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Abstract

We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite-
element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution
for the electrons, the model eliminates the need to resolve the electron plasma fre-
quency, and avoids the numerical “grid instability” that can cause unphysical heating
of electrons. This allows much larger timesteps to be used than with kinetic electrons.
Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re-
quires solution of a nonlinear Poisson equation, for which we use an iterative Newton
solver (NOX) from the Trilinos Project. Results for the spatial variation of density
and voltage in the plasma sheath agree well with an analytic model
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Executive Summary

Fully-kinetic numerical simulations of dense plasmas using the particle-in-cell (PIC) method
have to deal with high-frequency electron oscillations and short-wavelength numerical heat-
ing of electrons due to the so-called “grid instability”. As a result, one has to either use
sufficiently small timesteps and mesh sizes (which may result in prohibitively long and large
calculations), use an implicit-PIC treatment of the electrons, or use a non-PIC treatment
of the electrons that removes these constraints. The latter can be a good alternative when
the high-frequency/short-wavelength electron physics can be neglected for the application of
interest, and a approximate non-kinetic electron model exists. In this report, we examine
the Aleph implementation of the Boltzmann-electron model, where ions are treated using
the standard (explicit) PIC algorithm, but electrons appear only as a charge-density term
in the equation for the electric potential. The resulting Poisson equation is nonlinear, and
requires a different solver than that used for the standard linear Poisson equation. We use
the NOX solver developed for the SNL Trilinos Project, and test the model by applying
it to a plasma-sheath problem previously developed to test the fully-kinetic PIC model in
Aleph [1]. In Fig. 1, we show good agreement between an analytic sheath model and the
Boltzmann-electron simulation using a timestep 10 times that used in the fully-kinetic study.
Timesteps of 100 and 1000 times the fully-kinetic timestep give similar results, though in
the latter case, the ion density is more noisy. The upper limit on the timestep is determined
by the ion velocity. An input file using a timestep 100 times the fully-kinetic value is in the
Aleph repository in directory examples/boltzmann sheath report.
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Figure 1. Comparison of Boltzmann-electron calculation for a plasma sheath with an
analytic model. Plot (a) compares the ion density and (b) compares the electric potential
(the lines are almost indistinguishable). The Aleph simulation used a timestep 10 times
that used in a recent fully-kinetic study [1]. The spatial mesh size is λD/4 (where λD is the
Debye length) the same as for the fully-kinetic simulations.
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1 Introduction

In kinetic simulations of a collisionless plasma the spatial and temporal resolution needed for
numerical stability are often set by the electron Debye length, λD, and the electron plasma
frequency, ωpe, respectively (see Fig. 2). For applications where physical phenomena at these
length- and time-scales can be neglected, these constraints can lead to prohibitively large
meshes and computation times. Various schemes have been devised to avoid this problem.
Implicit-kinetic schemes [2–4] retain kinetic electrons, but filter their high-frequency motion.
Hybrid schemes [5, 6] treat the ions kinetically and replace kinetic electrons with a fluid
momentum-equation in which the electron inertia term is usually neglected. One of the
simplest examples of the latter is the ambipolar approximation, whose implementation in
Aleph was examined in Ref. [7]. This approximation assumes (a) quasineutrality (ne ≈ ni,
where ne, ni are the electron and ion densities, respectively, assuming singly-ionized ions)
and (b) that the electron pressure gradient is balanced by an electric field created by charge-
separation between fast-moving electrons and slower ions. In this report, we examine another
hybrid model, the Boltzmann-electron model, which treats the electrons as a charged, hot
gas in thermal equilibrium with the electric potential, but does not assume quasineutrality.
The electrons appear only as a negative-charge-density term in the Poisson equation. Like
the ambipolar model, this eliminates the electron plasma oscillations. Unlike the ambipolar
model, the Boltzmann-electron model is able to treat plasma sheaths since it allows strongly
non-neutral regions. These properties make it potentially much more efficient than the
full-kinetic algorithm for modeling ion-beam extraction from a plasma.

Both the Boltzmann-electron and ambipolar-field models specify an electron temperature
that must be provided by the user. It is usually derived from experimental measurements.
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Figure 2. Numerical stability plane for an explicit, electrostatic, fully-kinetic simulation of
a stationary thermal plasma. Above ωpe∆t = 2, electron oscillations are unstable. The other
boundaries are not sharp. The numerical heating-rate of electrons increases as ∆x/λD in-
creases. Accuracy of orbit integration for faster electrons decreases as vthe∆t/∆x increases,
where vthe is the thermal-electron speed. Kinetic-electron simulations are typically carried
out in the shaded triangle. The kinetic-electron simulation in Ref. [1] is indicated by the red
dot (ωpe∆tke = 0.027, ∆xke/λD = 0.25), and two of the Boltzmann-electron calculations in
this report are indicated by blue dots: (a) has timestep 10∆tke and (b) has 100∆tke, where
∆tke is the kinetic-electron timestep.
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2 Boltzmann-electron Model

The Boltzmann-electron model is arrived at by assuming that the electrons have an equilib-
rium Maxwell-Boltzmann distribution of the form

fe(x,v) = A exp

[
−
(

1

2
mev

2 − eφ(x)

)
/kTe

]
(1)

where x,v are position and velocity vectors, respectively, A is a normalization constant, me,
−e, are the electron mass and charge, respectively, φ is the electrostatic potential, and Te is
the electron temperature. The potential is usually measured with respect to a location, x0,
where it reaches its maximum value, and for simplicity we set φ (x0) = 0. Integrating Eq. 1
over velocity gives the electron density at any point in space:

ne(x) = ne0e
eφ(x)/kTe (2)

where ne0 is the electron density at x0. Equations 1 and 2 describe an electron gas with
temperature Te everywhere and whose density varies exponentially with the electric potential.
It may be useful in some cases to make Te a function of position, x. Equation 2 can be used
to describe the electron population of a plasma where the bulk of the plasma is quasi-neutral
and charge-separation is created, e.g., by electrons escaping at the boundaries or by inserting
biased electrodes. The net charge-density, ρ, in the plasma is then given by

ρ = ρi − ρe = e
(
ni (x)− ne0eeφ(x)/kTe

)
(3)

where we have assumed singly-charged ions. Typically, we set ne0 = ni (x0) using the
assumption of quasineutrality. Note that in regions where eφ(x)/kTe � 1 and ρ ≈ 0,
Eq. 3 yields

∇ni ≈
n0e

kTe
∇φ = −eniE

kTe
(4)

which gives the expression for E used in the ambipolar approximation (see Eq. (3) in Ref. [7]).
Thus, in quasi-neutral regions, the ambipolar and Boltzmann-electron models are equivalent.
The Boltzmann-electron model does not assume quasineutrality, however, and so can be used
in non-neutral regions such as plasma sheaths. This makes it applicable to the extraction of
ion beams from a plasma source. It also means that a nonlinear Poisson equation must be
solved to obtain E instead of using the algebraic expression, Eq. 4. The solution method is
discussed in the following section.
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3 Nonlinear Solution Algorithm in Aleph

Using Eq. 3 in Poisson’s equation gives the equation for the electrostatic potential in the
Boltzmann-electron model (in SI units):

∇ · (ε∇φ) = −ρ = −e
(
Zini (x)− ne0ee(φ−φ0)/kTe

)
(5)

where ε is the scalar dielectric permittivity, Zi is the integer ion charge-state, and ni is the
density of ions treated using a kinetic particle description. Equation 5 is a nonlinear partial
differential equation (PDE), sometimes referred to as the Poisson-Boltzmann equation, in
the unknown potential, φ. We have introduced an explicit reference potential, φ0, as a
convenience when setting up a calculation. For a simulation where the source-plasma is
injected through a boundary, for example, the user will usually set φ0 in the input parameters
for the Boltzmann-electron algorithm equal to the value of the Dirichlet boundary-condition
for the potential at the plasma injection boundary (see lines 11 and 29 in the input file listing
in Appendix B).

To solve Eq. 5, Aleph uses an iterative “approximate Newton” algorithm which leverages
the existing infrastructure for the linear Poisson equation used when both ions and electrons
are treated kinetically, i.e., when there is no explicit φ-dependence in the source term. We
employ an existing nonlinear-solver package, NOX, developed for the Trilinos Project by a
team that included one of the authors of this report (RWH) [8].

We begin by casting the PDE into residual form,

R(φ) = ∇ · (ε∇φ) + eni − ene0e
e(φ−φ0)
kTe = 0. (6)

The Newton algorithm is based on expanding the residual, R(φ), about the approximate
nonlinear solution φk at the kth iteration:

R(φ) = R(φk) +
∂R

∂φ

∣∣∣∣
φk

(
φ− φk

)
+O

(
||φ− φk||

)2
. (7)

If we truncate second order and higher terms, define J ≡ ∂R/∂φ, define the correction to φk

at iteration k as ∆φk ≡ φ− φk, and note that the solution must satisfy R(φ) = 0, we obtain
a linear PDE to be solved for ∆φk:

Jk∆φk = −Rk, (8)

where the superscript k on Jk and Rk indicate that they are evaluated at φk. The solution
to this equation is then used to correct the solution to the nonlinear PDE:

φk+1 = φk + ∆φk. (9)

We now perform another Newton iteration by solving Eq. 8 again, with J and R evaluated
at φk+1, and this gives us a further correction to the numerical solution. This process is
repeated until the user-specified measure of convergence is achieved (see below).
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In the numerical scheme, Eq. 8 is discretized using a Galerkin finite-element method on
an unstructured triangular (2D) or tetrahedral (3D) mesh. Equation 8 becomes a matrix
equation in which ∆φ, R are vectors ∆φ, R of length N , respectively, where N is the
number of unknown values of φ on the mesh, and J is a sparse matrix J of size N ×N . If
we number the equations so that the nth element of R contains the source term located at
the nth node of the mesh, then the nth row of J will in general have the coefficient of ∆φkn
on the diagonal, and several (but � N) non-zero off-diagonal coefficients resulting from the
spatial derivatives in the original PDE.

Efficient parallel methods have been developed for solving linear matrix equations using
“direction-set” methods (see Sec. 10.5 of Ref. [9]). These methods are based on the geomet-
rical idea of generating a set of orthogonal directions in the column-space of the matrix, and
searching along these directions to find the vector that solves the matrix equation. For the
equation A·x = b, where A is a non-singular matrix of rank n, the column space is spanned
by the n vectors of the “Krylov sequence” {b,A · b, ...,An−1·b}. Using these vectors, the
direction-generating and search processes can be carried out using only the operation of A
on vectors, i.e., matrix-vector products, for which fast parallel algorithms exist. In a Newton
method, there is an additional advantage: the product Jk ·p can be obtained approximately
without computing Jk itself by noting that

R(φk + εp) = R(φk) + J|φk (εp) +O (||εp||)2 , (10)

where the parameter ε is a small number typically of O(10−6). This gives a first-order
accurate approximation for Jk · p at iteration k:

Jk · p ≈ R(φk + εp)−R(φk)

ε
. (11)

The efficiency of direction-set methods can be greatly increased in some cases by using
preconditioning to improve the numerical properties of Jk. Preconditioning is designed to
transform Jk to a more orthogonal matrix with a condition number closer to 1, i.e., to ap-
proximate the identity matrix. Without preconditioning it is not uncommon for the number
of iterations required to solve the linear system to approach the number of unknowns in
the problem. Good preconditioners reduce the iteration count by orders of magnitude. The
standard Poisson-solver in Aleph is a case where the extra operations needed to carry out
one-time preconditioning result in a large reduction in the number of iterations required to
recompute φ on each timestep as the source-term changes. This gives a large net reduc-
tion in total computation-time spent in the field-solver for a run with many timesteps. If
preconditioning is required on every timestep, the net benefit may need to be measured.

In the context of a Newton method the best preconditioner matrix would be the Jaco-
bian matrix, but since Jk depends on φk because of the nonlinearity of Eq. 6, this would
require repeating the preconditioning operations on each time φk changes. Instead, Aleph
currently uses a constant matrix, M, obtained from the Laplacian operator (i.e., dropping
the contribution from the exponential term in Eq. 6) as the preconditioner matrix:

M =

ˆ
Ω

ε∇ξ · ∇ψdΩ (12)
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where ξ, ψ are FEM test functions, and integration is over the problem domain Ω. This
matrix is computed only once and then used for all the Newton iterations, and has been
found to perform reasonably well in practice.

Some alternatives to using M as the preconditioner that could be tried include:

1. Use Jk , so that preconditioning is performed each time φk changes.

2. Use J from the previous timestep.

3. Use M− 1/λ2
D0 instead of M (see Eq. 16 below).

Using the default parameters set in Aleph, the Newton iterations stop when either (a) 20
iterations have been performed, or (b) when all three of the following conditions are met:

1. The RMS value of the components of the residual vector Rk is small:√√√√ 1

N

N∑
i=1

(
Rk
i

)2
< δr. (13)

where δr = 10−8.

2. The change in the RMS value of the components of the φk vector from one Newton
iteration to the next is small:√√√√ 1

N

N∑
i=1

(
φki − φk−1

i

RTOL
∣∣φk−1
i

∣∣+ ATOL

)2

< 1. (14)

where RTOL = 10−2 and ATOL = 10−8 are relative and absolute tolerances, respec-
tively.

3. The RMS value of the components of the update vector ∆φk is small:√√√√ 1

N

N∑
i=1

(
∆φki

)2
< δu. (15)

where δu = 10−5.

We conclude this section by mentioning some previous work involving Eq. 5 and related
equations. Reference [10] solved Eq. 5 to obtain plasma and beam equilibria in 3D ion-beam
systems. They used an iterative Newton scheme where complete ion orbits are traced through
the entire system each time Eq. 5 is solved. They appear to use a direct method, which they
call “modified Gauss-Cholesky” factorization, to solve the linearized equation inside the
Newton iteration loop (GMRES was not invented until 1986). An equation similar to Eq. 5
arises in the Debye-Hückel treatment of electrolytes [11], and Ref. [12] describes a numerical
solution method that uses a multilevel solver for the linearized equation rather than the
direction-set method used in the present calculations.
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4 One-dimensional Results

In many plasma applications, the region where Eq. 5 is most nonlinear is either near bound-
aries, where the plasma is in contact with a particle-absorbing wall or diagnostic probe (a
plasma sheath), or in a region where ions are extracted from the plasma to form an ion beam
(a plasma meniscus). In the bulk of the plasma, deviations from quasineutrality are typically
small, and the exponential term can be linearized, as described in Sec. 2. Equation 5 then
becomes a linear “modified Poisson” equation

∇ · (εr∇φ)− φ− φ0

λ2
D0

= − e

ε0
(Zini (x)− ne0) (16)

where εr = ε/ε0 is the relative permittivity (ε0 is the permittivity of free space) and
λD0 =

√
e2ne0/ε0kTe is a constant equal to the electron Debye-length at x0. (Note that

neglecting the Laplacian term in Eq. 16 and taking the gradient of each side again leads to
the ambipolar expression for E (cf. Eq. 4). Thus, the ambipolar field is obtained in the
“long-wavelength limit” of Eq. 16.) In an ion-extraction configuration, on the other hand,
there are essentially no electrons in the ion beam downstream of the meniscus, and so there
is no explicit dependence on φ on the RHS of Eq. 5. In sheath/meniscus regions, however,
the exponential term is neither negligible nor linearizeable, and a nonlinear solver like that
described in Sec. 3 must be used.

In Ref. [1], J. Boerner obtained good agreement between an analytic model and Aleph
calculations of a collisionless sheath using kinetic ions and electrons. Figure 3 shows the
geometry and results for his “Reference” case [1]. The bulk plasma has equal electron and
proton number densities of 1019 m−3. The electrons are given an isotropic temperature kTe =
5 eV, while the ions are essentially cold. A potential difference of 15 V is imposed between
the left and right boundaries. Ions are injected from the right boundary with a velocity
corresponding to a kinetic energy of 5 eV, which is twice the minimum or Bohm energy,
kTe/2, needed to obtain a stable sheath. Electrons with kTe = 5 eV are co-injected with the
ions. The timestep, ∆tke=1.5×10−13 s, was chosen such that ωpe∆tke ≈ 0.027, a factor of
75 smaller than the stability limit ωpe∆t < 2, (see Fig. 2) and such that vthe∆t/∆x≈ 0.1,
where vthe is the electron thermal velocity and ∆x is the spatial cell size (thus, a thermal
electron travels one cell length in about 10 timesteps). This timestep is probably smaller
than needed, but we have not investigated this question here. (Ref. [1] examined a case with
ωpe∆t ≈ 0.1, vthe∆t/∆x ≈ 0.4, and coarser spatial resolution, ∆x = λD0, obtaining results
similar to, but noisier than, the Reference case.) The cell size is ∆x ≈ λD0/4, and the length
of the simulation region is 15 λD0. In steady state, a quasi-neutral region is established over
roughly the right 2/3 of the simulation region and a non-neutral sheath over the left 1/3.
The electric field in the sheath region is such as to accelerate ions to the left while retarding
electrons.

We use this same one-dimensional geometry to test the Boltzmann-electron model. For
these calculations, the ions are specified in exactly the same way as in Ref. [1], but there
are no electron particles: the electron gas is completely specified by a reference density ne0,
reference potential φ0, and an isotropic temperature Te (see Eq. 5). For the Boltzmann-
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Figure 3. Figure 5 of Ref. [1], comparing results from a 1D, fully-kinetic simulation of
a plasma sheath to an analytic model. Plot (a) shows the electric potential and (b) shows
the ion and electron densities. Plasma is injected from the right boundary.
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electron model, ωpe∆t < 2 is no longer a constraint on the timestep. The ion orbits need to
be integrated accurately through the sheath electric field, so we require vi∆tbe < ∆x, where
vi is the ion velocity, ∆tbe is the Boltzmann-electron timestep, and ∆x is sufficiently small
to resolve the spatial variation of the sheath field, i.e., ∆x � λD0. These two conditions
give the constraints on the timestep and mesh size: ∆tbe < ∆x/vi � λD0/vi. We use the
same mesh size as the Reference case in [1], i.e., ∆x = λD0/4. The condition ∆tbe < ∆x/vi
then allows us to go up to ∆tbe = 280∆tke = 4.2× 10−11 s.

We ran three simulations, with ∆tke =10∆tke, 100∆tke, and 1000∆tke. The first two
values are plotted in Fig. 2. The last value exceeds the condition ∆tbe < ∆x/vi given above
by a factor of about 3.6, but this condition has to do with accuracy rather than stability.
Results for the ion density and electric potential using ∆tbe =10∆tke are shown in Fig. 4.
The agreement with the analytic results is very good.

The results for all three Boltzmann-electron calculations are compared in Fig. 5. There is
little difference between the ion densities and energies in the 10∆tke and 100∆tke calculations.
The ion energies show the correct behavior, increasing from the injected value of 5 eV to
20 eV as they traverse the sheath. At 1000∆tke, an injected ion is traveling about 3.6 cells
per timestep and the density is clearly noisier than at the smaller timesteps. Even under
these conditions, the ion energies are reasonably close to the analytic values.

In general, the maximum ratio between the timesteps for a Boltzmann-electron and a
kinetic-electron simulation is given by

∆tbe
∆tke

= f

√
Mi

2me

√
kTe
ZieVi

≈ 30f

√
Ai
Zi

√
Te(eV)

Vi(V)
(17)

where f is a factor that depends on how well the electron orbit-accuracy constraint ∆tke <
∆x/vthe is fulfilled in the kinetic-electron simulation, viz., f = ∆x/vthe∆tke. Here, Mi is the
ion mass, ZieVi is the ion kinetic energy, and Ai is the ion mass in AMU. For the Reference
parameters in [1], Zi = 1 = Ai, Te = 5 eV, Vi = 5 V, and f = 9.3. Equation 17 then gives
a maximum Boltzmann-electron timestep of ∆tbe ≈ 280∆tke, as we found above. At this
timestep, the ions travel about 1 cell per timestep.
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Figure 4. Results for (a) ion density and (b) electric potential, comparing Boltzmann-
electron model with analytic model. The simulation used a timestep 10 times larger than
using to generate Fig. 3. Ions are injected from the right boundary.

20



Figure 5. Comparison of three Boltzmann-electron calculations with ∆t =10 (red), 100
(blue), and 1000 (green) times the timestep used to generate Fig. 3. Plot (a) compares the
ion density, (b) compares the electric potential and (c) compares the ion energies. Ions are
injected from the right boundary with kinetic energy of 5 eV .
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5 Discussion and Further Work

The Boltzmann-electron model avoids two constraints that often determine the maximum
timestep and mesh-size one can use in explicit, fully-kinetic, electrostatic plasma simula-
tions, namely, ωpe∆t < 2 (for stable electron oscillations) and ∆x/λD < 1 (to avoid ex-
cessive electron heating). The ambipolar-field model also avoids these constraints, but as-
sumes quasineutrality, which the Boltzmann-electron model does not. Thus, the Boltzmann-
electron model can be applied to the problem of ion extraction from a plasma, where ions
transition from a quasi-neutral to a completely non-neutral environment. The main compu-
tational hurdle in implementing the Boltzmann-electron model involves solving a Poisson-
Boltzmann equation, which is very nonlinear in the sheath region at a plasma-wall boundary
and at an ion-extraction meniscus. We have successfully applied a nonlinear solver, devel-
oped for the Trilinos project, to this equation. We have shown that the Boltzmann-electron
model implemented in Aleph agrees with the analytic model for a 1D collisionless sheath.
To demonstrate this, we used an input file and geometry used in a previous verification
study of the fully-kinetic algorithms in Aleph. We ran the Boltzmann-electron algorithm
with ∆tbe/∆tke =10, 100, and 1000, where ∆tke is the timestep used in the “Reference” case
of the fully-kinetic study. The latter two timesteps violate the ωpe∆t < 2 electron-stability
constraint and are nevertheless stable (as expected) and give good agreement with analytic
and fully-kinetic simulation results.

For these calculations, we used the same mesh size, ∆x = λD0/4, as in the fully-kinetic
calculation. In any calculation one must of course resolve the relevant length-scale, which in
the sheath region is the Debye-length. Outside the sheath region, the Boltzmann-electron
model should be able to use a mesh-size larger than λD0 with minimal effect on the results,
but we have not yet verified this.

There are some downsides to the Boltzmann-electron model. As in the ambipolar-field
model, the electron temperature is an input variable and not calculated by the code. The non-
linear Poisson-Boltzmann equation requires many more numerical operations to solve than
the linear Poisson equation in the fully-kinetic model. For this reason, in the short, single-
processor calculations for this study, the Boltzmann-electron calculation with ∆tbe/∆tke =10
took about the same time (≈60 s) as the fully-kinetic case. However, the ∆tbe/∆tke =100,
1000 cases were considerably faster than the fully-kinetic cases (≈9 s and ≈1.2 s, respec-
tively).

In Ref. [7], which applied the ambipolar-field model in Aleph to plasma expansion, we
noted that the electric field was very noisy and produced a large energy-spread in the ions.
By comparison, there is very little noise evident in the ion distribution in Fig. 5(c). As
discussed following Eq. 16 above, the ambipolar-field expression is recovered in the long-
wavelength limit of the Poisson-Boltzmann equation. It may be possible to improve on the
results in Ref. [7] by using Eq. 16 instead of the ambipolar equation. In addition, it may
be possible to take advantage of the fact that, in many applications, the region where the
Poisson-Boltzmann equation is strongly nonlinear is a small fraction of the total volume.
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In the coming year, we plan to apply the Boltzmann-electron algorithm to calculations
of practical interest that have large 3D meshes and run on hundreds of parallel processors.
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A Cubit input

The mesh for the calculations Figs. 4 and 5 was generated with Cubit 14.1. The following
mesh information was written by Cubit:

Executive Exodus summary:

Number of dimensions = 2

Number of element blocks = 1

Number of sidesets = 0

Number of nodesets = 2

Number of bc sets = 1

Number of elements = 60

Number of nodes = 61

The Cubit input file (courtesy of J. Boerner) is listed below:

1 # Mesh transform factor = {f = 5.229e-6} so 1 unit in Cubit becomes
# 1 Debye length (5.229e-6 m) in output mesh using SI units.
# Sheath length = {d_gap = 15} in Debye lengths
# Cell size dx = {dx = 1/4} in Debye lengths

#----- Geometry -----#
create curve 0 0 0 direction 1 0 0 length {d_gap}
curve 1 size {dx}
mesh curve 1

10 nodeset 1 vertex 1
nodeset 2 vertex 2
transform mesh output reset
transform mesh output scale {f}
export mesh {" ’domain_" // tostring(d_gap) // "_LD_in_" // tostring(d_gap/dx) //

"_elems.e’ "} dimension 2 overwrite
exit
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B Aleph input

The calculations in Figs. 4 and 5 were carried out with Aleph version 4607. Aleph was run
using the command:

./aleph boltz_sheath_ndx_060_dt_1.50e-12_wt_0.50e12.in >&alog10&

The following is the input file (based on kinetic-electron input from J. Boerner):

1 # BASIC CONTROL
sensitivity level = UUR
units = SI
timestep size = 1.50e-12
total number of timesteps = 5000
input mesh file name = ../../cubit/1d/domain_15_LD_in_60_elems.e

# FIELD SOLVER
apply electrostatic_ions_boltzmann_electrons model to block_1, \

10 window = discrete, size = 1, stride = 1, \
Te = 58022.5, n0 = 1.01e19, V0 = 0.0

# INACTIVE STRIDES
interaction stride = off
reweighting stride = off
restore energy stride = off
restart stride = off
rebalance stride = off

20 # PARTICLES
particle weighting for H+ = 0.50e12, reweighting_method = none

# BOUNDARY CONDITIONS
# Wall
BC for voltage on nodelist_1 is dirichlet V = -15.0
BC for particles on surface_1 is outflux for default

# Ambient plasma
BC for voltage on nodelist_2 is dirichlet V = 0.0

30 # 5 eV kinetic energy, 10 degrees K
BC for particles on surface_2 is influx of H+ with density = 1.01e19, \

vx = -30950.0, T = 10.0
BC for particles on surface_2 is outflux for default

# EXODUS OUTPUTS
exodus output stride = 200
exodus output file name = ./Results/boltz_sheath_ndx_060_dt_1.50e-12_wt_0.50e12.e

output elemental volumes, name = vols, window = discrete, size = 1
40 output nodal density for H+, name = n_N(Hp), window = discrete, size = 1

output elemental density for H+, name = n(Hp), window = discrete, size = 1
output elemental average_velocity for H+, name = v(Hp), \

window = discrete, size = 1
output elemental temperature for H+, name = T(Hp), window = discrete, \

size = 1
output elemental computational_count for H+, name = C(Hp), \

window = discrete, size = 1
output elemental charge_density, name = rho, window = discrete, size = 1
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output solver charge density = true, window = discrete, size = 1
50

particle dump file name = ./Results/p-10dt.h5part, file type=h5part, \
attributes = local_id, type, x, y, z, vx, vy, vz, stride=200, \
fraction = 1

# STATUS REPORT OUTPUTS
output global computational_count for H+, name = C_H+, \

precision = 3, window = discrete, size = 1, stride = 20
output global current for all, on surface_1, name = I_inlet, \

precision = 9, window = discrete, size = 1, stride = 20
60 output global current for H+, on surface_1, name = I_inlet_H+,

precision = 9, window = discrete, size = 1, stride = 20
output global current for all, on surface_2, name = I_wall, \

precision = 9, window = discrete, size = 1, stride = 20
output global current for H+, on surface_2, name = I_wall_H+, \

precision = 9, window = discrete, size = 1, stride = 20

status report name = stdout, stride = 20, columns = time_stamp, \
elapsed_time, timestep, C_H+

70 status report \
name = ./Results/boltz_sheath_ndx_060_dt_1.50e-12_wt_0.50e12.csv
stride = 20, format = paraview, \
columns = simulation_time, C_H+, I_inlet, I_inlet_H+, I_wall, I_wall_H+

See also the files in the Aleph repository in directory examples/boltzmann sheath report.
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