
SANDIA REPORT
2014-2770
Unlimited Release
Printed February 2014

Saturn Facility Oil Transfer
Automation System

Nathan R. Joseph1 Sandia National Laboratories
Rayburn D. Thomas1 Sandia National Laboratories
Barbara A. Lewis2 Raytheon-Ktech Corp
Hector M. Malagon3 Evalumation, LLC

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

2014-2770
Unlimited Release

Printed February 2014

Saturn Facility Oil Transfer Automation
System

Nathan R. Joseph1 Sandia National Laboratories
Rayburn D. Thomas1 Sandia National Laboratories

Barbara A. Lewis2 Raytheon-Ktech Corp
Hector M. Malagon3 Evalumation, LLC

Abstract

The Saturn accelerator, owned by Sandia National Laboratories, has been in op-
eration since the early 1980s and still has many of the original systems. A critical
legacy system is the oil transfer system which transfers 250,000 gallons of transformer
oil from outside storage tanks to the Saturn facility. The oil transfer system was iden-
tified for upgrade to current technology standards. Using the existing valves, pumps,
and relay controls, the system was automated using the National Instruments cRIO
FGPA platform. Engineered safety practices, including a failure mode effects analysis,
were used to develop error handling requirements. The uniqueness of the Saturn Oil
Automated Transfer System (SOATS) is in the graphical user interface. The SOATS
uses an HTML interface to communicate to the cRIO, creating a platform independent
control system. The SOATS was commissioned in April 2013.

3

Acknowledgment

The authors would like to acknowledge Dave Artery, Harold Brown, Blake Henderson, and
Andy Shay for technical contributions. Thanks to Joshua Goldberg for contractor manage-
ment/technical direction and to Daniel Summers for teaching our organization failure modes
and effects analysis techniques.

4

Contents

1 Introduction . 7
2 Saturn Oil Automation Transfer System . 8

2.1 Hardware Functions . 9
2.2 Software Functions . 9
2.3 Process Mapping/Error Handling . 12

3 Project Requirements . 15
3.1 Problem Statement . 15
3.2 Project Solution . 15
3.3 Phase 1 Project Requirements . 15

4 Phase 1 Description . 17
4.1 Control System . 17
4.2 C&C Client . 17
4.3 Fail Safe Control . 17
4.4 C&C Server . 17
4.5 Touch Panel User Interface . 18

5 Conclusions . 19
6 References . 20

Appendix

A National Instruments Code Review . 21
B FMEA Example . 28
C Nomenclature . 29

Figures

1 Graphical User Interface. 8
2 National Instruments cRIO Controller. 9
3 SOATS Networking Diagram Phase 1 . 11
4 SOATS Piping and Instruments Diagram . 13
5 SOATS Programming Process Example . 14

Tables

1 SOATS Error Modes Example . 12

5

6

1 Introduction

Sandia National Laboratories owns and operates the largest pulse power facilities in the
world, including the Saturn accelerator. The Saturn accelerator has been in operation since
the early 1980s. In 2011 the Saturn oil transfer system was identified for redesign. The
Saturn Oil Transfer System transfers 250,000 gallons of transformer oil from outside storage
tanks to the Saturn facility using a complicated system of valves and pumps to perform three
functions: Fill, drain, and recirculate. From the redesign effort the Saturn Oil Automation
Transfer System (SOATS) was created. The SOATS is a modification to an already existing
system that uses manual switches and relays to engage valves and pumps. The standing
safety systems are hardwired in and still are in use today. The existing system had to be run
completely manually by technicians, relying on the experience of the technicians to actuate
pumps and valves in the correct sequences for draining, filling, and recirculating the oil. The
main function of the SOATS is to provide uniform sequences and human error reduction in
the transfer of transformer oil to and from the Saturn Facility. The SOATS controls sixteen
valves and four pumps to manage the fill, drain, and recirculation processes while performing
real-time error checking and process determination.

7

2 Saturn Oil Automation Transfer System

Figure 1. Graphical User Interface.

The SOATS is comprised of two pieces, the Graphical User Interface (GUI) and the
hardware controller. The hardware controller used is the National Instruments Compact
RIO (cRIO). The GUI Figure 1, which is an embedded HTML interface hosted by the cRIO,
displays to the user in real time what processes are occurring. The GUI can be accessed
through any device that supports HTML but is configured so that only specific users have
access to the GUI. User access to the GUI is achieved by using dynamic security protocols
that are embedded on the cRIO and through SNL network security systems. The GUI shows
a piping and instrument diagram of the Saturn Oil Transfer System. The GUI displays valves
and pumps turning between the off state (green) and the on state (red). This allows the
user to see what is occurring in the system in real time. The GUI also reports detailed
errors to the user through pop up screens if an error occurs. The cRIO system consists of
an embedded controller for communication and processing, a reconfigurable chassis housing
a user-programmable FPGA, hot-swappable I/O modules, and graphical software for rapid
real-time, Windows, and FPGA programming.

8

Figure 2. National Instruments cRIO Controller.

2.1 Hardware Functions

The National Instruments cRIO Figure 2 is both an embedded controller and FPGA. The
cRIO embedded controller uses unique LabVIEW code to translate to the native language
of the FPGA which is VHDL. The cRIO system interfaces to digital I/O cards that monitor
and send +24 VDC signals to a relay system that sends controls and receives feedback to
pumps and valves in the system. Because the embedded controller is separate from the
FPGA, the SOATS can continue processes even if communication or other hardware failures
occur in the embedded controller. The separation between the controller and FPGA adds
another layer of failsafe protection. The cRIO is powered by two +24 VDC power supplies.
The second power supply is a redundant supply in case of primary supply failure. Each
power supply is on a different electrical circuit in the facility which provides more certainty
of system failure protection. The SOATS also has an emergency off key which cuts power to
SOATS and provides an immediate hard stop to the system. All safety systems concerning
personnel are hardwired into the SOATS to prevent any computer errors from causing harm
to personnel.

2.2 Software Functions

The cRIO programming for the SOATS is based in National Instruments LabVIEW and has
been vetted by the National Instruments Code Review Department Appendix A. The cRIO

9

uses an embedded controller that sends commands to an FPGA that turns digital ports
on and off. The GUI programming language is HTML based and is hosted on the cRIO.
The SOATS program is segmented into parts: manual mode, fill process mode, drain mode,
recirculate mode, stop sequence mode, and emergency stop mode. For all processes the GUI
sends commands through a hexadecimal mask via Ethernet to the cRIO device which the
cRIO device then interprets and communicates to the FPGA. The GUI is an accurate piping
and instrument diagram of the oil transfer system Figure 1. Each individual valve and pump
is monitored by the cRIO and its status reflected to the GUI through color indicators that
show on and off states. The GUI also allows the user to pick among fill, drain, recirculate, and
manual modes. Each process has its own sequences and error checking masks. If the SOATS
detects an error, the system reports that error to the cRIO. The cRIO determines the severity
of the error and reports back to the GUI. If the error involves any critical components, the
SOATS reverts to a safe shutdown mode. At any time the user can initiate a stop process or
emergency stop sequence. The stop process sequence initiates a soft shutdown mode which
allows valves and pumps to shut sequentially with time delays in between. The soft shutdown
mode is optimal to stop a process because it prevents damage to the system. The emergency
stop overrides all processes and immediately closes valves and turns off pumps, resulting in
a hard shutdown. The hard shutdown is only used as a last resort when a soft shutdown
is not adequate. In the manual mode, the user is allowed to pick individual components
in the system to control. This mode is used for individual component troubleshooting and
provides no error checking capabilities. Therefore manual mode access is allowed by system
administrators only. The cRIO provides a tiered login system that restricts user access to
the SOATS. The software also provides data logging that contains process times and user
information Figure 3. When an automated process is selected by the user, the SOATS
determines the initial condition of the system and sets it to a default state. The SOATS
then sends precise commands to open valves and turn on pumps in a timed manner. The
SOATS continuously monitors discrete tank level float switches which are physically located
in the oil tank and are displayed on the GUI to determine process transition time. For
example, if the fill process is started with the oil tank completely empty, the SOATS opens
the system fill valves and lets the tank gravity fill. Once the tank level float switches read
a certain level, the SOATS turns on the pumps. The SOATS then waits to perform a soft
shutdown sequence when the tank reaches the full level float. If a fill is initiated when the
tank is partially filled, the sequence is adjusted based on the current oil level as determined
by the floats. This same process is used for the drain and recirculation processes.

10

Figure 3. SOATS Networking Diagram Phase 1

11

2.3 Process Mapping/Error Handling

To achieve reasonable understanding of the process required to drive the SOATS, an in
depth mapping of the actuation of valves and pumps was completed. From this mapping a
system flow and process programming guide was created Figure 4-5. The flow guide helped
identify common practices used by technicians and where the SOATS could improve upon
the process. As part of the program requirements process, an FMEA on the SOATS system
was completed Appendix B. The FMEA identified process critical components and generic
error modes Table 1 with specific steps within a process to handle the errors. If an error
occurs in the system, the SOATS processes the error based on the level of oil in the tanks
as determined by the float switches. This error handling feature allows for dynamic error
handling. Critical system components are identified in each process and are flagged at a high
priority. If an error occurs with a critical system component, the SOATS initiates a soft or
hard shut down depending upon what error has occurred. Non-critical system components
are also monitored but do not show priority in the error handler. If an error occurs with a
non-critical system component, the error is recorded and reported to the user via the GUI.
The user is presented with an option to stop or continue the current process. If the user
does not make a decision, the SOATS continues the current process. Regardless of the error
priority, the SOATS logs the error with date, time, process step, error code, and detailed
error information.

Error Name Error Code
[Valve] State Mismatch (0x0001)
[Pump] State Mismatch (0x0002)
[Tank] Level Low (0x0004)
[Seq] Bad Sequence Mask (0x0010)
[Valve] Bad Monitor (0x0020)
[Tank] Overflow (0x0040)

Table 1. SOATS Error Modes Example

12

Figure 4. SOATS Piping and Instruments Diagram

13

Figure 5. SOATS Programming Process Example

14

3 Project Requirements

3.1 Problem Statement

The operating state for the Saturn Oil System was completely dependent on human factors.
The complex operation of the Saturn Oil System left a significant margin for error with the
possibility of harm to the facility and/or to operating personnel.

3.2 Project Solution

Three technical solutions were proposed: An Allen/Bradley PLC solution, a Visual Basic
solution, or a National Instruments LabVIEW cRIO based solution. The National Instru-
ments LabVIEW cRIO was chosen as the most effective design platform for the solution.
The National Instruments LabVIEW cRIO offered an embedded FPGA controller with a
separate web host interface. The separation between the cRIO and the FPGA controller
allowed for parallel processes to be initiated and monitored almost simultaneously. The Na-
tional Instruments cRIO device also allowed for a web host application design which allows
the designers to custom build and HTML interface. The HTML interface is compatible with
all computer operating systems that allow internet browsing.

3.3 Phase 1 Project Requirements

The SOATS meets the following requirements. Software: Software must use National
Instruments LabVIEW 2011 and associated development environments. The software de-
veloped must be able to launch on remote devices such as I-Pad or Android Tablets and be
compatible with Windows XP to 7 operating environments.
Hardware: The hardware selected has been National Instruments Compact Rio FPGA
devices with associated National Instruments power supplies and relay controlling devices.
Standards: All hardware must be NRTL certified or be approved following Sandia National
Laboratories equipment approval policy. All symbols representing fluid processes must use
the current US standards for piping and instrument diagrams.
Alarm Override: There must be a way to bypass alarms that are generated. For example,
a valve is enabled, but a signal telling the equipment that the valve was successfully enabled
is not received. In this instance, the software should tell the user to check the valve. If
the user has verified that the valve is operational, then the user may override the alarm to
continue the process.
Automated System Override: There must be a way to electrically override the system.
There are manual switches that currently control the system. These switches shall remain
in place, and there must be a way to switch from automated control to manual control. The
switching must occur at the press of a physical button or switch. Manual Control through
Software: The software must be able to operate in an automated mode or a manual mode.

15

In the automated mode, the software shall attempt to run the system using a predefined set
of process rules. Feedback from sensors shall be utilized to ensure the opening and closing
of valves and other pieces of equipment. In manual mode, the use shall be able to manually
turn on and off valves and other equipment with the press of a button. They shall receive
status notifications from any sensors that verify the actions the user is taking.
Failure Mode Effects Analysis: A system FMEA must be completed to generate error
conditions for the software.
Error Handling: Error handling will be dictated by the FMEA results. Critical errors will
result in a safe or hard shut down of the system. Non critical errors will be handled by the
user.
Fail Safe Mode: The software must go into a fail safe mode should it detect a power outage
or other failure. This mode should be defined in more detail, but consists of turning all of
the pumps off, wait, and then close all of the valves.
Recirculation: The automated system must recirculate for a few days after a power failure.
The system should restart and go into a recirculation mode.
Database: Every event that occurs should be logged to a database. Events are anything
that occurs on the automated system and are as simple as turning on a valve. Another
example of an event is an override to an alarm that didnt close. This database shall be
hosted on the Sandia SRN.
Touch Panel: The automated system shall make use of a touch panel for providing an
interface for controlling the automated system.

16

4 Phase 1 Description

The first phase implemented was the Saturn control system and the touch panel computer.
The touch panel computer and cRIO exist on an isolated network infrastructure and do not
provide communication for external components. The touch panel computer issues com-
mands to the cRIO that the cRIO then performs. Query functionality to check the state
of valves, pumps, etc. is provided. The status of the system is polled by the touch panel
application for presentation to the user. It is separately monitored within the cRIO platform
to provide fail-safe functionality.

4.1 Control System

The control system consists of the components necessary for the cRIO device to directly
manipulate the control system without impeding the control interface currently deployed.
These devices consist of signal-source devices (e.g., National Instruments NI 9472 8-channel
digital output modules) and read-back devices to provide monitor-and-control functionality.

4.2 C&C Client

The command-and-control client connects to a TCP host server resident on the touch panel
computer and provides a persistent low-level monitor-and-control interface to the command-
and-control server.

4.3 Fail Safe Control

A software failsafe was implemented within the cRIO platform to reduce the possibility of the
system entering an undesirable configuration. Failsafe monitors both command-and-control
communication as well as system state and interrupt communications when the system is
perceived to be entering a bad state. The failsafe mechanism intercepts control in the event
of a communication failure between the touch panel controller and the cRIO. The failsafe
solution facilitates two autonomous operating modes: failsafe and recirculate, which steer
the control system into known safe configurations.

4.4 C&C Server

The command-and-control server provides an abstraction layer between the planned Web
server solution (refer to the CC client discussion) and the target cRIO platform. The
command-and-control server provides algorithms to maintain the control system within de-
fined operating parameters, as well as interfaces to facilitate low-level control by the operator.

17

4.5 Touch Panel User Interface

The primary control mechanism is provided by way of a custom interface application written
in HTML and deployed on a National Instruments touch panel platform. In addition to indi-
vidual component control, the touch panel user interface application provides administration
and configuration functionality as desired by the user.

18

5 Conclusions

The SOATS system has added an increased level of accuracy and operational assurance to
the Saturn facility. The SOATS stands as a breakthrough in control system technology
applications by bridging the gap between National Instruments LabVIEW and non-windows
based operating systems. The SOATS dynamic error handling capability sets the system
apart from PLC based control systems and should be recognized as a way for future systems
to harness FPGA based control systems.

19

6 References

National Instruments Code Review provided by David Bonal and Christoph Wimmer, Na-
tional Instruments Corporation, Austin, TX.

Failure Modes and Effects Analysis training provided by Daniel A. Summers, Sandia Na-
tional Laboratories, Albuquerque, NM.

20

A National Instruments Code Review

A.1 Documentation

While the code is well laid out and easy to read, the functionality of each section is not always
apparent. Documenting algorithms and processes in the code is critical to allow others who
might need to read and understand the code to do so in a quick and easy manner. This also
protects against loss of knowledge and time if the developer cannot be reached.

A.2 Data Dashboard

Data Dashboard is an app released for both Android and iOS devices which allows users to
connect to and view (also control) LabVIEW web services and Network Published Shared
Variables. Unfortunately, it may not work in this application, as it does not support authen-
tication.

A.3 Real Time

The requirements for the real time controller in this system are not intensive or time critical.
This means that many RT concepts and best practices are not necessary to implement. It
also allows the controllers functionality to be implemented in a single loop, simplifying the
development. As such, some of the standard recommendations for RT are not necessary, but
have been mentioned below as a matter of best practice when needed. The notes below refer
specifically to the RT controller.

A.4 Timing

The timing in the main loop on the RT controller is governed exclusively by asynchronous
interrupts from the FPGA and timeouts. This means that the loop rate could be dramatically
different between iterations. Although the requirements allow for this, it might be reasonable
to benchmark the different operations and ensure that everything operates within acceptable
limits.
This scheme also introduces the possibility of deadlock in the system, if the RT controller is
ever waiting on the FPGA, and vice versa. From what I can tell, this shouldnt happen, but
it is something to keep an eye out for.

21

A.5 Single Element Queues (SEQs) in Functional Global Variables
(FGVs)

Storing data in SEQ/FGVs is a valid concept. Something to look out for when using them is
the potential for deadlock, where two resources are both waiting for resources that the other
has reserved, effectively stopping the execution of code. Fortunately, a single loop system
limits the likelihood of this occurring.

A.6 Jitter

Jitter is the difference in iteration time from the expected/requested time. Many things can
cause jitter. Below is a list of potential sources of jitter in the application specifically, followed
by a list of general items that can cause jitter. In this application, since the requirements
are not time-critical or deterministic, jitter is not as detrimental.

• Strings and string operations can cause jitter because they are dynamically reallocated.
Memory allocations involve the memory manager, which can cause jitter. Examples in
this application are:

– Status

– Debug Info (Console Out)

– Error Handler

• File I/O is non-deterministic and can cause jitter due to the latency in disk operations.

• RT Console outputs interact with a driver and/or hardware, which can also cause jitter
due to latency and being a shared resource.

• Non-zero timeouts on any function are sources of jitter. Examples in this application
are:

– FPGA Interrupt VI

– HTTP Command Read VI

– Signal Verification Code

• Any shared resource (including non reentrant subVIs)

Other, general sources of jitter include:

• TCP/IP

• UDP

22

• Serial

• VI Server

• Semaphore

• Handshaking Protocols

• GPIB

• DAQ Handshaking (burst mode, 8255 emulation on 653x)

• Memory allocations and pre-allocating arrays

• Global variables

• LabVIEW memory manager

– Use Replace Array Subset instead of Build Array

– Use In Place Element instead of Bundle

– Type conversion causes a copy

– Use the smallest data type possible

– Arrays must have the same structure and number of elements to reuse their buffer

– Use Show Buffer Allocations to track down memory allocations

• Single-threaded DLLs

• Shared variables

A.7 Sequence Loading

Loading sequences from file each time they are called adds a lot of overhead. It may make
more sense to load all available sequences (perhaps by traversing the SEQ directory) at
application startup and store them into a FGV. This way, sequences could be stored in
RAM and retrieved more quickly. This would reduce sources of jitter from File I/O and
string operations. FPGA Interface

• Simulation of the FPGA VI can be accomplished with the RT host VI by selecting
the FPGA VI to Execute on the Development Computer with Simulated IO. This will
simulate the Vis execution in response to the host with random IO.

• Consider using the FPGA bit-file in the Open FPGA VI Ref function instead of the
VI. This will minimize broken Vis due to recompilation issues.

• Send Sequence VI:

23

– Reconfiguring the depth of the FIFO each time is not necessary.

– Consider formatting all of the sequence data and transferring it to the FPGA all
at once to reduce the overhead of calling the Write method multiple times.

– To ensure complete data transfer before sending the read signal to the FPGA,
check that the Number of Elements to Write is equal to the configured FIFO
Depth.

A.8 Miscellaneous

• CMT component of Seq Typedef.ctl may not be necessary and be consuming unneces-
sary memory.

• Calculate Day.vi can be optimized to consume less resources:

• Send Sequence.vi: If FSM does not equal Wait, is the sequence lost? Should it retry
to send?

• The CMD shift register is initialized to be in the Abort state. Is this appropriate
startup behavior?

24

• Sequence File Check VI is unnecessary, as an error will be generated as soon as the file
is opened in the Sequence File Read VI.

• DirCtrl (Listen) VI: It appears that only 5 commands can be issued at a time.

A.9 Specific Error Handler

This is a library built by our Systems Engineering department to make error handling easier.
It includes an asynchronous error handler which separates the handling from the main loop.
It may not be needed here, but it can be useful in other applications.

A.10 Backup RT Target with Replication and Deployment Utility
(RAD)

You can use RT target disk images to backup, restore, and replicate RT targets. An RT
target disk image is a copy of the file contents of the primary RT target hard drive. The
RAD utility helps to streamline and automate this process.

A.11 Front Panel Communication

User Interface causes sections of code to be non-deterministic because LabVIEW must switch
to the UI Thread. Do not use front panel objects in time critical sections of code.

A.12 Dividing Tasks

Separate deterministic tasks from all other tasks to ensure deterministic tasks receive enough
processor resources. Tasks must be properly divided to ensure all tasks can execute and the
application performs deterministically.

• Avoid unnecessary parallelism in the code

• Create only one deterministic VI per CPU

25

• Use Timed Structures only in Normal Priority VIs

• Timed Loops of the same priority execute synchronously

A.13 FPGA Loop Timer

Use the loop timer in conjunction with a flat sequence structure to ensure accurate timing of
your code. The loop timer does not wait on its first call, so if the loop returns a second time
before the 100 us is up, code may execute a second time since the loop timer is currently
executed in parallel. A Single Cycle Timed Loop (SCTL) can also be used to explicitly
ensure timing.

A.14 FGPA Benchmarking

In a while loop on FPGA, timing is not guaranteed as it is in a SCTL. To ensure that you
are achieving desired loop rates, you can use a Tick Count VI to measure the loop time each
iteration. The loop iteration will change depending on which case structures execute.

A.15 FPGA Local and Global Variables

Be wary of writing to local variables in multiple locations. This can lead to difficult to debug
race conditions.

A.16 FPGA Clusters vs. Bit packing

The current implementation of Boolean clusters is functional, and should not be too costly
in terms of resource usage. However, bit packing these Booleans into U32s or U64s might
offer a cleaner implementation and reduce the number of functions needed to convert the
Boolean cluster to a usable format. Investigate the Data Manipulation palette under the
Numeric palette for useful functions.

A.17 FPGA Front Panel Objects

Control data is stored in FPGA RAM which is hardware limited. FPGA space is required
to store data and a considerable amount of logic is required to implement communication
between front panel objects and the host VI. Communication between the FPGA and RT
occurs in 32-bit words. Limit the data width and number of front panel objects. This only
applies to the top-level FPGA VI.

26

A.18 FPGA Shared Resources

Be aware of using shared resources such as IO in reentrant subVIs. This will not be a problem
unless the subVI is called from multiple locations at once.

A.19 FPGA Miscellaneous

• Startup State: What should the startup state be? Are there any considerations for the
IO states at power up?

• Safe State: Is there a case when IO would need to be set to a safe state in the event
of lost communication with the RT system, etc.?

• While Loops in FGV SubVIs added an overhead of two ticks. Consider using a Feedback
node instead of shift registers to remove these two ticks.

• Read Case:

– Is scaling on the FPGA necessary?

– Read Seq VI: Non-zero Timeout leads to risk of exceeding 100 us loop time.

– Use a U64 FIFO instead of a U32 to reduce number of reads necessary.

• Execute Case:

– Unit Test Calculation VIs to verify correctness. It is easy to code bugs into
Boolean logic. Documentation is especially important in these types of VIs

• Clear Case: This can be rewritten to ensure DMA FIFO is completely empty. Use a
DMA Read with a zero timeout, and a While loop to continue reading until all data
is removed.

• Nested Case structures hide code and can make diagrams more difficult to read. Con-
sider reworking with Select statements.

27

B FMEA Example

Figure B.1. Failure Mode Effects Analysis

28

C Nomenclature

1. SOATS:Saturn Oil Automation Transfer System

2. cRIO:National Instruments CompactRIO FPGA controller

3. GUI:Graphical User Interface

4. HTML:HyperText Markup Language

5. OS:Computer Operating System

6. FMEA:Failure Mode Effects Analysis

7. DOE:Department of Energy

8. SNL:Sandia National Laboratories

9. FPGA:Field Programmable Gate Array

10. VHDL:VHSIC Hardware Description Language

11. NRTL:Nationally Recognized Testing Laboratory

29

DISTRIBUTION:

1 MS 1106 Rayburn D. Thomas, 1342

1 MS 1179 Grant S. Heffelfinger, 1340

1 MS 0899 Technical Library, 9536 (electronic copy)

30

v1.38

