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Abstract

We present a phenomenological constitutive model that describes the macroscopic behavior of
pressed-pellet materials used in molten salt batteries. Such materials include separators, cathodes,
and anodes. The purpose of this model is to describe the inelastic deformation associated with the
melting of a key constituent, the electrolyte. At room temperature, all constituents of these mate-
rials are solid and do not transport cations so that the battery is inert. As the battery is heated, the
electrolyte, a constituent typically present in the separator and cathode, melts and conducts charge
by flowing through the solid skeletons of the anode, cathode, and separator. The electrochemical
circuit is closed in this hot state of the battery.

The focus of this report is on the thermal-mechanical behavior of the separator, which typically
exhibits the most deformation of the three pellets during the process of activating a molten salt
battery. Separator materials are composed of a compressed mixture of a powdered electrolyte, an
inert binder phase, and void space. When the electrolyte melts, macroscopically one observes both
a change in volume and shape of the separator that depends on the applied boundary conditions
during the melt transition. Although porous flow plays a critical role in the battery mechanics and
electrochemistry, the focus of this report is on separator behavior under flow-free conditions in
which the total mass of electrolyte is static within the pellet. Specific poromechanics effects such
as capillary pressure, pressure-saturation, and electrolyte transport between layers are not consid-
ered. Instead, a phenomenological model is presented to describe all such behaviors including the
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melting transition of the electrolyte, loss of void space, and isochoric plasticity associated with
the binder phase rearrangement. The model is appropriate for use finite element analysis under
finite deformation and finite temperature change conditions. The model reasonably describes the
stress dependent volume and shape change associated with dead load compression and spring-type
boundary conditions; the latter is relevant in molten salt batteries. Future work will transition
the model towards describing the solid skeleton of the separator in the traditional poromechanics
context.
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Chapter 1

Introduction

Molten salt batteries are electrochemical cells that are open circuit below the melting temperature
of the electrolyte but readily deliver power above this transition. These batteries typically consist of
multiple electrochemical cells stacked like pancakes into a cylinder and packaged under both axial
and radial closing forces. In each cell, an anode and cathode are separated by a separator material
composed of a powdered oxide and eutectic salt that are compressed together. A procedure for
manufacturing separator pellets is described in reference [14]. The multi-phase microstructure of
the separator material includes a sizable void fraction of approximately 25% by volume initially
due to the manufacturing process [16]. In the cold state of the battery, the electrolyte is solid,
and the separator cannot transport cations, but when the electrolyte is in its molten state, cation
transport readily occurs. In this report, we will focus on separators composed of 18% by volume
MgO binder, 57% by volume eutectic mixture of LiCl-KCl electrolyte, and 25% by volume void
space. The melting temperature of the electrolyte is 352 C [12, 16].

As the electrolyte melts, several processes occur simultaneously at the microscale:

• The specific volume of the LiCl-KCl electrolyte expands by 20% in the liquid state relative
to the solid state [14]

• The void space is observed to diminish substantially as capillary pressure drives the removal
of free surface area

• The particles in the binder phase rearrange until they form a percolated network capable
of supporting shear stress. Macroscopically, inelastic shape change is observed during this
process.

Macroscopically, these processes result in both volumetric and isochoric (constant volume) shape
change of the separator pellets, the details of which are important to the electrochemical perfor-
mance of the cell. Too much plastic deformation can cause intracell shorting to occur if the anode
and cathode pellets come into contact. Alternatively, too much plastic deformation may cause the
electrolyte to leak out of the separator material and form an ion conduction pathway through the
surrounding insulation leading to intercell parasitic currents [10]. In contrast, if the deformation
is too small, there may be poor interfacial contact and inadequate wetting of the separator-cathode
and separator-anode interfaces, which would result in a higher internal resistance in the battery
[10]. Similar arguments/concerns apply to changing the volume fractions of the electrolyte and
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binder phases [14]. For molten salt batteries, the conventionally desired axial deformation (in the
thickness direction of the separator discs) is 15% engineering strain across the melt transition.
However, the realized deformation depends on the composition of the separator pellet and sur-
rounding cathode and anode pellets (due to electrolyte transport) as well as the stress state within
the separator across the melting transition [10]. Modeling the last topic is the subject of this report.
Our objective is to describe the macroscopic thermal, phase change, and mechanical behaviors of
the separator material so that when this description is combined with electrochemistry and (porous)
fluid flow behavior of the molten electrolyte, we can predictively guide and improve molten salt
battery design. Historically, Sandia has invested in molten salt battery research, development, and
component production to support a variety of weapon systems [20, 2], which has reulted in a broad
range of use requirements that involve short, pulsed responses, wherein a battery must deliver
power for one minute or less, to much longer responses which involve power delivery on the order
of hours [7]. These use cases involve different thermal-mechanical environments on the battery
materials. Hence, a model framework is needed to describe the thermal-mechanics of pressed pel-
let materials, such as the separator. This paper is laid out as follows. In section 2, experiments
are presented that detail the complex, thermal-mechanical-phase change behavior of the separator
material. These data determine the required behaviors that the model must capture. In section 3,
a finite deformation constitutive model is developed, and consequences of objectivity and the first
and second laws of thermodynamics are examined. The constitutive model involves generalized
creep behavior that is difficult to integrate in time; the time integration algorithm is discussing in
section 4. In section 5, the constitutive model is calibrated and then validated against experiments
relevant to battery applications in section 6. Alternative boundary conditions and their effects on
calibration and validation are examined in section 7. The paper is then concluded in section 8.
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Chapter 2

Experiments

The focus of this work is the behavior of the separator by itself. Thus, the effects of electrolyte
flow from the separator to the anode and cathode are not considered here. A suite of tests were
performed in 2011-2013 to examine the thermal, mechanical, and phase change behaviors of the
separator material. The majority of this data is reported in two memos, [6] and [17]. In this work,
only a representative selection of those tests is presented in an effort to tell a simpler story.

We begin with a discussion of the separator pellet manufacturing process reproduced from
[14]. Briefly, a target weight fraction of eutectic LiCl-KCl and MgO powders are mixed together
such that a specified total mass is achieved. The mixture is fuzed above the electrolyte melting
temperature for several hours, and then the solid block is ground back into a powder. The powder
is then pressed in a cylindrical die to form pellets of a specified dimensions. Based on the initially
specified mass of the mixture, this process results in pellets of controlled density and volume
fractions of electrolyte, binder, and void space. We examine pellets in this report that are 6 by 1
mm diameter to thickness. Scanning electron micrographs of the separator pellet before and after
a thermal cycle are shown in Fig. 2.1.

We consider LiCl-KCl pellets that are manufactured to be composed of 57% electrolyte (LiCl-
KCl), 18% binder (MgO), and 25% void fraction (0% relative humidity air). Near 352 C, the
electrolyte melting point divides the cold and hot state behaviors of the composite material. Using
an ARES 2 Rheometer (TA Instruments), oscillatory shear measurements were taken beginning
at room temperature and sweeping across the phase transition at a temperature rate of 5 C / min.
Details of these measurements are reported in reference [6]. The storage and loss shear moduli
vs. temperature are reported in Fig. 2.2. Note that the loss modulus is always below the storage
modulus by at least an order of magnitude, except within the vicinity of the melting transition,
which indicates that the composite material behaves as a solid over most of its temperature range.
Through the melting transition, however, both moduli are of equal order, signifying that more com-
plex phenomena are at work. The shear storage modulus shows both temperature and deformation
dependence both above and below the melting transition.

Ultrasonics measurements at room temperature confirmed the storage shear modulus (under
near traction free conditions) at room temperature and through measurements of the bulk modulus,
they inferred Poisson’s ratio to be 0.03 [18].

Given the large temperature ranges over which the separator operates, thermal expansion may
be important in the mechanics of the separator. Since the separator is an aggregate of electrolyte
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10 µm 

(a) Separator pellet pre-melted microstructure as man-
ufactured

10 µm 

Cathode 

Separator 

(b) Separator near the cathode interface at room tem-
perature after a thermal cycle under 15 psi applied pres-
sure

Figure 2.1. Scanning electron micrographs of the LiCl-
KCl/MgO separator pellet at room temperature as manufactured
and after a thermal cycle in which the electrolyte has melted and
re-solidified.

and binder particles randomly mixed and pressed together (see Fig. 2.1), we assume thermal
expansion to be isotropic and measure it using a NETZSCH dilatometer. In these experiments, a 0.4
psi pressure is applied to the specimen, and the deformation is measured along a single axis during
a temperature sweep. An example of this data is presented below for the separator; while hysterisis
was expected since the separator compacts as the electrolyte melts, the high temperature expansion
coefficient is not consistent between heating and cooling, a result that merits further inquiry. It
should be noted that thermal expansion data taken independently on an ARES 2 rheometer conflicts
with the pressure dilatometry data, but such measurements are outside the typical usage of the
rheometer. In Fig. 2.3, note the difference in linear strain vs. temperature behavior above the
transition. That is, immediately after the transition, very little expansion is observed ( 10E-6
linear strain per C), which is evident from Fig. 2.3, until the temperature direction is reversed,
and the specimen is cooled. Still above the melt transition, the thermal expansion behavior is
substantially larger ( 70E-6 linear strain per C). This difference in heating and cooling thermal
expansion behavior is not yet understood. However, the expected use case of the model will require
the monotonic heating behavior of the material associated with ignition and battery use.

Lastly, we present (also from reference [6]) the height and diameter strain that is observed as a
cylindrical separator pellet is heated through the melt transition. This data represents the engineer-
ing strain change (per reference diameter and height) between the pre melted and immediately post
melted electrolyte states of the separator. The height change is measured across the melt transition,
which occurs over a narrow temperature window in which thermal expansion of the instrument,
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(a) Shear storage modulus vs. temperature
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(b) Shear loss modulus vs. temperature

Figure 2.2. Oscillatory shear measurements of 6x1 mm diame-
ter x height separator pellets from room temperature through the
melting temperature at 350C are reported under different applied
axial stresses. Storage (G’) and loss (G”) moduli are reported.
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Figure 2.3. Separator pellet linear thermal expansion data taken
from pressure dilatometry and a linear LVDT measurement along
a single axis.

platen, and specimen are negligible. The diameter strain is an approximate strain measure ana-
lyzed from in situ images and measured with the ImageJ software. An image of the specimen at
room temperature, a 6x1 mm diameter x height separator pellet, is shown first followed by a plot
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of height and diameter engineering strain across the transition that are measured under different
states of applied axial stress in Fig. 2.4. These data are consistent with historical data in references
[8, 9].

(a) ARES 2 Rheometer Setup Show-
ing a Separator Pellet

σapplied (psi)

ε

0.0 2.5 5.0 7.5 10.0 12.5 15.0
−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2
Δh
h0

ΔD
D0

(b) Separator Height and Diameter Engineering Strain
Across the Melt Transition

Figure 2.4. Separator height and diameter engineering strain
across the electrolyte melting transition under different axially ap-
plied nominal stresses. The data were measured with an ARES
2 rheometer under a 5C per minute temperature ramp from room
temperature through the transition. Diameter strain was measured
optically.

A nearly linear relationship between applied axial nominal stress and height strain is observed
with an intercept of approximately 4% compressive height strain at zero applied nominal stress.
Hence, we conclude that the height change is mechanically driven. That is, the change in shape and
volume of the pellet is correlated with the state of stress in the pellet during the electrolyte melting
process. Second, because there is a permanent height change even at zero applied stress, capillary
forces at the microstructure level are important in determining how the material plastically deforms
during this melting process. Finally, although data is lacking near zero applied stress, the height
and diameter strain between 5-10 psi axially applied stress indicate a volume change of only a few
percent. To see this, the volume strain across the melting transition is given approximately by,

V −V0

V0
= (1+ εh)(1+ εd)

2−1. (2.1)

Here, V , V0, εh, and εd represent the volumes before and after the melt transition and the axial
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−0.05
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Figure 2.5. Net volume change of the separator pellet as it com-
pacts across the melting transition of the electrolyte under different
applied axial stresses from Eq. 2.1 and data in Fig. 2.4.

(height) and diameter engineering strains across the melting transition. From Eq. 2.1, one may
plot the volume strain against applied axial stress shown in Fig. 2.5. Note that Eq. 2.1 is an ap-
proximation because the cylinder may barrel, but given the relatively large aspect ratio of diameter
to height, it is reasonable. Roughly, a 10 % volume change is observed for all the 5-10 psi axial
dead loads although substantial scatter in the data renders this statement a conjecture. This volume
change arises from the competition between the loss of porosity (diminishing void space) and the
expansion of the electrolyte on melting. The specific volume ratio of the melted to solid electrolyte
is approximately 20% [14]. Hence, for a separator with 57% by volume electrolyte, 19% MgO
binder, and 25% void space in the solid state, a 10% net volume change suggests that the void
space is reduces from 25% to 4% (not accounting for thermal and elastic volume changes).

We summarize the main experimental observations necessary for the development of a con-
stitutive model both for the solid skeleton as well as for the combined void, electrolyte, binder
material under electrolyte flow free conditions:

• Before and after the electrolyte melts, the separator behaves as a thermo-poro-elastic solid
under stresses typically seen within molten salt batteries (order 100 psi). Non-linear behav-
ior is observed for larger stresses and/or large deformation, but this behavior has not been
thoroughly characterized and may not be relevant to typical battery applications.

• The separator’s shear modulus increases with temperature and applied mean stress

• During the melting of the electrolyte, capillary forces and externally applied stresses cause
the void space to diminish. During this process, the separator material deforms significantly
as the binder phase reforms a percolated particle network. More deformation is seen with
increased applied axial stress.
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• Thermal expansion may be important leading up to the electrolyte melting transition if there
are significant mismatches between thermal expansion coefficients

• The electrolyte’s specific volume change on melting is important during the melting process
and competes against the reduction in volume due to the loss of void space
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Chapter 3

Model Theory

Modeling separator’s complex macroscopic thermal, phase change, and mechanical behaviors are
the main challenges of this work. Our objective is to develop a constitutive representation for the
fully solid separator in the cold state, the porous solid skeleton (binder phase) in the hot state, and
the transition behavior between these two states as the electrolyte melts, which involves significant
volume and shape change as seen in Fig. 2.4. This constitutive framework should provide stress
contributions to the momentum balance of the solid skeleton, which may be combined with the
bulk fluid stress through the effective stress method. Additionally, permanent shape and volume
change associated with the evolution of the solid skeleton should be tracked.

Central to simulating the volumetric and shape change associated with the solid skeleton is a
physical description of how the binder particles set up a percolated network as the surrounding
electrolyte particles melt, wet the binder, and absorb air in the void space. Microscale mechanisms
for these processes are not well understood in the materials under examination and remain open
scientific questions. A remarkable experimental observation is that the number density of solid,
percolated particles supporting structural loads decreases across the electrolyte melt transition as
depicted schematically in Fig. 3.1. The schematic does not accurately represent the fractal nature
of the binder and electrolyte particles as seen under SEM in Fig. 2.1. It is likely the complexity of
the particle geometry that allows such a low binder particle number density to setup a percolated
network.

Although the focus of this work is a description of the solid skeleton behavior, here we briefly
describe the simulation process flow within the separator as it pertains to species, energy, and
momentum balances. At all states of the material, the characteristic length scale of features at
the microscale (pore length scale in Fig. 2.1) is typically 2 orders of magnitude smaller than the
smallest macroscale dimensions. Hence, we pursue a continuum description of material behavior
in which volume fractions of each phase are tracked at material points. In the cold state, the
separator behaves as a thermal-elastic solid, and so a Lagrangian description of material points is
appropriate for all phases represented together with a single set of thermal-mechanical properties.
In the hot state, the solid skeleton, which is now a (re-)percolated network of binder particles
surrounded by the liquid electrolyte, also behaves as a thermal-elastic and possibly plastic solid.
Again, a Lagrangian description of the skeleton is sensible. As is standard practice, the liquid
electrolyte (hot state) is represented within an Eulerian frame relative to the (Lagrangian) solid
skeleton, and the response of the skeleton and liquid electrolyte are combined through the effective
stress method to balance momentum [5]. The combined energy, species, and momentum balance
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Cold State!

Applied Axial Pressure!

Hot State!
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Solid!
Liquid!
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Electrolyte!

Figure 3.1. Schematic of the separator microstructure in the cold
(solid) and hot (saturated porous solid) states. The material com-
pacts by approximately 15% axial strain, the void space disappears
(fully saturated state of the fluid), and the binder particles set up a
percolated network as depicted here as a network of contact points.

laws are fairly standard in the hot state and very simple, if not trivial, in the cold state.

However, representing the transition between these two states, where the primary deformation
of the separator is observed, is more complicated. Here, an extent-of-phase-transition rule of mix-
tures decomposition of the cold state separator and hot state binder phase is used. Essentially,
thermal-elastic properties are interpolated between these two states, and specific creep-based plas-
tic flow rules govern the inelastic deformation of the skeleton during this transition. Models for
porous flow through this phase transition have not been finalized as of the writing of this report
due to complexities at interfaces between the different layers; we may pursue a fluid viscosity that
depends on the extent of electrolyte phase transition.

The separator model described in this section also may be used in a simpler form in which
all electrolyte fluid contributions are phenomenologically lumped into the behavior of the solid
skeleton, and the loss of porosity, phase change behavior, and inelastic shape change of the sepa-
rator are phenomenologically considered. Such an approach misses important physics associated
with fluid stresses, capillary pressure, and appropriate mechanisms for the loss of porosity (such
as dissolution of the gas phase into the molten electrolyte), but this simpler model can be used
in a stand alone momentum balance code for quick studies of the separator thermal-mechanical
behavior under electrolyte flow-free conditions. They differ in how the Cauchy stress is computed.
Either use of the model applies to pressed pellet materials in which a known initial volume fraction
of species melts while the other solid species rearranges itself. Therefore, both approaches apply
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to the LiCl-KCl-MgO separators and to LiCl-KCl-FeS2 cathodes. These two model approaches
are summarized in Fig. 3.2.

Two Constitutive Model Approaches!

2.  Poro-Mechanics!1.  Phenomenological!

! =!Cold ! =! s
Cold

! = 1!"H( )!Cold +"H! Hot

! = 1!"H( )! s
Cold +!H!

s
Hot

+ Bp f !H[ ]1

! =! Hot ! =! s
Hot + Bp

f 1

Cold State Solid!
Thermal-Elastic Behavior!

Electrolyte Melt Transition!
Cold State+Solid Skeleton
+Unsaturated Porous Flow!

Fully Melted Hot Sate!
Solid Skeleton+Saturated 

Porous Flow!

Figure 3.2. Two approaches to modeling the constitutive behav-
ior of the separator and cathode materials. The phenomenologi-
cal approach lumps the effects of pressure-saturation into a single
phenomenological material that undergoes a phase transition and
inelastic deformation. The poro-mechanical approach interpolates
between the solid cold state and (partially) saturated hot state with
an extent of phase transition viscosity.

As is evident in Fig. 3.2, the Cauchy stress in the phenomenological approach involves an inter-
polation between responses in the cold and hot states based on a non-dimensional phase transition
extent, νH . Inelastic deformation occurs in the transition region, which will be discussed in subse-
quent sections, and in the hot state, the material is represented by a single thermal-elastic-plastic
response. The poro-mechanical description involves the same thermal-elastic representation in the
cold state with a slight notation change to include s, the solid response. As the electrolyte melts,
again described with a single progress variable, νH , the solid skeleton constitutive behavior is again
formed through the interpolation between the cold and hot state responses and inelastic deforma-
tion, which is applied to both the cold and hot state of the skeleton. In the transition region, a fluid
pressure contribution, p f , also adds to the Cauchy stress and is weighted by the Biot coefficient,

B = 1− K f

Ks , (3.1)

where K f and Ks are the fluid and solid bulk moduli [5]. The pressure contribution is made to vary
with the extent of phase transition to mimic the change in fluid volume as it melts.

At the time in which this report was written, the porous flow capabilities and representation
through the melt transition were not complete, such that only the phenomenological approach
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was considered. However, these two approaches are similar with respect to the formulation of
the solid skeleton and its interpolation between the cold and hot states. Hence, once the porous
flow formulation is fully implemented in SIERRA/ARIA, a recalibration and repeat of validation
simulations will be required.

The solid skeleton constitutive model is developed inn the sections that follow in the context of
the phenomenological approach in Fig. 3.2. We begin by discussing kinematics and assume that
we can decompose the deformation gradient multiplicatively into components related to different
deformation producing phenomena: thermal expansion and phase transition deformation, change
in permanent shape accompanying the melting of the electrolyte, loss of porosity, and mechanical
deformation. We discuss the volume fraction decomposition of the macroscale material and how
volume fractions are represented on different configurations. Next, we develop a Helmholtz free
energy per unit mass to represent the thermal-phase change-loss of porosity-mechanical behavior
of the separator material. From this free energy and thermodynamics presented in the appendices,
we derive the Cauchy stress, thermodynamic properties, and the equation of motion for the tem-
perature field. We check that our model is objective with respect to Galillean changes of frame.
Finally, we look at specific forms for modeling thermal expansion, phase transformation kinetics,
and the permanent deformation accumulated due to the loss of porosity as the separator material is
initially heated through the melt transition of the electrolyte.

3.1 Kinematics of the Solid Skeleton

Consider a homogenous body, which occupies the volume Ω0, along with its boundary, dΩ0. The
configuration that it initially occupies is taken to be the time-independent reference configuration.
The position of a material point within Ω0 is denoted by, XXX ∈ Ω0. The motion of a material point
from its position, XXX , in the reference configuration to its position, xxx, in the current configuration
(with the volume Ω and an associated boundary ∂Ω), is assumed to be a smooth, bijective mapping,
so that the inverse mapping always exists. Note, the concept that a macroscale material point
tracks a unique cluster of particles at the microscale is questionable during the melt transition of
the electrolyte since the binder phase particles rearrange themselves to form a percolated network.
Hence, at the microscale, two binder particles initially near each other in the cold state may not
be in the hot state, which suggests that the concept of a material point may not be valid at the
macroscale. We acknowledge this issue but assume that the traditional Lagrangian perspective of
a material point remains a reasonable approach. The material point’s motion, displacement field uuu,
deformation gradient, and its determinant are,

xxx = χ (XXX) = XXX +uuu, FFF =
∂ χ (XXX)

∂XXX
, J = det(FFF)> 0. (3.2)

We multiplicatively decompose the deformation gradient associated with the cold state combined
material and hot state solid skeleton into three components associated with different phenomena:

• FFFΘ, volumetric deformation due to thermal expansion of each phase, the specific volume
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changes associated to melting of the electrolyte, the loss of void (air) space, and transport of
the electrolyte phase

• FFFX , permanent shape and volume change of the solid skeleton during the cold-to-hot phase
transition

• FFFM, elastic deformation experienced by the cold state solid and hot state solid skeleton

Note, the same multiplicative split is used for the solid phase(s) above and below the melt transi-
tion. This multiplicative kinematic split is shown in Fig. 3.3 and is described Eq. 3.3.

FFF = FFFMFFFX FFFΘ =
∂xxx
∂XXX

, (3.3)

We require that all multiplicative components of the deformation gradient are non-singular since

F

FX

F!

FM

Reference 
Configuration 

Thermally Unloaded 
Intermediate Configuration 

Mechanically Unloaded 
Intermediate Configuration 

Current 
Configuration 

Figure 3.3. Kinematics of a material point (red dot) and its imme-
diate neighborhood. Intermediate configurations are named based
on the action of the deformation gradients that connect them. The
deformations are exaggerated to distinguish configurations. Note
that the reference configuration does not necessarily correspond to
a stress-free configuration.

they represent smooth, bijective mappings of material points between configurations, and therefore,
we preserve our requirement that the total mapping remains bijective. Consequently,

J = JMJX JΘ, JΘ > 0,JX > 0,JM > 0. (3.4)
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We now further multiplicatively split each of these deformation gradients into volumetric and iso-
choric components, so that for any one of these components of the deformation gradient, we have,

FFFβ =

(
J

1
3
β

111
)(

J
− 1

3
β

FFFβ

)
= FFFβvolF̄FFβ

, β = Θ,X ,M. (3.5)

Here, 111 represents the identity tensor. We define the mechanical Cauchy-Green deformation tensor,
which exists on the mechanically unloaded intermediate configuration in Fig. 3.3, and we define
the first two invariants of its isochoric part,

CCCM = FFFMT FFFM =CCCMvolC̄CCM
, (3.6)

Ī1M = trC̄CCM
, Ī2M =

1
2

(
(trC̄CCM

)2− tr(C̄CCMC̄CCM
)
)
. (3.7)

3.2 Volume Fraction Decomposition

The volume fraction decomposition of the material into the void, electrolyte, and binder phases
plays a significant role in producing volume and shape changes within the material. First consider
the decomposition of the macroscale material’s specific volume in the current configuration into
volumes per unit composite material mass associated with void, electrolyte, and binder constituents
and require that the current configuration volume fractions sum to unity,

V =Vv +Ve +Vb. (3.8)
Vv

V
+

Ve

V
+

Vb

V
= fv + fe + fb = 1 (3.9)

Next, using Eq. 3.2, Eq. 3.4, and properties of the deformation gradient, define the ratio of the
macroscale composite material’s specific volume in the current and reference configurations,

V
V0

= J = JMJX JΘ =
Vv

V0
+

Ve

V0
+

Vb

V0
= f 0

v + f 0
e + f 0

b . (3.10)

Clearly, J fi = f 0
i for i as e, v, and b. In general, properties such as thermal expansion and the

bulk modulus of the three phases will differ. Consequently, the volume changes experienced by
different phases will not be experienced equally, and in the coupled poro-mechanical approach,
such differences in bulk moduli and volumetric deformation are accounted for through the Biot
coefficient in Eq. 3.1, and tracking of these volume fractions at material point is not needed. For
the phenomenological approach in which all constituents are lumped together, we expect that the
loss of porosity (gas phase) and specific volume change of the electrolyte on melting will dominate
the volume change behavior of the separator material since both of these behaviors are significantly
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larger than thermal expansion and elastic volume changes of the solid skeleton. Solving for the
volume ratio associated with macroscopic thermal expansion and phase volume changes,

JΘ = J−1
M J−1

X
(

f 0
v + f 0

e + f 0
b
)
= f Θ

v + f Θ
e + f Θ

b , (3.11)

wherein these last volume fractions exist within an elastically and plastically unloaded configura-
tion (from the solid skeleton) and define the volume deformation, JΘ, due to changes in volume
fraction and or phase decomposition of each constituent. With a bit of algebra, these volume
fractions are related to the current configuration volume fractions in Eq. 3.9 via,

f Θ
v = fvJΘ, f Θ

e = feJΘ, f Θ

b = fbJΘ, (3.12)

which are known from porous-flow calculations and the thermodynamic state of each constituent.
Note that eqs. 3.11 and 3.12 are approximations that assume that each constitutent phase experi-
ences the same volume change associated with the skeletons elastic and plastic volumetric motions
and may not be reasonable.

3.3 Helmholtz Free Energy Density and Work-Conjugate Ther-
modynamic Fluxes

We derive the thermal mechanical behavior of the separator from a specific Helmholtz free energy
following appendices A and B. Ignoring chemical changes in the separator material, we assume
that the specific Helmholtz free energy density is composed of elastic and thermal contributions,
which we model with a volume fraction weighted sum of the associated cold state aggregate ma-
terial and hot state binder phase solid skeleton in Eq. 3.14. Note that ”C” and ”H” denote the
cold and hot states properties respectively; however, fundamentally, these two states are different
(ie. the cold state is the binder + solid electrolyte while the hot state is a the re-percolated binder
phase).

ρ0ψ
(
Θ,CCCM)= (3.13)

vC

(
κC[Θ]

2
(
J2

M−1−2log[JM]
)
+µC[JM,Θ] (Ī1M−3)

)
. . .

+vH

(
κH [Θ]

2
(
J2

M−1−2log[JM]
)
+µH [JM,Θ] (Ī1M−3)

)
. . .

+ρ0 (vCCVC + vHCV H)

(
Θ2−Θ2

MELT
2ΘMELT

)

Here, µC (µH) and κC (κH) are the temperature and mechanical deformation dependent shear and
bulk moduli of the cold (hot) state respectively while the specific heat capacities at constant states
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of mechanical deformation are denoted by CVC and CV H . These material properties correspond the
composite material’s response above and below the meling transition of the electrolyte, ΘMELT .
We have used a Neo-Hookean constitutive model for the elastic free energies of the cold and hot
states with Ī1M denoting the first invariant of the isochoric Cauchy-Green deformation tensore (Eq.
3.7).

We now calculate the Cauchy stress and entropy density using Eq. 3.14 and the Rational
mechanics approach. Following Eq. B.8, we calculate the Second-Piola Kirchoff-like stress tensor
defined on the mechanically unloaded configuration, and then push it forward to arrive at the
Cauchy stress,

SSSM = 2
∂Ψ

∂CCCM = . . . (3.14)

(vCµC[JM,Θ]+ vH µH [JM,Θ])J
− 2

3
M

(
111− trCCCM

3
CCCM−1

)
+ . . .

. . .

(
vC

∂ µC

∂JM
+ vH

∂ µH

∂JM

)
(Ī1M−3)JMCCCM−1 + . . .

. . .(vCκC[Θ]+ vHκH [Θ])
(
J2

M−1
)

CCCM−1,

σi j = 2J−1
M FFFM ∂ψ

∂CM
pk
(FFFM)T = . . . (3.15)

(vCµC[JM,Θ]+ vH µH [JM,Θ])J
− 5

3
M
(
FFFM(FFFM)T −111

)
+ . . .

. . .

(
vC

∂ µC

∂JM
+ vH

∂ µH

∂JM

)
(Ī1M−3)111+ . . .

. . .(vCκC[Θ]+ vHκH [Θ])
(
JM− J−1

M
)

111.

and the referential entropy density (from Eq. B.8) is,

η0 =−
(

vC
dκC

dΘ
+ vH

dκH

dΘ

)(
J2

M−1−2log[JM]
)
. . . (3.16)

. . .−
(

vC
∂ µC

∂Θ
+ vH

∂ µH

∂Θ

)
(Ī1M−3) . . .

. . .−ρ0 (vCCVC + vHCV H)

(
Θ

ΘMELT

)
.

3.4 Thermal and Phase Change Properties

We define the heat capacity per unit current volume of the material at a constant state of mechanical
deformation and relate it to the Helmholtz free energy density in Eq. 3.14 through the Legendre
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transform, Eq. B.4, and the relationship between it and the entropy density, Eq. B.8,

CV = Jρ0

(
∂ε0

∂Θ

)
=−ΘJρ0

(
∂ 2Ψ

∂Θ∂Θ

)
= . . . (3.17)

−ΘJ
(

vC
d2κC

dΘ2 + vH
d2κH

dΘ2

)(
J2

M−1−2log[JM]
)
. . .

. . .−ΘJ
(

vC
∂ 2µC

∂Θ2 + vH
∂ 2µH

∂Θ2

)
(Ī1M−3)

. . .− Jρ0 (vCCVC + vHCV H)

(
Θ

ΘMELT

)
.

Note that the composite density in the reference configuration, ρ0, is not a constant since the void
volume fraction diminishes and the electrolyte expands during its phase change. Also note that in
the absence of curvature of the shear and bulk moduli with temperature, the heat capacity is given
by a rule of mixtures between the hot and cold states of the composite material.

To arrive at the equation of motion for the temperature field, we use Eq. B.8, the material time
derivative of the Helmholtz free energy, Eq. B.6, the energy balance, Eq. A.5, the heat capacity per
unit volume, Eq. 3.17, and the mechanical Cauchy-Green deformation tensor, Eq. 3.6, to arrive at,

CV Θ̇ = Q−∇∇∇X •QQQ (3.18)

. . .+Θ
∂ 2Ψ

∂Θ∂CCCM : ĊCCM
+∑

β

(
Θ

∂ 2Ψ

∂Θ∂Zβ
− ∂Ψ

∂Zβ

)
Żβ .

We now consider the thermostatics associated with the electrolyte’s solid to liquid phase tran-
sition. There are at least two choices to model this phenomenon. The simpler approach is to
approximate the latent heat capacity of the composite material as the difference of the macroscop-
ically measured heat capacities between the hot (electrolyte melted) and cold (electrolyte solid)
states. That is,

ρ0Ltrans = ΘMELT (CCFM −CHFM) , (3.19)

which is correct provided there is no mass transport. Although these are heat capacities at a fixed
state of deformation, see Eq. 3.17, they do account for stored elastic strain energy in the system.
Eq. 3.19, essentially represents the difference in thermal energy stored in the two states of the
composite material. The second approach considers the change in heat capacities of the individual
components and combines them in a volume fraction weighted rule of mixtures. That is, the change
in heat capacity of the electrolyte, MgO, and air in the void space as well as mass transfer into and
out of the material point. For now, the first approach is used as it is simpler to measure with
standard macroscale tests.
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In addition to a jump in the stored thermal energy, melting the electrolyte changes the specific
volume of that phase and hence of the composite material. The jump in specific volume of the
electrolyte, γ = Vmelt

Vsolid
, is a material property that depends on the specific composition. Since typi-

cally a eutectic composition of KCl and LiCl is used, we assume that the specific volume change
corresponds to that measured at the eutectic composition, and so we do not consider the effects
of deviations about this eutectic composition. Thus, the specific volume of the electrolyte has the
following form

Ve =Ve0 (vHγ + vC(1)) =Ve0 (1+ vH(γ−1)) , (3.20)

wherein Ve0 is the electrolyte’s specific volume in the solid phase that has been unloaded by the
elastic and plastic volume changes of the skeleton. Returning to Eq. 3.11, as the electrolyte melts,
the composite material changes volume as,

JX = f X
v + f X

e (1+ vH(γ−1))+ f X
b . (3.21)

Implicit in Eq. 3.21 is the assumption that the change is volume to the electrolyte phase change is
isotropic, which is reasonable since we are representing an aggregate number of randomly oriented
particles.

Next, we model the (isotropic) thermal expansion of the composite material in the cold and hot
states,

FFFΘ = J
1
3
Θ

111, (3.22)
if Θ < ΘMELT , JΘ = exp [αC(Θ−Θ0)] ,

elseif Θ≥ΘMELT JΘ = exp [αC(ΘMELT −Θ0)+αH(Θ−ΘMELT )] .

Here, αC and αH are the (constant) linear thermal expansion coefficients of the cold and hot states
respectively. Although in reality the different phases will have different thermal expansion be-
haviors, the composite rule of mixtures approach allows for simple macroscale measurements and
calibration, and so again, we pursue the simpler approach.

3.5 Electrolyte Phase Transformation Kinetics

We model the melting/solidification kinetics of the electrolyte through one of two approaches.
The simpler approach requires the melting temperature, ΘMELT and phase transition temperature
width, ΘMW as input parameters. A linear interpolation is then executed between the cold and
hot states of the composite material, which is assumed to coincide with the solid and liquid phase
decomposition of the electrolyte. Hence, under this approach, the volume fractions of cold and hot
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state material are,

if Θ < ΘMELT −
ΘMW

2
, vH = 0, (3.23)

elseif 2|Θ−ΘMELT | ≤ΘMW , vH =
Θ−ΘMELT +ΘMW/2

ΘMW
,

else vH = 1.

We require always that the total volume fraction of cold and hot states sum to unity,

vC + vH = 1. (3.24)

The second model description of the electrolyte phase transition represents the process with
thermally activated (Arrhenius) kinetics. That is, the melting transition is treated as if it is a re-
versible chemical reaction between the cold and hot states ( C↔H). The rate at which the volume
fraction of the cold state changes is modeled as,

dvC

dt
=−kABvC + kBAvH . (3.25)

The volume fractions obey the conservation statement in Eq. 3.24, and at equilibrium, the volume
fractions from Eq. 3.25 relate the forward and reverse transition rates to a temperature dependent
equilibrium constant,

vBeq

vAeq
=

kAB

kBA
= KEQ[Θ] = exp

{
−

hx f orm

RΘ
+

ηx f orm

R

}
. (3.26)

The transition temperature, ΘMELT , is defined by ratio of the enthalpy and entropy of the transition,

ΘMELT =
hx f orm

ηx f orm
(3.27)

The forward and reverse transition rates are represented through an Arrhenius relationship and
consideration of Eq. 3.26,

kAB = k0 exp
{
−EACT

RΘ

}
, (3.28)

kBA =
kAB[Θ]

KEQ[Θ]
. (3.29)
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Here, R is the universal gas constant. With this approach, the two required material parameters,
hx f orm, ηx f orm determine the melting temperature and transition width. Additionally, the thermal
activation energy, EACT , and the temperature dependent equilibrium constant, KEQ(Θ), are required
input parameters, and these allow for some flexibility in super cooling/heating the unstable phase.

One weakness of this approach to modeling the phase transition kinetics as a thermally-activated
process is that it cannot account for the fact that a phase transition can be driven by mechanical
work (in accordance with the energy balance equations A.5 or 3.18) or changes to internal vari-
ables. For the molten salt battery considered here, the phase transition is driven by thermal energy,
and so this model of phase change kinetics as a reversibly reacting system implicitly requires a
specific heat flux Qi or volumetric heating rate Q to occur such that the energy balance is satisfied
(Eq. 3.18).

Finally, it is also possible for the model to take the phase decomposition as an input directly
from the energy balance. This approach relies on an external representation of the thermodynamic
state of the composite material.

3.6 Loss of Void Space

During the melting of the electrolyte, the microstructure of the separator irreversibly changes, and
macroscopically both volumetric and isochoric motions are observed. Volumetric deformation is
associated with the loss of void volume fraction as trapped gas within the material either escapes
or dissolves into the liquid electrolyte. This reduction in volume is opposed by the specific volume
increase of the electrolyte across its melt transition [14]. The mechanism by which the void volume
fraction evolves is not fully understood. Additionally, the liquid electrolyte wets the MgO binder,
which generates capillary forces that further compress the composite material and/or contribute
to the loss of void space [16, 14, 8, 10]. Under full poro-mechanical coupling, the loss of void
space (inversely related to the rise in saturation) is directly computed. For the electrolyte flow-free
conditions considered here, we phenomenologically model this loss of void space as a mean stress
driven process. Specifically, if porous flow is not considered, then the loss of void volume fraction,
as defined in Eq. 3.11 and 3.12, via the following rule,

ḟ X
v =C1v̇H f X

v (JM−1)p sign(JM−1)p−1 (3.30)

Here, C1 is a phenomenological material constant that associates the loss of void space, which
is tied to volumetric deformation through Eq. 3.11, and elastic volumetric deformation through
JM − 1. The exponent, p, is a positive integer greater than or equal to zero. Thus, when the
composite material is subjected to a compressive state of stress, JM− 1 < 0, and and so the void
fraction diminishes. Concomitantly, JX also diminishes through Eq. 3.11. If the composite material
were to be subjected to a tensile environment, JM − 1 > 0, and the void fraction would grow.
This latter case is not anticipated to occur in thermal batteries. This form of the evolution rule is
thermodynamically consistent with respect to the second law, Eq. B.9 whereas such compliance is
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not guaranteed if the void volume fraction is required to diminish while the material point is under
both tensile and compressive hydrostatic stress. Hence, to enforce thermodynamic consistency, we
add the factor, sign(JM−1)p−1.

We now return to Eqs. 3.11 and 3.21, which characterize the volume change due to the elec-
trolyte expansion and loss of void space. Provided that there is no transport of the binder, then f X

b
is a constant. Then, JX is determined from the evolution of f X

v in Eq. 3.30 and from f X
b at the initial

state of the material provided the evolution of f v
e is known. In the absence of porous flow mod-

eling, we will assume the mass of electrolyte per unit reference volume of the composite material
is fixed, which implies that there is no net transport of the electrolyte into a material volume. Al-
ternatively, when porous flow calculations are considered, then the electrolyte concentration (and
hence volume fraction) is an input variable to the constitutive model. In either case, the effects on
the mechanically and thermally unloaded volume are captured through JX .

3.7 Isochoric Plasticity During the Melt Transition

The liquified separator no longer supports structural loads, and so shear stresses are transferred
to the MgO binder skeleton. However, as depicted in Fig. 3.1, we conjecture that the binder
particles undergo significant rearrangement to set up a load bearing, percolated network. We as-
sociate the observed shape change in melting separator pellets with this process, and we assume
the binder particle rearrangement to correspond to an isochoric motion at the macroscale. Data in
Fig. 2.4(b) suggests that the shape change is at a basic level stress-driven. We anticipate that the
key to representing the macroscale isochoric inelastic response is to adequately represent how the
binder particles setup a percolate network at the microscale. Without this underlying mechanism
well understood, we proceed with a phenomenological generalized creep model to represent the
macroscale isochoric inelastic deformation of the separator material and solid skeleton under flow
free and porous flow conditions respectively. The rate of isochoric plastic deformation is defined
on the mechanically unloaded configuration (see Fig. 3.3) is tied to the loss of void space volume
fraction through,

DDDX
=

C2| ḟ X
v |

µ
CCCMSSSM

devCCC
M, (3.31)

which is related to the isochoric inelastic velocity gradient on the same configuration through,

ḞFF
X

FFFX−1
= LLLX

=CCCM−1DDDX
=

C2| ḟ X
v |

µ
SSSM

devCCC
M. (3.32)

In these equations, C2 represents a phenomenological material constant that scales the rate of iso-
choric inelastic flow with the deviatoric stress state (defined on the intermediate configuration) and
rate at which the void fraction is diminishing. The deviatoric mechanical Second Piola-Kirchoff
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stress is defined through the following relationship,

SSSM
dev = SSSM− 1

3
(
SSSM : CCCM)CCCM−1 = . . . (3.33)

(vCµC[JM,Θ]+ vH µH [JM,Θ])J
− 2

3
M

(
111− trCCCM

3
CCCM−1

)

following from Eq. 3.14, which is different from the traditional definition of a deviatoric tensor on
the current configuration. This difference arises because the metric tensor is CCCM−1 on the mechan-
ically unloaded configuration (see Fig. 3.3) rather than 111−1 = 111 on the current configuration. The
formalism in this section follows references [22, 1] with one important difference; here, isochoric
plastic flow is driven by the loss of porosity (diminishing f X

v ) and involves no yield surface.

Note, the isochoric plastic velocity gradient, Eq. 3.32 along with the deviatoric part of the
mechanical Second Piola-Kirchoff stress, Eq. 3.33, furnishes the evolution rule for the isochoric
plastic flow portion of FFFX . This rule is phenomenological and can be replaced or improved as
new experimental data is obtained that better informs us of what mechanisms drive the permanent
shape change of the MgO binder as the electrolyte melts.

3.8 Shear and Bulk Moduli Dependencies

Evident from the dynamic mechanical analysis data, the storage and loss shear moduli are both
temperature and deformation dependent in both the cold and the hot states. Furthermore, the
sensitivity to deformation and temperature appears to be higher in the cold state than in the hot
state, so that distinct dependencies in the two states are required. We assume that the deformation
dependence of the moduli arises from volumetric mechanical deformation, JM − 1. Thus, the
equilibrium shear and bulk moduli in the cold and hot states are assumed to obey the following
forms,

κβ (Θ) = κβ0 +κβ1 (Θ−ΘMELT ) (3.34)
µβ (Θ) = µβ0 +µβ1 (Θ−ΘMELT )+µβ2 (JM−1) . . . (3.35)

+µβ3 (Θ−ΘMELT )(JM−1)

Here, β represents either the cold state (C) or the hot state (H). Note that the bulk moduli are
assumed not to be deformation dependent following experimental observations. The entities κiβ
and µiβ represent six material constants for each phase.

Aside, rheometry measurements show loss moduli substantially lower than the storage mod-
uli especially well away from the transition, which is consistent with our interpretation that the
composite material behaves as a solid even as one of its constituent materials melts. We do not
consider (viscoelastic) loss mechanisms to represent the loss moduli observed except for the plastic
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flow behavior already discussed, which is only active within the vicinity of the electrolyte phase
transition.

3.9 Objectivity Requirements

We must ensure that the constitutive response is independent of the frame in which we choose
to observe our system. Following standard procedures in the literature, see references [11, 22],
we introduce an arbitrary and time-dependent change of frame by applying a rigid-body rotation,
RRR(t) and translation ccc(t) of the body in the current configuration. The spatial position, xxx, of a
material point is mapped to xxx∗, and consequently, the deformation gradient is also transformed to
FFF∗ following,

xxx∗ = RRRxxx+ ccc, FFF∗ =
∂xxx∗

∂XXX
= RRRFFF . (3.36)

Since the reference configuration is fixed in time, it is unaffected by this transformation. Scalars,
also, are invariant to a change in frame (since RRR is an orthogonal transformation). However, the
Helmholtz free energy, and consequently the Cauchy stress (after the push forward with FFFM) de-
pend on the left mechanical Cauchy-Green tensor (CCCM, which we show here to be frame invariant.
Using Eqs. 3.36 and 3.3, we show

CCCM∗ = (FFFM∗)T FFFM∗ = (FFFX)−T (FFFΘ)−T FFFT RRRT RRRFFF(FFFΘ)−1(FFFX)−1 . . . (3.37)
. . .= (FFFX)−T (FFFΘ)−T FFFT FFFFFFΘ)−1(FFFX)−1 = (FFFM)T FFFM =CCCM

Lastly, we ensure that the Cauchy stress is frame indifferent,

FFFM∗ = RRRFFFM = RRRFFF(FFFΘ)−1(FFFX)−1, (3.38)

σσσ
∗ = 2J−1

M FFFM∗ ∂ψ

∂CCCM∗ (FFF
M∗)T = RRR

(
2J−1

M FFFM ∂ψ

∂CCCM FFFM
)

RRRT = RRRσσσRRRT .

This latter results conforms to the standard requirements of frame-indifferent second-rank tensors,
which demonstrates that the material model is objective. Similar exercises will show that other
quantities that appear in the balance laws, such as the referential heat flux (QQQ) also satisfy objec-
tivity requirements.

3.10 Thermal Transport

Although the referential thermal energy flux QQQ and source Q terms have been employed in the
balance law manipulations, typically these quantities are measured and/or constitutively modeled
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with respect to quantities in the current configuration. We consider isotropic thermal transport
following Fick’s second law with a constant diffusivity, DT H , so that the heat flux and heat sources
are modeled as,

qqq =−DT H∇∇∇Θ, QQQ = FFF−1qqq, Q = J−1q. (3.39)

3.11 Model Summary

The model described in this document up to 28 parameters depending on the users’ choices. These
parameters are presented in the following tables. It is important to note that many parameters are
optional. For a stand alone momentum balance without considering electrolyte transport and with
a prescribed temperature field, then the minimum required parameters are listed in table 3.11. Op-
tional parameters allow for temperature and volumetric deformation dependent elastic moduli, an
alternative representation of the phase transition kinetics, as well as thermal properties of the hot
and cold state necessary in coupled thermal-mechanical analyses. These parameters are summa-
rized in 3.11. Finally, a summary of the equations that govern the model’s thermal and mechanical
behavior is given in 3.11.
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Parameter Unit Description

ΘMELT K Melting temperature of the electrolyte
ΘMW K Temperature width of the phase transition about ΘMELT
ΘC0 K Reference temperature of the cold state
ΘH0 K Reference temperature of the hot state
Θα0 K Temperature datum for thermal expansion
αC K−1 Linear thermal expansion coefficient of the cold phase
αH K−1 Linear thermal expansion coefficient of the hot phase
γ none Ratio of the liquid to solid electrolyte specific volumes
κC0 Pa Bulk modulus of the cold state
µC0 Pa Shear modulus of the cold state
κH0 Pa Bulk modulus of the hot state
µH0 Pa Shear modulus of the hot state
fv0 none Initial volume fraction of voids
fs0 none Initial volume fraction of the electrolyte
fMgO0 none Initial volume fraction of the binder
p none Exponent that controls the dependence of the void volume fraction evo-

lution on mechanical volume strain
C1 none Constant associated with the rate of change of the void volume fraction,

f X
v

C2 none Constant Associated with the rate of isochoric plastic deformation, DDDX

Table 3.1. Minimum required parameters for a stand-alone mo-
mentum balance analysis or a coupled momentum and energy bal-
ance analysis
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Parameter Unit Description

hx f orm J mol−1 Change in enthalpy across the phase transition. Note, this parameter
and the subsequent three are used only if (ΘMELT , ΘMW ) are not
used

ηx f orm J mol−1

K−1
Change in entropy across the phase transition

k0 none Pre-factor to the Arrhenius transformation kinetics
EACT J mol−1 Activation energy of the Arrhenius transformation kinetics
µC1 Pa K−1 Linear temperature dependence of the cold state shear modulus
µC2 Pa Linear dependence of the cold state shear modulus on mechanical

volume strain (JM−1)
µC3 Pa K−1 Bi-linear temperature dependence of the cold state shear modulus on

temperature and mechanical volume strain
κC1 Pa K−1 Linear temperature dependence of the cold state bulk modulus
µH1 Pa K−1 Linear temperature dependence of the hot state shear modulus
µH2 Pa Linear dependence of the hot state shear modulus on mechanical

volume strain (JM−1)
µH3 Pa K−1 Bi-linear temperature dependence of the hot state shear modulus on

temperature and mechanical volume strain
κH1 Pa K−1 Linear temperature dependence of the hot state bulk modulus
CVC J m−3 Constant specific heat capacity of the cold state for a fixed state of

mechanical deformation
CV H J m−3 Constant specific heat capacity of the hot state for a fixed state of

mechanical deformation
DT H m2s Constant thermal diffusivity
ρ0 kg m−3 Initial (as manufactured) density

Table 3.2. Optional Parameters
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Keywords Equations

Kinematics FFF = FFFMFFFX FFFΘ = ∂xxx
∂XXX , J = JMJX JΘ

Thermal Expansion FFFΘ = J
1
3
Θ

111,
if Θ < ΘMELT , JΘ = exp [αC(Θ−Θ0)]
else JΘ = exp [αC(ΘMELT −Θ0)+αH(Θ−ΘMELT )]

Volume Fractions Per Refer-
ence Volume

JX =
VvJ−1

M J−1
Θ

V0
+

VeJ−1
M J−1

Θ

V0
+

VbJ−1
M J−1

Θ

V0
= f X

v + f X
e + f X

b

Specific Volume of the Elec-
trolyte

Ve =Ve0 (vHγ + vC(1)) =Ve0 (1+ vH(γ−1)) ,

Void Volume Fraction Evolu-
tion Per Reference Volume

ḟ X
v =C1v̇H f X

v (JM−1)p sign(JM−1)p−1

Phase Transition Kinetics if Θ < ΘMELT − ΘMW
2 , vH = 0,

elseif 2|Θ−ΘMELT | ≤ΘMW ,

vH = Θ−ΘMELT+ΘMW /2
ΘMW

,

else vH = 1

Phase Fraction Conservation vC + vH = 1

Isochoric Rate of Plastic De-
formation

DDDX
=

C2| ḟ X
v |

µ
CCCMSSSM

devCCC
M

Mechanical Second Piola-
Kirchoff Stress

SSSM = (vCµC[JM,Θ]+ vH µH [JM,Θ])J
− 2

3
M

(
111− trCCCM

3 CCCM−1
)

. . .+
(

vC
∂ µC
∂JM

+ vH
∂ µH
∂JM

)
(Ī1M−3)JMCCCM−1

. . .+(vCκC[Θ]+ vHκH [Θ])
(
J2

M−1
)

CCCM−1

Table 3.3. Summary of Mechanical Model Parameters
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Chapter 4

Constitutive Model Numerical
Implementation

We discuss the algorithm to integrate the constitutive model through time. There are two use
cases of the model as mentioned in the introduction. First, the model may be used under elec-
trolyte transport-free conditions. That is, the mass of electrolyte per unit reference volume does
not change throughout the simulation. This condition occurs within the separator only data in sec-
tion 2. The second use case involves coupled poro-mechanics, in which the mass of electrolyte
per unit reference volume of the material changes due to the electrolyte species migration. In this
second use case, the constitutive model provides at minimum the permanent shape change of the
binder along with its stress response and the volume change associated with the loss of void space,
thermal expansion, and change of specific volume of the electrolyte. This latter usage of the model
has not yet been explored and is discussed later in the section on future work.

Under electrolyte transport-free conditions, the constitutive model involves both thermal and
kinematic inputs. The time integration algorithm proceeds as follows:

1. At t = 0, Initialize material properties and state variables

2. Input Θn, Θn+1, FFFn, and FFFn+1 (at tn and tn+1)

3. Advance the electrolyte phase transition kinetics via one of three methods:

(a) Input the (vH)n+1 and v̇H from kinetics computed in a separate (energy balance) code.

(b) Compute (vH)n+1 and v̇H from eqs. 3.23 and 3.24, which corresponds to a linear inter-
polation of the phase decomposition over a finite temperature width about the melting
point.

(c) Compute (vH)n+1 and v̇H from eqs. 3.24, 3.25, and 3.29, which corresponds to a
reaction-type representation of the phase transition process.

4. Compute the deformation gradient due to thermal expansion, FFFΘ and JΘ, from Eq. 3.22 at
time tn+1.

5. Compute the mechanical deformation gradient, Jm = detFFFM, the non-mechanical and non-
thermally expanded volume ratio, JX = detFFFX , and volume fractions of the void, electrolyte,
and binder per unit reference volume ( f X

v , f X
e , and f X

b ) and current volume at time tn+1 using
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eqs. 3.10, 3.12, 3.20, 3.21, and 3.30. This update involves a Newton-Rhapson scheme to
determine JM, f X

v , and JX from which the remaining quantities may be computed.

6. Determine the instantaneous shear and bulk moduli, µ[Θ,JM] and κ[Θ] at tn+1

7. Update the mechanical Second-Piola Kirchoff stress tensor, SSSM, from Eq. 3.14 and the iso-
choric plastic deformation gradient associated with the permanent shape of the binder, FFFX ,
from Eq. 3.32. These two tensors are highly coupled and depend on ḟ X

v . Although desired,
a Newton-Rhapson scheme proved difficult to implement. Instead, an iterative scheme was
implemented which proceeds as follows:

(a) Initially, set FFFX
k = FFFX

n and compute SSSM
k corresponding to iteration k.

(b) Do While (SSSM
dev : SSSM

dev)k− (SSSM
dev : SSSM

dev)k−1 > 10−10

i. Set k→ k−1
ii. Compute FFFM

k from FFFn+1 and FFFX
k−1

iii. Compute (SSSM
dev)k and (SSSM

dev : SSSM
dev)k

iv. Compute (LLLX
)k and update FFFX to iteration k

(c) Set FFFX
n+1 = FFFX

k and SSSM
n+1 = SSSM

k

8. Compute the Cauchy stress, σσσn+1 = J−1
M FFFM

n+1SSSM
n+1(FFF

M
n+1)

T

9. Store state variables

10. In a coupled thermal-mechanical analysis, compute the heat capacity per current volume
as the pushforward of Eq. 3.17, and return it along with the structural elastic heating and
dissipation due to volumetric and isochoric plastic flow.

Item 7 requires two additional comments. It is worth noting that because det
(

F̄FFX
)
= 1 by

definition of an isochoric deformation gradient, (F̄FFX ∈ SL(3)), numerically accurate incremental
updates of F̄FFX in item 7 involve the exponential map. See reference for further information [19].
Second, the iterative scheme typically exhibits a first order convergence rate so that typically 10-15
iterations are required to meet the tolerance. However, if too large of a time step is taken, then the
scheme may not converge, and the implemented model issues a request to cutback the time step.
The maximum time step in which the model may converge has not yet been found, and is currently
estimated based on an explicit time integration scheme, but this approach is not conservative. The
satisfaction of the basic multiplicative split of the deformation gradient kinematics, Eq. 3.3, at
time tn+1 was checked during the rate of convergence studies and found to be satisfied even more
stringently than the tolerance on deviatoric stress norm increments. Hence, we conclude that this
iterative scheme results in an implicit time integration of item 7 and thus the entire constitutive
model.

Note that the balance laws and thermodynamics concepts used in this report are included in the
appendix. They do not represent new contributions.
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Chapter 5

Separator Material Calibration

A strength of the constitutive modeling approach in section 3.3 is that it can be calibrated directly
from macroscale data for the electrolyte flow-free condition. That is, thermal expansion, specific
volume change of the electrolyte, shear and bulk moduli and their thermal and deformation de-
pendencies, and evolution rules for the loss of porosity and isochoric plastic deformation can all
be calibrated from data presented in section 2. When electrolyte transport is considered, the in-
terpretation of the material properties in the model may change, and so too would the calibration
procedure. This latter topic is discussed later in the section on future work.

Beginning with mechanical data, we note that Poisson’s ratio measurements at room tempera-
ture of the separator were ν = 0.003≈ 0 [18]. Then, turning to the oscillatory shear measurements,
we determine the shear modulus and its temperature and hydrostatic compression dependencies
from Fig. 2.2. Cold state properties are references to 50C, and hot state properties are referenced
to 500C. Temperature dependencies of the shear modulus in the cold and hot states are approxi-
mated as linear. We further assume that the bulk modulus in the cold and hot states has the same
temperature scaling as the shear modulus such that the poissons ratio at small deformation does
not change with temperature.

We assume that the bulk modulus does not change with hydrostatic compression, but the shear
modulus does. Its dependence on hydrostatic compression requires additional approximation of
the available data in Fig. 2.2 because, as implemented in the constitutive model, the shear modulus
depends on the engineering volume strain, µ = µ[JM − 1]. We assume that the axially applied
compressive stress in Fig. 2.2 subjects the separator pellet to a state of uniaxial stress with super-
imposed torsion. Thus, the hydrostatic compressive stress is σσσ applied

3 , which is linearly related to the
volume strain through the known bulk modulus. Above the melting transition, we do not have bulk
modulus data, but we continue to assume that the Poisson’s ratio, which may be reasonable under
small deformation and slow loading rate conditions (so that the molten electrolyte has time to flow,
which reduces its contribution to the stress at the microscale).

Finally, we use the melting temperature from the literature, which is confirmed experimentally
in Fig. 2.2 as well as the specific volume change of the pure LiCl-KCl electrolyte on melting.
We do not currently exercise the thermal heat capacity capabilities of the model as these parts are
handled in an energy balance ARIA module. For the simulations performed here, the temperature
distribution is assumed to be uniform and correspond with the controlled environmental temper-
ature. Model parameters under the flow free conditions, with the exception of the void fraction
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evolution rule and isochoric plasticity are reported in table 5.

Parameter Unit Value Parameter Unit Value

ΘMELT K 625 ΘMW K 10

ΘC0 K 300 ΘH0 K 773

Θα0 K 300 αC K−1 40E-6

αH K−1 10E-6 γ none 0.2

κC0 MPa 22.55 µC0 MPa 33.81

κC1 MPa K−1 0.050 µC1 MPa K−1 0.076

κH0 MPa 12.69 µH0 MPa 19.04

κH1 MPa K−1 0.072 µH1 MPa K−1 0.11

fv0 none 0.25 fs0 none 0.57

fMgO0 none 0.18

Table 5.1. Calibrated separator material parameters I

5.1 Non-Mechanically Driven Void Fraction Evolution

Three parameters remain to be calibrated: C1, p, and C2. The first two control the phenomeno-
logical void fraction evolution determined through Eq. 3.30 while C2 determines the amount of
concomitant isochoric plasticity (shape change) from Eq. 3.32. In the simplest calibration, one
assumes that the evolution of void fraction is not mechanically driven, which implies that the vol-
ume fraction of voids is the same for all applied stresses to the separator as it is heated through
the electrolyte melt transition. This behavior is realized through selecting p = 0. Then, the pa-
rameters C1 and C2 are fit such that the model best reproduces engineering axial (height) strain
change across the melting transition. Comparisons of the fit axial and predicted transverse (diam-
eter) strain changes are shown below using the same data from Fig. 2.4 under assumed uniaxial
stress conditions. This latter assumption is important to the model calibration as will be discussed
in subsequent sections on that examine the fully confined uniaxial strain behavior.
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p (none) C1 (none) C2 (none)

Non-Mechanically Driven (Stress-Free BC) 0 7 492

Mechanically Driven (Stress-Free BC) 1 1000 315

Mechanically Driven (Bonded BC) 1 1145 600

Table 5.2. Calibrated separator material parameters II: Void frac-
tion and plasticity parameters. Note, all are dimensionless and
phenomenological.

Using this calibration under uniaxial stress conditions, the model is capable of fitting the com-
paction behavior of the separator across the melt transition. The transverse strain behavior is
reasonably fit for half of the data available. However, the data at 8 and 10 psi is not consistent
with a net volume change of approximately 10%. See Fig. 2.5 and subsequent relevant discussion.
Instead Fig. 5.1 shows a net volume change of approximately 12 % is observed at 8 and 10 psi
axial loads. Since this form of the constitutive model is not capable of producing different volume
strains under different applied stresses, it cannot represent this changing behavior.

Multiple mechanical processes occur during the melting of the electrolyte, so it is worthwhile
to examine the time histories of strain and volume fraction quantities across the electrolyte melting
transition. Under stress free conditions, this form of the model compacts across the melting transi-
tion with the diameter and height strains being equal in Fig. 5.2(a) and both negative. However, at
15 psi in Fig. 5.2(b), the pellet has compacted axially and expanded outward, still with a volume
change of approximately 12% across the transition. Figures 5.2(c) and 5.2(d) show the mechanical
(JM−1), non-mechanical (JX −1), and net volume change histories (J−1) at 0 and 15 psi respec-
tively. Thermal expansion strains are not included in (JX − 1) but are in the net volume change
history; hence, these curves do not overlay. Prior to melting, thermal expansions is significant, but
as the electrolyte starts to melt, the specimen compacts rapidly and spherically at 0 psi and with
substantial shape change at 15 psi until the void fraction ceases to diminish. Because the void
fraction evolution is independent of applied stress, the non-mechanical volume change, (Jx− 1),
is the same in figs. 5.2(c) and 5.2(d). A slight difference in mechanical and net volume changes
between the two figures especially after the melt transition.

At this point, all of the curves in Fig. 5.2, show conspicuous minima followed by a slight in-
crease. This minimum is simply a consequence of the phase transition and void fraction evolution
processes evolving under different time scales. Recall that the phase transition kinetics are repre-
sented as a linear interpolation between the hot and cold states across a 10 C temperature range
about the melting temperature. Hence, the void fraction evolution completes before the phase tran-
sition has completed. Because the electrolyte expands by 20% on melting, the net volume and
non-mechanical volume changes reverse direction until the phase transition completes. The onset

45



σapplied (psi)

ε

0.0 2.5 5.0 7.5 10.0 12.5 15.0
−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

Sim Δh
h0

Exp Δh
h0

Sim ΔD
D0

Exp ΔD
D0

Figure 5.1. Separator model fit of the axial strain change across
the electrolyte melting transition using p = 0, C1 = 7, C2 = 492
dimensionless material parameters

of the plateau marks the end of the electrolyte phase transition. These minima are likely artifacts
of the model that arise because of the specific form of the void fraction evolution rule. Hence, if a
different rule is used to diminish the void fraction, they will change.

5.2 Mechanically Driven Void Fraction Evolution

Next, we calibrate the model to the axial strain change on electrolyte melting under the condition
when the loss of void volume fraction is linearly related to the hdyrostatic mechanical volume
strain, (JM− 1)1 in which p = 1. Again assuming uniaxial stress conditions, the parameters that
best fit the axial strain data are C1 = 1000 and C2 = 315. The comparison between the axial and
transverse strains are shown in Fig. 5.3.

Now, at 0 psi axially applied stress, there is no void evolution since JM − 1 = 0. Without
void evolution, there is also no isochoric plasticity, so that across the phase transition, the only
phenomenon that is observed is the expansion of the electrolyte. Hence, the volume expands by
11.4% rather than contracting. This behavior is not expected to be observable since there will
always be capillary pressure between the electrolyte and MgO binder such that, in batteries, a
compressive pore pressure will be present. As the applied stress increases, the model is able to
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represent the axial strain data at higher applied stresses although agreement of the transverse strain
data between experiments and predictions is qualitative only.

With p = 1, the model predicts that the net volume continues to decrease with applied stress,
but experimentally, it is not clear whether this is the case. See Fig. 2.5. Consequently, the loss
of void volume fraction changes with applied stress levels, which is easily seen by examining the
void volume fraction change (in the current configuration) across the transition. Here we normalize
the void volume fraction to its initial value of 25% by volume in Fig. 7.3. Note that although the
void volume fraction does not evolve under stress free conditions in the reference configuration
(JM−1 = 0), the void volume fraction has changed at 0 psi in the current configuration. However,
this change is simply due to the expansion of the electrolyte and rebalancing of the void, binder,
and electrolyte volume fractions to sum to unity in the current configuration. As the applied axial
stress increases, the normalized change in void volume fraction decreases significantly such that
by 8 psi deadload, less that 80% of the normalized void volume fraction remains.

We now examine the time histories of strain components, volume strains, and constituent vol-
ume fractions at 0, 5, and 15 psi to examine how the model behavior changes with increased
applied stress. Again, a volume increase is observed at 0 psi due to the electrolyte expansion on
melting. By 5 and 15 psi applied stresses, the net volume change across the melt transition is
negative as the pellet compacts and expands outwards. Compared with simulations using p = 0,
no fictitious minima are observed in the strain histories, because, with p = 1, the void fraction
evolution varies continuously with the mechanical volume strain and the phase transition kinetics.
Hence, the void fraction diminishes and isochoric plasticity occur over the entire phases transition
rather than for just a part of it. See Fig. 5.3 for comparison. Fig. 5.6 shows that the volume non-
mechanical volume strain, JX − 1, changes singificantly across the melt transition with increased
applied stresses. The mechanical volume strain, by comparison, is always small, and the net vol-
ume strain transitions from positive to negative as discussed. The behavior of the non-mechanical
(and non-thermal) volume strain is more easily seen by examining the volume fraction decompo-
sition of the electrolyte, binder, and void space constituents in the current configuration.

Since the model considers that thermal expansion applies equally to all phases, the volume
fractions of different constituents only change during the electrolyte melt transition. As the void
volume fraction diminishes and electrolyte phase expands, the volume fraction of the electrolyte
will always increase. However, the volume fraction of the binder phase decreases if not enough
void space is lost, see Fig. 5.7(a) but increases at higher applied stresses, see figs. 5.7(b) and
5.7(c). These results may be important when this model is applied in a poro-mechanics environ-
ment in which the volume fraction of the binder phase may directly relate to that phase’s thermal-
mechanical behavior.

Without questioning the assumptions of uniaxial stress or electrolyte flow-free conditions, the
weakness of this modeling approach (with p = 1) is that it cannot represent the low applied stress
compaction behavior of the separator pellet. Fundamentally, we know that capillary pressure is
active when the electrolyte melts, and that the fluid response is important to the mechanics of
the composite material. Here, we examine the effects of a fictitious capillary pressure, applied
as a hydrostatic pressure of 5 psi during the electrolyte melt transition, and look at the axial and
transverse changes in strain across the melt transition, which are reported in Fig. 5.8. No effort has
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been made to re-calibrate the model. That is p = 1, C1 = 1000, and C2 = 315 with the additional
5 psi hydrostatic (fictitious capillary) pressure, which was chosen to be in the middle of the range
of axially applied stresses. The model now reproduces the low applied stress compaction behavior
seen experimentally in Fig. 5.8 and hence reasonably fits the height strain data across the 0-15 psi
axially applied stress range. As expected, the void fraction evolution changes at the lower applied
stresses due to the presence of the 5 psi fictitious hydrostatic pressure although these results are not
included. The quality of the predicted diameter strains remains unaffected by the added hydrostatic
pressure. From this brief exercise, we conclude that inclusion of the effects of capillary forces
allows the model to properly compact as the electrolyte melts over the range of stresses for which
we have data.
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(a) Strain history for p = 0 and at 0 psi applied stress.
The height and diameter strain curves are coincident
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(b) Strain history for p = 0 and at 15 psi applied stress

Θ (C)

ε

0 100 200 300 400 500
−0.2

−0.1

0.0

0.1

0.2
J X−1

J M −1

J −1

(c) Volume strain histories for p = 0 and at 0 psi ap-
plied stress
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(d) Volume strain histories for p = 0 and at 15 psi ap-
plied stress

Figure 5.2. Strain histories of separator pellets subjected to 0 and
15 psi for p = 0
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Figure 5.3. Separator model fit of the axial strain change across
the electrolyte melting transition using p= 1, C1 = 1000, C2 = 315
dimensionless material parameters
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fraction across the melt transition normalized by the initial 25%
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(a) Strain history for p = 1 and at 0 psi applied stress.
The height and diameter strains histories are coincident.
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(b) Strain history for p = 1 and at 5 psi applied stress
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(c) Strain history for p = 1 and at 15 psi applied stress

Figure 5.5. Strain histories of separator pellets subjected to 0, 5,
and 15 psi axial stress for p = 1
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Figure 5.6. Volume strain histories of separator pellets subjected
to 0, 5, and 15 psi for p = 1
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Figure 5.7. Current configuration volume fraction time histories
of the void space, electrolyte, and binder within separator pellets
subjected to 0, 5, and 15 psi at p = 1
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Figure 5.8. Axial and transverse strain changes across the melt-
ing transition with p= 1, C1 = 1000, C2 = 315 and a 5 psi fictitious
capillary pressure.
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Chapter 6

Separator Model Validation

The applied axial stress dead loads are not representative of the mechanical environment in which
separators, anodes, and cathodes are used within thermal batteries during fire-up. Typically, bat-
teries are packaged under a fixed closing force through the compression of insulation layers at
the top and bottom of the stack of electrochemical cells [20, 10]. When the batteries fire-up and
the electrolyte melts, the separator (and to a lesser extent the cathode) inelastically compress as
the insulation layers mechanically unload [10]. Thus, validation of this constitutive model should
involve a spring-like boundary condition. Typical insulation materials used in thermal batteries,
such as fiber frax board and MinK show complex, history dependent mechanical responses [13],
so instead of using such materials, we selected stainless steel wave springs from Smalley Steel
Ring Co. Specifically, CM06S17 and CM08S17 waves springs where used; specs for these springs
can be found on the manufacturers website [3]. The wave spring characterization and fit of these
springs at room temperature and 350 C are shown in Fig. 6.1. Note that the loading curve is fit
since we are ignoring effects of friction and creep in the springs which may cause the hysteresis
seen at 350 C in both springs. Note that the manufacturer warned that these springs could show
creep above 300 C, which we observed through the development of an inelastic strain of less than
1% strain in thermal cycles between 300 and 400 C. This behavior and friction of the spring against
the platens may explain the slight hysteresis observed in the 350 C curves. We neglect these effects
and treat the springs as elastic as shown by the fit curves in Fig. 6.1.

A photograph of the validation test setup is shown in Fig. 6.2. The tests were performed in the
ARES 2 rheometer and proceeded as follows. The separator pellet (6mm diameter, 1 mm height)
was placed on the steel platens followed by a sapphire disc followed by the waves spring and the
upper platen. The assembly was brought up to 300 C, and held for a period of time for thermal
equilibration. Then, a compressive load was applied, and the displacement then held fixed. The
temperature was then brought up at a rate of 2C per minute to 375C, which is beyond the melt
transition of the electrolyte. The quantity of interest in these tests is the final load experienced
by the structure after the electrolyte melts, the separator compacts, and the wave spring elastically
unloads.

As with the calibration in sections 5.1 and 5.2, boundary conditions are important. We continue
with our uniaxial stress approximation so that previously calibrated material parameters can be
used, and we continue to assume electrolyte flow-free conditions. Thus, to model this assembly,
we consider three material blocks that correspond to the wave spring, which is represented as a
linear elastic disc 6 by 10 mm diameter to height, a 6 x 1 mm diameter to height sapphire disc,
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Figure 6.1. Wave spring characterization at room temperature
and 350C and fits at the latter temperature. 06 and 08 indicate the
outer diameter of the springs, which determines the difference in
stiffnesses.

and a 6 by 1 mm diameter to height separator pellet. To fit the data in Fig. 6.1, the isotropic
elastic constants were E = 0.857 MPa and ν = 0 and E = 6.67 MPa and ν = 0 for the CM06S17
and CM08S17 wave springs respectively. The 10 mm wave spring disc thickness was chosen to
insure that the spring response is linear over the deformation response in these tests. Sapphire is
approximated as an isotropic elastic solid with a Youngs and shear modulus of 345 and 145 GPa
respectively [4]. Given the substantial mismatch in stiffness between the sapphire and either the
separator or wavespring, the deformation in the sapphire layer is negligible; hence the isotropy
approximation is reasonable.

Uniaxial stress is achieved through frictionless boundary conditions between the different lay-
ers. Under such conditions, only one element per material block is needed. Uniform gradient,
linear hexahedral elements are employed in an implicit quasi-static analysis in which the temper-
ature field is considered uniform and is directly applied. Computationally, we follow the same
steps as the experiment and predict the net force response vs. time for separator pellets under the
action of the two springs. The results associated with the two model calibrations corresponding
to p = 0, 1, C1 = 7, 1000, and C2 = 492, 315 are shown in Fig. 6.3. Capillary pressure effects
were not considered. The experimental results show a distinct decline in the force response of
the assembly below the melt transition of the electrolyte. In both cases, the force diminishes by
approximately 10% relative the starting value of each test. The mechanism for this force decline
is under investigation and is thought to be high temperature creep of the solid electrolyte, a mech-
anism that is likely not important in thermal batteries which are heated from room temperature
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Figure 6.2. Wave spring validation test setup within the ARES
2 rheometer. The wave spring, sapphire plate, and separator pellet
are visible in ascending order between the stainless steel platens.

to roughly 500 C in less than one second. There also appears to be (PID) control issues associ-
ated with maintaining a fixed displacement as evidenced by the periodic variations in the test data.
Wave spring creep is not thought to cause the significant load drop observed in the tests.

By comparison with the experimental data, both calibrations of the model show an increase in
the force response of the assemblies due to thermal expansion of the electrolyte prior to the elec-
trolyte melting. Note that thermal expansion of the wave springs and sapphire disks is neglected.
across the transition, a precipitous drop in the force response of the structure is observed by both
the experiments and the two model calibrations. For the more compliant spring, CM06S17, both
calibrations produce more of a net force change than the experiment and are similar to each other.
This latter result is sensible since the hydrostatic stress within the separator does not change sig-
nificantly during the load drop for the CM06S17 scenario. Hence, the p = 0 and p = 1 responses
should be similar.

In contrast, for the CM08S17 experiment, the two different calibrations are distinct. The p = 0
calibration predicts the final load response of the structure very well while the p = 1 calibration
predicts a slightly larger remaining load than is seen experimentally. The difference of the two
models is expected because the p = 1 void fraction evolution and isochoric plasticity are tied to
the mechanical volume strain JM− 1. Hence, as the net load diminishes substantially, the rate of
void fraction evolution and plastic shape change diminishes while such behavior does not occur
for p = 0. As with the axial dead load experiments during calibration, the p = 0 calibration shows
an artificial load minimum again due to the void fraction evolution (and concomitant plastic shape
change) completing before the phase transition is complete. Hence, there is a period of time
in which the electrolyte expands without accompanying change void fraction or shape, which
cause the load to increase. This response is not observed experimentally. Overall, the constitutive
model is able to represent the compaction behavior of the separator under the validation test-spring
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like boundary conditions relevant to battery applications assuming uniaxial stress, elastic spring
behavior of the wave spring, and electrolyte flow-free conditions.
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(d) CM08S17 Wave spring test and model prediction
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Figure 6.3. Wave spring validation test results and predictions
for the two calibrated instances of the model p = 0, 1
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Chapter 7

Fully Confined Boundary Conditions

An assumption in the previous sections has been that the pellets are subjected to states of uniax-
ial stress, which implies frictionless boundary conditions between the separator and surrounding
materials. This interaction may not reasonable in batteries because pellet materials may interact
through traditional asperity contact as well as through molten electrolyte capillary effects (in the
hot state of the materials). The experimental data considered in this report do not include a laterally
applied radial stress, but they do involve a 6:1 diameter to height aspect ratio pellets in contact with
stainless steel platens. In reality, we do not yet know what the boundary conditions are between the
different layers, so in this section, we consider a strong (bonded) interaction between the separator
and the surrounding platens, which represents the opposite extreme from the frictionless (uniaxial
stress) conditions. We consider the same calibration and validation experiments with the boundary
condition, which requires 3D simulation.

First, the parameters C1 and C2 responsible for void loss and isochoric plasticity must be re
calibrated to fit the height data with the bonded boundary conditions. Notice, from Fig. 2.4(b) that
at 5 and 7.5 psi axially applied stresses, the diameter strain across the electrolyte melt transition is
nearly zero, which suggests that the separator pellet compacts axially in an approximate state of
uniaxial strain. We take advantage of this observation and calibrate the model (again with p = 1
and without capillary pressure due to the fluid) by choosing C1 = 1145 and C2 = 600 to fit the 10-
12% axial engineering strain change on electrolyte melting at 5 psi axially applied stress. Then,
with these parameters, we simulate full 3D separator pellets bonded to steel platens over the range
of axially applied pressures from 0 to 15 psi at an increment of 1 psi.

The finite element representation of this problem is as follows. We consider the axially sym-
metric r− z half plane by making symmetry cuts through the center of the separator across its
axis and by considering the behavior of a 2 degree slice (rather than the full circumference of the
discs). The separator pellet and stainless steel platens are meshed with linear hexahedral bricks
of a specified characteristic size in the r− z plane and with 1 element through the thickness in
the hoop (θ ) direction. The uniform gradient (reduced integration) scheme is used to compute
to integrate element fields. A schematic of the finest mesh considered is shown in Fig. 7.1 with
applied boundary conditions. Approximately 1000 elements are employed with 10 elements along
the axial direction of the separator. Note, the imposed axial symmetry condition (hoop direction) is
not shown. Simulations were performed in an implicit quasi-statics module of the SIERRA Solid
Mechanics code suite [23] using residual and relative residual tolerances of 1.0E-8. Meshes were
generated using the code CUBIT [21].

61



As before, a nominal stress is applied to the pellet and held while the temperature is ramped
upward at 5 C/min through the melt transition. Given the bonded boundary condition between the
stainless steel platen, which is treated as an isotropic elastic material with a youngs modulus and
poissons ratio of E = 200 GPa and ν = 0.29 respectively [15], and the separator pellet as well as
the enormous mismatch in elastic moduli between the two materials, radial motion of the pellet
bonded to the steel is negligible. The thermal expansion coefficient of the platens is assumed to
be 17.8E-6 per degree C [15]. Thus, the diameter change and strain is taken as from the motion of
the pellet along the z (axial) symmetry axis, which corresponds to the maximum diameter change.
The axial strain is nearly uniform, so it is taken from the motion of the innermost nodes bonded
to the platen. Note that an artificial hole is introduced of 1/10 the radius of the pellet to simplify
the meshing and mesh quality. Taking out this material is equivalent to removing 1/100th of the
volume of the disc. We report the height and diameter strains in comparison to the experiments as
well as the change in normalize void fraction across the transition as a function of applied axial
stress.

We also examine the axial and radial strain fields within the separator after the electrolyte
melting transition has completed. We choose three representative cases, 1, 5, and 15 psi axially
applied stresses, which correspond to cases that consume a range of void space across the transition
as shown in Fig. 7.3. These results are presented in Fig. 7.4.

Using these parameters, we re-run the validation simulations now under fully bonded condi-
tions and in a 3D setting. Again, a 2 degree slice of the axially symmetric setup is considered.
There are no symmetry planes along the cylinder axes as is evident from the experimental setup
in Fig. 6.2, so the full 6 by 1 mm diameter to height separator layer is modeled which is bonded
to a 1 mm thick sapphire disc above followed by the 10 mm thick wave springs. The sapphire is
then bonded above by either the CM06S17 or CM08S17 wave springs (as represented by elastic
discs; see section 6). The thermal expansion behavior of the sapphire is also considered isotropic
and is taken as the maximum expansion coefficient over its different crystallographic directions at
7.7E-6 per degree C. Between 300 and 375C, thermal expansion mismatch plays a small role in
this boundary value problem. Note that there is also a thermal mismatch between the separator
and steel platen below. The geometry are boundary conditions depicted in Fig. 7.5. The same
spring characterization and representation as previously discussed is used for the CM08S17 and
CM06S17 springs. Since only a fraction of the area is considered, the net reaction force against
the platens is given by the reaction for of the slice multiplied by 180. Again, 1/10 of the cylinder
is not considered in the center, but this loss of 1% of the volume is not considered in the net force
calculations. The comparison against experiments for these boundary conditions is, Similar strain
fields are observed as in Fig. 7.4 for these validation simulations under bonded constraints and
hence are not reported. Again, the majority of deformation is nearly in a condition of uniaxial
strain (along the cylinder axes) with the exception of near the outer boundary of the separator.

Considering the uncertainties in the calibration dead load experiments as well as the wave
spring validation experiments, refer to sections 2 and 6, we observe that all three sets of calibra-
tion and validation predictions compare reasonably well against experiments. None are able to
to predict the transverse results seen experimentally, but all decently reproduce the axial strain
behavior of the separator pellet across the melt transition under both dead load and spring like
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z

σapplied (psi)

Figure 7.1. Finite element mesh and boundary conditions associ-
ated with the platen-separator-platen geometry. A 2 degree wedge
is simulated with an imposed axial symmetry condition in the hoop
direction, which is in and out of the image. A symmetry plane nor-
mal to the z axis (horizontally oriented rollers). The inner 1/10th

of the radius is cut out to prevent the need for tetrahedral elements
or wedge elements. The orange dashed line schematically repre-
sents the line along which r = 0. The gray region represents the
stainless steel platen while the blue region corresponds to the sepa-
rator. These regions share nodes at their boundaries and hence are
perfectly bonded. In the calibration simulations, the axial stress
σapplied is applied to the platen top. Since the platen is orders of
magnitude stiffer than the separator, its deformation is negligible.
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boundary conditions. The calibration and validation simulations are made with assumed bound-
ary conditions (either frictionless and hence uniaxial stress conditions or fully bonded constraints
between the separator and surrounding layers), and since the predictive capabilities of the model
under these two scenarios is relatively insensitive to the choice of boundary condition, we make
two conclusions. First, the time integration of the constitutive model is implemented reasonably
and the model form of the plastic response and volume change of the separator is adequate to de-
scribe such experiments. Second, additional validation tests are needed to test the model over a
broader range of deformations and temperature histories as well as changes to composition. Since
the inelastic response does depend on the initial composition of the pellets, it is anticipated that
if the initial volume fractions of electrolyte, binder, and void space are changed then additional
calibration tests would be required.
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Figure 7.2. Separator model fit of the axial strain change across
the electrolyte melting transition using p= 1, C1 = 1145, C2 = 600
dimensionless material parameters and perfectly bonded boundary
conditions between the platen and separator
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Figure 7.3. Change in the current configuration void volume
fraction across the melt transition normalized to the initial volume
fraction of voids. This void fraction represents and average quan-
tity over the entire separator specimen although the field varies
only near the outer radius of the cylinder.
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(a) 1 psi applied stress (b) 1 psi applied stress

(c) 5 psi applied stress (d) 5 psi applied stress

(e) 15 psi applied stress (f) 15 psi applied stress

Figure 7.4. Axial and radial strain fields post melting in the sep-
arator bonded to steel platens. Note that negligible strain exists
within the stainless steel platens. All strains are logarithmic which
approximately engineering strains at these magnitudes.
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Figure 7.5. Finite element mesh and boundary conditions as-
sociated with the wave spring validation tests under fully bonded
boundary conditions between the separator and surrounding lay-
ers. A zoomed in mesh is shown of the separator, sapphire, and
wave spring regions since the wave spring is modeled as 10 times
the thickness as that of the separator and sapphire (to enforce a
constant stiffness over the deformation range of interest). The
inner 1/10th of the radius is cut out from both blocks to prevent
the need for tetrahedral elements or wedge elements. The orange
dashed line schematically represents the locus of points for which
r = 0. An initial stress is applied to the top of the wave spring at
300 C; once reached, the boundary condition is switched to a zero
velocity boundary condition as the temperature is ramped at 5 C
per minute through the electrolyte melting transition.
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Figure 7.6. Wave spring validation test results and predictions
for the case of a perfect bond between the separator, steel platen,
and sapphire plate
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Chapter 8

Conclusions and Future Directions

We have developed a thermal-mechanical constitutive model for pressed pellet materials designed
to capture the volume and shape change behavior as such materials are heated (or cooled) across
the melt transition of one of their constituents, the electrolyte. Such a model is relevant for use
in molten salt batteries where substantial deformation of the separator layers within the battery
are observed during the rise time of the battery (due electrolyte melting and loss of void space in
those layers). A suite of characterization experiments are presented that depict solid-like behavior
at the macroscale of separator pellets except within the immediately vicinity of the melt transition,
about which substantial shape and volume change are observed that depend on the stress-state of
the material.

The experiments and model are under electrolyte flow-free conditions. That is, once melted,
the electrolyte is confined to remain within the separator pellet as it compacts. Hence, the model
represents the combined behavior of the binder, void, and electrolyte in both the solid and liquid
states of the latter phase. This approach allows for a straightforward application of experimental
data to characterize the thermal, phase-change, and mechanical behaviors of the separator pellet
material. Pressure-saturation is not considered here, partly because the development of the model
has preceded the porous flow capabilities within the Sierra code suite. However, we intend to
integrate this model into a poromechanics framework through the effective stress method. This
constitutes future work as many of the theoretical considerations of this report will require re-
interpretation as the model is transitioned from representing the entire macroscale material to just
representing the binder phase skeleton. However, one advantage of the current framework is that
it properly account for electrolyte swelling in its molten state (relative to its solid state), so the
change in volume due to electrolyte transport is a natural capability of the model.

Under the assumptions here, the model reasonably calibrates to the experimental data presented
and validates against separate wave spring tests that represent battery-like (spring-like) boundary
conditions. Boundary conditions between the separator and surrounding layers are not known, but
it is found from simulations in this report that once a set of boundary conditions are assumed,
for which frictionless and fully-bonded extremes are considered, then the model is able to rea-
sonably fit the characterization (dead-load experiments) and predict the validation (spring-like)
experiments. These validation efforts suggest the model is sufficiently robust to describe the me-
chanics of such materials, but the importance of boundary conditions cannot be determined from
these tests, and future experiments are needed to examine this topic.
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Theoretically, both the volumetric and isochoric deformation representations can be improved.
Currently, volumetric deformation arises through thermal expansion, the loss of pore space, and
the specific volume change of the electrolyte. There may also be a volume change of the binder
skeleton during the electrolyte melt transition and concomitant binder phase rearrangement. This
possibility is possible
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Appendix A

Mass, Momentum, and Energy Balances

For completeness, we briefly state the balance laws as necessary to determine the equations of
motion for the material. The balance of mass at a material point relates the density in the current
(ρ) and reference (ρ0) configurations to the associated volume ratio (J),

V
V0

=
ρ0

ρ
= J. (A.1)

Typically, the reference state density is the density of the separator material at room temperature.
Next, we state the linear momentum and consider a quasi-static setting in which inertial effects are
ignored. The local balance of linear momentum in the current configuration at a material point is,

∂σσσ

∂xxx
+bbb = 000, (A.2)

where σσσ and bbb represent the Cauchy stress and body force vector defined per unit spatial volume.
We do not consider micro polar moments (REFERENCE), and so the balance of angular momen-
tum requires that (σσσ = σσσT ). We will perform calculations in the reference configuration, so we
define two useful stress measures, the First and Second Piola-Kirchoff stresses, which are work
conjugate to the material time derivatives of the deformation gradient and Green-Lagrange strain
respectively,

Pik = Jσi jF−1
k j , SΓ

i j = JF−1
i j σ jkF−1

lk , Γik =
1
2
(FjiFjk−δik). (A.3)

Here, Γ has been used so as not to confuse the Green-Lagrange strain and the total energy, which
we turn our attention to next.

We treat the body as a homogenous, single component material. Neglecting kinetic energy,
the time derivative of the total energy in the body is composed of two quantities: the rate of me-
chanical work the body does against its surroundings and the rate of thermal energy flowing into
or generated within the body. When the separator material is in the hot state, and the battery is
delivering power, ions are transported through the separator material, which indicates that the rate
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of change of the total energy should also include species transport. At this time, we neglect elec-
trochemical potential effects of species transport through the separator material, and we attribute
any Joule heating effects within the thermal source term.

Consider a subregion of the body in the reference configuration, denoted ω0 ⊂ Ω0, with its
boundary ∂ω0. The rate of change of the total internal energy in this region is,

˙∫
ω0

ε0dV =−
∫

∂ω0

QiNidA+
∫

ω0

QdV +
∫

∂ω0

Pi jN jvidA+
∫

ω0

JbividV. (A.4)

Here, Qi and Q represent the referential thermal flux vector (energy per area time) and thermal
source (energy per volume time). Employing the divergence theorem, the time-invariance of the
reference configuration, and the fact the size of the subregion can be made arbitrarily small, the
local form of the energy balance is,

ε̇0 =−
∂Qk

∂Xk
+Q+Pi jḞi j =−

∂Qk

∂Xk
+Q+SΓ

i jΓ̇i j, (A.5)

wherein we have used the fact that the mechanical stress power can be written equivalently in terms
of the Second Piola-Kirchoff stress and the Green-Lagrange strain.
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Appendix B

Entropy Production Inequality

We examine the Second Law of thermodynamics in the form of the Clausius-Duhem inequality
within a referential subregion of the body,

∫
ω0

η̇0dV +
∫

∂ω0

QiNi

Θ
dA−

∫
ω0

Q
Θ

dV ≥ 0, (B.1)

wherein we define the referential entropy density, η0, with units of energy per volume, temperature.
Here we define the absolute temperature, Θ, which we require be greater than zero. The local form
of Eq. B.1 may be derived following similar arguments as above,

η̇0−
Q
Θ
+

1
Θ

∂Qi

∂XXX
− Qk

Θ2
∂Θ

∂Xk
≥ 0 (B.2)

By combining the local forms of the energy balance (Eq. A.5) and the entropy production inequal-
ity (Eq. B.2) through the elimination of heat source, Q, and multiplication of all terms by Θ, we
arrive at,

Θη̇0− ε̇0 +SΓ
i jΓ̇i j−

Qk

Θ

∂Θ

∂Xk
≥ 0 (B.3)

The natural thermodynamic state variables for the internal energy density are the entropy density
and deformation gradient, so we introduce the Helmholtz free energy density (per unit reference
volume) through the standard Legendre transform below since its natural thermodynamic state
variables are temperature and deformation gradient,

Ψ = ε0−Θη0. (B.4)

Taking the material time derivative of Eq. B.4 and substituting the result into Eq. B.3 with some
additional manipulation, we arrive at the principal inequality of rational mechanics (PIRM) (Cole-
man and Gurtin 1967) for thermal-mechanical materials,

Ψ̇+η0Θ̇−SΓ
i jΓ̇i j +

Qk

Θ

∂Θ

∂Xk
≤ 0. (B.5)
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Eq. B.7 is also known as the free energy imbalance (Gurtin et al. 2010), and it shows that the time
evolution of thermodynamic state variables occurs in the direction that minimizes the free energy.

To make further progress with the balance laws and PIRM, we assume apriori that the Helmholtz
free energy is function of the Green-Lagrange strain (Γi j), absolute temperature (Θ), and a list of
internal state variables ({Zβ}), which are not necessarily thermodynamic state variables. Con-
sequently, the material time derivative of the Helmholtz free energy density (per unit reference
volume) in the reference configuration is,

Ψ̇ =
∂Ψ

∂Γi j
Γ̇i j +

∂Ψ

∂Θ
Θ̇+∑

β

(
∂Ψ

∂Zβ
Żβ

)
. (B.6)

Following the Coleman and Noll procedure (COLEMAN AND NOLL CITATION) we insert Eq.
B.6 into the PIRM (Eq. B.7), and pair up terms,

(
∂Ψ

∂Γi j
−SΓ

i j

)
Γ̇i j +

(
η0 +

∂Ψ

∂Θ

)
Θ̇+

Qk

Θ

∂Θ

∂Xk
+∑

β

(
∂Ψ

∂Zβ
Żβ

)
≤ 0. (B.7)

Because the Green-Lagrange strain, temperature, heat flux, and internal variables may vary inde-
pendently in an arbitrary thermodynamic process, we are restricted to define the stress and entropy
density as,

SΓ
i j =

∂Ψ

∂Γi j
, η0 =−

∂Ψ

∂Θ
. (B.8)

To satisfy the PIRM, we further require that,

∑
β

(
∂Ψ

∂Zβ

Żβ

)
≤ 0,

Qk

Θ

∂Θ

∂Xk
≤ 0, (B.9)

which mandates that the evolutions of internal variables as well as the transport of thermal energy
produce entropy.
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