3-20C and try6-20C. In further 

tightening the error tolerances from column three to column four, the curve-strength orderings 

do not change and the calculated failure pressures are virtually unchanged (only the results for 

try26-700C change, and only by 0.1 psi). Hence, the error tolerances in column 2 are not 

sufficient for curve strength ranking purposes and the tolerances in columns 3 and 4 both appear 

adequate; results are stable when error tolerances are tightened to these levels (for this particular 

type of PB analysis).   
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We note that the CPU costs of the simulations in Table 3.3 do not necessarily increase with 

tightened error tolerances. Complex numerical interactions in adaptive solvers sometimes result 

in slower progress overall when looser iteration-convergence tolerances are used. This can 

allow larger time steps and disproportionately increased iterations to converge the nonlinear 

solution over the larger time steps. Furthermore, sometimes the time step has to be retried with a 

smaller step size if convergence does not occur within the specified iteration limits for the 

original time step. So larger steps can result in non-convergence and then much numerical 

rework as the size of the steps are cut down until convergence can be achieved. Because the 

third column only saves about 3.4% on average vs. the stricter fourth column, we used the more 

strict tolerances (see Table 3.2) in the simulations for Table 2.2.  

 
Table 3.3  Comparison of predicted failure pressures with uniform-temperature pipe model and 

FETI-CG solver using the listed error tolerances. Other settings not specified are the 

same as in Table 3.2. Cases are listed in order of increasing failure pressure per the last 

two columns which use the tightest error tolerances. 

 

Test & 
temperature 
cases 

Rel.Resid. = 1e
-4

 

Accep.Resid. = 

2x10
-2

 

Rel.Resid.=10
-5

 

Accep.Resid.= 

2x10
-4

 

Rel.Resid.=10
-6

 

Accep.Resid.=  

2x10
-4

 

 Failure psi 
(CPU hrs.*) 

Failure psi 
(CPU hrs.*) 

Failure psi 
(CPU hrs.*) 

    

try26-700C 702.0 (20.3) 703.8 (5.87) 703.7 (5.24) 

try27-700C 704.1 (19.1) 704.2 (5.28) 704.2 (6.21) 
    

try3-20C 1490.70 (12.1) 1484.5 (7.8) 1484.5 (9.78) 

try6-20C 1487.20 (4.6) 1485.0 (2.9) 1485.0 (4.39) 

try5-20C 1492.60 (41.3) 1485.2 (20.7) 1485.2 (8.26) 

    

* CPU times reported in Adagio output file via global output variable cpu_time. 

Simulations were run on 192 processors of Red Sky.  

 

For a sense of the effectiveness of the FETI pre-conditioner, we tried the CG solver without pre-

conditioning. CG solver settings from Table 3.2 were used except for the following increased 

iteration targets and limits, because of no preconditioning: iteration window = 10,000, target 

iterations = 35,000, max iterations = 50,000. On the five cases in Table 3.3, the non-pre-

conditioned simulations took from 2 to 5 times longer than with FETI preconditioning and 

results were insignificantly different, within 0.1%. Hence, on our PB problem the FETI pre-

conditioner yields large computational savings with no appreciable drawbacks, so we used it in 

all that follows.  

 

3.3   Check of 8/8 truncated geometry model vs. 1/8 truncated geometry model   
 

As a spot check, the 8/8 truncated geometry model at right in Figure 3.3 was run at 700C with 

the try26 and try27 stress-strain curves. (The experiments we will later validate the model 

against have a failure temperature of approximately 700C so the stress-strain curve rankings at 
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700C are of high relevance.) From Table 3.3 a very small difference of 0.5 psi separates the 

failure pressures for try26-700C and try27-700C. We wanted to assess how well this small 

separation was preserved when running the 8/8 geometry model. The calculations were run with 

the FETI solver and control settings listed in Table 3.2. The 8/8 model has 1.6 million elements 

and runs over an order of magnitude slower than the 200,322 element 1/8 geometry model. 

Table 3.4 reveals that for the try26 curve a shift of +3.1 psi increase in failure pressure to 706.8 

psi occurred with the 8/8 model. For the try27 curve a shift of +3.7 psi to 707.9 psi occurred 

with the 8/8 model. These ~0.5% shifts are very small, supporting a conclusion that the 

mechanical loading symmetry boundary conditions were applied correctly in the 1/8 model.  
 

Furthermore, because the 1/8 model is only used for relative curve-strength ranking purposes, 

and not where prediction accuracy on an absolute basis is sought, the shift between the 8/8 and 

1/8 models is not a problem if the shifting is relatively uniform for the various stress-strain 

curves. Reasonably similar shifts of 3.1 psi and 3.7 psi occur for the try26 and try27 curves. The 

curve-strength rankings are the same with either model. From this spot check we assume that 

the 1/8 model gives accurate curve-strength rankings in Table 2.2 for all curves and all 

characterization temperatures. 

 
Table 3.4  Comparison of predicted pipe failures with the 8/8 and 1/8 geometry models 

(all calculations with FETI/CG solver settings in Table 3.2) 

 

Test 
cases 

1/8 model 
Failure psi  

8/8 model 
Failure psi 

difference  
(8/8 – 1/8) 
Failure psi  

% diff.  
Failure 

psi  
     

try26-700C 703.7 706.8 +3.1 0.44% 

try27-700C 704.2 707.9 +3.7 0.52% 
     

 

3.4   Pipe bomb model variants for hot-spot heating and pressurization to failure 
 

Four different categories of PB simulations with hot-spot heating and pressurization to failure 

are summarized below. Details of the calculation verification study (models, meshes, 

simulations, results, and analysis) are described in the remainder of this section. The findings 

are applicable to the other three categories of simulations as well. Further modeling and 

simulation details and results for the other three categories are given in the cited sections. 

 PB calculation verification study: ¼ symmetry Adagio model with 

mapped/interpolated temperature field BCs from test PB1 thermocouples (see next 

section); 

 coupled thermo-mechanical simulations: ¼ symmetry Adagio-Aria model with 

heating shroud and thermal radiation and conduction included in model—used to model 

the validation experiments for experiment design and improvement to minimize 

validation uncertainty (see section 4.1 and 4.2);    

 “self check” simulations to characterize temperature mapping/interpolation error: 

¼ symmetry Adagio model with mapped temperature field BCs from virtual TCs in 
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coupled thermo-mechanical simulations —used to characterize BC temperature field 

errors from TC mapping/interpolation vs. known reference field from coupled thermo-

mechanical simulations (see section 4.4);    

 Full-model validation/UQ simulations: full pipe model Adagio simulations with TC 

mapped/interpolated temperature field BCs from PB tests (see section 5). 

 

3.5   Calculation verification of simulations of hot-spot heating and 
pressurization to failure  

 

3.5.1  Mesh refinements and solver settings in calculation verification study 

 

Figure 3.6 shows the ¼ pipe geometry and meshes used in the mesh refinement study. The 

temperature field boundary condition on the pipe comes from test PB1 thermocouple 

temperature mapping and interpolation described in section 4.2. This BC is used to maximize 

the applicability of the mesh study and discretization error/uncertainty estimates in this section 

to the PB validation simulations in section 5. Section 4.4 shows that the temperature field in the 

experiments varies markedly from front to back and axially upwards and downwards from mid-

height. This variation is captured in the ¼ symmetry model except for minor circumferential 

and axial asymmetries characterized in section 4.4. A ¼ pipe model was required for 

affordability of the mesh refinement study, as will become evident.   

 

 

 
Figure 3.6  ¼ truncated-length pipe geometry, meshes, linear HEX element counts, and failure pressure 

results in mesh refinement study.  

 

The 1tt (1 finite element through the thickness of the wall) mesh in Figure 3.6 was created with 

approximately equal cell lengths in the axial, circumferential, and thru-wall dimensions in the 
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0.020 in. thin-wall extent of the pipe where the hot spot exists and hence large deformation and 

ultimately failure occur. Use of 1:1:1 aspect ratio elements is not necessarily optimal because 

pressurization-induced deformations cause the walls to thin in the radial direction because of 

wall stretching predominantly in the circumferential dimension but in the axial direction as well. 

Therefore, finite elements near the hot spot that start the simulation with equal cell lengths have 

highly non-uniform aspect ratios by the end of the simulation. Later in this section we study the 

effects of attempting to compensate for element thinning and stretching by using non-1:1:1 

aspect elements in the starting meshes.  

 

In the pipe wall-thickness transition region zoom-shots in Figure 3.6 the 1tt mesh has axial and 

thru-wall cell dimensions that increase together according to wall thickness as it transitions 

from 0.02 in. to 0.05 in. The cell axial dimensions are coordinated to approximately match cell 

widths (thru-wall) so that a nearly 1:1 aspect ratio is maintained in these element dimensions in 

the wall transition region and hence throughout the model. However, to maintain an i-j-k 

structured hex mesh throughout the model, cell size in the circumferential dimension cannot 

likewise follow wall thickness. Cell size in the circumferential direction is constrained to be 

constant along the entire length of the pipe at its inside-diameter (ID) surface. This (constant) 

arc-length cell dimension of approximately 0.02 in. at the pipe ID is set by the imposed target of 

1:1:1 starting aspect ratios where the hot spot and deformation and failure occur. 

 

Our mesh refinement study followed rules for constructing geometrically similar meshes 

(explained next) that are necessary for correctly estimating order or rate of convergence of the 

solution as the mesh is refined ([25]). Based on the rate of convergence, the asymptotic solution 

in the limit of infinite mesh refinement is estimated and assigned an  associated uncertainty 

band. Then the solution error for any mesh in the sequence of refined meshed can also be 

estimated with assigned uncertainty.  

 

The 2tt mesh in our refinement sequence doubles the number of elements across the wall. The 

two elements across the wall are equally spaced, having equal width in the thru-wall direction. 

The refinement rules require that a mesh refinement in one dimension be matched by similar 

refinements in the other dimensions of the mesh. Hence, nominally, each element of the 1tt 

mesh is subdivided into eight elements to get the 2tt mesh and each element in the 2tt mesh has 

essentially the same aspect ratio as the parent element in the 1tt mesh.  

 

Another refinement rule is to maintain any grading of mesh density when subdividing elements. 

For example, in the 1tt mesh, the seven elements that vertically span the wall-thickness 

transition region have graded (non-constant) cell sizes as the region is traversed in the 

vertical/axial direction. This grading is required to meet the objective of 1:1 aspect between 

axial and thru-wall cell dimensions, as the wall thickness increases in the axial direction. To 

meet the mesh refinement rule that the vertical mesh-density grading function in this region be 

preserved under mesh refinements, the seven elements that vertically span the transition region 

are not halved when subdivided in the axial direction. Rather, they are vertically subdivided 

such that the mesh density grading in the vertical direction is nominally preserved.  

 

The word ‘nominally’ in the two preceding paragraphs signifies that the mesh refinement 

objectives were met as well as reasonably possible by manual trial-and-error iteration with the 
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present meshing facilities in CUBIT [26]. The 4tt and 6tt meshes in Figure 3.6 were constructed 

with similar considerations in mind. This experience spawned an initiative to develop 

automated mesh refinement capabilities in CUBIT that respect the rules for enabling estimation 

of solution convergence rate, asymptotic solution results, and solution error of the meshes in the 

refinement study.  

 

The calculations were run with the solver settings in Table 3.5. The FETI residual norm 

tolerance was tightened to 10
-4

 vs. Table 3.2 and experimentation for improving solver 

efficiency (reducing CPU times) lead us to lower some of the iteration limits so that time-step 

cutbacks and re-tries would occur sooner instead of allowing high numbers of iterations that 

ultimately were often unsuccessful.  

 

 
Table 3.5  Solver error tolerances and algorithm controls in mesh study simulations and 

                  subsequently. 

 

Solver Error Tolerances CG 

Target relative residual 1.00E-06 

Acceptable relative residual 2.00E-04 

Max iterations 20 

Min iterations 3 

Max cutback 10 

cutback factor 0.5 

Growth factor 1.25 

Iteration window 100 

Target iterations 20 

Max multiplier 500 

Min multiplier  1.00E-12 

Max timestep 10 

Hourglass Effective Moduli Elastic  

  

 FETI 

Residual Norm Tolerance 1.00E-04 

Iteration updates 10 

 

 

3.5.2 Mesh refinement results, convergence assessment, and solution error & uncertainty 

estimates 

 

The failure pressures calculated with each mesh are plotted and listed in Figure 3.7. As noted in 

Figure 3.6 the calculation with the 6tt mesh did not finish within an allowed 36 days on 400 

processors. (Adagio restarts were not working at the time of the mesh study so this was a 

continuous run for 36 days.) If the calculation was allowed to run until it reached instability 
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failure, the associated failure pressure would be greater than the 837 psi level at the end of the 

36 day calculation. Hence 837 psi is the lowest potential failure pressure plotted in Figure 3.7 

for the 6tt mesh. The calculated material damage quantities of equivalent plastic strain and 

tearing parameter [3] at the point when the 6tt simulation timed-out were very low relative to 

values from 1tt, 2tt, and 4tt results (see Table 3.6). So the 6tt simulation was probably relatively 

far from reaching failure instability. Therefore 837 psi is certainly a lower bound, but not a 

plausible value of failure pressure that would be yielded by a finished 6tt mesh simulation. 

 

For an upper bound, the trend of decreasing computed failure pressure with mesh refinement in 

Figure 3.7 indicates that an upper bound on failure pressure for the 6tt mesh can reasonably be 

assumed to be less than the 874 psi result for the 4tt mesh. Then representative potential failure 

pressures within the lower (837 psi) and upper (874 psi) assumed limits are  chosen as 845, 855, 

and 865 psi as plotted in Figure 3.7. 

 

 

 
Figure 3.7  Calculated pipe failure pressures in mesh refinement study. Lowest result for 6tt mesh is 

from a calculation that did not finish within an allowed 36 days on 400 processors. Various plausible 

finishing results are plotted for the 6tt mesh, along with Richardson Extrapolation estimates of 

asymptotic mesh-converged values (red dots) and associated solution uncertainty bars (see text).  
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Table 3.6  Calculated material damage quantities Equivalent Plastic Strain and Tearing Param. 

for simulations in mesh study (spatial maximums over pipe, see e.g. Figure 4.9). 

 

mesh  maximum 

Equivalent Plastic 

Strain in simulation 

maximum Tearing 

Parameter value in 

simulation 
1tt 138% 5.5 

2tt 208% 8.89 

4tt 116% 3.53 

6tt *sim. timed out 27% 0.71 

 

 

A standard method ([21], [22]) was used to determine the empirical rate of convergence of 

computed failure pressure as the mesh is refined. Results from the three coarsest meshes, 1tt, 

2tt, and 4tt, yield an empirical rate of convergence of 0.26. This is much lower than the 

surmised ideal value of 1.0, which is the theoretical rate at which calculated stresses converge 

with mesh cell size for the second-order spatial discretization of displacement fields in Adagio. 

Although on thin ground from a theoretical standpoint, we relate computed failure pressure to 

computed stress state in the pipe. We venture that failure pressure might be expected to 

converge at the same rate as computed stresses, i.e., at an ideal rate of 1.0. Because failure 

pressure is not a nodal quantity or a quantity computed on the mesh, and because failure 

pressure is a value determined by the point of non-convergence of the calculation, we are not 

aware of any theory that would establish a theoretical rate of convergence for computed failure 

pressure. However, empirical results in Table 3.3 and Figures 3.6 and 5.8 provide a basis for 

treating failure pressure as a well-behaved quantity yielded by these computations.  

 

Even more than the fact that the 0.26 convergence rate did not meet the surmised ideal rate, the 

consensus of the Sandia solid mechanics analysts consulted by the authors was that the 1tt-mesh 

results do not lie in the asymptotic regime of convergence for this problem, a requirement for 

Richardson Extrapolation to perform well. This is because structures modeled by single-

element-thick linear hex elements have no resistance to bending moments. Therefore we 

pursued the more refined triplet of 2tt, 4tt, and 6tt meshes/results to apply Richardson 

Extrapolation (RE). As Table 3.7 presents, uncertainty in the finished 6tt mesh result yields 

uncertainty in the empirical rates of convergence and therefore uncertainty in the asymptotic 

failure pressure estimated by RE for the limit of mesh size decreasing to zero. The estimated 

potential asymptotic failure pressures are plotted in Figure 3.7. 

 
Table 3.7  Potential empirical orders of convergence based on 2tt, 4tt, 6tt meshes and Richardson 

Extrapolation estimates of asymptotic mesh-converged failure pressures. 

 

6tt mesh potential 

finished result 

(failure pressure, psi)  

potential empirical 

order of convergence 

RE estimates of  potential 

grid-converged failure 

pressure results (psi) 
837 0.73 729 

845 1.15 796 

855 1.87 838 

865 3.1 861 
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In Figure 3.7 an uncertainty bar is shown about each estimated potential asymptotic value. Each 

uncertainty bar has a half-length equal to the distance between the asymptotic estimate and the 

corresponding 6tt mesh value. The half length of each estimated asymptotic solution’s 

uncertainty bar is about 80% of that given by Roach’s Grid Convergence Index ([21], [22]) 

when the recommended factor of safety 1.25 is used. This safety factor accompanies: 1) 

empirical rates of convergence used for RE; and 2) structured grids refined into geometrically 

similar meshes. The present study meets these criteria. Nonetheless, we used the simpler 

method of uncertainty bar sizing described at the start of this paragraph.    

 

Recalling the prior arguments about the potential 6tt mesh results considered plausible, we 

further consider only the results in the bottom three rows of Table 3.7. The bottom row shows a 

potential order of convergence that seems implausibly high, whereas the middle two rows have 

much more reasonable values. Therefore we discount the last row’s potential value of failure 

pressure (865 psi). We are left with the middle two rows in Table 3.7. We make no further 

judgment that one of these rows has greater or lesser plausibility or probability than the other. 

Hence we obtain a combined uncertainty range that spans the uncertainty bars in Figure 3.7 

which correspond to the middle two rows in Table 3.7. That is, the asymptotic grid-converged 

failure pressure for the modeled conditions in this mesh study is estimated to lie within an 

uncertainty range between 747 psi and 855 psi. This uncertainty estimate will be used in the 

model validation uncertainty analysis in section 5.2. To prepare for this, we note that 

corrections of -228 and -336 psi added to the 1tt-mesh result yield the said uncertainty range 

[747, 855] psi within which the asymptotic grid-converged failure pressure is estimated to lie.  
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4. Modeling and Design of the Pipe Bomb Validation Experiments to 
Minimize Error and Uncertainty in the Experiments and Validation 
Simulations 

 

In accordance with model validation best practices (see e.g. [29], [30]) a model of the 

envisioned validation experiments was constructed and used to help refine the experiment 

conditions and the locations of measurement sensors to best support the model validation 

objectives. It was desired to test the temperature-dependent constitutive model over large ranges 

of pressures and temperatures, ramp rates, and large temperature gradients on the pipes. 

Coupled thermal-structural modeling (section 4.1) was used to help define the length of the pipe 

and the size and temperature of the heating shroud and its location relative to the pipe in order 

to achieve the spatial temperature variations sought. The model was also used to devise a 

thermocouple (TC) placement scheme suitable to capture the anticipated temperature field 

variations and support a mathematical interpolation scheme to reconstruct the temperature field 

boundary condition on the pipe surface (section 4.2). Temperature field reconstruction 

prompted an experimental adjustment to compensate for convection effects (section 4.3). 

Representative simulations were performed to test the temperature mapping and interpolation 

capability and characterize associated error and uncertainty (section 4.4).  

 

Design of the pipe wall thickness and size of the internal slug for internal volume reduction 

(explosive energy reduction) were based on simplified handbook models and formulas. These 

design aspects were driven by experimental safety related to explosive rating limits of the test 

facility. 

4.1 Coupled thermal-mechanical modeling to help design the validation 
experiments 

 

Coupled thermal-structural modeling was used to help define the length of the pipe and the size 

and temperature of the heating shroud and its location relative to the pipe in order to achieve the 

spatial temperature variations sought. The model included thermal radiation exchange between 

the heating shroud, the dynamically bulging pipe, and the surroundings. Radiation exchange 

between the pipe and the internal slug (see Fig. 1.1) was also modeled, along with heat 

conduction along and through the pipe walls. Convection was ignored because of the difficulties 

mentioned in section 4.2. Nonetheless, the simplified thermal model was deemed sufficient to 

aid in the design and planning of the thermal aspects of the validation experiments.  

 

During pressurization the hot spot bulges outward because of temperature related weakening. 

The bulging brings the hot spot closer to the heating plate. During this process the viewfactors 

for radiative heat exchange on the inside and outside of the pipe must be updated after each 

timestep or a prescribed sufficiently small number of timesteps. This brings a challenging and 

expensive computational aspect to the coupled simulations. Fortunately the bi-symmetric 

temperature field in Figure 4.1 allows a reduced 1/4 geometry to be used for the calculations in 

all of section 4. But the 1/4 model used here has full shoulder extensions like the version at left 

in Figure 3.3. 
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         Side view, top half of pipe 

Front view, 

¼ symmetry 

 
 

 
 

Figure 4.1  Coupled SIERRA/Thermal-Solid Mechanics simulation results for circumstances described 

                   in body of text.  

 

 

The simulation provides a rough indication of the temperature pattern on the pipe in the planned 

experiments. This was useful in devising locations of thermocouples on the pipe surface for 

approximate reconstruction of the experimental temperature field. The thermocouple location 

and interpolation procedures are described next. 

4.2 Thermocouple placement and interpolation scheme for temperature field 
boundary condition reconstruction on pipe 

 

Early in the design and planning of the validation activity it was judged that modeling the 

thermal aspects of the experiments would contribute prohibitively large uncertainty to the 

validation study, thus unacceptably degrading the precision with which we could resolve the 

accuracy of the constitutive model. In particular, for modeling purposes the emissivities of the 

radiating surfaces of the shroud, pipe, and internal slug would not be known to within ±10%. It 

was also estimated that modeling convective heat losses from the interior and exterior surfaces 

of the pipe could be in error by ±25% or more. The difficulty is compounded by the fact that 

pressurization of the pipe involved continually introducing new gas (mass) and its associated 

enthalpy into the pipe. These not only affect the gas temperature inside the pipe in a complex 

way, but also foreseeably affect convection inside the pipe. It was not even known if convection 

correlations that account for such introduced mass and/or the very high pressures in the 

experiment (several hundred atmospheres) exist to be found. 

 

Fortunately, error and uncertainty associated with thermal aspects in the validation problem 

were largely circumvented by measuring pipe surface temperatures at specifically designed 

thermocouple locations (based on model simulations). Then spatial interpolation was used (with 

interpolation error/uncertainty factored in) to provide pipe wall temperature boundary 
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conditions for the pipe structural response simulations. The procedures for thermocouple 

placement, temperature interpolation, and associated UQ are explained below.  

 

An initial constraint was that at most 16 thermocouples (TCs) were allowed per experiment 

because of limited data channel availability in the data acquisition system. Freedoms in the 

sensor placement and interpolation design problem were that: 1) the 16 TCs could be placed 

anywhere on the pipe surface; and 2) any method of spatial interpolation could be used that was 

compatible with proposed sensor patterns and was expected to yield reasonably good 

interpolation accuracy and was within grasp of limited project time and resources.  

 

Another consideration for sensor placement and interpolation was that the quantities we wanted 

to predict (failure time, pressure, temperature, etc.) were anticipated to be most affected by the 

hot-spot region on the pipe. There the steel would experience greatest temperature-associated 

material strength loss, bulging, and tendency for failure. It was recognized, however, that the 

response prediction problem is a global one. Stress, strain, and ultimately failure at or near the 

hot spot is dependent on time-dependent material "give" everywhere else in the pipe. Therefore, 

temperature-dependent material relaxation needed to be modeled everywhere on the pipe.  

 

Even though the global nature dictates that temperature-dependent material behavior effects 

should be modeled everywhere on the pipe, it is reasonable to assume that it is most important 

to model the effects most accurately in the hotter regions of the pipe, where most of the 

stress/strain/failure action occurs. Accordingly, the temperature contour information in Fig. 4.1 

was used as an indicator for relative concentration of TC sensor coverage over the pipe: greater 

concentration of TCs in the hotter regions, less in the cooler regions. Within this generalized 

objective, the locations of the individual TCs were determined as follows.  

 

A quasi-Hermite 2D bi-cubic polynomial interpolation scheme was identified as something that 

could be quickly developed and otherwise met our needs. The bi-cubic interpolating-shape 

freedoms of 2D Hermite polynomials could conform reasonably well to the temperature field 

over the surface of the pipe, when the field is subdivided into a suitable set of interpolation 

“patches” as shown in Fig. 4.2. The assemblage of all interpolation patches yields a C
0
 

interpolated temperature field that is continuous but not necessarily smooth across patch 

boundaries; i.e. temperature slope across patch boundaries is not necessarily continuous.  

 

Generation of a Hermite bi-cubic interpolation function over a quadrilateral interpolation 

domain (patch) requires input of temperature and three slope-affiliated terms at each corner of 

the patch:  T, zT  , T ,  zT2
. If the derivative information at the patch corners is 

from numerical approximation as employed here, the overall interpolation scheme is referred to 

as “Quasi”-Hermitian. The objective then becomes one of laying out a TC pattern that supports 

the best (most accurate) determination of temperature and the three derivatives at the corners of 

the patches in Fig. 4.2, assuming it is important to get greatest accuracy in the vicinity of the hot 

spot and accuracy importance drops as temperature drops with distance from the hot spot.  
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(drawing and TC locations not to scale) 

 

 
 

 
Figure 4.2  Division of pipe exterior surface into eight quadrilateral “interpolation patches”. Surface of 

the pipe represented as though sliced at the back, unwrapped, and laid flat in -z space as shown. TC 

locations on pipe surface are shown (not drawn to scale, see Table 4.2). TC 10 marks the origin ( = 0, z 

= 0) of the -z "pipe-surface" coordinate system, where pipe circumference ranges from - <   . Note 

that the TC numbering here is from the convention used in the TempInterp interpolation program (see 

Appendix C) and not the ID numbering of TCs in the experiments (Fig. 4.3). 

 

 

In Fig. 4.2 the -z "pipe-surface" coordinate system has its origin at the hot spot at pipe mid-

height. A preferential TC placement scheme increases the concentration of TCs as the hot spot 

location ( = 0, z = 0) is approached, as shown in the figure. The location of the origin also 

coincides with an experimental pipe temperature distribution expected to be nominally 

symmetric about the vertical z-axis at  = 0, and to a lesser extent (because of convection) to be 

approximately symmetric about the horizontal -axis at z = 0. But the TC placements were 

designed to enable temperature non-symmetry in either or both directions to be detected and to 

be approximately modeled by the interpolation scheme.  

 

The TC pattern coincides with an experimental temperature distribution expected to be 

nominally symmetric about the vertical z-axis at  = 0. Convection in the experiments causes a 

non-symmetric temperature field about the horizontal -axis at z = 0. But convection is not in 

the model so the results in Fig. 4.1 are symmetric about the -axis. Hence our test for 
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interpolation accuracy (section 4.4) does not test non-symmetric conditions in either direction. 

Nonetheless, the TC placements were designed to enable temperature non-symmetry in either or 

both directions to be detected and to be approximately modeled by the interpolation scheme.  

 

 

 

 
 
Figure 4.3  TC numbering used in the experiments, which is different from the interpolation code’s 

numbering scheme shown in Fig. 4.2.  

 

Initially, only the pipe length below TCs 1,2 and above TCs 15,16 in Fig. 4.2 was designated for 

interpolation. A simple subdivision of this interpolation region into the four approximately 

equal interpolation regions appeared to be a simple and reasonable strategy. Then it was a 

matter of locating the available 16 TCs to best support the determination of temperature and the 

said derivatives at the corners of the patches, subject to considerations already stated.  

 

The layout of TCs in Fig. 4.2 allows some of the derivatives to be evaluated non-uniquely, so 

any of several choices could be made. For example, T/ at TC10 could be evaluated from a 

Lagrange cubic polynomial fitted to the temperatures of TCs 7,8,9,10 or TCs 8,9,10,11; or 

simply be set to zero according to a physical argument of C
1
 smoothness (continuous slope 

across patch boundaries) + temperature field symmetry about the z axis. Testing each of these 

alternatives showed that interpolation error on the test problems to be described next was least 

for the first option, which was therefore implemented in the TempInterp code. It was similarly 
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found that setting T/ at TC7 according to the option described in Appendix C gave less 

overall interpolation error than using a C
1 

smoothness + symmetry condition  

T/ = 0 there.   

 

Symmetry + C
1 

smoothness conditions T/ = 0 at front and back of the pipe ( = ) were 

also not used for patch corners at TCs 1, 2, 15, 16 although this would have been simpler for the 

interpolation code. Instead, the upper TCs 2,1 and lower TCs 16,15 were used to prescribe 

linear temperature drops with circumferential distance from front to back. It was not assessed 

whether this linear temperature decrease caused less overall interpolation error than would a 

nonlinear decrease from front to back that would accompany T/ = 0 specified at front and 

back. An assessment was not performed for the following reasons. Temperatures in this region 

varied only slightly around the pipe because its top and bottom rims were held to approximately 

293K by active cooling from water jackets. Hence, temperature interpolation errors were 

relatively small in this region. Sensitivity of predicted failure pressure to small errors in rim 

temperature are also small; a coupled simulation to support design of thermal conditions for the 

experiments showed that changing the cooled-rim temperature by 37K, from 293K to 330K, 

only caused the critical measures of failure to change by < 0.6% for the early pipe design with 

0.05 inch thick walls (Table 4.1).   

 
Table 4.1  Sensitivity of hot-spot failure results to 37K change in temperature at pipe top and 

bottom rims (early pipe design with 0.05 in. thick wall, see Figure 4.3). 

 

rim temp. BC  T_fail % P_fail  % time_fail % 

293 K 1216 K  2360 psi  3397 sec.  

330 K 1211 K -0.4% 2347 psi -0.55% 3380 sec. -0.5% 

 

 

The indicated insensitivity to pipe rim temperatures led us to initially disregard TC placement in 

areas outside the perceived critical coverage region below TCs 1,2 and above TCs 15,16. It was 

initially figured that we could adequately determine pipe rim temperatures from water 

temperatures entering and exiting the water jackets at the pipe rims.  

 

Hence, in placing the two remaining thermocouples (TCs 5 and 12 in Fig. 4.2) it was decided to 

provide for a check on interpolation accuracy by placing TCs that would not be used to 

construct the interpolated temperature field. Also, the accuracy check should best be conducted 

near where the hot spot was anticipated to be. It was figured that one TC should be above the 

z=0 plane and one symmetrically below the z=0 plane so that information could be obtained on 

non-symmetric interpolation errors in the anticipated convection-induced non-symmetric 

temperature fields about the z=0 plane. Another consideration affecting TC placement was that 

two different interpolation schemes might be used to assess interpolation error. Results from the 

scheme described above could be compared against an envisioned scheme that would use TCs 5 

and 12 in Fig. 4.2 as well as the two others symmetrically located across the z-axis as depicted 

in the figure but not numbered. But the second interpolation scheme was not pursued. 
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TCs 17 and 18 were eventually added at the locations shown in Fig. 4.2. This proceeded from a 

reconsideration of the accuracy we thought we could calculate pipe rim temperatures with (from 

using the water jacket inlet and outlet fluid temperatures). This reconsideration coincided with 

expanded experimental capacity which allowed the addition of a few more TCs to the pipe. 

Hence we elected to employ two more TCs at the indicated locations to obtain pipe-rim 

temperatures. In the simulations the bottom and top rims are assumed to be uniform in 

temperature around the rim, where the respective rim temperatures are given by TCs 17 and 18. 

Any differences from temperature uniformity around the rim are anticipated to have 

substantially smaller effects than those listed in Table 4.1.  

 

Finally, interpolation in the left and right patches at top and bottom of Fig. 4.2 employs linear 

temperature variation in z. The linear variation generally changes with  location around the 

pipe. That is, the temperature slope zT   changes around the pipe to match temperatures 

interpolated in  between TCs 1 and 2 near the top, and between TCs 15 and 16 near the 

bottom.   

 

Table 4.2 lists the final ,z coordinates of the 18 labeled TCs in Fig. 4.2. A Fortran77 program 

TempInterp was written to perform the temperature interpolations. Recall that this program only 

utilizes 16 of the TCs (TCs 5 and 12 are only used for possible checks of the interpolation 

accuracy.) The program is compiled as a subroutine into the SIERRA/Calagio executable. At 

time t the Cartesian coordinates (x,y,z) of each computational node on the pipe surface are 

passed to TempInterp, which returns interpolated temperature values. Details of the 

mathematical formulation, code and data structures, input and output data files and their 

formats, time-trapping search algorithms, etc. are provided in Appendix C.   
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Table 4.2  ,z coordinates of the 18 interpolation TCs on pipe. 

 

TC # , degrees Z, inches 

1 180 4.6 

2 0 4.6 

3 0 2.3 

4 0 1.15 

5 -20 0.575 

6 90 0. 

7 180 0. 

8 -90 0. 

9 -40 0. 

10 0 0. 

11 40 0. 

12 -20 -0.575 

13 0 -1.15 

14 0 -2.30 

15 180 -4.60 

16 180 -4.60 

17 0 -7. 

18 0 7. 
 

 

4.3 Use of temperature mapping/interpolation to adjust experiments to 
compensate for convection effects 

Figure 4.4 shows a tested pipe (0.05 in. uniform wall thickness) heated and pressurized to 

a bulging state and then depressurized before failure. The thermocouple leads can be seen 

on the tested pipe. The accompanying simulation results show a significantly non-

symmetric temperature field with greater temperatures above pipe mid-height than below. 

The skewed temperature distribution was attributed to external and internal heat 

convection. The hottest point on the pipe was significantly above the center TC (#4 in 

Fig. 4.3). The experiment was therefore reconfigured to lower the heating plate by about 

½ inch to move the hotspot approximately to the center TC. Thus, the temperature 

mapping and interpolation capability was directly useful in fine-tuning the heating 

configuration in the experiments. 
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Figure 4.4  Convection-caused non-symmetric temperature field in early test setup. Heating shroud was 

subsequently lowered to move hot spot toward center thermocouple. 

 

4.4 Simulations and analysis to test temperature mapping and interpolation 
procedures and characterize associated error and uncertainty 

 

Here we describe some relevant tests for the accuracy of the temperature interpolation and 

mapping procedure (TC data  temperature field BCs for model simulations) and the impact of 

interpolation error caused by sparseness of TC spatial coverage. We then describe how the 

results are leveraged to estimate a correction (with uncertainty) for interpolation-induced error 

in predicted pipe failure pressures in the validation simulations. 

 

Such quantification of induced error can also be used to actively adjust/optimize the number of 

TCs, their locations on the pipe surface, and the interpolation scheme (quasi-Hermite or others) 

to minimize the temperature BC reconstruction error and its effects on calculated failure 

pressure. This was done only at an informal level using expert judgment because of time and 

resource limitations in the project. 

   

4.4.1 Synthetic “nearby problem” representative of PB validation experiments  

 

A synthetic “nearby problem” was constructed to closely emulate the tests that the model will 

be compared to (validated against) in section 5. These tests, PB1 and PB4, undergo heating to 

produce a hot spot with a steady target temperature of 700C at the hottest point. Once this 

temperature is reached, the pipe is pressurized until failure. These will be referred to as the 

“700C-hold” PB1 and PB4 tests. See section 5.1 and [2] for further description of the test 

conditions. 

 

Convection is ignored in the model, so it predicts artificially high temperatures for a given 

heater plate temperature. Therefore the plate temperature from a different experiment (PB2) was 

used because it had a lower plate temperature which maintained the pipe hot-spot at 672C in the 

test. It was ventured that use of this lower plate temperature in a simulation would nominally 

offset the lack of convective cooling in the simulation such that the pipe temperature field in the 
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simulation would be close to the temperature field in the 700C-hold experiments. We later show 

that this is indeed the case.  

 

The pipe pressurization and heating-plate temperature inputs to the coupled thermal-mechanical 

simulations are plotted in Figure 4.5. The 4tt mesh (Figure 3.6) and solver settings in Table 3.5 

were used in the following simulations.   

 

 
 

 

Figure 4.5  Test PB2 pressure and heating-plate temperature inputs to coupled thermal-mechanical 

simulations.  

 

 

Two variants of the stainless-steel constitutive model were used in the simulations: stress-strain 

curves of high and low strength as explained in section 2.5.1. With these and with the radiative 

emissivity values described next, the coupled simulations yielded a representative set of time-

developing spatial temperature fields on the pipe.  

 

The following emissivities were nominal estimates from consulting various references in the 

literature. The emissivities are not used in the eventual validation simulations so their accuracy 

is not critical from this stand point. The values only need to be representative enough to obtain 

temperature fields on the pipe that are close to the fields in the PB1 and PB4 experiments.  

 

The outside surface of the solid slug inside the pipe (Figure 1.1) was assigned an emissivity of 

0.5. The painted-black Inconel heating plate was assigned an emissivity of 0.7. Except for the 

heating plate, the surroundings that exchange radiation with the outside surface of the pipe were 

modeled with an emissivity of 1.0 and ambient temperature of 296 K. Emissivity of the outside 

and inside surfaces of the pipe is assigned a value stated in the simulation case description 

column in Table 4.3. The lower and upper emissivities of 0.7 and 0.84 in the table were deemed 

a reasonable range to represent the radiative heating uncertainty in the problem as it affects the 

temperature distribution on the pipe.   
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Table 4.3  Failure related quantities in coupled-simulation test cases. 

 

Simulation case  Time   
@failure 

(sec.) 

Temperature  
@failure (C) 

Pressure 
@failure 

(psi) 

Tear 
Param. 
@failure 

Coupled-high-0.84 2277.1 759.0 809.9 6.23 

Coupled-low-0.84 2255.9 759.0 791.6 5.40 

Coupled-high-0.7 2386.0 706.9 903.7 3.9 

Coupled-low-0.7 2350.4 706.8 873.0 3.50 
 

 

The Table 4.3 combinations of high and low material strengths and high and low radiative 

heating give a representative range of temperature fields in the simulations to assess temperature 

mapping and interpolation error effects on calculated failure pressures. The hot-spot peak 

temperatures (at TC 10 location in Fig. 4.2) are essentially the same for high and low strength 

variants when emissivity = 0.84. Peak temperatures are also the same for high and low strength 

when emissivity = 0.7. Thus, peak temperatures (and the whole temperature fields, as discussed 

next) are essentially indifferent to changes between high and low strength material curves. But 

the temperature fields are significantly different when emissivity is changed from 0.7 to 0.84. 

Hot-spot temperatures in Table 4.3 are 52 C higher when emissivity = 0.84 than when 

emissivity = 0.7, whether high or low strength material is involved. Figure 4.6 shows the 

computed temperatures at other TC locations. Thus, the entire temperature field is hotter when 

emissivity = 0.84 than when emissivity = 0.7, as expected. Despite the linear visualization lines 

between TC temperatures in Figure 4.6, actual temperature variations between TCs are not 

linear. The actual variations are shown in the next section. 

  
 

Figure 4.6  Coupled simulations temperature results (degrees C) plotted at thermocouple locations up 

and down front of pipe (left plot) and around pipe at mid-height (right plot). These locations correspond 

to TCs on z and  axes in Figure 4.2 that the temperature interpolation scheme is built on. Temperatures 

are at time of failure in the indicated computations (the results for emissivity=0.84 essentially plot over 

each other regardless of whether high or low strength material curves are used, and likewise for 

emissivity=0.7). Temperatures at TC locations are spanned here by linear connecting segments for 

visualization purposes only and are not actual (see Figure 4.7).  
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Although changing from high to low strength negligibly impacts the temperature field, Table 

4.3 reveals that failure pressure decreases by an average of ~3% (2.3% when emissivity=0.84 

and 3.5% when emissivity=0.7). But the material strength variations affect failure pressure far 

less than changing emissivity from 0.7 to 0.84. This increase raises the temperature field, 

thereby reducing failure pressure by an average of ~11% (11.5% for high material strength and 

10.3% for low strength).  

 

4.4.2 Temperature mapping and interpolation errors and impact on calculated failure 

pressures  

 

Figure 4.7 shows, for a representative simulation case, the front and back views of the 

temperature fields of coupled and temperature-mapped/interpolated “interp.” simulations at a 

common time, the time of failure in the coupled simulation. The interp. results are obtained 

from a mechanics-only Adagio simulation with temperature field BCs on the pipe surface 

obtained from mapping/interpolation of synthetic temperature data (at the 18 TC locations) 

generated by the coupled simulations.  

 

Noticeable differences exist between some areas of the coupled and interp. temperature fields in 

Figure 4.7. Figure 4.8 better reveals the spatial variation of error in the interpolated temperature 

field. Because the interpolated field is constructed from data at the TC locations, interpolation 

error at these locations is zero by default. Substantial error exists in many regions, especially 

where the temperature field varies quickly in space and simultaneously TC coverage is scarce.  
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Figure 4.7  Reference and interpolated temperature fields for simulations with emissivity=0.7 and  

low-strength material curves. 

 

  

Front view, coupled sim.,    

2259sec. 

Front view, 

interp. 

temps. sim, 

2257 sec. 

Back view, 

coupled sim., 

2259sec. 

Back view, 

interp. temps. 

sim, 2257sec. 
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Front view Back view 

  
 

Figure 4.8  Difference plot of the interpolated minus coupled-sim. temperature fields in Figure 4.7 

quantifying error in interpolated temperatures at failure for emissivity=0.7 and low-strength material 

curves. Zero interpolation error exists where yellow fades to green, in particular at the indicated TC 

locations (by construction of the interpolation scheme). 

 

 

The interpolation error also varies over time. The integrated effect of the spatial-temporal 

interpolation error can be assessed by comparing the coupled sim. results in Table 4.3 to the 

interp. sim. results in Table 4.4. Various comparisons are discussed next.  

 
Table 4.4  Failure related quantities in coupled simulations using mapped/interpolated 

temperature field BCs. 

 

 
Simulation case 

Time   
@failure (sec.) 

Temperature  
@failure (C) 

Pressure 
@failure (psi) 

Tear Param. 
@failure 

Interp-high-0.84 2332.8 758.9 857.9 7.27 

Interp-low-0.84 2299.3 759.0 829.0 7.46 

Interp-high-0.7 2400.9 706.9 916.2 4.43 

Interp-low-0.7 2353.6 706.8 875.8 3.86 

 

 

The hot-spot peak temperatures in Table 4.4 are effectively the same as in Table 4.3. The 

interpolation scheme ensures that the reference and interpolated temperature fields have the 

same temperature at all TC locations, including at the TC at the pipe hot spot. Therefore the 
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trends cited in the paragraph below Table 4.3 for hot-spot temperature vs. emissivity value and 

material strength also apply to the mapped temperatures here.  

 

Figure 4.9 shows that the magnitude of material damage tracks with elevated temperature and 

failure occurs at the hot spot where the peak temperature exists. Damage contours and location 

of failure are shown to be very similar for the coupled and the interp. simulations.  

 

 

 

Coupled Simulation 

Simulation Using Interpolated 

Temperature Field 

  
 

Figure 4.9  Spatial plots of computed tearing parameter indicating material damage at time of failure in 

emissivity=0.7 low-strength simulations. Damage is effectively confined to thin-wall section of pipe 

where the wall is 0.02 in. thick (wall is 0.05-in. thick elsewhere except at thicker shoulders). White dots 

locate maximum damage in coupled simulation. These are negligibly offset from pipe front-center where 

hottest point on pipe is. Black dot locates point of maximum damage in interp. simulations and is 

essentially the same location as failure in the coupled simulation.   

 

 

Hence, both the coupled and interpolated simulations predict failure at the same location and at 

the same hot-spot temperature. Even though the two models have the same temperatures at the 

18 TC locations, spatial interpolation errors in the rest of the temperature field causes the 

interpolated simulation output values to be different from those of the coupled simulation. 

Tables 4.3 and 4.4 show that failure occurs earlier and at lower pressures and tearing parameter 

levels in the coupled simulation than in the interpolated simulation.  
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Nevertheless, the trends in output responses vs. changes in emissivity and material strength are 

in the same directions as those for the coupled calculations cited in the paragraph below Figure 

4.6).  

 Changing from high to low strength negligibly impacts the interpolated temperature 

field.  

 Changing from high to low strength reduces failure pressures in Table 4.4 by an average 

of ~4% (3.5% when emissivity=0.84 and 4.6% when emissivity=0.7). These impacts are 

in the same direction as in the coupled simulations, but somewhat larger.  

 Increasing emissivity from 0.7 to 0.84 raises the temperature field thereby reducing 

failure pressure by an average of ~6% (6.8% at high strength and 5.6% at low strength). 

These decreases are in the same direction as in the coupled simulations, but significantly 

less.  

 These emissivity changes affect failure pressure significantly more than these material 

strength variations. 

 

Failure pressure is the quantity of interest for the validation comparisons in section 5. 

Accordingly, Table 4.5 lists the failure pressure errors and percent errors caused by temperature 

interpolation for the four test cases. The errors are always positive; failure pressures in the 

interp. simulations are higher than in the coupled simulations by 0.3% to 5.9%. The errors are 

much larger for the higher-temperature 0.86 emissivity cases than for the lower temperature 0.7 

emissivity cases, regardless of whether high or low strength material curves are involved. Errors 

are slightly greater for high strength curves than for low strength curves, regardless of whether 

emissivity is 0.7 or 0.84. 

 
Table 4.5  Overestimation of failure pressures caused by interpolation of temperature field for synthetic 

test cases.  

sim. case   = P_fail_interp - P_fail_coupled % = / P_fail_coupled 
high-0.84 48.0 psi 5.9 % 

low-0.84 37.4 psi 4.7 % 

high-0.7 12.5 psi 1.4 % 

low-0.7 2.8 psi 0.3 % 

 

 

 

4.4.3 Application to model validation simulations to correct calculated failure pressures, 

with uncertainty on the correction 

 

In the previous section, error in predicted failure pressures was characterized for pipe 

temperature boundary conditions constructed from limited temperature data at the discrete 

thermocouple locations. For actual temperature fields that closely resemble the synthetic fields 

in Figures 4.6 and 4.7, the characterized pressure prediction errors in Table 4.5 will 

approximately apply. Figure 4.10 compares the synthetic temperature fields against the actual 

temperature fields at time of failure in the validation tests PB1 and PB4. The temperature fields 
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are similar enough that the results in Table 4.5 are used to estimate failure pressure prediction 

errors and associated corrections (with uncertainty) in Section 5.2 due to reconstruction of the 

pipe temperature BCs from the tests’ TC data. 

 

 

  
 

Figure 4.10  Pipe TC temperatures at time of failure in the 700C-hold experiments PB1 (green curves) 

and PB4 (red curves) plotted along with synthetic temperature fields (red and black curves) from Figure 

4.6.  

 

 

In the region where failure occurs (at or near the hot spot), the PB1 and PB4 experimental 

temperature profiles track closely with the synthetic temperature profiles (Figure 4.10). For the 

emissivity=0.7 temperature field, the failure pressure prediction error due to temperature field 

reconstruction from the sparse TC information is 2.8 psi for simulations with low-strength 

stress-strain curves and 12.5 psi for high-strength simulations (Table 4.5). These errors increase 

by about 35 psi to 37.4 (LS) or 48 psi (HS) for the emissivity=0.84 temperature field. The 35 psi 

change in the magnitude of interpolation-induced error apparently comes from the shape 

differences of the two temperature profiles in Figure 4.6. So the magnitude of interpolation-

induced error is apparently fairly sensitive to the temperature distribution being interpolated. 

This is apparently a symptom of the spatial sparseness of the TC data available for interpolation. 

The interpolation error characterized here is used in Section 5.2 to estimate error and 

uncertainty associated with interpolating the actual TC data from the pipe temperature fields in 

the experiments.  
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5. Validation Experiments, Results, and Processing for Comparison 
to Model Predictions 

 

In this section the constitutive model’s performance is assessed by comparing experimental and 

predicted failure pressures of steel pipes heated and pressurized to failure. We present the 

experiments and simulations; their results and uncertainties; processing of these into a form 

suitable for the Real Space model validation methodology employed; and description of the 

comparisons along with their interpretation. The versatile and practical Real Space methodology 

has previously been applied to other complex calibration and validation problems in other 

physics realms: device thermal response and failure [25], [26]; modeled behavior of irradiated 

electronics [27], [28]; and combustion in fluids and solids [29], [30]. The PB model validation 

problem also has a large set of challenging features. Hence the methodology demonstrated here 

can be leveraged to a large set of model validation applications. Appendix F briefly compares 

and contrasts the Real Space validation approach to other established model validation 

frameworks. See also [7] and [8] in this regard. 

 

Various fidelities of uncertainty treatment can be applied in the Real Space validation 

framework. The particular UQ treatment applied here was driven by severe constraints in the 

number of simulations that could be completed in the time available. Only five simulations of 

the model were required in the “linear+” decoupled UQ approach applied here. Each of the 

simulations took on the order of a month on 800 processors. That was at the limit of what was 

feasible under the resource constraints. Nevertheless, we judge that if allowed considerably 

more simulations and higher-order UQ procedures, the main conclusions would not be 

significantly different than those arrived at in this report. 

5.1 Experimental inputs, outputs, and uncertainty in failure pressure tests at 
700C 

 

Here we consider the 700C-hold set of pipe pressurization experiments PB1 and PB4. The tests 

were planned replicates of each other. Figure 5.1 shows the transient internal absolute pressures 

in the pipes and the transient responses of temperature control TCs presumed to lie at the peaks 

of the hot spots in the two tests (i.e., TC#10 location in Figure 4.2). Later we attempt to account 

for uncertainties regarding TC accuracy and whether the TCs actually lie at the peak 

temperatures on the pipes. The peak hot-spot temperatures (as indicated by the control TCs) 

were ramped at a rate of approximately 31 C/min.  

 

When the control TCs reached nominally 700C, this temperature was maintained while the 

pipes were pressurized as shown in Figure 5.1. Controlled pressurization of the pipes was 

accomplished via pressure supply tanks as described in [2]. PB4 pressurization started about 1.5 

minutes after 700C was reached, while PB1 pressurization started about 4 minutes after 700C 

was reached. Minor differences also exist about the nominal pressure ramp rate of 1.3 psi/sec. 

The differences in pressurization were, from the outset of the project, anticipated to affect 

failure pressure levels negligibly. However, the experience of project participants concerning 

stainless steel behaviors at high pressures and especially high temperatures is very limited. 

Indeed, the PB1 pipe spent a few minutes longer at 700C before pressurization than PB4 did, 

and failed at a lower pressure. The lower failure pressure could conceivably be explained at 
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least partially by the pipe soaking at 700C longer than the PB4 pipe. But the PB1 lower failure 

pressure appears to be at least partially explained by PB1 vs. PB4 wall-thickness differences 

and temperature distribution differences over the pipes, as will be establish later. Hence, 

negligible effects of pressurization differences between the PB1 and PB4 tests are assumed in 

the following. But this assumption should be reexamined as further experiences and model 

development contribute to better understanding of material response/failure dependencies in this 

regime.  

 

In the following sections, details of hardware geometry and experimental conditions and results 

are presented that are pertinent to subsequent model validation procedures and comparisons. 

 

 
 
Figure 5.1  Tests PB1 and PB4 transient internal pressures (absolute) and control TC temperatures at the 

hot spots. Pipes fail at the pressures indicated by the ’s and are listed in Table 5.1.  

 

 

 

 
Table 5.1  Failure pressures measured in 700C-hold experiments. Pressure measurement 

uncertainties are explained in Section 5.1.1. 

  

Exper. 
Measured 
pressure at 

failure  

Uncertainty in 
pressure 

measurement  

PB1 606 psi ± 10 psi 

PB4 655 psi ± 10 psi 
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5.1.1 Experimental pressure loading and end fixturing BCs 

 

Figure 5.2 replots the pressure loadings and shows the pipe axial loading profiles in the two 

experiments. The precipitous drops in the pressure readings indicate the rupture 

depressurization in the tests. The manufacturer-specified uncertainty on the measured pressures 

is +/- 0.2% of the full-scale rating of the pressure gages used, which were 5000 psi max. gages. 

Therefore the uncertainty is within +/- 10 psi of the measured pressures in Figure 5.2. This 

amounts to about double the line thickness in the plots.  

 

 
 

 
 

Figure 5.2  Measured pressure (referenced to scale on right axis), and axial fixture loading 

(referenced to scale on left axis) in 700C-hold pressurization experiments.  Note similar pressure 

load scales in the two plots, but very different axial loading scales in the two plots. 
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The uncertainty on the axial loading measurements is ±0.1% of reading, or < ±3 lb. for the 

highest axial load in the two tests. This is far less than the line thickness in the plots. Early 

investigations with the PB model indicated that this magnitude of uncertainty has negligible 

effect on failure pressures, so load measurement uncertainty is not considered further.    

 

5.1.2 Pipe surface temperature measurements (TC mapping/interpolation data) 

 

Figures 5.3 and 5.4 plot the thermocouple temperature histories in tests PB1 and PB4. These TC 

data are supplied to the TC mapping/interpolation procedure described in section 4.2 for 

reconstructing the temperature fields on the pipe surface in the experiments. These 

reconstructed fields are the temperature BCs in simulations of the experiments (next section). 

The precipitous drops in the temperature data coincide with the pipe failures.    

 

Table 5.2 lists linear regression values of the measured temperatures at the pipe front-center 

location, nominally at the pipe hot-spot temperature peaks (TC#4 in Figures 4.3, 5.3 and 5.4). 

The temperatures in Table 5.2 are obtained by linear regression of TC temperatures over the 60 

seconds preceding failure in each experiment. Over the last several minutes in each test, 

electrical noise creates visible oscillations in TC temperatures in Figures 5.3 and 5.4. The 

oscillations over the last 60 seconds are on the order of ±10C, so citing a single temperature 

record at the time of failure could be in error by up to ±10C. Therefore we use linear regression 

mean-temperature curves evaluated at the times of failure. We do this for all TCs. The 

simulations must be carried out beyond the failure times in the tests because the simulations 

predict failures at higher pressures and longer times than the actual failures. No temperature 

data exists beyond the failure times in the tests, so at all TC locations we evaluate the linear 

regression mean curves at the times of failure. We then hold these temperatures as constant for 

the remainder of the simulations.    

 

References [31] and [32] discuss various sources of thermocouple temperature measurement 

uncertainty applicable here. The PB experiments used intrinsic TCs of 0.005-inch diameter, 

which are the most accurate TCs commonly available. But small measurement uncertainties 

exist due to random and systematic sources of error described in Section 5.3. The largest 

uncertainties are indicated in Table 5.2, corresponding to the hottest TCs on the pipes. These 

uncertainties are less than the line thickness in figures 5.3 and 5.4. 

 

 
Table 5.2  Pipe front-center control TC4 temperature at failure in 700C-hold experiments.  

 

Experiment 

Measured 
temperature at 

failure 
(after regression) 

% uncertainty in 
temperature 

measurement 

uncertainty in 
temperature 

measurement 

PB 1 707 C 
[-0.25%, +0.5%] of 

reading in degrees C 
[-1.8, +3.5] C 

PB 4 711 C 
[-0.25%, +0.5%] of 

reading in degrees C 
[-1.8, +3.6] C 
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Figure 5.3  Thermocouple temperature measurements in experiment PB1. TC numbering in this 

figure corresponds to numbered locations in Figure 4.3.   
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Figure 5.4  Thermocouple temperature measurements in experiment PB4. TC numbering in this 

figure corresponds to numbered locations in Figure 4.3.   

 

5.1.3 Pipe wall thickness variation 

 

Table 5.3 shows measured minimum and maximum pipe-wall thicknesses for various PB 

tests. The measurement procedure was the following. Two V-blocks where set up to support 

a mandrel. A dial indicator was then used and zeroed on the mandrel. This would be the 

reference for the pipe inside diameter, ID. A pipe test unit was then placed on the mandrel 

and the dial indicator was placed on the outside diameter (OD) of the reduced section. The 

dial indicator was then moved along the pipe and the readings were taken. The specimen 

was then rotated on the mandrel and another set of measurements were taken. This was 

repeated 15-20 times and the minimum and maximum wall thicknesses were recorded in 

Table 5.3. This was done for each pipe unit. 

 

The machined units held fairly tightly to the nominal 0.02-inch wall thickness specified for 

the reduced middle length of pipe. All tested pipes were within the allowable tolerances 

specified on the drawings. PB4 seems slightly skewed to thicker walls than the other units. 

This might explain at least some of the reason why PB4 had a notably higher failure 

pressure than PB1, even though PB1’s control TC reads slightly hotter than PB4’s control 

TC. These issues are investigated in detail in section 5.3.  
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Table 5.3  Measured minimum and maximum pipe-wall thicknesses for various PB tests/‘Parts’ 

specified. Nominal machining spec. thickness was 0.02-inch. 

 
 

 

5.2 Simulations of validation experiments and uncertainty processing & rollup 
for comparisons to experimental results 

 

In this section we address random and systematic uncertainties affiliated with the PB model and 

its computational solution. In the next section, 5.3, we address random and systematic 

uncertainties issuing from the PB experiments.  

 

Here we use the PB1 experiment as the reference case for model validation assessment at the 

700C-hold conditions. The validation comparisons of experimental results vs. simulation results 

will be built around this reference case. We could instead use PB4 as the reference. 

Alternatively we could use averaged experimental conditions and inputs from the PB1 and PB4 

replicate experiments, but such averaging is difficult here and in most model validation 

applications.  

 

The time-varying PB1 temperature, end loading, and pressure boundary conditions plotted in 

Figures 5.3 and 5.2 (top plot) are applied to a full-geometry PB model. The spec. wall thickness 

of 0.02” in the thin-wall section of the pipe is used, along with dimensions of the thicker 

sections as described in section 3. Both high strength (HS) stress-strain curves and low strength 

(LS) variants of the model were run, as described in Notes 1 and 3 below.  

 

A coarse 1tt mesh was used because of the extreme computation demands of this problem. 

Corrections for mesh size (with associated uncertainty) are described later in this section, 

working from the mesh refinement study in section 3.5.2. The full model was first tried with a 

4tt mesh and then a 2tt mesh, but even with 1200 processors the progress rates of these 

simulations indicated months of run time would be necessary to get through the multiple 

simulations required for uncertainty quantification. Because UQ/validation studies routinely 

take two or three iterations to refine and complete the analysis, the run times for 2tt and 4tt 

meshes were too long for the project schedule. The 1tt-mesh runs took about four weeks 

(involving four or five restarts) on several hundred processors, so this was just within workable 

limits. The solver settings in Table 3.5 were used. These settings were also used in the mesh 
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refinement study and in the TC temperature mapping/interpolation error characterization in 

section 4.4. 

 

The full geometry model was necessary because of non-negligible effects of using the non-

symmetric temperature distribution in PB1 (see Figure 4.10) vs. the ¼ symmetric mirrored PB1 

temperature BCs used in the mesh study. Figure 3.6 shows the ¼ geometry section used for the 

¼ model. The ¼ model and the full model have the same temperature distribution over their 

common quarter-section region, but the ¼ model assumes symmetry of the temperature 

distribution about the ¼ model’s bottom and side boundaries. So its solution emulates a full 

model with ¼ symmetric temperature BCs. Failure pressure for the symmetric temperature 

distribution (¼ model, 1tt mesh) is 55 psi or ~ 5% higher than the result from the 1tt-mesh full 

model with non-symmetric PB1 temperature distribution. (The high strength stress-strain curves 

were used in this investigation.)  

 

The results and uncertainties associated with the PB1 reference prediction are summarized in 

Figure 5.5. Explanatory notes: 

 

1. The top left corner in Figure 5.5 shows the result from a simulation with the high strength 

(HS) stress-strain curves.  

2. A correction for use of a 1tt mesh is made using the results from section 3.5.2. From the last 

sentence in section 3.5.2, corrections of -228 and -336 to the failure pressure calculated on 

the 1tt-mesh yield upper and lower bounds within which the asymptotic grid-converged 

failure pressure is estimated to lie. These correction limits are applied here because the 

modeled PB1 experimental conditions in section 3.5.2 only differ from those in this section 

by the non-symmetry of the temperature field as explained earlier. Although the calculated 

failure pressures differ non-negligibly for the symmetric vs. non-symmetric temperature 

fields, it is not anticipated that convergence rates with mesh refinement will differ 

appreciably. We could not check this assumption.  

Hence we estimate that the asymptotic grid-converged failure pressure lies within the range 

[856, 748] psi = 1084 psi (the 1tt-mesh result) + [-228, -336] psi. These upper and lower 

values define the left-most uncertainty bar in Figure 5.5. For convenience this uncertainty 

will be incorporated in a later step. In the present step, only a nominal reference value 

within this range is selected. A value midway between the upper and lower extremes might 

be the most common choice, but we select 839 psi and demonstrate that this works just as 

well. Thus we parameterize the corrected range [856, 748] psi in terms of a nominal 

corrected value 839 psi plus an uncertainty range [+17, -91] psi about the nominal 839 psi. 

These numbers are written to the left of the left-most uncertainty bar in Figure 5.5. Another 

way of expressing what we have done is to correct the 1tt-mesh result (1084 psi) by a 

nominal correction of -245 psi plus an uncertainty of [+17, -91] psi about the nominal 

correction: -245 psi + [+17, -91] = [-228, -336] psi. The nominal correction of -245 psi 

yields the nominal corrected value of 839 psi.  
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3. Running the model with low strength stress-strain curves instead of high strength curves 

reduces the calculated failure pressure by 43 psi, from 1084 psi to 1041 psi. Applying the 

nominal correction (from step 2) of -245 psi to the LS result yields a nominal mesh-

corrected value of 1041 psi  - 245 psi = 796 psi. This nominal correction assumes that the 

mesh convergence behavior is similar whether the model has LS or HS stress-strain curves. 

The nominal corrected LS value of 796 psi coincides with the bottom of the 2
nd

 uncertainty 

bar from left in Figure 5.5. This bar, spanning the LS and HS results, has a length of 43 psi 

as labeled in the figure. The LS and HS results parameterize the aleatory variability of 

predicted failure pressures due to stochastic variations in material strength as characterized 

from the cylinder tension tests in section 2.  
 

4. Before the aleatory variability of failure pressure can be predicted, the LS and HS failure 

pressures must be corrected for errors caused by reconstruction of the pipe temperature field 

BCs from the spatially sparse TC temperature data in test PB1. A “global” element of 

temperature reconstruction error is addressed here. Local elements are addressed in section 

5.3. Here we consider the global reconstruction errors characterized in section 4.4.2 for the 

synthetic temperature distributions in Figures 4.6 and 4.7. These distributions are similar to 

test PB1’s temperature distribution (see Figure 4.10).   

 

At the times of failure in the experiments and simulations, Figure 4.10 shows that the 

temperature BCs for simulations of test PB1 are bounded between the ɛ = 0.7 and ɛ = 0.84 

synthetic temperature fields in the critical hot-spot region where failure occurs. From Table 

4.5 the interpolation-induced errors for the ɛ = 0.7 and 0.84 “bounding” temperature 

distributions are respectively +12.5 psi and +48 psi if the simulations are performed with the 

high strength stress-strain curves. The “bounding” errors are respectively +2.5 psi and +37.4 

psi if the simulations are carried out with the low-strength curves.   

 

5. We treat the actual PB1 temperature field as effectively lying somewhere within a parametric 

continuum between the ɛ = 0.7 and 0.84 “bounding” temperature distributions. That is, it is 

assumed that there is some emissivity value 0.7 < ɛ_PB1 < 0.84 that yields a global 

interpolation error that is the same as the global interpolation error for the actual PB1 

temperature field. Then the limiting cases are:  

 

if ɛ_PB1 = 0.7, the correction for the global interpolation error is: 

         = -12.5 psi if the simulations are performed with the HS curves,  

         = -2.5 psi if the simulations are performed with the LS curves;  

 

if ɛ_PB1 = 0.84, the correction for the global interpolation error is: 

         = -48 psi if the simulations are performed with the HS curves,  

         = -37.4 psi if the simulations are performed with the LS curves. 
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For the limiting case ɛ_PB1 = 0.7, corrections to the HS and LS simulation results in Figure 

5.5 are indicated by the green line segments that end at the tops of the yellow and teal 

uncertainty bars respectively. These corrected pressure predictions are 827 psi and 793 psi 

respectively. Figure 5.6 shows the corresponding tolerance interval and Normal PDF of 

failure pressure variability due to material strength variability scaled from Figure  2.7. 

 

For the limiting case ɛ_PB1 = 0.84, corrections to the HS and LS simulation results in 

Figure 5.5 are indicated by the brown lines that end at the bottoms of the yellow and teal 

uncertainty bars respectively. The corrected pressure predictions are 791 psi and 756 psi 

respectively. Figure 5.7 shows the corresponding tolerance interval and Normal PDF scaled 

from Figure 2.7.  

 

The Normal PDFs for the two bounding cases ɛ_PB1 = 0.7 and ɛ_PB1 = 0.84 are shown in 

Figure 5.5. The intermediate value of actual effective emissivity ɛ_PB1 corresponds to a 

Normal PDF interpolated between the upper and lower bounding PDFs in the figure. As 

noted in the figure, the yellow and teal uncertainty bars for corrected predicted failure 

pressures are perfectly correlated uncertainties, both parametrically dictated by the 

(uncertain) value of the effective emissivity ɛ_PB1. 

 

6. Last, the uncertainty of the correction for mesh effects is incorporated. In Figure 5.5 the 

mesh correction uncertainty is shown translated to the right-most uncertainty bar in the 

figure. To aggregate this source of uncertainty with the uncertainty represented by the upper 

and lower PDFs defined in Note 5, linearity and independence are assumed. Essentially, the 

approximation is made that the upper and lower PDFs, which are built off the starting 

reference value of 839 psi marked by the dot on the left-most uncertainty bar, would 

translate up or down as a fixed-shape pair if the reference value (the dot) lie at some other 

place on the uncertainty bar. Thus the mean separation and the standard deviations of the 

two PDFs would not change, but the PDF assembly would simply translate up and down 

with the reference value (dot). This is thought to be a good approximation, but we could not 

afford to check it. 

 

Given the assumed linearity and independence, if the reference value (dot) was at the top of 

the mesh correction uncertainty bar, the PDF assembly would be translated upwards by 17 

psi. (existing reference of 839 psi + 17 psi upward translation = 855 psi = top of uncertainty 

bar per the last sentence in section 3.5.2.) Then the upper PDF in the upward translated PDF 

assembly would have a mean increased by 17 psi, making its mean (805psi + 17 psi) = 822 

psi. This is shown at right in Figure 5.5.  

 

At the other extreme, the existing reference value of 839 psi could be translated downwards 

by 91 psi to reach the bottom of the uncertainty bar = 747 per the last sentence in section 

3.5.2. Then the lower PDF in the downward translated PDF assembly would have a mean 
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decreased by 91 psi, making its mean (768 psi - 91 psi) = 677 psi. This is shown at right in 

Figure 5.5. The pair of upper and lower PDFs comprise a “probability box” equivalent to the 

CDF (cumulative density function) form introduced in [44]. Their separation signifies 

epistemic lack-of-knowledge uncertainty regarding where the actual PDF of stochastic 

results or values in the population lies. 

 

 

 
 

Figure 5.5  Uncertainty rollup for simulation results processed for Real Space validation comparisons. 
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Figure 5.6  Section 2.5.2 scaling of failure pressure 95/90 TI for 700C uniform-temperature  pipe to 

95/90 TI and associated Normal PDF for PB1 test conditions and upper-bound (ɛ = 0.7) 

correction of temperature field reconstruction error.  

 

 

 

 

 
 
Figure 5.7  Section 2.5.2 scaling of failure pressure 95/90 TI for 700C uniform-temperature  pipe to 

95/90 TI and associated Normal PDF for PB1 test conditions and upper-bound (ɛ = 0.84) 

correction of temperature field reconstruction error.  
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5.3 Processing and rollup of experimental uncertainties for model validation 
comparisons 

 

Here the experimental data is processed in a specific manner for comparison to the simulation 

results in Figure 5.5 via Real Space validation metrics. An “apples-to-apples” comparison basis 

must first be established between predicted PDF percentiles of failure pressure and 

experimentally derived percentiles of failure pressure. Consequently, accounting for non-

traveling
3
 experiment-to-experiment variability and systematic uncertainty, we normalize the 

experimental data to the reference conditions input to the simulations:  

- 0.02” pipe wall thickness  

- PB1 nominal pressure, temperature, and mechanical end-loading boundary conditions. 
 

We also account for inference uncertainty on estimated percentiles of response from small 

numbers of experiments. To reduce UQ method complexity and cost we employ a linearized 

data normalization process in the following. Examples of higher-order UQ treatment are 

available in [28].  
 

Let wact be the actual pipe wall thickness in test PB1. From Table 5.1 the failure pressure is 

Pfailexper,w_act = 606psi. We will account for pressure measurement uncertainty later. Thus we 

have the input-out correspondence (wact, PfailPB1exper,w_act). This can be thought of as particular 

point of a function Pfailexper(w) that describes experimental failure pressure as a function of 

wall thickness.  

Pfailexper,w_act = Pfailexper(w=wact)             

          Eqn. 5.1 
 

A Taylor Series is used to normalize the data to the reference wall thickness wref = 0.02” used in 

the failure pressure calculations in section 5.2: 
 

Pfailexper,w_ref = Pfailexper(wref) = Pfailexper(wact+[wref – wact])  

                                                  = Pfailexper(wact) + 
             

    
•(wref – wact) + HOT.    

           Eqn. 5.2 

                                                 
3
 Non-traveling uncertainties in the experiments and/or simulations in a validation activity do not transfer or 

“travel” consistently to application settings of intended model use that the validation is meant to inform ([6]-[8], 

[26], [33]). For example, non-traveling uncertainties in the PB validation activity include uncertainties on pressure 

and temperature measurement errors. The intended post-validation uses for the constitutive model will involve 

different pressure vessel geometries and different pressurization and temperature conditions, even though at similar 

levels as in the PB tests. Any uncertainties or parametric variations in post-validation model use are to be 

considered scenario uncertainties in the envisioned analyses, and will have no direct linkage to the measurement 

uncertainties in the PB validation activity.  Other examples of non-traveling uncertainties are associated with the 

model and simulations in the validation activity, such as uncertainties associated with mesh discretization and 

temperature field reconstruction on the pipe (from the TC data). But an uncertainty that is proposed to travel 

consistently is the constitutive model’s material-strength variability as a function of temperature, characterized in 

Section 2 and propagated to predictions in section 5.2 to form the variability PDFs in Figure 5.5. Uncertainties are 

treated differently in the Real Space validation framework according to whether they are traveling or non-traveling 

between the validation and post-validation model use settings. This distinction reflects their different significance 

and consequences to prediction, see [6], [8]. 
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Here HOT stands for ‘higher order terms’. The actual wall thickness wact is a small perturbation 

from the machining spec. wall thickness of wref = 0.02”, so the HOT contribution is relatively 

small and here we retain just the 1
st
-order term: 

 

Pfailexper(wref) ≈ Pfailexper(wact) + 
             

    
•(wref – wact).                    

           Eqn. 5.3 

 

The above equation is used to approximately normalize the PB1 failure pressure to a reference 

wall thickness wref that differs from the actual wall thickness wact at the point where failure 

onset occurs in the experiment. The derivative term  
             

    
 can be estimated either with 

the model or by using available test data from purposefully different wall-thickness pipes 

exposed to temperature and pressure conditions similar to PB1. This will be further discussed 

below. The more important issue for immediate discussion is that the actual wall thickness wact 

is not known. But if an uncertainty description regarding the value of wact can be reasonably 

determined, then this uncertainty description U[wact] can be substituted into Equation 5.3. Any 

uncertainty U[
             

    
] associated with 

             

    
 can also be substituted. Then Equation 

5.3 becomes an equation for uncertainty of the normalized failure pressure for a reference wall 

thickness of 0.02 inches, U[Pfailexper(wref = 0.02”)].  

 

If we normalize all replicate tests (e.g. PB1 and PB4) to the same reference wall thickness as in 

the failure pressure predictions, then we are on the same apples-to-apples basis of wall thickness 

to compare the predicted and experimental PDFs of failure pressure. We must similarly 

normalize the experimental failure pressure results to the same basis of pressure loading and 

temperature boundary conditions before validation comparisons can be made. Generalizing the 

1
st
-order Taylor Series approximation Equation 5.3 to multiple experimental inputs xi, the 

normalization adjustments with respect to each of the individual inputs superpose (add linearly): 

 

Pfailexper( ⃗ref) ≈ Pfailexper( ⃗act) + Σ 
             

     
•(xi_ref – xi_act).            

           Eqn. 5.4 

 

Here Pfailexper( ⃗act) is the measured failure pressure, which occurs under all the actual 

experimental input values  ⃗act.  

 

Any significant measurement and processing uncertainties associated with the experimental 

results of interest (here Pfailexper( ⃗act)) are combined with any significant uncertainties in the 

partial derivatives and in the actual input values xi_act on the right hand side (RHS) of Equation 

5.4. All these uncertainties are propagated to output uncertainty on the normalized failure 

pressure on the left side of the equation. Any correlation between the uncertainties on the RHS 

of the equation must be accounted for in the propagation. A simple spread-sheet-based approach 

is demonstrated later. This approach would be a 1
st
-order or linear UQ method if only 

incorporating uncertainties of the inputs xi_act and of measurements of outputs (first term on 
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RHS) in Equation 5.4. But including uncertainty of the partial derivatives makes this a nonlinear 

UQ method. It will be referred to as a “1
st
-order+” or “linear+” UQ method. 

 

A higher-order UQ approach to evaluation of the RHS of Equation 5.4 is demonstrated in [28]. 

Equation 5.4 and any higher-fidelity UQ approaches are applicable to either or both of random 

and systematic non-traveling uncertainties in replicate experiments supporting model calibration 

or validation.  

 

Equation 5.4 with linear UQ handles non-traveling systematic uncertainty of experimental 

inputs xi in the same way as to two very differently derived linearization approaches [6] and 

[33]. This is reassuring.   

 

When only systematic uncertainties are significant in the replicate experiments, the manner of 

uncertainty treatment and presentation of results in the RS approach can often be simplified, see 

section 5.5. The simplification allows a streamlined approach (e.g. [28]) vs. the spreadsheet 

methodology presented below. An earlier method of treatment in [29] handles all that the 

method below and in [28] do, but the interval approach for aggregating interval uncertainties in 

[29] almost certainly grossly exaggerates uncertainty when more than a couple of interval 

uncertainties are present. But the interval aggregation approach in [29] is simpler. It can be 

easily accomplished with hand calculations; it does not require statistical sampling and therefore 

a random number generator.   

 

5.3.1  Normalization of reference test results 

 

The next step in the procedure is to write Equation 5.4 for the reference test that we are 

normalizing all the test results to. The reference test is PB1 and we normalize it to the PB1 

nominal input conditions used in the simulations in section 5.2. We will later write 

normalization equations for the other replicate experiments.  

 

    PfailPB1( ⃗nomPB1) ≈ PfailPB1( ⃗actPB1) + Σ 
           

     
•(xi_nomPB1 – xi_actPB1)  

           Eqn. 5.5 

 

We only know the failure pressure in PB1 to within the uncertainty of the pressure measurement 

in the test (see Table 5.1). Hence PfailPB1( ⃗actPB1) on the RHS of Equation 5.5 has an 

uncertainty range U[PfailPB1( ⃗actPB1)] = 606 psi ± 10 psi = [596, 616] psi.                

 

The two most substantial terms (by far) in the summation in Equation 5.5 involve differences 

between nominal and actual wall thickness, and nominal and actual temperature, at the location 

of failure initiation in PB1. Hence Equation 5.5 is rewritten as 

 

 PfailPB1( ⃗nomPB1) ≈ PfailPB1( ⃗actPB1) +  
           

    
•(wnomPB1 – wactPB1)  

                                                 +  
           

               
•(TnomTC4-PB1 – Tact@fail_point-PB1).      

           Eqn. 5.6 
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Recall that the PB1 TC data provide the nominal temperature distribution on the pipe for the 

PB1 simulations, and the effect of any errors/uncertainties in reconstructing the temperature 

BCs from the nominal TC data have already been accounted for in Section 5.2. However, 

the nominal TC data are not representative of the actual PB1 temperature conditions in two 

other respects:  

1) temperature measurement errors of the TCs still need to be accounted for; 

2) the actual temperature distribution may have a peak temperature that is  

hotter than at the TC4 location (the hottest TC location in all tests).  

       

It is presumed that failure initiates at the location (point) where the combination of local 

temperature, wall thickness, and material strength determines the weakest point on the pipe 

wall, i.e., the lowest resistance to pressure loading. Yielding initiates there and proceeds until 

failure occurs there. Indeed, the model simulations, which have uniform wall thickness in the 

reduced-thickness 0.02” wall section, predict that initial yielding and then failure occurs at the 

hottest point on the pipe (see Figure 4.9). We assume that in the tests the failures initiate within 

a close vicinity of the hottest TC, TC4. An investigation in [16] suggests this. For the monitored 

specimen, failure initiates at a location indistinguishable from the TC4 location, where the pipe 

wall first splits upwards and downwards, and then circumferentially along the top and bottom 

thickness-transition shoulders as the “butterfly wings” are created (see Figure 1.1). The 

approximate symmetry of the final geometries in Figure 1.1 also implies that failure initiation is 

at the heated front center of the pipe. So we use TC4 as a reference temperature, above which 

we propose 15C as a reasonable maximum possible perturbation to address item 2) in the prior 

paragraph.  

 

(Absent large temperature measurement uncertainties like in Appendix D which applies for 

much larger-diameter TCs than in the PB tests, the item 1) TC measurement errors/uncertainties 

in PB1and PB4 are much more important for the hot-spot TC4 than for the other TCs. 

Propagation of all the TCs’ uncertainties (if large) to evaluate their impact involves a spatially 

coupled problem in the spatially distributed TCs, so evaluating each individual TC’s error effect 

via a separate term in the summation in Equation 5.5 would not be adequate or cost effective. 

See Appendix D for an example evaluation of the effect of spatially correlated errors of the TC 

measurements and how the effect is folded into the larger validation analysis.) 

 

The wall thickness uncertainty in PB1 is modeled as the interval range given in Table 5.3: 

 

 U[wactPB1] = [0.019, 0.022] inch. 

      Eqn. 5.7 

 

The term 
           

    
 in Equation 5.6 is approximated by considering the experimental and model 

simulation results in Figure 5.8. The figure shows predicted failure pressures (listed in Table 

5.4) for test PB1 nominal boundary conditions and pipe wall thicknesses of: 0.02”, the nominal 

value, and 0.019” and 0.024”, the lowest and highest wall thickness measurements recorded in 

Table 5.3. The model used was the full-geometry 1tt-mesh model used for the predictions in 

Figure 5.5, except for changes to wall thickness. Thus, the value in Figure 5.8 for the nominal 

0.02” wall is the same as in Figure 5.5. Failure pressures at the three thicknesses were all 

corrected downward to approximate mesh-converged results by the same nominal correction of 
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-245 psi shown in Figure 5.5. The corrected values are listed in Table 5.4. The regression line 

through the simulation results in Figure 5.8 has a slope of 42,286 psi/inch-wall-thickness and a 

y-intercept of -16 psi when extrapolated to zero wall thickness. 

 

 
Table 5.4  Predicted failure pressures for nominal PB1 conditions and pipe wall thicknesses listed.  

Pipe wall 
thickness 
(inches) 

Predicted failure pressure 
(approximately corrected for 
mesh discretization effects) 

0.019” 780 psi 

0.020” 839 psi 

0.024” 997 psi 

 

 

 

 
Figure 5.8  Failure pressures vs. wall thickness from simulations and experiments. 

 

 

The experimental data line in Figure 5.8 connects failure pressures in the PB1 and PB3 tests 

(Table 5.5). The experimental line has a slope = 29,733 psi/inch-wall-thickness and a y-

intercept of 11.3 psi when extrapolated to zero wall thickness. Test PB3 (see [16]) had a 0.05-

inch thick wall and a hot-spot TC4 temperature of ~700C at failure, similar to PB1. But the 

pressure and temperature ramping conditions were somewhat different in the PB1 and PB3 

tests. Furthermore, the experimental slope of failure pressure vs. wall thickness is subject to 

much uncertainty because it is based on only one test with 0.05” wall and one 0.02” wall result. 

(Table 5.1 gives a glimpse of the magnitude of variation that exists among failure pressures 

even for nominal replicate tests.) It would be best to average over many tests at different wall 

thicknesses to obtain an experimental slope of failure pressure vs. wall thickness, but PB3 is the 

only available test with a wall thicknesses other than 0.02”. Test PB1 had the closest 

temperature conditions at failure to test PB3, so is the best one to plot with PB3 in Figure 5.8. 
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Test PB4 at failure also has close temperature conditions to PB3, but PB4 appears from Table 

5.3 to have a wall thickness not as close to the 0.02” value used in Figure 5.8 and Table 5.5.  

 

 
Table 5.5  Experimental failure pressures for nominal PB1 conditions and  

pipe wall thicknesses listed.  

Pipe wall thickness measured failure pressure  

0.02” 606 psi 

0.05” 1498 psi 

 

 

Given the potential errors in both the simulated and experimental slopes, the following course is 

taken. The differences in failure pressures in the PB1 and PB4 replicate tests is 49 psi, from 

Table 5.1. This is used as a scale of experimental variability to work with. perturbing the 

experimental failure pressures in Table 5.5 by ±49 psi  gives four combinations from which the 

lowest and highest slopes are 26,467 and 33,000 psi/inch-wall-thickness. If we liberally double 

the perturbations to ±100 psi at both wall thicknesses, then the lowest and highest slopes are 

23,067 and 36,400. The upper value is about 15% less than the slope in Figure 5.8 from the 

model simulations. We choose to use the higher value of 42,286 psi/inch from the simulations 

as a liberal upper value in our UQ analysis. We use the experimentally based liberal lower value 

23,067 psi/inch as a lower limit.     

 

                          U[
           

    
] = [23,067, 42,286] psi/inch-wall-thickness.   Eqn. 5.8 

 

The term (TnomTC4-PB1 - Tact@fail_point-PB1) in Equation 5.6 captures the difference between the 

nominal hot-spot temperature (reading from TC4 in Figure 4.3), and the actual temperature at 

the location of failure initiation in the PB1 test. With this term and the partial derivative 
           

               
 we normalize between the nominal temperature conditions modeled, and the 

actual temperature conditions in the test. For reasons mentioned earlier we normalize only for 

local temperature differences at the failure initiation point (close vicinity of TC4) and ignore 

measurement uncertainties of the other TCs. The difference (TnomTC4-PB1 - Tact@fail_point-PB1) is 

separated into two components:  

 

A) TC4 measurement error – the difference between the TC4 reading value TnomTC4-PB1 

and the actual pipe temperature at that location, TactTC4-PB1;  

  

B) TC4 location related error – any difference between the TC4 temperature after being 

corrected for any measurement error, TactTC4-PB1, and the temperature where failure 

occurs, Tact@fail_point-PB1.  
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The following identity is written in terms of components A and B. 

 

TnomTC4-PB1 - Tact@fail_point-PB1= (TnomTC4-PB1 – Tact@TC4-PB1) + (Tact@TC4-PB1 - Tact@fail_point-PB1). 

                                                 =   TC4 measurement error    +    TC4 location related error   

                     Eqn. 5.9 

Component A, TC4 measurement error, itself has several components: 

 

       TC4 measurement error = TnomTC4-PB1 - Tact@TC4-PB1 = (TnomTC4-PB1 - TofTC4-PB1) 

                     + (TofTC4-PB1 – Tact@TC4-PB1).  

           Eqn. 5.10 

 

Here, {TnomTC4-PB1 - TofTC4-PB1} = ∆Tmeas-TC/DAQ is the difference or error between the TC’s 

actual temperature, TofTC4-PB1, and the temperature TnomTC4-PB1 reported by the data acquisition 

system (DAQ). This error is caused by inaccuracies associated with the TC transducer itself, the 

calibration standard and procedure used to calibrate the TCs if calibration is performed, and the 

DAQ. The combined TC/calibration/DAQ errors are typically very small. Uncertainty on the 

combined error is estimated from information in [31] as: 

 

   U[∆Tmeas-TC/DAQ] = U[TnomTC4-PB1 - TofTC4-PB1] = [-0.25%, 0.25%] of TC4 reading in °C.  

           Eqn. 5.11 

 

TofTC4-PB1 – Tact@TC4-PB1 = ∆Tmeas-contact is the difference or error between the TC’s actual 

temperature, TofTC4-PB1, and the temperature Tact@TC4-PB1 of the pipe surface at the TC4 

location.  

This error is caused by contact resistance between the surface and the attached TC, and by 

convective and radiative conditions affecting heat losses from the TC bead or attached wire tips 

if an intrinsic TC. The PB tests used intrinsic TCs with very small wire tip diameters of 0.005-

in. Uncertainty on the temperature difference between the TC and the surface point it is attached 

to is estimated from information in [32]: 

 

     U[∆Tmeas-contact] = U[TofTC4-PB1 – Tact@TC4-PB1] = [0., 0.25%] of TC4 reading in °C.    

           Eqn. 5.12 

 

The uncertainty ranges from zero to + 0.25% because the TC4 leads are between the surface 

being measured and the heating plate. Therefore, at the attachment location the leads will be 

hotter than the surface. Hence the error will be positive. In general, errors ∆Tmeas in Equation 

5.11 and 5.12 have positive values when, taken alone, they cause an overestimate of the true 

surface temperature at the TC4 location. 

 

Component B of failure-temperature error in Equation 5.9 is due to TC4’s location being 

potentially different from where failure occurs:  

 

Tact@TC4-PB1 - Tact@fail_point-PB1 = ∆TTC4location                              Eqn. 5.13 
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We mentioned earlier that the actual peak temperature on the pipe could be a small distance 

away from TC4, and as much as 15C above the true pipe surface temperature at TC4. Then 

Equation 5.13 yields ∆TTC4location = -15C as the largest negative value we estimate can occur.  

 

But in the real experiment, failure will not necessarily occur at the hottest point on the pipe due 

to wall thickness and material strength spatial variations. Instead it occurs at the location of the 

weakest combination of thickness, temperature, and material strength. Therefore we must also 

consider possible failure temperatures lower than the temperature Tact@TC4-PB1 at TC4. It is 

more difficult to propose a reasonable lower bound for the possible true failure temperature 

Tact@fail_point-PB1. We simply guess that failure could occur at a point that is as much as 15C 

below the pipe temperature at the TC4 location. Then Equation 5.13 yields a maximum value of 

15C for ∆TTC4location. Thus,  

  

     U[∆TTC4location] = U[Tact@TC4-PB1 - Tact@fail_point-PB1] = [-15, +15]°C.              Eqn. 5.14 

 

In all we have:  

TnomTC4-PB1 - Tact@fail_point-PB1= (TnomTC4-PB1 – Tact@TC4-PB1) + (Tact@TC4-PB1 - Tact@fail_point-PB1). 

                                                 =  TC4 measurement error    +    TC4 location related error   

                          = (∆TmeasTC/DAQ + ∆Tmeas-contact)  +          ∆TTC4location.     

           Eqn. 5.15 

 

Failure pressure difference due to different nominal and actual wall thicknesses in the PB1test is 

approximated in Equation 5.6 by 
           

    
•(wnomPB1 – wactPB1), whereas failure pressure 

difference due to different local material temperatures is approximated by (from equations 5.6 

and 5.15):   

 

                     
           

               
 (∆Tmeas-TC/DAQ + ∆Tmeas-contact +  ∆TTC4location).               Eqn. 5.16 

 

The partial derivative in the above equation is approximated by the slope of the curve in Figure   

2.9 evaluated for the temperature at the failure location. The slopes are calculated from the 

means of the data at the various temperature levels in Table 2.3. The slope in Figure 2.7 

between the data means at 600C and 700C is -1.71 psi/C. The slope between the data means at 

700C and 800C is -2.61 psi/C. Averaging these two slopes gives -2.16 psi/C, which is the same 

value that would come from central-differencing for a second-order approximation to the slope 

at 700C. The temperature perturbations in Equations 5.6 (and 5.16) are relative to the PB1 

nominal failure temperature of 706C, and applicable temperatures remain within about [-30, 

+80] of 700C. Given all this information the previously mentioned values of -1.71 psi/C and -

2.61 psi/C are used as uncertainty extremes about the nominal 700C value of -2.16 psi/C. Thus,    

 

         U[ 
           

               
] =   ─ [1.71, 2.61] psi/C.                                    Eqn. 5.17 

 

Given the uncertainty descriptions of the applicable terms on the RHS of Equation 5.6 we are 

now ready to sample the uncertainties to estimate the uncertainty on the LHS term. The 

resulting uncertainty, U[PfailPB1( ⃗nomPB1)], is the uncertainty of the PB1 failure pressure when 
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normalized to the nominal experimental conditions input to the model simulations in Section 

5.2. We obtain samples j=1,J of the uncertainty U[PfailPB1( ⃗nomPB1)] by combining j=1,J 

realizations of the uncertainties on the RHS terms in Equation 5.6. In terms of the intervening 

developments, the realizations are written as:  

 

    PfailPB1( ⃗nomPB1) j ≈ PfailPB1( ⃗actPB1) j + { 
           

    
•∆wPB1 }j 

                                                 + {
           

               
 (∆Tmeas-TC/DAQ + ∆Tmeas-contact +  ∆TTC4location)}j   

           Eqn. 5.18 

 

where the ∆ terms have already been defined except for 

 

∆wPB1 = wnomPB1 – wactPB1.                                                                       Eqn. 5.19 

 

A spreadsheet is a convenient way to do the sampling and processing of the realizations. From 

Equation 5.18 we populate a spreadsheet as illustrated by Tables 5.6 and 5.7. The quantities in 

yellow highlighted columns 2, 5, 8, and 10 in Table 5.6 designate correlated uncertainties with 

the same-numbered columns for other tests to be described later. For all uncertainties in Tables 

5.6 and 5.7 designated by interval ranges […] (e.g. from Equation 5.17), samples from uniform 

distributions are obtained from available sampling tools in the spreadsheet, or are imported from 

external sampling operations.  

 

The uncertainties in the present application are defined as interval ranges. Both interval and 

probabilistic (PDF) uncertainties have been treated in other applications ([25], [28], [29]). A 

different method of treatment of interval uncertainties in [29] used interval propagation and 

aggregation techniques to deal with interval uncertainties over the monotonic uncertainty space 

in that problem. But this method of aggregation almost certainly gives a grossly exaggerated 

estimate of the uncertainty when more than a couple of interval uncertainties are present. This is 

because combinations of the extreme values of the interval uncertainties present an increasingly 

remote possibility as the number of interval uncertainties rises. We use the sensibility that the 

validation conclusions should not be driven by the remote possibilities of compounded extremes 

of the interval uncertainties. Rather, we here use uniform PDF representations of the interval 

uncertainties and propagate them probabilistically via the spreadsheet. If sufficient sampling is 

performed (and this is very fast and inexpensive inside or outside of the spreadsheet), then the 

resulting density function (DF) will have endpoints that coincide with the endpoints from an 

interval UQ treatment. But the DF will not weight the very remote extreme combinations as 

prominently. Thus, this manner of treatment moderates a compounded interval treatment. But 

we do not interpret the resultant DF as a probability density. We use the DF to arrive at a 

moderated magnitude of interval uncertainty for the validation assessment (see section 5.4).  

 

A similar moderating approach is used in [28] where both interval and probabilistic 

uncertainties are present and are propagated in a segregated fashion. In [25] the intervals were 

simply treated as uniform PDFs and comingled with the probabilistic uncertainties in 

propagation. The treatment in [28] is now preferred when both interval and probabilistic 

uncertainties are present.    

 



 85 

Care should be exercised with random number generator seeds and sequences in the spreadsheet 

so that the columns of random samples in Table 5.7 (and Table 5.9 etc.) are independent of each 

other unless correlation is intended and is purposely imposed. For the particular comparisons to 

be made in Section 5.4 it is recommended that at least 1000 realizations be taken (J ≥ 1000 in 

Tables 5.6, 5.7, etc.). In the following we use J=1000. 

 

 
Table 5.6  Spreadsheet formulas for uncertain experimental quantities in Equation 5.18 for test 

PB1.  
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Table 5.7  Spreadsheet realizations for uncertain experimental quantities in test PB1.  

 
 

 

Column A12 of Table 5.7 contains the realizations of uncertainty of PB1 failure pressure, 

U[PfailPB1( ⃗nomPB1)], when normalized to the nominal PB1 experimental conditions input to the 

model simulations in Section 5.2. These realizations are histogrammed in Figure 5.9 along with 
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realizations from similar normalizations of other tests. The other tests and their normalized 

results will be discussed later. 

 

Statistics at the bottom of Table 5.7 summarize the impacts of various uncertainties in the 

normalization of PB1 failure pressure. The green box in column A6 shows the average 

adjustment of PB1 experimental failure pressure normalized for possible differences from the 

nominal 0.02” wall thickness used in the simulations in Section 5.2. The green box in column 

A11 shows the average bias adjustment when PB1 failure pressure is normalized for possible 

differences from the nominal temperature field and failure location in the simulations. The 

green box in column A2 shows a zero average bias adjustment when PB1 failure pressure is 

normalized for possible measurement error affecting the nominal pressure values used in the 

simulations. The zero average adjustment occurs because the measurement uncertainty [-10, 

+10] psi is symmetric about a value of zero measurement error. The average adjustment of -17.8 

psi for wall thickness adds with the average adjustment of -2 psi for temperature normalization 

to yield a combined adjustment of -19.8 psi from the nominal measured failure pressure of 606 

psi in Table 5.1. The resulting average normalized failure pressure is 586.2 psi listed in the pink 

box at the bottom of Table 5.7. Regarding sensitivity rankings, the average adjustment of -17.8 

psi associated with wall thickness normalization is much larger than the average adjustment of -

2 psi due to temperature normalization.  

 

Possible wall thickness differences from nominal lead to variations in normalized failure 

pressure characterized by the standard deviation of 28.1 psi in the grey box in column A6. 

Possible failure temperature differences from nominal yield a standard deviation of 17.1 psi in 

normalized failure pressure per the grey box in column A11. Possible pressure measurement 

error yields a standard deviation of 5.8 psi in failure pressure per the grey box in column A2. 

These three sources of variance combine to yield a variance characterized by the standard 

deviation in the pink box at the bottom of Table 5.7. The individual variance effects add 

according to the sum of the squares of their standard deviations. The square root of this sum is 

33.4 psi. This closely agrees with the standard deviation 32.8 psi in the pink box, calculated 

directly from the realizations in column A12. The 1.9% discrepancy between the two methods 

of calculation is attributed to sampling differences underlying the standard deviations calculated 

from the realizations down columns A2, A6, and A11 vs. the standard deviation of the 

realizations in column A12 calculated from row sums of uncorrelated random values across the 

rows of columns A2, A6, and A11. The discrepancy between standard deviation calculated 

these two ways is expected to diminish as the number of realizations J → ∞.  

 

In terms of sensitivity ranking, the variance contributed by wall thickness normalization is much 

larger than variance contributed by temperature normalization, which itself is much larger than 

variance contributed by pressure measurement uncertainty. Comparing the temperature 

uncertainties in columns A7, A8, and A9 shows that, by far, the largest component of variance 

due to failure temperature normalization is contributed by the [-15, +15] failure temperature 

uncertainty due to uncertainty in the location of failure initiation. 
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Figure 5.9  Uncertainty histograms of PB test failure pressures normalized to input conditions of model 

validation simulations. 

 

 

5.3.2  Normalization for replicates of the reference test 

 

To write normalization equations for tests other than the one we are normalizing to (here PB1), 

we illustrate the procedure for test PB4. We start by writing a characteristic identity for such 

tests. For PB4:  

 

   PfailPB4( ⃗nomPB1) = PfailPB4( ⃗actPB4) 

                                   + [PfailPB4( ⃗nomPB4) - PfailPB4( ⃗actPB4)]                     Eqn. 5.20 

                                   + [PfailPB4( ⃗nomPB1) - PfailPB4( ⃗nomPB4)]. 

 

The term in the second row of Equation 5.20 is evaluated from a PB4 analogue of Equation 5.5, 

to normalize test results between PB4 actual and nominal experimental conditions: 

 

PfailPB4( ⃗nomPB4) - PfailPB4( ⃗actPB4) ≈ Σ 
           

     
•(xi_nomPB4 – xi_actPB4).           Eqn. 5.21 

 

The term in the third row of Equation 5.20 represents the difference that would exist if the PB4 

pipe was subjected to the nominal input conditions from test PB1. We use the simulation model 

to approximate this difference by simulating to failure with the nominal PB1 inputs and then 

with the nominal PB4 inputs:  
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PfailPB4( ⃗nomPB1) - PfailPB4( ⃗nomPB4) ≈ Pfailmodel( ⃗nomPB1) – Pfailmodel( ⃗nomPB4).   Eqn. 

5.22 

 

The model is used as the best available mechanism for estimating how things would change in 

reality under these perturbations to the input conditions. The model doesn’t have to be accurate 

in an absolute sense. But over the uncertainty ranges of the uncertain inputs  ⃗i it must be 

sufficiently accurate in a relative sense of providing trend information (e.g. slope if linear UQ is 

used) such that propagating and accounting for these uncertainties improves the validation 

analysis vs. simply ignoring them. This is often a judgment call by the physics modelers and 

VVUQ analysts in the project.  

 

Substituting equations 5.21 and 5.22 into Equation 5.20 yields   

 

PfailPB4( ⃗nomPB1) ≈ [Pfailmodel( ⃗nomPB1) – Pfailmodel( ⃗nomPB4)] 

                                 + PfailPB4( ⃗actPB4) + Σ 
           

     
•(xi_nomPB4 – xi_actPB4).      Eqn. 5.23   

 

The term in row 1 of the RHS of Equation 5.23 enacts an approximate adjustment for PB1 vs. 

PB4 nominal input conditions,  ⃗nomPB1 vs.  ⃗nomPB4. The term in row 2 of the RHS enacts an 

approximate adjustment for PB4 nominal vs. actual conditions,  ⃗nomPB4 vs.  ⃗actPB4. The 

treatment of row 2 is analogous to Equation 5.5 and hence ultimately Equation 5.18. The new 

information required for the PB4 evaluation in Table 5.8 follows.  

 

The wall thickness uncertainty in PB4 is modeled as the interval range given in Table 5.3: 

 

 U[wactPB4] = [0.02, 0.024] inch.                           Eqn. 5.24 

  

The failure pressure in PB4 has an uncertainty U[PfailPB4( ⃗actPB4)] = 655 psi ± 10 psi (see Table 

5.1). In Tables 5.8 and 5.9 this ±10 psi uncertainty is treated as being perfectly correlated to the 

pressure measurement uncertainty ±10 psi in PB1 (Tables 5.6 and 5.7) because the same 

pressure gauge was used in the two tests so systematic measurement error exists among the two 

tests. Assuming that the random-error component is small relative to the systematic component, 

the gage’s majority of error and the associated uncertainty are systematic over the replicate 

tests. Hence the realizations in column B2 are taken to be the same as in column A2. The 

heading in column B2 is highlighted yellow to signify commonality of this quantity with the 

quantity in column A2 for test PB1.  

 

The quantities in columns B5, B8, and B10 of Tables 5.8 and 5.9 are also highlighted yellow for 

similar reasons. The green-highlighted entries in Table 5.8 denote changes from PB1’s Table 

5.6. Column A12 of Table 5.6 is shifted rightward to become column B13 in Table 5.8, with 

other changes highlighted in green in the column B13 heading. The new column B12 represents 

row 1 of the RHS of Equation 5.23. This term enacts an approximate adjustment to PB4 failure 

pressure according to the difference in computational model results at PB1 nominal inputs and 

PB4 nominal inputs. Note that the uncertainties [-15, +15]C in column B9 and in column A9 for 

PB1 are of the same magnitude but independent of each other; the realizations in a given row j 
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of columns A9 and B9 are uncorrelated. Different initial seeds are used to sample all column 

quantities for PB1 and PB4 except for the yellow highlighted columns as explained earlier. 

 
Table 5.8  Spreadsheet formulas for uncertain experimental quantities in Equation 5.23 for test 

PB4.  
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Table 5.9  Spreadsheet realizations for uncertain experimental quantities in test PB4.  

 
 

 

Column B13 of Table 5.9 contains the realizations of uncertainty of PB4 failure pressure when 

normalized to the nominal PB1 reference experimental conditions input to the model 
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simulations in Section 5.2. These realizations are histogrammed in Figure 5.9. The realizations 

are processed with realizations from the other replicate tests as explained in the next section. 

 

The statistics at the bottom of Table 5.9 summarize the impacts of various uncertainties in the 

normalization of PB4 failure pressure. The green boxes reveal that the average normalization 

adjustment in PB4 experimental failure pressure is greatest (-62.8 psi) due to possible 

differences from the nominal 0.02” wall thickness used in the simulations. This is a much larger 

mean adjustment than the -17.8 psi mean adjustment for PB1 normalization because PB4’s 

[0.02”, 0.024”] range of wall thickness uncertainty is centered significantly further from the 

nominal 0.02” than is PB1’s [0.019”, 0.022”] uncertainty range. Next in magnitude of 

normalization adjustment is the -8 psi in column B12, which comes from simulations at nominal 

PB1 and PB4 test conditions (Equation 5.22). Next in magnitude is the average normalization 

adjustment of -0.96 psi due to failure temperature normalization. The green box in column B2 

shows a zero average bias adjustment for failure pressure measurements error. The green boxes 

yield a combined bias shift of -71.8 psi from the nominal measured failure pressure of 655 psi in 

Table 5.1. The resulting average normalized failure pressure is 583.2 psi listed in the pink box 

at the bottom of Table 5.9.  

 

Potential wall thickness differences from nominal lead to variations in normalized failure 

pressure characterized by a standard deviation of 39.1 psi. This is significantly larger than the 

value of 28.1 psi for PB1. This is because of PB4’s larger [0.02”, 0.024”] wall thickness 

uncertainty compared to PB1’s [0.019”, 0.022”] uncertainty. Potential failure temperature 

perturbations from PB4 nominal yield a standard deviation of 17.0 psi in normalized failure 

pressure. This very closely reflects the value of 17.1 psi for PB1 failure temperature 

normalization. Column B2’s repeat of column A2 of course also here yields a standard 

deviation of 5.8 psi due to possible pressure measurement error. 

 

The square root of the sum of squares of the contributing standard deviations in the grey boxes 

in Table 5.9 is 42.99 psi. This closely agrees with the value 42.97 psi in the pink box, calculated 

directly from the realizations in column B13. This standard deviation is significantly greater 

than that for PB1 (32.8 psi). This is reflected in the relative widths of the distributions in Figure 

5.9.  

 

The variance contributed by wall thickness normalization is here proportionately even greater 

(compared to the PB1 case) than the variances contributed by failure temperature normalization 

and by pressure measurement uncertainty. As in the PB1 case, the largest component of 

variance due to failure temperature normalization is contributed by the [-15, +15]C failure 

temperature uncertainty due to uncertainty in the location of failure initiation. 

 

5.3.3  Combining possible values of normalized failure pressures to yield estimated ranges of 

failure population statistics 

 

Columns A12 of Table 5.7 and B13 of Table 5.9 yield, for each row j, a pair of potential failure 

pressures from replicate experiments normalized to the same experimental input conditions (and 

to the same input conditions used in the simulations in Section 5.2). Then, hypothetically, if the 

realizations in a given row j happen to correspond to exact normalizations for the true input 
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conditions in the tests, the disparities between the two values in that row are not attributable to 

differences in input conditions between tests or to measurement errors on the outputs. The 

disparities would then reflect differences between the two tests that were not accounted for in 

the normalization procedure. In the present case the only apparent element of major importance 

that was not explicitly normalized is material strength differences at the failure initiation 

locations in the tests. Thus we attribute any differences in exactly normalized failure pressures 

to material strength variability between tests.  

 

The failure pressure disparities are a gauge of the material strength variability, just like in the 

simulated PDFs of failure pressure variability depicted in Figure 5.5 and originating from 

material variability parameterized by differing stress-strain curves from the material 

characterization tests. For validation comparisons of experimental failure pressures against the 

predicted PDFs of failure pressure we form compatible PDFs of experimental failure pressure 

variability. From the row j (hypothetical) exactly normalized pair of PB1 and PB4 failure 

pressures we can form a n=2-sample 0.95/0.90 tolerance interval (TI) and associated Normal 

PDF to compare against the predicted range of 0.95/0.90 TIs and associated PDFs in Figure 5.5. 

(See Table 2.1 and surrounding text for details on how to construct 2-sample 0.95/0.90 TIs and 

associated Normal PDFs.) 

 

In our procedure we do not expect that the J=1000 realizations will contain a row j that has 

perfectly normalized failure pressures for PB1 and PB4. But if the following conditions apply 

then one or more rows will come arbitrarily close to perfectly normalized failure pressures 

jointly (simultaneously) for PB1 and PB4.  

 

Conditions 

 Parameters explicitly normalized-for contain the actual experimental values within 

the stated uncertainty ranges.  

 The modeling of response (here failure pressure) over the ranges of the 

normalization parameters is sufficiently accurate that sufficient sampling of the 

modeled response over the parameter values in the normalization procedure yields 

one or more rows of normalized PB1 and PB4 failure pressures that are 

simultaneously closely representative of exactly normalized PB1 and PB4 failure 

pressures.  

In the present analysis it may be that the J=1000 realizations and/or the models used (the 

physics model, the experimental slope information, the estimated uncertainty ranges, and 

linear+ Taylor Series model) are not sufficient to meet the stated conditions. Because this is 

a relatively new methodology we have not yet looked into ways of determining or 

establishing the said sufficiencies. Nonetheless, we anticipate that several rows of 

realizations have values that are simultaneously closely representative of exactly normalized 

PB1 and PB4 failure pressures. We proceed assuming this is the case. Then the sought 

results from exactly normalized PB1 and PB4 failure pressures will lie within the 

uncertainty ranges defined by the 1000 realizations.   

 

The present analysis produces J=1000 2-sample 0.95/0.90 TIs from the 1000 rows of 

estimates of PB1 and PB4 normalized failure pressures in columns A12 of Table 5.7 and 

B13 of Table 5.9. A convenient notional representation of the significance of the 1000 TIs is 
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portrayed by the associated Normal PDFs depicted notionally in Figure 5.10. The Normal 

PDFs in the figure only serve as a conceptualization aid; they are not constructed in the 

course of the analysis. The figure depicts the uncertainty range of the 1000 TI estimates for 

lower bounds on the 0.025 percentile of response. An uncertainty range is also depicted for 

the estimated upper bounds on the 0.975 percentile of response. We can compare these 

uncertainty ranges against the uncertainty ranges for predicted 0.025 and 0.975 percentiles 

of response from model simulations (Figure 5.5) under the common reference experimental 

conditions. Such comparisons are made and interpreted in Section 5.4. 

 

Note that the 0.025 and 0.975 percentiles of response are the only response statistics that can 

be addressed from the current construction. For example, the uncertainty of the means of the 

depicted Normal PDFs in Figure 5.10 (same as the means of the underlying 0.95/0.90 TIs) 

are not appropriate to compare against the range of means denoted by the upper and lower 

simulation PDFs in Figure 5.5. Instead, the 1000 rows of PB1 and PB4 normalized results 

would need to be processed to create 1000 n=2-sample t-distributions. Each such 

distribution characterizes the uncertainty of a population mean calculated from just two 

samples of data. So the processing of the PB1 and PB4 normalized failure pressures must be 

tailored to specific response statistics that are to be compared in the validation assessment. 

Experimental and simulated 0.025 and 0.975 percentiles of response were chosen as 

validation quantities in this project because these percentiles combine the effects of small-

sample uncertainties in both the response mean and variance, and appear more relevant to 

the validation assessment of a model that is to be used for design or safety margin 

predictions.    

 

 

 
Figure 5.10  Uncertainty of statistical bounds on 0.025 and 0.975 failure pressure percentiles inferred 

from a small number of tests normalized to PB1 nominal experimental conditions.   
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5.3.4  Pooling more PB tests/results to reduce uncertainty of population statistics 

 

The results from using the n=2 samples from the PB1 and PB4 tests yield unreasonable 

uncertainty ranges for the sought percentiles. In particular, a substantial portion of the 

uncertainty range for the lower percentile (0.025) of response reached into negative (impossible) 

values of failure pressure. A large contributor to these uncertainty ranges is the large value 

f0.95/0.90 = 18.8 that multiplies the response standard deviation  ̃ from two tests to obtain 

0.95/0.90 tolerance intervals of half-length 18.8 ̃ (see Table 2.1 and surrounding text). 

  

To obtain more statistical precision we note that two similar tests, PB4 and PB10, were 

performed at 650C-hold conditions with similar pressurization profiles as in the PB1 and PB4 

tests. The 650C-hold tests were planned replicates of each other. In Appendix E these test are 

described and their results are normalized to the PB1 nominal conditions so they can be pooled 

with the normalized PB1 and PB4 results to get a population of 4 samples, which decreases the 

multiplier value to f0.95/0.90 = 4.94 (Table 2.1), about ¼ the 2-sample magnitude of 18.8.  

 

The 650C-hold tests PB2 and PB10 are similar enough to the 700C-hold tests PBs 1 and 4 that it 

is reasonable to expect PB2 and PB10 failure pressures can be normalized to the nominal PB1 

test conditions accurately enough that pooling of the four tests’ results is justified. Figure 5.11 

shows the axial and circumferential temperature profiles at failure for PBs 1, 2, 4, 10. The 

temperature profiles are approximately the same shape but are vertically shifted relative to each 

other in the hot spot region. The principal effects of the different hot-spot temperatures in the 

tests are approximately normalized-out in Appendix E by assuming that the peak temperature at 

TC4 determines the failure pressure far more than temperatures away from this peak. Then the 

temperature vs. failure pressure relationship in Figure 2.7 is used to normalize for different peak 

(TC4) temperatures. Though this approach is deemed sufficient to support the ultimate 

conclusions of the validation analysis, it is less accurate than using the physics model as was 

done to normalize PB2 failure pressure for its different temperature profile vs. PB1 (see 

Equation 5.22 and column 12 in Table 5.8). But it was determined late in the validation project 

that working with just PB1 and PB4 tests led to unacceptably large tolerance intervals for many 

of the realizations of normalized failure pressures. So there was insufficient time to use the 

simulation model for PB 2 and 10 analogues of Equation 5.22 given the model’s ~month-long 

run times on 800 processors.    
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Figure 5.11  Pipe axial (left plot) and circumferential (right plot) TC temperatures at time of failures in 

the 650-hold and 700C-hold experiments.  

 

    

Tables E.4 and E.6 list sample realizations from the normalization of PBs 2 and 10. Columns 13 

contain the realizations of the normalized failure pressures. The realizations are histogrammed 

in Figure 5.9. In the figure the normalized 650C-hold  PB 2 and 10 results are lower by 50 – 100 

psi on average than the normalized PB 1 and 4 results. It would not be surprising to get a 

systematic difference between the normalized 650C-hold  PB 2 and 10 results vs. the 

normalized 700C-hold PB 1 and 4 results. The PB 2 and 10 tests involve pipe temperature fields 

that are more than a small perturbation away from the reference PB1 conditions. Moreover, 

normalization for this large difference was not as accurate as it could have been if project 

resources would have allowed running the physics model at the PB2 and PB10 input conditions. 

Instead, a less accurate approach considered only the hottest TC’s temperature (TC4) and 

normalized using the relationship in Figure 2.7 as described in Appendix E.  

 

The J=1000 realizations for each of the four PB tests normalized to the reference PB1 

experimental conditions are histogrammed in Figure 5.9. From these, J=1000 TIs are 

constructed: a 4-sample 0.95/0.90 TI is constructed for each row of estimates of normalized 

failure pressures in column A12 of Table 5.7 and columns 13 in Tables 5.9, E.4, and E.6. Again, 

a convenient notional representation of the significance of the 1000 TIs is portrayed in Figure 

5.10. Uncertainty bands of the 1000 lower ends and 1000 upper ends of the constructed TIs are 

portrayed. Actual values defining such uncertainty bands for the present problem are binned in 

Table 5.10. Corresponding histograms are shown at right in Figure 5.12. In the next section we 

compare and interpret these uncertainty ranges against the uncertainty ranges for predicted 

0.025 and 0.975 percentiles of response from model simulations (Figure 5.5).  
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Table 5.10  Binned endpoints of 0.95/0.90 TIs constructed from realizations of normalized failure 

pressures of tests PB 1, 2, 4, 10.  

bins,  2.5%ile  
(µ - 4.94σ,  
4-sample 
95/90 Tol. 

Intvl.) Frequency 
Cumulative 

% 
 0 2 0.20% 
 50 2 0.40% 
 100 15 1.90% 
 150 67 8.61% 
 200 120 20.62% 
 250 208 41.44% 
 300 218 63.26% 
 350 202 83.48% 
 400 116 95.10% 
 450 40 99.10% 
 500 9 100.00% 
 

 

bins,  97.5%ile 
(µ + 4.94σ,  
4-sample 
95/90 Tol. 

Intvl.) Frequency Cumulative % 
 570 0 0.00% 
 630 11 1.10% 
 690 65 7.61% 
 750 135 21.12% 
 810 214 42.54% 
 870 265 69.07% 
 930 183 87.39% 
 990 96 97.00% 
 1050 26 99.60% 
 1110 4 100.00% 
 

 

 

 

5.4 Model Validation Comparisons and Observations 
 

In Figure 5.12, the histograms reflect Table 5.10’s binned uncertain values of the upper and 

lower endpoints of 0.95/0.90 tolerance intervals from the four normalized tests. As explained 

earlier, the interval uncertainties input to the data normalization operations are temporarily 

represented as uniform PDFs and sampled accordingly. If the interval uncertainties were instead 

propagated as intervals, the lower and upper interval limits on the 0.975 percentile of response 

would extend somewhat beyond the range of the red histogram in Figure 5.12. But the joint 

extremes of the uncertainty ranges that would produce these interval limits are considered 

exceedingly unlikely. Instead the 0.05 and 0.95 percentiles of the red histogram are chosen to 

represent a more reasonable range of uncertainty for the 0.975 percentile of response (failure 

pressure). The corresponding red interval in the figure represents the moderated interval 

uncertainty used in the following. Similar considerations underlie the rightmost green interval in 

the figure. 

 

The histograms at right in Figure 5.12 were constructed from interval uncertainties input to the 

data normalization operations. But the methodology is readily extendable to non-interval 

uncertainties. Any of the random and systematic measurement/processing/inference 

uncertainties in the columns of the spreadsheets could alternatively have been PDFs or 

histograms or probability boxes [44]. The sampling and processing would be similar to what has 

been presented, but the sample realizations would be drawn from PDFs and/or histograms 

and/or probability boxes and/or interval uncertainties. In any of these cases, histograms like at 

right in Figure 5.12 would result. It is recommended that corresponding intervals like the ones 

at right in the figure be used for comparison to uncertainties of the model-predicted percentiles. 
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But if all data uncertainties are represented as PDFs in the columns, the simplified treatment 

discussed in section 5.5 can be employed and the resulting histograms can be interpreted as a 

PDFs of probabilistic uncertainty. Then either the PDFs or representative spans, e.g. the 0.05 to 

0.95 spans, can be compared to the uncertainty ranges of the model-predicted percentiles.   

 

 

 

Figure 5.12  Model validation comparison of uncertainty ranges of simulation percentiles of response 

and normalized experimental percentiles of response.  

 

The red and green intervals at left in Figure 5.12 are obtained from the 0.025 and 0.975 

percentiles of the upper and lower Normal PDFs of predicted response in Figure 5.5. Consider 

the green intervals in Figure 5.12 for 0.025 percentiles of predicted and experimental response. 

The green intervals do not overlap. Therefore it is straightforward that, for this lower percentile 

of response, the model predicts higher failure pressures than inferred from testing. If, for 

instance, this lower percentile of response is written into a design or safety spec that <2.5% of 

pipes of this design are to fail under applied pressure and temperature conditions emulated in 

the tests, then the experiments are indicating a lower failure pressure for 2.5% of pipes than the 

model is predicting. The model therefore gives unconservative predictions for these 

circumstances.  

 



 97 

How these results extrapolate to other applications of the constitutive model (different pressure 

vessel geometries, heating conditions, wall thicknesses, etc.) is a very difficult issue and beyond 

the scope of this project. But with some reasonable assumptions and a little more analysis one 

could take the results in Figure 5.12 and extend them to cases where the same pipe design and 

experimental conditions exist but the spec has lower allowable percentages of failure like 1% or 

0.001%. We could tentatively conclude similarly that the model would be unconservative for 

those spec regimes as well. With less assumptions one could reprocess the experimental and 

simulation data for a more definitive assessment of prediction conservatism or not, and by how 

much, for specific individual percentiles of behavior. For example, the data can be reprocessed 

for two-sided confidence intervals on an individual percentile of interest like the 99
th

 percentile 

of behavior, or can be reprocessed for one-sided confidence or tolerance bounds associated with 

a prescribed statistical confidence that a particular percentile of response meets, exceeds, or 

does not encroach upon a threshold response level, from below or above as specified.   

 

Now consider the red intervals in Figure 5.12 for 0.975 percentiles of response. These intervals 

overlap and the experimental and simulation uncertainties they represent are statistically 

independent. Therefore there are numerous possibilities that the experimental 0.975 percentile 

of response is higher than the predicted 0.975 percentile, and vice versa. So we cannot 

conclude, as was done for the 0.025 percentile, that the predictions are unconservative (or 

alternatively that they are conservative). One limiting case for these ranges of uncertainty is that 

the predicted 0.975 percentile is as high as 951 psi as labeled in the figure, while the 

experimental percentile is as low as 669 psi, as labeled. In this limiting case the predicted 0.975 

percentile is up to 282 psi higher than the experimental percentile. The opposite limiting 

possibility is that the predicted 0.975 percentile is as low as 814 psi, while the experimental 

percentile is as high as 969 psi. Then the predicted 0.975 percentile is as much as 155 psi lower 

than the experimental percentile. 

 

Thus the uncertainty U{predicted 0.975 percentile minus experimental 0.975 percentile} = [-

155, 282] psi = the model’s range of potential prediction bias. Information in this form accounts 

for all the experimental and simulation non-traveling uncertainties combined. This combined 

non-traveling uncertainty defines the uncertainty resolution limit below which the model’s exact 

bias cannot be determined (similar to the concept introduced in [34], and adopted in [22], but 

which does not distinguish between traveling and non-traveling uncertainties).  

 

Because the non-traveling uncertainties of the simulations and experiments are combined, a 

given source of non-traveling uncertainty can be aggregated either with the simulation non-

traveling uncertainties, or with the experimental non-traveling uncertainties, and the combined 

experimental and simulation uncertainty will be essentially the same—provided a few 

restrictions are met as discussed in Appendix D. Hence it is often a matter of convenience, 

constrained by convention and sensibility, where individual (negligibly correlated or 

interacting) non-traveling uncertainties are brought into the Real Space accounting ledger—

either within the simulation UQ rollup or within the experimental UQ rollup. An example of 

such interchangeability is given in Appendix D. 

 

How to best use a model’s validation-characterized bias uncertainty to mitigate prediction risk 

in use of the model beyond the validation conditions is beyond the scope of this document. This 
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is a very difficult question and an active area of research (see e.g. [6], [8], [26], [28]). See also 

[35] – [37] for different extrapolation approaches based on other representations of model bias 

information.  

 

As a final observation, correlation exists among the realizations that define the ranges of the red 

and green intervals on the simulation side in Figure 5.12. Correlation (but weaker) also exists 

among the realizations that define the ranges of the red and green intervals on the experimental 

side. Given the correlation structure there are many more possibilities (potential realizations) 

that the distance between the 0.025 and 0.975 predicted percentiles is less than the distance 

between the 0.025 and 0.975 experimental percentiles. This tends to indicate that the predicted 

variance of failure pressures is less than the experimental variance. However, arriving at a 

firmer quantitative conclusion requires processing the experimental and simulation data each for 

variance and uncertainty thereof, and then compare the results. Likewise, the relative 

positioning of uncertainty ranges tends to support a conclusion that mean experimental failure 

pressure is lower than the mean predicted failure pressure. But one would have to process for 

mean estimates, and uncertainty thereof, to form a firm conclusion.  

5.5 Simpler treatment for problems involving suitably-random measurement 
errors or insignificantly small random measurement errors 

 

Consider a situation where the exact locations of failure initiation in the four pipes were 

somehow known a-priori. Then the temperature and wall-thickness values at the failure 

locations could have potentially been measured. If measured, and if errors in the measurements 

are  Normally distributed random perturbations about the actual values in the four tests, then the 

data normalization treatment in section 5.3 can be simplified and a significant decrease of 

overall experimental uncertainty in Figure 5.12 would result. Columns A9, B9, C9, D9 in 

Tables 4.6, 4.8, E.3, and E.5 would be eliminated because the uncertainty associated with 

location is eliminated. But more to the point of this section, a generic simplification is possible 

given Normality of random measurement errors over the tests. For example, let the 

(uncorrelated) temperature measurement-error uncertainty ranges in columns A7, B7, C7, D7 be 

replaced by uncorrelated Normal PDFs whose ± 3 standard-deviation extents lie at the ends of 

the stated ranges. Let analogous PDFs replace the (uncorrelated) wall-thickness uncertainty 

ranges in columns A3, B3, C3, D3.  

 

If the normalization protocol in section 5.3 is followed, these Normal PDFs would be sampled 

for potential combinations of random measurement errors in the four tests. This is still 

legitimate under the new conditions of this section. But when linked with the 0.95/0.90 

Tolerance Interval approach to account for limited #s of replicate tests (section 5.3.3), the 

processing although legitimate is unnecessary and perhaps yields overly conservative results. 

Numerical experiments for generic problems show this ([45]). Conservatism is shown in to 

increase as the number of replicate tests increases, as the number of measurement error sources 

increases (represented by the wall and temperature measurement sources here), and as the 

magnitude of potential measurement errors (spread of the error PDFs) increases.  

 

Therefore, if the conditions described in the first paragraph of this section did exist, it is judged 

that the generic problems studied ([45]) are similar enough to support a recommendation to alter 

the normalization protocol from section 5.3. The random component of measurement error 
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would be ignored. This is equivalent to having constant values in columns A3/B3/C3/D3 and 

A7/B7/C7/D7 instead of randomly sampling from the uncertainty ranges presently prescribed in 

the columns. The fixed values would be at the midpoints of the said uncertainty ranges, as these 

correspond to the means of the Normal PDFs of measurement errors postulated above. Based on 

the studies [11] and [45] it would not be surprising if this simplified treatment is also applicable 

for random measurement errors governed by reasonably symmetric central-tending PDF shapes 

and even uniform PDFs over the stipulated uncertainty ranges. But numerical experiments have 

not yet been conducted to assess this.  

 

If using a different approach such as the Pradlwarter-Schueller method [14] or bootstrapping to 

compensate for limited #s of replicate tests, it is presently not recommended that random 

measurement errors be ignored even if Normally distributed. More research is necessary. For 

example, over the test cases in [11] it was found that the Pradlwarter-Schueller approach is 

substantially less reliably conservative than the (~90% reliable) 0.95/0.90 TI approach. 

Sampling for the random measurement error possibilities, per the protocol in section 5.3, may 

serve to increase to acceptably high levels the reliability of using the Pradlwarter-Schueller 

approach. But this has not been investigated or established yet. Bootstrapping has also not been 

investigated in this context. 

 

If random uncertainties among replicate tests are not present or are insignificantly small, or do 

not need to be sampled because they are Normal or otherwise suitably distributed and a TI 

approach is being used, then a simplified approach can be taken (see e.g. [28], calibration-data 

section) to process the systematic uncertainties in the problem if the following additional 

restriction is met:  

─ no scaling of the systematic uncertainties is present (i.e., a value 1.0 exists in place of 

scale factors 1.07 and 0.95 in columns C5 and C8 (Table E.3) and 1.13 and 0.92 in 

columns D5 and D8 (Table E.5)). 

The simplifications discussed in this section do not apply for the PB problem. The wall 

thicknesses and temperatures at the failure locations vary randomly from test to test. But the 

associated interval uncertainties in columns A3/B3/C3/D3, A7/B7/C7/D7, and A9/B9/C9/D9 

are estimated by rather crude techniques—the variations are not actually measured (with known 

~symmetric probability distributions for measurement error about the measured values). Hence 

the interval uncertainties reflect two types of uncertainty. A large element of epistemic 

uncertainty exists in the interval descriptions which attempt to characterize possible random 

variability in the tests. This brings into question potential similarities to the generic problems 

previously studied ([45]) and the scenario outlined at the top of this section, which have no error 

or epistemic uncertainty in their PDF characterizations of random variability in the replicate 

tests. So for the PB problem it is most prudent to use the more conservative interval-respecting 

UQ treatment in section 5.3. 
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6. Closing Remarks 

 

A pragmatic and novel Real Space model validation methodology has been presented that is 

geared for: 

 very expensive computational models (minimal number of function evaluations); 

 quantification and economical management of mesh and solver discretization effects; 

 rollup of various types, sources, and representations of uncertainty; 

 sparse experimental data; 

 multiple replicate experiments; 

 stochastic phenomena and models. 

 

The validation approach and metrics: 

 segregate aleatory and epistemic uncertainties in the validation activity;  

 are relatively straightforward to interpret; 

 are especially suited for assessing models and prediction quantities to be used in the 

analysis of performance and safety margins. 

 

Among the other established model validation frameworks discussed in Appendix F, the Real 

Space approach appears to uniquely have the required features to appropriately handle all the 

attributes of the PB validation problem. See [7] and [8] for further comparisons of the Real 

Space approach against other established model validation frameworks.  

 

In the PB validation problem the largest uncertainty contributors are the sparseness of repeat 

experiments at the pipe level, followed by solution uncertainty (discretization effects), and then 

by experimental variations and uncertainties in the tests. Substantial simplifications, 

approximations, and assumptions have been made in representing and processing these 

uncertainties in a practical and affordable manner given the high computational expense of the 

model and the experimental challenges and constraints. It is judged that the large magnitude of 

the experimental and modeling/simulation uncertainties themselves—and not the propagation 

errors from uncertainty linearization and decoupling in processing the uncertainties—dominate 

the results. Given the uncertainties, it could not be determined whether the model is biased high 

or low (relative to the tests) in prediction of the 0.975 percentile of failure pressure. But at the 

lower end of response, model bias shows up unequivocally. The tests indicate a lower 0.025 

percentile of failure pressure than the model predicts. So the model (without a factor of safety) 

may be unconservative for design or safety analysis purposes in that actual failures at the lower 

end of the failure-pressure spectrum are indicated to occur at lower pressures than the model 

predicts.  

 

The experimental and simulation results could be reprocessed for similar validation 

comparisons of other statics of response such as mean, variance, and individual percentiles. By 

analogy with the presented example, the reader should be able to treat a large variety of model 

validation applications, issues, constraints, and purposes that arise in industrial practice. 
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Appendix A 
 

 Attempt at a parametric representation of constitutive model  
    material variability and small-sample uncertainty 

 

 

An attempt was made to parameterize variability of stress-strain curves at a given temperature 

and then compensate for the small number of material curves. The initial assumption was made 

that the variation among the set of sample stress-strain curves could be parameterized.  

 

The left plot in Figure A.1 shows six constitutive model stress-strain curves inversely calculated 

from the six (green) experimental stress-strain curves at 20C shown in the right plot. The curves 

in the left plot exhibit consistent vertical ordering over the entire range of strain except at the far 

right extreme where the red and green curves cross slightly. Ignoring this minor deviation it was 

postulated that perhaps the well-ordered curves could be used to construct nominal 0.025 and 

0.975 percentile stress-strain curves of the entire population of curves that might exist if an 

infinite number of material variability tension tests were run at 20C. (At this early stage of 

investigation we deferred any considerations of compensating for small numbers of data 

samples.) Accordingly, in the left plot in Figure A.1 the mean µ and standard deviation σ of the 

stresses given by the six curves at each strain value were calculated. Then the dashed upper and 

lower “2σ bounding curves” in the left plot were constructed by plotting the mean ± 2 standard 

deviations of stress at each strain value. Two standard deviations were used because this 

corresponds approximately to the 0.025 and 0.975 percentiles of a population if it is Normally 

distributed—as assumed for initial assessment of this approach.   
 

 

 
 

Figure A.1  Left plot shows constitutive model stress-strain (solid) curves at 20C with dashed 
upper and lower “2σ bounding curves” (synthetic) inferred by process described in text. Curves 
in left plot map to “engineering” stress-strain equivalent curves in right plot.  

 

Because the postulated 0.025 and 0.975 percentile curves were synthetically derived (inferred) 

and were not mapped from real stress-strain curves coming from experiments, it was deemed 

important to apply a “sanity check” on the physical plausibility of the synthetic stress-strain 

curves. The inferred stress-strain curves were used in the constitutive model in FE simulations 

of the round-bar tensile test. The equivalent 2σ bounding curves in engineering stress-strain 

space are shown in the right plot in Figure A.1. These bound all the experimentally measured 

insula

tion 

board 
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(green) curves except for one at the upper extreme of the applicable strain range. Hence, the 

synthetically derived stress-strain curves seemed fairly reasonable according to this check of 

physical plausibility. Therefore the inference procedure for 2σ stress-strain bounding curves 

was applied at the other material characterization temperatures.  
 

Figure A.2 shows a substantially less successful result for the stress-strain curves at 800C. The 

inferred 2σ bounding curves in constitutive model stress-strain space look physically plausible, 

but do not map to engineering space in physically credible fashion. Furthermore, although the 

inferred curves bound the actual curves in constitutive model space, they do not remain 

bounding curves in engineering stress-strain space. As one potential reason for failure, the 

curves in constitutive-model space at this temperature are not well-ordered; they cross or come 

together in several places, leading to regions where the inferred 2σ bounding curves “pinch” 

together in physically unrealistic fashion. Despite attempts at smoothing the stress-strain curves 

(and thus the inferred 2σ bounding curves) in constitutive-model space, the inferred bounding 

curves did not map to physically reasonable curves in engineering stress-strain space. 

 

The results for the data sets at all the characterization temperatures are shown in the Power 

Point slides on the next six pages. Results at the other temperatures are in-between the very 

successful results at 25C (Figure A.1) and the very unsuccessful results at 800C (Figure A.2). 

At most temperatures the inferred 2σ bounding curves in constitutive model stress-strain space 

correspond to physically plausible stress-strain curves in engineering space.  But bounding 

curves in constitutive model stress-strain space often are not bounding curves in engineering 

stress-strain space. Furthermore, for the 100C and 600C data sets it was required to eliminate 

“outlier” curves in constitutive model stress-strain space in order for the inferred 2σ bounding 

curves to map to physically reasonable curves in engineering stress-strain space. The 800C data 

set was completely pathologic as described previously. 

 

It was concluded that this approach for parametrically representing the curve-to-curve 

variability was not suitable in general, especially for inferring an extended range of variability 

out to ±2σ levels. Therefore the approach in section 2.3 was devised and implemented.  

 

  
 

Figure A.2  Left plot shows constitutive model stress-strain curves at 800C with dashed upper 
and lower 2σ bounding curves (synthetic, inferred from said process). Curves in left plot are 
input to FE model of cylinder tensile test to generate “engineering” stress-strain equivalent 
curves in right plot.  
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Appendix A  (cont’d) 
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Appendix A  (cont’d) 
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Appendix A  (cont’d) 
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Appendix A  (cont’d) 
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Appendix A  (cont’d) 
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Appendix A  (cont’d) 
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Appendix B 
 

Discretization Effects on Derived Stress-Strain Curve from Steel Bar Test     
 

The following memo from summer 2012 Sandia student intern Marc Merewether documents a 

study of discretization effects on material inversion results for displacement-controlled tension 

tests of square cross-section steel bar specimens at room temperature. (Sandia mentors were 

Martin Heinstein,1542, and Nicole Breivik, 1524.) The memo shows that as few as 4 finite 

elements through the bar half-thickness section used in the inversion procedure FE sims. yield 

sufficiently converged results (as compared to 8, 16, and 32 elements through the half-

thickness) for the portion of the constitutive model stress-strain curves relevant to load-

controlled pressurization applications like PB. In these type of applications, coincident 

structural and calculation instability failure (see section 3.2 and [17]) appear to occur well 

before the highly plastic end-portions of the material curves are reached. As the memo reports, 

only these end portions of the stress-strain curves are found to differ appreciably for the 

different mesh densities, finite-element aspect ratios, and Adagio hourglass control options 

investigated. Failure predictions for displacement-controlled situations would appear be more 

sensitive to mesh and solver choices because in these situations failure is predicted by reaching 

the end of the material curves.  

 

A Study of Mesh and Hourglass Effects –Mark Merewether, Aug. 16, 2012  

 

I.  Background:  The purpose of this study was to compare the results of a rectangular tensile 

specimen in tension after an applied temperature initial condition.  The problem was run 

implicitly with four different effective moduli settings (EFFECTIVE MODULI = Elastic, 

Pronto, Presto, and Current), two different meshes (a mesh with an element aspect ratio of 1 and 

a mesh with more refinement near the area of interest), and four different mesh refinements with 

each mesh (4 elements through the thickness, 8 elements through the thickness, 16 elements 

through the thickness, and 32 elements through the thickness).  This test generated an 

engineering stress-strain curve using Tim Shelton’s curve fitting script and a given set of 

parameters. The problem used a multi-linear elastic plastic material model with the following 

parameters: Density = 1.0, Young’s Modulus = 30.0E6, Poisson’s Ratio = 0.3, Yield Stress = 

46,000, and Beta = 1.0.  Also input into the model is a Young’s Modulus Function, a Poisson’s 

Ratio Function, a Yield Stress Function (all held constant at 1.0), and a Hardening Function that 

is created with each run..  The EQPS variable that was used as input was EQPS.  The different 

meshes and loadings can be seen in the figure below.   
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Square Elements (Aspect Ratio = 1.0) 

 

 

 

 
 

Stretched Elements (More Refinement near Area of Interest) 

 
Figure B.1  Rectangular Tensile Specimens in Tension after Applied Temperature Initial 
Condition 
 

II.  Results:  Displayed below are graphs of the generated Engineering Stress-Strain data from 

each run compared with the given Engineering Stress-Strain data.  Unfortunately, not all of the 

results are complete because the time to run greatly increased with the highest amount of mesh 

refinement (one of the problems took ~5 weeks to finish when run on 1 processor).  The first 
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graph (Figure B-2) is the complete Stress-Strain data for each run; the second graph (Figure B-

3) is a magnification of the final points generated for the Stress-Strain data; the final graph 

(Figure B-4) is a magnification of the peak on the Stress-Strain curve.   

 

 
Figure B-2  Engineering Stress vs. Strain Curve 
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Figure B-3  Engineering Stress vs. Strain Curve (final points magnified) 
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Figure B-4  Engineering Stress vs. Strain Curve (peak magnified) 
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III.  Findings:  After all of the runs were completed, I confirmed that the default effective 

moduli setting in Adagio is ELASTIC.  The Adagio/Presto users guide has been changed to 

reflect these changes (The default in Presto is Pronto and the default in Adagio is Elastic).   
 

For this problem, I found that the most accurate effective moduli setting was  

EFFECTIVE MODULI = PRONTO (most accurate meaning the coarsest mesh gave the closest 

result to the actual data at the end point).  The EFFECTIVE MODULI = ELASTIC was actually 

the least accurate for this problem, EFFECTIVE MODULI = PRESTO was the second most 

accurate, and EFFECTIVE MODULI = CURRENT failed.  The “stretched” elements proved to 

be much more accurate than the perfectly square elements as well. For the coarsest mesh, the 

stretched elements showed an improvement of approximately 15.7% when compared to the 

square elements.   

 

The following results were generated comparing the final point of the run to the final point of 

the given Stress-Strain data.   

 

Elastic Results:   Elastic Square-              ~23.5% 

      Elastic Square Ref 8-    ~12.5% 

      Elastic Square Ref 16-  ~10.5% 

      Elastic Square Ref 32-  ~1.96% 

                            Elastic Stretch-               ~7.8% 

      Elastic Stretch Ref 8-       < 1% 

      Elastic Stretch Ref 16-     < 1% 

      Elastic Stretch Ref 32-     < 1% 

 

Presto Results:    Presto Square-              ~19.2% 

      Presto Square Ref 8-    ~8.24% 

      Presto Square Ref 16-    ~1.2% 

      Presto Square Ref 32-   ~ < 1% 

                            Presto Stretch-              ~7.45% 

      Presto Stretch Ref 8-        < 1% 

      Presto Stretch Ref 16-      < 1% 

      Presto Stretch Ref 32-      < 1% 

Pronto Results:    Pronto Square-             ~7.45% 

      Pronto Square Ref 8-    ~1.57% 

      Pronto Square Ref 16-      < 1% 

      Pronto Square Ref 32-      < 1% 

                            Pronto Stretch-                  < 1% 

      Pronto Stretch Ref 8-        < 1% 

      Pronto Stretch Ref 16-      < 1% 

      Pronto Stretch Ref 32-      < 1% 

 

After magnifying the results at the peak of the curve, it appears there is definitely a difference 

between the actual stress-strain data and the calculated stress-strain data.  All of the curves are 

shifted up and to the right by about 1%.  Although this shift may be discouraging, it is 

encouraging that all of the results follow the same, consistent path.   
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Overall, it appears that a mesh refinement of 16 through the thickness is sufficient for almost all 

of the runs.   

 

IV.  Recap- Unfortunately, I was not able to run/collect the data doing the same problem with 

standard tests, nodal-based tests, or other tetrahedron formulations.  The large mesh refinements 

for the hexes took much longer than expected.  I did run the pipe problem that Nicole gave me, 

but I was not able to generate satisfactory results.   
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Appendix C 
 

SNL Internal Memo on Pipe Temperature Interpolation Program TempInterp 
  

 

date: Sept. 24, 2009 (updated from June 30, 2009) 

to:  F. Dempsey, 1524 

from: M. P. Sherman and V. J. Romero, 1544 

subject: Pipe Temperature Interpolation Program TempInterp 

 

Introduction 

 

This memo describes a Fortran77 program TempInterp written to temporally and spatially 

interpolate temperature data from 18 selectively placed thermocouples (TCs) on a heated pipe in 

recent pressurized failure experiments ([Antoun]). TempInterp provides an interpolated 

temperature field as a temperature boundary condition for the modeled pipe in Adagio solid 

mechanics simulations. The Adagio simulations are part of a model validation activity 

([Dempsey et al.]) initiated to assess how well Sandia can model stainless-steel pressure vessel 

response and failure at high pressures and temperatures, for relatively simple and well-

controlled pressure-vessel geometry and boundary conditions. More background material is 

presented in [Antoun], [Dempsey et al.], and [Romero, et al.].  

 

The rationale for the TC locations on the pipe and the interpolation methodology implemented 

in TempInterp are explained in [Romero, et al.]. Details of the mathematical formulation and 

software implementation of the interpolation methodology are presented in this memo and in 

[Sherman & Romero]. Details of TempInterp code and data structures, input and output data 

files and their formats, time-interpolation search operations, etc. are also presented here. In 

[Romero, et al.] a relevant test of the accuracy of the temperature interpolation and mapping  

procedure (TC data  Adagio calculations) is applied. Error in the interpolated temperature 

field is quantified, but more relevantly, impact of the interpolation error is quantified in terms of 

Adagio simulation results of ultimate interest: pipe failure pressure.  It is shown that 

interpolation error causes < 2.5% calculation error in this important failure measure.  

Nonetheless, it is also described in [Romero, et al.] how an error bias-correction can be applied 

and an accompanying uncertainty in final reported results can be stated due to temperature 

interpolation error.  

 

The Spatial Interpolation Problem and the Solution Strategy 

 

Here we describe the thermocouple locations on the pipe surface, and a corresponding 

subdivision of the pipe surface into 2D Hermite bi-cubic interpolation subregions (see 

Figure 1.1).  

 

The thermocouple-placement and temperature-interpolation design problem had many possible 

options for TC placement strategies and interpolation formulations. The design problem 
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consisted of coming up with a compatible match of TC placements and algorithmically 

compatible interpolation method where the combination was capable of best fitting the 

Gaussian-like temperature field with peak at the heated spot on the pipe surface.  

 

A constraint was that only 18 TCs could be used to cover the surface of the approx. 14 in. high 

by 3.5-in. diam. pipe. Furthermore, it was important to get greatest accuracy in the vicinity of 

the hot spot, and accuracy importance drops as temperature drops with distance from the hot 

spot. This is because  the important prediction quantities (failure time, pressure, temperature) 

were surmised to be most affected by the high-temperature region at and in the neighborhood of 

the hot spot. There the steel would experience greatest temperature-associated material strength 

loss, bulging, and ultimately, failure tendency. Nonetheless, the prediction problem is a global 

one in that stress, strain, and failure at the hot spot is dependent on material "give" everywhere 

else in the pipe. Therefore, temperature-dependent material relaxation should be modeled 

everywhere on the pipe, so a methodology is required to interpolate temperature everywhere on 

the pipe surface, even though accuracy is not as critical in the cooler regions of the pipe. Thus, a 

greater concentration of TCs was desired in the hotter regions, will a lesser concentration 

needed in the cooler regions.  

 

(drawing and TC locations not to scale) 
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Figure 1. Division of pipe exterior surface area into eight quadrilateral interpolation subregions 

(or "patches" or "panels"). Surface of the pipe represented as though sliced at the back, 

unwrapped, and laid flat in the -z space shown. TC locations on pipe surface are shown (not 
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drawn to scale—see Table 1). TC 10 marks the origin ( = 0, z = 0) of the -z "pipe-surface" 

coordinate system, where pipe circumference ranges from - <   . 

 

The other consideration was that the interpolation capability had to be within the project's grasp 

in terms of development time and project resources (available interpolation methodology 

expertise, leveragable code, etc.). Fortunately, a recently developed capability ([Sherman & 

Romero]) for Hermite 2D bi-cubic polynomial interpolation was identified as something that 

could be quickly leveraged to the needs of the project. The bi-cubic interpolating-shape 

freedoms of 2D Hermite polynomials are expected to conform reasonably well to the Gaussian-

like temperature field over the surface of the pipe, when the field is subdivided into a suitable 

set of interpolation patches as shown in Figure 1.  

 

As explained in [Sherman & Romero], generation of a unique 2D Hermite bi-cubic interpolation 

function over a quadrilateral interpolation region (patch) requires input of temperature and three 

slope-affiliated terms at each corner of the patch:  T,   zTTzT 2,, .  The TC 

locations in Figure 1 are a suitable compromise felt to ~best answer all of the objectives and 

constraints in the project. The coordinates of the TC locations are listed in Table 1. As described 

below, the TC locations support a determination of temperature and the three derivatives at the 

corners of the Hermitian interpolation patches. The TC locations also support greatest accuracy 

in the vicinity of the hot spot at (, z) = (0, 0).  

 

Table 1. ,z coordinates of the 18 TCs on the pipe 

 

TC 

# 
, 

degrees 

Z, 

inches 

1 180 4.6 

2 0 4.6 

3 0 2.3 

4 0 1.15 

5 -20 0.575 

6 90 0. 

7 180 0. 

8 -90 0. 

9 -40 0. 

10 0 0. 

11 40 0. 

12 -20 -0.575 

13 0 -1.15 

14 0 -2.30 

15 180 -4.60 

16 180 -4.60 

17 0 -7. 

18 0 7. 
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In Figure 1 the -z "pipe-surface" coordinate system has its origin at the hot-spot on the pipe 

surface. A preferential TC placement scheme would increase the concentration of TCs as the hot 

spot ( = 0, z = 0) is approached. This is shown to be roughly the case in the figure. The 

location of the origin also coincides with an experimental pipe temperature distribution that is 

expected to be symmetric about the vertical z-axis at  = 0, and to a lesser extent (because of 

convection) to be approximately symmetric about the horizontal -axis at z = 0. In any case, the 

TC placements were designed to enable temperature non-symmetry in either or both directions 

to be detected and to be approximately modeled by the interpolation scheme.  

 

The TC placement scheme and some auxiliary assumptions (mentioned as we proceed) support 

determination of the needed corner derivatives as follows. In Figure 1 consider, for example, the 

patch that TC5 lies in. 

Upper Left corner:  

 T = TC1 temperature 

 T/ = 0 by circumferential symmetry assumption about the line  =  

 T/z = slope at TC1 of 1-D Lagrange quadratic polynomial fitted to (three) 

temperatures of TCs 1,7,15    

Upper Right corner:  

 T = TC2 temperature 

 T/ = 0 by circumferential symmetry assumption about the line  = 0 

 T/z = slope at TC2 of 1-D Lagrange cubic polynomial fitted to (four) temperatures of 

TCs 2,3,4,10    

Lower Right corner:  

 T = TC10 temperature  

 T/ = slope at TC10 of 1-D Lagrange cubic polynomial fitted to (four) temperatures 

of TCs 7,8,9,10 

 T/z = slope at TC10 of 1-D Lagrange cubic polynomial fitted to (four) temperatures of 

TCs 2,3,4,10    

Lower Left corner:  

 T = TC7 temperature 

 T/ = slope at TC7 of 1-D Lagrange cubic polynomial fitted to (four) temperatures of 

TCs 7,8,9,10 

 T/z = slope at TC7 of 1-D Lagrange quadratic polynomial fitted to (three) 

temperatures of TCs 1,7,15    

 

Analogous recipes apply for  TzT and  at the corners of the other Hermite interpolation 

patches in Figure 1. It is important to mention here that the assemblage of all interpolation 

patches in Figure 1 yields a C
0
 interpolated temperature field that is continuous but not 

necessarily smooth across patch boundaries; i.e. temperature slope across patch boundaries is 

not necessarily continuous. The sought derivatives  TzT and  are evaluated by 

analytically differentiating the mathematical formulas for the 1-D Lagrange interpolating 
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polynomials cited above, and then evaluating in TempInterp the algebraic expressions for slope 

at the pertinent location(s) along the polynomials. The analytically differentiated expressions for 

slope are provided later in this memo. 

 

For the mixed derivatives  zT2
 at the patch corners, it was apparent that 18 TCs are far 

too few to evaluate these very well, so all mixed derivatives are set to zero at all patch corners. 

It was found in [Sherman & Romero] that the mixed derivatives were relatively small and 

unimportant. If the derivative information at the patch corners is from calculations as employed 

here instead of from exact prescribed values, the overall interpolation scheme is referred to as 

“Quasi”-Hermitian. In any case, it is shown in [Romero, et al.] that the errors in interpolated 

temperatures due to zeroed mixed derivatives and other inaccuracies in the interpolations have < 

2.5% effect on calculated failure pressure in a representative test problem.  

 

In should be mentioned that the layout of TCs in Fig. 1 allows some of the derivatives to be 

evaluated non-uniquely, so any of several choices could be made. For example, T/ at TC10 

could be evaluated as specified in a previous bullet; or as the slope of a Lagrange cubic 

polynomial fitted to temperatures of TCs 8,9,10,11; or simply be set to zero according to a 

physical argument of C
1
 smoothness (continuous slope across patch boundaries) + temperature 

field symmetry about the z axis. Testing each of these alternatives showed that interpolation 

error (on the test problem described below) was least for the option defined in the above bullets. 

It was also found that setting T/ at TC7 according to the option defined in the above bullets 

gave less overall interpolation error than using a C1 smoothness + symmetry condition T/ = 

0 there.   

 

The symmetry + C1 smoothness conditions T/ = 0 at front and back positions ( = ) were 

also not used for patch corners at TCs 1, 2, 15, 16 although this would have been simpler for the 

interpolation code. Instead, the upper TCs 2,1 (front, back) and lower TCs 16,15 (front, back) 

were used to prescribe linear temperature drops with circumferential travel from front to back. It 

was not assessed whether this linear temperature drop caused less overall interpolation error 

than would a more Gaussian-like decrease from front to back (corresponding to setting T/ = 

0 at front and back).  

 

This investigation was not undertaken because the issue was deemed to be relatively small and 

unimportant. Temperatures in this region are relatively cool anyway (less than 100C above 

room temperature) because the top and bottom rims of the pipe are held to 293K by active 

cooling from a water-jacket fixture ([Antoun]). It is reasoned that the relatively cool steel there 

would experience relatively small temperature related relaxation effects. Hence, temperature 

interpolation accuracy for the material relaxation model is not critical in this region. Indeed, a 

Calore-Adagio coupled simulation to support design of thermal conditions for the experiments 

showed that changing the cooled-rim temperature by 37K, from 293K to 330K, only caused the 

critical measures of failure to change by < 0.6% (see [Romero, et al.]).  

 

An assumption of circumferentially uniform temperature is made at the bottom and top rims, 

where the respective uniform temperatures are given by TCs 17 and 18. Any experimental 

differences from circumferential uniformity are anticipated to be much smaller than the 37K 
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temperature perturbation mentioned in the previous paragraph, and are therefore assumed to be 

insignificant to calculated failure results.  

 

It should also be mentioned that the Hermite interpolation in the left and right patches at top and 

bottom of Figure 1 employ linear temperature variation in z. The linear variation (temperature 

slope) generally changes with  location around the pipe.  

 

Finally, it is noted that TCs 5 and 12 in Figure 1 are not used in the temperature interpolation. 

Their utility is as follows. TC5 is above the z=0 plane and TC12 is symmetrically below the z=0 

plane so that information could be obtained on non-symmetric interpolation errors in the non-

symmetric temperature field about the z=0 plane (due to convection). It is envisioned that this 

interpolation error information might be useful to inform uncertainty estimates in the model 

validation phase of this project. 

 

TempInterp Code Structure and Operation  

 

TempInterp is composed of the following parts: 

 A main program designed to exercise the interpolation subroutine. The main program is 

replaced by Encore in the end-use. 

 Subroutine USERDISHmod, the heart of the program 

 REAL functions DLagz3, DLagth3, DLagz2, compute the analytically differentiated 

forms of the Lagrange Polynomials in the z and  directions (see next section). 

 Subroutine INTERP performs the Hermitian interpolation calculations 

 Subroutine LOCATE, for linear interpolation, locates the time position in the TC data 

base. Taken from Numerical Recipes  

 Four input data files. 

 

A very high-level overview of code operation is as follows. Time t and Cartesian coordinates 

(x,y,z) at a point on the pipe wall in the Adagio coordinate system are passed to the 

USERDISHmod subroutine, which returns an interpolated temperature value. The code first 

reads and stores the data base of the 18 TC time-temperature results into a 2D data array (done 

only on the first call to USERDISHmod). The data base is assumed to have temperature 

readings for all 18 TCs at each point in time present in the data base. Upon any call, 

USERDISHmod converts the supplied x, y coordinates into an angular coordinate  (- <   

). It then locates in the 2D data array the two time planes of TC temperature data that bound or 

contain the supplied time t. USERDISHmod then linearly interpolates in time to determine the 

18 TC temperatures at time t. From these 18 temperatures a spatial interpolation in subroutine 

INTERP is performed for temperature as discussed here and in [Sherman & Romero]. 

USERDISHmod then returns the interpolated temperature.  

 

It has been indicated by B. Antoun that the data from the thermocouple readings will be 

recorded in an EXCEL spreadsheet. The data in the EXCEL spreadsheet will then be converted 

into an ASCII file that will be used as input to the interpolation program. The first column will 

give the time, and the next eighteen columns give the respective thermocouple temperature 

readings. The thermocouple numbering internal to the code and cited in this memo will not 
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necessarily be the same numbering convention used in the experiments, so a renumbering 

capability will be required in the code. The number of time steps and the time intervals between 

steps are presently unspecified, and may differ for different experiments.  

 

The Cartesian coordinates (x,y,z) will be converted to cylindrical coordinates for use within the 

interpolation program:  

  zzxy  ,arctan)1   

 

In this case the FORTRAN function ATAN2(y,x) gives the desired arctangent, in the range 

.   Unless explicitly specified as degrees,  will be in radians.  

 

Treatment of Input Files 

 

The OPEN statements and the READ statements for the data files, all use the STATUS = 

“OLD” and the IOSTAT=ios options. This means if the input file is missing or cannot be 

opened, the variable ios will not be zero. In this case an error message is sent to a debug file and 

the program reaches a STOP. Likewise if the program cannot read from an input file, ios is 

positive and there is an error message sent to the debug file and the program reaches a STOP. 

CLOSE and WRITE statements are assumed to run without trouble and no IOSTAT option is 

used with them.  

 

All READs are format free. There is no need to put data in given columns, only to have the 

correct data separated by blank spaces.  

 

Specific Input Files 

 

The file “Points” contains the time and x, y, and z coordinates of the desired interpolated points. 

It is read in the dummy main program and is not used when Encore calls USERDISHmod. The 

CALL statement from the driver program is CALL USERDISHmod(time,x,y,z,temp). 

 

The file “TCLOCATION” is used to give the z and  locations of the eighteen thermocouples, 

respectively. Hence it consists of 18 lines, each with two columns of REAL data.  

 

The file “experiment” is the experimental input data. It consists of nineteen columns, the first 

column being the time in seconds and the next sixteen columns being the thermocouple 

temperatures. Initially, the number of lines is unknown. Because we are using FORTRAN 77 

there is no dynamic allocation of arrays. We therefore resorted to a crude work-around. We ask 

the user to determine the number of lines of input data, most easily from the EXCEL 

spreadsheet. The user must then manually input it into the single PARAMETER statement that 

contains the variable “ISTEP”.  

 

Time Interpolation 

 

We use subroutine locate from Numerical Recipes in FORTRAN, Second Edition, on page 111. 

The input arguments are the experimental time values, the number of the time steps, istep, and 
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the time of interest, tpt. The output argument, j, is the time step just below tpt. That is 

1ipyi ttt 
. We then perform a linear interpolation.  

 

Lagrange Polynomial Curve Fits and Derivatives Thereof 

 

The Lagrange polynomial is the cardinal function for polynomial fits. A cardinal function has 

value unity at one of the node points and is zero at all others. Consider y = f(x), with node 

points y1, y2, … at x1, x2, …, xn. The corresponding definition of the Lagrange polynomial and 

its fit are 

(1)                              , 

For a cubic fit n = 4; for a quadratic fit n = 3.  
 

The derivative of the curve fit is  

(2)                                       

 

We solve for the derivative of the Lagrange polynomial by logarithmic differentiation 

(3)        

 

 

(3)  

 

Equivalently taking the derivative of a product rule, we get the same result. 
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(5)    

 

 

Derivative at Node 

If x is not at a node, there is no problem evaluating Equations 3-5. If x is at a node, the case of 

interest, we get terms where the denominator approaches zero and we need to cancel the term 

with a numerator term using a limiting process somewhat similar to L’Hospital’s Rule. The 

index “i” indicates the node location number of the Lagrange polynomial, Li(x). The indices “k” 

or “K” are the summation or product indices.  

 

Case when x approaches a node not the I node. ik   

 

If ikwherexx k  , then the term    kk xx1and0xx    . In the limit, the term 

 kxx1   in the square bracket totally dominates and the other terms are negligible. Since Li 

contains the term  kxx  in the numerator, we get a cancellation of the troublesome terms. For 

example if there are four points and we want the derivatives of the Lagrange multipliers at 

node  1, then for dL2/dx, and similarly for dL3/dx and dL4/dx, 
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In general for evaluation of  
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Case when x approaches the i node  

 

This is simpler than the previous case. There is no  ixx1   term and Li is unity. 

For the four node case at node 1 we get 

(8)                              

























 413121xx

1

xx

1

xx

1

xx

1

dx

dL

1

 

In a similar way for evaluation at nodes 2, 3, and 4. The general form is   
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(9) 
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Example: Cubic Lagrange polynomial derivative T/Z evaluated at an internal node  

 

Consider the fit on the  = 0 vertical line and the (0,0) point. For an example cubic fit we use 

the points 3, 4, 10, and 13 which contain the point (0,0). This is an arbitrary choice for an 

illustrative purposes  here.  From the above equations we get 

 

            10131310104433 T00TzLTzLTzLTzLT0zT  ,,,
 

 

 
   

   
 

 
   

   
 

 
   

   
 

 
   

   
  0zL

zzzzzz

zzzzzz
zL

1zL
zzzzzz

zzzzzz
zL

0zL
zzzzzz

zzzzzz
zL

0zL
zzzzzz

zzzzzz
zL

1013

1013413313

1043

13

1010

1310410310

1343

10

104

13410434

13103

4

103

13310343

13104

3

























,

,

,

,

 

 

       

       
dz

0dL
T

dz

0dL
T

dz

0dL
T

dz

0dL
T

z

T

dz

zdL
T

dz

zdL
T

dz

zdL
T

dz

zdL
T

z

T

13

13

10

10
4

4

3

3

0z
0

13

13

10

10
4

4

3

3

0



































 

 
 

  
   

 
 

  
   

 
 

 
 

  
   1013413313

410310

0z

13

1043

13
13

13104103100z

10

1343

10

10

13410434

1310310

0z

4

13103

4
4

13310343

1310410

0z

3

13104

3

3

zzzzzz

zzzz

dz

dL

zz

1

zz

1

zz

1
zL

dz

zdL

zz

1

zz

1

zz

1

dz

dL

zz

1

zz

1

zz

1
zL

dz

zdL

zzzzzz

zzzz

dz

dL

zz

1

zz

1

zz

1
zL

dz

zdL

zzzzzz

zzzz

dz

dL

zz

1

zz

1

zz

1
zL

dz

zdL














































































































































,

,

,

,

 

 

 



 130 

Example: Cubic Lagrange polynomial derivative T/Z evaluated at an end node  

 

Now consider the point at TC 2. We use a cubic interpolation with points 2, 3, 4, 10.  
         zLTzLTzLTzLTzT 10104433220,   

 

We have the Lagrange multipliers and their z derivatives for points 3, 4, and 10 in the previous 

example, but for a different range of fit. Here,  

 

 
   

   
 

 
   
   

 
   

   

 
   

   410310210

432
10

1042424

1032
4

1034323

1042
3

22

1024232

1043
2 0,,

zzzzzz

zzzzzz
zL

zzzzzz

zzzzzz
zL

zzzzzz

zzzzzz
zL

TzT
zzzzzz

zzzzzz
zL






















 

 

Now consider the z derivative 
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Example: Quadratic Lagrange polynomial derivative T/Z  

 

Consider the three thermocouples on the ( = ) line, TCs 1, 7, and 15. We use a quadratic 

polynomial fit and evaluate the derivative at the center node, TC7 at z = 0.  
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Appendix D 
 

Example of bias correction for spatially correlated  
temperature measurement errors 

 

Thermocouple (TC) temperature measurements for steel surfaces at temperatures very different 

from the effective temperature of the surroundings can have significant measurement error 

caused by TC contact resistance and fin effects ([Nakos, et al.]). This “TC attachment” 

measurement bias can, for properly calibrated TCs, swamp errors associated with the data 

acquisition system, the calibration procedure, and TC-to-TC accuracy variations due to 

manufacturing variability ([Nakos]). The primary factors governing attachment bias error are: 

the TC wire/bead diameter; method of TC bonding or attachment to the surface; temperature 

differences between the measured surface and the effective radiative and convective 

temperatures of the surroundings; and the convective and radiative properties and conditions 

affecting heat transfer between the TC bead and its surroundings.  

 

The experimental and physics modeling investigations and analysis in [Nakos, et al.] provide a 

sufficient basis to estimate the attachment bias errors in the PB project. Early in the PB 

validation analysis a miscommunication occurred regarding the diameter of the TCs used in the 

project. It was initially understood that the TCs had a wire/bead diameter of 0.05”. This lies 

between the 0.04” and 0.063” diameter data sets in [Nakos, et al.]. Adjustments of the 0.04” and 

0.063” diameter data were made for differences in geometry and the surrounding conditions in 

the PB experiments vs. the experiments in [Nakos, et al.]. The adjusted data were then 

interpolated to get TC measurement biases and corresponding corrections for 0.05” diameter 

TCs as exemplified in Figure D.1. With the environment and geometry parameters fixed for a 

given PB test, TC measurement bias and associated corrections vary in sign and magnitude 

according to the TC’s temperature and location (which dictates its radiative and convective 

environment). Therefore the % bias and correction varies in time and space. Figure D.1 shows 

that the TCs facing the heating plate register hotter temperatures than the surface they are 

attached to, and therefore require downward (negative) correction. The TCs on the unheated 

back side of the pipe are cooled by the environment they are exposed to, so they register cooler 

temperatures than the surface they are attached to, and therefore require upward correction.       

 

A simulation was run with nominal corrections to the TC temperatures. The same solver 

settings and 1tt mesh full-model were used as for the calculations in sections 4.2 and 4.3.  

The calculated failure pressure was 24 psi greater with TC correction. Lowering the hot-spot 

region temperatures as indicated in Figure D.1 has the effect of strengthening the pipe wall 

material there. So a higher pressure is required to initiate failure. Figure D.2 shows a 

corresponding +24 psi offset arising from TC measurement bias correction. Uncertainty on the 

nominal corrections was not determined because this would require more model simulations, 

which could not be afforded.  
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Figure D.1:  Percent bias corrections to TC temperatures input to simulation of test PB1 with 
hypothetical large TC diameters of 0.05”. Corrections are for the shown temperature field at the 
time of failure. Corrections are for temperature measurement errors caused by contact 
resistance between TC and the surface it is attached to, and by convective and radiative heat 
transfer between TC wire/bead and the surroundings.  

 

 

It is judged that the true TC bias corrections for each TC are within +/- 50% of the nominal 

corrections used in the simulation. The methodology for estimating the nominal corrections 

arose from a single person’s (the first author’s) analysis and projection of the information in 

[Nakos, et al.], so a high degree of systematic error may exist in the calculated biases and 

corrections. Therefore their uncertainties would be treated as highly correlated over the pipe 

surface. In any case, uncertainties could not be explored because of simulation budget 

constraints.     

 

Later in the project it was determined that intrinsic TCs with an order of magnitude smaller 

diameter, 0.005”, had actually been used. This made the TC-attachment component of 

measurement error much less important. Therefore the truncated approach explained in Section 

5.3.1 was used for this component of error. A data set in [Nakos, et al.] close to 0.005” diameter 

was used to get the TC attachment bias and uncertainty values in Equation 5.12.  

 

Note that the approach in this appendix put the correction (and any uncertainty that would have 

been affordable to quantify) into the Simulation UQ Rollup. But the truncated approach in 

Section 5.3.1 adds the correction (and associated uncertainty) to the processing and rollup of 

experimental uncertainties. The correction is in the positive (+) direction in the simulation UQ 

rollup, whereas it is in the negative (-) direction in the experimental UQ rollup. This is 

consistent, and an important property of the Real Space validation method when treating non-

traveling uncertainties, as we are dealing with here.  
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Figure D.2:  Early version of Figure 5.5 with +24 psi failure pressure correction labeled ‘TC 
bias correct’ arising from nominal corrections to TC temperatures input to simulation of test 
PB1 (for hypothetical large TC diameters of 0.05”).  

 

 

For example, the indicated correction of +24 psi for 0.05” dia. TCs can be added to the 

simulation UQ rollup as we established for Figure D.2. This moves the simulation result up 

relative to the experimental failure pressures. The experimental data is not normalized with 

respect to this factor because the input TC temperatures in the simulation have been corrected 

(as close as we can reasonably come) to be the actual temperatures that occurred in the 

experiments. Then the simulations and experiments are on the same basis with respect to this 

factor.  

 

Alternatively the bias correction can be applied to the experimental results. Then the rolled-up 

simulation results in Figure 5.5 apply (where no correction for TC measurement bias has been 

done). Then the experimental result is normalized downward by 24 psi to put it on the same 

basis of biased temperatures that the simulations were run with. That is, the experimental failure 

pressures correspond to the actual temperatures at the TC locations, not to the biased measured 

values input to the validation simulations. To normalize the experimental results to the 
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temperature conditions input to the simulations (to put experimental and simulation results on 

the same basis for comparison), we use the model to estimate how the experimental failure 

pressures would change if the pipe temperatures were perturbed to the biased temperatures in 

the simulations. We have already established that the model run with the biased temperatures 

gives a 24 psi lower failure pressure than the model run with the corrected temperatures. Thus 

we estimate that experimental failure pressures would change commensurately, decreasing by 

24 psi and thereby moving downward relative to the simulated failure pressure.   

 

So either the simulation results are corrected up by 24 psi relative to the experimental results, or 

the experimental results are corrected down by 24 psi relative to the simulation results. Either 

case gives essentially the same combined uncertainty range
4
 for the model’s prediction bias, as 

discussed in section 5.4. Thus it is often a matter of convenience, constrained by convention and 

sensibility, where individual (negligibly correlated or interacting) non-traveling uncertainties 

are bought into the RS accounting ledger—either within the simulation UQ rollup or within the 

experimental UQ rollup.   
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4
 This assumes that the same UQ propagation approaches are used for simulation uncertainty rollup and for 

normalization of the experimental data, something not done in the present report. Even if the same UQ propagation 

approaches are used, small differences in the combined uncertainty may exist if interval descriptions exist for some 

or all non-traveling uncertainties in the simulations and experiments. 
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Appendix E 
 

Description of PB2 and 10 tests and Normalization of their failure pressures   
to PB1 reference nominal conditions 

 

This appendix pertains to section 5.3.4, which introduces this appendix. Figures E.1 and E.2 

plot the thermocouple temperature histories in tests PB2 and PB10. The peak hot-spot 

temperatures at the pipe front-center location, as indicated by TCs #4 in each plot, were 

ramped at a rate of approximately 31C/min., just as for PB1 and PB4.  

 

 
Figure E.1  Thermocouple temperature measurements in experiment PB2. TC numbering in 
this figure corresponds to numbered locations in Figure 4.3.   
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Figure E.2  Thermocouple temperature measurements in experiment PB10. TC numbering in 
this figure corresponds to numbered locations in Figure 4.3.   

 

 

Table E.1 lists the linear regression values (over the last 60 seconds before failure) of the TC#4 

temperatures. Tests PB 2 and 10 also used intrinsic TCs of 0.005-inch diameter, so very small 

measurement uncertainties exist due to random and systematic sources of error described in 

Section 5.3 (see Equations 5.9 and 5.10). The largest uncertainties are indicated in Table E.1, 

corresponding to the hottest TCs on the pipes. These uncertainties are less than the line 

thickness in the plots in Figures E.1 and E.2. 

 
Table E.1   Pipe front-center thermocouple temperature at failure in 650C-hold experiments.  

Exper. Measured 
temperature at 

failure 
(after regression) 

% uncertainty in 
temperature 

measurement  

uncertainty in 
temperature 

measurement 

PB 2 672 C 
[-0.25%, +0.5%] 

of reading in 
degrees C 

[-1.7, +3.4] C 

PB 10 648 C 
[-0.25%, +0.5%] 

of reading in 
degrees C 

[-1.6, +3.2] C 
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When the control TC4 in each test reached nominally 650C, this temperature was maintained 

while the pipes were pressurized until failure as shown in Figure E.3. Pressures were measured 

with the same pressure gage as in tests PB1 and 4. Therefore the uncertainty is within +/- 10 psi 

of the measured pressures in the figure. This amounts to about double the line thickness in the 

plots. Table E.2 lists the failure pressures and measurement uncertainties for the PB2 and PB10 

tests. These measurement uncertainties are perfectly correlated with those in the PB1 and PB4 

tests because the same pressure gage was used in all four tests.  

 
   Table E.2  Failure pressures measured in 650C-hold experiments. Pressure measurement 

uncertainties are explained in Section 5.1.1.  

Exper. Measured 
pressure at 

failure  

Uncertainty in 
pressure 

measurement  

PB2 587 psi ± 10 psi 

PB10 647 psi ± 10 psi 

 

 

The target pressure ramp rate of 1.3 psi/sec. was met within a few % in both tests, same as in 

tests PB1 and PB4. PB2 pressurization started about 40 sec. after 650C was reached. PB10 

pressurization started about 30 seconds after 650C was reached. In tests PB1 and PB4, 

pressurization started respectively about 4 minutes and 1.5 minutes after the target temperature 

of 700C was reached. These test-to-test differences in pressurization delay after target 

temperatures were reached are not expected to affect failure pressure levels significantly. 

Certainly they do not in the model simulations because the modeled physics are agnostic to any 

such time delay effects.  

 

Figure E.3 also shows the pipe axial loading profiles in the two experiments. The uncertainty on 

the axial loading measurements is ±0.1% of reading, or < ±3 lb. for the highest axial load in the 

tests. This is far less than the line thickness in the plots. Investigations with the PB model 

indicated that this magnitude of uncertainty has negligible effect on failure pressures. 

 

Table 5.3 lists minimum and maximum measured pipe-wall thicknesses for tests PB2 and PB10. 

These min to max ranges of thickness are less than the ranges for PBs 1 and 4. Therefore, 

significantly smaller normalization variance exists for wall-thickness normalizations of PBs 2 

and 10 than for PBs 1 and 4.   

 

 

 



 140 

 
 

 

 
 

Figure E.3  Measured pressure (referenced to scale on right axis), and axial fixture loading 
(referenced to scale on left axis) in 650C-hold pressurization experiments. Note that plotted 
PB10 results here were incorrectly shifted to zero reference time. These results must be shifted 
earlier by 123 sec. so that the failure time in this plot coincides with that in Figure E.2 at 1769 
sec.    
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PB2 normalization 

 

Tables E.3 and E.4 list test PB2 normalization quantities and sample realizations. Again, the 

quantities in yellow highlighted columns C2, C5, C8, and C10 designate correlated results with 

the analogous columns for tests PB1 and PB4. Different initial seeds are used to sample all 

column quantities for PBs 1, 2, 4, and 10 except for the yellow-highlighted columns. The green-

highlighted entries in Table E.3 denote changes from PB4’s Table 5.8. Of particular note are the 

entry in column C12 and the multipliers 1.07 and 0.95 in columns C5 and C8. These are 

explained next. 

 

The quantity in column C12 represents the third row of Equation 5.20, which here becomes the 

failure pressure adjustment for differences between the nominal input conditions for tests PB2 

and PB1. It was determined late in the project to include the PB2 and 10 tests in the validation 

assessment, so there was insufficient time to use the simulation model to evaluate the PB2 

analogue of Equation 5.22. Therefore we used the following strategy.  

 

It is observed that the small differences in pressurization delay times and ramp rates in the tests 

will not yield differences in predicted failure pressures because the modeled physics are 

agnostic to such differences. But temperature field differences will affect predicted failure 

pressure. We note from Figure 5.11 that the spatial temperature field is approximately the same 

shape for PBs 1, 2, 4, and 10, but the fields are vertically shifted relative to each other in the hot 

spot region. This region, and in particular the mapped peak temperature at TC4 in the 

simulations, determines the calculated failure pressure far more than any of the other TCs. We 

make an approximation that the predicted failure pressure depends fully on the differences of 

the TC4 peak temperatures at failure. The applicable temperatures are then 707C @failure for 

TC4 in PB1 (Table 5.2) and 672C @failure for TC4 in PB2 (Table E.1). Therefore the entry in 

column C12 of Table E.3 serves as an approximate replacement for the term in row 1 of the 

RHS of Equation 5.23. The said temperature difference is proposed to affect the predicted 

failure pressure in the way that the other approximate temperature-related adjustments in 

columns C7-C9 do, via the temperature effect factor in column C10, obtained from the trends in 

Figure 2.7.   

 

The multiplier 0.95 in column C8 adjusts the uncertainty of TC4 temperature measurement error 

∆Tmeas-contact caused by convective and radiative heat losses from the TC and by contact 

resistance between the pipe surface and the TC. An adjustment to the lower and upper 

uncertainty bounds in Equation 5.12 is required because the PB2 TC4 temperature at failure 

(672C) is significantly different from the PB1 and PB4 temperatures of 707C and 711C for 

which the values in Equation 5.12 apply. From [32] the uncertainty bounds in Equation 5.12 are 

reduced by 5% for PB2’s TC #4 @ 672C. The implementation of this adjustment in column C8 

preserves the correlation with realizations in columns A8, B8, and D8 for PBs 1, 4, and 10. This 

enforced correlation reflects the view that the ∆Tmeas-contact error is consistent among TC4s in the 

PB tests rather than randomly differing. But epistemic uncertainty exists regarding the value of 

∆Tmeas-contact error at a given temperature (e.g. per Equation 5.12).  
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Table E.3  Spreadsheet formulas for uncertain experimental quantities in modified version of 

Equation 5.23 for test PB2 
re
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Table E.4  Spreadsheet realizations for uncertain experimental quantities in test PB2  

 
 

 

 

The multiplier 1.07 in column C5 adjusts the upper and lower bounding slopes 
           

    
 in 

Equation 5.8 to PB2 temperature conditions. First it is noted that the calculated failure pressure 

at the nominal 0.02” wall thickness in Figure 5.8 corresponds to a PB1 hot-spot TC4 
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temperature of 707 C. This calculated failure pressure is then adjusted to a PB2 TC4 

temperature of 672 C as follows. A temperature effect factor of 
        

               
 = -1.94 psi/C is 

calculated as the average of the upper and lower bounds in Equation 5.17. These bounds are 

derived from a consideration of Figure 2.7 over the temperature range 600C – 800C applicable 

here. We have  

Eqn. E.1         PfailPB2-modeled( ⃗nomPB2) ≈ PfailPB1-modeled( ⃗actPB1) +  

                                                                  +  
           

               
 (Temp_TC4-PB2 - Temp_TC4-PB1)  

    

   = 839 psi + (-1.94 psi/C)(672 C - 707 C)  

   = 907 psi. 

 

In f we plot the temperature-adjusted failure pressure 907 psi at a wall thickness abscissa of 

0.02”.  Through this point we create a line intersecting also the origin of the plot from physical 

reasoning that zero wall thickness must corresponding to failure pressure = 0. This line has a 

slope = 45,345 psi/in. Thus the original calculated slope 42,286 psi/inch for PB1 nominal 

conditions must be multiplied by an adjustment factor of 1.07 to get the PB2 temperature-

adjusted slope of 45,345 psi/in. We use this same multiplier 1.07 to similarly adjust the lower-

bound slope in Equation 5.8. Hence, 

 

Eqn. E.2           
           

               
 = 1.07∙ 

           

               
 

 

The implementation of this equation in column C5 preserves the correlation with realizations in 

columns A5, B5, and D5 for PBs 1, 4, and 10. This enforced correlation represents the view that 

failure pressure (adjusted for temperature differences as above) scales with wall thickness 

similarly in the tests—not randomly from test to test—but epistemic uncertainty exists 

regarding the scaling value as reflected in the different experimental and simulation-based 

estimates in Figure 5.8.  

 

Column C13 of Table E.4 contains the realizations of uncertainty of PB2 failure pressure when 

normalized to the nominal PB1 reference experimental conditions input to the model 

simulations in Section 5.2. These realizations are histogrammed in Figure 5.9.  

 

The statistics at the bottom of Table E.4 summarize the impacts of various uncertainties in the 

normalization of PB2 failure pressure. The green boxes reveal that the average adjustment in 

PB2 experimental failure pressure is greatest (-68 psi) due to normalization for the TC4 peak 

temperature difference between nominal PB1 and nominal PB2 conditions. 

 

Next in magnitude is -34.2 psi for average normalization adjustment for possible differences 

from the nominal 0.02” wall thickness in the simulations. This is a much larger mean 

adjustment than the -17.8 psi mean adjustment for PB1 normalization, but much smaller than 

the -62.8 psi mean adjustment for PB4 normalization.  

 

Next in magnitude is -1.5 psi average adjustment for the other temperature normalizations for 

columns C7-C9. The green box in column C2 shows a zero average bias adjustment for failure 
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pressure measurements error. The green boxes show a combined bias shift of -103.4 psi from 

the nominal measured failure pressure of 587 psi in Table E.2. The resulting average normalized 

failure pressure is 483.6 psi listed in the pink box at the bottom of Table E.4.  

 

The grey boxes in Table E.4 show the relative contributions to normalization uncertainty. 

Potential wall thickness differences are the largest uncertainty contributor (standard deviation of 

21.1 psi), but this is significantly smaller than the values 28.1 psi for PB1 and 39.1 for PB4.  

 

The square root of the sum of squares of the contributing standard deviations in the grey boxes 

is 28.1 psi. This closely agrees with the value 27.2 psi in the pink box calculated directly from 

the realizations in column C13. The normalization uncertainty for PB2 is smaller than for PBs 

1, 4, and 10 as reflected by the relative widths of the distributions in Figure 5.9. 

 

PB10 normalization 

 

Tables E.5 and E.6 list test PB10 normalization quantities and sample realizations. The 

comments above concerning the yellow highlighting of columns apply here as well. The green-

highlighted entries in Table E.5 denote changes from PB2’s Table E.3. Changes that may need 

explanation are the following. Column D8: the uncertainty bounds of Equation 5.12 are 

reduced by 8% for PB10’s TC4 failure temperature of 648C. Column D5: use Equation E.1 and 

change its PB2 failure temperature of 672 C to a value 648C for PB10. A result of 953 psi is 

obtained. Then perform the steps in the paragraph following Equation E.1, where 907 psi in that 

paragraph is replaced by 953 psi and PB2 is replaced by PB10. The result is the multiplier 1.13 

in column D5. 

 

Column D13 of Table E.6 contains the realizations of uncertainty of PB10 failure pressure 

when normalized to the nominal PB1 reference conditions. These realizations are 

histogrammed in Figure 5.9.  

 

The green boxes at the bottom of Table E.6 reveal that the average adjustment in PB10 

experimental failure pressure is greatest (-114.2 psi) due to normalization for the TC4 peak 

temperature difference between nominal PB1 and nominal PB10 conditions. Next in 

magnitude is the average normalization adjustment of -2.7 psi due to the other temperature 

normalizations for columns D7-D9. Next in magnitude is the 0.4 psi mean adjustment due to 

possible differences from the nominal 0.02” wall thickness used in the simulations. This is 

so small (much smaller than for any of the other PBs 1, 2, and 4) because of the perfect 

symmetry (about the nominal 0.02”) of the uncertainty range listed in column D3 of Table 

E.5.  

 

The green boxes yield a combined normalization shift of -116.5 for PB10. This shift, due 

predominantly to PB10’s much lower hot-spot temperature, is the largest combined 

normalization shift vs. any of the other tests (PB 1, 2, 4).  
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Table E.5  Spreadsheet formulas for uncertain experimental quantities in modified version of 

Equation 5.23 for test PB10  
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Table E.6  Spreadsheet realizations for uncertain experimental quantities in test PB10  

 
 

 

The grey boxes in Table E.6 show the relative contributions to normalization uncertainty. 

Potential wall thickness differences are the largest uncertainty contributor (standard 

deviation of 20.8 psi). This is similar to the value for PB2 but significantly smaller than the 

values 28.1 psi for PB1 and 39.1 for PB4.  
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The square root of the sum of squares of the contributing standard deviations in the grey 

boxes is 28.6 psi. This closely agrees with the value 29.0 psi in the pink box calculated 

directly from the realizations in column D13. The normalization uncertainty for PB2 is 

slightly larger than for PB10 but still significantly smaller than the values 33 psi and 43 psi 

for PBs 1 and 4, which are driven mostly by their larger uncertainties of wall thickness. 
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Appendix F 
 

Brief comparison of the Real Space model validation approach against several 
other established model validation approaches. 

 

Some observations are made here concerning the applicability of several model validation 

methodologies to the pipe bomb validation problem. The Real Space approach appears to 

uniquely have the required features to appropriately handle all the attributes of the PB validation 

problem.  

 

─ It appears that the ASME VV20 methodology [22] and its companion document [38] on 

test uncertainty could be used to assess models of stochastic phenomena if the bias in 

mean response and uncertainty of the bias are the quantities of interest, although this is 

not discussed in [22]. Uncertainties due to limited #s of tests, due to stochastic 

variability in the systems tested, and due to random and systematic uncertainties 

contributed by the testing are all combined into a total “validation uncertainty”. 

However, the Real Space method’s percentile measures of stochastic behavior in Figure 

5.12 reflect uncertainty of both mean and variance of stochastic response, and may be 

more relevant for assessing the accuracy of models for certain analysis purposes 

involving predictions of stochastic behavior/response. Another feature of the RS method 

is that it separates uncertainty contributions into the three categories at left in Figure 

5.10. This is important primarily because the uncertainties associated with stochastic 

material behavior and the limited # of material characterization tests are intrinsic aspects 

of the constitutive model being validated for eventual use in other application settings. 

These traveling uncertainties are treated differently in the RS framework than the non-

traveling uncertainties contributed by the execution of the tests because traveling and 

non-traveling uncertainties have different implications for model predictivity in post-

validation use of the model (see e.g. Appendix A in [8]). 

 

For problems involving non-traveling experimental uncertainties, Equation 5.4 with 

linear UQ ultimately yields the combined “validation uncertainty” in [22] when its 1
st
-

order linear UQ version is used and the non-traveling uncertainties from the simulations 

are taken into account per the different approaches in the two methods—provided the 

conditions in the examples in [22] are met: A) uncertainty is assumed to be probabilistic 

and represented and propagated accordingly; B) only non-traveling uncertainties exist in 

the models and experiments; C) the system of interest (in the models and experiments) 

has no significant degree of stochastic behavior/response affecting the quantities of 

interest. This is a reassuring corroboration of both methods (RS and [22]) for the subset 

of conditions cited, given that their derivations come from very different conceptual 

approaches. 

 

─ The Oberkampf & Barone approach [39] addresses the uncertainty elements at left in 

Figure 5.10 for stochastic system behavior/response and confidence levels from limited 

# of tests. But the measure of the stochastic behavior is limited to uncertainty of mean 

response. Furthermore, [39] does not address most of the uncertainties in the category 

‘experimental factors in the tests’. Systematic experimental uncertainties are ignored 
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altogether. For model prediction a single deterministic model run is made for 

comparison against the uncertainty PDF of the experimental mean (a very limited basis 

for assessing accuracy and adequacy of models of stochastic phenomena).  

 

─ The validation approaches in [40] and [41] focus on models of stochastic phenomena or 

systems. The “area” validation metric compares CDFs (cumulative density functions) of 

predicted and experimental responses. A numerical value for discrepancy between 

experimental and predicted CDFs is obtained. A value of zero indicates perfect 

agreement at all CDF percentiles. However, for non-perfect agreement it is not clear 

how non-zero values relate to more directly interpretable measures of prediction error 

like mean prediction error, error of predicted standard deviation of response, or error of 

predicted percentiles of response. Furthermore, the methodology does not directly 

address epistemic uncertainty (including accounting for the bias toward underestimating 

experimental variability) from limited #s of tests—although the uncertainty indicated by 

the area metric is generally found to be larger for smaller #s of tests. The remaining 

element at left in Figure 5.10 (experimental factors in the tests) is only partially 

addressed. Random variations of experimental inputs and of measurement errors in 

multiple replicate experiments are treated, but systematic experimental uncertainties are 

not. In this regard [40] and [41] incur somewhat more Model User’s Risk concerning 

systematic uncertainties than the RS and ASME VV20 approaches do ([8]). The latter 

take a more conservative slant, mitigating Model User’s Risk by explicitly accounting 

for systematic measurement uncertainties.   

 

─ Two validation approaches are presented in the ASME VV10 methodology guide [42]. 

One is apparently an implementation of the approaches in [40] and [41], while the other 

does not address stochastic elements of behavior in the model predictions, so is very 

limited.   

 

─ Finally, in contrast to the other validation approaches mentioned, the Real Space 

methodology recognizes that models can have traveling epistemic uncertainties that are 

an intrinsic aspect of the model. These are not present in the PB validation problem but 

occur e.g. in [28], [29], and [43] as parametric uncertainties in physics modeling 

parameters, and in [29] as multiple plausible discrete submodels for turbulence. The RS 

method treats these differently from the non-traveling epistemic uncertainties 

contributed by testing because they have different implications for model predictivity in 

post-validation use of the model (e.g. [6], and [8]-Appendix A and pp. 50).  
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