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Abstract

In the process of model validation, models are often declared valid when the
differences between model predictions and experimental data sets are satisfactorily
small. However, little consideration is given to the effectiveness of a model using
parameters that deviate slightly from those that were fitted to data, such as a higher
load level. Furthermore, few means exist to compare and choose between two or
more models that reproduce data equally well. These issues can be addressed by
analyzing model form error, which is the error associated with the differences
between the physical phenomena captured by models and that of the real system.
This report presents a new quantitative method for model form error analysis and
applies it to data taken from experiments on tape joint bending vibrations. Two
models for the tape joint system are compared, and suggestions for future
improvements to the method are given. As the available data set is too small to draw
any statistical conclusions, the focus of this paper is the development of a
methodology that can be applied to general problems.
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1. INTRODUCTION

Model validation is the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the model. For
physical systems, this is usually accomplished by comparing a set of model predictions to a set
of experimental results and refining the model until the two data sets are in satisfactory
agreement. However, the following problems may arise:

1. The error between the model predictions and the experimental data may be very sensitive
to small variations in model parameters.

2. It may be possible to find many models, each accounting for different physics, that
appear to fit the range of experimental data equally well.

Each of these problems appears because the physical phenomena taken into account by the
models may not actually reflect the physics of the real system. The discrepancy between
modeled physics and the true physics of the system is called model form error (MFE). In order
for a particular model to be properly validated and be the most appropriate model, its MFE
should be at a minimum.

Currently, there are no widely accepted methods that can be used to quantify MFE while
addressing the problems mentioned above. Akaike’s entropy-based information criterion [1] is a
method that is widely used throughout many different research fields, including economics,
psychometrics, ecology, and medicine. This report proposes a new extension of Akaike’s
entropy-based information criterion to calculate MFE based on the concept of minimizing
information entropy [2, 3, 4] and use it to assess the validity of models representing physical
systems. The concept of minimizing information entropy in order to select the most appropriate
physical model for an engineering system was first proposed in [5], and is summarized as
selecting the model that exhibits the lowest amount of parameter variation in fitting a set of data.
For instance, if two models are used to fit a set of data for a single system resulting in one model
having parameters that vary significantly while the other model has parameters that vary by only
a few percent, the model with the larger variation in fitted parameters is said to have a higher
information entropy. By minimizing the information entropy, it is hypothesized that the
resulting model is more representative of the real system since the real system’s parameters
should not be changing appreciably as a model with high information entropy would imply.

As Akaike’s entropy-based information criterion is a widely adopted method in several branches
of statistics, there have been numerous extensions and refinements of the method [6]. These
extensions have developed metrics to assess the complexity of a model [7] since a very complex
model can fit the data well without necessarily having any interpretable relationship with the
physical phenomena [8]. The use of information entropy is further extended to calculating a
fuzzy distribution of the inputs for different models from the fuzzy distribution of measured
outputs [9]. Once the inputs are identified, the model that predicts the correct response space
with the least aleatoric uncertainty in input parameters is identified as the optimal model to use.

Other alternatives to Akaike’s information criterion, of course, exist [10]. One recent method is
to use polynomial chaos to assess epistemic uncertainty when incomplete or approximate



distributions of parameters exist [11, 12], or when data is convoluted with aleatoric uncertainty
[13]. The maximum likelihood estimation method is another approach, developed in parallel to
Akaike’s information criterion, that deduces model parameters and statistical reliability from
discrete time series [14, 15, 16].

In the following sections, the process for calculating MFE is presented, and the method is used to
compare two models for bending vibrations in a tape joint (one linear model and one nonlinear
model). This report concludes with suggestions for future improvements of the MFE calculation
method.

It should be noted that the intended purpose of this report is to introduce a new methodology for
MFE quantification. The available data set for the tape joint application is far too small for use
in a real model validation, and the results presented here are only meant to illustrate an example
application of this methodology. While the results given are not intended to validate or
invalidate any particular model, the authors hope that the methodology presented here will
eventually be used in applications where larger, more reasonable amounts of data are available.
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2. CALCULATION OF MODEL FORM ERROR

The processes for calculating the various types of MFE are outlined below.

2.1. Fundamental Quantities
In order to calculate MFE, the following quantities must be defined:

Table 1: Definition of fundamental quantities

Variable | Definition

ar{ The nt"* parameter of fit for a model with N fitted parameters, fitted using
the j¢" data point.

Pij Th_e it" feature of interest predicted by a model fitted using the jt* data
point.

xij The it" feature of interest taken from the j¢" data point of a set of
experimental data

al A vector containing all N elements of a{;.

p’ A vector containing all I elements of p,{.

xJ A vector containing all I elements of x,];.

I The number of different features of interest.

N The number of fitted parameters.

M(a’) The model that maps the fitted parameters a/ onto the predicted features of
interest p, such that M(a’) = p/.

M~'(x’) | The inverse model of M that maps the experimental features of interest x/
onto the fitted parameters a/ for the jt* data point, such that M~1(x/) =
al.

Note that x and p must represent the same quantity in order to be compared, but x need not be
the raw experimental data itself; it can be calculated later.

2.2. Model Form Error

The model form error for a particular model M and experimental data set x is defined by the
following two-dimensional array:

1 J k_xj 2
MFEF(M,x) = TZ(PL : i)
Nt

L

1 ! M(M‘l(xk))—xij :
2"

i

The superscripted indices represent the J data points, and the subscripted index represents the I
features of interest. Here, two superscripted indices are used because the model predictions
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calculated for each data point are compared with all data points; therefore, MFE¥ has I]
elements. Each element is the RMS error of the i*" feature of interest predicted using the k"
data point, where the mean under the square root is computed over the J data points.

2.3. Model Form Error from a Distribution

More generally, a,, can be sampled many times from N probability density functions derived
from the experimental data using kernel density estimation. The kernel density estimation
process is detailed in Appendix E:. In this case, the MFE must be calculated for every
combination of sampled parameters. Therefore, the model form error for a distribution of fitted
parameters is defined by

J o/ i\?
n _ 1 Py — X
MFED!(M,x) = |~ :
]j=1 X!

L

] i\ 2
1 M(am) — xl.]
2

where 7 represents N different indices, one for each fitted parameter. Each of these N indices
takes on integer values from one to the number of samples collected for its respective parameter.
Therefore, MFED]" has a number of elements equal to

N
[ls
n=1
where S,, is the number of samples of the nt" fitted parameter.
After MFEF and MFEDZ’ are calculated, they are displayed as I histograms. Each histogram
represents the MFE of a particular feature of interest for a particular model and experimental
data set.

2.4. Model Form Error Average
In order to compare the MFEs from distributions of two or more models, a normalized average
error taken over all features of interest must be defined:

I
1
MFEA" = YZ MFED)
i=1

Thus two models may be compared as long as the same features of interest can be calculated
from each.

12



In the results for the tape joint bending vibration problem presented later, the MFE of a model
will refer to the model form error based on models fitted directly from the data (MFEF above),
the MFED of a model will refer to the model form error based on models with parameters
sampled from a distribution that resembles the data (MFED? above), and the MFEA of a model

will refer to the average error over all features of interest (MFE A" above).
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3. APPLICATION TO TAPE JOINT BENDING VIBRATIONS

3.1. Overview of Tape Joints

A tape joint is a joining method used to connect two cylinders in an end-to-end manner, as
shown in Figure 1. The appeal of tape joints is due to their high strength, low weight, ease of
assembly, and ability to provide a smooth exterior surface.

DIA
TAPE
o o
' OUTER INER
mm}tagcxmc INTERLOCKING | SHELL INTERFACE
TAPE TAg
GROOVE
INNER
SHELL
DIA
!
POSSIBLE TAPE GROOVES TAPE
SEAL MISALIGNED TO SEGMENTS
LOCATIONS ALLOW WEDGING h
*( ACTION OF TAPES |
TO TIGHTEN JOINT I
> AT CLOSURE POINT
CLOSURE
AT THIS
POINT
|

i —— e — = = T —-
Figure 1: Schematics of a tape joint, and photo of an assembly containing a tape joint.

Experimental results presented in [17] showed that the dynamics of bending vibrations in tape
joints are nonlinear. As the bending amplitude increases, the point of closure of the joint tends to
open; this causes a reduction in the effective stiffness of the joint. An FRF plot of acceleration
for a tape joint specimen undergoing bending vibrations is reproduced from [17] in Figure 2.
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Figure 2: Acceleration FRF plot of a tape joint specimen undergoing bending vibrations.
The force amplitudes are 1 Ib (blue), 5 Ib ( ), and 10 Ib (red). Solid lines are
associated with tests employing downward sweeps in excitation frequency, and dashed
lines are associated with upward sweeps in excitation frequency. Courtesy of Dan
Segalman and Michael Starr [17].

Two models are fitted to the FRF data of Figure 2. The first model is a simple linear oscillator,
and the second model is a Duffing oscillator (a nonlinear oscillator with a cubically-varying
stiffness). MFEs and MFEDs are calculated for each model, and the results are presented in the
following two subsections.

3.2. Linear Oscillator Model Results

The first model used to fit the tape joint FRF data was a single-degree-of-freedom oscillator with
linear stiffness and damping. Since there are six peaks in the FRF plot, six data points are used.
The frequency and amplitude of each peak (features of interest) are used to calculate the natural
frequency and damping ratio (fitted parameters) of the model. A detailed description of the
linear model is presented in Appendix A:. The MFE of the linear model is shown as a histogram
in Figure 3.
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Figure 3: Histograms of the resonant frequency MFE and resonant amplitude MFE for the
linear model.

PDFs of the model natural frequency and damping ratio are generated using kernel density
estimation. These model parameters are sampled from the PDFs, and the MFED of the linear
model is calculated. The bandwidths of the kernel density estimators and the numbers of
samples for the parameters are shown below in Table 2, and the MFED histograms are shown in

Figure 4.

Table 2: KDE bandwidths and number of samples for the linear model.

Model Parameter KDE Bandwidth Number of Samples
Natural Frequency 50 100
Damping Ratio 0.0002 100

17
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Figure 4: Histograms of the resonant frequency MFED and resonant amplitude MFED for
the linear model.

3.3. Duffing Oscillator Model Results

The second model used to fit the tape joint FRF data is a single-degree-of-freedom Duffing
oscillator. The Duffing oscillator has linear stiffness and damping, but has an additional
nonlinear stiffness parameter. When normalized in the same manner as in [18], the Duffing
model has four features of interest (jump-down frequency, jump-down amplitude, jump-up
frequency, and jump-up amplitude), and two fitted parameters (nonlinearity parameter and
damping ratio). The tape joint FRF data contains curves for three loading conditions, each
having the four features of interest; therefore, three data points are available for use with the
Duffing model. A detailed description of the Duffing model is presented in Appendix B:.

The results that follow are obtained using the numerical continuation method described in
Appendix B:. The continuation method is more accurate than the analytical approximation
method, but has a much longer computational time.

The MFE for the Duffing model is shown as a histogram in Figure 5. Note that only three data

points are available for this particular analysis; in the case of a real model validation, many more
data points would be necessary.

18
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Figure 5: Histograms of the jump-down frequency MFE, jump-down amplitude MFE,
jump-up frequency MFE, and jump-up amplitude MFE for the Duffing model.

In the same way as is done for the linear model, PDFs of the nonlinearity parameter and damping
parameter were generated using kernel density estimation. These model parameters are sampled
from the PDFs, and the MFED of the Duffing model iss calculated. The bandwidths of the
kernel density estimators and the numbers of samples for the parameters are shown below in
Table 3, and the MFED histograms are shown in Figure 6.

Table 3. KDE bandwidths and number of samples for the Duffing model.

Model Parameter KDE Bandwidth Number of Samples
Nonlinearity Parameter 1X10° 50
Damping Parameter 0.003 50

19




1000 T T T T T T

500+ B

L . L L — |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Jump-Down Frequency MFED

200 T T T T T T T

100

2 03 04 05 086 07 08 0.9 1
Jump-Down Amplitude MFED
800 T T T T T
400+ -
200 -
— I L | 1
00.05 0.1 0.15 0.2 0.25 0.3 0.35 04

Jump-Up Frequency MFED
1000 . . . .

5001 I -
S—— S— | | 1

0 05 1 15 2 25 3 35
Jump-Up Amplitude MFED

o

Figure 6: Histograms of the jump-down frequency MFED, jump-down amplitude MFED,
jump-up frequency MFED, and jump-up amplitude MFED for the Duffing model.

3.4. Comparison of Linear and Duffing Models

In order to compare the two models, the MFED of the linear model had to be recalculated to
match the features of interest of the Duffing model; that is, for each set of sampled linear model
parameters, the resulting predicted features of interest had to be compared separately to the
jump-up and jump-down features of the Duffing model. The MFED of the linear model (with
the features of interest of the Duffing model) is shown in Figure 7.
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Figure 7: MFED of the linear model with the Duffing model features of interest.

The MFEA of each model is calculated by finding the mean of each MFED across all features of
interest. The MFEAs of the linear and Duffing models are shown in Figure 8 and Figure 9,
respectively.
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Figure 9: MFEA of the Duffing model.
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As shown in Figure 8 and Figure 9, the MFEA of the linear model (ranging from approximately
30% to 600%) is much greater than that of the Duffing model (ranging from approximately 25%
to 100%, with most values between 25% and 40%). This result makes sense because the linear
model has only one characteristic frequency and one characteristic amplitude that can be
compared to the data, but the data clearly has two characteristic frequencies and two amplitudes
per point. Because the Duffing model naturally can accommaodate all four features of interest
present in the data, it has a much lower MFEA.

3.4.1. Other Models to Consider

While the MFEA of the Duffing model is generally much lower than that of the linear model, it
still has more than 20% average error for all sampled parameter combinations. This implies that
it may be possible to find a model that fits the tape joint data with much less error.

One suggested model to examine in future work is
mx + (¢q + c3x%)x + kyx + k3x3 = Asin(wt) .

This equation is similar to that of the Duffing oscillator, but has an additional term that allows
the overall damping of the system to vary with the response amplitude. According to [17], the
nonlinearity in the FRF of the tape joint structure is thought to exist because some regions of the
joined surfaces lose contact at high amplitudes of vibration; this produces the softening
(reduction if stiffness) effect shown in the FRF data. Using this proposed model, a reduction in
damping at high amplitudes can also be accommodated by setting ¢, < 0. More detail about this
model is given in Appendix C..

Another model to consider is the one-way compliant Duffing oscillator, given by
mi + cx + kyx + k3(x) * x3 = Asin(wt)

Ks, x>0
s (x) = {03 x<0"

This model is also similar to the ordinary Duffing oscillator; the only difference is that the
nonlinear stiffness term is non-zero only when x > 0. More detail about this model is given in
Appendix D:.
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4. FUTURE WORK

The following subsections provide recommendations for improvements to be made to the MFE
calculation process in the future.

4.1. Bandwidth Selection

If the MFEDs of two models describing a single physical system are calculated using KDEs with
drastically different smoothness, it would not be reasonable to compare the two models on the
basis of MFED. This is because a KDE with a higher smoothness would allow much more
variation in the sampling of model parameters for a single model, resulting in dramatic changes
in the MFED. Therefore, in order to make a fair comparison between the MFEDs of two or more
models for a single physical system, the bandwidths of the KDEs used to sample the fitted model
parameters should be chosen such that the KDEs are all of similar smoothness.

While the smoothness of a KDE can be approximately determined by visual inspection of its

plot, it is recommended that a systematic method for bandwidth selection be developed. This
would allow fairer comparisons between models on the basis of their MFEDs.

4.2. Sampling from a Distribution

When calculating MFED, a large number of model parameter values must be sampled from the
distributions described by the KDEs. While this process is simple in concept, there are some
problems that arise in implementation.

4.2.1. Finding Samples

Currently, the fitted model parameters used in the calculation of MFED are sampled from the
distributions defined by the KDEs using the following process:

The cumulative probability density function KDEC of each KDE is found by computing
X
KDEC (x) zf KDE (x) dx,
u-no

where u is the mean of the model parameters taken directly from experimental data, o is the
standard deviation, and n is a positive integer that can be adjusted. This integral is calculated
numerically, with the highest value of x usually being u + no. The positive integer n should be
chosen so that the integral is a satisfactory approximation of

f KDE (x) dx,
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which is the true cumulative density function. That is, n should be chosen such that
KDEC(u —no) = 0

and
KDEC(u+no) =~ 1.

A random number generator is used to generate S numbers between 0 and 1, where S is the
number of samples desired for the model parameter.

Treating KDEC (x) as the independent variable and model parameter values x as the dependent
variable, interpolation is used to find the values of x corresponding to KDEC (x) evaluated at the
random numbers generated in the previous step. The interpolated values of x are the S samples
of the model parameter.

4.2.2. Problems with this Method

Depending on the shape of KDE (x), KDEC (x) may be difficult to compute accurately. For
example, the numerically computed vector of values describing KDEC (x) could jump up
discontinuously from the first element, which is 0, to the second element. This vector could also
reach a value of 1 (within numerical precision) before the last element and remain at that value,
which causes problems with the interpolation process (the interpolation function used in the tape
joint application above requires the independent variable to increase monotonically).

While there are some ways to work around these problems (increasing the value of n can
sometimes help, for example), it would be beneficial to find a more sophisticated and more
accurate way to find samples from a distribution. This would ensure that the samples resemble
their respective KDEs as closely as possible.
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5. CONCLUSIONS

In this work, a method for the quantification of model form error is developed and applied to
data taken from experiments on tape joined structures. As expected, the average error of the
linear model is significantly greater than that of the Duffing model; this is due to the fact that the
linear model has fewer characteristic frequencies and amplitudes than the data appeared to
contain. However, it is important to note that the data set used here is too small to convincingly
validate or invalidate either model. Consequently, the present work is focused on developing a
methodology that can be applied to a larger data set once it becomes available.

With the improvements discussed in the previous section, the authors hope that the methods of

model form error analysis presented here will become a useful aid in the process of model
validation and uncertainty quantification.
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APPENDIX A:  EQUATIONS FOR LINEAR OSCILLATOR MODEL

A diagram of the system described by the single-DOF linear oscillator model is shown in Figure
10, where m, c, and k are the lumped mass, damping, and stiffness of the system, respectively,
and A is the amplitude of a sinusoidal load with angular frequency w.

X

y

m

Asin(wt)

al
C
Figure 10. Schematic of Linear Oscillator Model
The equation of motion for this system is
mX + cx + kx = Asin(wt).
This equation can be re-written in the general form
¥+ 2w,y + w2y = w? sin(wt),

where

X A k c
E; Wy = |—, €=

m 2Vkm

Here, w,, is the natural frequency and ¢ is the damping ratio; these are the fitted parameters of
the linear oscillator model.

An FRF plot of an example linear oscillator is shown in Figure 11. The amplitude plot (as well
as the amplitude plots shown in the models explained later) is color-coded for stability, with blue
points representing stable responses and red points representing unstable responses. The real and
imaginary parts of the eigenvalues that determine stability are also shown. Note that all
responses are stable for the linear oscillator.
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FRF, Linear (£ = 2e-2)
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Figure 11: FRF of a linear oscillator in terms of the amplitude, real part of the stability
variable (where values greater than 0 indicate unstable responses), and imaginary part of
the stability variable.

Note that the FRF in Figure 11 has been normalized to the natural frequency, so only the
damping ratio affects the response.

Model and Inverse Model Functions

A plot of the FRF for the normalized position y has a single resonance peak with frequency
given by

and amplitude given by

Yrmax = 2_(

These resonance values are the features of interest of this system.
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Therefore, the model and inverse model functions for this system are given by

Wiers
ma (7= 1 =l

27
_ Y
- T 1_(2 n
M (e =1 1 (=10
Zyr,max

Note that in application, the inputs given to M~ are taken from experimental data and the inputs
to M are either the outputs of M~ or parameters sampled from a distribution with peaks centered
around those outputs. To calculate MFE and MFED, the inputs of M~ are compared to the
outputs of M for every combination of data points (as well as every combination of sampled
model parameters in the case of MFED).

Summary

A summary of the parameters and functions used for this model in the context of the definitions
given in Section 2 is shown below in Table 4.

Table 4. Summary of Linear Oscillator Model

Obiject(s) from General Definition Corresponding Object(s) from Linear Model

Features of interest, xl.j (observed) and pij

w,- and
(calculated) T Yrmax

Model parameters, aTjL (directly from data) and

and
a" (sampled from PDF) @n N ¢
Model function, M (a/) M
Lin
Inverse model function, M~ (x/) Y
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APPENDIX B: EQUATIONS FOR DUFFING OSCILLATOR MODEL

A diagram of the system described by the single-DOF Duffing oscillator model is shown in
Figure 12, where m, c, k, and k5 are the lumped mass, damping, linear stiffness, and nonlinear
stiffness of the system, respectively, and A is the amplitude of a sinusoidal load with angular
frequency w.

Asin(wt)

m >

C

Figure 12. Schematic of Duffing Oscillator Model

The equation of motion for this system is
mi + cx + kyx + k3x® = Asin(wt) .

If k3 > 0, the oscillator is said to be hardening because the total stiffness of the system increases
as the response amplitude grows large, and the point of maximum response shifts to a higher
frequency. Conversely, if k; < 0, the oscillator is said to be softening because the total stiffness
of the system decreases as the response amplitude grows large, resulting in a downward shift in
the point of maximum response.

Analytical equations approximating the features of interest of the Duffing model are derived in
[18], where the equation of motion is normalized as

y+2{y+y+ By> =sin(Q1),

where

x A 8 ksxg ky ¢ c P
y = -, x = -, = e a) = -, = B T = w ) = —,
Xo ° Tk ky " m 2 mky " Wn

Here, B is the nonlinearity parameter and ¢ is the damping parameter; these are the fitted
parameters of the Duffing oscillator model. Note that the notation used in [18] has been altered
to maintain consistency with the rest of this report; the nonlinearity parameter a and the forcing
function using cos in [18] have been replaced here with 8 and sin, respectively. Also, it is
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important to note that 8 depends on both the nonlinear spring constant k5 and the forcing
amplitude A.

A plot of the FRF for the normalized position y versus the normalized frequency Q for a Duffing
oscillator has two characteristic frequencies and two corresponding characteristic amplitudes,
each representing an apparent instantaneous jump in the response amplitude. These jumps occur
because there is a segment of the FRF that is unstable; the responses in this regime can be
identified mathematically, but cannot be seen in experiments. The jump-down frequency ,; and
jump-down amplitude Y, are the maximum response of the system. The point (©,,Y;) on the
FRF appears in experiments only when the forcing frequency is swept in the direction with the
same sign as the nonlinear stiffness parameter k5 (the positive direction for hardening systems
and the negative direction for softening systems). It is followed immediately by a very sharp
drop in response amplitude as the unstable regime is skipped over. When the forcing frequency
is swept in the opposite direction, the jump-up frequency Q,, and jump-up amplitude Y, are
identified as the unstable regime is skipped over and the response amplitude undergoes a sharp
increase. An FRF of an example Duffing oscillator with color coding for response stability is
shown below in Figure 13, along with the real and imaginary eigenvalue parts.

FRF, Duffing (o = 1e-3, £ = 2e-2)
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Figure 13: FRF of a linear oscillator in terms of the amplitude, real part of the stability
variable (where values greater than 0 indicate unstable responses), and imaginary part of
the stability variable. Blue points in the amplitude plot represent stable responses, and
red points represent unstable responses.
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The features of interest for this system are Qg 4, Y4, Q,, and Y,,. They can be calculated by using
analytical approximations derived in [18], or more accurately by plotting the Duffing oscillator
FRF for given values of 8 and {. The latter method uses a numerical continuation algorithm to
generate an FRF, and the features of interest are found via inspection of the plot. This method
tends to be more accurate than the first, but is much more computationally expensive. Theory
and implementation of the numerical continuation process are detailed in Appendix F:. Both
methods will be explained in detail in what follows.

Model and Inverse Model Functions

Using Analytical Approximations

As was derived in [18], the equations for the features of interest as functions of the fitted
parameters 8 and ¢ are given by

Therefore, the model function for this system is given by
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1/3
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By examining the products Q,Y,; and Q,,Y,,, it is possible to rearrange the equations for the
features of interest to obtain more convenient expressions for the fitted model parameters:

-3

2 3
50%&—5 . B>0
|,8|~ 2 3_3 )
§<QuYu+Z), B<0
1
{“’zndyd'

Using these expressions, the two model parameters can be fitted using contributions from all four
features of interest. Therefore, the inverse model function for this system is given by

((2 3\ 72 )
N LGS
_ Y, 2 3\ B
1 d _ _
MDuff Qy, = 1 Lg (‘QuYu +Z) ) <0 (= {{}
Y., 1
L 20,Y, J

Using Numerical Continuation

Using continuation, a plot of the FRF of the Duffing system for given values of 8 and ¢ can be
generated, and the features of interest can be determined by inspection of the data in the plot.
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The model function My, is therefore a simple process of plotting the FRF curve and
determining which data points correspond to the features of interest.

For the inverse model Mgl{ff, an optimization method must be used to generate an FRF with
minimal error between the computed features of interest and the observed ones. This may
require many continuation runs, which makes the computation time much higher than that of the
analytical method. Also, if the static (zero-frequency) response of the system isn’t shown in the
experimental data, the linear natural frequency w,, and the mass m must be assumed so that the
data may be normalized according to the method described above. In that case, w,, and m may
need to be optimized as well.

Summary

A summary of the parameters and functions used for the Duffing Oscillator model in the context
of the definitions given in Section 2 is shown below in Table 5.

Table 5. Summary of Duffing Oscillator Model

Obiject(s) from General Definition Corresponding Object(s) from Duffing Model

Features of interest, x{ (observed) and pij

Q4,7 Q,,andY,
(calculated) @ v

Model parameters, a,{ (directly from data) and

and
a” (sampled from PDF) P ¢
Model function, M (o’
(a’) Mpusr
Inverse model function, M~ (x/) M=l
Duff
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APPENDIX C: DUFFING MODEL WITH AMPLITUDE-AFFECTED
DAMPING

Future work may include an MFE analysis for the Duffing model with amplitude-affected
damping (DMAAD), with an equation of motion is given as

mi + (c; + c3x2)% + kyx + k3x3 = Asin(wt) .
In addition to the nonlinear stiffness term seen in the Duffing oscillator, the DMAAD has a
nonlinear damping term that scales with the square of the position. This means that the overall
damping of the system increases with amplitude if ¢, > 0 and decreases if ¢, < 0.
When normalized, the DMAAD has three fitted parameters: § (nonlinear stiffness parameter), ¢
(linear damping parameter), and y (nonlinear damping parameter). The normalized equation of
motion is given by

y+ QI+yy?)y +y+ By? =sin(Qr),

x A 8 ksx2 cyx3 k, ¢ c . w
Yy=— Xo=7 = y Y= ,y Wp = |—, = , T = Wy, = —.
X0 Tk k1 ky " m 2/ mk, " Wn

The DMAAD has the same four features of interest as the ordinary Duffing oscillator. However,
analytical approximations are not available, so the MFE must be calculated using numerical
continuation (as shown in Appendix F:).

An FRF of an example DMAAD that has been color-coded for stability (along with the
corresponding real and imaginary eigenvalue parts) is shown below in Figure 14.
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FRF, DMAAD (o = 1e-3, = 26-2, y = -1e-5)
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Figure 14. FRF of a Duffing oscillator with amplitude-affected damping in terms of the
amplitude, real part of the stability variable (where values greater than 0 indicate
unstable responses), and imaginary part of the stability variable. Blue points in the
amplitude plot represent stable responses, and red points represent unstable responses.

It should also be noted that if the value of y is negative and sufficiently large, the overall
damping of the system can become negative at large amplitudes. This may result in the
appearance of a regime with no stable response in the FRF. This phenomenon is not physical to
the tape joint system, but provides some interesting theoretical dynamics nonetheless. An FRF
of an example DMAAD with parameters resulting in negative overall damping at large
amplitudes is shown below in Figure 15.

40



FRF, DMAAD (o = 1e-3, £ = 26-2, y = -1e-4)
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Figure 15. FRF of a DMAAD with negative overall damping with amplitude-affected
damping in terms of the amplitude, real part of the stability variable (where values greater
than O indicate unstable responses), and imaginary part of the stability variable. Blue
points in the amplitude plot represent stable responses, and red points represent
unstable responses.
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APPENDIX D: ONE-WAY COMPLIANT DUFFING OSCILLATOR
MODEL

Future work may include an MFE analysis for the one-way compliant Duffing model, whose
equation of motion is given by

mi + cx + kyx + k3(x) * x3 = Asin(wt)

Ks, x>0
s (x) = {03 x<0"

When normalized, this equation takes on the same form as that of the ordinary normalized
Duffing equation, except that g is replaced by

K3x3 >0
B =12Tk1 > Y
0, y<O0

The one-way compliant Duffing oscillator has the same four features of interest as the ordinary
Duffing oscillator. However, analytical approximations are not available, so the MFE must be
calculated using numerical continuation (as shown in Appendix F:).

An FRF of an example one-way compliant Duffing oscillator that has been color-coded for

stability (along with the corresponding real and imaginary eigenvalue parts) is shown in Figure
16.
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FRF, One-Way Compliant Duffing (o = 1e-3, € = 2e-2)
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Figure 16. FRF of a one-way compliant duffing oscillator in terms of the amplitude, real

part of the stability variable (where values greater than O indicate unstable responses),

and imaginary part of the stability variable. Blue points in the amplitude plot represent
stable responses, and red points represent unstable responses.
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APPENDIX E: KERNEL DENSITY ESTIMATION

Kernel density estimation provides a convenient way to estimate the PDF of a distribution for
which limited data is available. For example, given a set of n experimental data points x;, the
PDF of the data f(x) can be estimated using a kernel density estimator defined by

KDE(x) = n—lhil( (x ;xl) ,

i=1

where K (known as the kernel) is a symmetric function satisfying

oo}

fK(y)dy= 1

—00

and h (known as the bandwidth) is a smoothing parameter. A common kernel (the one used in
the tape joint bending application earlier) is the standard normal density function ¢ defined by

) = =e "
oy ==t

The bandwidth h is crucial in determining the shape of KDE. If h is too small, KDE will have
very sharp, distinct peaks centered on the experimental data points. If k is too large, KDE will
appear as a single smooth hump with no distinct peaks to identify the experimental data.

After one KDE is calculated for each fitted model parameter, the KDEs can be used to sample a
large number of model parameters from distributions that approximate the distributions of the
samples taken from experiments. MFED can then be calculated by comparing the model-
predicted features of interest for every combination of sampled model parameters with each
available experimental data point.
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APPENDIX F:  NUMERICAL CONTINUATION METHOD

Numerical continuation is a method used to examine the behavior of a system of equations with
changes in a free parameter. When given a single solution to a system with a free parameter, a
continuation method finds a branch of new solutions corresponding to new values of that
parameter. The particular algorithm that was used to compute the Duffing oscillator FRFs
mentioned earlier is called pseudo-arclength continuation. Pseudo-arclength continuation is
accomplished using the following process:

1. Aninitial guess is provided.
e This guess should be close to a solution of the system of equations if possible.

2. A starting solution is calculated.
e A Newton-Raphson method is used to find a starting solution close to the initial
guess.

3. A predictor-corrector method is used to calculate a branch of solutions.
a. Prediction step:

e The current solution is used to predict the next solution along the branch.
In pseudo-arclength continuation, the prediction is made in a direction
tangent to the branch.

b. Correction step:

¢ The predicted solution is used as the initial guess of a Newton-Raphson
procedure that should converge on a new solution. In this case, an
additional equation is used to constrain the corrections to be orthogonal to
the prediction.

e If a solution is obtained, step 3 is repeated until some stopping criterion is
met.

e If a solution is not found (meaning convergence criteria were not met)
within some predetermined number of iterations, the step size of the
prediction is reduced, a new prediction is calculated, and the correction
step is restarted using the new prediction.

To create the Duffing oscillator FRFs, the pseudo-arclength continuation method is used to
compute a branch of periodic orbits with the forcing frequency as the free parameter. The
process for finding periodic orbits using continuation (including the steps listed above) is
explained in detail in [19]. Using the branch of periodic orbits, vibration amplitudes are
calculated for each frequency. These amplitudes are plotted as a function of frequency to obtain
the FRFs. From each FRF, the features of interest of the Duffing model are obtained. An
example FRF is shown in Figure 17.
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Duffing Oscillator Frequency Response Function
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Figure 17. Example of Duffing Oscillator FRF with Features of Interest
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