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Abstract 
 

This report describes a simple model for ideal gas flow from a vessel through a bed of 
porous material into another vessel.  It assumes constant temperature and uniform 
porosity.  Transport is treated as a combination of viscous and molecular flow, with 
no inertial contribution (low Reynolds number).  This model can be used to fit data to 
obtain permeability values, determine flow rates, understand the relative contributions 
of viscous and molecular flow, and verify volume calibrations.  It draws upon the 
Dusty Gas Model and other detailed studies of gas flow through porous media. 
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Figure 1.  Steady state pressure profiles for several values of 
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DKµ .  Its value is 1 for the middle 

curve, and varies by factors of 10 on either side.  The pressure drop is tenfold across the 
compact. ........................................................................................................................................ 18 
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NOMENCLATURE 
 
Roman Symbols    
Ac  bed cross-sectional area [cm2] 
B    effective permeability of a porous medium [cm2]  
Bpore  permeability of a single capillary pore [cm2] 

c    gas phase molar concentration 3

mol
cm
 
  

  

d  molecular diameter [cm] 
D   gas-phase binary diffusion coefficient [cm2/s] 

eD   effective gas-phase binary diffusion coefficient [cm2/s] 
KD    effective Knudsen diffusion coefficient [cm2/s]  
K
poreD  

 DK for a single capillary pore 

0K    molecular flow coefficient [cm]  

cL    axial length of the compact [cm]  
Leff  effective length of crooked capillary [cm] 
M    gas molecular mass [g/mol]  
n    molar flow rate [mmol/s]  
k pressure decay constant during blowdown [s-1] 
P    total gas pressure [MPa] 

0P   upstream pressure at t = 0 [MPa] 

1P    compact upstream face pressure [MPa]  

2P    compact downstream face pressure [MPa]  
AVGP   average compact face pressure [MPa]  

BEDP∆   pressure loss across the compact [MPa]  

eqP   System pressure at ∞=t  during blowdown 

rP   pressure in receiver vessel [MPa] 

sP   pressure in source vessel [MPa] 
q    tortuosity factor [dimensionless]  

R    universal gas constant J8.314
mol K

 
 
 

  

r  capillary pore radius [cm] 
rh  pore hydrodynamic radius [cm] 

eqr    average equivalent capillary radius [cm]  

vS    surface area per unit compact volume [1/cm]  
T    temperature [K]  
t    time [s]  
tss  time to reach steady state [s] 
Vr  receiver vessel volume [cm3] 
Vs  source vessel volume [cm3] 
v  mean speed of gas molecules [cm/s]  
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x  mole fraction of component of gas mixture [dimensionless] 
z   axial coordinate [cm]  
  
Greek Symbols    
ε    porous media void fraction (porosity) [dimensionless]  
λ  mean free path of gas molecule [cm] 
µ    gas viscosity [MPa s]  
µ   viscosity of gas mixture [MPa s] 
   
Vectors   

N    total superficial molar flow rate 2

mol
cm s
 
 
 

  

mN  free molecular flow component 2

mol
cm s
 
 
 

 

vN  viscous flow component 2

mol
cm s
 
 
 
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1.  DERIVATION OF FLOW MODEL 
 
1.1. Introduction 
 

This paper considers non-reacting gas flow in a powder compact (or similar porous 
medium) at constant temperature. The goal of this report is to present a simple mathematical 
model for the flow properties as a function of the geometry of the compact and of the properties 
of the nonreacting gas.  Fitting to experimental data allows empirical determination of the 
viscous flow (permeability) and molecular flow (Knudsen diffusion) coefficients, and evaluation 
of whether the model’s assumptions apply.  The parameters can be used to make inferences 
about the structure of the pores.1,2 

 
The use of parallel or superimposed viscous and molecular flows follows from the Dusty 

Gas Model.3 This approach can accurately describe gas transport over a wide range of 
conditions.12  The model is controversial in some aspects, but not at the level of detail considered 
here.4,5 With gas near room temperature and pressure flowing through mµ -scale particles, the 
Knudsen number (ratio of mean free path to pore diameter) is 0.01≈  and therefore proper 
treatment of free molecular flow is needed for suitable accuracy. 

 
Flow measurements are conveniently performed in two distinct experiments. The first 

measures pressure loss across the compact at a constant flow rate. The second uses pressure 
depletion from a known volume. We formulate versions of the model for each case. 
 
 
1.2. Mass and Momentum Conservation 

 
The Dusty Gas Model, developed during the 1960s, is described in a series of 

papers.6,7,8,9,10 Mason and Malinauskas's monograph gives a thorough description of the model.3 
Jackson also reviews the model and demonstrates its application to porous catalysts.11  The 
model combines viscous bulk flow, free-molecular flow, and molecular diffusion. It has been 
shown to accurately predict species transport for regimes ranging from Knudsen streaming to 
viscous flow.12 

 
The species flux relations incorporate momentum conservation and transport. The bulk 

fluid velocity is related to the total pressure gradient by approximating the porous medium as a 
network of capillary tubes.7 This treatment leads to the use of Darcy's law. The inertial terms of 
the Navier-Stokes equations are neglected, and the Dusty Gas Model is therefore limited to small 
Reynolds and Mach numbers. While limiting, this assumption is key to the development of the 
model because it allows the viscous and free molecular fluxes to be combined.3 
 
1.2.1. Molar conservation 
 

For a pure, non-reacting gas in a porous medium with a temporally and spatially invariant 
void fraction (porosity) ε , concentration c (mmol gas/cm3 pore volume) and the total molar flux 
N (mmol/s-cm2 bed cross-sectional area), the overall species balance is 
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 = 0c
t

ε ∂ +∇ ⋅
∂

N  (1) 

 
for a control volume much larger than the medium's average pore size.13  The porosity factor 
converts between variables describing the pore space (such as concentration) and those 
describing the entire compact (such as molar flux). 
 

Porosity variation is a foreseeable complication.  Its magnitude can depend on the 
packing technique, the results of which can be affected by particle shape, and particle-particle 
and particle-wall friction.  Mason and Malinauskas provide a detailed discussion of the 
assumption of uniform porosity and its limitations.3  Contrast variations observed in radiography 
can diagnose nonuniformity, and some flow tests discussed below may help identify it. 

 
1.2.2. Viscous Flow 
 

Gas flow through a porous medium is well described by Darcy's law, provided the flow is 
laminar within the pores, and the pore diameter is large relative to the molecular mean free path.3 
 

 .= PcB
∇−

µvN  (2) 

 
where Nv is the molar flux due to viscous flow (mmol/cm2-s), P is the pressure (MPa), µ is the 
viscosity (MPa-s), and B is the permeability (cm2).  If there were only a single, straight pore of 
circular cross section, Darcy’s law is essentially a restatement of Poiseuille’s law for laminar 
incompressible flow through a pipe, which relates a pressure drop to a volumetric flow rate.  
Rearranging Darcy’s law gives 
 

 





−∇

c
A

BA
P c

c

vNµ=  (3) 

 
where Ac (cm2) is the cross-sectional area of the pipe, the factor in parentheses is a volumetric 
flow rate, and the denominator of the prefactor has units of cm4.  Analogy with Poiseuille’s law 
gives Bpore = Ac/8π. 
 

Because a cross section of the compact contains an array of pores through an occluded 
area, we must include the porosity factor in B.  Also, the irregular nature of the solid phase 
creates a tortuous path that the fluid must follow as it traverses the compact, so the average fluid 
path length Leff exceeds the superficial compact length Lc. The porous medium can thus be 
modeled as a bundle of crooked capillary tubes.  In this case, the effective permeability is related 
to the permeability of a single pore by,  
 

 ,= poreB
q

B ε  (4) 
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 where the tortuosity factor ( )2
= eff cq L L .  (The tortuosity captures one factor of the length ratio 

because the flux is reduced when averaged over the many pore orientations, and another from the 
additional path length in the pressure gradient.)  In a real porous medium, pores are irregular, 
interconnected, and typically have radii on the order of the length of the passage. Mason and 
Malinauskas describe details of the capillary model and its limitations.3 
 
While the details of pore geometry are difficult to quantify, it is often straightforward to measure 
the internal surface area of the pores per gram of powder, or per cm3 of the compact Sv.  For an 
array of uniform, straight cylindrical pores of radius r, the surface area per unit pore volume is 

rLArLS cccv 22= =πε .  This can be rearranged to define an equivalent capillary radius req for 
the porous medium. 
 

 
v

eq S
r ε2=  (5) 

 

By the Poiseuille flow analogy, 
8

=
2

eq
pore

r
B . Equation (4) then becomes 

 

 .
8

=
2

eqr
q

B ε  (6) 

 
Using the definition of equivalent capillary radius, eqr  can be eliminated in favor of ε  and vS , 
giving  
 

 .
2
1= 2

2

vSq
B εε  (7) 

 
From his experiments on sintered frits, Meyer1 found (but stated differently) that q  was 
correlated with ε  by  
 

 1.1

1.25=
ε

q  (8) 

 
Meyer estimates the accuracy of q  to be 30%±  of the predicted value.  Perfect agreement is not 
anticipated because morphological differences between sintered frits and unconsolidated sample 
powders may change the relationship between q  and ε .  Substitution of Equation (8) into 
Equation (7) gives Meyer's correlation for effective permeability,  
 

 2

4.1

0.4=
vS

B ε  (9) 

 



12 

The permeability correlation was developed by studying flow in sintered stainless steel frits with 
0.67<<0.18 ε  and 132 cm 101.4<<102 −×× vS . However, it is probably justifiable to 

extrapolate this correlation to values outside these ranges to a modest degree. 
 

The system is assumed isothermal, and the gas is assumed ideal, so cRTP = , where R is 
the ideal gas constant (J/mmol K), and T is the temperature (K).  This allows elimination of c in 
favor of P, which is more easily measured. 
 

 P
RT
BP

∇−
µ

=vN  (10) 

 
These two assumptions are justified for non-reacting gas flow at near-ambient temperature and 
low to moderate pressure. The compressibility, Z, is a coefficient in the real gas law, =P ZcRT , 
describing deviation from ideality. As examples, at 4 MPa and 295 K, the compressibility of 
helium is 1.02, indicating a 2% deviation from ideal gas behavior.14 At 1 MPa and 295 K, the 
compressibility is approximately 1.005.  The isothermal assumption is appropriate when the gas 
is non-reacting and the flow is near steady-state. In many experiments, localized heating or 
cooling from rapid compression or expansion of the gas is not significant. In those cases, the 
temperature within the compact can be assumed to be both invariant in time and spatially 
uniform without introducing a significant error. 
 

 
1.2.3. Free molecular flow 
 

An additional contribution to the flux is free molecular flow.  This flux is controlled by 
collisions between gas molecules and pore walls.  Because the individual molecules follow paths 
that can be described as random walks, their net flux is modeled as diffusion along a 
concentration gradient (using Fick’s law). 

 
 cD K∇−=mN  (11) 

 
where Nm is the free-molecular contribution to the flux and KD  is the effective Knudsen 
diffusion coefficient.  Application of the ideal gas law gives 

 

 P
RT
D K

∇−=mN  (12) 

 
Free-molecular transport dominates when gas molecule-wall collisions occur much more 
frequently than molecule-molecule collisions.  In other words, it dominates when the mean free 
path λ greatly exceeds the pore diameter. 15 
 

 r
M
RT

RTcMcv
28

4
2

>>==
π

πµµλ  (13) 
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where v is the mean speed of the gas molecules (cm/s) and is equal to the square root factor in 
Equation (13).  
 
For a circular capillary having a constant radius and rL >>  with perfectly diffuse scattering of 
the gas molecules by the tube walls, K

poreD  is given by  
 

 
1/22 2 8=

3 3
K
pore

RTD r v r
Mπ

 =  
 

 (14) 

 
This is the product of a path length comparable to the pore dimensions, and the thermal speed of 
the gas molecules.  Thus the Knudsen diffusion coefficent is pressure-independent.   
 
The effective DK, which applies to the entire compact, is related to the pore Knudsen diffusion 
coefficient using a similar model of a bundle of crooked capillaries. 
 

 = .K K
poreD D

q
ε  (15) 

 
Substitution of Equation (14) into Equation (15) gives  
 

 
1/22 8=

3
K

eq
RTD r

q M
ε

π
 
 
 

 (16) 

 
where we are using the radius derived from the surface area measurement.  Mason and 
Malinauskas3 provide a different parameterization of the Knudsen diffusion coefficient DK, as 
 

 ,8
3
4=

1/2

0 







M
RTKD K

π
 (17) 

 
where 0K  is an empirical parameter.  Fits to flow data are sometimes reported as 0K  instead of 

DK, to keep the compact geometry parameters, K0 or req, separate from 
1/28RT

Mπ
 
 
 

.    

 
1.2.4  Multi-Component Transport 
 
The additional complexity associated with multi-component transport is considered by the Dusty 
Gas Model and briefly described here.  Multi-component diffusion can be significant for gas 
mixtures when the pressure is high enough that molecule-molecule collisions are much more 
frequent than molecule-wall collisions.  The molecular diffusion flux is included in the Dusty 
Gas Model by incorporating the Stefan-Maxwell transport equations, 
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1

j i i j
i e

ij

n

j
j i

x x
cD

x
=
≠

−
− =∇ ∑

N N
 (18) 

 
where xi is the mole fraction of species i, xj is the mole fraction of species j, Ni is the superficial 
flux of species i, Nj is the superficial flux of species j, and e

ijD  is the effective binary molecular 
diffusion coefficient for species pair ij.  The effective molecular diffusion coefficient is simply 
the normal binary molecular diffusion coefficient for the species pair, ijD , suitably corrected for 
the porosity and tortuosity of the compact.  If one assumes a crooked capillary model, then 
 

 ij
e
ij D

q
D ε

= . (19) 

 
Including multi-component diffusion significantly increases the model’s mathematical 
complexity.  To find the flux of species i in a mixture of n species, when both free-molecular and 
viscous transport are significant, one must simultaneously solve a system of n flux equations.  
The flux equations, which incorporate viscous, free-molecular, and diffusive transport, are, 
 

 
1

1j i i ji i
iK e K

i ij
j i

j

n

i

x x xP BP
D D

x P
DRT RT µ=

≠

−  
+ = − − +


∇ 


∇∑

N NN . (20) 

 
where µ  is the average viscosity of the gas mixture.  The average viscosity of a gas mixture 
containing n species may be estimated by Wilkie’s semi-empirical formula16, 
 

 
1

1

n
i i

n
i

j ij
j

x

x

µµ
=

=

=
Φ

∑
∑

 (21) 

where 

 

21/2 1/2 1/4

11 1
8

i i j
ij

j j i

M M
M M

µ
µ

−      = +       

 
Φ +  

  
. (22) 

 
Here xi and xj are the mole fraction of species i and j, µi and µj are the viscosity of species i and j, 
and Mi and Mj are the corresponding molecular weights.   
 
 
1.2.5 Single-Component Momentum Conservation 
 
Incorporating multicomponent transport greatly complicates the Dusty Gas Model.  Fortunately 
however, for our conditions, namely a pure non-reacting gas, ix∇  and the second term on the left 
hand side are zero.  Therefore Equation (20) can be reduced to 
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KD
T

BP P P
RT Rµ

∇ −= − ∇N , (23) 

 
as we would expect, because it is the sum of the viscous and free-molecular flux contributions 
given by Equations (10) and (12).  We refer to this as a momentum conservation equation 
because the gas and the particles of the bed exert forces on each other in order to establish this 
relationship between pressure and molar flow rate.  The molar flow rate can be expressed as a 
product of the gas concentration and its bulk flow velocity.  When N and T are uniform in space 
and time, the pressure and velocity are inversely proportional. 
 
1.2.6 Comparison of Viscous and Free-Molecular Flow 
 
Equation (23) shows that in the low-pressure limit, BP/µDK << 1, free-molecular flux dominates, 
and that as P increases, viscous flux increases, until it eventually becomes dominant.   
 
Expressions derived above can be used to compare the magnitudes of the two contributions to 
the flux, which both depend on the pressure gradient.  If the free-molecular contribution is 
greater, after converting pressure to concentration, 
 

 
µ
Bc

RT
DK

> . (24) 

 
By incorporating the crooked capillary expressions, Eqs. (6) and (16), this can be rearranged to 
 

 r
M
RT

RTc
28

3
32

>>
π

µ  (25) 

 
which is similar to Equation (13).  The Knudsen diffusion coefficient can also be related to the 
effective permeability through the equivalent capillary radius.  By combining Equations (6) and 
(8),  
 

 .10=8=
1/2

2.1

1/2

















εε
BqBreq  (26) 

 
and combining Equations (16) and (8), 
 

 
1/2

1.05 1/2 8= 1.69K RTD B
M

ε
π

 
 
 

 (27) 

 
Again, this is limited by the assumptions of the crooked capillary model and the accuracy of the 
tortuosity correlation, but it provides a basic concept for the scaling of these transport 
parameters.  As a footnote, Meyer is careful to refer to eqr  as the average pore radius.  Others 



16 

have called eqr  the hydraulic radius rh, which is incorrect. The quantities differ by a factor of 2, 
with heq rr 2= .17 
 
The Knudsen diffusion coefficient can also be compared to the viscosity.  In a hard-sphere 
model, the viscosity takes the form  

 

1/2

2

80.0049 M RT
d M

µ
π

 =  
 

 (28) 

 
where d is the molecular diameter.  This is modified by longer-range interactions in a real gas.15  
Because viscosity appears in the denominator, this suggests that viscous flux is reduced and free-
molecular flux increased with increasing temperature, and that both terms decrease when the 
molecular weight is increased (assuming no change in d, as expected upon substitution by a 
different isotope).  
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2.  APPROACH TO SPATIALLY UNIFORM FLUX 
 

 
2.1. Introduction 

 
The substitution of the momentum conservation equation (23) into the mass conservation 

equation (1) leads to a general description of the time and spatial dependence of the properties of 
the compact.  However, it is relatively difficult to solve.  Simpler, closed-form solutions can be 

obtained if we can justify an assumption of spatially uniform flux: 0=
z∂

∂N .  To determine the 

validity of this assumption, we compare the time for a compact to reach steady-flow conditions 
with the duration of a typical experiment.  If the compact's steady-state relaxation time is much 
shorter than the time to reach pressure equilibrium, then the steady-state assumption is justified. 

 
As before, the system is assumed isothermal, the compact is assumed uniform, the fluid 

viscosity is assumed constant, and the fluid is taken to be a pure, ideal gas.  The combined 
governing equations take the following form (using the ideal gas law to eliminate concentration): 

 

 .= 2

2

2

22

z
PD

z
PP

z
PB

t
P K

∂
∂

+












∂
∂

+






∂
∂

∂
∂

εεµ
 (29) 

 
 Equation (29) can be solved to give the fluid's molar concentration within the compact as a 
function of time to determine the time needed to reach a spatially constant molar flux.  Taken 
with the boundary conditions imposed by the geometry of the compact, the equation does not 
always have a simple analytic solution.  We will present some special cases that make the 
behavior of the system quite clear. 
 

 
2.2. Steady State Concentration Profile 

 
At steady state, Equation (29) reduces to  

 

 .=0 2

2

2

22

dz
PdD

dz
PdP

dz
dPB K+












+








µ
 (30) 

 
and we know that flux is spatially uniform from the mass conservation equation (1).  For a 
compact of length cL , with boundary conditions of 1=(0) PP  and 2=)( PLP , Equation (29) can 
be solved exactly. The solution is  
 

 
2

11

2

1
2

1

2
2

11

11211=)(








+
















−−+








−−+−

BP
D

L
z

P
P

BP
D

L
z

P
P

BP
D

P
zP K

c

K

c

K µµµ  (31) 
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When P1 is high, and flow is primarily viscous, this has the limiting case 
 

 cL
z

P
P

P
zP









−− 2

1

2
2

1

11=)(  (32) 

 
and when P1 is low, and transport is free molecular, the pressure drop is linear: 
 

 
cL

z
P
P

P
zP









−−

1

2

1

11=)(  (33) 

 
Because the molar flow rate is constant, as noted in 1.2.5, the gas velocity is inversely 
proportional to pressure.  
 

 
 

Figure 1.  Steady state pressure profiles for several values of 
1BP

DKµ .  Its value is 1 for the 

middle curve, and varies by factors of 10 on either side.  The pressure drop is tenfold 
across the compact. 

 
Figure 1 shows that the concentration profile is linear when free-molecular transport dominates.  
When viscous flow dominates, the gas moves more slowly at higher concentration, but 
accelerates as the concentration decreases.  With other conditions constant, the molar flow rate in 
viscous flow is higher than for free molecular transport because the pressure is higher. Figure 1 
is normalized to highlight the shapes of the curves, and not their relative scale, for different flow 
regimes.  The asymmetry of the profile in the viscous regime can be a way to measure 
nonuniform porosity: if two flow experiments are performed in opposite directions, one could 
expect different results. 
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2.3. Transient Numerical Solution 
 
The solution to Equation (29), in the case where P1 is small and the viscous term is 

negligible, is given by 
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 (34) 

 
Most notable about this solution is that it is close to steady state when the argument in the 

error function in the denominator is less than 1, or at times greater than K
c DL2ε .  From this and 

further inspection of Equation (29), one might speculate that the timescale for approach to steady 
state in the viscous case could be estimated as 1

2 BPLcµε . 
Equation (29) was solved using a finite difference method implemented in GNU Octave.  

The method used central differencing for the space derivatives and backward differencing for the 
time derivative. This is commonly referred to as an explicit, central difference scheme. 

Solutions were computed for conditions representative of blowdown experiments. The 
pressures at the upstream and downstream faces of the compact are 1P  and 11.0 P  respectively, 
with varying P1 values. The initial pressure within the compact was determined from Equation 
(34) evaluated at a small value of t.  The grid size is 101 points and time step is 10-6 seconds. Lc 
is 10 mm, KD  is 100 mm2/s, µB  is 104 mm2/MPa s, and ε is 0.75.  Under these conditions, for 

BDP Kµ<<1 , we would expect the time to steady state to be 0.75 s, and once those pressures 
become comparable, that time should decrease with increasing pressure.  
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Figure 2.  Plot of transient solutions for time points separated by the interval shown.  The 
upper plot is for a low-pressure case where free-molecular flow dominates, whereas the 

lower plot is for a high-pressure case where viscous flow dominates. 
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Figure 2 shows simulation results at a low pressure, where free-molecular flow dominates, and at 
high pressure, where viscous flow dominates.  These and other results show that the estimated 
times to steady state are reliable, and more generally, the time tss can be estimated by 
 
 

 ( )µε 1
2 BPDLt K
css +=  (35) 

 
As will be shown, vessel volumes and the compact diameter can be chosen to ensure that the 
experiment lasts significantly longer than this. 
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3.  APPLICATION TO EXPERIMENTAL CASES 
 

 
3.1. Steady Flow 
 

Assuming a uniform compact reduces the analysis to one space dimension, and assuming 
steady flow (constant flow rate) eliminates the time dimension from the mass conservation 
equation (1). This gives 

 

 0=
dz
dN  (36) 

 
and from the transport equation (23) 
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For steady flow tests, Equation (37) can be evaluated for a compact of length cL  and superficial 
area cA  with face pressures 1P  and 2P .  Equation (37) can be separated and integrated over the 
length of the compact, giving  
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where n  is the molar flow rate (mmol/s). 
 
Equation (38) can be rearranged into a form more suitable for analysis if one notes that 

( ) ( )( )2121
2

2
2

1 = PPPPPP −+−  and defines ( )212
1= PPPAVG +  and 21= PPPBED −∆ , giving 
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
 (39) 

 
This is a very illustrative form for the solution. The first and second terms on the right hand side 
represent the flux contributions from free-molecular and viscous flow respectively. 
Experimentally, steady flow can be achieved or approximated by use of a regulated gas cylinder, 
which applies a constant pressure to one side of a compact, and by venting the other end of the 
compact to the atmosphere. 
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3.2. Blowdown 
 
In a blowdown test, vessels of finite volume are connected to each end of the compact.  One 
vessel is isolated by a valve, and each vessel is loaded to a different initial pressure.  The valve is 
opened, and the pressures are allowed to equilibrate.  The analysis of the previous section still 
applies, but the pressures and flow rate are now time-dependent. 
 

Maintaining constant temperature can be difficult due to adiabatic expansion from one 
vessel and compression in the other.  Monitoring of temperature within each vessel is important.  
If the timescale of the experiment is long enough, the surface-to-volume ratio of the vessels and 
tubing are high enough, or other measures are taken to increase contact of the gas with surfaces 
of relatively uniform temperature, the gas temperature variations can be kept small.  In the 
isothermal case, the analysis is greatly simplified, and Equations (1) and (37) can be solved in 
closed form. For the sake of simplicity, this assumption is utilized, and a possible loss of model 
fidelity is accepted. 

 
To analyze the blowdown test, a material balance is performed on the vessel, and an ideal 

gas is assumed.  We call the vessel with higher pressure the “source” and the lower pressure the 
“receiver”.  This gives  

 

 .
dt

dP
RT
V

n ss−=  (40) 

 
where Vs is the constant source volume and Ps the time-dependent source pressure.  The mass 
flow rates at the inlet and outlet of the compact are assumed to be equal (no gas is absorbed or 

released in the compact), which implies that 0=
dz
dN .  Consequently, the molar flux, cAn/ , is 

given by Equation (38), replacing P1 and P2 with Ps and Pr, the receiver pressure. These 
assumptions allow Equations (38) and (40) to be combined, giving  
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A mole balance on the whole system before and after the experiment gives 
 

 ( )rseqrrss VVPVPVP +=+  (42) 
 
where Peq is the equilibrium pressure, which can be computed from the initial vessel pressures 
using this equation.  The time dependence of the receiver pressure can be obtained from this 
equation once the time-dependent source pressure is solved.  The compact is initially at 
equilibrium with one of the two vessels, and its void volume is lumped with the volume of that 
vessel.  We take that vessel to be the receiver, and eliminate the receiver pressure to obtain 
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It can be shown that a pressure function of the form 
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which matches the form of Equation (43).  The boundary conditions are ( ) 00 PtP == , the initial 
value of Ps, and ( ) eqPtP =∞= .  Substitution allows elimination of a and f, so 
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which satisfies the boundary conditions, and solves 
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By matching coefficients, we then identify 
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This closed form can easily be used in a spreadsheet or other data analysis software.  Pr can be 
computed similarly, deriving the appropriate initial condition from Equation (42) and swapping 
Vs and Vr in Equations (49) and (50).  Several especially simple cases can be identified.  If the 
vessel volumes are equal,  
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noting also that Peq is simply the average of the upstream and downstream pressures in this case. 
If ∞=rV , or the compact is vented to the atmosphere or into a vacuum pump at pressure 2P , the 
result is 
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where 
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Some other simplified cases can be obtained if only one transport regime (viscous or free-
molecular flow) prevails throughout the experiment.  For free-molecular transport only, 
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For viscous flow only: 
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Figure 3.  Response in each flow regime to varying conditions.  Curve label indicates Vs 
to Vr ratio.  Top plot uses constant pressure ratio of 10, while bottom plot adjusts Pr to 

maintain constant Peq.  DK was set to match viscous case when volumes are equal. 
 
Figure 3 compares the predicted pressure traces for the cases of purely viscous or purely free 
molecular flow under varying conditions. All molecular flow curves are simple exponentials, as 
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is the viscous flow curve for equal volumes.  However, when the volumes are different, more 
complex behavior is exhibited by the viscous case. Under some conditions it is faster than the 
exponential, and sometimes slower, depending on the initial pressures and volumes.  The equal-
volume case greatly simplifies experimental interpretation, and fitting to experimental data.  The 
shape changes can be subtle, so determining the flow regime from the curve shape can be 
difficult.  However, even when the volumes are equal, and the curve shape does not depend on 
the flow regime, that regime can still be identified by performing the experiment at different 
initial pressures, or with gases of differing viscosity (though less easily through isotopic 
substitution, as noted above, because DK and µ scale similarly with molecular weight). 
 

As mentioned earlier, assuming the compact is in steady state during the transient 
blowdown is not strictly correct.  The tubing between the valve and compact will rapidly 
equilibrate with the source vessel, and gas in the compact will pressurize until a relatively 
smooth pressure drop is obtained.  Because the volumes involved are much smaller than the 
vessel volumes and the resistance to flow is lower than that of the whole compact, this response 
is typically much faster, and the effect is easily corrected for experimentally by adjusting P0 to 
the value just after this transient, and Vs to include the tubing and about half of the compact void 
volume (reducing Vr accordingly).  The analysis of the spatial concentration profile in the 
previous chapter can help identify or justify a suitable correction. 

 
3.3. Flow rate analysis 
 
Alternatively, the time-dependent flow rate in a blowdown experiment can be found from the 
known time-dependent pressures using Equation (41).  One advantage of this method is that it 
allows one to correct for pressure drops from the frits at either end of the compact, the flow 
parameters of which can be measured in flow tests on an empty column.  A disadvantage is that 
it requires numerical computation of the time derivative of pressure.  The pressure derivative can 
computed through a difference between two sequential pressure measurements divided by the 
time interval between them, but this amplifies high-frequency noise in the data.  The noise can be 
mitigated by averaging the differences (or equivalently by using pressure measurements 
separated by larger time intervals), or experimentally by reducing the bandwidth of the pressure 
transducer signal.  These approaches are less effective (or degrade the data) near the beginning of 
the dataset, which may contain valuable information.  However, there can be value in comparing 
results from a flow rate analysis to direct fits of the time-dependent pressure data to an equation 
such as (46).  For example, this can show whether the improved accuracy from a frit correction 
outweighs the lost precision caused by numerical differentiation-amplified noise when 
determining flow parameters. 
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4.  SUMMARY 

 
This report presents the basic concepts of gas transport in porous media, and applies them in 
simple forms that facilitate rapid analysis of experimental data, as well as critical understanding 
of an experiment.  It identifies several closed-form solutions of the governing equations that are 
easily implemented in spreadsheet or other data analysis software.  This approach can be a 
valuable complement to more complex models, such as finite element analyses of 3D flow 
distributions that account for inlet geometry, pressure drops in tubing, uptake and release by the 
solid phase, temperature variations, nonuniform porosity, gas nonideality, turbulent or 
compressible flow, multi-component transport, and other effects.  The insights presented here 
can also aid experimental design to minimize the importance of many of these complications.  
We hope that this report will serve as a succinct introduction to the technical field for new 
researchers and engineers, and a useful reference for veteran practitioners. 
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