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Survey of Existing Tools for Formal Verification
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Abstract

Formal methods have come into wide use because of their effectiveness in verifying “safety and security” requirements
of digital systems; a set of requirements for which testing is mostly ineffective. Formal methods are routinely used in
the design and verification of high-consequence digital systems in industry. This report outlines our work in assessing
the capabilities of commercial and open source formal tools and the ways in which they can be leveraged in digital
design workflows.
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Executive Summary

A. Limitations of Traditional Testing and Verification for Digital Systems

The software and hardware engineering techniques used today allow us to create digital systems of great complexity.
However, the techniques used for verifying these designs trail quite far behind. Even relatively simple digital systems
can have subtle problems that cannot easily be uncovered through simulation or testing. Consider the floating point
bug in Intel’s Pentium Processor. It was rare enough that it was not uncovered through extensive testing, but not so
rare as to prevent its discovery by users one year after release. To test a simple double-precision floating point division
exhaustively requires 2!%8 tests. This is not feasible by any measure. Even small digital systems with just hundreds of
bytes of memory can have a state space that is impossible to cover with simulation or testing.

B. Formal Methods for Digital Systems

Formal methods are a collection of techniques to analyze a description of a digital system (either native code or a
model) as a mathematical object. Formal methods are particularly useful in sifting through the vast combinatorial
spaces endemic to digital systems to make quantitative statements about their safety and security properties — usually
beyond the reach of testing. Formal tools fall into two broad categories: 1) automated model checkers, which apply
algorithmic shortcuts to verify desired properties exhaustively over a model’s state space; 2) theorem provers, which
often require human expertise to guide a proof of correctness (these are more powerful and span a larger variety
of digital systems). Both off-the-shelf tools and customized tools are used in the design and verification of high-
consequence industrial systems.

Commercial off-the-shelf (COTS) tools are designed for ease of application to common design problems. As
such, these are exclusively model checkers. Most of them also operate directly on design information provided as
source code. While COTS tools are convenient, they are usually targeted to a specific problem domain and verification
of properties that are the most common in industry. They do a good job of tackling their problem domain but are
necessarily limited in the breadth of problems that they can handle. They are not customizable and cannot be easily
adapted to solve problems outside their primary focus area. Most customers of these tools tend to use them to debug
rather than formally prove correctness. Thus the tool support is weighted towards this function. Outside their focus
area, they are limited. Most industrial practitioners who need absolute verification invest in customizing a tool that is
more suited to their product. Open source tools are also available and are leveraged by industry to customize tools to
their needs.
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Chapter 1. Introduction to Formal Methods and Tools

Formal methods, broadly, just means applying mathematics to a problem: in this case, hardware and software computer
programs. Because digital systems are themselves just machinery for computing logic, one might think it redundant.
The vast combinatorial state space in common digital systems makes their predictability a real problem. A manifesta-
tion of a mathematical principle called the Turing Halting Problem, general digital systems are at once deterministic
and unpredictable and this is the root cause of the cybersecurity problem so much in the news today. Formal methods,
combined with the digital design process, seeks less general digital systems that can be proven to meet some security
or safety concern.

1.1. Limitations of Testing and Simulation

Testing and simulation consist of providing a system with a variety of input conditions and ensuring that the output is
as predicted. The inputs to be provided may be crafted by a designer or randomly generated. These methods sample
the response of the systems to chosen inputs. As such, they can sample functional properties but cannot verify safety
and security properties.

Functional properties - Given a nominal input it produces the specified output. It is often assumed that the
variety of designed-in behaviors are usually small enough to adequately test for compliance. However consider
even a small sequential digital systems with a few digital inputs (A,B,C), and a messaging interface. To be
thorough with testing, all possible combinations of A,B,C have to be used. For a sequential system, that is not
enough. All possible time-interleavings of A,B,C also have to be tested. For clocked systems, time-interleavings
with different delays between the inputs also have to be tested. Also, this would have to be done for every
possible message and every possible sequence of messages that could arrive over the interface. Enumerating
all of these explodes the input space into a size that is not feasible for testing. In practice, systems are tested
with some nominal input and some corner-cases determined by the test designer. This is only a small fraction
of possible valid inputs.

Safety and security properties - Colloquially, safety and security properties are about what the digital system
“is not supposed to do” rather than functional properties “what it is supposed to do”. Given any input it must
not produce a forbidden output. Because these properties are predicated on any path that could bring the system
into an unsafe or insecure state, the input state space is vast and almost never accessible by testing. To be certain
that safety and security requirements are met we must resort to mathematical analysis of the program, or what
is broadly referred to as formal methods.

Given the extensive state-space of even simple digital systems, it is a rare digital system for which “comprehensive”
testing is even possible. What is required is a suitably automated mathematical approach that can exhaustively check
the entire state space without actually running the code, or can analyze properties of the system analytically. Unlike
physical systems, digital systems are just engines for computing logic and are entirely deterministic (under nominal
operation). Formal methods are a collection of automated mathematical techniques that exploit this principle to decide
propositions about properties of a digital system.

1.2. Introduction to Formal Methods

Broadly, formal methods tools fall into two categories:

Model checkers check the design with respect to the specified properties encoded in a modeling language. A
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model checker will attempt to do so automatically with limited human intervention and return one of three
results:

1. Properties are satisfied by the design.

2. Properties are not satisfied, for which a counterexample will be given.

3. Indeterminate. The state space is such that the tool cannot compute a result in a reasonable amount of time.

Theorem provers , also called “proof assistants”, combine automated techniques with manual guidance to prove

correctness. They are generally more powerful than model checkers; developers can use built-in tactics or
develop new ones that aid in proving safety and security propositions.

The difference between these two types of tools can be exaggerated. In general, model checkers embody what can
be done entirely automatically and theorem provers provide a means for human intervention and creativity. Developers
can also devise new tactics for specialized designs or design domains that can subsequently be automated to create a
model checker. As we shall see in the next chapter, model checkers are beneficial for developers with little expertise in
formal methods who just want a turn-key tool, but may be limited in what they can prove. Theorem provers are more
capable but require more expertise and can become tedious for repetitive tasks. The Rodin tool uniquely combines
both theorem provers and model checkers in the same package (see Section 5.2).

1.3. Levels of Abstraction in Formal Methods Tools

Just as different computer languages are targeted at different levels of abstraction (e.g., assembler at a low level, Java at
a high level), so too are formal tools designed for use at various levels of abstraction. High level formal tools usually
are used for proving a specification or system level model and concerned with requirements such as deadlock free
behavior or race conditions. Low-level formal tools are used for proving RTL code and concerned with reachability
correctness.

Not surprisingly, model checking tools that purely deal with Boolean logic, asynchronous interference, and integer
mathematics (this covers all of them) have drawbacks. They fail to take advantage of higher level abstractions that
are commonly used by developers and designers. For example an often used idea of a counter will not a priori be
recognized by a low-level model checker. As an example, Listing 1.1 shows an easily recognizable counter written in
NuSMV’s modeling language (used to describe hardware designs). The final line in the program asserts a requirement

MODULE main

VAR

i0 : 0..1000000;

ASSIGN

init (10) 0;

next (10) (10 + 1) mod 1000001;

LTLSPEC F (10 = 999999);

Listing 1.1: A simple counter in the NuSMV modeling language

that 10 takes on the value 999999 at some point in the computation. The human eye can easily discern that the counter
will count up to 1000000 and the variable 10 will at some point take on the value 999999. Not so for the model
checker: it has to run the state space all the way out to 999999 before it discovers that the assertion in the last line is
true. The inability to infer a higher level property about a system is common among model checkers. The human eye
in this case is taking advantage of induction, which the quick solution to this problem requires, and model checkers
lack this facility. Human guided theorem provers, however, commonly rely on induction, proving systems that would
otherwise be intractable.

12



1.4. Classification of Formal Tools

For the purposes of this report, we classify the available tools by their capability and usage scenario. Since there
has been steady academic research in this area, many formal tools have resulted. But only a few of them have been
maintained over time and seen popular use. Our survey of tools in this area is not exhaustive but captures the major
ones and gives a flavor for their variety. We divide these tools into two classes: a) tools to verify correctness of a
constructed model and b) tools to create a model or design that is correct by construction.

1.4.1. Tools to Verify Correctness of a Model

The tools in this category are useful for verifying the correctness of a model/design after it is created. They do not aid
in the creation of the model/design directly, but can be used to test out ideas before implementation.

1.4.1.1. Tools That Verify Abstract Models

This class of tools requires the creation of an abstract model of a system in a modeling language. In all of the existing
such tools, the modeling language is tool-specific, is targeted at a specific type of problem, and captures the semantics
appropriate for the problem. In practice these tools might be applied to a design specification to ensure that it is
self-consistent. Abstract formal tools are also useful to verify system-level behavior that includes digital systems but
also physical systems together as an integrated whole. The modeling languages used by these tools have the following
properties:

e They have well-defined semantics. This is essential for formal verification. This requirement also disqualifies
many practical design languages from being used for formal verification.

e These languages are concise and often lack features to elaborate design detail.

e They may have features unique to verification (e.g., mechanism to specify formal properties, model in-determinism)

Correspondence of the abstract model to the implementation is always a concern with these tools. In many of these
cases, the goal of these tools is to capture just portions of a system that are hard to reason about. It is not usually the
goal of these tools to capture an entire system design in depth. Some of these tools are listed below.

Spin : Used to model concurrent software or asynchronous processes.

Uppaal : Used to model real-time systems.

SMV, NuSMV : Used to model synchronous digital logic.

FDR : Used to model asynchronous systems.

Alloy : Used to analyze consistency of software data structures.

Simulink Design Verifier : Used to verify models created in Simulink, a data-flow and state-machine simulation
tool.

SNk » =

These tools are described in Chapter 2.

1.4.1.2. Tools That Verify Actual Design Descriptions

Tools that operate on existing designs take as input either the RTL description of a hardware circuit or source code for
software. Generic programming languages not intended for mathematical analysis are usually not conducive to formal
techniques and limited in what behaviors can be decided.

A. Software Verification Tools

There are large amounts of deployed software-based systems. And even the best scrutinized of these systems is not
bug-free. There is great academic and commercial interest in being able to formally check software. However, almost
all programming languages in use are Turing complete and it is very difficult to check software. It is very much the
case that the tools in this category perform rather shallow checks, i.e., can only check for classes of simple problems.
These tools therefore are limited in that they can only handle small designs and can only check rather simple properties.

13
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These tools are described in Chapter 4.

B. Hardware Description Language (HDL) Verification Tools

There is a rich history of formal methods in hardware design. This is not accidental. Several factors have contributed
to this:

The hardware design process is very expensive. Portions of the hardware design workflow require specialized
skills. Hardware designers initially create a model of the hardware in a description language like VHDL or
Verilog. The design is then synthesized. The synthesized design then goes through a layout process. Critical
portions of the design are laid out manually. Thus if there is a flaw in the original design, the rework is very
expensive. There is a commercial incentive to catch flaws as early as possible in the design process.

Changes are difficult once deployed. Unlike software, fixing hardware designs after release is usually not pos-
sible. Often this leads to recalls at great cost.

Analysis is feasible due to simplicity of the underlying representation. Hardware description languages can be
used to create fairly complex systems. For example, a processor in hardware that runs instructions from memory
is effectively a software system that defies serious analysis. However in practice, within a single ASIC or FPGA
design, the hardware design can be represented as clocked sequential logic. Hardware designers eschew asyn-
chronous designs as they are difficult to analyze. Effectively, most hardware designs resemble state machines
and memory. These are the easiest types of digital systems to formally analyze.

The practicality and demand for checking hardware designs has given rise to focused academic research in this area.
This has yielded techniques and tools such as SAT solvers, BDDs, ROBDDs, and SMT solvers that are now broadly
used in other domains.

The safety and security properties that can be verified from the RTL design are limited to those that can be ex-
pressed as boolean expressions. Safety and security requirements that are expressed in higher level semantics are
beyond the reach of these tools. These tools are most valuable in checking existing designs since no more input is
necessary than the code itself.

The commercial demand for these types of tools keeps their price quite high. Some of these tools currently on the
market are:

1. Questa Formal by Mentor Graphics
2. Solidify by Averant

3. JasperGold

4. Incisive by Cadence

These tools are described in Chapter 3.

1.4.2. Tools to Create a Provably Correct Design

The tools in this class provide a formal framework and methodology to mathematically model and prove properties
about a system. These are all based on set theory. These tools can tackle a large set of problems, but to be useful, they
have to be adapted for the domain of the problem. This step requires expertise. The adaptation is done by narrowing
the semantics to deal specifically with the problems of interest.

14



1. VDM
2. Z, B, Event-B, and Rodin

These tools are described in Chapter 5.

1.4.3. Tool Comparisons

Most of the tools described so far are for “after the fact” verification. A program is created and afterwards verified for
requirements. Safety and security requirements, given the vast state space over which they must hold, are difficult to
preserve in the traditional digital design process without some scaffolding to ensure it.

Model checkers are generally used for this “after the fact” verification. Model checkers are generally easier to
use without much additional expertise, but when some requirement is “proven” the practitioner has to take the model
checker’s word for it. There is no independent way of verifying that the proof is valid.

The tools in Section 1.4.2 usually include a theorem prover that enables the practitioner to adhere to safety/security
requirements at every step of the design process and, in this way, produce a design that is formally correct by con-
struction. Theorem provers have the disadvantage that they require greater expertise to use.

Some theorem provers are capable of producing an independently checkable “proof term”. Checking the proof
term does not need to rely on the theorem prover software to be verified. Generating a proof term as part of the design
process is directly analogous to the traditional testing of digital systems for function. In fact, testing can be thought of
a degenerate case of generating a proof term. A test is comparing input/output pairs to the original specification, and
if they match, the proposition that the test poses: “do we get the right output for this specific input” is established as
true. A proof term might establish a more complex proposition like: “for all possible input this particular output never
occurs”, but it is pretty much the same idea.

15



This page intentionally left blank.



Chapter 2. Tools for Checking Abstract Models

To perform formal verification of a design, a formal description (model) of the design is required. Practical design
languages are not geared towards formal verification. Particularly, they are abundant with undefined behavior, unspec-
ified behavior, and ambiguous semantics. Most of these languages are defined with efficiency and usability as primary
goals and lack formal semantic definitions.

Many formal tools work with abstract models created in custom languages that are solely created to be amenable
to formal verification. They are targeted towards specific application domains and their modeling languages reflect
these biases. These tools are used to reason about high-level properties of a system that abstract out implementation
detail. They are also limited in the size of the model that can be reasoned about. In this chapter, we describe the better
known and used tools that fall in this category.

2.1. Spin

Spin is a model checker [1} 2]. It was first developed in 1980 at Bell Labs, to verify call processing on telephone
switches. Since 1991, it has been available publicly as open-source. Today it is actively developed and maintained by
NASA/JPL. It was awarded the 2001 ACM Software System Award.

Spin is primarily targeted at the formal verification of software algorithms, specifically parallel, multi-threaded
algorithms. As such, it is good for modeling asynchronous systems of interconnected components.

Spin models are written in Promela (Process or Protocol Meta Language). This is a simple language with “C”
like syntax. It is small, unambiguous, and has features for verification. Until recently (Spin 6.0, 2010), Promela did
not have a mechanism for modularizing a program into procedures or functions. That this was not severely limiting,
is indicative of the size of most Promela models that were analyzed by Spin. Most Promela models are compact but
express high-level properties that are difficult to reason about. Some examples are mutual exclusion, semaphores,
lock-less data structures, cache coherency etc. Spin models are suited to analysis of two types of properties:

e Detailed properties of small models
e high-level properties of large systems.

Spin is an explicit-state model-checker. As such, Promela supports indeterminate behavior. Spin/Promela supports
both simple assertions and complex linear temporal logic properties. Using these constructs, properties such as
Reachability, Safety, Liveliness, and Deadlock Freedom can be specified and verified.

Spin is extremely useful for analyzing concurrent systems. Edsger Dikstra created one of the first attempted
solutions to the mutual exclusion problem without using atomic sequences. In the decade following that, there were
numerous presentations of simpler algorithms. Most were subsequently shown to be incorrect. It took fifteen years
before Peterson’s deceptively simple algorithm (shown in Listing 2.1) was discovered. The point is that devising and
reasoning about a mutual exclusion algorithm or synchronization primitive is very difficult. However model-checkers
like Spin make this trivial today. It is also easy to verify that making a small change on line 14 to

(flag[jl== false);

will break this algorithm, something that is not obvious by inspection.

17



bool turn, flag[2];
byte cnt;

active [2] proctype P1()
{
pid i, 3;
i = _pid;
j=1- _pid;

again:
flag[i] = true;
turn = 1i;
(flag[j] == false || turn != i) -> /% wait until true */

critical_section++;
assert (critical_section == 1); /% Only one process in critical section =/
critical_section--;

flag[i] = false;
goto again;

Listing 2.1: Peterson’s Mutual Exclusion Algorithm in Spin/Promela

Spin is a command-line analysis tool but is accompanied by a graphical interface, ISpin (Figure 2.1).

2.2. Uppaal

Uppaal [3] is a tool for model-checking timed automated. It incorporates the notion of time. The functionality it
provides is similar to that of Spin, with the exception of its treatment of time. It has a proprietary language with an
interactive development environment in which models can be described and properties specified (Figure 2.2). It started
out as an academic tool and has since then been commercialized.

2.3. SMYV, NuSMV

NuSMYV [4} 5] is to hardware design what Spin is to software. SMV [6]], the predecessor to NuSMYV, was developed
in 1993 as a software tool for the formal verification of temporal properties of finite state systems. It uses a custom
input language that allows description of synchronous and asynchronous systems. The language and its semantics
were designed to model hardware logic design, but could be used for other domains as well. NuSMV and NuSMV2
extended the original SMV to add checks for both LTL and CTL properties. Underneath the hood, NuSMV uses
Binary Decision Diagrams (BDDs), and propositional satisfiability (SAT). The current version of the tools do not
support asynchronous systems.

24. FDR

Communicating Sequential Processes (CSP) is a process calculus for concurrent systems [7]. CSP has influenced
many programming languages and even model-checking tools such as Spin.

Failure-Divergences Refinement (FDR and FDR?2) is tool to check models expressed in the algebra of CSP [8]].
FDR was developed at Oxford University and commercialized by FormalSystems (http://www.fsel.com/).

In the CSP/FDR world, a system is modeled as a set of processes connected by synchronization events. The
composition of these processes using a set of standard operators provides a hierarchical description of the system.
There is a hiding operator that provides an abstraction mechanism.

18
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Figure 2.2. Uppaal environment for model-checking
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MODULE big_state_machine (inputl, input2)

VAR
output : boolean;
state : {idle, statel, state2, state3};
ASSIGN
init (output) := FALSE;
init (state) := idle;
next (state) := case
state = idle & inputl = TRUE : statel;
state = statel & inputl = FALSE & input2 = TRUE : {state2,
state = state2 & input2 = FALSE : idle;
esac;
DEFINE
output := case

state = idle : FALSE;
state = statel : TRUE ;
state = state2 : FALSE;
state = state3 & inputl : FALSE;
state = state3 & input2 : TRUE;
TRUE : TRUE;

esac;

MODULE small_machine (inputl)

VAR
output : boolean;
state : {reset, start, stop}
ASSIGN:
init (state) := reset;
init (output) := FALSE;
next (state) := case
state = reset & inputl = TRUE : start;
state = start : {start, idle};
state = stop & inputl = FALSE : idle;
esac;
DEFINE
output := case

state = start : TRUE;
state = stop : FALSE;
esac;

MODULE main
VAR
sml : big_state_machine (sm2.output, sm3.output);
sm2 : big_state_machine (sml.output, smé.output);
sm3 : small_state_machine (sml.output, smé.output);
sm4 : small_state_machine (sm2.output, sm3.output);
LTLSPEC
—-— Safety Property specification
G ! (sml.state = state2 & smd.state = stop);

state3};

Listing 2.2: NuSMYV model of a safety verification for interacting state machines

FDR takes as input a model of the system and the property to be checked, both expressed in CSP. It determines
if the system model is a refinement of the property for a given semantics. A successful check shows that the system
meets the property. FDR is an explicit-state model checker.

2.5. Alloy

Alloy is a an object and structure modeling language based on set-theory [9]]. The Alloy tool takes a structure model
in the Alloy language and specifications. It uses first-order logic to translate specifications into Boolean expressions
and analyzes them by connecting to existing SAT solvers. Alloy uses “lightweight formal methods”. Alloy is used
for analyzing the consistency of software data structures such as linked-lists, hash-tables, and for analyzing the set
relationships between data types in databases, etc. It is thus primarily used for structural analysis of data. It cannot
analyze temporal properties.

Alloy Analyzer (Figure 2.3) is an analysis tool that takes the model properties and finds solutions to an abstract
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Figure 2.3. Alloy Analyzer

description of the model.

2.6. Simulink Design Verifier

The Simulink Design Verifier by Mathworks is a tool for the verification of formal properties of a Simulink design [[10)].
Simulink is a graphical language for the design and simulation of digital designs with control logic and signal pro-
cessing. Simulink represents designs in two forms: data-flow diagrams and state machines. Both of these constructs

restrict the designs to forms which in theory are amenable to formal analysis. Unlike the other tools mentioned in
this chapter, Simulink is primarily a design and simulation tool widely used by engineers, not a formal verification
tool. It is also possible to auto-generate an implementation from the Simulink design in terms of “C” language code
or “VHDL/Verilog” for hardware instantiation. In this regard, Simulink is more than an abstract modeling tool but can
be an implementation tool. However, at present, most users use it primarily for design and simulation.

Simulink Design Verifier is a toolbox for Simulink that allows engineers to incorporate formal verification into
their normal design process. It internally uses technology from PROVER (http://www.prover.com/) to perform this
analysis. The Simulink Design Verifier is however limited to assertions and a small set of time operators with fixed

delay. That is, currently it only allows specification of a subset of LTL properties.
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Chapter 3. Tools for Checking Hardware Description Languages

There are several tools today for checking hardware descriptions from the direct RTL description provided as Verilog
or VHDL design files. This is a distinct advantage in that a separate model of the design does not have to be created. An
existing design can be analyzed in this fashion. In a typical usage, a set of properties is written against a synthesizable
design. “Synthesizable” is key since the full Verilog or VHDL standards have features that are only used for simulation.
With these features, the languages become Turing complete and cannot easily be checked. The “synthesizable” subset
of these languages used in practice can be fully described using Boolean logic and registers and thus is amenable to
analysis. The hardware design is analyzed in conjunction with the specified properties.

3.1. Overview

3.1.1. Property Specification

Properties are specified either in the Property Specification Language (PSL) or as SystemVerilog Assertions (SVA) [11}
12]. PSL is language independent. PSL assertions are written in a stand-alone file. SVA, though it is part of the
SystemVerilog standard, supports designs written in Verilog, SystemVerilog, and VHDL. SVA assertions can be writ-
ten stand-alone or inline within a SystemVerilog based design.

Both languages can specify concurrent assertions and temporal logic assertions. The temporal assertions cover
LTL (Linear Temporal Logic). PSL additionally supports properties written using branching logic (CTL). Properties
can also contain modeling code. This allows the creation of quite complex properties.

Many of the tools also have add-ons to analyze common hardware design problems. These add-ons make it easier
to generate properties for standard design components. For example, the ARM peripheral bus is often used in many
hardware designs and the properties for such a bus are specified by the ARM bus standard. The add-ons provide a way
to either use or generate standard properties with minimal user interaction.

3.1.2. Internal Operations

These tools primarily use model checking. Internally, after ingesting the source files, these tools synthesize the hard-
ware description into simple Boolean logic and registers. They also synthesize the properties along with the design.
The tools then use a variety of methods to analyze the properties. These methods can be applied in parallel. The tools
have multiple analysis “engines” that can be applied in parallel on a given problem. All of these tools have a scripting
interface that allows an external program to control the operation of the tool. Through this interface, the tools support
changing the parameters of the engines, the strategy to apply to a given property, etc.

3.1.3. Tool Outputs

Property failure When a property fails, these tools provide a counterexample which clearly demonstrates the
failure. This counterexample is expressed through visualizations of signal waveforms and linking to design
HDL code.

Property pass However, when a property succeeds, they (like all model checkers) lack verbosity in reporting
successfully verified assertions. The tool output is simply a “pass” message on the screen; proof details are not
provided.

Indeterminate If the state space of the design or property to be checked is large, then the tools may not be able
to complete an analysis.
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3.1.4. Scalability

The complexity of a design is not just in the amount of gates but also in the number of memory elements in the design
and the inter-connectivity between the components. Even a design with a small gate count but about 100 memory
elements can result in an exceedingly large state space that is hard to analyze.

Design features such as memory and counters are hurdles to analysis. Even a simple long-running counter is
difficult to analyze. We have seen that the existing tools simulate the entire operation of the counter rather than
inferring its properties.

Some of the tools claim to abstract out counters. What is done here is that the output of an abstracted counter is
allowed to hold any legal count value at any time. This can result in “maybe” violations, i.e., the tool flags something
as a potential violation when it is not a problem.

3.1.5. Cost

The available tools today for this purpose are all commercial tools. They are also quite expensive. The business
model of these tools is a yearly license and the vendors expect to consult with the designers to use these tools directly.
Depending upon the licensing model of the vendor, scaling the analysis to multiple machines would be cost prohibitive.

The vendors are moving away from one-time perpetual licenses to a yearly license. A yearly license can cost as
much as $400K.

3.2. Questa Formal by Mentor Graphics

Mentor Graphics is a large vendor of EDA software. Mentor has a large tool-suite and Questa Formal is one of
its offerings. Questa Formal originated as a formal verification tool offered by 0-In Design Automation, which was
acquired by Mentor Graphics. Mentor Graphics also acquired Axiom Design Automation, which used to produce an
easy to use formal verification tool. Questa Formal offers a basic but established commercial tool, lacking some of the
advanced formal methods research features that are contained in competing tools, such as abstraction of counters and
advanced liveness features. The user interface for Questa Formal is easy to learn and understand. Questa Formal has
an advantage in that it integrates well into the other tools provided by Mentor Graphics. This is important since EDA
software is a significant investment. For example, when a counterexample is generated, Questa Formal can provide it
in the form of a testbench that can directly be used by Questa Sim, which is the simulation tool provided by Mentor
Graphics.

The tool works reasonably well for the most part. It appears to have on roughly seven analysis strategies or
“engines”.

3.3. Solidify by Averant

Solidify has been on the market longer than other tools. However, at present, Solidify’s market share seems to have
dipped substantially. Averant, located in Berkeley, is a very small company and Solidify is its only product. Solidify
is more economical than the other tools, but lags them in features.

Solidify does not support abstraction of counters. It also does not support liveliness properties. The tool appears
to have two analysis “engines”.

During our evaluation of this tool, we ran across several critical bugs with this tool. The user interface is lacking,
and there were times when the verification process would continue seemingly forever, even though we had set effort
and time limitations, which were ignored.
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Solidify also has an incomplete support for the VHDL language, and for some parts of the System Verilog Assertion
language.

3.4. JasperGold

Jasper Design Automation is a commercial software company that only produces formal technology products. It sells
JasperGold and several applications based on JasperGold. Out of the tools that we evaluated, this seems to be more
capable than the others. Particularly, their user-interface is amenable to iterative analysis (performing a verification,
making property changes and iterating on the verification).

They appear to have more analysis “engines” than the others. Each “engine” is good at analyzing certain types
of properties. Jasper also has an add-on to verify properties about data-dependency. This can be useful for security
verification, as these properties cannot easily be expressed using SVA or PSL.

There is automatic extraction of counters for abstraction, in addition to support for manual counter extraction.
This feature would speed up the running time of verification of properties that rely on counters. However, as described
before, counter abstraction has to be used with care in the knowledge of how it is done to avoid being fooled by false
positives.

As of 2014, JasperGold appears to be one of the leading tools in this area by features, performance, and usage in
industry. In June 2014, Jasper Design Automation was acquired by Cadence.

3.5. Incisive by Cadence

Cadence Design Systems is another of the large EDA vendors. Over time, Cadence has acquired multiple formal-tool
vendors (Bell Labs Design Automation and Verplex). Incisive, the current formal verification offering by Cadence,
has capabilities similar to Questa Formal and integrates well with the rest of the tool suite from Cadence.

In June 2014, Cadence acquired Jasper Design Automation. It remains to be seen if Incisive and JasperGold will
be sold independently or merged into a single product.
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Chapter 4. Tools for Checking the Correctness of Software

Formal verification of a system requires a formal model of the system. To ensure that there are no discrepancies
between the model being verified and the implementation, it is desirable if possible to analyze the design directly. In
the case of software implementations, this would imply a formal analysis of the source code. This is a difficult task
because software languages in use are not designed for verification. Most of them even lack a specification. However,
due to the abundance of software based systems and the propensity for finding bugs in them, there is a great need for
using formal verification with software.

There exists a limited set of tools today to help in this regard. They are limited in that they only permit a subset of
the language features to be used so that the formal verification is tractable. Also, the properties that can be specified
are restricted.

4.1. Frama-C

Frama-C is a collection of tools for the static analysis of C source code. Unlike many commercial static analysis tools
for bug-finding, Frama-C allows the user to specify complex functional specifications and to prove the correctness of
the source code with respect to the specifications. Functional specifications are written in a dedicated language called
ANSI/ISO C Specification Language (ACSL). ACSL is a formal language. It can specify simple facts (such as the
type of a function parameter) or complex ones (e.g., the input to a function is a non-empty linked list of integers and
return value is the maximum value of the contents).

4.2. BLAST

BLAST is an automatic verification tool for checking temporal properties of C programs [13]]. It is tuned towards
checking safety properties (existence of paths to undesired states). BLAST takes as input a C program. The properties
that it can check for are:

e Reachability: Is a particular program location (specified by a C label) reachable?
e Standard C logical assertions.
e Temporal properties specified by sequences of allowable behavior described in a custom property file.

BLAST will produce counterexamples for failed properties.

BLAST is fairly advanced among model checkers for software. It is also somewhat unique in this category in that it
uses a sophisticated mix of techniques to perform the property check. It uses abstractions and counterexample-guided
abstraction refinement (CEGAR) to make the checking efficient. It also employs theorem provers for constructing
abstract state transitions and for checking the feasibility of error paths [14].

4.3. Java Pathfinder

Java PathFinder started out as an explicit-state model checker for Java bytecode [[15]. It can thus perform model
checking on programs written in languages that can target the JVM. Its initial implementation approach was to convert
Java bytecode to Promela to be analyzed with the Spin model checker [16]. But since then, it checks Java byte code
directly.
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In its current form, it also allows many plugins to customize the properties and checks. In its bare form, Java
PathFinder searches for deadlocks, assertion errors, and null pointer exceptions.

Due to practical state storage restrictions, the size of programs that can be analyzed by the tool is limited (to
approximately 10K lines of code). Due to these limitations, it is not typically used for analyzing whole programs. Java
PathFinder is useful for the following types of analysis:

e Analyzing the portions of a program that deal with concurrency.
e Analyzing an abstracted model of a program.

The plugin architecture allows a user to extends the type of properties that can be checked. These are implemented
as custom code with a listener model to check for custom properties as the state space is explored. However, the state
space exploration algorithm is blind to the type of custom properties and cannot customize the search to be efficient
for those properties.

4.4. Spark ADA

SPARK is a formally defined subset of the ADA programming language [17]. It was motivated by the need for
developing software for high reliability and safety critical applications. The SPARK language consists of a well-
defined subset of the ADA language and property specifications. The properties are specified as program annotations,
inline with the source code and embedded as ADA comments. As a subset of ADA, SPARK programs can be compiled
by any ADA compiler.

The properties can be specified in the following ways:

e Pre and post-conditions to sub-programs.
e Loop invariants.
e Dataflow relationships (dependence of a variable on another).

The SPARK toolset to verify programs consists of the following:

e The Examiner performs static analysis to ensure that a program is well-formed and it generates verification
conditions (or proof obligations) for the property specifications.

e The SPADE simplifier is an automated theorem prover that can discharge the verification conditions. This may
however not be able to discharge all the proof obligations. The remaining proofs will have to be discharged
manually.

e The SPADE proof checker can be used to check proofs that are discharged manually.

4.5. Malpas

The MALvern Program Analysis Suite (Malpas) is a toolset for the analysis of software programs [[18]. Though this is
primarily a static analysis tool, it can also provide a rigorous check that a program meets a specification. The program
to be analyzed has to be in the Malpas Intermediate Language. In practice, this is easier than it sounds as there
are automated translators from common programming languages and assembly languages to the Malpas Intermediate
Language.

The static analysis portion of the toolset provides code metrics and analysis for dead code paths, uninitialized
data, unexpected dependencies, etc. The formal analysis checks for mathematical conformance of the program to a
specification. The specification is provided as:

e Pre and post-conditions.
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e Invariants.
e Assertions.
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Chapter 5. Tools to Create a Provably Correct Design

The tools described previously are for “after the fact” verification, i.e., a design or a model is created and then verified
for correctness. Design for correctness, by contrast, involves the use of formal techniques in the creation of the design
itself, maintaining the required properties at every step of the design. When completed, the design is known to be
correct by construction. This process starts with an abstract model or design that satisfies the required properties and
then is iterated (refined) into a form that can be implemented. A notion of refinement is built-in to these tools to permit
this traversal from specification to implementation while guaranteeing that safety, security and other properties are
preserved. Overall a methodology for creating provably correct designs is provided by these tools.

5.1. VDM

The Vienna Development Method (VDM) is a collection of tools and techniques rooted in a common formal specifi-
cation language. This toolset is used for modeling computer programs. Modeling is performed at a very abstract level
but there exist techniques to transform an abstract model into a detailed design using a refinement process.

VDM originated at the IBM Laboratory in Vienna towards the goal of developing a compiler from a language
definition [19]]. As a loose collection of tools, the tools have been modified in divergent ways.

5.1.1. Data Types

The VDM Specification Language (VDM-SL) provides basic types such as Booleans, natural numbers, integers, ra-
tional numbers, real numbers, and characters. The basic types can be used to create unions, Cartesian products, and
composite types. VDM-SL also supports higher level collections of types such as sets, sequences, and maps. In all, it
provides a very rich set of data types and operators on these data types.

5.1.2. Model Creation

VDM supports functional modeling and state-based modeling. Functional modeling can be implicit or explicit.

Implicit modeling is the specification of the properties of a function, rather than its execution. This is done in
the form of stating pre and post-conditions that form a contract that have to be satisfied by any implementation
of the program.

Explicit modeling is the specification of the computation of the function.

State-based modeling is the description of the changes to global state variables by an operation.

5.1.3. Model Analysis

There are different tools for the analysis of VDM, both commercial and open source. VDMTools, a leading commercial
tool, can analyze a VDM model and generate proof obligations. These tools can automatically check the correctness of
properties that can be decided statically based on a type checker [20]. Other properties require a check of the dynamic
behavior of the program. These properties are usually beyond the reach of the standard tools and may require an
external theorem prover. By the nature of the models that can be specified, there may also be some properties that are
undecidable.
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5.1.4. Refinement

It is possible to start with an abstract VDM model and then iteratively add more detail to the model to arrive at an
implementation. This refinement is a two-step process at each iteration.

Data reification This step expands an abstract data type into more concrete data types. To maintain the correct-
ness of the abstract program it is necessary to show adequacy of the new data type.

Operation decomposition This step makes the changes to the model to operate on the newly expanded data
types. To prove that the new operations and functions maintain the original properties, it is necessary to discharge
proof obligations.

5.2. Z,B, Event-B, and Rodin

Event-B is a formal language based on set theory to describe abstract state machines[21]]. Event-B is an evolution of
the earlier B method, which in turn is derived from the Z notation, all originated by Jean-Raymond Abrial, a French
computer scientist [22 23]]. Z, B, and Event-B are all based on set theory. Z and B are used for the specification of
computer programs. Event-B is used for the specification and analysis of systems by modeling them as state machines.

A powerful feature of B and Event-B is the notion of refinement. this allows a user to start the modeling process
with a very simple abstract model. Once the simple abstract model has been shown to be sound, additional detail can be
incrementally added, i.e., the abstract model can be refined. The power of this technique is that to prove the soundness
of a refined model, it is sufficient to take the proven abstract model and show that certain refinement properties hold.
In this manner, a simple abstract system can gradually be refined into something that is close to the implementation of
the system.

Rodin is a suite of tools to aid in the design and analysis of Event-B models. Rodin [24] is unique among other
tools of its class for two reasons:

1. It spans abstraction levels with a refinement methodology.
2. It contains both a theorem prover and a model checker in the same tool operating on the same model.

For reasons mentioned in Section 1.3 it is important to have the ability to represent many levels of abstraction
systematically. It is best and most effective to be able to do this in the same environment using the same modeling
language. This way both model checkers (best for straightforward but tedious verifications) and theorem provers (best
for verifications where some higher level insight must employed) can be simultaneously applied to the design.

Almost all digital designs begin as a function that cannot be implemented in hardware directly but must be broken
down and translated into a representation that can be implemented in silicon, similar to the job of a compiler. Likewise,
a requirement for the high-level design must systematically track the process of successive refinement from original
concept to its reification in silicon. Event-B, and the Rodin framework that facilitates concrete designs in Event-B,
seek to do exactly this. Starting with a high-level model that is, in effect, an executable specification, the model, along
with its formal requirements, is successively refined until a design implementable in silicon is achieved.

The Event-B computational model is that of a state machine (see Listing 5.2). Built-in to the Event-B [21] modeling
language used by Rodin is a methodology for traversing various levels of abstraction:

1. Begin with a model specification for the system at a high level of abstraction that is closest to the designer’s
original conception, but is too high-level to be implemented in a device.

2. “Refine” the model to a new model that has a one-to-one correspondence to the original but contains more detail
so that it more closely resembles the semantics of an implementation.

3. From an analysis of these two different models (or in Rodin vernacular: “machines”) the Rodin tool automat-
ically creates “proof obligations” that must be discharged (i.e., proven) to ensure consistency between the two
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Figure 5.1. Rodin Tool

models.

4. While the tool itself can discharge most of these proofs automatically, a few may need to be proven “by hand”.
5. Steps 2 through 4 are repeated until the an implementation can be produced.

What is particularly attractive about the Rodin tool is this ability to carry formal requirements from the specification
level all the way through to its implementation.

5.2.1. Rodin Framework

The Rodin Framework is an Eclipse-based platform for developing and verifying Event-B models (Figure 5.1). As
Event-B is a very general event description technique with refinement, it is possible to build additional capability on

top of it. The Rodin platform supports many plugins that layer on the base Event-B analysis capability and could add
to it.

One such set of plugins that could be very useful for the design of systems is a plugin for composition and
decomposition.

Another domain that is close to hardware implementation is the representation of models as traditional hierarchical
state machines. The state machine model mirrors the state machine subset of UML. The UML-B plugin allows the
specification of hierarchical state machines (Figure 5.2). Currently, the analysis takes models such as these and flattens

them into Event-B for analysis. This is not ideal, since the hierarchy and scope which could make formal verification
easier is lost in this process.
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Figure 5.2. Rodin Tool showing a UML design

5.2.2. Applications to real systems and current limitations

Rodin/Event-B has been used in the design and verification of control algorithms for railway switches. Specifically,
Rodin/Event-B is used for ensuring that safety properties hold.

Rodin/Event-B is the most advanced tool of its kind but it still has limitations that preclude its use in many use
cases.

e Currently, Event-B refinements maintain “safety” properties, but “liveness” properties are not maintained. This
means that a null refinement that does nothing is a valid refinement. For showing functional properties, this is
insufficient. Refinement should also ensure that the refined system actually can perform the desired function.

e The Event-B language describes models without using name-spaces, scoping or hierarchy. The flat nature of
Event-B models makes it difficult for designers to describe all but the smallest models.

e There exist mechanisms for composition and decomposition to modularize a model. However, this involves
tedious manual intervention.

e Rodin currently uses closed-source theorem-provers and model-checkers from Atelier-B (http://www.atelierb.eu/en/).
Extensibility to other theorem-provers and model-checkers would facilitate analysis.

e Event-B does not have a notion of time. Though there are ways to do this using explicit counting variables, these
are very restrictive in practice.
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values
—-— This creates a representation of the junction
pl : Path = mk_token ("AlNorth");
p2 : Path = mk_token ("AlSouth");
p3 : Path = mk_token("A66East")
p4 : Path = mk_token("A66West")

7

7

lights : map Path to Light

= {pl |-> <Red>, p2 |-> <Red>, p3 |-> <Green>, p4 |-> <Green>};

conflicts : set of Conflict

= {mk_Conflict (pl,p3), mk_Conflict (pl,p4), mk_Conflict (p2,p3),
mk_Conflict (p3,pl), mk_Conflict (p4,pl), mk_Conflict (p3,p2),

kernel : Kernel = mk_Kernel (lights,conflicts)

types
Light = <Red> | <Amber> | <Green>;
Time = real
inv t == t >= 0;

Path = token;

Conflict :: pathl: Path
path2: Path
inv mk_Conflict (pathl,path2) == pathl <> path2;

—— the kernel data structure has two components representing

-- 1) a mapping with the current status of the lights for each
—— direction and 2) an unordered collection of conflicts between
—-— paths.

Kernel :: lights : map Path to Light
conflicts : set of Conflict
inv mk_Kernel (1s,cs) ==
forall c in set cs &
mk_Conflict (c.path2,c.pathl) in set cs and
c.pathl in set dom 1ls and
c.path2 in set dom 1ls and
(1s(c.pathl) = <Red> or ls(c.path2) = <Red>)

functions
—- changing the light to green for a given path
ToGreen: Path % Kernel -> Kernel
ToGreen (p, mk_Kernel (lights, conflicts)) ==
mk_Kernel (ChgLight (lights, p, <Green>),conflicts)
pre p in set dom lights and

lights (p) = <Red> and
forall mk_Conflict (pl,p2) in set conflicts &
(p = pl => lights(p2) = <Red>);

—- changing the light to red for a given path
ToRed: Path x Kernel —-> Kernel
ToRed (p, mk_Kernel (lights,conflicts)) ==
mk_Kernel (ChgLight (lights, p, <Red>),conflicts)
pre p in set dom lights and lights(p) = <Amber>;

—- changing the light to amber for a given path
ToAmber: Path % Kernel -> Kernel
ToAmber (p, mk_Kernel (lights, conflicts)) ==
mk_Kernel (ChgLight (1lights, p, <Amber>),conflicts)
pre p in set dom lights and lights(p) = <Green>;

ChgLight: (map Path to Light) * Path » Light -> (map Path to Light)
ChgLight (lights, p,colour) ==
lights ++ {p |-> colour}

mk_Conflict (p2,p4),
mk_Conflict (p4,p2)};

Listing 5.1: A VDM model for a junction traffic light controller (example provided by VDM)
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35
36
37

39
40
41
)
43
44
45
46
47
48

machine home_alarm sees home_alarm_context
variables time armed_indicator alarm_enable sensor_err alarm_activated sensor_settled sensor_tripped

invariants
Qdef_time
@def_armed_indicator
@def_alarm_enable
@def_alarm_activated
@def_sensor_settled
@def_sensor_err
@def_sensor_tripped

time IN N
armed_indicator IN BOOL
alarm_enable IN BOOL
alarm_activated IN BOOL
sensor_settled IN BOOL
sensor_err IN BOOL
sensor_tripped IN BOOL

@propl (alarm_activated = TRUE ) IMPLIES (sensor_settled = TRUE AND

alarm_enable =

TRUE AND sensor_err = FALSE AND sensor_tripped = TRUE )

@prop2 (armed_indicator = TRUE ) IMPLIES (alarm_enable = TRUE)

events
event INITIALISATION event sensor_settle_delay

then where
@Qact4 armed_indicator = FALSE @grdl sensor_settled = TRUE
@act5 alarm_enable = FALSE @grd2 time = 2
@act6 alarm_activated = TRUE then
@act7 sensor_err = FALSE @actl armed_indicator = TRUE
@Qact8 sensor_settled = FALSE end

end

event set_alarm
then
@actl alarm_enable
end

event reset_alarm

then
@actl alarm_enable
end
event sensor_fault
then

@actl sensor_err =
end

event sensor_settle

event sense_event

where
@grdl alarm_enable = TRUE
= TRUE @grd2 alarm_activated = FALSE
@grd3 sensor_settled = TRUE
@grd4 sensor_fault = FALSE
then
= FALSE @actl sensor_tripped = TRUE
Gact2 time = 0
end
TRUE event sense_event_delay
where

@sensor_tripped = TRUE
@grdl time = 5

where then
@grdl alarm_enable = TRUE @actl alarm_activated = TRUE
@grd2 sensor_settled = FALSE end

then
@actl sensor_settled = TRUE end

@actl time = 0
end

Listing 5.2: Event-B model of a flawed alarm system
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Chapter 6. Summary

Even in systems with low complexity, ensuring that the behavior is correct under all input conditions is difficult to
ensure through testing and simulation. Safety, security, and often reliability requirements are even more open-ended
and cover a vast state space that can only be validated with a formal approach. The aim of this survey is to identify
existing formal methods tools and techniques for designing and verifying the correctness of digital systems. The
survey is not exhaustive but it captures the variety of the existing tools and describes the most common ones. Given
below are recommendations for tools for use in specific types of digital designs.

6.1. Verifying the Correctness of a Design

6.1.1. FPGA and ASIC based development

Control-logic dominated designs Many FPGA and ASIC designs involve controllers for different applications.
These tend to be dominated by control logic. These are eminently suitable for formal verification. At present,
JasperGold by Jasper Design Automation (acquired by Cadence in 2014) is one of the leading tools in this area.

Designs with data security needs Some designs involve an implementation of information security. These de-
signs tend to have security requirements on data leakage or data dependency. These types of properties are not
easily expressed as SVA assertions. However, some of the existing COTS RTL verification tools have add-ons
that provide the capability to express such properties and perform analysis. In this area, JasperGold has an
add-on called Security Path Verification that may be suited to this. There are also some newly available tools
targeted to these types of properties (OneSpin 360 DV from OneSpin).

Designs with signal processing algorithms Formal verification of algorithms is currently difficult with the ex-
isting tools. There are no COTS tools that can do this directly at present.

6.1.2. Software Based Systems

At present, only limited properties of software based systems can be verified. The analysis capability is very dependent
on the type of software used for the design. If ADA is used as a development language, the SPARK tools are reasonably
advanced in this regard. For C language software, Frama-C is a reasonable choice.

6.2. Looking Forward: Creating Designs that are Correct by Construction

To enable large scale designs that are designed to be correct, as opposed to being checked after design completion, the
following properties are needed in a tool:

Abstract modeling Allow the creation of simple high-level models that can be verified before jumping into the
details.

Refinement Iterative allow the addition of detail to a model to make it look closer to implementation.

Composition and decomposition Provide automated techniques to infer properties of a system using the prop-
erties of its sub-components. Provide techniques to modularize a system so that it can be divided into modular
components, each of which can be verified.

Adaptability A tool should be adaptable to different problem domains.

Maximum automation with human guidance To prove complex properties, it is desirable to have as much au-
tomation available as possible. There will be a limit to this and it should be possible to provide manual input to
capture human reasoning behind a design.
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The tool that comes closest to these goals is the Rodin/Event-B tool. Its modeling representation is ideal for digital
designs that are consciously designed to be state machines.

Enhancing Rodin/Event-B in the following ways would go a long way towards making it more accessible.

e Enhance the Event-B theory of refinement to support liveness. Currently, Event-B refinements maintain “safety”
properties, but “liveness” properties are not maintained. This means that a null refinement that does nothing is a
valid refinement. For showing functional properties, this is insufficient. Refinement should also ensure that the
refined system actually can perform the desired function.

e Introduce scoping and name-spaces. The flat nature of Event-B models makes it difficult for designers to de-
scribe all but the smallest models.

o Simplify composition and decomposition. It would be best if this were automated.

e Rodin currently uses closed-source theorem-provers and model-checkers from Atelier-B (http://www.atelierb.eu/en/).
Allow the use of external theorem-provers and model checkers that can be extended to support specialized do-
mains.

e Incorporate a notion of time. Though there are ways to do this using explicit counting variables, these are very
restrictive in practice.

Augmenting Rodin in this way would make it a viable tool for designing digital systems that are correct by construc-
tion.
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