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Abstract 

In the process of model validation, models are often declared valid when the 
differences between model predictions and experimental data sets are satisfactorily 
small.  However, little consideration is given to the effectiveness of a model using 
parameters that deviate slightly from those that were fitted to data, such as a higher 
load level.  Furthermore, few means exist to compare and choose between two or 
more models that reproduce data equally well.  These issues can be addressed by 
analyzing model form error, which is the error associated with the differences 
between the physical phenomena captured by models and that of the real system. 
This report presents a new quantitative method for model form error analysis and 
applies it to data taken from experiments on tape joint bending vibrations. Two 
models for the tape joint system are compared, and suggestions for future 
improvements to the method are given. As the available data set is too small to draw 
any statistical conclusions, the focus of this paper is the development of a 
methodology that can be applied to general problems. 
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1. INTRODUCTION 
 
Model validation is the process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the model.  For 
physical systems, this is usually accomplished by comparing a set of model predictions to a set 
of experimental results and refining the model until the two data sets are in satisfactory 
agreement.  However, the following problems may arise: 
 

1. The error between the model predictions and the experimental data may be very sensitive 
to small variations in model parameters. 

2. It may be possible to find many models, each accounting for different physics, that 
appear to fit the range of experimental data equally well. 

 
Each of these problems appears because the physical phenomena taken into account by the 
models may not actually reflect the physics of the real system.  The discrepancy between 
modeled physics and the true physics of the system is called model form error (MFE).  In order 
for a particular model to be properly validated and be the most appropriate model, its MFE 
should be at a minimum. 
 
Currently, there are no widely accepted methods that can be used to quantify MFE while 
addressing the problems mentioned above.  Akaike’s entropy-based information criterion [1] is a 
method that is widely used throughout many different research fields, including economics, 
psychometrics, ecology, and medicine. This report proposes a new extension of Akaike’s 
entropy-based information criterion to calculate MFE based on the concept of minimizing 
information entropy [2, 3, 4] and use it to assess the validity of models representing physical 
systems.  The concept of minimizing information entropy in order to select the most appropriate 
physical model for an engineering system was first proposed in [5], and is summarized as 
selecting the model that exhibits the lowest amount of parameter variation in fitting a set of data.  
For instance, if two models are used to fit a set of data for a single system resulting in one model 
having parameters that vary significantly while the other model has parameters that vary by only 
a few percent, the model with the larger variation in fitted parameters is said to have a higher 
information entropy.  By minimizing the information entropy, it is hypothesized that the 
resulting model is more representative of the real system since the real system’s parameters 
should not be changing appreciably as a model with high information entropy would imply.   
 
As Akaike’s entropy-based information criterion is a widely adopted method in several branches 
of statistics, there have been numerous extensions and refinements of the method [6]. These 
extensions have developed metrics to assess the complexity of a model [7] since a very complex 
model can fit the data well without necessarily having any interpretable relationship with the 
physical phenomena [8]. The use of information entropy is further extended to calculating a 
fuzzy distribution of the inputs for different models from the fuzzy distribution of measured 
outputs [9].  Once the inputs are identified, the model that predicts the correct response space 
with the least aleatoric uncertainty in input parameters is identified as the optimal model to use. 
 
Other alternatives to Akaike’s information criterion, of course, exist [10]. One recent method is 
to use polynomial chaos to assess epistemic uncertainty when incomplete or approximate 
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distributions of parameters exist [11, 12], or when data is convoluted with aleatoric uncertainty 
[13]. The maximum likelihood estimation method is another approach, developed in parallel to 
Akaike’s information criterion, that deduces model parameters and statistical reliability from 
discrete time series [14, 15, 16]. 
 
In the following sections, the process for calculating MFE is presented, and the method is used to 
compare two models for bending vibrations in a tape joint (one linear model and one nonlinear 
model). This report concludes with suggestions for future improvements of the MFE calculation 
method.  
 
It should be noted that the intended purpose of this report is to introduce a new methodology for 
MFE quantification.  The available data set for the tape joint application is far too small for use 
in a real model validation, and the results presented here are only meant to illustrate an example 
application of this methodology.  While the results given are not intended to validate or 
invalidate any particular model, the authors hope that the methodology presented here will 
eventually be used in applications where larger, more reasonable amounts of data are available.    
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2. CALCULATION OF MODEL FORM ERROR 
 
The processes for calculating the various types of MFE are outlined below. 
 
 
2.1. Fundamental Quantities 
 
In order to calculate MFE, the following quantities must be defined: 
 

Table 1: Definition of fundamental quantities 
Variable Definition 

௡ߙ
௝   The ݊௧௛ parameter of fit for a model with ܰ fitted parameters, fitted using 

the ݆௧௛ data point. 
௜݌
௝  The ݅௧௛ feature of interest predicted by a model fitted using the ݆௧௛ data 

point. 
௜ݔ
௝  The ݅௧௛ feature of interest taken from the ݆௧௛ data point of a set of 

experimental data 
௡ߙ ௝  A vector containing all ܰ elements ofߙ

௝ . 
௡݌ elements of ܫ ௝  A vector containing all݌

௝ . 
௡ݔ elements of ܫ ௝  A vector containing allݔ

௝ . 
 .The number of different features of interest  ܫ
ܰ  The number of fitted parameters. 
 ௝ onto the predicted features ofߙ ௝ሻ  The model that maps the fitted parametersߙሺܯ

interest ݌, such that ܯ൫ߙ௝൯ ൌ  .௝݌
 ௝ݔ that maps the experimental features of interest ܯ ௝ሻ  The inverse model ofݔଵሺିܯ

onto the fitted parameters ߙ௝ for the  ݆௧௛ data point, such that ିܯଵ൫ݔ௝൯ ൌ
 .௝ߙ	

 
Note that ݔ and ݌ must represent the same quantity in order to be compared, but ݔ need not be 
the raw experimental data itself; it can be calculated later.   
 
 
2.2. Model Form Error 
 
The model form error for a particular model ܯ and experimental data set ݔ is defined by the 
following two-dimensional array: 
 

௜ܧܨܯ
௞ሺܯ, ሻݔ ≡ ඩ

1
ܬ
෍൭

௜݌
௞ െ ௜ݔ

௝

௜ݔ
௝ ൱

ଶ௃

௝ୀଵ

≡ ඩ
1
ܬ
෍൭

௞ሻ൯ݔଵሺିܯ൫ܯ െ ௜ݔ
௝

௜ݔ
௝ ൱

ଶ௃

௝ୀଵ

 

 
The superscripted indices represent the ܬ data points, and the subscripted index represents the ܫ 
features of interest.  Here, two superscripted indices are used because the model predictions 
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calculated for each data point are compared with all data points; therefore, ܧܨܯ௜
௞ has ܬܫ 

elements.  Each element is the RMS error of the ݅௧௛ feature of interest predicted using the ݇௧௛ 
data point, where the mean under the square root is computed over the ܬ data points. 
 
 
2.3. Model Form Error from a Distribution 
 
More generally, ߙ௡ can be sampled many times from ܰ probability density functions derived 
from the experimental data using kernel density estimation.  The kernel density estimation 
process is detailed in Appendix E:.  In this case, the MFE must be calculated for every 
combination of sampled parameters.  Therefore, the model form error for a distribution of fitted 
parameters is defined by 
 

௜ܦܧܨܯ
ఎሺܯ, ሻݔ ≡ ඩ

1
ܬ
෍൭

௜݌
ఎ െ ௜ݔ

௝

௜ݔ
௝ ൱

ଶ௃

௝ୀଵ

≡ ඩ
1
ܬ
෍൭

ఎሻߙሺܯ െ ௜ݔ
௝

௜ݔ
௝ ൱

ଶ௃

௝ୀଵ

 

 
where ߟ represents ܰ different indices, one for each fitted parameter.  Each of these N indices 
takes on integer values from one to the number of samples collected for its respective parameter.  
Therefore, ܦܧܨܯ௜

ఎ has a number of elements equal to  
 

ෑܵ௡ܫ

ே

௡ୀଵ

 

 
where ܵ௡ is the number of samples of the ݊௧௛ fitted parameter. 
 
After ܧܨܯ௜

௞ and ܦܧܨܯ௜
ఎ are calculated, they are displayed as ܫ histograms.  Each histogram 

represents the MFE of a particular feature of interest for a particular model and experimental 
data set. 
 
 
2.4. Model Form Error Average 
 
In order to compare the MFEs from distributions of two or more models, a normalized average 
error taken over all features of interest must be defined: 
 

ఎܣܧܨܯ ൌ
1
ܫ
෍ܦܧܨܯ௜

ఎ
ூ

௜ୀଵ

 

 
Thus two models may be compared as long as the same features of interest can be calculated 
from each. 
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In the results for the tape joint bending vibration problem presented later, the MFE of a model 
will refer to the model form error based on models fitted directly from the data (ܧܨܯ௜

௞ above), 
the MFED of a model will refer to the model form error based on models with parameters 
sampled from a distribution that resembles the data (ܦܧܨܯ௜

ఎ above), and the MFEA of a model 
will refer to the average error over all features of interest (ܣܧܨܯఎ above). 
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Figure 3: Histograms of the resonant frequency MFE and resonant amplitude MFE for the 

linear model. 
 
 
PDFs of the model natural frequency and damping ratio are generated using kernel density 
estimation.  These model parameters are sampled from the PDFs, and the MFED of the linear 
model is calculated.  The bandwidths of the kernel density estimators and the numbers of 
samples for the parameters are shown below in Table 2, and the MFED histograms are shown in 
Figure 4. 
 
 

Table 2: KDE bandwidths and number of samples for the linear model. 
 

Model Parameter KDE Bandwidth Number of Samples 
Natural Frequency 50 100 

Damping Ratio 0.0002 100 
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Figure 4: Histograms of the resonant frequency MFED and resonant amplitude MFED for 

the linear model. 
 
 
3.3. Duffing Oscillator Model Results 
 
The second model used to fit the tape joint FRF data is a single-degree-of-freedom Duffing 
oscillator.  The Duffing oscillator has linear stiffness and damping, but has an additional 
nonlinear stiffness parameter.  When normalized in the same manner as in [18], the Duffing 
model has four features of interest (jump-down frequency, jump-down amplitude, jump-up 
frequency, and jump-up amplitude), and two fitted parameters (nonlinearity parameter and 
damping ratio).  The tape joint FRF data contains curves for three loading conditions, each 
having the four features of interest; therefore, three data points are available for use with the 
Duffing model.  A detailed description of the Duffing model is presented in Appendix B:. 
 
The results that follow are obtained using the numerical continuation method described in 
Appendix B:.  The continuation method is more accurate than the analytical approximation 
method, but has a much longer computational time. 
 
The MFE for the Duffing model is shown as a histogram in Figure 5.  Note that only three data 
points are available for this particular analysis; in the case of a real model validation, many more 
data points would be necessary. 



19 

 

 
Figure 5: Histograms of the jump-down frequency MFE, jump-down amplitude MFE, 

jump-up frequency MFE, and jump-up amplitude MFE for the Duffing model. 
 
 
In the same way as is done for the linear model, PDFs of the nonlinearity parameter and damping 
parameter were generated using kernel density estimation.  These model parameters are sampled 
from the PDFs, and the MFED of the Duffing model iss calculated.  The bandwidths of the 
kernel density estimators and the numbers of samples for the parameters are shown below in 
Table 3, and the MFED histograms are shown in Figure 6. 
 
 
 

Table 3. KDE bandwidths and number of samples for the Duffing model. 
 

Model Parameter KDE Bandwidth Number of Samples 
Nonlinearity Parameter 1 X 10-6 50 

Damping Parameter 0.003 50 
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Figure 6: Histograms of the jump-down frequency MFED, jump-down amplitude MFED, 

jump-up frequency MFED, and jump-up amplitude MFED for the Duffing model. 
 
 
3.4. Comparison of Linear and Duffing Models 
 
In order to compare the two models, the MFED of the linear model had to be recalculated to 
match the features of interest of the Duffing model; that is, for each set of sampled linear model 
parameters, the resulting predicted features of interest had to be compared separately to the 
jump-up and jump-down features of the Duffing model.  The MFED of the linear model (with 
the features of interest of the Duffing model) is shown in Figure 7. 
 



21 

 
Figure 7: MFED of the linear model with the Duffing model features of interest. 

 
 
The MFEA of each model is calculated by finding the mean of each MFED across all features of 
interest.  The MFEAs of the linear and Duffing models are shown in Figure 8 and Figure 9, 
respectively. 
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Figure 8: MFEA of the linear model. 

 

 
Figure 9: MFEA of the Duffing model. 
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As shown in Figure 8 and Figure 9, the MFEA of the linear model (ranging from approximately 
30% to 600%) is much greater than that of the Duffing model (ranging from approximately 25% 
to 100%, with most values between 25% and 40%).  This result makes sense because the linear 
model has only one characteristic frequency and one characteristic amplitude that can be 
compared to the data, but the data clearly has two characteristic frequencies and two amplitudes 
per point.  Because the Duffing model naturally can accommodate all four features of interest 
present in the data, it has a much lower MFEA. 
 
 
3.4.1. Other Models to Consider 
 
While the MFEA of the Duffing model is generally much lower than that of the linear model, it 
still has more than 20% average error for all sampled parameter combinations.  This implies that 
it may be possible to find a model that fits the tape joint data with much less error. 
 
One suggested model to examine in future work is 
 

ሷݔ݉ ൅ ሺܿଵ ൅ ܿଶݔଶሻݔሶ ൅ ݇ଵݔ ൅ ݇ଷݔଷ ൌ ܣ sinሺ߱ݐሻ	. 
 
This equation is similar to that of the Duffing oscillator, but has an additional term that allows 
the overall damping of the system to vary with the response amplitude.  According to [17], the 
nonlinearity in the FRF of the tape joint structure is thought to exist because some regions of the 
joined surfaces lose contact at high amplitudes of vibration; this produces the softening 
(reduction if stiffness) effect shown in the FRF data.  Using this proposed model, a reduction in 
damping at high amplitudes can also be accommodated by setting ܿଶ ൏ 0.  More detail about this 
model is given in Appendix C:. 
 
Another model to consider is the one-way compliant Duffing oscillator, given by  
 

ሷݔ݉ ൅ ሶݔܿ ൅ ݇ଵݔ ൅ ݇ଷሺݔሻ ∗ ଷݔ ൌ ܣ sinሺ߱ݐሻ	 
 

݇ଷሺݔሻ ൌ 	 ൜
ݔ			,ଷܭ ൐ 0
ݔ			,0 ൑ 0 	. 

 
This model is also similar to the ordinary Duffing oscillator; the only difference is that the 
nonlinear stiffness term is non-zero only when ݔ ൐ 0.  More detail about this model is given in 
Appendix D:. 
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4. FUTURE WORK 
 
The following subsections provide recommendations for improvements to be made to the MFE 
calculation process in the future. 
 
 
4.1. Bandwidth Selection 
 
If the MFEDs of two models describing a single physical system are calculated using KDEs with 
drastically different smoothness, it would not be reasonable to compare the two models on the 
basis of MFED.  This is because a KDE with a higher smoothness would allow much more 
variation in the sampling of model parameters for a single model, resulting in dramatic changes 
in the MFED.  Therefore, in order to make a fair comparison between the MFEDs of two or more 
models for a single physical system, the bandwidths of the KDEs used to sample the fitted model 
parameters should be chosen such that the KDEs are all of similar smoothness. 
 
While the smoothness of a KDE can be approximately determined by visual inspection of its 
plot, it is recommended that a systematic method for bandwidth selection be developed.  This 
would allow fairer comparisons between models on the basis of their MFEDs. 
 
 
4.2. Sampling from a Distribution 
 
When calculating MFED, a large number of model parameter values must be sampled from the 
distributions described by the KDEs.  While this process is simple in concept, there are some 
problems that arise in implementation. 
 
 
4.2.1. Finding Samples 
 
Currently, the fitted model parameters used in the calculation of MFED are sampled from the 
distributions defined by the KDEs using the following process: 
 
The cumulative probability density function KDEC of each KDE is found by computing 
 

ሻݔሺܥܧܦܭ ൎ න ሻݔሺܧܦܭ ݔ݀
௫

ఓି௡ఙ
	, 

 
where ߤ is the mean of the model parameters taken directly from experimental data, ߪ is the 
standard deviation, and ݊ is a positive integer that can be adjusted.  This integral is calculated 
numerically, with the highest value of ݔ usually being ߤ ൅  The positive integer ݊ should be  .ߪ݊
chosen so that the integral is a satisfactory approximation of  

 

න ሻݔሺܧܦܭ ݔ݀
ஶ

ିஶ
	, 
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which is the true cumulative density function.  That is, ݊ should be chosen such that  

 
ߤሺܥܧܦܭ െ ሻߪ݊ ൎ 0 

 
and  

 
ߤሺܥܧܦܭ ൅ ሻߪ݊ ൎ 1	. 

 
A random number generator is used to generate ܵ numbers between 0 and 1, where ܵ is the 
number of samples desired for the model parameter. 
 
Treating ܥܧܦܭሺݔሻ as the independent variable and model parameter values ݔ as the dependent 
variable, interpolation is used to find the values of ݔ corresponding to ܥܧܦܭሺݔሻ evaluated at the 
random numbers generated in the previous step.  The interpolated values of ݔ are the ܵ samples 
of the model parameter. 

 
 
4.2.2. Problems with this Method 
 
Depending on the shape of ܧܦܭሺݔሻ, ܥܧܦܭሺݔሻ may be difficult to compute accurately.  For 
example, the numerically computed vector of values describing ܥܧܦܭሺݔሻ could jump up 
discontinuously from the first element, which is 0, to the second element.  This vector could also 
reach a value of 1 (within numerical precision) before the last element and remain at that value, 
which causes problems with the interpolation process (the interpolation function used in the tape 
joint application above requires the independent variable to increase monotonically). 
 
While there are some ways to work around these problems (increasing the value of ݊ can 
sometimes help, for example), it would be beneficial to find a more sophisticated and more 
accurate way to find samples from a distribution.  This would ensure that the samples resemble 
their respective KDEs as closely as possible. 
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5. CONCLUSIONS 
 
In this work, a method for the quantification of model form error is developed and applied to 
data taken from experiments on tape joined structures.  As expected, the average error of the 
linear model is significantly greater than that of the Duffing model; this is due to the fact that the 
linear model has fewer characteristic frequencies and amplitudes than the data appeared to 
contain.  However, it is important to note that the data set used here is too small to convincingly 
validate or invalidate either model. Consequently, the present work is focused on developing a 
methodology that can be applied to a larger data set once it becomes available. 
 
With the improvements discussed in the previous section, the authors hope that the methods of 
model form error analysis presented here will become a useful aid in the process of model 
validation and uncertainty quantification.  
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APPENDIX A: EQUATIONS FOR LINEAR OSCILLATOR MODEL 
 
A diagram of the system described by the single-DOF linear oscillator model is shown in Figure 
10, where ݉, ܿ, and ݇ are the lumped mass, damping, and stiffness of the system, respectively, 
and ܣ is the amplitude of a sinusoidal load with angular frequency ߱.  
 

 
Figure 10. Schematic of Linear Oscillator Model 

 
The equation of motion for this system is  
 

ሷݔ݉ ൅ ሶݔܿ ൅ ݔ݇ ൌ ܣ sinሺ߱ݐሻ. 
 
This equation can be re-written in the general form 
 

ሷݕ ൅ ሶݕ௡߱ߞ2 ൅ 	߱௡ଶݕ ൌ ߱௡ଶ sinሺ߱ݐሻ, 
 
where  

ݕ ൌ
ݔ
଴ݔ
଴ݔ					, ൌ

ܣ
݇
,				߱௡ ൌ ඨ

݇
݉
ߞ				, ൌ

ܿ

2√݇݉
	.				 

 
Here, ߱௡ is the natural frequency and ߞ is the damping ratio; these are the fitted parameters of 
the linear oscillator model. 
 
An FRF plot of an example linear oscillator is shown in Figure 11.  The amplitude plot (as well 
as the amplitude plots shown in the models explained later) is color-coded for stability, with blue 
points representing stable responses and red points representing unstable responses.  The real and 
imaginary parts of the eigenvalues that determine stability are also shown.  Note that all 
responses are stable for the linear oscillator. 
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Figure 11: FRF of a linear oscillator in terms of the amplitude, real part of the stability 

variable (where values greater than 0 indicate unstable responses), and imaginary part of 
the stability variable. 

 
Note that the FRF in Figure 11 has been normalized to the natural frequency, so only the 
damping ratio affects the response. 
 
 
Model and Inverse Model Functions 
 
A plot of the FRF for the normalized position ݕ has a single resonance peak with frequency 
given by 
 

߱௥ ൎ 	߱௡ඥ1 െ  ଶߞ
 
and amplitude given by  
 

௥,௠௔௫ݕ ൎ
1
ߞ2
. 

 
These resonance values are the features of interest of this system. 
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Therefore, the model and inverse model functions for this system are given by 
 

௅௜௡ܯ ቀቄ
߱௡
ߞ ቅቁ ൌ ቐ

߱௡ඥ1 െ ଶߞ

1
ߞ2

ቑ ൌ ቄ
߱௥

௥,௠௔௫ݕ
ቅ, 

 

௅௜௡ܯ
ିଵ ቀቄ

߱௥
௥,௠௔௫ݕ

ቅቁ ൌ

ە
ۖ
۔

ۖ
ۓ

߱௥
ඥ1 െ ଶߞ

1
௥,௠௔௫ݕ2 ۙ

ۖ
ۘ

ۖ
ۗ

ൌ ቄ
߱௡
ߞ ቅ. 

 
Note that in application, the inputs given to ିܯଵ are taken from experimental data and the inputs 
to ܯ are either the outputs of ିܯଵ or parameters sampled from a distribution with peaks centered 
around those outputs.  To calculate MFE and MFED, the inputs of ିܯଵ are compared to the 
outputs of ܯ for every combination of data points (as well as every combination of sampled 
model parameters in the case of MFED). 
 
 
Summary 
 
A summary of the parameters and functions used for this model in the context of the definitions 
given in Section 2 is shown below in Table 4. 
 
 

Table 4. Summary of Linear Oscillator Model 
 

Object(s) from General Definition Corresponding Object(s) from Linear Model 

Features of interest, ݔ௜
௝ (observed) and ݌௜

௝ 
(calculated) 

߱௥ and ݕ௥,௠௔௫ 

Model parameters, ߙ௡
௝  (directly from data) and 

 ఎ (sampled from PDF)ߙ
߱௡ and ߞ 

Model function, ܯሺߙ௝ሻ 
 

 ௅௜௡ܯ

Inverse model function, ିܯଵሺݔ௝ሻ 
 

௅௜௡ܯ
ିଵ  
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APPENDIX B: EQUATIONS FOR DUFFING OSCILLATOR MODEL 
 
A diagram of the system described by the single-DOF Duffing oscillator model is shown in 
Figure 12, where ݉, ܿ, ݇ଵ and ݇ଷ are the lumped mass, damping, linear stiffness, and nonlinear 
stiffness of the system, respectively, and ܣ is the amplitude of a sinusoidal load with angular 
frequency ߱. 
 

 
Figure 12. Schematic of Duffing Oscillator Model 

 
The equation of motion for this system is 
 

ሷݔ݉ ൅ ሶݔܿ ൅ ݇ଵݔ ൅ ݇ଷݔଷ ൌ ܣ sinሺ߱ݐሻ	. 
 
If ݇ଷ ൐ 0, the oscillator is said to be hardening because the total stiffness of the system increases 
as the response amplitude grows large, and the point of maximum response shifts to a higher 
frequency.  Conversely, if ݇ଷ ൏ 0, the oscillator is said to be softening because the total stiffness 
of the system decreases as the response amplitude grows large, resulting in a downward shift in 
the point of maximum response. 
 
Analytical equations approximating the features of interest of the Duffing model are derived in 
[18], where the equation of motion is normalized as  
 

ሷݕ ൅ ሶݕߞ2 ൅ ݕ ൅ ଷݕߚ ൌ sinሺΩ߬ሻ , 
  
where 
 

ݕ ൌ
ݔ
଴ݔ
଴ݔ				, ൌ

ܣ
݇ଵ
ߚ				, ൌ

݇ଷݔ଴
ଶ

݇ଵ
,				߱௡ ൌ ඨ

݇ଵ
݉
ߞ				, ൌ

ܿ

2ඥ݉݇ଵ
,				߬ ൌ ߱௡ݐ,				Ω ൌ

߱
߱௡
	. 

 
Here, ߚ is the nonlinearity parameter and ߞ is the damping parameter; these are the fitted 
parameters of the Duffing oscillator model.  Note that the notation used in [18] has been altered 
to maintain consistency with the rest of this report; the nonlinearity parameter ߙ and the forcing 
function using ܿݏ݋ in [18] have been replaced here with ߚ and ݊݅ݏ, respectively. Also, it is 
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important to note that ߚ depends on both the nonlinear spring constant ݇ଷ and the forcing 
amplitude ܣ. 
 
A plot of the FRF for the normalized position ݕ versus the normalized frequency Ω for a Duffing 
oscillator has two characteristic frequencies and two corresponding characteristic amplitudes, 
each representing an apparent instantaneous jump in the response amplitude.  These jumps occur 
because there is a segment of the FRF that is unstable; the responses in this regime can be 
identified mathematically, but cannot be seen in experiments.  The jump-down frequency Ωௗ and 
jump-down amplitude ௗܻ are the maximum response of the system.  The point ሺΩௗ	, ௗܻሻ on the 
FRF appears in experiments only when the forcing frequency is swept in the direction with the 
same sign as the nonlinear stiffness parameter ݇ଷ (the positive direction for hardening systems 
and the negative direction for softening systems).  It is followed immediately by a very sharp 
drop in response amplitude as the unstable regime is skipped over.  When the forcing frequency 
is swept in the opposite direction, the jump-up frequency Ω௨ and jump-up amplitude ௨ܻ are 
identified as the unstable regime is skipped over and the response amplitude undergoes a sharp 
increase.  An FRF of an example Duffing oscillator with color coding for response stability is 
shown below in Figure 13, along with the real and imaginary eigenvalue parts. 
 
 

 
Figure 13: FRF of a linear oscillator in terms of the amplitude, real part of the stability 

variable (where values greater than 0 indicate unstable responses), and imaginary part of 
the stability variable. Blue points in the amplitude plot represent stable responses, and 

red points represent unstable responses. 
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The features of interest for this system are Ωௗ, ௗܻ, Ω௨, and ௨ܻ.  They can be calculated by using 
analytical approximations derived in [18], or more accurately by plotting the Duffing oscillator 
FRF for given values of ߚ and ߞ.  The latter method uses a numerical continuation algorithm to 
generate an FRF, and the features of interest are found via inspection of the plot.  This method 
tends to be more accurate than the first, but is much more computationally expensive.  Theory 
and implementation of the numerical continuation process are detailed in Appendix F:.  Both 
methods will be explained in detail in what follows. 
 
 
Model and Inverse Model Functions 
 
 
Using Analytical Approximations   
 
As was derived in [18], the equations for the features of interest as functions of the fitted 
parameters ߚ and ߞ are given by 
 

Ωௗ ൎ
1

2ଵ ଶ⁄ ቆ1 ൅ ൬1 ൅
ߚ3
ଶߞ4

൰
ଵ ଶ⁄

ቇ

ଵ ଶ⁄

, 

 

ௗܻ ൎ ቌ
2
ߚ3

ቆ൬1 ൅
ߚ3
ଶߞ4

൰
ଵ ଶ⁄

െ 1ቇቍ

ଵ ଶ⁄

, 

 

Ω௨ ൎ

ە
ۖ
۔

ۖ
1ۓ ൅

1
2
൬
3
2
൰
ସ ଷ⁄

ଵ|ߚ| ଷ⁄ , ߚ ൐ 0	

1 െ
1
2
൬
3
2
൰
ସ ଷ⁄

ଵ|ߚ| ଷ⁄ , ߚ ൏ 0

			, 

 

௨ܻ ൎ ൬
2
3
൰
ଵ ଷ⁄ 1

ଵ|ߚ| ଷ⁄ 	. 

 
 
Therefore, the model function for this system is given by 
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஽௨௙௙ܯ ൬൜
ߚ
ൠ൰ߞ ൌ

ە
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۓ 1

2ଵ ଶ⁄ ቆ1 ൅ ൬1 ൅
ߚ3
ଶߞ4

൰
ଵ ଶ⁄

ቇ

ଵ ଶ⁄

ቌ
2
ߚ3

ቆ൬1 ൅
ߚ3
ଶߞ4

൰
ଵ ଶ⁄

െ 1ቇቍ

ଵ ଶ⁄

ە
ۖ
۔

ۖ
1ۓ ൅

1
2
൬
3
2
൰
ସ ଷ⁄

ଵ|ߚ| ଷ⁄ , ߚ ൐ 0	

1 െ
1
2
൬
3
2
൰
ସ ଷ⁄

ଵ|ߚ| ଷ⁄ , ߚ ൏ 0

൬
2
3
൰
ଵ ଷ⁄ 1

ଵ|ߚ| ଷ⁄ ۙ
ۖ
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۖ
ۗ

ൌ ൞

Ωௗ
ௗܻ
Ω௨
௨ܻ

ൢ	. 

 
 
By examining the products Ωௗ ௗܻ and Ω௨ ௨ܻ, it is possible to rearrange the equations for the 
features of interest to obtain more convenient expressions for the fitted model parameters: 
 

|ߚ| ൎ

ە
ۖ
۔

ۖ
2ۓ
3
൬Ω௨ ௨ܻ െ

3
4
൰
ିଷ

, ߚ ൐ 0

2
3
൬Ω௨ ௨ܻ ൅

3
4
൰
ିଷ

, ߚ ൏ 0

	, 

 

ߞ ൎ
1

2Ωௗ ௗܻ
	. 

 
Using these expressions, the two model parameters can be fitted using contributions from all four 
features of interest.  Therefore, the inverse model function for this system is given by 
 
 	

஽௨௙௙ܯ
ିଵ ൮൞

Ωௗ
ௗܻ
Ω௨
௨ܻ

ൢ൲ ൌ

ە
ۖۖ

۔

ۖۖ

ۓ

ە
ۖ
۔

ۖ
2ۓ
3
൬Ω௨ ௨ܻ െ

3
4
൰
ିଷ

, ߚ ൐ 0

2
3
൬Ω௨ ௨ܻ ൅

3
4
൰
ିଷ

, ߚ ൏ 0

1
2Ωௗ ௗܻ ۙ

ۖۖ

ۘ

ۖۖ

ۗ

ൌ ൜
ߚ
 .ൠߞ

 
 
Using Numerical Continuation 
 
Using continuation, a plot of the FRF of the Duffing system for given values of ߚ and ߞ can be 
generated, and the features of interest can be determined by inspection of the data in the plot.  
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The model function ܯ஽௨௙௙ is therefore a simple process of plotting the FRF curve and 
determining which data points correspond to the features of interest. 
 
For the inverse model ܯ஽௨௙௙

ିଵ , an optimization method must be used to generate an FRF with 
minimal error between the computed features of interest and the observed ones.  This may 
require many continuation runs, which makes the computation time much higher than that of the 
analytical method.  Also, if the static (zero-frequency) response of the system isn’t shown in the 
experimental data, the linear natural frequency ߱௡ and the mass ݉ must be assumed so that the 
data may be normalized according to the method described above.  In that case, ߱௡ and ݉ may 
need to be optimized as well. 
 
 
Summary 
 
A summary of the parameters and functions used for the Duffing Oscillator model in the context 
of the definitions given in Section 2 is shown below in Table 5. 
 
 

Table 5. Summary of Duffing Oscillator Model 
 

Object(s) from General Definition Corresponding Object(s) from Duffing Model 

Features of interest, ݔ௜
௝ (observed) and ݌௜

௝ 
(calculated) 

Ωௗ, ௗܻ, Ω௨, and ௨ܻ 

Model parameters, ߙ௡
௝  (directly from data) and 

 ఎ (sampled from PDF)ߙ
 ߞ and ߚ

Model function, ܯሺߙ௝ሻ 
 

 ஽௨௙௙ܯ

Inverse model function, ିܯଵሺݔ௝ሻ 
 

஽௨௙௙ܯ
ିଵ  
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APPENDIX C: DUFFING MODEL WITH AMPLITUDE-AFFECTED 
DAMPING 

 
Future work may include an MFE analysis for the Duffing model with amplitude-affected 
damping (DMAAD), with an equation of motion is given as 
 

ሷݔ݉ ൅ ሺܿଵ ൅ ܿଶݔଶሻݔሶ ൅ ݇ଵݔ ൅ ݇ଷݔଷ ൌ ܣ sinሺ߱ݐሻ	. 
 
In addition to the nonlinear stiffness term seen in the Duffing oscillator, the DMAAD has a 
nonlinear damping term that scales with the square of the position.  This means that the overall 
damping of the system increases with amplitude if ܿଶ ൐ 0 and decreases if ܿଶ ൏ 0. 
 
When normalized, the DMAAD has three fitted parameters: ߚ (nonlinear stiffness parameter), ߞ 
(linear damping parameter), and ߛ (nonlinear damping parameter).  The normalized equation of 
motion is given by 
 

ሷݕ ൅ ሺ2ߞ ൅ ሶݕଶሻݕߛ ൅ ݕ ൅ ଷݕߚ ൌ sinሺΩ߬ሻ , 
  
where 
 

ݕ ൌ
ݔ
଴ݔ
଴ݔ				, ൌ

ܣ
݇ଵ
ߚ				, ൌ

݇ଷݔ଴
ଶ

݇ଵ
ߛ				, ൌ

ܿଶݔ଴
ଶ

݇ଵ
,				߱௡ ൌ ඨ

݇ଵ
݉
ߞ				, ൌ

ܿ

2ඥ݉݇ଵ
,				߬ ൌ ߱௡ݐ,				Ω ൌ

߱
߱௡
	. 

 
 
The DMAAD has the same four features of interest as the ordinary Duffing oscillator.  However, 
analytical approximations are not available, so the MFE must be calculated using numerical 
continuation (as shown in Appendix F:).  
 
An FRF of an example DMAAD that has been color-coded for stability (along with the 
corresponding real and imaginary eigenvalue parts) is shown below in Figure 14. 
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Figure 14. FRF of a Duffing oscillator with amplitude-affected damping in terms of the 

amplitude, real part of the stability variable (where values greater than 0 indicate 
unstable responses), and imaginary part of the stability variable. Blue points in the 

amplitude plot represent stable responses, and red points represent unstable responses. 
 
 
It should also be noted that if the value of ߛ is negative and sufficiently large, the overall 
damping of the system can become negative at large amplitudes.  This may result in the 
appearance of a regime with no stable response in the FRF.  This phenomenon is not physical to 
the tape joint system, but provides some interesting theoretical dynamics nonetheless.  An FRF 
of an example DMAAD with parameters resulting in negative overall damping at large 
amplitudes is shown below in Figure 15. 
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Figure 15. FRF of a DMAAD with negative overall damping with amplitude-affected 

damping in terms of the amplitude, real part of the stability variable (where values greater 
than 0 indicate unstable responses), and imaginary part of the stability variable. Blue 

points in the amplitude plot represent stable responses, and red points represent 
unstable responses. 
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APPENDIX D: ONE-WAY COMPLIANT DUFFING OSCILLATOR 
MODEL 

 
Future work may include an MFE analysis for the one-way compliant Duffing model, whose 
equation of motion is given by  
 

ሷݔ݉ ൅ ሶݔܿ ൅ ݇ଵݔ ൅ ݇ଷሺݔሻ ∗ ଷݔ ൌ ܣ sinሺ߱ݐሻ	 
 

݇ଷሺݔሻ ൌ 	 ൜
ݔ			,ଷܭ ൐ 0
ݔ			,0 ൑ 0 	. 

 
When normalized, this equation takes on the same form as that of the ordinary normalized 
Duffing equation, except that ߚ is replaced by  
 

ሻݕሺߚ ൌ 	ቐ
଴ݔଷܭ

ଶ

݇1
ݕ			, ൐ 0

ݕ			,0 ൑ 0
		. 

 
The one-way compliant Duffing oscillator has the same four features of interest as the ordinary 
Duffing oscillator.  However, analytical approximations are not available, so the MFE must be 
calculated using numerical continuation (as shown in Appendix F:). 
 
An FRF of an example one-way compliant Duffing oscillator that has been color-coded for 
stability (along with the corresponding real and imaginary eigenvalue parts) is shown in Figure 
16.  
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Figure 16. FRF of a one-way compliant duffing oscillator in terms of the amplitude, real 
part of the stability variable (where values greater than 0 indicate unstable responses), 
and imaginary part of the stability variable. Blue points in the amplitude plot represent 

stable responses, and red points represent unstable responses. 
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APPENDIX E: KERNEL DENSITY ESTIMATION 
 
Kernel density estimation provides a convenient way to estimate the PDF of a distribution for 
which limited data is available.  For example, given a set of ݊ experimental data points ݔ௜, the 
PDF of the data ݂ሺݔሻ can be estimated using a kernel density estimator defined by 
 

ሻݔሺܧܦܭ ൌ
1
݄݊

෍ܭቀ
ݔ െ ௜ݔ
݄

ቁ

௡

௜ୀଵ

	, 

 
where ܭ (known as the kernel) is a symmetric function satisfying 
 

න ሻݕሺܭ ݕ݀ ൌ 1

ஶ

ିஶ

 

 
and ݄ (known as the bandwidth) is a smoothing parameter.  A common kernel (the one used in 
the tape joint bending application earlier) is the standard normal density function ߶ defined by 
 

߶ሺݕሻ ൌ
1

ߨ2√
݁ି

ଵ
ଶ௬

మ
. 

 
The bandwidth ݄ is crucial in determining the shape of KDE.  If ݄ is too small, KDE will have 
very sharp, distinct peaks centered on the experimental data points.  If ݄ is too large, KDE will 
appear as a single smooth hump with no distinct peaks to identify the experimental data. 
 
After one KDE is calculated for each fitted model parameter, the KDEs can be used to sample a 
large number of model parameters from distributions that approximate the distributions of the 
samples taken from experiments.  ܦܧܨܯ can then be calculated by comparing the model-
predicted features of interest for every combination of sampled model parameters with each 
available experimental data point.  
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APPENDIX F: NUMERICAL CONTINUATION METHOD 
 
Numerical continuation is a method used to examine the behavior of a system of equations with 
changes in a free parameter.  When given a single solution to a system with a free parameter, a 
continuation method finds a branch of new solutions corresponding to new values of that 
parameter.  The particular algorithm that was used to compute the Duffing oscillator FRFs 
mentioned earlier is called pseudo-arclength continuation.  Pseudo-arclength continuation is 
accomplished using the following process: 
 

1. An initial guess is provided. 
 This guess should be close to a solution of the system of equations if possible. 
 

2. A starting solution is calculated. 
 A Newton-Raphson method is used to find a starting solution close to the initial 

guess. 
 

3. A predictor-corrector method is used to calculate a branch of solutions. 
a. Prediction step: 

 The current solution is used to predict the next solution along the branch.  
In pseudo-arclength continuation, the prediction is made in a direction 
tangent to the branch. 

b. Correction step: 
 The predicted solution is used as the initial guess of a Newton-Raphson 

procedure that should converge on a new solution.  In this case, an 
additional equation is used to constrain the corrections to be orthogonal to 
the prediction. 

 If a solution is obtained, step 3 is repeated until some stopping criterion is 
met. 

 If a solution is not found (meaning convergence criteria were not met) 
within some predetermined number of iterations, the step size of the 
prediction is reduced, a new prediction is calculated, and the correction 
step is restarted using the new prediction. 

 
To create the Duffing oscillator FRFs, the pseudo-arclength continuation method is used to 
compute a branch of periodic orbits with the forcing frequency as the free parameter.  The 
process for finding periodic orbits using continuation (including the steps listed above) is 
explained in detail in [19].  Using the branch of periodic orbits, vibration amplitudes are 
calculated for each frequency.  These amplitudes are plotted as a function of frequency to obtain 
the FRFs.  From each FRF, the features of interest of the Duffing model are obtained.  An 
example FRF is shown in Figure 17. 
 



 
 

Figure 17
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Oscillator FRF with Feaatures of Innterest 
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