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Abstract

This report examines the localization of high frequency electromagnetic fields in three-dimensional

axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these

orbits lead to unstable localized modes are known as scars. This report treats both the case where the

opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave,

leading to interior foci. The scalar problem is treated first but the approximations required to treat the

vector field components are also examined. Particular attention is focused on the normalization through

the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as point

statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with

an axisymmetric simulation. This axisymmetric case forms the opposite extreme (where the two mirror

radii at each end of the ray orbit are equal) from the two-dimensional solution examined previously (where

one mirror radius is vastly different from the other). The enhancement of the field on the orbit axis can be

larger here than in the two-dimensional case.
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1 SUMMARY

Cavity modes at high frequencies tend to exhibit statistical homogeneity except in regions where

periodic modes are supported by boundary topology. These enhanced regions can take the form of localized

stable modes such as laser-type “bouncing-ball modes” or “whispering-gallery modes”, which do not

interact with the remainder of the cavity due to confinement by the caustic surfaces associated with these

types of modes. Enhancements can alternatively be associated with unstable periodic ray orbits. These

“scars”, as they have been called, are local enhancements of cavity fields over the chaotic background along

unstable periodic ray trajectories. These enhancements do interact with the remainder of the cavity, and

hence can be excited by sources anywhere in the cavity.

These unstable scars are the subject of this report. Unlike in the case of stable modes, which are

confined by caustics, the unstable modes have propagation transverse to, as well as along, the orbit

direction. Hence a reflection with a random phase coefficient is used to capture the return from the outer

chaotic region. The eigenvalue density in the cavity, which depends on the overall cavity volume, is used to

normalize the statistics of this random reflection phase.

Previously, we have investigated these scars in two-dimensional convex and concave walled cavities.

The present report discusses scar effects in a three-dimensional axisymmetric cavity. This arrangement

captures the scarring when the mirrors at the ends of the orbit have the same radius of curvature in both

azimuthal orientations; this case thus compliments the two-dimensional case, where one of the mirror radii

of curvature is infinite.

In three-dimensions the electromagnetic problem also requires treatment of the vector problem.

We begin each investigation with the scalar acoustic problem and then introduce the vector case. A

quasi-rectangular coordinate system is introduced to treat the vector problem.

To make clear the enhancements resulting from the scar effects comparisons are done with purely

chaotic fields represented by collections of random plane waves. These are constructed for both the scalar

and the vector cases, for both the full three-dimensional case as well as the axisymmetric geometry.

It is crucial in these investigations to compare theoretical results with rigorous simulations of the cavity

modal solutions. This was done by modification of a body of revolution scattering code. Cavity modes

were identified by examining the solution condition number as a function of frequency. Normalization of

the modes was carried out by integration of the field square over the cavity volume. Projections of the

field along the orbit, or the field square at a point, were examined by gathering the results at the various

modes and binning them as a function of the separation between modal frequency and scar frequency; the

scar frequency is associated with condition that the free space wavenumber times the orbit length is a

multiple of pi divided by two. These numerical comparisons help verify the vector scar constructions and

the underlying assumptions made regarding the chaotic reflection phase from the outer chaotic region of
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the cavity.

The end goal of these investigations is to enable an interior high frequency ray method to be used in

order to model the problem in an efficient manner. Because, the fields in the cavity at high frequencies can

vary due to small perturbations of the cavity geometry, or with small frequency shifts, it is believed that a

method which captures the statistical properties of the field in the cavity would give results that could be

most useful in describing the shielding. For our purpose it is important that such a technique capture the

extreme statistics that are dominated by the presence enhanced field regions (hot spots) created by periodic

orbits supported by the boundary topology.

1.1 Convex Walls

The cavity with convex walls does not generate interior focal regions and the high frequency scar

construction holds over the entire orbit across the cavity. The source free electromagnetic energy theorem is

used to normalize the scar amplitude, such that the integral of the square of the field over the entire cavity

has a chosen value, even though the construction is only valid in the vicinity of the scarred orbit.

Fourier and other types of projections of the field along the orbit are taken which illustrate scar effects

versus the random plane wave chaotic field. Comparisons with the numerical simulations verify the behavior

of these modes.

The field squared statistics at points along the orbit are also examined. In the convex cavity these

statistics are similar to the chaotic random plane wave statistics. Nevertheless, there is a large enhancement

of the field along the central orbit that results from the axisymmetric nature of the cavity mode (when

this mode is normalized throughout the cavity volume). This field enhancement is of a similar nature to

the factor of two enhancements that were observed in two-dimensions along the symmetry planes of those

cavities (when either the even modes were normalized over the cavity area).

1.2 Concave Walls

The cavity with concave walls generates interior focal regions and the high frequency scar construction

treats the orbit over several separate intervals about and in the focal region. These are asymptotically

matched so that a single scar amplitude determines the levels in all three regions.

The asymptotic matching of the solution phases actually requires a subwavelength shift of the focal

region position with respect to the other two regions. An alternative view of this shift is that it arises from

a refinement of the elliptical mirror radius used in the scar construction to better fit to the constant radius

spherical mirrors at the short but finite wavelength involved. This view provides additional insight into the

value that must be chosen for the subwavelength shift.

The electromagnetic energy theorem is again used to normalize the results, but it must be applied over

the entire orbit encompassing the three regions of scar construction. In the high frequency limit the energy

theorem integration can be taken in the form of a principal value, including only the two regions about the

focal region.

The projections of the field along the orbit exhibit a peak when the scar frequency and modal frequency

align, which is missing in the random plane wave representation. The field squared statistics in the focal

region also exhibit this peak which is well above the level of the random plane wave statistics; this is on top

of the symmetry enhancement on the central axis of the cavity.
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Comparisons with numerically generated histograms show reasonable agreement with these theoretical

statistics for the field projection and the field squared in the focal region. In addition, a comparison of

the deterministic field behavior along the orbit from the scar construction and the numerical simulation

confirm the matched functional form of the scar; this single mode comparison is made by normalizing the

scar construction at a single point along the orbit to the simulation.
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Figure 1. Quarter bowtie cavity geometry

2 INTRODUCTION

This report is directed at understanding the high frequency behavior of modal fields in axisymmetric

three dimensional cavities. The idea is to capture how the modal fields can depart from statistical

homogeneity because of certain types of boundary topologies. In particular, the localization of the

eigenfunctions about unstable periodic orbits, known as scarring, is investigated. The approach used by

Antonsen [1], on convex mirror geometries in two dimensions, is generalized [2], [3], [4] by introducing the

curved ray path formalism, used previously by Vaynshteyn [5] on stable orbits. This combined approach

was used recently to investigate scars in two-dimensional geometry [6], [7].

This report explores both the scalar (acoustic) [8], [9] and vector (electromagnetic) problems in

three-dimensional axisymmetric geometry, first with convex walls, and second with concave walls supporting

interior foci. The mirror boundaries at the ends of the orbit each have two equal radii of curvature in this

axisymmetric geometry, which is the other distinct limit from the two-dimensional case, where one of the

radii becomes infinite. This feature leads to differences in field enhancement along the orbit relative to the

two-dimensional case.

This is a fairly long report so redundancy in derivations and definitions of quantities for the various

sections have not been eliminated; hopefully the structure of the sections (as well as the preceding summary)

make it possible to read without this repetition being a distraction.

3 CONVEX MIRRORS AND ROTATIONAL BOWTIE CAVITY

The bowtie cavity has been used as a canonical shape for a cavity with convex shaped mirrors. One

quarter of this cavity is shown in Figure 1. Here we consider rotating this about the  axis (and renaming

the axes as  and ) to form the rotationally symmetric cavity shown in Figure 2.
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Figure 2. Axisymmetric three dimensional bowtie cavity.

3.1 Curved Trajectory Analysis

Vaynshteyn [5] has treatments for stable modes between concave mirrors. Here we wish to consider the

generalization to unstable modes between convex mirrors. For three dimensions and axisymmetric geometry

the prolate spheroid is fit to the local boundaries at the ends of the unstable orbit  = 0 as shown in Figure

3. The prolate spheroidal coordinates (  ) are related to the cylindrical system (  ) by means of

 =  sinh  cos  (1)

 =  cosh  sin  (2)

where

0   ∞ (3)

−2    2  0    2 (4)

To match the local radius of curvature  at the ends of the orbit we take the focal positions (which in

this case are exterior to the region) to be

 = 
p
1 + (5)

Thus the orbit extends over the range −0    0 with  → 0 and
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Figure 3. Fitting radius of curvature of the end walls (or mirrors) to the prolate spheroidal coordinates.
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 =  sin 0 (6)

 = 2 (7)

or

sin 0 = 1
p
1 + (8)

3.2 Scalar Field High Frequency Approximation

The modes of the scalar Helmholtz equation

∇2+ 2 = 0 (9)

are first investigated. The metric coefficients in the prolate spheroidal system of coordinates (  ) are

[10]

 =  = 

q
sinh2  + cos2  = 

q
cosh2  − sin2  (10)

 =  sinh  cos  (11)

The Helmholtz equation can then be written in these three-dimensions as [9]

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
sinh2  + cos2 

¢
 = 0 (12)

or

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
cosh2  − sin2 ¢ = 0

where

 =  = 
p
1 + (13)

On the mirror we want

 = 0   = ±0  −0    0 (14)

We assume   1 and that sinh2   1. We take the function  to be even about the  axis. We seek a

solution of the form [5]
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 = (  )  sin  + ( −) − sin  (15)

Substituting into the Helmholtz equation gives

1

cos 





µ
cos 





¶
+

µ
2 cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 

¡
 sinh2  − 2 sin 

¢
 = 0

Now for high frequencies   1 we ignore the term [5]

1

cos 





µ
cos 





¶
and taking sinh2  1 we can replace sinh  by  and neglect the term

1

cos2 

2

2

Then

1







µ





¶
+ 2 cos 





+
1

2
2

2
+
¡
22 − 2 sin 

¢
 = 0 (16)

Next taking

 =
1

cos 
Ψ (17)

 =
p
2 (18)

 =

Z 

0



cos 
= arcsinh (tan ) (19)

0 = arcsinh (tan 0) (20)

 =  sin 0

tan 0 =
√

2 − 2

0 =
1

2
ln

µ
+ 

− 

¶
= Arcsinh

³p


´
(21)
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where the two exact stability exponents [12] can be written as

Λ± =
µ
+ 

− 

¶±2
(22)

The separation constant  is then

 = ( − ) 0 =
( − )2

Arcsinh
hp

 (2)
i = 2 ( − ) ln (Λ+) (23)

These give

1







µ





¶
+  cos 









+
1

2
2

2
+
¡
24−  sin 

¢
 = 0

or

1







µ

Ψ



¶
+
1

2
2Ψ

2
+ 

Ψ


+

2

4
Ψ = 0

The boundary conditions on the mirror result in

Ψ (  −0) = 2−(2−1)Ψ (   0)
Taking

Ψ = Ψ (  ) cos () (24)

or

Ψ = Ψ (  ) sin () (25)

gives

1







µ

Ψ



¶
+ 

Ψ


+

µ
2

4
− 2

2

¶
Ψ = 0

Letting

Ψ (  ) = − (  ) (26)

gives

1 = 2−(2−1)−20

and

− (− 12) = 0
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or

− 0 = (− 12) =    = 1 2 3  (27)

with

1







µ




¶
+

µ
2

4
+ − 2

2

¶
 = 0 (28)

If we let

2 = 2 (29)

then

1







µ




¶
=
1











µ








¶
= 2





µ




¶
and





µ




¶
+

µ


4
+



2
− 2

4

¶
 = 0

Now taking

 =
1√

 (30)

gives





=
√


µ
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2

¶





µ




¶
=
√

2

2
+
√

³

42

´
2

2
+

µ
1

4
+

2


+
1−2

42

¶
 = 0

This is a form of Whittaker’s equation [11]

2

2
+

µ
−1
4
+




+
1− 42
42

¶
 = 0 (31)

 = ()  () (32)

Therefore in our equation with  = −

2

2
+

µ
−1
4
+

2


+
1−2

42

¶
 = 0

and
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 = 2

± = 2

we obtain solutions [11]

 = (−)  (−) (33)

Noting that [11]

 () ∼ −2  ||→∞ (34)

let us take the outward going wave to be

+ ( ) = (−) (35)

The total solution with a random phase reflection coefficient from the outer region of the high frequency

cavity [1], [2] is

 = Re
£
+ + Φ0 ∗+

¤
(36)

In summary the potential is then

 =
2

cos 
 (  ) cos ( sin  − )

½
cos ()

sin ()

¾
(37)

where

 = 

√
2


Re
£
+ + Φ0 ∗+

¤
(38)

+ (  ) =22

¡−22¢ (39)

and

+ (  ) ∼ ¡−22¢2 24 = (−)2 2   →∞ (40)

 ∼ 
1√

Re
h
(−)2 2 + Φ0 ()

−2
−2

i
  →∞

with

− 0 = (− 12) =    = 1 2 3 

 = ( − ) 0 =
( − )2

Arcsinh
hp

 (2)
i = 2 ( − ) ln (Λ+)
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0 = arcsinh (tan 0) =
1

2
ln

µ
+ 

− 

¶
=
1

4
ln (Λ+)

Λ± =
µ
+ 

− 

¶±2
and on axis we can write

 = arcsinh (tan ) = arcsinh

µ
√

2 − 2

¶
=
1

2
ln

µ
+ 

− 

¶
(41)

3.2.1 Neumann Boundary Conditions

On the mirror we now want




= 0   = ±0  −0    0 (42)

The scalar field is

 = (  )  sin  + ( −) − sin  (43)

 =  = 
p
1 +

Next taking

 =
1

cos 
Ψ

 =
p
2

 =

Z 

0



cos 
= arcsinh (tan )

0 = arcsinh (tan 0)

 =  sin 0

tan 0 =
√

2 − 2

0 =
1

2
ln

µ
+ 

− 

¶
= Arcsinh

³p


´
The separation constant  is then
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 = ( − ) 0 =
( − )2

Arcsinh
hp

 (2)
i = 2 ( − ) ln (Λ+)

The boundary conditions on the mirror result in

Ψ (  −0) = 2−2Ψ (   0)
Taking

Ψ = Ψ (  ) cos ()

or

Ψ = Ψ (  ) sin ()

and letting

Ψ (  ) = − (  )
we see that

1 = 2−2−20

−  = 0

− 0 =  =    = 0 1 2 3  (44)

3.2.2 Odd Symmetry Along Orbit

In the case of odd symmetry along the orbit we take

 = (  )  sin  − ( −) − sin 
The boundary conditions at the mirrors imply that

± ( ±0) = (  0) 
 sin 0 − ( −0) − sin 0 = 0

Now with

 =
1

cos 
Ψ

Ψ = Ψ (  )

½
cos ()

sin ()

¾

Ψ (  ) = − (  )
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 =
p
2 (45)

 =

Z 

0



cos 
= arcsinh (tan )

0 = arcsinh (tan 0)

 =  sin 0
we find

1 = 2−2−20

or

−  = 0

− 0 =  =    = 1 2 3  (46)

Thus we have

 =
2

cos 
 (  ) sin ( sin  − )

½
cos ()

sin ()

¾
(47)

where again we could take

 = 

√
2


Re
£
+ + Φ0 ∗+

¤
+ (  ) =22

¡−22¢ (48)

3.2.3 Whittaker Function Calculation

We now want to summarize the generation of the Whittaker functions used here. We are interested in

generating the function [11]

+ (  ) =22

¡−22¢
= 

24
¡−22¢12+2


¡
12 +2− 2 1 +−22¢ (49)

The power series form can be found from [11]

 (+ 1 ) =
(−1)+1

!Γ (−)
[ (+ 1 ) ln 
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+

∞X
=0

() 


(+ 1) !
{ (+ )−  (1 + )−  (1 ++ )}

⎤⎦
+
(− 1)!
Γ ()

− (− 1− ) (50)

where

 (− 1− ) =

−1X
=0

(−)
(1−)



!
(51)

 ( 1 )0 = 0 (52)

 ( 0 )1 = 1 (53)

and

 (  ) =


sin ()

∙
 (  )

Γ (1 + − )Γ ()
− 1−

 (1 + −  2−  )

Γ ()Γ (2− )

¸
(54)

 (  ) =

∞X
=0

()
()



!
(55)

 (+ 1 ) =

∞X
=0

()
(+ 1)



!
(56)

The asymptotic form can be found from [11]

 (  ) = −
"
−1X
=0

() (1 + − )
!

(−)− +
³
||−

´#
 −3

2
  arg () 

3

2
 (57)

 ( 1 + ) = −
"
−1X
=0

() (−)
!

(−)− +
³
||−

´#
 −3
2
  arg () 

3

2
 (58)

+ (  ) =22

¡−22¢

+ (  ) = 
24
¡−22¢2 ∙1− 

1

2

n
(1− )

2 −2
o
−2 +

¡
−4

¢¸
(59)

An integral representation is [11]

Γ () (  ) =

Z ∞
0

−−1 (1 + )
−−1

 (60)
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=

Z 2

0

−−1 (1 + )
−−1

+

Z 0

2

−−1 (1 + )
−−1



Γ () (+ 1−) ∼ 2
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−−1 (− )
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+ 

Z 0

2




Z 2

0

(
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Z 2

0

(− sin+ cos)+ ∼
Z ∞
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− =
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Γ () (+ 1−) = 2
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0

−−1 (− )
−

− 


−1

If  = 0 the boundary term vanishes and if  = 1 it is a constant as  → ∞. However, the asymptotic
expansion of the integral is

Γ () (+ 1−) ∼ 2
Z ∞
0

−−1 = Γ () (−)− (61)

which is the desired asymptotic form; thus this integral form is the analytic continuation of the function for

this phase of argument  = 22

Γ () (+ 1−) = 
Z ∞
0

−−1 (− )
−



Near the lower limit with 12 +2− 2 = 


Z 

0

−−1 (1 + )
−

 ∼ 
Z 

0

(1− + · · ·) −1 (1 +  (− ) + · · ·) 

∼ ()
∙
1


+
( (− )− ) 
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+ · · ·

¸
Near the upper limit
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∙
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− 1
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∙
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−−3
¸
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µ
− 



¶
−−2+···
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¸
+ · · ·

The Bessel series can also be used [11]
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 (  ) = 2Γ (− − 12) (4)−+12

∞X
=0

(2− 2− 1) (− 2) (− − 12 + )

! ()
(−1) −−12+ (2) (62)

3.2.4 Form For Vanishing Argument

The limit  = 0 is of interest.

+ (  0) =02

¡−22¢
= 

24
¡−22¢12+2


¡
12 +2 1 +−22¢

= 
24
¡−22¢12+2

√


2
(+1)2−

24
¡
22

¢−2

(1)

2

¡
24

¢
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p
2(+1)4

(1)

2

¡
24

¢
(63)

Now if we have  = 0 in addition, this becomes

+ (  0 0) =
1

2

p
24

(1)
0

¡
24

¢
(64)

3.2.5 Value Near Origin

The value of the Whittaker function and its derivative are now considered at the origin.

+ (  ) =22

¡−22¢ = 
24
¡−22¢12+2


¡
12 +2− 2 1 +−22¢

 0
+ (0 ) = lim

→0

h
− 0

22

¡−22¢i
To get a feel for these let us expand the function in a power series about the origin.

+ (  ) =22

¡−22¢
= 

24
¡−22¢12+2


¡
12 +2− 2 1 +−22¢

The power series form can be found from

 (+ 1 ) =
(−1)+1

!Γ (−)
[ (+ 1 ) ln 
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£
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and
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The higher order singularities for   0 are reminiscent of the Hankel function in cylindrical coordinates.

The reflected phase would need to cancel these just as the addition of the Hankel function of the second

kind leads to Bessel functions. The introduction of a multipolar source at the origin would generate such

singularities away from resonance. Thus with the solution

 (  ) = 

√
2


Re
£
+ + Φ0 ∗+

¤
(67)

if we impose
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or by taking the sum of the function and its conjugate
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Thus to leading order we expect the form of the reflection phase to be

Φ0 ∼ (1+)2
Γ (12 +2 + 2)

Γ (12 +2− 2)
(71)

For general values of  a more accurate treatment of the asymptotic form of + is required to cancel all

singular terms on the axis.

Value Near The Origin For m=0 Function Using the expansions for  = 0 we can write

+ (  0 ) = −
24
¡−22¢12 1

Γ (12− 2)

" ∞X
=0

(12− 2)
!2

¡−22¢ ln ¡−22¢

+

∞X
=0

(12− 2)
¡−22¢

!2
{ (12− 2 + )− 2 (1 + )}

⎤⎦ (72)
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and then near the origin we have

+ (  0 ) ∼ −
¡−22¢12 1

Γ (12− 2)

£
ln
¡−22¢ ¡1− 24

¢
+ (12− 2)− 2 (1) + ¡24¢ {− (12− 2) + 2 (1) + 2}+

¡
4 ln 

¢¤
(73)

 0
+ (  0 ) ∼ 

1

2

¡−22¢−12 1

Γ (12− 2)

£
ln
¡−22¢+ { (12− 2)− 2 (1)}+ 2 +

¡
2 ln 

¢¤
  → 0   = 0 (74)

3.2.6 Wronskian

The Wronskian for these functions is

 0
+

∗
+ −+

∗0
+ =

−
µ
12 +2

−22 − 12
¶


24
¡−22¢12+2


¡
12 +2− 2 1 +−22¢

−
24
¡
22

¢12+2

¡
12 +2 + 2 1 + 22

¢
−24 ¡−22¢12+2

 0
¡
12 +2− 2 1 +−22¢

−
24
¡
22

¢12+2

¡
12 +2 + 2 1 + 22

¢

−
µ
12 +2

22
− 12

¶


24
¡−22¢12+2


¡
12 +2− 2 1 +−22¢

−
24
¡
22

¢12+2

¡
12 +2 + 2 1 + 22

¢
−24 ¡−22¢12+2


¡
12 +2− 2 1 +−22¢

−
24
¡
22

¢12+2
 0
¡
12 +2 + 2 1 + 22

¢
= − ¡22¢1+ £− ¡12 +2− 2 1 +−22¢


¡
12 +2 + 2 1 + 22

¢
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+ 0
¡
12 +2− 2 1 +−22¢


¡
12 +2 + 2 1 + 22

¢
+

¡
12 +2− 2 1 +−22¢

 0
¡
12 +2 + 2 1 + 22

¢¤
Now noting that [11]

 (  )  (−  −)

− (  )  0 (− − )−  0 (  )  (−  −)

= (−)−   = sgn (Im ())

we have

−∗ +  0∗ + ∗0 = −−(12+2+2)
¡−22¢−1+

and thus the Wronskian of the solutions is

 0
+

∗
+ −+

∗0
+ = −(+2)

¡
22

¢2
(75)

3.2.7 The Axisymmetric Field

We will be focused on the axisymmetric case since we expect this will generate the largest values on

axis. The case where  = 0 results in

 =
2

cos 
0 (  ) cos ( sin  − ) (76)

where

0 = 0

√
2


Re
£
+ + Φ0 ∗+

¤
(77)

and

+ (  0 ) ∼ −
¡−22¢12 1

Γ (12− 2)

£
ln
¡−22¢

+ { (12− 2)− 2 (1)}+
¡
2 ln 

¢¤
  → 0   = 0
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 0
+ (  0 ) ∼ 

1

2

¡−22¢−12 1

Γ (12− 2)

£
ln
¡−22¢+ { (12− 2)− 2 (1)}+ 2 +

¡
2 ln 

¢¤
  → 0   = 0

Because of the symmetry of the  = 0 scalar field around the center of the orbit, we apply the condition





0 = 0

√
2Re

£
 0
+ + Φ0 0∗

+

¤− 0

= 0
√
2Re

∙¡
 0
+ + Φ0 0∗

+

¢− 1


¡
+ + Φ0 ∗+

¢¸→ 0 (78)

which gives

Φ0 = −
¡
 0
+ − 1


+

¢¡
 0
+ − 1


+

¢∗ =
£
ln
¡−22¢+ { (12− 2)− 2 (1)}+ 2¤− £ln ¡−22¢+ { (12− 2)− 2 (1)}¤
[ln (22) + { (12 + 2)− 2 (1)}+ 2]− [ln (22) + { (12 + 2)− 2 (1)}]


Γ (12 + 2)

Γ (12− 2)
+

¡
2
¢
  → 0

= 
Γ (12 + 2)

Γ (12− 2)
+

¡
2
¢

(79)

It is interesting that if we had imposed the condition

Re
£
 0
+ + Φ0 ∗0+

¤→ 0   → 0

we arrive at the same reflection phase in the limit (although the accuracy is not as great since it is only

logarithmic here)

Φ0 = − 0
+ (  0 )

 ∗0+ (  0 )
→ 
Γ (12 + 2)

Γ (12− 2)

Note also that because of the actual order of error 
¡
2
¢
we actually have 0 → 0 as  → 0. The

value of the function

0 (  ) ∼ 0

√
2


Re

∙
+ (  0 ) + 

Γ (12 + 2)

Γ (12− 2)
 ∗+ (  0 )

¸
near  = 0 is

0 (  ) ∼ 0Re

∙
−4

Γ (12− 2)
{ +  (12 + 2)−  (12− 2)}+

¡
2 ln 

¢¸
  → 0
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= 0Re

∙
−4

1

Γ (12− 2)
{ +  cot (12− 2)}+

¡
2 ln 

¢¸

= 0Re

∙
−4

1

Γ (12− 2)
{ +  tan (2)}+

¡
2 ln 

¢¸

= 0Re

∙
−4



Γ (12− 2)
{1 + tanh (2)}+

¡
2 ln 

¢¸

= 0Re

∙
−4



Γ (12− 2)

2

cosh (2)
+

¡
2 ln 

¢¸

= 0Re
h
42Γ (12 + 2) +

¡
2 ln 

¢i
(80)

In addition we use

 0
+ (  0 )−

1


+ (  0 ) =

− −4
√
2

Γ (12− 2)

£
1 +

¡
2 ln 

¢¤
  → 0

and





0 = 0

√
2Re

£
 0
+ + Φ0 0∗

+

¤− 0 (81)

to arrive at


2


0 ∼ 0

√
2Re

∙

Φ0


Φ0

¡
 0
+ −+

¢∗¸

∼ 0
√
2
Φ0


Re

"
Φ0

−4
√
2

Γ (12 + 2)
+

¡
2
¢#

(82)

For  → 0 (2 = 2) this also means that the energy flux from the center vanishes (see the intensity vector

in the acoustic section below)





→ 0   → 0

In fact in this case  → 0.

3.2.8 Eigenvalue Density

The density of cavity eigenvalues will be needed in the normalization sections of this report. Here we

simply review results for three-dimensions as well as the axisymmetric problem.

Three Dimensions From Courant [15] the number of eigenvalues is

 ∼ 3
¡
62

¢
(83)
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and thus




∼ 2

¡
22

¢
or

2


= 2




∼ 42 ( ) (84)

In the vector case we have twice the number

 ∼ 3
¡
32

¢
(85)

Axisymmetric Problem The number of eigenvalues in an axisymmetric 3D problem is now

discussed. The differential equation

¡∇2 + 2
¢
 = 0 (86)

in the cylindrical coordinate system is

1







µ





¶
+





µ




¶
+
1

2
2

2
+ 2 = 0 (87)

Now take  to have dependence cos ()

1







µ





¶
+





µ




¶
− 2

2
+ 2 = 0 (88)

In the terminology of Courant and Hilbert [15] we can write this as





µ





¶
+





µ





¶
− +  = 0

where (  0   0)

 =  = 

 = 2

 = 2

with boundary condition




+  = 0   ≥ 0

The number of eigenvalues is asymptotically equal to
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lim
→∞

 ()


=
1

4

Z Z





 =

1

4

Z Z


 =
0

4
where 0 represents the area of the cavity in the original   space (with   0). Translating back to our

original notation gives

 ∼ 2

4
0 (89)

Now taking the derivative




=

2





2
= 2



2
∼ 

2
0



2
∼ 0

4
(90)

Setting the total cross sectional area of the axisymmetric cavity to

 = 20 (91)

we find

2


= 8 (92)

We would have twice this spacing if we restrict attention to odd or even along the orbit and thus

∆2 ∼ 16 (93)

In a vector problem we would expect twice the number

 ∼ 2

2
0 =

2

4
 (94)

Now taking the derivative




=

2





2
= 2



2
∼ 


0



2
∼ 

4
(95)

This is the same density as found in a Cartesian 2D cavity of area  in the scalar case. As to why this

electromagnetic density is the same as the scalar case: evidently the number from Courant and Hilbert

corresponds to only one azimuthal parity. This is actually what we desire in the axisymmetric geometry,

since we will be focusing on only one parity. Evenness along the orbit would result in a further reduction

by a factor of two



2
∼ 

8
(96)
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3.2.9 Bowtie Area & Volume

The rotationally symmetric bowtie cavity area and volume are given here since they are frequently

used.

Bowtie Cavity Cross Sectional Area The area of a bowtie cavity is now given. Referring to

Figure 4, the area of the red right triangle is

 =
1

2
(2 +) (2 +) (97)

The vertex of the green triangle must now be located. Letting

2 = (2 +)
2
+ (2 +)

2
(98)

and using the law of cosines

2 +2 − 2

2

= cos = sin
³
2
− 

´
(99)

or

24 + + 24 +

2

= sin
³
− 

2

´
(100)

Next the law of sines gives

sin



=
sin



=
sin


(101)

The area of the green triangle is

 =
1

2
 sin =

1

2
 sin =

1

2
 sin (102)

The area of the  circle included in the red triangle is

 =
1

2
2

∙
arcsin

µ
2 +



¶
− 

¸
(103)

The area of the  circle included in the red triangle is

 =
1

2
2

∙
arcsin

µ
2 +



¶
− 

¸
(104)

One quarter area of the bowtie cavity is then

4 =  − − − (105)

As an example if we take  =  = 2 m,  = 15 m, and  = 10 m then  = 554 m
2,  = 1128051

m, sin (− 2) = 56, sin = 05527708,  = 4145781 m2,  = 05121158,  = 09396044 m2,

 = 007356975,  = 7495343 m
2, and

 = 4677086 m2 (106)
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Figure 4. Geometry of bow tie cavity and circular walls used in the calculation of the interior cross sectional

area.
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Volume Of Rotationally Symmetric Bowtie The parameters are  = 15 m,  = 10 m, and

 =  = 2 m. The volume of the rotationally symmetric bowtie is found by using the volume of a right

angle cone

 =
1

3
2

and that of a spherical cap

 =
1

3
2 (3 − )

The red cone has volume

 =
1

3
 ( + 2)

2
( + 2) ≈ 719948 (1) m3 (107)

The top angle of the red cone is

 = arctan

µ
 + 2

 + 2

¶
≈ 0223477 (2) (108)

The yellow right angle cone has volume

 =
1

3
2 cos

2 ( − ) tan2  cos ( − ) ≈ 522912 (3) m3 (109)

The spherical cap volume is ( = 007356975)

 =
1

3
3 (1− cos ( − ))

2
[3− (1− cos ( − ))] ≈ 0393661 (4) m3 (110)

The volume of a rectangle of height  ,extending from 0 to 0 + , spun around the  axis is

 = 2

Z 0+

0

 = 
h
(0 + )

2 − 20

i
=  (20 + ) ≈ 140441 (6) m3 (111)

where

0 =  sin ( − ) ≈ 149346 (5) m (112)

 = 2 + (1− cos ( − )) ≈ 111215 m (113)

 =  + 2− 0 ≈ 100654 m (114)

The rotation of a circular cap of height , base position 0, and radius 1 gives

 = 2

Z 0+

0



Z √21−(1+0−)2

0

 = 2

Z 0+

0

q
21 − (1 + 0 − )

2
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= 2

Z 1

1−

q
21 − 2 (1 + 0 − )  = 2 (1 + 0)

Z 1

1−

q
21 − 2− 2

Z 1

1−

q
21 − 2

= 2 (1 + 0)

∙
−1 − 

2

p
(21 − )− 21

2
arcsin

µ
1 − 

1

¶
+



4
21

¸
− 21

3

¡
21− 2

¢32
≈ 308631 (7) m3 (115)

where

1 =  = 15 m (116)

 =  sin ( − )− 2 ≈ 049346 m (117)

0 = 2 ≈ 1 m (118)

The bottom triangle can be handled by the following formula

 = 2

Z 0+

0



Z (−0)

0

 =
2



Z 0+

0

( − 0)  =
2



∙
1

3
(0 + )

3 − 1
3
30 −

1

2
0 (0 + )

2
+
1

2
30

¸

=


3
 (30 + 2) ≈ 213341 (8) m3 (119)

where

 =  tan  ≈ 0252761 (9) m (120)

 =  (1− cos ( − )) + 2 ≈ 111215 m (121)

0 =  + 2−  ≈ 224724 m (122)

Thus

2 =  −  −  −  −  +  ≈ 431296 m3 (123)

or

 ≈ 8625920602 m3 (124)

3.3 Acoustic Energy Normalization

A scalar physical wave problem of interest is acoustics. The equations are [14]
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Figure 5. Geometry for the calculation of the rotationally symmetric bow tie volume.
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 = −∇ (125)





 = −∇ ·  (126)

where  is the particle velocity,  is the pressure,  is the compressibility, and  is the density. Our scalar

function  corresponds to the pressure  in this subsection. Thus eliminating the velocity gives the scalar

wave equation






µ






¶
= ∇2 (127)

Let us suppress time harmonic dependence −

 = ∇ (128)

 = ∇ ·  (129)

and with  taking the place of the scalar 

∇2 + 2 =
¡∇2 + 2

¢
 = 0 (130)

Note that the acoustic energy flux is represented by the intensity [14]

 =  = ∇ () (131)

Now examine the quantity

∇ ·
µ



∗ +  ∗





¶
=




∇ · ∗ + ∇


· ∗ +∇ ∗ · 


+  ∗

∇ · 


= −


 ∗ + 

µ
+ 





¶
· ∗ − ∗ · 


+  ∗

µ




+ 

¶

=  ( · ∗ +  ∗ ) = 

µ
1

2
|∇ |2 +  | |2

¶
(132)

or

∇ ·
∙




µ
1


∇ ∗

¶
−  ∗





µ
1


∇

¶¸
=
1

2

³
|∇ |2 + 2 | |2

´

=
1

2

³
|∇ |2 + 2 | |2

´
(133)

where the wavenumber is

2 = 2 (134)

Now using
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|∇ |2 = ∇ ·∇ ∗ = ∇ · ( ∗∇ )−  ∗∇2 = ∇ · ( ∗∇ ) + 2 | |2
for either the soft outer boundary with  = 0 or the hard outer boundary with  = 0 gives

I


∙




µ
1


∇ ∗

¶
−  ∗





µ
1


∇

¶¸
·  = 2 

2

2

Z


| |2 

=

I


∙




µ
1



 ∗



¶
−  ∗





µ
1







¶¸
 (135)

If the pressure is taken to be real

I


∙




µ
1







¶
− 





µ
1







¶¸


= 2
2

2

Z


| |2  (136)

In addition if we take



= 0  on  (137)

then

−
I



∙


2



¸
 = 2

2



Z


| |2  (138)

where here  points into the scar region.

3.3.1 Application Of Scalar Field Normalization

The above acoustic case of scalar normalization gives the normalization condition

I


∙




µ
1



∗



¶
− ∗





µ
1







¶¸


= 2
2

2

Z


||2  (139)

or for a real function

I


∙




µ
1







¶
− 





µ
1







¶¸
 = 2

2



Z


||2  (140)

If we set




= 0  on  (141)

then
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2
2



Z


||2  = −
Z


2




µ





¶
 = −

Z



2




=

Z 0

−0

Z 2

0


2


 ∼ 

Z 0

−0

Z 2

0


2


 cos  = 

Z 0

−0

Z 2

0


2


 cos  (142)

with metric coefficients

 =  = 

q
sinh2  + cos2 

 =  sinh  cos 

where for the axisymmetric field

 =
2

cos 
0 (  ) cos ( sin  − ) (143)

The normalization in this case, with a unit volume integral, is

2
2


= 2

Z 0

−0

2


 cos 

Thus noting

0 (  ) = 0

√
2


Re
£
+ + Φ0 ∗+

¤
0 ∼ 0Re

h
24Γ (12 + 2) +

¡
2
¢i

  → 0


2


0 ∼ 0

√
2
Φ0


Re

"
Φ0

−4
√
2

Γ (12 + 2)
+

¡
2
¢#

  → 0

where

− 0 = (− 12) =    = 1 2 3 

 = ( − ) 0 =
( − )2

Arcsinh
hp

 (2)
i = 2 ( − ) ln (Λ+)

and

 = arcsinh (tan ) = arcsinh

µ
√

2 − 2

¶
=
1

2
ln

µ
+ 

− 

¶

sinh = tan 
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cosh = sec 

tanh = sin 

 = sec 

0 = arcsinh (tan 0) =
1

2
ln

µ
+ 

− 

¶
=
1

4
ln (Λ+)

Λ± =
µ
+ 

− 

¶±2

 =  sin 0
we find

2
2


= 2

Z 0

−0

2


 cos 

∼ 8
Z 0

−0
0 (0 ) 0

√
2Re

h
Φ0

¡
 0
+ −+

¢∗i Φ0


cos2 ( sin  − )


cos 

∼ 160 (0 ) 0
√
2Re

h
Φ0

¡
 0
+ −+

¢∗i Φ0


Z 0

0

cos2 ( tanh − ) 

∼ −80 (0 ) 0
√
2Re

∙


µ
 0
+ −

1


+

¶¸
Φ0


0

∼ 1620Re
h
24Γ (12 + 2)

i
Re

∙
4

Γ (12− 2)

¸
Φ0


0

∼ 16202
Re2

£
4Γ (12 + 2)

¤
|Γ (12− 2)|2

Φ0


0

∼ 16202
Re2

£
4Γ (12 + 2)

¤
|Γ (12− 2)|2

2



Φ0

2
0

∼ 32
2


20

2
Re2

£
4Γ (12 + 2)

¤
|Γ (12− 2)|2

Φ0

2
0

or

2
2



Z


||2  ∼ 32
2


20

2
Re2

£
4Γ (12 + 2)

¤
|Γ (12− 2)|2

Φ0

2
0 (144)
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The phase Φ0 indicates the reflection phase of the th component. Following Antonsen [1] the

average derivative is set by taking ∆Φ0 = 2 and the spacing between eigenvalues to be given by the

Weyl asymptotic result ∆ ∼ 2
¡
2

¢
, or ∆2 = 2∆ ∼ 22 ( ) [16]. Note in the acoustic case

∆ ∼ 22 ¡2 ¢ [15] and ∆2 = 2∆ ∼ 42 ( ). In this case we are interested in the scar amplitude
on axis (like the even-even eigenvalues in the 2D problem). These  = 0 eigenvalues ( = 0 is the only

azimuthal mode giving values on axis) which have even symmetry along the orbit are spaced as [1] (this

is twice the spacing discussed previously where the extra factor of two results from arbitrarily taking the

eigenfunction to be even along the orbit)

∆2 ∼ 16 (145)

where the area is

1

2
 = 0 =

Z ∞
−∞

 ()  (146)

where  ()  0 is the radius of the cavity. Thus we take [1]

µ
Φ0

2

¶−1
=
8


2 (147)

where  is the Gaussian random variable with unit variance and density

 () =
1√
2

−
22 (148)

discussed previously. If we had used the eigenvalue spacing for the 3D acoustic cavity

µ
Φ0

2

¶−1
=
2

 
2

We recall that in the 2D case we introduced a factor of two (we also used a factor of two for evenness along

the orbit) to account for evenness about the normal to the orbit.

Now introducing this outer phase derivative gives the normalization constant

−2 |Γ (12 + 2)|2
Re2

£
4Γ (12 + 2)

¤ µΦ0
2

¶−1
 [4 ln (Λ+)] ∼ 20

or

20 = 2
2−2 |Γ (12 + 2)|2
Re2

£
4Γ (12 + 2)

¤  [ ln (Λ+)]
or

0 = 
−4 |Γ (12 + 2)|p

 (2)  ln (Λ+)Re
£
4Γ (12 + 2)

¤ (149)

and
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 =
2

cos 
0 (  ) cos ( sin  − ) (150)

0 (0 ) = 0Re
h
24Γ (12 + 2)

i
  → 0 (151)

or

 =
2√

2 − 2
0 (0 ) cos

∙
 − ( − )  ln

µ
+ 

− 

¶
 ln

µ
+ 

− 

¶¸
This can also be written as

 = 20 (0 ) cos

∙
 − 1

2
 ln

µ
+ 

− 

¶¸

p
1− 22

or

 = 20 (0 ) cos [ + 0 ()] 
p
1− 22 (152)

where

0 () =
1

2


½
ln

µ
+ 

− 

¶
()− ln

µ
+ 

− 

¶¾
(153)

0 (0 ) = 0Re
h
24Γ (12 + 2)

i
  → 0 (154)

Odd Symmetry Scalar Field Normalization Again for a real function with unit volume integral

I


∙




µ
1







¶
− 





µ
1







¶¸
 = 2

2

2

If we again set




= 0  on 

then

2
2


= −

Z



2


 =

Z 0

−0

Z 2

0


2




∼ 

Z 0

−0

Z 2

0


2


 cos  = 

Z 0

−0

Z 2

0


2


 cos 

The axisymmetric field with odd symmetry along the orbit is

 =
2

cos 
0 (  ) sin ( sin  − ) (155)

The normalization in this case is
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√
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√
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4Γ (12 + 2)

¤
|Γ (12− 2)|2

Φ0

2
0

or

2
2



Z


||2  ∼ 32
2


20

2
Re2

£
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0
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Re2

£
4Γ (12 + 2)

¤
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2
ln (Λ+)

These  = 0 eigenvalues ( = 0 is the only azimuthal mode giving values on axis) which have odd

symmetry along the orbit are spaced as [1] (this is twice the spacing discussed previously where the extra

factor of two results from arbitrarily taking the eigenfunction to be odd along the orbit)

∆2 ∼ 16
where  ()  0 is the radius of the cavity. Thus we again take [1]

µ
Φ0

2

¶−1
=
8


2

where  is the Gaussian random variable with unit variance and density. Now introducing this outer phase

derivative gives the normalization constant
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−2 |Γ (12 + 2)|2
Re2

£
4Γ (12 + 2)

¤ µΦ0
2

¶−1
 [4 ln (Λ+)] ∼ 20

or

20 = 2
2−2 |Γ (12 + 2)|2
Re2

£
4Γ (12 + 2)

¤  [ ln (Λ+)]
or

0 = 
−4 |Γ (12 + 2)|p

 (2)  ln (Λ+)Re
£
4Γ (12 + 2)

¤
and

 =
2

cos 
0 (  ) sin ( sin  − )

or

 =
2√

2 − 2
0 (0 ) sin

∙
 − ( − )  ln

µ
+ 

− 

¶
 ln

µ
+ 

− 

¶¸
This can also be written as

 = 20 (0 ) sin

∙
 − 1

2
 ln

µ
+ 

− 

¶¸

p
1− 22

or

 = 20 (0 ) sin [ + 0 ()] 
p
1− 22 (156)

3.4 Projections Along Orbit (Even Symmetry)

Projections of the scarred eigenfunction along the orbit will now be discussed. In two dimensions

[2], [6] we considered a trigonometric (or Fourier) projection as well as a scar (or Galerkin) projection

of the eigenfunction. The first was useful to exhibit the Fourier decomposition of the eigenfunction and

the second was useful because it restores certain approximate orthogonality properties among the scarred

eigenfunctions. In the present section we will begin with the scar projection followed by the trigonometric

projection and show the limiting connections between them. In three-dimensions there is also a reason to

consider a third definition that avoids certain divergence issues that may arise with interior foci.

3.4.1 Scar (Galerkin) Projection

Instead of representing the eigenfunction in terms of Fourier components suppose we define the

projection operator as (note here that we have taken the inverse square root in contrast to the 2D operator)

 = 2

Z 

0

¡
1− 22

¢−12
cos [ + 0 ()] (0 )  (157)

Because the th components are asymptotically orthogonal at high frequencies, if the eigenfunction is made

up of a sum
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 (0 ) ∼
X


 (0 ) (158)

this projection is

 ∼ 40 (0 )
Z 

0

¡
1− 22

¢−12
cos2 [ + 0 ()]  (159)

Now averaging over the rapidly varying  we find

 ∼ 20 (0 )
Z 

0

¡
1− 2

¢−1
 = 0 (0 )

Z 

0

µ
1

1− 
+

1

1 + 

¶


∼ 0Re
h
24Γ (12 + 2)

i
 ln

¯̄̄̄
1 + 

1− 

¯̄̄̄

∼ 
4 |Γ (12 + 2)|p

 (2)  ln (Λ+)
 ln

¯̄̄̄
+ 

− 

¯̄̄̄

∼ 
4 |Γ (12 + 2)|p

2 ln (Λ+)


where

ln

µ
+ 

− 

¶
=
1

2
ln (Λ+)

Taking the average of the square yields


 2



® ∼ 21 () 

where

1 () =
2 |Γ (12 + 2)|2 

2
 ln (Λ+)

Recall that in 2D we had

D√
 2



E
= 21 () 

where

1 () =
2
p
 exp (2) |Γ (14− 2)|2

(2) ln (Λ+)
and we set

Z


||2  = 1
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In 3D if we had defined


 2



®
= 21 ()  (160)

then

1 () =
() exp (2) |Γ (12− 2)|2

(2) ln (Λ+)
(161)

Note that

|Γ (12− 2)|2 = 

cosh (2)
(162)

and

1 () =
4 ()  ln (Λ+)

1 + exp (−) (163)

The asymptotic forms are

1 () ∼ 4 () − ln (Λ+)   → −∞ (164)

1 (0) ≈ 2 ()
ln (Λ+)

(165)

1 () ∼ 4 ()  ln (Λ+)   → +∞ (166)

where here we set

Z


||2  = 1

where again

− 0 = (− 12) =    = 1 2 3 

 =
( − )2

Arcsinh
hp

 (2)
i = 2 ( − ) ln (Λ+)

3.4.2 Trigonometric (Fourier) Projection

The trigonometric projection is

 = 2

Z 

0

cos () (0 )  (167)

 = 20 (0 ) cos [ + 0 ()] 
p
1− 22 (168)
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Then neglecting the sum term we have

 ∼ 20 (0 )
Z 

0

cos [0 ()]
p

1− 22

∼ 20 (0 )
Z 

0

cos

∙
1

2


½
ln

µ
+ 

− 

¶
()− ln

µ
+ 

− 

¶¾¸
p

1− 22

If we let   

 ∼ 20 (0 )  ∼ 2
4 |Γ (12 + 2)|p

 (2)  ln (Λ+)
 2



®
= 21 ()  (169)

1 () =
2 |Γ (12 + 2)|2

(2)
()  ln (Λ+)

=
2Γ (12 + 2)Γ (12− 2)

(2)
()  ln (Λ+)

=
22

sin (12 + 2)
()  ln (Λ+) =

22

cosh (2)
()  ln (Λ+)

=
4

1 + −
()  ln (Λ+)

If we let    and take Λ+ → 1 with

()  ln (Λ+) ∼ 12 (170)

then

1 ()→ 2

1 + exp (−) (171)

which is the limiting case of the result from the preceding subsection.

3.4.3 Elliptic System Projection

Another way to define the projection is to carry out an integration around the scar in prolate spheroidal

coordinates. The resulting projection is

 =  sin 0

 = lim
→0

1



Z 0

−0

1

2

Z 2

0

cos [ + 0 ()]

cos 
 (  ) (172)
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 =

Z 

−
cos [ + 0 ()] (0 0 )






where

0 () =
1

2


½
ln

µ
+ 

− 

¶
()− ln

µ
+ 

− 

¶¾



=  cos  =

p
2 − 2 = 

p
1− 22

Then we obtain

 = 2

Z 

0

cos [ + 0 ()] (0 0 ) 

 =  sinh  cos 

 =  cosh  sin 

 =  = 

q
sinh2  + cos2  ∼  cos  =

p
2 − 2

 =  =  sinh  cos  ∼  cos  = 
p
2 − 2

Note that this limit definition of the integral around the scar eliminates the extra amplitude divergence

factor from the kernel of the projection operator. This is a useful definition when interior foci are present

since the projection operator then converges without the need for special treatment of the focal region.

Now inserting  as

 = 20 (0 ) cos [ + 0 ()] 
p
1− 22

0 = 
−4 |Γ (12 + 2)|p

 (2)  ln (Λ+)Re
£
4Γ (12 + 2)

¤
0 (0 ) = 0Re

h
24Γ (12 + 2)

i

= 
4 |Γ (12 + 2)|p

 (2)  ln (Λ+)
gives

 = 40 (0 )

Z 

0

cos2 [ + 0 ()]
p

1− 22
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≈ 20 (0 )
Z 

0

p
1− 22

= 20 (0 )

Z 

0

√
1− 2

= 20 (0 ) arcsin ()

= 2
4 |Γ (12 + 2)|p

 (2)  ln (Λ+)
arcsin ()

and thus
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®
= 8

2 |Γ (12 + 2)|2
 ln (Λ+)

arcsin2 () = 21

|Γ (12 + 2)|2 = 

cosh (2)

1 = 4
2 |Γ (12 + 2)|2

 ln (Λ+)
() arcsin2 () =

42

ln (Λ+) cosh (2)
() arcsin2 ()

 =

p
Λ+ − 1p
Λ+ + 1

=
Λ+ − 1¡p
Λ+ + 1

¢2
1 =

2

1 + exp (−)
4 () arcsin2 ()

ln (Λ+)
(173)

3.5 Scalar Random Plane Wave

The random plane wave construction is now discussed in the three-dimensional scalar formulation.

Initially this is not constructed in axisymmetric geometry but in full 3D. This is compared with the

axisymmetric  = 0 solution next because this is the solution that exists as the scar orbit is approached in

the axisymmetric scalar acoustic case.

3.5.1 Scalar 3D Random Plane Wave Construction

Following [1]

 = lim
→∞

p
2 ( )Re

⎡⎣ X
=1


+ ·

⎤⎦ (174)

where  are real random numbers with

2
®
= 1,

¯̄

¯̄
=  are random vectors uniformly distributed in

angles, and the random phases  are uniformly distributed on a 2 interval.

Checking the normalization in 3D, we first average over the amplitudes

2 = lim
→∞

p
2 ( )Re

⎡⎣ X
=1


+ ·

⎤⎦p2 ( )Re
⎡⎣ X
0=1

0
0+0 ·

⎤⎦
and
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2
®
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→∞
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X
=1

lim
 0→∞

p
2 (  0)

 0X
0=1

h0i cos
¡
 +  · 

¢
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¡
0 + 0 · 

¢
where the amplitudes  for different  values are regarded as independent and the cross terms vanish


2
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X
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Next, averaging over the phases
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¡
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X
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We also note, upon letting

 = 
¡
 sin  cos+  sin  sin+  cos 

¢
and carrying out the average over angles


2
®
=
1

4

Z
4


2
®
 

Ω =
1

4

Z 2

0



Z 

0


2
®
 

sin  =
1



3.5.2 Trigonometric (Fourier) 3D Projection

Let us first consider the random plane wave projection with the simplifying assumption of  large

 =

Z 

−
cos () (0 )  (175)

Taking the projection

 = lim
→∞

p
2 ( )

X
=1



Z 

−
cos () cos ( +  cos ) 

and squaring

 2
 = lim

→∞

p
2 ( )

X
=1
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p
2 (  0)

 0X
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0) cos ( +  cos ) cos (0 + 0 cos 0) 0

If we average over the amplitudes  and regard different  values as independent the cross terms vanish


 2


®
 

= lim
→∞

2

 

X
=1

Z 

−

Z 

−
cos () cos (

0) hcos ( +  cos ) cos ( + 0 cos )i 
0

hcos ( +  cos ) cos ( + 0 cos )i =
1

2

1

2

Z 2

0

[cos ( ( − 0) cos ) + cos (2 +  ( + 0) cos )] 

=
1

2
cos ( ( − 0) cos ) =

1

2
cos ( cos ) cos (

0 cos ) +
1

2
sin ( cos ) sin (

0 cos )


 2


®
 

= lim
→∞

1

 

X
=1

Z 

−
cos () cos ( cos ) 

Z 

−
cos (

0) cos (0 cos ) 0

= lim
→∞

14

 

X
=1

Z 

−
[cos ( −  cos ) + cos ( +  cos )] 

Z 

−
[cos (

0 − 0 cos ) + cos (0 + 0 cos )] 0

or


 2


®
= lim

→∞
1

 

X
=1

∙
sin ( −  cos ) 

 −  cos 
+
sin ( +  cos ) 

 +  cos 

¸2

=
1

4

Z 2

0



Z 

0

∙
sin ( −  cos ) 

 −  cos 
+
sin ( +  cos ) 

 +  cos 

¸2
sin 

=
1

2

Z 

0

∙
sin ( −  cos ) 

 −  cos 
+
sin ( +  cos ) 

 +  cos 

¸2
sin 

Changing variables to  = cos  gives
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Z 1
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 − 
+
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( − )
2

+ 2
sin ( − ) 
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Retaining only the  (1) terms gives
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¸
Returning to the preceding form with integrals in  we note that when  →  the first term peaks for

 → 0 and the second term peaks for  →  with cos  = − cos ( − ) and sin  = − sin ( − ). Thus we

find (and  = 
p
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Letting

 = 2 ( − ) (176)

this becomes
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If we define
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we obtain
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The limiting cases are

 () ∼ −1→ 0  → −∞

 (0) = 4

 (∞) = 2

Notice that the previous projection of the axisymmetric cavity scar field had the normalization


 2



®
= 21

whereas this projection of the 3D random plane wave field has normalization


 2



®
=  ()2

These are not the same, and the difference argues that


 2



®


 2



®
=  ()  1 (179)

To understand this enhancement in value due to the axisymmetric nature of the cavity scar field we next

attempt to construct the analog of the axisymmetric random plane wave field. We should also note that this

enhancement in value represents the enhancement due to the axisymmetry of the cavity field, analogous to

the factor of two due to the even symmetry enhancement perpendicular to the orbit, observed previously

in 2D [2], [6]. This factor of two enhancement persisted when the symmetry of the outer wall of the cavity

was broken but the local even symmetry was maintained on the mirrors at the ends of the high frequency

ray trajectory, as observed in the case of the asymmetric bowtie cavity [2], [6]. We might conjecture here

that the key in the axisymmetric case is the local symmetry of the mirrors at the ends of the orbital ray

trajectory.

3.5.3 Construction Of Scalar Axisymmetric Random Plane Wave Field

Using the plane wave cylindrical decomposition

 · =  cos 
∞X

=−∞
(−) ( sin ) (180)

we take the  = 0 term only to construct the axisymmetric random plane wave field

 = 0 lim
→∞

p
2 ( )Re

⎡⎣ X
=1

0 ( sin ) 
+ cos 

⎤⎦ (181)

We will insert the constant 0 to obtain the desired normalization. To check the normalization we first

average over the amplitudes (without 0)
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where the amplitudes  for different  values are regarded as independent and the cross terms vanish
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Next, averaging over the phases
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Finally, averaging over 
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Inserting the asymptotic form for the Bessel function gives
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Alternatively for small values of  we set the Bessel function to unity
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Note that if we integrate over 
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Now asymptotically expand for large 
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If we integrate this expression over the cross section we find

Z ∞
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2

Z ()

0


2
®
 ∼ 

2

Z ∞
−∞

 ()  =
0


=



2

Thus if we replace  by  (2) (or set 20 = 2 ()) we will have the desired normalization

 = lim
→∞

p
4 ()Re

⎡⎣ X
=1

0 ( sin ) 
+ cos 

⎤⎦ (182)

3.5.4 Trigonometric (Fourier) Projection Of Axisymmetric Random Plane Wave Field

Taking the trigonometric projection on the axis ( = 0)

 =

Z 

−
cos () (0 ) 

= lim
→∞

p
4 ()

X
=1



Z 

−
cos () cos ( +  cos )  (183)

Except for the normalizing factor 0 =
p
2 () this is the same as in the preceding subsection.

Therefore, multiplying by 20 we find
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=
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Z ∞
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sin2
¡
4− 2

¢¡
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with

 = 2 ( − )

Defining
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®

= 2 ()  (184)
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gives

 () =
2



Z ∞
0

sin2
¡
4− 2

¢¡
4− 2

¢2 

Note that we expect to have to multiply by a factor of two to account for the symmetry (say, even) assumed

along the orbital direction (the perpendicular direction has already been accounted for by the axisymmetric

construction)

 () = 2 () = 1− 4


sin2 (4)

2
+
2


Si (2) (185)

This symmetry along the orbit was not imposed on the random plane wave construction. Also this scaling

is now consistent with the cavity scar field. Note that

 () ∼ −4 ()→ 0  → −∞ (186)

 (0) = 1 (187)

 (∞) = 2 (188)

Axisymmetric Trigonometric Projection By Averaging It is interesting that we can also obtain

this result easily from the 3D projection by averaging over azimuth
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p
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X
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Z 

−
cos () cos ( +  cos ) cos ( sin  cos) 

= lim
→∞

p
2 ( )

X
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0 ( sin )

Z 

−
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We have to renormalize by the factor we determined above 20 = 2 () to obtain the preceding result.

There is a question here about what choice of normalization is most useful. If the three-dimensional random

plane wave normalization is used, and the  = 0 component is simply extracted, then this result for the

projection is obtained. If, on the other hand, we normalize the  = 0 component alone, then preceding

result with the 20 factor is obtained.

3.5.5 Comparison Of Scar And Random Plane Wave Projections

Let us compare the flat limit Λ+ → 1 of the scar projection

1 ()→ 2

1 + exp (−) (189)

with the preceding elliptic scar result

 =
(Λ+ − 1)¡p
Λ+ + 1

¢2
1 () =

2

1 + exp (−)
4 () arcsin2 ()

ln (Λ+)
and with the trigonometric projection of the axisymmetric random plane wave result

 () = 1− 4


sin2 (4)

2
+
2


Si (2)

where

 = 2 ( − ) ln (Λ+) =  ln (Λ+) (190)

For example with  = 2 = 2 m and  = 10 m we find

 = 
p
1 + ≈ 33166 m

Λ+ =

µ
+ 

− 

¶2
≈ 347198

This comparison is shown in Figure 6. Notice that there is a sharper cutoff for the cavity scar field than for

the random plane wave field. However there is no peak near  = 0, where the cavity mode frequency aligns

with the scar frequency  → . There is of course the common axisymmetric enhancement 
2
0 = 2 ()

(analogous to the factor of two increase in the 2D even bowtie).

Note that for  = 1 we find
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Figure 6. Comparison of projections of the random plane wave field and the cavity field as a function of

the difference of cavity modal frequency and scar frequency.
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Figure 7. Comparison of projections of the random plane wave field and the cavity field as a function of

the difference of cavity modal frequency and scar frequency for a smaller radius of curvature at the ends of

the periodic ray trajectory.

Λ+ =

µ
+ 

− 

¶2
≈ 347198 and 139282

the comparison of which is shown in Figure 7.

Somewhat surprisingly the elliptic projection and flat limit projections overlay. To understand why let

us plot the quantity

 (Λ+) =
4 () arcsin2 ()

ln (Λ+)
(191)

as a function of Λ+. We see in Figure 8 that it is nearly unity for a very large range of stability exponents.

4 VECTOR TREATMENT OF AXISYMMETRIC BOWTIE

We now turn to the consideration of the vector electromagnetic problem. We first investigate the

properties of a quasirectangular coordinate system [5] based on the prolate spheroidal system. We then

construct the high frequency approximate solution for the Hertz potentials in this system. The vector

electromagnetic energy theorem is used to normalize the eigenfunctions in this system. The vector random

plane solution is constructed in three dimensions and for the axisymmetric case. Projections of the

scar theory and random plane waves are compared to electromagnetic numerical simulations using an

axisymmetric code. The field at various locations in the cavity is also compared to the random plane wave

construction.

72



0 20 40 60 80
L+

0.95

0.96

0.97

0.98

0.99

1.00

F
(L

+
)

Figure 8. The quantity  (Λ+) is very close to unity.
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4.1 Unit Vectors in Prolate Spheroidal Coordinates

It will be useful in the next subsection to have the relations between the prolate spheroidal unit vectors

and the Cartesian unit vectors which are now given. The prolate spheroidal and Cartesian coordinate

systems are related by

 =  cos =  sinh  cos  cos

 =  sin =  sinh  cos  sin

 =
p
2 + 2 =  sinh  cos 

 =  cosh  sin 

The position vector in Cartesian coordinates is

 =  +  +  (192)

The unit vectors can be found by differentiation [10]

¯̄̄̄




¯̄̄̄
 =




=




 +




 +






=  cosh  cos  cos +  cosh  cos  sin +  sinh  sin 
where

¯̄̄̄




¯̄̄̄
= 

q
cosh2  cos2  + sinh2  sin2  = 

or

 =
cosh  cos  cos + cosh  cos  sin + sinh  sin p

cosh2  cos2  + sinh2  sin2 
(193)

Similarly

¯̄̄̄




¯̄̄̄
 =




=




 +




 +






= − sinh  sin  cos −  sinh  sin  sin +  cosh  cos 

¯̄̄̄




¯̄̄̄
= 

q
sinh2  sin2  + cosh2  cos2  = 

or
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 =
− sinh  sin  cos − sinh  sin  sin + cosh  cos p

sinh2  sin2  + cosh2  cos2 
(194)

Finally

¯̄̄̄




¯̄̄̄
 =




=




 +






= − sinh  cos  sin +  sinh  cos  cos

¯̄̄̄




¯̄̄̄
=  sinh  cos  = 

or

 = − sin + cos (195)

Of course in this orthonormal system

 ·  =  ·  =  ·  = 1 (196)

 ·  =  ·  =  ·  = 0 (197)

4.2 Quasirectangular Coordinates

It will be useful in the vector problem to introduce a quasirectangular system of coordinates (  ) [5]

 =  cos (198)

 =  sin (199)

where

 =
p
2 + 2 (200)

cos = 
p
2 + 2 (201)

sin = 
p
2 + 2 (202)

We can write

 =  sinh  cos  cos =  cos 
sinh

p
2 + 2p

2 + 2
 (203)
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 =  sinh  cos  sin =  cos 
sinh

p
2 + 2p

2 + 2
 (204)

 =  cosh  sin  =  sin  cosh
p
2 + 2 (205)

Thus the position vector

 =  +  + 
can be used to define the unit vectors [10]

||  =  =

 cos p
2 + 2

"
2p

2 + 2
cosh

p
2 + 2 +

2

2 + 2
sinh

p
2 + 2

#


+
 cos p
2 + 2

"
1p

2 + 2
cosh

p
2 + 2 − 1

2 + 2
sinh

p
2 + 2

#


+
 sin p
2 + 2

 sinh
p
2 + 2 (206)

||  =  =

 cos p
2 + 2

"
1p

2 + 2
cosh

p
2 + 2 − 1

2 + 2
sinh

p
2 + 2

#


+
 cos p
2 + 2

"
2p

2 + 2
cosh

p
2 + 2 +

2

2 + 2
sinh

p
2 + 2

#


+
 sin p
2 + 2

 sinh
p
2 + 2 (207)

We can write that

 ·  =  ·  = 1 (208)

and the cross term is




· 


=
2

2 + 2

"
sin2  sinh2

p
2 + 2 + cos2 

Ã
cosh2

p
2 + 2 − sinh

2
p
2 + 2

2 + 2

!#

=
2

2 + 2

"
sinh2

p
2 + 2 + cos2 

Ã
1− sinh

2
p
2 + 2

2 + 2

!#
(209)

Alternatively we can begin in the prolate spheroidal system with metric coefficients
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 =  = 

q
sinh2  + cos2  = 

q
cos2  + sinh2

p
2 + 2

 =  sinh  cos  =  cos  sinh
p
2 + 2

and differential position vector [10]

 =  +  +  (210)

Therefore

¯̄̄̄




¯̄̄̄
 =




= 




 + 




 + 




 = 




 + 






= − 

2 + 2
 + 

p
2 + 2

 (211)

¯̄̄̄




¯̄̄̄
=

1p
2 + 2

s
2

2

2 + 2
+ 2

2 =
√


=
1



q
2 sin

2 + 2
2 cos2  =





q
sinh2  cos2  sin2 +

¡
sinh2  + cos2 

¢
2 cos2 

=




q
sinh2  sin2 0 sin2 +

¡
sinh2  + sin2 0

¢
2 cos2  (212)

As a check, if we transform the metric coefficients and the prolate spheroidal unit vectors in this expression

to the Cartesian system by means of the results in the preceding subsection we end up with the same unit

vector as the preceding expression. Nevertheless these prolate spheroidal expressions are somewhat simpler.

Thus the other direction becomes

¯̄̄̄




¯̄̄̄
 =




= 




 + 




 + 




 = 




 + 






= 


2 + 2
 + 

p
2 + 2

 (213)

¯̄̄̄




¯̄̄̄
=

1p
2 + 2

s
2

2

2 + 2
+ 2

2 =
√


=
1



q
2 cos

2 + 2
2 sin2  =





q
sinh2  cos2  cos2 +

¡
sinh2  + cos2 

¢
2 sin2 

=




q
sinh2  sin2 0 cos2 +

¡
sinh2  + sin2 0

¢
2 sin2  (214)

Taking the dot product gives
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¯̄̄̄




¯̄̄̄ ¯̄̄̄




¯̄̄̄
 ·  =




· 


=


2 + 2

Ã
2 −

2

2 + 2

!
=



2 + 2
2
µ
sinh2  + cos2  +

sinh2  cos2 

2 + 2

¶
=
√
 (215)

or

 ·  =
2

³
2 − 2

2
´

q
2

2 + 2
22
q
2

2 + 2
22

=

¡
2 + 2

¢ ³
2 − 2

2
´

q
2

2 + 2
2 (2 + 2)

q
2

2 + 2
2 (2 + 2)

=
2
³
2 − 2

2
´
cos sinq

2 sin
2 + 2

2 cos2 
q
2 cos

2 + 2
2 sin2 

=
2
¡
sinh2  + cos2  − sinh2  cos2 2¢ cos sinq

sinh2  cos2  sin2 +
¡
sinh2  + cos2 

¢
2 cos2 

q
sinh2  cos2  cos2 +

¡
sinh2  + cos2 

¢
2 sin2 

=
2
¡
sinh2  + sin2 0 − sinh2  sin2 02¢ cos sinq

sinh2  sin2 0 sin2 +
¡
sinh2  + sin2 0

¢
2 cos2 

q
sinh2  sin2 0 cos2 +

¡
sinh2  + sin2 0

¢
2 sin2 

√
 ·  = 2

¡
sinh2  + sin2 0 − sinh2  sin2 02¢ cos sin (216)

where the metric coefficients are [10]

 =







+








+








(217)

 =







+








+








(218)

 =







+








+








(219)

Of course in the system (  ) it is immediately clear from these representations and the orthogonality of

the prolate spheroidal system that

 ·  =  ·  = 0 (220)

4.2.1 Near The Axis (Orbit)

Note that we expect  to have small values near the orbit. Orthogonality approximately holds in the

coordinate system (  ) if  ≈ . Note that  = 
p
sinh2  + cos2  ∼  = () sinh  cos 

where we must have   1, consistent with  → 0 on the orbit.
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Thus if orthogonality approximately holds, then we can write [10]

 =  +  +  ≈  +  +  (221)

 ≈ 2 (222)

 ≈ 0 (223)

 ≈ 2 (224)

The coordinate relations in this limit 2 = 2 + 2 → 0 (with −2    2) become

 =  sinh  cos  cos =  cos 
sinh

p
2 + 2p

2 + 2
 ∼  cos  (225)

 =  sinh  cos  sin =  cos 
sinh

p
2 + 2p

2 + 2
 ∼  cos  (226)

 =  sinh  cos  ∼  cos  (227)

 =  cosh  sin  =  sin  cosh
p
2 + 2 ∼  sin  (228)

Notice that for −2    2 the positive sign of  points in the direction of positive . The metric

coefficients become

 ∼  cos  ∼  (229)

where

 =  = 

q
sinh2  + cos2  ∼ 

q
cos2  + 2 ∼  cos  (230)

 =  sinh  cos  ∼  cos  (231)

Thus in this approximate limit we can regard them as all equal (except )

 ∼  ∼  =  ∼  = 

q
cos2  + 2 (232)

Note also that

 ·  =
q

2
2 + 2

22
∼ cos (233)
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 ·  = −
q

2
2 + 2

22
∼ − sin (234)

 ·  =
q

2
2 + 2

22
∼ sin (235)

 ·  =
q

2
2 + 2

22
∼ cos (236)

 ∼  cos−  sin (237)

 ∼  sin+  cos (238)

 ∼  cos+  sin (239)

 ∼ − sin+  cos (240)

Cross Products From the preceding results the cross products of the prolate spheroidal unit vectors

are

 ×  =  (241)

 ×  =  (242)

 ×  =  (243)

and the cross products of the quasirectangular unit vectors near the axis are

 ×  ∼  (244)

 ×  ∼  (245)

 ×  ∼  (246)

4.2.2 Transformation of Scalar Parabolic Equation to Quasirectangular System

The preceding parabolic equation in the scalar three-dimensional axisymmetric case was (16) or
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1







µ





¶
+ 2 cos 





+
1

2
2

2
+
¡
22 − 2 sin 

¢
 = 0

This can be transformed from the prolate spheroidal system to this quasirectangular system using





∼ 








+ 








=




 +




 (247)




∼ 






+








= −


 +




 (248)






µ





¶
∼ 



µ



 +






¶
 +





µ



 +






¶


∼ 2

2
2 +




 + 2

2


 +




 +

2

2
2 (249)

2

2
∼ − 



µ
−


 +






¶
 +





µ
−


 +






¶


∼ 2

2
2 − 


 − 2 

2


 − 


 +

2

2
2 (250)

and






µ





¶
+

2

2
∼
µ
2

2
+

2

2

¶¡
2 + 2

¢
= 2

µ
2

2
+

2

2

¶
(251)

as

2

2
+

2

2
+ 2 cos 





+
£
2
¡
2 + 2

¢− 2 sin 
¤
 = 0 (252)

where  is now a function of , , and . This is the same leading order parabolic equation as we find in

the vector case below.

Note that we will later need





∼ 


 +




 =




 cos+




 sin (253)




∼ −


 +




 = −


 sin+




 cos (254)

or
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∼ 




cos− 


sin





∼ 




sin+




cos (255)

4.3 Hertz Potentials

The electromagnetic field is a vector field which in source free homogeneous regions satisfies

∇× = − (256)

∇× =  (257)

∇ · = 0 (258)

∇ · = 0 (259)

and the boundary conditions on the walls (in our case these hold on the end mirrors  = ±0)

 =  =  = 0 (260)

or in the quasi-rectangular system

 =  =  = 0 (261)

We use the electric Hertz potential Π (we can alternatively use the magnetic Hertz potential Π), with

the fields given by

 = ∇×∇×Π (262)

 = −∇×Π
where the Hertz vector satisfies the vector wave equation

−∇×∇×Π +∇ (∇ ·Π) + 2Π =
¡∇2 + 2

¢
Π = 0 (263)

2 = 2

and the electric field is thus given by either (262) or, using (263), by

 = ∇ (∇ ·Π) + 2Π (264)

At high frequencies we can make one of the following sets of approximations [5]
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Π = Φ (265)

Π = 0 = Π (266)

or

Π = Φ (267)

Π = 0 = Π (268)

We cannot satisfy (263) exactly with this approximate choice, so instead we require that the potential Π
(or in the second case Π) satisfies the equation resulting from equating  (or in the second case )

from (262) and (264) [5]. Thus the equation for the potential is [5]

£−∇×∇× (Π) +∇ {∇ · (Π)}+ 2 (Π)
¤ ·  = 0 (269)

or

£−∇×∇× ¡Π¢+∇©∇ · ¡Π¢ª+ 2
¡
Π

¢¤ ·  = 0 (270)

4.3.1 Approximate Orthogonality And Fields

When we assume approximate orthogonality the equations simplify (as given in Vaynshteyn [5]). We

can derive the following equations by using the orthogonal curvilinear coordinate results for gradient,

divergence and curl [10], using the same metric coefficient  for all three coordinates

 = 

q
cos2  + 2 = 

p
cos2  + 2 + 2 ∼  cos  (271)

Note that  =  sinh  cos  ∼  cos  ∼ . The potential Π = Φ then satisfies [5]

½
−∇×

∙
1

2





(Π)− 1

2





(Π)

¸¾
· 

+

½
∇
∙
1

3




¡
2Π

¢¸¾ ·  + 2Π = 0 (272)

or





½
1






(Π)

¾
+





½
1






(Π)

¾

+




∙
1

3




¡
2Π

¢¸
+ 22Π = 0 (273)

or in spheroidal coordinates, using (255)





∼ 




cos− 


sin
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∼ 




sin+




cos

it satisfies





½
1






(Π)

¾
+





½
1






(Π) sin+

1



1






(Π) cos

¾
sin

+
1







½
1






(Π) sin+

1



1






(Π) cos

¾
cos

+




∙
1

3




¡
2Π

¢
cos− 1

3
1







¡
2Π

¢
sin

¸
cos

−






∙
1

3




¡
2Π

¢
cos− 1

3
1







¡
2Π

¢
sin

¸
sin+ 22Π = 0

or





½
1






(Π)

¾
+





½
1






(Π)

¾
+
1



½
1






(Π)

¾

+
1



"
2

2
− 3



µ




¶2#
Π cos

2 +
1



µ
1







¶
Π sin

2 

+
1

2
2Π

2
+ 22Π = 0

or





½
1






(Π)

¾
+





½
1






(Π)

¾
+
1



½
1






(Π)

¾

−1
2
2

2−2

2
Π cos

2 +
1



µ
1







¶
Π sin

2 

+
1

2
2Π

2
+ 22Π = 0 (274)

Using the asymptotic metric coefficient form

 = 

q
cos2  + 2 ∼  cos  = ± sin 0 ∼ ±0

gives





½
1






(Π)

¾
+

2

2
Π +

1






Π
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+
1

2
2Π

2
+ 22Π = 0 (275)

The scalar Helmholtz equation (12) is

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
sinh2  + cos2 

¢
 = 0

and for   1 it becomes

1

cos 





µ
cos 





¶
+

2

2
+
1







+

µ
1

cos2 
+
1

2

¶
2

2
+ 2 cos2  = 0

or

2

2
− tan  


+

2

2
+
1







+2
¡
cos2  −2 sec2  −22

¢
 = 0

The preceding equation for the Hertz potential can be written as

2

2
Π − tan  


Π +

2

2
Π +

1






Π

+
¡
2 cos2  − ¡2 + 1

¢
sec2  −22

¢
Π = 0

Since our main focus is  = 0, in the vector case

2

2
Π − tan  


Π +

2

2
Π +

1






Π

+
¡
2 cos2  − sec2 ¢Π = 0 (276)

The  = 0 scalar case is

2

2
− tan  


+

2

2
+
1







+2 cos2  = 0 (277)

As long as 2 cos4   1 these two are the same. As the focus is approached  → 2 this equivalence

eventually fails; but we are also not sure about the accuracy of the equation for Π in this limit since the

asymptotic orthogonality of the quasirectangular coordinates breaks down there.
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Note that the first and second terms of the quasirectangular form are from (−∇×∇×Π) ·  and the
third term results from (∇∇ ·Π) · . The fields are

2 = 




∙
1

3




¡
2Π

¢¸
+ 22Π (278)

2 = 




∙
1

3




¡
2Π

¢¸
(279)

2 = 




∙
1

3




¡
2Π

¢¸
(280)

and

2 = 0



(Π) (281)

2 = −0 

(Π) (282)

Alternatively the potential Π = Φ satisfies





½
1






(Π)

¾
+





½
1






(Π)

¾

+




∙
1

3




¡
2Π

¢¸
+ 22Π = 0 (283)

The fields are

2 = 




∙
1

3




¡
2Π

¢¸
(284)

2 = 




∙
1

3




¡
2Π

¢¸
+ 22Π (285)

2 = 




∙
1

3




¡
2Π

¢¸
(286)

and

2 = −0 


(Π) (287)

2 = 0



(Π) (288)

4.3.2 Asymptotic Solution Of Quasirectangular Equations

Let us take
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Π = Φ = (  )  sin  + ( −) − sin  (289)

and insert this into

2

2
Π +

µ
1







¶



Π +Π





µ
1







¶
+





½
1






(Π)

¾

+




∙
1

3




¡
2Π

¢¸
+ 22Π = 0 (290)

then  satisfies

2

2
+

µ
2 cos  +

1







¶




+




∙
1

3




¡
2

¢¸
+





½
1






( )

¾

+

∙
22 − 2 cos2  −  sin  +

µ
 cos  +





¶µ
1







¶¸
 = 0

or
1







µ





¶
+ 2 cos 





+
1







µ






¶
+
1







µ






¶

+

∙
22 − 2 cos2  −  sin  +

µ
 cos  +





¶µ
1







¶
+





µ
1







¶
+ 





µ
2

2




¶¸
 = 0

or

1







µ





¶
+ 2 cos 





+
1







µ






¶
+
1







µ






¶

+

∙
22 −  sin  +

µ
 cos  +





¶µ
1







¶
+





µ
1







¶
+ 





µ
2

2




¶¸
 = 0

We now neglect the first term 22 and let (except in the 22 term)

 ∼  cos 

giving

(2 cos  − tan ) 


+
2

2
+

2

2
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+
£
2
¡
2 + 2

¢− 2 sin  − sec2 ¤ = 0 (291)

Now take

 =  ()Ψ (  ) (292)

where we want

 0


=

2 sin  + sec2 

2 cos  − tan 
or

1 = cos  +


2
tan  (293)

Using this along with the transformation

 =

Z 

0



cos 
= arcsinh (tan ) = ln (tan  + sec ) (294)

gives

µ
2 − tan 

cos 

¶
Ψ


+

2Ψ

2
+

2Ψ

2

+
£
2
¡
2 + 2

¢¤
Ψ = 0 (295)

We could also have dropped the terms tan  and sec2  terms compared to the  cos  and the  sin  term

(these terms could be accounted for by higher order terms in the asymptotic series just like the 22

term and the higher order terms  and ) to obtain directly

2 cos 



+

2

2
+

2

2

+
£
2
¡
2 + 2

¢− 2 sin 
¤
 = 0 (296)

which is the same as the preceding scalar case. For this leading term approach we would take

 =
1

cos 
Ψ (  ) (297)

and obtain the same equation for Ψ. Scaling the independent variables by letting

 =
p
2 (298)

 =
p
2 (299)

gives
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Ψ


+

2Ψ

2
+

2Ψ

2
+
1

4

¡
2 + 2

¢
Ψ = 0 (300)

Separating the variables

Ψ (  ) =  () () () (301)

gives

µ







¶
+

µ
1



2
2

+ 24

¶
+

µ
1



2
2

+ 24

¶
= 0

Each parenthetical term is independent of the variables associated with the others and therefore each equals

a constant. We take the first term as 




= −
or

 = − (302)

Then we can write

2
2

+
¡
 + 24

¢
 = 0 (303)

2
2

+
¡
 + 24

¢
 = 0 (304)

where

 +  =  (305)

and

Ψ (  ) = − ( ) 
− ( ) = − ( ) ( )

This is a form of the equation of the parabolic cylinder functions

2

2
+

µ
2

4
+ 

¶
 = 0 (306)

The solution that is outgoing in  is [1]

+ ( ) = −(+2)4
³
− −4

´
(307)

where  ( ) is the standard solution [11]. Following [1] the total transverse solution is taken as the

incident plus reflected form

 ( ) = Re
£
+ ( ) + Φ0∗+ ( )

¤
(308)
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Figure 9. Illustration of reflected wave from outer region returning with phase Φ0.

where the constant  is used for normalization. The transverse boundary condition in  is a reflection with

a random phase Φ0
¡
2
¢
which was introduced by Antonsen to match to the chaotic region of the cavity;

it describes the phase relation between a wave leaving the vicinity of the unstable periodic orbit and one

returning [1] with the variation of the th component along the orbit. Figure 9 schematically illustrates

a wave bouncing back and forth between mirrors in the region of the scarred orbit; it leaves the vicinity

of the orbit and eventually returns from the outer chaotic region with transverse reflection phase Φ0
¡
2
¢
.

(For purposes of simplification this figure does not include the vertical evenness of the cavity, which

confines the wave leaving and the wave reflected to either the upper half or lower half of the cavity.) Thus

 =  ( ) and  =  ( ) are elliptic cylinder functions like in the two-dimensional case [6], [1].

The perfect conductor boundary conditions imply

 =  =  = 0   = ±0 (309)

or using the preceding relations for the field in terms of the Hertz potential

2 = 




∙
1

3




¡
2Π

¢¸
+ 22Π

2 = 




∙
1

3




¡
2Π

¢¸

2 = 0



(Π)

or
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2 = 




∙
1

3




¡
2Π

¢¸

2 = 




∙
1

3




¡
2Π

¢¸
+ 22Π

2 = −0 


(Π)

We see that we must take the potential to vanish on the mirrors for the perfect conductor boundary

conditions

Π = Π = 0   = ±0 (310)

Then in the present case

− sin 0Ψ ( −0) =  sin 0−(2−1)Ψ (  0)
or

Ψ ( −0) = 2−(2−1)Ψ (  0)
or

1 = 2−(2−1)−20

2 = (2− 1) + 20 = (2− 1) + 2 ( + )0
or

( − )  = 0 =  ln (tan 0 + sec 0) =  ln

r
+ 

− 

= 
1

4
ln (Λ+) (311)

where

Λ± =
µ
+ 

− 

¶±2
=

∙
1 + ±

q
(1 + )

2 − 1
¸2

are the stability exponents of the orbit and

 = (− 12)   = 1 2  (312)

where  is a large integer representing the number of half wave variations along the  axis. The quantities

 and  are the transverse numbers of half wave variations (not necessarily integers in this unstable case,

and usually random functions versus eigenvalue), where  = + . The preceding result thus connects the

eigenvalue  minus the wavenumber in , or , to the sum of the transverse variations.
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Π = 2 ( ) ( ) cos ( sin  − )  cos 

 ( ) = Re
£
+ ( ) + Φ0∗+ ( )

¤
 ( ) = Re

£
+ ( ) + Φ0∗+ ( )

¤
Note that if the eigenfunction Π is chosen to be even with respect to the normals of the orbit  and 

(say, perfect magnetic conductor or PMC at  = 0 and perfect electric conductor or PEC at  = 0, resulting

in  6= 0,  = 0,  = 0,  = 0,  6= 0 at  =  = 0) where

2 = 




∙
1

3




¡
2Π

¢¸
+ 22Π ∼

µ
2

2
+ 22

¶
Π =

µ
2

2

2
+ 22

¶
Π

2 = 




∙
1

3




¡
2Π

¢¸ ∼ 2


Π = 2

2


Π

2 = 




∙
1

3




¡
2Π

¢¸ ∼ 2


Π =

p
2

2


Π

2 = 0



(Π) ∼ 0




Π = 0

p
2




Π

2 = −0 


(Π) ∼ −0 


Π = −0 


Π

then we have the resonance conditions

Re
£
 0+ ( 0) + Φ0∗0+ ( 0)

¤
= 0

Re
£
 0+ ( 0) + Φ0∗0+ ( 0)

¤
= 0

or

− 0+ ( 0)
∗0+ ( 0)

= Φ0

− 0+ ( 0)
∗0+ ( 0)

= Φ0

Using this with the Wronskian

 0+
∗
+ − ∗0++ = 

gives

Re
£
+ ( 0) + Φ0∗+ ( 0)

¤
=
Im
£
 0+ ( 0)

¤¯̄
 0+ ( 0)

¯̄2
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Re
£
+ ( 0) + Φ0∗+ ( 0)

¤
=
Im
£
 0+ ( 0)

¤¯̄
 0+ ( 0)

¯̄2
On axis  =  = 0 or  =  = 0 and

 = arcsinh (tan ) =
1

2
ln

µ
+ 

− 

¶

sin  = 

cos  =
p
1− 22

Π = 2 ( 0) ( 0) cos

∙
 − 

1

2
ln

µ
+ 

− 

¶¸

p
1− 22

= 22
Im
£
 0+ ( 0)

¤¯̄
 0+ ( 0)

¯̄2 Im
£
 0+ ( 0)

¤¯̄
 0+ ( 0)

¯̄2 cos [ + 0 ()] 
p
1− 22

where

0 () =
1

2


½
ln

µ
+ 

− 

¶
()− ln

µ
+ 

− 

¶¾
This raises the question: how are the two variations  and  (as well as the reflection coefficient

phases Φ0 and Φ0) connected to the azimuthal quantum number ? In the axisymmetric case we might

argue that the two dimensional randomness is collapsed to one dimension, and therefore these are related.

In fact our main interest is in the lowest transverse mode ( = 0) with the vector nature put in through

the selected component of the Hertz potential. Does this mean that in the axisymmetric geometry we can

take  =  (and Φ0 = Φ0)?

Alternatively for the other polarization

Π = Φ = (  )  sin  + ( −) − sin 

2

2
Π +

1










Π +Π





½
1







¾
+





½
1






(Π)

¾

+




∙
1

3




¡
2Π

¢¸
+ 22Π = 0

or

1







µ





¶
+ 2 cos 
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+
1







µ






¶
+
1







µ






¶

+

∙
22 +

µ
 cos  +





¶µ
1







¶
+





µ
1







¶
+ 





µ
2

2




¶¸
 = 0

and the procedure follows the same lines as in the preceding polarization state. We might expect that for

arbitrary outer chaotic regions both polarization states would be generated and coexist.

In the next section we will find it more convenient to solve for the quasirectangular Hertz potential

component in the prolate spheroidal system.

4.3.3 Asymptotic Solution Of Parabolic Equation In Prolate Spheroidal System

The parabolic equation in quasirectangular coordinates for the Hertz potential component Π or Π
(or  ) resulting from the vector wave equation is asymptotically the same (particularly for the  = 0

mode) as that arising from the three dimensional scalar Helmholtz equation. Hence we can transform the

parabolic equation for the Hertz potential from the quasirectangular system back to prolate spheroidal

coordinates.

Even Case The potential is then

Π =
2

cos 
 (  ) cos ( sin  − )

½
cos ()

sin ()

¾
(313)

 = 

√
2


Re
£
+ + Φ0 ∗+

¤
(314)

+ (  ) =22

¡−22¢ (315)

 =
p
2 (316)

− 0 = (− 12) =    = 1 2 3  (317)

and the same holds for the Π polarization state.

Odd Case As in the scalar case for the mode that is odd along the orbit

Π =
2

cos 
 (  ) sin ( sin  − )

½
cos ()

sin ()

¾
(318)

where

− 0 =  =    = 1 2 3  (319)

Behavior Of Zero Mode Near Orbit Since our main focus will be  = 0 we now examine the
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behavior of the zero mode

0 = 0

√
2


Re
£
+ + Φ0 ∗+

¤
near the orbit at  → 0

+ (  0 ) ∼ −
¡−22¢12 1

Γ (12− 2)

£
ln
¡−22¢ ¡1− 24

¢
+ (12− 2)− 2 (1) + ¡24¢ {− (12− 2) + 2 (1) + 2}+

¡
4 ln 

¢¤
 0
+ (  0 ) ∼ 

1

2

¡−22¢−12 1

Γ (12− 2)

£
ln
¡−22¢+ { (12− 2)− 2 (1)}+ 2 +

¡
2 ln 

¢¤
  → 0   = 0

Now taking


0


= 0
√
2Re

£
 0
+ + Φ0 ∗0+

¤− 0

If this is set to zero as  → 0 to solve for the reflection phase

Re

∙µ
 0
+ −

1


+

¶
+ Φ0

µ
 0
+ −

1


+

¶∗¸
→ 0   → 0

we find the same result as in the scalar case

Φ0 = −
¡
 0
+ − 1


+

¢¡
 0
+ − 1


+

¢∗ = 
Γ (12 + 2)

Γ (12− 2)
+

¡
2
¢

Such a condition on the electromagnetic field implies that ( = 0 and  = 0 as  → 0) by means of

2 ∼ 2


Π =





p
2

2


Π

2 ∼ 0



Π = 0





p
2




Π

Thus near  → 0 we again find

0 (0 ) = 0Re
h
24Γ (12 + 2)

i
(320)

and in general

0 (  ) ∼ 0

√
2


Re

∙
− ¡−22¢12 1

Γ (12− 2)
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©
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¡−22¢ ¡1− 24

¢
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¡
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©
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¡
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1− 24
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∼ 0Re

∙
−−4 1

Γ (12− 2)

©
ln
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1− 24
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¡
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∼ 0Re

∙
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1
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©

¡
1− 24

¢
+ ( (12 + 2)−  (12− 2)) +

¡
24

¢
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¡
4 ln 

¢ª¤

∼ 0Re

∙
4

Γ (12− 2)

¸
[ −  { (12 + 2)−  (12− 2)}] ¡1− 24

¢
+

¡
4 ln 

¢
Noting that

 (12 + 2)−  (12− 2) =  cot (12− 2)

= 
cos (12− 2)

sin (12− 2)
= 

sin (2)

cos (2)
= −



sinh (2)

cosh (2)
=  tanh (2)

Then

0 (  ) ∼ 0Re

∙
4

Γ (12− 2)

¸
 [1 + tanh (2)]

¡
1− 24

¢
+

¡
4 ln 

¢
∼ 0Re

h
4Γ (12 + 2) cosh (2)

i
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¡
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¡
4 ln 
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∼ 0Re
h
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i
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0 (  ) ∼ −0Re

h
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i
2

¡
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h
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¡
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In addition
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(  ) = 0
√
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∙µ
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+

¶
+ Φ0

µ
 0
+ −

1


+

¶∗¸


20


(  ) ≈ 0
√
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∙
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Φ0
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 0
+ −

1


+

¶∗¸
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√
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∙
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Γ (12 + 2)

Γ (12− 2)

µ
 0
+ −

1


+

¶∗¸
and
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(0 ) ≈ 20Re
∙

4

Γ (12− 2)

¸
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4.4 Vector Normalization Condition

The method used for normalization of the eigenfunction components by Antonsen [1] is now put into

the framework of the electromagnetic energy theorem [13]

∇ ·
µ



×∗ +∗ × 



¶
= 

∙
 ()


 ·∗ +  ()


 ·∗

¸
− 


· ∗ − ∗ · 


(321)

Integrating over the cavity volume and using the divergence theorem (and inserting the electrical properties

of free space)

I


µ



×∗ +∗ × 



¶
·  = 

Z


(0 ·∗ + 0 ·∗)  −
Z


µ



· ∗ +∗ · 



¶


where the unit vector  in the divergence theorem points out of the cavity region.

4.4.1 Source Free Form Of Theorem

The source free form is thus
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I


µ



×∗ +∗ × 



¶
·  = 

Z


(0 ·∗ + 0 ·∗)  (322)

Using × = 0 on the cavity walls, the surface integral on the cavity boundary vanishes

Z


µ



×∗ +∗ × 



¶
·  =

Z


∙µ
× 



¶
·∗ + (×∗) · 



¸
 = 0

However a part of the closed surface  is taken to surround the scarred orbit  =
p
2 + 2 → 0

Z


µ



×∗ +∗ × 



¶
·  = 

Z


(0 ·∗ + 0 ·∗)  (323)

where the unit normal here  points into the scarred region. We take the fields to be [17], [18]

 = ∇×∇×Π = ∇ (∇ ·Π) + 2Π

 = −∇×Π
where for the first polarization state [5]

Π = Φ

Π = Π = 0

Note that as  =
p
2 + 2 → 0 the fields become  6= 0,  = 0,  = 0,  = 0,  6= 0 at  =  = 0,

where
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2 = 0



(Π) ∼ 0




Π = 0

p
2




Π

2 = −0 


(Π) ∼ −0 


Π = −0 


Π

Thus in the boundary integral with (note that the inward unit normal is oppositely directed from the

prolate spheroidal unit vector)  = − and
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2
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22
∼ cos

 ·  =
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2
2 + 2
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∼ sin

 ×  ∼ 

 ×  ∼ 

 ×  ∼ 
we note that ×∗ captures  ×∗  = −

∗
 ,  ×∗ = 

∗
,  ×∗  = 

∗
 

and  ×∗ = −
∗
. But at the center  = 0,  = 0,  = 0 and only 

∗
 survives, but is

orthogonal to  =  . Thus the  derivative is responsible for a contribution
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Noting that  is odd in  =
√
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√
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appears that these will contribute. The  derivatives may not have even or odd behavior anyway. Thus
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Transforming back to prolate spheroidal coordinates
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and for the axisymmetric case  = 0
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Therefore we find (noting that  ∼  and  ∼ )
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to evaluate the last term in brackets. Now from the function

Π =
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where we have used

sinh = tan 

cosh = sec 

tanh = sin 

 = sec 

we find
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Averaging over the sinusoids for large  gives
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For the time being we retain only the leading order 2 terms
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∼ 0
21620Re
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Γ (12− 2)
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4Γ (12 + 2)

i
20

∼ 0
4820

Φ0

2
Re2

£
4Γ (12 + 2)

¤
|Γ (12− 2)|2

2 ln (Λ+)

The phase Φ0 indicates the reflection phase of the th component. Again following Antonsen [1] the

average derivative is set by taking ∆Φ0 = 2 and the spacing between eigenvalues to be given by the Weyl

asymptotic result for the vector case ∆ ∼ 2
¡
2

¢
, or ∆2 = 2∆ ∼ 22 ( ) [16]. Note in the

acoustic case ∆ ∼ 22 ¡2 ¢ [15] and ∆2 = 2∆ ∼ 42 ( ). In our case we are interested in the scar
amplitude on axis (like the even-even eigenvalues in the 2D problem). Setting the total cross sectional area

of the axisymmetric cavity to  = 20

1

2
 = 0 =

Z ∞
−∞

 () 

The modal spacing in the scalar case is (this corresponds to a single azimuthal parity since the two parities

are degenerate)

2


= 8 (324)

Note that we will take half this spacing for the electromagnetic vector modes (again this corresponds to a

single azimuthal parity)

2


= 4 (325)

Note that by choosing the eigenvalue spacing to be one half that of the scalar case, results in a one half

being inserted into the theoretical strength of the square amplitude. However, we are picking only the even

modes with respect to  so that (this symmetry doubles the square amplitude)

2


= 8

Thus we take [1]

µ
Φ0

2

¶−1
=
4


2

where  is the Gaussian random variable with unit variance discussed previously. If we had used the

eigenvalue spacing for the 3D electromagnetic cavity ∆2 = 2∆ ∼ 22 ( ), but even along the 
direction, we would have obtained

µ
Φ0

2

¶−1
=
2

 
2

We recall that in the 2D case we introduced a factor of two (we also used a factor of two for evenness

along the orbit) to account for evenness about the normal to the orbit, but here we are assuming that the

axisymmetric case (say cos parity) is handled by starting with the axisymmetric 3D scalar problem.

Thus the energy theorem along with the outer phase derivative connects the normalization constant 0
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with the integration of the field energy throughout the volume

Z


(0 ·∗ + 0 ·∗) 

∼ 08

µ
Φ0

2

¶
Re2
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4Γ (12 + 2)

¤
|Γ (12− 2)|2

2 ln (Λ+)
¡
20

¢2
(326)

We suspect there is an equal contribution to the energy from the corresponding other component of electric

Hertz potential (the magnetic Hertz potential is constructed later), but this would correspond to the other

degenerate parity of the field in azimuth. Note that the scalar normalization was

Z


||2  ∼ 4Re
2
£
4Γ (12 + 2)

¤
|Γ (12− 2)|2

µ
Φ0

2

¶
2 ln (Λ+) 

2
0

Thus the factor of two apparent here in the vector case results from including equal contributions from the

electric and magnetic energies. In the scalar case we took

Z


||2  = 1

In the vector case we will take

Z


(0 ·∗ + 0 ·∗)  = 20 (327)

Because the modes in the vector case are twice as dense as in the scalar case, we actually end up with one

half the squared amplitude of the scalar case.

4.4.2 Summary of Results

A summary of the results for the axisymmetric mode  = 0 are (note that this mode is a vector mode,

with electric field on axis  =
p
2 + 2 → 0 polarized in the  direction).

Π =
2

cos 
0 (  ) cos ( sin  − ) (328)

0 = 0

√
2


Re
£
+ + Φ0 ∗+

¤
(329)

+ (  0 ) =20

¡−22¢ (330)

 =
p
2 (331)

− 0 = (− 12) =    = 1 2 3  (332)

Note that
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0 (0 ) = 0Re
h
24Γ (12 + 2)

i
  → 0 (333)

and near the orbit

0 (  ) ∼ 0Re
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The outer region reflection phase we take [1] to be

µ
Φ0

2

¶−1
=
4


2 (334)

where  is the cross sectional area of the axisymmetric cavity and where  is the Gaussian random variable

with unit variance and density

 () =
1√
2

−
22 (335)

The normalization constant 0 is connected to the volume energy by means of
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∼ 8
µ
Φ0
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(336)

Note that the scalar form of the normalization was similar

Z


||2  ∼ 4
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The fields near the axis are

 ∼
µ
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 ∼ −0





Π ∼ −0
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Π

where

 = 

q
cos2  + 2 = 

p
cos2  + 2 + 2 ∼  cos 
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 =
p
2 =

p
2 cos

 =
p
2 =

p
2 sin

 =
q
2 + 2 =

p
2

In the case where the eigenfunction is odd with respect to the orbit center

− 0 =  =    = 1 2 3 

Π (  ) =
2

cos 
0 (  ) sin ( sin  − )

Cylindrical Form If we transform back to Cylindrical coordinates on axis, then we rewrite the

potential

Π (0 ) =
2
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0 (0 ) cos ( sin  − )

tanh = sin 

 →  sin 

 = Arctanh () =
1

2
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¶
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0 () = ( − )  − 1
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¶
− ln

µ
+ 

− 

¶¾
(339)

where

0 =
1

2
ln

µ
+ 

− 

¶
=
1

4
ln (Λ+)
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Λ± =
µ
+ 

− 

¶±2
(340)

and the separation constant  is

 = ( − ) 0 = 2 ( − ) ln (Λ+) (341)

 = (− 12)

In the case where the solution is odd along the orbit

Π (0 ) =
20 (0 )p
1− 22

sin [ + 0 ()]

− 0 =  =    = 1 2 3 

4.5 Vector Scar Projection

We now discuss the projections of the vector scar solution along the orbit.

4.5.1 Trigonometric (Fourier) Projection

The trigonometric projection is taken as

 = 2

Z 

0

cos () (0 ) 

∼ 2
Z 

0

cos () 
2Π (0 )  (342)

Using

Π (0 ) =
20 (0 )p
1− 22

cos [ + 0 ()]

gives

 ∼ 420 (0 )
Z 

0

cos () cos [ + 0 ()]
p

1− 22
(343)

∼ 220 (0 )
Z 

0

{cos (0 ()) + cos [2 + 0 ()]} p
1− 22

Averaging over the trigonometric functions gives
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 ∼ 220Re
h
24Γ (12 + 2)

i Z 

0

cos (0 ())
p

1− 22

where

0 () =
1

2


½
() ln

µ
+ 

− 

¶
− ln

µ
+ 

− 

¶¾

0 (0 ) = 0Re
h
24Γ (12 + 2)

i
(344)

In the limit where    we find that 0 ()→ 0 (the same as  → 0) and the amplitude divergence factorp
1− 22 → 1 so that

 ∼ 220Re
h
24Γ (12 + 2)

i


Then using the normalization condition (we have changed this to twice 0, since the electric and magnetic

energies are assumed to be equal, in order to be more consistent with the scalar normalization)

20 =

Z


(0 ·∗ + 0 ·∗) 

∼ 8
µ
Φ0

2

¶
Re2

£
4Γ (12 + 2)

¤
|Γ (12− 2)|2

2 ln (Λ+) 0
¡
20

¢2
µ
Φ0

2

¶−1
=
4


2

20 =
 |Γ (12− 2)|p

 ln (Λ+)Re
£
4Γ (12 + 2)

¤
4

we find

 ∼ 2 |Γ (12− 2)| 4p
 ln (Λ+)

Now taking


 2



®
= 21 ()  (345)

we find

1 () =
|Γ (12− 2)|2 2 (2)

 ln (Λ+)

=
2 (2)

cosh (2) ln (Λ+)
=

2

(1 + −) ln (Λ+)
(346)

where we have used
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|Γ (12 + 2)|2 = 

cosh (2)
Now let us use

ln (Λ+) = 2 ln

µ
+ 

− 

¶
∼ 2

to yield

1 () ∼ 1

(1 + −)

4.5.2 Elliptic System Projection

If we take the projection to be defined by a surface integral about the scar (the quasirectangular unit

vector  is part of this projection operator) we will obtain (note that this limit definition of the integration

around the scar produces a definition without the extra amplitude divergence factors in the kernel of the

projection operator)

 = lim
→0

1



Z 0

−0

1

2

Z 2

0

cos ( sin  − )

cos 
 (  )

= lim
→0

1



Z 0

−0

1

2

Z 2

0

cos ( sin  − )

cos 
2Π ( ) (347)

where

 ∼
µ
1

2
2

2
+ 2

¶
Π ∼ 2Π

and the Hertz potential on axis is

Π (0 ) =
2

cos 
0 (0 ) cos ( sin  − )

tanh = sin 

( − )  = 0 =  ln (tan 0 + sec 0) =  ln

r
+ 

− 

= 
1

4
ln (Λ+)

and the metric coefficients near the axis are

 =  = 

q
sinh2  + cos2  ∼ 

q
cos2  + 2 ∼  cos 
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 =  sinh  cos  ∼  cos 

Thus we find

 ∼ 220 (0 )
Z 0

−0
cos2 ( sin  − ) 

Now for large  we average over the sinusoid and approximate the integration as 0

 ∼ 2200 (0 ) (348)

where

0 (0 ) = 0Re
h
24Γ (12 + 2)

i
Inserting the amplitude coefficient from the energy theorem

20 =

Z


(0 ·∗ + 0 ·∗) 

∼ 8
µ
Φ0

2

¶
Re2

£
4Γ (12 + 2)

¤
|Γ (12− 2)|2

2 ln (Λ+) 0
¡
20

¢2
µ
Φ0

2

¶−1
=
4


2

or with the volume integral taken as 20

20 = 
−4 |Γ (12 + 2)|p

 ln (Λ+)Re
£
4Γ (12 + 2)

¤
gives

0 (0 ) = 
4 |Γ (12 + 2)|

2
p
 ln (Λ+)

Thus the projection is

 ∼ 2 
4 |Γ (12 + 2)|p

 ln (Λ+)
0

Now using

0 = arcsin ()

and

|Γ (12− 2)|2 = 

cosh (2)
we find
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 2



®
= 42

2 |Γ (12 + 2)|2
 ln (Λ+)

20

= 4
2

 ln (Λ+) cosh (2)
arcsin2 ()

=


 ln (Λ+) (1 + −)
8 arcsin2 ()

Then with


 2



®
= 21

we find

1 () =
()

ln (Λ+) (1 + −)
8 arcsin2 () (349)

The limit    gives

ln (Λ+) = 2 ln

µ
+ 

− 

¶
∼ 2

and

1 ()→ 2

ln (Λ+) (1 + −)
∼ 1

1 + −

4.5.3 Scar (Galerkin) Projection

From an application point of view we may want a the field projection taken as a simple line integral

along the orbit

 =

Z 0

−0

cos ( sin  − )

cos 
 (0 )

=

Z 0

−0

cos ( sin  − )

cos 
2Π (0 ) (350)

where the Hertz potential on axis is

Π (0 ) =
2

cos 
0 (0 ) cos ( sin  − )

tanh = sin 

 = sec 
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0 =
1

2
ln

µ
+ 

− 

¶
=
1

4
ln (Λ+)

( − )  = 0
and the metric coefficient near the axis is

 = 

q
sinh2  + cos2  ∼ 

q
cos2  + 2 ∼  cos 

Thus we find

 = 2
20 (0 )

Z 0

−0
cos2 ( sin  − )



cos 

= 220 (0 )

Z 0

−0
cos2 ( tanh − ) 

Now for large  we average over the sinusoid and approximate the integration as 0

 ∼ 2200 (0 )
Plugging in

0 (0 ) = 
4 |Γ (12 + 2)|

2
p
 ln (Λ+)

gives

 ∼ 1
2
4 |Γ (12 + 2)|

r
 ln (Λ+)


Now using

|Γ (12− 2)|2 = 

cosh (2)
we find


 2



®
=

2

cosh (2)

 ln (Λ+)

4
=

1

1 + −
 ln (Λ+)

2
Then taking 

 2


®
= 21

gives

1 =
() ln (Λ+) 2

1 + −

ln (Λ+) = 2 ln

µ
+ 

− 

¶
Note that if we take the limit    then ln (Λ+) ∼ 2 and
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1 ∼ 1

1 + −

4.5.4 Scar (Galerkin) Projection Using Cartesian Form

This can also be carried out using the Cartesian form of the asymptotic solution

 = 2

Z 

0

¡
1− 22

¢−12
cos [ + 0 ()] (0 ) 

∼ 2
Z 

0

¡
1− 22

¢−12
cos [ + 0 ()] 

2Π (0 )  (351)

where

0 () =
1

2


½
ln

µ
+ 

− 

¶
()− ln

µ
+ 

− 

¶¾

Π (0 ) =
20 (0 )p
1− 22

cos [ + 0 ()]

In the case where the parity along the orbit is odd the projection is taken as

 = 2

Z 

0

¡
1− 22

¢−12
sin [ + 0 ()] (0 ) 

∼ 2
Z 

0

¡
1− 22

¢−12
sin [ + 0 ()] 

2Π (0 )  (352)

Notice that the only difference between the 3D scalar projections and these 3D vector projections is that

 is replaced by 2Π. Because the vector normalization condition is the same for 
20 as the scalar

condition for 0, the statistics of the projection will be similar. The actual potential is made up of a sum of

different values of , but because the th components are asymptotically orthogonal at high frequencies, if

the eigenfunction is made up of a sum

Π (0 ) ∼
X


Π (0 ) (353)

this projection will pick out the  term of the sum

 ∼ 420 (0 )
Z 

0

¡
1− 22

¢−1
cos2 [ + 0 ()]  (354)

Now averaging over the rapidly varying  we find

 ∼ 220 (0 )
Z 

0

¡
1− 2

¢−1
 = 20 (0 )

Z 

0

µ
1

1− 
+

1

1 + 

¶
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∼ 0Re
h
24Γ (12 + 2)

i
2 ln

¯̄̄̄
1 + 

1− 

¯̄̄̄

∼ 
4 |Γ (12 + 2)|p

 lnΛ+
 ln

¯̄̄̄
+ 

− 

¯̄̄̄

∼ 1
2
4 |Γ (12 + 2)|

r
 ln (Λ+)


where in the preceding result we have chosen the normalization

Z


(0 ·∗ + 0 ·∗)  = 20

to find the amplitude as given by

8

µ
4


2
¶−1 Re2 £4Γ (12 + 2)

¤
|Γ (12− 2)|2

2 ln (Λ+)
¡
20

¢2 ∼ 2
Recall that in the 3D scalar case we had set

Z


||2  = 1

In this 3D vector case, taking the average of the square, yields


 2



® ∼ 2 |Γ (12 + 2)|2  ln (Λ+)
4

∼ 2

cosh (2)

 ln (Λ+)

4
where we used

|Γ (12− 2)|2 = 

cosh (2)
Now writing


 2



®
= 21 () 

gives

1 () =
1

1 + −
() ln (Λ+) 2

the same result.

Trigonometric Projection Limit If we expand for   

1

2
ln (Λ+) = ln

µ
+ 

− 

¶
∼ 2 = 

we obtain the 3D trigonometric projection
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 2



®
= 21 ()  (355)

where

1 () ∼ 1

1 + −

Recall that in 2D we had taken

D√
 2



E
= 21 () 

where

1 () =
2
p
 exp (2) |Γ (14− 2)|2

(2) ln (Λ+)
and in the    limit

1 () ∼ 4

(1 + −)
p


where we had set

Z


||2  = 1

4.6 Vector Random Plane Wave

The random plane wave construction is now discussed in the 3D vector formulation. Initially this is not

constructed in axisymmetric geometry but in full 3D. It is compared with the axisymmetric  = 0 solution

only because this is the solution that exists as the scar orbit is approached in the electromagnetic case. We

need to include the random vector direction in this calculation, which is done later in the section.

4.6.1 Vector 3D Random Plane Wave Construction

The vector field random plane wave representation can be written as

 = lim
→∞

p
2 ( )Re

⎡⎣ X
=1


¡
cos + sin

0


¢
+ ·

⎤⎦ (356)

where the polarization angle  is uniformly distributed on 0 to 2,  is perpendicular to  and

0 =
¡
 × 

¢
. Now if we take

 · = lim
→∞

p
2 ( )Re

⎡⎣ X
=1


¡
cos + sin

0


¢
+ ·

⎤⎦
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p
2 ( )Re

⎡⎣ X
0=1

0
¡
cos00 + sin0

0
0
¢
0+0 ·

⎤⎦
and

h ·i = lim
→∞

p
2 ( )

X
=1

lim
 0→∞

p
2 (  0)

 0X
0=1

h0i cos
¡
 +  · 

¢
cos
¡
0 + 0 · 

¢
¡
cos + sin

0


¢ · ¡cos00 + sin000¢
where the amplitudes  for different  values are regarded as independent and the cross terms vanish

h ·i = lim
→∞

2

 

X
=1

cos2
¡
 +  · 

¢
and averaging over the phases


cos2

¡
 +  · 

¢®

=
1

2

1

2

Z 2

0

£
1 + cos 2

¡
 +  · 

¢¤
 =

1

2
Thus

h ·i  = lim
→∞

2

 

X
=1

1

2
=
1



4.6.2 Vector 3D Trigonometric (Fourier) Projection

The trigonometric projection ( large) on the vector random plane wave field is

 =

Z 

−
cos () (0 )  =

Z 

−
cos ()  · (0 )  (357)

or

 = lim
→∞

p
2 ( )

X
=1

 ·
¡
cos + sin

0


¢ Z 

−
cos () cos ( +  cos ) 

= lim
→∞

p
2 ( )

X
=1

 ·
¡
cos + sin

0


¢ Z 

−
cos () cos ( +  cos ) 

 = 
¡
 sin  cos +  sin  sin +  cos 

¢
 ·  = 0
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Let us take

 =  sin 0 cos0 +  sin 0 sin +  cos 0
with

 ·  = sin  cos sin 0 cos0 + sin  sin sin 0 sin0 + cos  cos 0 = 0

= sin  sin 0 cos
¡
 − 0

¢
+ cos  cos 0

We can define the unit vector  by taking 0 = 2 and 0 =  − 2 or

 =  sin −  cos
Then we take

0 =
¡
 sin  cos +  sin  sin +  cos 

¢× ¡ sin −  cos
¢

=  cos  cos +  cos  sin −  sin 
Then the projection becomes

 = lim
→∞

p
2 ( )

X
=1


¡
cos sin + sin cos  cos

¢ Z 

−
cos () cos ( +  cos ) 

Now form the square

 2
 = lim

→∞

p
2 ( )

X
=1

lim
 0→∞

p
2 (  0)

 0X
0=1

0
¡
cos sin + sin cos  cos

¢ ¡
cos0 sin0 + sin0 cos 0 cos0

¢
Z 

−

Z 

−
cos () cos (

0) cos ( +  cos ) cos (0 + 0 cos 0) 0

If we average over the amplitudes  and regard different  values as independent the cross terms vanish


 2


®
 

= lim
→∞

2

 

X
=1

Z 

−

Z 

−
cos () cos (

0) hcos ( +  cos ) cos ( + 0 cos )i 
0

D¡
cos sin + sin cos  cos

¢2E
 

The final additional factor arising from the vector nature of the field averages to
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D¡
cos sin + sin cos  cos

¢2E
 

=
1

4

¡
1 + cos2 

¢
and before we had the average over the phases as

hcos ( +  cos ) cos ( + 0 cos )i =
1

2

1

2

Z 2

0

[cos ( ( − 0) cos ) + cos (2 +  ( + 0) cos )] 

=
1

2
cos ( ( − 0) cos ) =

1

2
cos ( cos ) cos (

0 cos ) +
1

2
sin ( cos ) sin (

0 cos )

This means that


 2


®
   

= lim
→∞

1

4 

X
=1

¡
1 + cos2 

¢ Z 

−
cos () cos ( cos ) 

Z 

−
cos (

0) cos (0 cos ) 0

= lim
→∞

14

4 

X
=1

¡
1 + cos2 

¢ Z 

−
[cos ( −  cos ) + cos ( +  cos )] 

Z 

−
[cos (

0 − 0 cos ) + cos (0 + 0 cos )] 0

or


 2


®
= lim

→∞
14

 

X
=1

¡
1 + cos2 

¢ ∙ sin ( −  cos ) 

 −  cos 
+
sin ( +  cos ) 

 +  cos 

¸2
Now replace the summation with the averaging over the sphere of 4 solid angle


 2


®
=
14

4

Z 2

0



Z 

0

∙
sin ( −  cos ) 

 −  cos 
+
sin ( +  cos ) 

 +  cos 

¸2 ¡
1 + cos2 

¢
sin 

=
14

2

Z 

0

∙
sin ( −  cos ) 

 −  cos 
+
sin ( +  cos ) 

 +  cos 

¸2 ¡
1 + cos2 

¢
sin 

Changing variables to  = cos  gives


 2


®
=

1

2

Z 1

−1

∙
sin ( − ) 

 − 
+
sin ( + ) 

 + 

¸2 ¡
1 + 2

¢


=
1

2

Z 1

−1

"
sin2 ( − ) 

( − )
2

+ 2
sin ( − ) 

( − )

sin ( + ) 

( + )
+
sin2 ( + ) 

( + )
2

# ¡
1 + 2

¢


Instead we note that when  →  the first term peaks for  → 0 and the second term peaks for  → .

Thus letting  = 
p
2 gives (note that 1 + cos2  ∼ 2)
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 2


®
=
14



Z 

0

"
sin
¡
 −  + 22

¢


 −  + 22

#2
 +

Z 

0

⎡⎣sin
³
 +  −  ( − )

2
2
´


 +  −  ( − )
2
2

⎤⎦2 ( − ) 

=
2

 

Z ∞
0

"
sin
¡
( − ) + 2

¢
( − ) + 2

#2


Now taking

 = 2 ( − )

gives


 2


®
=

2

 2

Z ∞
0

"
sin
¡−4 + 2

¢
−4 + 2

#2


Letting 2 =  gives


 2


®
=

2

 4

Z ∞
0

∙
sin (−4 + )

−4 + 

¸2


=
2

 4

Z ∞
−4

sin2 


2

=
2

 4

"
−sin

2 (4)

4
+

Z ∞
−4

2 sin  cos 




#

=
2

 4

"
−sin

2 (4)

4
+

Z ∞
−4

sin (2)




#

=
2

 4

"
− sin

2 (4)

4
+

Z ∞
−2

sin 




#

=
2

 4

∙
−sin

2 (4)

4
+



2
+ Si (2)

¸
Now letting


 2



®

= 2 ()  (358)

gives

 () =
1

4

∙
−sin

2 (4)

4
+



2
+ Si (2)

¸
(359)

Thus the 3D vector case gives exactly half the result of the 3D scalar case.
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4.6.3 Extraction Of m=1 Mode From Vector Plane Wave Representation

The vector field random plane wave representation can be written as

 = lim
→∞

p
2 ( )Re

⎡⎣ X
=1


¡
cos + sin

0


¢
+ ·

⎤⎦ (360)

where  are real random numbers with

2
®
= 1,

¯̄

¯̄
=  are random vectors uniformly distributed in

angles, and the random phases  are uniformly distributed on a 2 interval. We now wish to extract the

part that has cos dependence. If we transform the unit vectors to cylindrical coordinates

 = lim
→∞

p
2 ( )

X
=1

 cos
¡
 ·  + 

¢
£

©
cos sin

¡
 − 

¢
+ sin cos  cos

¡
 − 

¢ª
+ 

©
sin cos  sin

¡
 − 

¢− cos cos ¡ − 
¢ª

− sin sin 
¤

= lim
→∞

p
2 ( )

X
=1

 cos
¡
 sin  cos

¡
 − 

¢
+  cos  + 

¢
£

©
cos sin

¡
 − 

¢
+ sin cos  cos

¡
 − 

¢ª
+ 

©
sin cos  sin

¡
 − 

¢− cos cos ¡ − 
¢ª

− sin sin 
¤

Now let us multiply by cos and integrate over the interval from − to 

Z 2

0

 cos =

Z +

−+
 cos

= lim
→∞

p
2 ( )

X
=1



Z 

−
cos ( sin  cos+  cos  + )

¡
cos cos − sin sin

¢

£

©− cos sin+ sin cos  cosª+ 

©− sin cos  sin− cos cosª−  sin sin 
¤


The cos sin and sin terms vanish (since the cos in the phase is even in ) and

Z 2

0

 cos = lim
→∞

p
2 ( )

X
=1

2

Z 

0

cos ( sin  cos+  cos  + )
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£

©
cos sin

2  sin + sin cos  cos
2  cos

ª
+ 

©
sin cos  sin

2  sin − cos cos2  cos
ª

− sin sin  cos cos
¤


= lim
→∞

p
2 ( )

X
=1



Z 

0

cos ( sin  cos+  cos  + )

£

©
cos (1− cos 2) sin + sin cos  (1 + cos 2) cos

ª
+

©
sin cos  (1− cos 2) sin − cos (1 + cos 2) cos

ª
−2 sin sin  cos cos

¤


Now using the identities [20]

Z 

0

cos ( cos) cos ()  =  cos (2) ()

Z 

0

sin ( cos) cos ()  =  sin (2) ()

yields

Z 2

0

 cos =  lim
→∞

p
2 ( )

X
=1


£
2 sin ( cos  + ) sin sin 1 ( sin ) cos

+
©
cos (0 ( sin ) + 2 ( sin )) sin + sin cos  (0 ( sin )− 2 ( sin )) cos

ª

cos ( cos  + )

+
©
sin cos  (0 ( sin ) + 2 ( sin )) sin − cos (0 ( sin )− 2 ( sin )) cos

ª

cos ( cos  + )]

Thus the  = 1 random plane wave (even in ) is (we are removing the integration of cos2  from 0 to 2

by means of the 1)

121



(=1) =
1


cos

Z 2

0

 cos =

lim
→∞

p
2 ( ) cos

X
=1


£
2 sin ( cos  + ) sin sin 1 ( sin ) cos

+
©
cos (0 ( sin ) + 2 ( sin )) sin + sin cos  (0 ( sin )− 2 ( sin )) cos

ª

cos ( cos  + )

+
©
sin cos  (0 ( sin ) + 2 ( sin )) sin − cos (0 ( sin )− 2 ( sin )) cos

ª

cos ( cos  + )] (361)

Note that

0 ( sin ) + 2 ( sin ) = 2
1 ( sin )

 sin 

0 ( sin )− 2 ( sin ) = 2
0
1 ( sin )

For the projection we will examine  · =  ·  at  = 0. First let us check the normalization over the

cavity by taking the dot product of this field with itself

D
(=1)
 ·(=1)

E

= lim

→∞
{2 ( )} cos2 

X
=1

£
4 sin2 ( cos  + ) sin

2  sin
2 

2
1 ( sin ) cos

2 

+
©
cos (0 ( sin ) + 2 ( sin )) sin + sin cos  (0 ( sin )− 2 ( sin )) cos

ª2
cos2 ( cos  + )

+
©
sin cos  (0 ( sin ) + 2 ( sin )) sin − cos (0 ( sin )− 2 ( sin )) cos

ª2
cos2 ( cos  + )

¤
where we have averaged over the amplitudes  and used their independence. Next we average over the

phase 
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D
(=1) ·(=1)

E
 

=
1

2
lim

→∞
{2 ( )} cos2 

X
=1

£
4 sin2  sin

2 
2
1 ( sin ) cos

2 

+
©
cos (0 ( sin ) + 2 ( sin )) sin + sin cos  (0 ( sin )− 2 ( sin )) cos

ª2

+
©
sin cos  (0 ( sin ) + 2 ( sin )) sin − cos (0 ( sin )− 2 ( sin )) cos

ª2i
Then averaging over the polarization angles  gives

D
(=1) ·(=1)

E
  

=
1

4
lim

→∞
{2 ( )} cos2 

X
=1

£
4 sin2 

2
1 ( sin ) cos

2 

+
¡
1 + cos2 

¢n
(0 ( sin )− 2 ( sin ))

2
cos2  + (0 ( sin ) + 2 ( sin ))

2
sin2 

oi
Next averaging over  gives

D
(=1) ·(=1)

E
   

=
1

8
lim

→∞
{2 ( )} cos2 

X
=1

£
4 sin2 

2
1 ( sin )

+
¡
1 + cos2 

¢n
(0 ( sin )− 2 ( sin ))

2
+ (0 ( sin ) + 2 ( sin ))

2
oi

or

D
(=1)
 ·(=1)



E
   

= lim
→∞

{1 ( )} cos2 
X
=1

£
sin2 

2
1 ( sin )

+
¡
1 + cos2 

¢(
( 01 ( sin ))

2
+

µ
1 ( sin )

 sin 

¶2)#
Averaging over  gives

D
(=1) ·(=1)

E
   

= (1 ) cos2 
1

2

Z 

0

sin 
£
sin2 

2
1 ( sin )

+
¡
1 + cos2 

¢(
( 01 ( sin ))

2
+

µ
1 ( sin )

 sin 

¶2)#


Changing variables to  = cos  gives

D
(=1) ·(=1)

E
    

= (1 ) cos2 

Z 1

0

h¡
1− 2

¢
21

³

q
1− 2

´
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+
¡
1 + 2

¢⎧⎪⎨⎪⎩
³
 01
³

q
1− 2

´´2
+

⎛⎝1

³

q
1− 2

´

q
1− 2

⎞⎠2
⎫⎪⎬⎪⎭
⎤⎥⎦ 

Now changing to  =
q
1− 2

D
(=1) ·(=1)



E
    

= (1 ) cos2 

Z 1
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£
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2
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+
¡
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2
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µ
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¶2)#
q
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(362)

If we integrate over the volume before taking any limiting cases of  (such as →∞), we find
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D
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E
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Z 1

0
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 ()
£
2

2
1 ()

+
¡
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( 01 ())

2
+

µ
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q
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For  = 0

D
(=1) ·(=1) ( = 0)

E
    

=

µ
1

2

¶
cos2 

Z 1

0

⎛⎝ 1q
1− 2

+
q
1− 2

⎞⎠

=
1



5

6
cos2 

For →∞ we might consider expanding the Bessel Functions in their asymptotic forms

1 () ∼
p
2 () cos ( − 34)

Taking the integration to average over the squares of the sinusoids we would arrive at

D
(=1) ·(=1)

E
   

∼ 2


(1 ) cos2 

Z 1

0

q
1− 2

=
1


(1 ) cos2   →∞

If we integrate over the cavity volume using this asymptotic form for large  we find

Z


D
(=1) ·(=1)

E
   

 =

Z max

0

Z 2

0



Z ()

−()

D
(=1) ·(=1)

E
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=

Z max

0

D
(=1) ·(=1)

E
   =0

2 () 

If we use the asymptotic form we find

Z


D
(=1) ·(=1)

E
   

 ∼ 2



Z max

0

 ()  =


2
(363)

where  is the total cross sectional area of the cavity. Note that if we had included the sin terms from

the 3D random plane wave representation we would expect this result to be doubled.

It is instructive to examine the sin terms. So let us multiply by sin and integrate over the interval

from − to 

Z 2

0

 sin =

Z +

−+
 sin

= lim
→∞

p
2 ( )

X
=1



Z 

−
cos ( sin  cos+  cos  + )

¡
sin cos + cos sin

¢
£

©− cos sin+ sin cos  cosª+ 

©− sin cos  sin− cos cosª
− sin sin 

¤


The cos sin and sin terms vanish (since the cos in the phase is even in ) and

Z 2

0

 sin = lim
→∞

p
2 ( )

X
=1

2

Z 

0

cos ( sin  cos+  cos  + )

£
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+
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= lim
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p
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X
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Z 

0

cos ( sin  cos+  cos  + )

£

©− cos (1− cos 2) cos + sin cos  (1 + cos 2) sinª

+
©− sin cos  (1− cos 2) cos − cos (1 + cos 2) sinª
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−2 sin sin  cos sin
¤


Now using the identities [20]

Z 

0

cos ( cos) cos ()  =  cos (2) ()

Z 

0

sin ( cos) cos ()  =  sin (2) ()

yields

Z 2

0

 sin =  lim
→∞

p
2 ( )

X
=1


£
2 sin ( cos  + ) sin sin 1 ( sin ) sin

+
©− cos (0 ( sin ) + 2 ( sin )) cos + sin cos  (0 ( sin )− 2 ( sin )) sin

ª

cos ( cos  + )

+
©− sin cos  (0 ( sin ) + 2 ( sin )) cos − cos (0 ( sin )− 2 ( sin )) sin

ª

cos ( cos  + )]

Thus the  = 1 random plane wave (odd in ) is (we are removing the integration of sin2  from 0 to 2

by means of the 1)

(=1) =
1


sin
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0

 sin =
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→∞

p
2 ( ) sin

X
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£
2 sin ( cos  + ) sin sin 1 ( sin ) sin

+
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ª

cos ( cos  + )

+
©− sin cos  (0 ( sin ) + 2 ( sin )) cos − cos (0 ( sin )− 2 ( sin )) sin

ª
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cos ( cos  + )]

Again let us check the normalization over the cavity by taking the dot product of this field with itself

D
(=1) ·(=1)

E
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→∞
{2 ( )} sin2 

X
=1

£
4 sin2 ( cos  + ) sin
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2
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+
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ª2
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¤
where we have averaged over the amplitudes  and used their independence. Next we average over the

phase 

D
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2
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Then averaging over the polarization angles  gives

D
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=
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X
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£
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2
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+
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2
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Next averaging over  gives

D
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or

D
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E
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X
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£
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2
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+
¡
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Averaging over  gives
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Changing variables to  = cos  gives

D
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Now changing to  =
q
1− 2

D
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E
   

= (1 ) sin2 
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2
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For →∞ we might consider expanding the Bessel Functions in their asymptotic forms

1 () ∼
p
2 () cos ( − 34)

Taking the integration to average over the squares of the sinusoids we would arrive at

D
(=1) ·(=1)



E
   

∼ 2


(1 ) sin2 

Z 1

0

q
1− 2

=
1


(1 ) sin2   →∞

We next integrate over the cavity volume
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D
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D
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E
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2 () 

If we use the asymptotic form we find the same result as previously for the cos contribution

Z


D
(=1) ·(=1)

E
   

 ∼ 2



Z max

0

 ()  =


2
Note that by not adding this into the normalization (which would reduce the final result by a factor of two)

we are being consistent with the theory, only using the potential component Π and not adding in the

contribution of Π, which is also consistent with the simulation. In other words only a single parity was

included in the simulation, the random plane wave normalization, and the theory.

The desired projection had we retained the sin terms is

(=1) ( = 0) ·  = (=1) ( = 0) ·  cos−(=1) ( = 0) ·  sin
with
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p
2 ( )

X
=1


£
2 sin ( cos  + ) sin sin 1 ( sin ) cos

¡
 − 

¢

+
©
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Thus
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− sin©sin cos  sin ¡ − 
¢− cos cos ¡ − 

¢ª¤
cos ( cos  + )
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→∞

p
2 ( )

X
=1


©
cos sin + sin cos  cos

ª
cos ( cos  + ) (364)

which is the same as the following expression based on the even solution when we take  = 0.

4.6.4 Trigonometric (Fourier) Projection of Random Plane Wave m=1 Mode

In the even case, taking the limit   → 0 the projection is given by (if we had retained the

sin terms from the 3D random plane wave form, we could alternatively have taken the result

−(=1) ( = 0  = 2) · )
(=1) ( = 0  = 0) ·  =
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→∞

p
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X
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©
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and the projection is taken as
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∙
sin ( cos  − )
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+
sin ( cos  + )

 cos  + 

¸
Then we take
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Instead we note that when  →  the first term peaks for  → 0 and the second term peaks for  → .

Thus letting  = 
p
2 gives (note that 1 + cos2  ∼ 2)
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Now taking

 = 2 ( − )

gives
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®
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¢
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Letting 2 =  gives
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Now letting


 2



®

= 20 ()  (365)

gives

0 () =
1

4

∙
−sin

2 (4)

4
+



2
+ Si (2)

¸
(366)

If we renormalize by the asymptotic result

Z


D
(=1) ·(=1)

E
   

 ∼ 

2
(367)

we find


 2



®

= 2 ()  (368)

 () =
2


0 () =

1

4

∙
− 2


sin2 (4)

4
+ 1 +

2


Si (2)

¸
(369)

Introducing the symmetry about  = 0, which doubles this result, gives

 () = 2 () =
1

2

∙
− 2


sin2 (4)

4
+ 1 +

2


Si (2)

¸
(370)

This has now rigorously established the vector random plane wave result, accounting for all parts of

the cos (and sin) fields in the cylindrical system, to be consistent with the axisymmetric numerical

simulation. The asymptotic level (unity) for   1 is compared in the figure below with the histogram

from the numerical simulation, and appears to do a reasonable job of representing the histogram value. In

addition this provides a check on the asymptotic level of the vector scar theory (in particular the asymptotic
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eigenvalue density being twice that of the scalar  = 1 axisymmetric case).

Note that

 ()→ 0  → −∞ (371)

 (0) = 12 (372)

 (∞) = 1 (373)

The  = 1 vector case gives exactly half the result of the axisymmetric scalar case (as would be anticipated

from the energy theorem with the modal spacing being taken as one half the scalar case)! Note that the

factor 2 () relating the axisymmetric projection to the non-axisymmetric projection can be thought

of as a symmetry enhancement in axisymmetric 3D, analogous to the factors of two in the Cartesian

2D geometry. At high frequencies this value can be large 2 ()  1; it thus represents the major

enhancement of the squared field along the scar in the convex wall geometry, and is shared with the random

plane wave (with axisymmetric symmetry enforced) behavior.

Simple Vector Random Plane Wave m=1 Mode Trigonometric Projection In the vector

case taking the trigonometric projection

 =

Z 

−
cos () (0 )  =

Z 

−
cos ()  · (0 )  (374)

=
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−
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X
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−
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But this is the same as the preceding non-axisymmetric expression except that it is multiplied byp
2 () yielding
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= 2 () 

with

 () =
1

4

∙
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4
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2
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¸
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For the even case along the orbit we expect to multiply by two
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¸

 =  ln (Λ+) (376)

4.6.5 Statistics Of Random Plane Wave Field Component Off Axis

The random plane wave field for a single Cartesian component is
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Then squaring and averaging over the amplitudes  gives


2

®

= lim

→∞
2

 

X
=1

cos2
¡
 sin  cos

¡
 − 

¢
+  cos  + 

¢ ¡
cos sin + sin cos  cos

¢2
Now averaging over the phase 
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Averaging over  gives
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Averaging over  gives
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Finally averaging over  yields
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The vector field we constructed this from
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→∞

p
2 ( )Re

⎡⎣ X
=1


¡
cos + sin

0


¢
+ ·

⎤⎦
where the polarization angle  is uniformly distributed on 0 to 2,  is perpendicular to  and

0 =
¡
 × 

¢
, has the desired normalization
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X
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1

2
=
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(378)

Hence the single Cartesian field component has one third the contribution to the energy density of the

vector total


 2

®
=
1

3
(379)

We really want the  component of the  = 1 mode in . The  = 1 random plane wave (even in )

is (we are removing the integration of cos2  from 0 to 2 by means of the 1)
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Note that
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0 ( sin )− 2 ( sin ) = 2
0
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Thus
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Then if we square this result and average over 
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D
(=1)2


E
 

= lim
→∞

1

 
cos2 

X
=1

[

cos2 
©
cos (0 ( sin ) + 2 ( sin )) sin + sin cos  (0 ( sin )− 2 ( sin )) cos

ª2

−2 sin©sin cos  (0 ( sin ) + 2 ( sin )) sin − cos (0 ( sin )− 2 ( sin )) cos
ª

cos
©
cos (0 ( sin ) + 2 ( sin )) sin + sin cos  (0 ( sin )− 2 ( sin )) cos

ª

136



+sin2 
©
sin cos  (0 ( sin ) + 2 ( sin )) sin − cos (0 ( sin )− 2 ( sin )) cos

ª2
]

Averaging over  gives
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]
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On axis  = 0 we find

D
(=1)2 ( = 0)

E
    

=
1

4

Z 1

0

¡
1 + 2

¢
 =

1

3
(380)

Note that, the  = 1 mode was originally extracted from the random plane wave representation, which was

itself normalized using the full set of azimuthal modes
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h ·i =
1


(381)

Hence, in terms of a normalization involving the random plane wave representation (including all the

azimuthal modes), there is no enhancement along the axis (since 1 (3 ) is what one would expect of

a single component). However, because the resonant frequencies of these different  modes will not, in

general, be degenerate, this indicates that the spatial normalization of the  = 1 modes alone will be

required at the resonant frequencies of these modes. Thus, the enhancement on axis  = 0 will be real

for these modes. This fact therefore represents a statement about the enhancement of the tail statistics

resulting from symmetry conditions (in this case affecting the  = 1 mode).

Thus, in the  = 1 case, we note that

Z


D
(=1) ·(=1)

E
   

 ∼ 2



Z max

0

 ()  =


2
where  is the total cross sectional area of the axisymmetric cavity. Hence, if we renormalize (multiplying

the field square by the ratio of the 3D normalization (unity) to the axisymmetric normalization ( 
2

), we

would find that the mean square field at  = 0 (we expect this to double the mean over the azimuth for the

cos parity) is

D
 (=1)2

E
=
2



Z 1

0

(µ
1 ()



¶2
+
¡
1− 2

¢
( 01 ())

2

)
q
1− 2

(382)

On axis this mean square is

D
 (=1)2 ( = 0)

E
=
2

3
(383)

Using the asymptotic form for the Bessel functions for large 

1 () ∼
p
2 () cos ( − 34)    1

gives the mean square

D
 (=1)2



E
∼ 2

2

Z 1

0

q
1− 2 =



2
   1 (384)

4.7 Comparisons Between Simulation And Electromagnetic Scar Theory

In this section the projection definition will be taken as

 = 2

Z 

0

¡
1− 22

¢−12
cos [ + 0 ()] (0 )  (385)

in the even case or

 = 2

Z 

0

¡
1− 22

¢−12
sin [ + 0 ()] (0 )  (386)

in the odd case. The amplitude divergence factor
¡
1− 22

¢−12
(included in these) can lead to
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convergence problems in the stadium sections below, where the definitions involving a surface integration

around the scar are preferred, but in this case the foci are far outside of the cavity region and the results

with or without these factors are expected to be nearly the same. The normalization in the numerical

simulation is taken as (note that the radial coordinate weight  must be present here to get the volume

weighting correct)

Z
2

 ·∗ = 1
(at the peak of the azimuthal variation, since the variation  is assumed in the numerical calculation).

This means that

Z


 ·∗ = 

Z
2

 ·∗ = 

where a factor of one half has been taken into account because of the azimuthal variation associated with

the cos or sin mode (if we allowed both degenerate azimuthal modes to be present then the result is

2). Thus we divided the amplitude of the square of the simulation results by  to achieve the proper mean

square volume integration. Furthermore in the simulation we did not restrict ourselves to the even modes

in . This means that we needed to multiply by a factor of 2 (just like with  () = 2 ()). Although

the odd definition was also used in the simulation for half the values of , we also divided by the total

number of  values that fell within the bin in the histogram (hence, the addition of the odd definition

simply improved the resolution but did not double the value, and we must double the value after the fact).

We believe this is true because there are different  values for the odd modes, and hence their addition

does not double the histogram results.

In the theoretical model we enforced

Z


µ
0
0

 ·∗ +  ·∗
¶
 = 2 (387)

or equating the electric and magnetic energies (where we included the azimuthal variation in the volume

integration, resulting in a one half factor)

Z


 ·∗ = 

Z
2

 ·∗ = 1 (388)

The other polarization state could be included by considering either Π or Π. Since the simulation

did not include the second state of azimuthal parity, we leave it out in the theoretical model as well.

This raises questions about consistency between the simulation with cylindrical coordinates versus the

high frequency theoretical model using the quasirectangular Hertz potentials? Do the modes require the

pair ΠΠ, or for the ninety degree parity case ΠΠ, and what is the level of the accompanying

magnetic potential (either Π or Π); does it contribute to the normalization? But if this were so, why

would we get the appropriate level versus the random plane wave for large ? Consistency with the random

plane wave limit is thought to exist because we did not include the other parity in the random plane wave

normalization as discussed in the preceding sections. We will demonstrate below that these other choices of

potential are needed to include other polarizations with respect to the azimuth, and at high frequencies to

leading order only one seems to be needed.

Figure 10 shows a simulation of an axisymmetric scar in a rotationally symmetric bowtie cavity [19].

Figure 11 shows a comparison of the preceding theory with a histogram from the numerical simulation
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Figure 10. Simulation of axisymmetric scar in rotationally symmetric bowtie cavity.

of the axisymmetric scar [19]. At high frequencies we note that the factor 2 ()  1 relating the

axisymmetric projection to the non-axisymmetric projection can be thought of as a symmetry enhancement

in axisymmetric 3D, analogous to the factors of two in the Cartesian 2D geometry; it thus represents the

major enhancement of the squared field along the scar in the convex wall geometry, and is shared with

the random plane wave (with axisymmetric symmetry enforced) behavior. As we found in the 2D case,

we expect this high frequency enhancement to persist even if the outer boundary breaks the axisymmetry.

Figures 12 and 13 show a numerical simulation with finer gridding and the combined two results.

The modal density for modes that are even along the orbit (the density of modes that are odd are

expected to be the same) can be used to find the number of expected modes in the frequency range between

1 GHz and 3 GHz



2
∼  (8)

 ∼ (2 − 1) (2 + 1) (8)

1 ≈ 2098 m−1 2 ≈ 6279 m−1

 ≈ 4677086 m2

 ≈ 654
In the simulation for the quarter bowtie which should capture the odd modes along the orbit (since we

used a perfect electric conductor at the center) we observed 626 modes between 1 GHz and 3 GHz, which is

close to the expected number.
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Figure 11. Comparison of theoretical vector scar prediction with histogram from numerical simulation.

The random plane wave results are also shown.

142



-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sp

0.0

0.5

1.0

1.5

G
1

Axisymmetric Bowtie m=1

k0= 874 values 20.98-62.79

kp= 100 odd/even values 1.57-157.7

100 bins

Integrate from z=-1 to 1

Numerical Simulation
Theoretical Scar Distribution
Random Plane Wave

Figure 12. Electric field statistics from simulation (histogram) and from 3D scar theory (solid curve) for a

rotationally symmetric bowtie cavity (dotted curve is non-scarred, random plane wave result). The abscissa

is proportional to the frequency separation between the modal resonance and the orbital scar frequency. A

finer grid was used in this simulation.
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Figure 13. Electric field statistics from simulation (histogram) and from 3D axisymmetric scar theory (solid

curve) for a rotationally symmetric bowtie cavity (dotted curve is non-scarred, random plane wave result).

The abscissa is proportional to the frequency separation between the modal resonance and the orbital scar

frequency. The narrow bins are from a additional simulation with much finer gridding of the cavity walls.
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Figure 14. The normalized field squared behavior at at various distances from the symmetric axis of the

axisymmetric cavity compared to the simple asymptotic result far from the axis.

4.7.1 Point Statistics

We now compare field statistics at points in the cavity from the numerical simulation and the random

plane wave results (in the convex walled cavity there is not much difference between these as we observed

in two-dimensions [2]). The point statistic on axis for the random plane wave (from the cos parity with

 = 0) is

D
 (=1)2 ( = 0)

E
=
2

3
(389)

and in general (for the cos parity at  = 0)

D
 (=1)2

E
=
2



Z 1

0

(µ
1 ()



¶2
+
¡
1− 2

¢
( 01 ())

2

)
q
1− 2

(390)

D
 (=1)2



E
∼ 2

2

Z 1

0

q
1− 2 =



2
=

3

4

2

3
   1 (391)

with normalization

D
(=1)
 ·(=1)



E
=
1


(392)

The random plane wave in full 3D gives
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 2

®
=
1

3
with normalization

h ·i =
1


Thus the enhancement factor in the point statistics due to the symmetry is again 2 (). For

the range  = 2098 − 6279 m−1 we expect that 2 () = 2373 − 7102. Thus we expect that
 2 ( = 0)

®
= 791 − 2367. To average over frequency we use the modal spacing associated with the

eigenvalues along the orbit in the  = 1 vector case

2


= 2




= 4

Thus

D
 (=1)2

 ( = 0)
E

=
1



X


2

3
=

1

 (2)− (1)

Z (2)

(1)

2

3


=

Z 2

1

2

3






Z 2

1




 =

Z 2

1

2

3


Z 2

1



=
2

3

2

3

32 − 31
22 − 21

=
2

3
hi ≈ 1775 ≈ 2 (888)

where for the numerical simulation comparisons we used

hi = 2

3

22 + 21 + 21
2 + 1

≈ 4536 m−1
The factor of two associated with the  = 0 evaluation of the cos parity was separated out here. This

normalized field square function is shown in Figure 14. Comparisons of the level

Far away from the axis the value is nearly independent of 

D
 (=1)2



E

∼ 

2
   1

Note that we can apply this asymptotic formula even to the  = 01 m case since   21 for all these

off-axis cases (see the preceding graph showing a comparison of the asymptotic formula to the numerical

evaluation of the random plane wave point statistics for ).

D
 (=1)2 ( = 01 m)

E
∼ 2 (14676)

D
 (=1)2 ( = 02 m)

E
∼ 2 (07338)

D
 (=1)2 ( = 04 m)

E
∼ 2 (03669)
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Figure 15. Field point statistic at the center of the orbit as a function of the scar frequency separation .

The horizontal line is the random plane wave level.

Figure 16. Field point statistic at 0.2 m from the center of, but along the orbit, as a function of the scar

frequency separation . The horizontal line is the random plane wave level.

147



Figure 17. Field point statistic at 0.4 m from the center of, but along the orbit, as a function of the scar

frequency separation . The horizontal line is the random plane wave level.

Figure 18. Field point statistic at 0.6 m from the center of, but along the orbit, as a function of the scar

frequency separation . The horizontal line is the random plane wave level.
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Figure 19. Field point statistic at 0.8 m from the center of, but along the orbit, as a function of the scar

frequency separation . The horizontal line is the random plane wave level.

Figure 20. Field point statistic at a radial distance of 0.1 m from the orbit at its axial center, as a function

of the scar frequency separation . The horizontal line is the random plane wave level.
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Figure 21. Field point statistic at a radial distance of 0.2 m from the orbit at its axial center, as a function

of the scar frequency separation . The horizontal line is the random plane wave level.

Figure 22. Field point statistic at a radial distance of 0.4 m from the orbit at its axial center, as a function

of the scar frequency separation . The horizontal line is the random plane wave level.

150



Figure 23. Field point statistic at a radial distance of 0.4 m from the orbit, and displaced by 0.4 m from

its axial center, as a function of the scar frequency separation . The horizontal line is the random plane

wave level.
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Figure 24. Field point statistic at a radial distance of 0.6 m from the orbit at its axial center, as a function

of the scar frequency separation . The horizontal line is the random plane wave level.

D
 (=1)2 ( = 06 m)

E
∼ 2 (02446)

D
 (=1)2 ( = 08 m)

E
∼ 2 (01835)

D
 (=1)2 ( = 1 m)

E
∼ 2 (01468)

This last figure may not represent an accurate comparison since the cavity half dimensions are each 1

m. Thus we are approaching the outer boundary in the simulation for this case.

4.8 Magnetic Hertz Potential

We now repeat the set up of the vector problem using the magnetic Hertz potential to examine the

differences in the application of the boundary conditions and in the field polarization at the scar orbit. The

electromagnetic field in a source free region satisfies

∇× = −

∇× = 

∇ · = 0

∇ · = 0
and the boundary conditions on the walls (in our case these hold on the end mirrors  = ±0)
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Figure 25. Field point statistic at a radial distance of 0.6 m from the orbit, and displaced by 0.6 m from

its axial center, as a function of the scar frequency separation . The horizontal line is the random plane

wave level.

Figure 26. Field point statistic at a radial distance of 0.8 m from the orbit at its axial center, as a function

of the scar frequency separation . The horizontal line is the random plane wave level.

153



Figure 27. Field point statistic at a radial distance of 0.8 m from the orbit, and displaced by 0.8 m from

its axial center, as a function of the scar frequency separation . The horizontal line is the random plane

wave level.

Figure 28. Field point statistic at a radial distance of 1 m from the orbit, and displaced by 1 m from its

axial center, as a function of the scar frequency separation . The horizontal line is the random plane wave

level.
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Figure 29. Field point statistic at 0.2 m from the center of, but along the orbit, as a function of the scar

frequency separation . The numerical mean value is also shown as the horizontal red line. The blue line is

the random plane wave level.
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 =  =  = 0

or in the quasi-rectangular system

 =  =  = 0

We now use the magnetic Hertz potential Π with the fields given by

 = ∇×∇×Π (393)

 = ∇×Π
where the Hertz vector satisfies the vector wave equation

−∇×∇×Π +∇ (∇ ·Π) + 2Π =
¡∇2 + 2

¢
Π = 0 (394)

2 = 2

and the magnetic field is thus given by

 = ∇ (∇ ·Π) + 2Π (395)

At high frequencies we can make one of the following sets of approximations [5]

Π = Φ

Π = 0 = Π

or

Π = Φ

Π = 0 = Π

We cannot satisfy (394) exactly with this approximate choice, so instead we require that the potential Π

(or in the second case Π) satisfies the equation resulting from equating  (or in the second case )

from (393) and (395). Thus the equation for the potential is [5]

£−∇×∇× (Π) +∇ {∇ · (Π)}+ 2 (Π)
¤ ·  = 0

or

£−∇×∇× ¡Π
¢
+∇©∇ · ¡Π

¢ª
+ 2

¡
Π

¢¤ ·  = 0
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4.8.1 Approximate Orthogonality And Fields

When we assume approximate orthogonality the equations simplify (as given in Vaynshteyn [5]). We

can derive the following equations by using the orthogonal curvilinear coordinate results for gradient,

divergence and curl [10], using the same metric coefficient  for all three coordinates

 = 

q
cos2  + 2 = 

p
cos2  + 2 + 2 ∼  cos 

The potential Π = Φ then satisfies [5]





½
1






(Π)

¾
+





½
1






(Π)

¾

+




∙
1

3




¡
2Π

¢¸
+ 22Π = 0

Note that the first and second terms are from (−∇×∇×Π) ·  and the third term results from

(∇∇ ·Π) · . The fields are

2 = 




∙
1

3




¡
2Π

¢¸
+ 22Π

2 = 




∙
1

3




¡
2Π

¢¸

2 = 




∙
1

3




¡
2Π

¢¸
and

2 = −0



(Π)

2 = 0



(Π)

Alternatively the potential Π = Φ satisfies





½
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(Π)

¾
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½
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(Π)
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∙
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¡
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¢¸
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The fields are

2 = 




∙
1

3




¡
2Π

¢¸
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∙
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+ 22Π
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¢¸
and

2 = 0



(Π)

2 = −0



(Π)

4.8.2 Asymptotic Solution Of Quasirectangular Equations

Let us take

Π = Φ = (  )  sin  + ( −) − sin 
and insert this into

2
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then  satisfies
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We now neglect the first term 22 and let

 ∼  cos 

giving

(2 cos  − tan ) 


+
2

2
+

2

2

+
£
2
¡
2 + 2

¢− 2 sin  − sec2 ¤ = 0

Now take

 =  ()Ψ (  )

where we want

 0


=

2 sin  + sec2 

2 cos  − tan 
or

1 = cos  +


2
tan 

Using this along with the transformation

 =

Z 

0



cos 
= arcsinh (tan ) = ln (tan  + sec )

gives

2
Ψ


+

2Ψ

2
+

2Ψ

2

+2
¡
2 + 2

¢
Ψ = 0

We could also have dropped the terms tan  and sec2  terms compared to the  cos  and the  sin  term

(these terms could be accounted for by higher order terms in the asymptotic series just like the 22

term and the higher order terms  and ) to obtain directly

2 cos 



+

2

2
+

2

2

+
£
2
¡
2 + 2

¢− 2 sin 
¤
 = 0

which is the same as the preceding scalar case. For this leading term approach we would take

 =
1

cos 
Ψ (  )

and obtain the same equation for Ψ. Scaling the independent variables by letting
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 =
p
2

 =
p
2

gives


Ψ


+

2Ψ

2
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2
+
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4

¡
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¢
Ψ = 0

Separating the variables

Ψ (  ) =  () () ()

gives

µ







¶
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µ
1



2
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+ 24

¶
+

µ
1



2
2

+ 24

¶
= 0

Each parenthetical term is independent of the variables associated with the others and therefore each equals

a constant. We take the first term as 




= −
or

 = −

Then we can write

2
2

+
¡
 + 24

¢
 = 0

2
2

+
¡
 + 24

¢
 = 0

 +  = 

Ψ (  ) = − ( ) 
− ( ) = − ( ) ( )

This is a form of the equation of the parabolic cylinder functions

2

2
+

µ
2

4
+ 

¶
 = 0 (396)

The solution that is outgoing in  is [1]

+ ( ) = −(+2)4
³
− −4

´
(397)

where  ( ) is the standard solution [11]. Following [1] the total transverse solution is taken as the
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incident plus reflected form

 ( ) = Re
£
+ ( ) + Φ0∗+ ( )

¤
(398)

where the constant  is used for normalization. The transverse boundary condition in  is a reflection with

a random phase Φ0
¡
2
¢
which was introduced by Antonsen to match to the chaotic region of the cavity;

it describes the phase relation between a wave leaving the vicinity of the unstable periodic orbit and one

returning [1] with the variation of the th component along the orbit. Figure 9 schematically illustrates

a wave bouncing back and forth between mirrors in the region of the scarred orbit; it leaves the vicinity

of the orbit and eventually returns from the outer chaotic region with transverse reflection phase Φ0
¡
2
¢
.

(For purposes of simplification this figure does not include the vertical evenness of the cavity, which

confines the wave leaving and the wave reflected to either the upper half or lower half of the cavity.) Thus

 =  ( ) and  =  ( ) are elliptic cylinder functions like in the two-dimensional case [6], [1].

The boundary conditions imply

 =  =  = 0   = ±0
or using the preceding relations for the field in terms of the Hertz potential
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we see that we must take the potential to satisfy on the mirrors
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−Π sin  ∼ 0 ∼ cos  Π
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Then in the present case

Π = Φ = (  )  sin  + ( −) − sin 
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Ψ (  ) =  () () ()

 = −
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¤
 cos 0
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Ψ ( ±0) ± sin 0 −Ψ ( ∓0) ∓ sin 0

¤
∼ ± sin 0

cos 0

£
Ψ ( ±0) ± sin 0 +Ψ ( ∓0) ∓ sin 0

¤
Ψ ( ±0) ± sin 0 ∼ Ψ ( ∓0) ∓ sin 0

or

Ψ (  0) 
 sin 0 ∼ Ψ ( −0) − sin 0

or

 () () 
 sin 0−0 ∼  () () 

− sin 0+0

or

2 sin 0−20 = 2   = 0 1 2 
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or

 sin 0 − 0 = 

or

( − )  = 0 =  ln (tan 0 + sec 0) =  ln

r
+ 

− 

= 
1

4
ln (Λ+)

where

Λ± =
µ
+ 

− 

¶±2
=

∙
1 + ±

q
(1 + )

2 − 1
¸2

are the stability exponents of the orbit and

 =    = 1 2 

where  is a large integer representing the number of half wave variations along the  axis.

Alternatively in the case where the potential is odd along the orbit we take

Π = Φ = (  )  sin  − ( −) − sin 
and boundary condition

 cos 0
£
Ψ ( ±0) ± sin 0 +Ψ ( ∓0) ∓ sin 0

¤
∼ ± sin 0

cos 0

£
Ψ ( ±0) ± sin 0 −Ψ ( ∓0) ∓ sin 0

¤
Ψ ( ±0) ± sin 0 ∼ −Ψ ( ∓0) ∓ sin 0

or

Ψ (  0) 
 sin 0 ∼ −Ψ ( −0) − sin 0

or

 () () 
 sin 0−0 ∼ − () () − sin 0+0

or

2 sin 0−20 = 2(−12)   = 1 2 
or

 sin 0 − 0 =  (− 12)
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and

( − )  = 0 =  ln (tan 0 + sec 0) =  ln

r
+ 

− 

= 
1

4
ln (Λ+)

 = (− 12)   = 1 2 

The quantities  and  are the transverse numbers of half wave variations (not necessarily integers in

this unstable case, and usually random functions versus eigenvalue), where  = +. The preceding result

thus connects the eigenvalue  minus the wavenumber in , or , to the sum of the transverse variations.

Π = 2 ( ) ( ) cos ( sin  − )  cos 
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 ( ) = Re

£
+ ( ) + Φ0∗+ ( )

¤
Note that if the eigenfunction Π is chosen to be even with respect to the normals of the orbit  and 

(say, PEC at  = 0 and PMC at  = 0, resulting in  6= 0,  = 0,  = 0,  = 0,  6= 0 at  =  = 0)
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then we have the resonance conditions
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Using this with the Wronskian
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Our main interest is again the lowest transverse mode ( = 0) with the vector nature put in through the

selected component of the Hertz potential.

In the odd case we have

Π = Φ = 2 () () sin ( sin  − )  cos 

or
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Alternatively for the other polarization
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and the procedure follows the same lines as in the preceding polarization state.

We would expect that for arbitrary outer chaotic regions both polarization states would be generated

and coexist.

4.8.3 Asymptotic Solution Of Parabolic Equation In Prolate Spheroidal System

The parabolic equation in quasirectangular coordinates for the Hertz potential component Π or Π

(or  ) resulting from the vector wave equation is the same as that arising from the three dimensional

scalar Helmholtz equation. Hence we can transform the parabolic equation for the Hertz potential from the

quasirectangular system back to prolate spheroidal coordinates. The potential is then

Π =
2
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 (  ) cos ( sin  − )

½
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¾
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√
2
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 =
p
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− 0 = (− 12) =    = 1 2 3 

In the odd case
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½
cos ()

sin ()

¾
The same holds for the Π polarization state.

Behavior Of Zero Mode Near Orbit The behavior of the zero mode  = 0
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4.8.4 Vector Normalization Condition

The method used for normalization of the eigenfunction components by Antonsen [1] is now put into

the framework of the electromagnetic energy theorem [13]
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Integrating over the cavity volume and using the divergence theorem (and inserting the electrical properties

of free space)
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where the unit vector  in the divergence theorem points out of the cavity region.

4.8.5 Source Free Form Of Theorem

The source free form is thus
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Using × = 0 on the cavity walls, the surface integral on the cavity boundary vanishes
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However a part of the closed surface  is taken to surround the scarred orbit  =
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where the unit normal here  points into the scarred region. We take the fields to be [17], [18]

 = ∇×∇×Π = ∇ (∇ ·Π) + 2Π
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where for the first polarization state [5]
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Thus in the boundary integral with (note that the inward unit normal is oppositely directed from the

prolate spheroidal unit vector)  = − and
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Transforming back to prolate spheroidal coordinates
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Averaging over the rapidly varying sinusoids for  large gives
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For the time being we retain only the leading order 2 terms
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The phase Φ0 indicates the reflection phase of the th component. Following Antonsen [1] the average

derivative is set by taking ∆Φ0 = 2 and the spacing between eigenvalues to be given by the Weyl

asymptotic result for the vector case ∆ ∼ 2
¡
2

¢
, or ∆2 = 2∆ ∼ 22 ( ) [16]. Note in the

acoustic case ∆ ∼ 22 ¡2 ¢ [15] and ∆2 = 2∆ ∼ 42 ( ). In our case we are interested in the scar
amplitude on axis (like the even-even eigenvalues in the 2D problem). Setting the total cross sectional area

of the axisymmetric cavity to  = 20
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2
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Z ∞
−∞

 () 

The modal spacing in the scalar case is (this is for a single azimuthal parity, since the two parities are

degenerate)

2


= 8 (399)

Note that we will take half this spacing for the electromagnetic vector modes (again this is for a single

azimuthal parity, since the two parities are degenerate)

2


= 4 (400)

Note that by choosing the average eigenvalue spacing to be one half that of the scalar case, results in a one

half being inserted into the theoretical strength of the square amplitude. However, we are picking only the

even modes with respect to  so that (this symmetry doubles the square amplitude)
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µ
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where  is the Gaussian random variable with unit variance discussed previously. If we had used the
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eigenvalue spacing for the 3D electromagnetic cavity ∆2 = 2∆ ∼ 22 ( ), but even along the 
direction, we would have obtained

µ
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We recall that in the 2D case we introduced a factor of two (we also used a factor of two for evenness

along the orbit) to account for evenness about the normal to the orbit, but here we are assuming that the

axisymmetric case (say cos parity) is handled by starting with the axisymmetric 3D scalar problem.

Thus the energy theorem along with the outer phase derivative connects the normalization constant 0
with the integration of the field energy throughout the volume
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In the odd case
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For the time being we retain only the leading order 2 terms
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where  is the Gaussian random variable with unit variance discussed previously. Thus the energy theorem

along with the outer phase derivative connects the normalization constant 0 with the integration of the

field energy throughout the volume
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4.8.6 Summary of Results

A summary of the results for the axisymmetric mode  = 0 are (note that this mode is a vector mode,

with magnetic field on axis  =
p
2 + 2 → 0 polarized in the  direction).

Even Case In the even case
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Note that
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The outer region reflection phase we take [1] to be
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where  is the cross sectional area of the axisymmetric cavity and where  is the Gaussian random variable

with unit variance and density
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The normalization constant 0 is connected to the volume energy by means of
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Note that the scalar form of the normalization was similar
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The fields near the axis are
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Odd Case In the odd case we have

− 0 = (− 12) =    = 1 2 3 

Π (  ) =
2

cos 
0 (  ) sin ( sin  − )

Remark On Normalization Our approach for checking the normalization is now the following.

We take the two potentials Π and Π each normalized to have the same volume integrals, but opposite

parities so that the resonant frequencies are the same. We then look at the projection of the field  (which

is made up of contributions from both potentials) to see if it has the same statistics as the projection of

the field . If these two field component projections have the same statistics this indicates that the two

potentials have been normalized properly with respect to each other?

Cylindrical Form If we transform back to Cylindrical coordinates on axis, then we rewrite the

potential
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In the odd case (dropping the  factor by simply redefining the coefficient)
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4.8.7 Vector Scar Projection

We now discuss the projections of the scar solution along the orbit with the magnetic Hertz potential.

Elliptic System Projection If we take the projection to be defined by a surface integral about the

scar (note that the quasirectangular unit vector  is part of this projection operator) this limit definition

of the integration around the scar produces an integral without the extra amplitude divergence factors in

the kernel of the projection operator (noting that  ∼ ,  ∼ , and  ∼  cos )
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where we have used
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Thus

 ∼ −02200 (0 )
which is −0 times the  of the preceding case using Π, but this is accounted for by the different result
from the normalization (the electromagnetic energy theorem). Hence this case at high frequencies seems to

be a rotation of polarization to  from  in the previous Π case.

Scar (Galerkin) Projection Alternatively we may not want a surface integration definition of the

field projection, but instead a simple line integral along the orbit. Because the field from the magnetic

Hertz potential will be added to the field from the electric Hertz potential the projection operator must be

defined consistently. Thus we take (note that the derivative involves 1)
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which again is −0 times the  of the preceding case using Π, but this is accounted for by the different
result from the normalization (the electromagnetic energy theorem).

For the odd case the projection of  derived from Π is

 =

Z 0

−0

cos ( sin  − )

cos 
 (0 )

∼ 0

Z 0

−0

cos ( sin  − )

cos 




Π

again with
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2 = 0



(Π) ∼ 0




Π

and where the Hertz potential on axis in this odd case is (dropping the  factor by redefining the coefficient)

Π (0 ) =
2

cos 
0 (0 ) sin ( sin  − )

Thus we find

 ∼ 020 (0 )

Z 0

−0

cos2 ( sin  − )

cos 


∼ 020 (0 )

Z 0

−0
cos2 ( tanh − ) 

∼ 020 (0 )0 ∼ 02
200 (0 )

4.8.8 Remarks On Polarization And Hertz Potential Contributions

These projection results for  derived from Π are therefore identical to the projection with 

derived from Π. If we can show that the contribution to the projection of  from Π is of lower

order, then we will have succeeded in showing that the projection of  is the same as that of  using

the corresponding Hertz potentials Π or Π, with each carrying the same contributions to the energy

normalization condition. In summary, if we show that the Hertz potential Π does not contribute

significantly to the projection of , it also would follow that with the use of the two Hertz potentials

Π and Π that only Π contributes significantly to the projection of  and only Π contributes

significantly to the projection of , even though each contributes equally to the normalization conditions.

The contribution from the other Hertz potential Π is

2 = 




∙
1

3




¡
2Π

¢¸ ∼ 2


Π = 2

2


Π

where

Π =
2

cos 
0 (  ) cos ( sin  − )

= 20 (  ) cosh cos ( tanh − )

and

 =  cos

 =  sin

Stepping back to the original form of the electric field in the direction of the electric Hertz potential
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 ∼
µ
1

2
2

2
+ 2

¶
Π =

µ
2

2
2

2
+ 2

¶
Π

∼
µ

2

 cos2 
cos2 

2

2
+ 2

¶
Π ∼ 2Π

we see that the 
¡
22

¢
= 

¡
2
¢
term was dominant. Hence the other component , involving twin

transverse derivatives

2 = 




∙
1

3




¡
2Π

¢¸ ∼ 2


Π = 2

2


Π

is of  (1) =  (1 ()) of the component in the direction of the potential, and hence can be ignored.

Note that the electric field contribution  arising from Π was taken as the same order as  arising

from Π due to the normalization condition in the energy theorem.

5 CONCAVE MIRRORS AND ROTATIONAL STADIUM

CAVITY

The rotated stadium-like cavity has three regions to consider. The inner region 1 has a field description

similar to the bowtie cavity. The outer region 2 is a complementary region outside the foci and the focal

region 3 involves a product form of special functions near the foci.

5.1 Curved Trajectory Analysis

Vaynshteyn has treatments for stable modes between concave mirrors. Here we wish to consider the

generalization to unstable modes between concave mirrors. Following Vaynshteyn [5] we have Figure 31

where

 =  sinh  cos 

 =  cosh  sin 

0   ∞

−2    2  0    2

We take

 = 2

where

 =  cosh 0 (401)
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r

z

x = x0
x = -x0

z z = 0

z -z = 0

d-d 1 2

3


R

Figure 31. Fitting of prolate spheroidal coordinate system to radius of curvature of rotationally symmetric

stadium cavity.
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On the mirror we have

 =  sinh 0 cos 

 =  cosh 0 sin 

q
1− [ ( sinh 0)]2 = sin 

As  → 0 we have

sin  ∼ 1− 1
2
[ ( sinh 0)]

2

and

 ∼  cosh 0 −
2

2

cosh 0

sinh2 0
On a circle of radius , centered at (0 0) where 0 =  cosh 0 −, we can write

( − 0)
2
+ 2 = 2

 =  cosh 0 −+
p
2 − 2 ∼  cosh 0 −

2

2
Thus

 =  sinh2 0 cosh 0
Also

 =  (cosh 0 − 1 cosh 0)

 =  cosh 0
and

 = − 2

 =
p
 (−) = 

p
1− (402)

In examples below we will take  ≈ 011176 m and  ≈ 010160 m, and  = 00336969 m.

5.2 Scalar Field High Frequency Approximation

Figure 31 shows the regions near the scarred orbit on the major axis. The modes of the Helmholtz

equation

184



∇2+ 2 = 0

are now investigated. This can be written in these three-dimensions as [5]

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
cosh2  − sin2 ¢ = 0

where

 =  = 
p
1− (403)

We assume   1. On the mirror we want

 = 0   = 0  0  ||  2 (404)

5.2.1 Modal Description In Region One: Between Foci

We will solve the problem separately in the several regions of the stadium cavity. The high frequency

analysis in the first region is the same as for the bowtie cavity, which we repeat here for convenience. We

assume in the first region that we are inside the foci with −0    0 and that near the orbit we have

sinh2   1. We assume   1 and that sinh2   1. We take the function  to be even about the 

axis. We seek a solution of the form [5]

 = (  )  sin  + ( −) − sin 
Substituting into the Helmholtz equation gives

1

cos 





µ
cos 





¶
+

µ
2 cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 

¡
 sinh2  − 2 sin 

¢
 = 0

Now for high frequencies   1 we ignore the term

1

cos 





µ
cos 





¶
and taking sinh2  1 we can replace sinh  by  and neglect the term

1

cos2 

2

2

Then

1







µ





¶
+ 2 cos 
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+
1

2
2

2
+
¡
22 − 2 sin 

¢
 = 0

Next taking

 =
1

cos 
Ψ

 =
p
2

 =

Z 

0



cos 
= arcsinh (tan )

0 = arcsinh (tan 0) = ln (tan 0 + sec 0)

These give

1







µ





¶
+  cos 









+
1

2
2

2
+
¡
24−  sin 

¢
 = 0

or

1







µ

Ψ



¶
+
1

2
2Ψ

2
+ 

Ψ


+

2

4
Ψ = 0

Taking

Ψ = Ψ (  ) cos ()

or

Ψ = Ψ (  ) sin ()

gives

1







µ

Ψ



¶
+ 

Ψ


+

µ
2

4
− 2

2

¶
Ψ = 0

Letting

Ψ (  ) = − (  )
gives

1







µ




¶
+

µ
2

4
+ − 2

2

¶
 = 0

If we let 2 = 2
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1







µ




¶
=
1











µ








¶
= 2





µ




¶





µ




¶
+

µ


4
+



2
− 2

4

¶
 = 0

Now taking

 =
1√



gives





=
√


µ



− 

2

¶





µ




¶
=
√

2

2
+
√

³

42

´
2

2
+

µ
1

4
+

2


+
1−2

42

¶
 = 0

This is a form of Whittaker’s equation

2

2
+

µ
−1
4
+




+
1− 42
42

¶
 = 0

 = ()  ()

Therefore in our equation with  = −

2

2
+

µ
−1
4
+

2


+
1−2

42

¶
 = 0

 = 2

± = 2

 = (−)  (−)
Noting that

 () ∼ −2  ||→∞
Let us take

+ ( ) = (−)
and then
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 = Re
£
+ + Φ0 ∗+

¤
The potential is then

 =
2

cos 
 (  ) cos ( sin  − )

½
cos ()

sin ()

¾

 = 

√
2


Re
£
+ + Φ0 ∗+

¤
+ (  ) =22

¡−22¢
5.2.2 Modal Description In Region Two: Outside Foci

In the second region outside the foci we assume that 0    0 and that cos
2   1. We seek a

second solution of the form

 = (  )  cosh  + ( −) − cosh   ||  0 (405)

 =  sinh  cos 

 =  cosh  sin 

Note that the sign change in the exponential goes with the sign change of  before the limit  → 2 is

applied. The parity in  is actually required since the Region 1 matching (which is even in ) will make the

disjoint region two’s have even parity also. The fact that this introduces the standing wave in Region 2 is

comforting.

Substituting into the Helmholtz equation

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
cosh2  − sin2 ¢ = 0

and using

1

sinh 





µ
sinh 





¶
=

1

sinh 





µ
sinh 




 cosh 

¶

=
1

sinh 





µ
sinh 




 cosh 

¶
+ 

1

sinh 





¡
sinh2  cosh 

¢
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=  cosh 
∙

1

sinh 





µ
sinh 





¶
+ 2 sinh 




+ 2 cosh  − 2 sinh2 

¸
gives

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2 sinh 




+
¡
2 cosh  + 2 cos2 

¢
 = 0

Let us now substitute the second term  ( −) − cosh  into the Helmholtz equation

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
− 2 sinh 




+
¡−2 cosh  + 2 cos2 

¢
 = 0

The original equation is not recovered by choosing a change in sign of . It can be recovered by a ± shift
in  where cosh ( ± ) = − cosh  and sinh ( ± ) = − sinh . Let us take

 = (  )  cosh  + ( −   ) − cosh   ||  0 (406)

Now for high frequencies   1 we neglect the term

1

sinh 





µ
sinh 





¶
and for cos2   1 the term

1

sinh2 

2

2

to give

1

cos 





µ
cos 





¶
+

1

cos2 

2

2

+2 sinh 



+
¡
2 cosh  + 2 cos2 

¢
 = 0

Using cos2  = cos2 (2− ||− 2) = sin2 (2− ||) ≈ (2− ||)2 = 02, we have

1

0


0

µ
0


0

¶
+
1

02
2

2

+2 sinh 



+
¡
2 cosh  + 202

¢
 = 0 (407)

We will focus on the   0 side so we can define 0 = 2− ,
¯̄
0
¯̄
 2− 0. To generalize to both sides
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of Region 2 we can take 0 = ±2− . Now letting

 =
1

sinh 
Ψ (408)

and

 0 =
p
20 (409)

0 =
Z 

∞



sinh 
= ln [tanh (2)] (410)

gives

sinh 



= sinh 

0





0
=



0

1

 0


 0

µ
 0
Ψ

 0

¶
+
1

 02
2Ψ

2

+
Ψ

0
+

 02

4
Ψ = 0

Note that

0 =
Z −

∞



sinh 
= −

Z 

∞



sinh 

00 = ln [tanh (02)]

sinh ( − )→ − sinh  (411)

Because of the mirror boundary condition this equation must be integrated under the restriction that

Ψ ( 0  00) = Ψ (
0 −00) 

 = −2 cosh 0 +  (2− 1) +  = −+  (2− 1) + 

Letting

Ψ = Ψ (  ) cos ()

or

Ψ = Ψ (  ) sin ()

gives
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1

 0


 0

µ
 0
Ψ

 0

¶
+ 

Ψ

0
+

µ
 02

4
− 2

 02

¶
Ψ = 0

and taking

Ψ (
0 0) = −

00 (
0 0) (412)

gives

1

 0


 0

µ
 0

 0

¶
+

µ
 02

4
+ 0 − 2

 02

¶
 = 0 (413)

The mirror condition gives

1 = 2
000+

2000 +  = 20

2000 = 2
0 + −  (2− 1)−  = 2 (0 − ) + 

= −2 +  = ( − ) (414)

where

 = 2 = 2 (415)

 = 1 2  (416)

We take the real part at the end of the Region 2 construction.

5.2.3 More Symmetrical Version Of Region Two Solution

It turns out to be convenient to take the solution in Region 2 as

 = −2
£
 (  )  cosh  + ( −   ) − cosh 

¤
 ||  0 (417)

This choice eliminates a factor 2 that would appear in subsequent sections.

5.2.4 More General Version Of Region Two Solution

To make sure we have not missed any choices in the second solution, suppose we take the solution in

Region 2 to be more generally

 = −2−Φ12
£
 (  )  cosh  + Φ1 ( −   ) − cosh 

¤
 ||  0

191



=
1

sinh 

h
Ψ (

0 0)  cosh −2−Φ12 +Ψ ( 0−0) − cosh +2+Φ12
i½

cos ()

sin ()

¾

=
2

sinh 
 (

0 0) cos ( cosh  − 00 − 2−Φ12)
½
cos ()

sin ()

¾
(418)

where

 (
0 0) = 

√
2

 0
Re
h
+ (

0 0) + Φ
0
0 ∗+ (

0 0)
i

(419)

+ (
0 0) =022

¡− 022¢
 0 =

p
20 (420)

0 = ±2−  (421)

2000 = 2
0 ln [tanh (02)] = ( − ) (422)

0 =
Z 

∞



sinh 
= ln [tanh (2)]

The mirror condition gives

cos ( cosh 0 − 000 − 2−Φ12) = cos (− 2−Φ12) = 0
or

− 2−Φ12 =  (− 12) (423)

At this point we can think of  and hence 
0 as still arbitrary ( and 0 are directly related). The

introduced phase Φ1 is selected to match the mirror boundary condition.

5.2.5 Modified Region One Solution

Because the solution must be even in  we can write in Region 1

 = 
£
 (  )  sin  + ( −) − sin ¤  ||  0

= 
1

cos 

£
Ψ (   )  sin  +Ψ (  −) − sin ¤

= 2
 (  )

cos 
cos ( sin  − )

½
cos ()

sin ()

¾
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= 2
 (  )

sin 0
cos
¡
 cos 0 − 

¢½ cos ()

sin ()

¾
 0 = 2−  (424)

For matching purposes (with Region 2) it is convenient to insert the imaginary unit into the definition

 (  ) = 

√
2


Re
h
−2+ (  ) + 2Φ0 ∗+ (  )

i
(425)

 =

Z 

0



cos 
= arcsinh (tan )

= ln (tan  + sec ) = ln

½
tan

1

2
( + 2)

¾
= − ln©tan ¡02¢ª (426)

 =
p
2

+ (  ) =22

¡−22¢
5.2.6 Behavior Of Zero Mode Near Orbit For Stadium Solutions

The Region 1 behavior of the zero mode  = 0

0 (  ) = 0

√
2


Re
h
−2+ (  0 ) + 2Φ0 ∗+ (  0 )

i
is now discussed near  → 0. Noting the behavior of the Whittaker function

+ (  0 ) ∼ −
¡−22¢12 1

Γ (12− 2)

£
ln
¡−22¢ ¡1− 24

¢
+ (12− 2)− 2 (1) + ¡24¢ {− (12− 2) + 2 (1) + 2}+

¡
4 ln 

¢¤
 0
+ (  0 ) ∼ 

1

2

¡−22¢−12 1

Γ (12− 2)

£
ln
¡−22¢+ { (12− 2)− 2 (1)}+ 2 +

¡
2 ln 

¢¤
  → 0   = 0

and taking


0


= 0
√
2Re

h
−2 0

+ + 2Φ0 ∗0+
i
− 0 (427)

to vanish as  → 0 gives the reflection phase

Φ0 = −
−2 ¡ 0

+ − 1

+

¢
2

¡
 0
+ − 1


+

¢∗ = ¡
 0
+ − 1


+

¢¡
 0
+ − 1


+

¢∗
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= −Γ (12 + 2)

Γ (12− 2)
+

¡
2
¢

(428)

Thus near  → 0 we find

0 = 0Re

∙
4

Γ (12− 2)

©
ln
¡−22¢− ln ¡22¢+  (12− 2)−  (12 + 2)

ª
+

¡
2 ln 

¢¸
Noting that

 (12 + 2)−  (12− 2) =  cot (12− 2)

= 
cos (12− 2)

sin (12− 2)
= 

sin (2)

cos (2)
= −



sinh (2)

cosh (2)
=  tanh (2)

gives

0 (0 ) = 0Re

∙
−4 1

Γ (12− 2)
{ +  (12 + 2)−  (12− 2)}

¸

= 0Re

∙
−4 1

Γ (12− 2)
{ +  cot (12− 2)}

¸

= 0Re

∙
−4 1

Γ (12− 2)
{ +  tan (2)}

¸

= 0Re

∙
−4

1

Γ (12− 2)
{1 + tanh (2)}

¸

= 0Re

∙
−4

1

Γ (12− 2)

2

cosh (2)

¸

= 0Re
h
−42Γ (12 + 2)

i
or

0 (0 ) = 0Re
h
2−4Γ (12 + 2)

i
  → 0 (429)

which is − (inside the real part) times the preceding bowtie result. In general

0 (  ) ∼ 0

√
2


Re

∙
− ¡−22¢12 −

Γ (12− 2)

©
ln
¡−22¢ ¡1− 24

¢
+  (12− 2)− 2 (1) + ¡24¢ (− (12− 2) + 2 (1) + 2) +

¡
4 ln 

¢ª
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+
¡
22

¢12 

Γ (12− 2)

©
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¡
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¢ ¡
1− 24

¢
+  (12 + 2)− 2 (1) + ¡24¢ (− (12 + 2) + 2 (1) + 2) +

¡
4 ln 

¢ª¤

∼ 0Re
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−−4 −

Γ (12− 2)

©
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¡−22¢ ¡1− 24

¢
+  (12− 2)− 2 (1) + ¡24¢ (− (12− 2) + 2 (1) + 2) +

¡
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¢ª
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©
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¡
22

¢ ¡
1− 24

¢
+  (12 + 2)− 2 (1) + ¡24¢ (− (12 + 2) + 2 (1) + 2) +

¡
4 ln 

¢ª¤

∼ 0Re

∙
−4

−
Γ (12− 2)

©

¡
1− 24

¢
+ ( (12 + 2)−  (12− 2)) +

¡
24

¢
( (12− 2)−  (12 + 2)) +

¡
4 ln 

¢ª¤

∼ 0Re

∙
−4
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¸
[ −  { (12 + 2)−  (12− 2)}] ¡1− 24

¢
+

¡
4 ln 

¢
Then

0 (  ) ∼ 0Re

∙
−4

Γ (12− 2)

¸
 [1 + tanh (2)]

¡
1− 24

¢
+

¡
4 ln 

¢
∼ 0Re

h
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¡
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¢
∼ 0Re

h
−4Γ (12 + 2)

i
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¡
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+
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0 () ∼ −0Re

h
−4Γ (12 + 2)

i
2

¡
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¢
+

¡
4 ln 

¢ ∼ − ¡22¢0
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0 () ∼ −0Re

h
−4Γ (12 + 2)

i
2 (2) +

¡
4 ln 

¢ ∼ −
2
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0
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∼ −0Re

h
−4Γ (12 + 2)

i
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¡
2 ln 
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¡
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In addition


0


(  ) = 0
√
2Re

∙
−2

µ
 0
+ −

1


+

¶
+ Φ02

µ
 0
+ −

1


+

¶∗¸


20


(  ) ≈ 0
√
2Re

∙

Φ0


Φ02

µ
 0
+ −

1


+

¶∗¸

≈ −0
√
2Re

∙

Φ0



Γ (12 + 2)

Γ (12− 2)

µ
 0
+ −

1


+

¶∗¸
and


20


(0 ) ≈ 20Re
∙

−4

Γ (12− 2)

¸
Φ0



The Region 2 behavior of the zero mode

0 (
0 0) = 0

√
2

 0
Re
h
+ (

0 0 0) + Φ
0
0 ∗+ (

0 0 0)
i

is the same as the previous bowtie sections but with primed arguments, where

 0 =
p
20

0 = ±2− 

Again taking

 0
0
 0

= 0
√
2Re

h
 0
+ + Φ

0
0 ∗0+

i
− 0

to vanish as  0 → 0 gives

Φ
0
0 = −

¡
 0
+ − 1

 0+

¢¡
 0
+ − 1

 0+

¢∗ = 
Γ (12 + 02)
Γ (12− 02)

+
¡
 02
¢

Thus near  0 → 0 we find

0 (0 
0) = 0Re

h


024Γ (12 + 02)
i

(430)

0 (
0 0) ∼ 0Re

h
4Γ (12 + 02)

i


02 ¡1− 0 024
¢
+

¡
 04 ln  0

¢

 0


 0
0 (

0 0) ∼ −0Re
h
4Γ (12 + 02)

i


02 ¡0 022¢+
¡
 04 ln  0

¢ ∼ − ¡0 022¢0
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¢ ∼ −0
2
0

1

 0


 0

µ
 0



 0
0

¶
∼ −0Re

h
4Γ (12 + 02)

i


020 +
¡
 02 ln  0

¢ ∼ −00 +
¡
 02 ln  0

¢
In addition
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√
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√
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µ
 0
+ −

1

 0
+

¶∗¸
and

 0
20
 0

(0 0) ≈ 20Re
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5.2.7 Approach Of Focal Point

We first take the limits of the outer two regions as the focal region is approached. However to allow

flexibility in phase matching at the focus, we will allow the focal point to shift by a small amount in the

Region 1 and Region 2 solutions by adding a small  shift relative to the Region 3 solution. This can also

be viewed as distorting the the coordinate with  → + , which corresponds to a slight reduction of the

prolate spheroidal radius of curvature on axis, since  = 
p
1−; because the prolate spheroid has

increasing radii of curvature off axis, such a reduction on axis might actually represent the stadium mirrors

better at a finite wavelength (this also explains why this shift is taken to be positive since  shrinks on

axis). Therefore we let

→ +  (431)

 →  +  (432)

where    is a geometrically small shift. Thus in Region 1 we find

 ∼ 2 1√

Re
h
−2+

³p
2 

´
+ 2Φ0 ∗+

³p
2 

´i

0−1 cos
£

¡
1− 022

¢
+  +  ln

¡
02

¢¤½ cos ()

sin ()

¾
 0 → 0

In Region 2 we find
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 ∼ 2 1√
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´i

−1 cos
£

¡
1 + 22

¢
+  − 0 ln (2)− 4−Φ12

¤½ cos ()

sin ()

¾
  → 0

where

0 ln [tanh (02)] = ( − ) 

− 2−Φ12 =  (− 12)

Small Shift In Focal Position We can also view this shift as a change in the original coordinate

system ( ) or ( ) or
¡
 0

¢
 =  sinh  cos  =  sinh  sin 0 ∼ 0

 =  cosh  sin  =  cosh  cos 0 ∼ 
¡
1 + 22− 022

¢
to the focal coordinate system (0 0) or

³bb0´ with
 −  = 0 =  coshb cosb0 ∼ 

³
1 + b22− b022´

 = 0 =  sinhb sinb0 ∼ bb0
Thus the small shift  enters as an additive correction as in the preceding section.

5.2.8 Focal Region Three

Near the focus  = 2 and  = 0 we approximate the Helmholtz equation

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
cosh2  − sin2 ¢ = 0

or

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
sinh2  + cos2 

¢
 = 0

or
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1

sin 0


0

µ
sin 0



0

¶
+

µ
1

sin2 0
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
sinh2  + sin2 0

¢
 = 0

as 0 = 2−  (we are assuming that 2  1 and that 02  1)

1

0


0

µ
0


0

¶
+

µ
1

02
+
1

2

¶
2

2

+
1







µ





¶
+ 2

¡
2 + 02

¢
 = 0 (433)

or taking

 = 
¡
 0

¢½ cos ()

sin ()

¾
(434)

1

0


0

µ
0


0

¶
+
¡
202 −202

¢


+
1







µ





¶
+
¡
22 −22

¢
 = 0

Separating variables

 =  ()
¡
0
¢

(435)

∙
1



1

0


0

µ
0


0

¶
+ 202 −202

¸

+

∙
1



1







µ





¶
+ 22 −22

¸
= 0

Taking the separation constant to be 2 we find

1

0


0

µ
0


0

¶
+
¡−2 + 202 −202

¢
 = 0

1







µ





¶
+
¡
2 + 22 −22

¢
 = 0

Thus we find Whittaker equations in both directions. Letting

0
p
2 =  0

in the first and
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p
2 = 

in the second, gives

1

 0


 0

µ
 0


 0

¶
+

µ
− + 1

4
 02 − 2

 02

¶
 = 0

1







µ





¶
+

µ
 +

1

4
2 − 2

2

¶
 = 0

Therefore we take as the solution

 =  = 0

√
2

 0
Re
£
+ (

0−) +0 ∗+ (
0−)¤

√
2


Re
£
+ (  ) + ∗+ (  )

¤
= 0

1

0
√

Re
h
+

³
0
p
2−

´
+0 ∗+

³
0
p
2−

´i
1


√

Re
h
−2+

³

p
2 

´
+ 2 ∗+

³

p
2 

´i
For purposes of matching with the other two regions we take  =  = −0 and  = Φ0 and 0 = Φ

0
0

 = 0
1

0
√

Re
h
+

³
0
p
2 0

´
+ Φ

0
0 ∗+

³
0
p
2 0

´i
1


√

Re
h
−2+

³

p
2−0

´
+ 2Φ0 ∗+

³

p
2−0

´i½
cos ()

sin ()

¾
(436)

Expanding as we leave the focal region using the asymptotic form

+ (  ) ∼ 
24
¡−22¢2 = 

24+4+ ln(
√
2)   →∞

gives

 ∼ 20
04 cos (Φ002) 

1


√

Re
h
−2+

³

p
2−0

´
+ 2Φ0 ∗+

³

p
2−0

´i

1

0
√

cos
£
022 + 0 ln

¡
0
√

¢−Φ002¤½ cos ()

sin ()

¾
 Region 3→ 1

 ∼ 20−
04 cos (Φ02) 

1

0
√

Re
h
+

³
0
p
2 0

´
+ Φ

0
0 ∗+

³
0
p
2 0

´i
1


√

cos
£
22− 0 ln (

√
)− 2−Φ02

¤½ cos ()

sin ()

¾
 Region 3→ 2
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These must match to the limiting forms of the outer solutions from the preceding sections

 = 2
 (  )

sin 0
cos
£
 cos 0 +  ln

©
tan

¡
02

¢ª¤½ cos ()

sin ()

¾
 0 = 2− 

 (  ) = 

√
2


Re
h
−2+ (  ) + 2Φ0 ∗+ (  )

i
or

 ∼ 2 1
0


1


√

Re
h
−2+

³

p
2 

´
+ 2Φ0 ∗+

³

p
2 

´i

cos
£

¡
1− 022

¢
+  +  ln

¡
02

¢¤½ cos ()

sin ()

¾
 0 → 0

in Region 1, and to

 =
2

sinh 
 (

0 0) cos [ cosh  − 0 ln {tanh (2)}− 2−Φ12]
½
cos ()

sin ()

¾

 (
0 0) = 

√
2

 0
Re
h
+ (

0 0) + Φ
0
0 ∗+ (

0 0)
i

or

 ∼ 2



1

0
√

Re
h
+

³
0
p
2 0

´
+ Φ

0
0 ∗+

³
0
p
2 0

´i

cos
£

¡
1 + 22

¢
+  − 0 ln (2)− 2−Φ12

¤½ cos ()

sin ()

¾
  → 0

in Region 2, where

0 ln [tanh (02)] = ( − ) 

− 2−Φ12 =  (− 12)
The functional behaviors are identical, but the phases only match if

0 ln (2
√
)−Φ002 = − −  +  (437)

−0 ln (2√)− 2− Φ02 =  +  − 2−Φ12 + 0 (438)

and the amplitudes match if

0
04 cos (Φ002)

1√

=  (−1) (439)
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0
−04 cos (Φ02)

1√

= (−1)0 (440)

5.2.9 Evenness Conditions On Scar

Because we want the normal derivative to vanish as the scarred orbit is approached

lim
 0→0

½
Re
h
 0
+ (

0 0) + Φ
0
0 ∗0+ (  0)

i
− 1

 0
Re
h
+ (

0 0) + Φ
0
0 ∗+ (

0 0)
i¾
→ 0

lim
→0

½
Re
h
−2 0

+ (  ) + 2Φ0 ∗0+ (  )
i
− 1


Re
h
−2+ (  ) + 2Φ0 ∗+ (  )

i¾
→ 0

where the first is the Region 2 form and the second is the Region 1 form. If we write the real part as one

half the sum of the function and its conjugate, we see that these conditions imply

Φ
0
0 = − lim

 0→0

£
 0
+ (

0 0)− 1
 0+ (

0 0)
¤£

 0
+ (

0 0)− 1
 0+ ( 0 0)

¤∗
and

Φ0 = lim
→0

£
 0
+ (  )− 1


+ (  )

¤£
 0
+ (  )− 1


+ (  )

¤∗
Using the properties of the Whittaker functions and  = −0 we can evaluate these. The properties of the
functions we desire are

+ (  ) ∼ ¡−22¢12−2 (− 1)!
Γ (12 +2− 2)

  → 0   6= 0

∼ − ¡−22¢12 1

Γ (12− 2)

£
ln
¡−22¢

+ { (12− 2)− 2 (1)}]   → 0   = 0

and

 0
+ (  ) ∼ − ¡−22¢−12−2 (12−2) (− 1)!

Γ (12 +2− 2)
  → 0   6= 0

∼ 
1

2

¡−22¢−12 1

Γ (12− 2)

£
ln
¡−22¢+ { (12− 2)− 2 (1)}+ 2¤   → 0   = 0

and thus (this also works for  = 0)

Φ0 = (−1)2
Γ (12 +2 + 2)

Γ (12 +2− 2)
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Figure 32. Illustration depicting the reflection of the waves of the scarred orbit from the outer chaotic

region, with an inversion of the reflection phase on the other side of the focal point.

and

Φ
0
0 = −(−1)2Γ (12 +2 + 02)

Γ (12 +2− 02)
or

−Φ
0
0 = −−(−1)2Γ (12 +2 + 2)

Γ (12 +2− 2)
= −Φ0−(−1) = (−1) Φ0

Thus

Φ00 = −Φ0 + (441)

The single remaining condition then determines 0 = − given a value of the reflection phase Φ0. Note
that this choice of reflection phase conjugate implies that the incoming wave from the outer region travels

toward the scarred orbit in one region, but on the other side of the focus travels away from the scarred orbit

as illustrated in Figure 32. This construction of the transverse dependence has thus allowed a consistent

solution between the two regions to be found.

5.2.10 Summary Of Conditions

The summary of conditions is now given. The first is the vanishing of the normal derivative as the orbit

is approached

Φ0 = (−1)2
Γ (12 +2 + 2)

Γ (12 +2− 2)

Φ
0
0 = −(−1)2Γ (12 +2 + 02)

Γ (12 +2− 02)
or
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Φ00 = −Φ0 +

determines 0 given Φ0 or vice-versa

−Φ0 = 
Γ (12 +2 + 02)
Γ (12 +2− 02)

−2

From the mirror condition

Φ12 = − 

where  and 0 are related by

0 ln [tanh (02)] = ( − ) 

This can also be written in terms of the stability exponents as

−0 =  = 2 ( − )  ln

µ
+ 

− 

¶
= 2 ( − ) ln (Λ+)

where

00 = ln [tanh (02)] = −
1

2
ln

µ
+ 

− 

¶
= −1

2
ln

µ
+ + 1

− + 1

¶
= −1

2
ln (+) = −1

4
ln (Λ+)

and

p
 =

p
Λ+ − 1¡p
Λ+ + 1

¢
and where 2± = Λ±, +− = 1 = Λ+Λ− and (± + 1) 2 = (± ) . The phase matching conditions can

be written as

Φ12−Φ002−Φ02 = Φ12−2 =  (+ 0)

 = − − 0 ln (2
√
) + Φ002 +  = − − 0 ln (2

√
)−Φ02 +  +2

or

Φ12 =  (+ 0) +2

 = − − 0 ln (2
√
)−Φ02 +  +2

and the amplitude conditions give the coefficients as

 = (−1)0−+ 
02

0 = (−1)
0


04√ sec (Φ02)
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It appears like the phase Φ12 adds something for odd values of  since it must be a multiple of 2 and

sign changes in the Region 2 solution due to this phase are accompanied by sign changes in  and in the

Region 1 solution (which thus can be absorbed into the amplitude coefficients). Furthermore the factor

sec (Φ02) only enters because we failed to set the problem up with symmetrical factors exp (±Φ02) in the
combinations of Whittaker functions.

5.2.11 Final Set Of Conditions For Axisymmetric Mode

Thus for the axisymmetric mode  = 0 if we set Φ1 to zero we have the evenness condition across the

scar orbit to determine the allowed values of the separation constant 0 in terms of the chaotic phase Φ0

−Φ0 = 
Γ (12 + 02)
Γ (12− 02)

= cosh (02)



Γ2 (12 + 02) (442)

We have the mirror conditions which connect the separation constant values and the resonant frequencies 

 =  (443)

0 ln [tanh (02)] = ( − )  (444)

We also have the focal point shift 

 = − − 0 ln (2
√
)−Φ02 +  (445)

and the amplitude constants (here we note that if  and 0 are both even or odd  is one, but if they have

opposite parities, then  = −1 which cancels the phase shift Φ12, then an odd multiple of )

 = 
02 (446)

0 = (−1) 
04√ sec (Φ02) (447)

To get a feel for the connection with Φ0 for small 
0 we can expand as

−Φ0 = 
Γ (12 + 02)
Γ (12− 02)

∼ 
1 + (02) (12) + (02)2

£
2 (12) + 0 (12)

¤
2

1− (02) (12) + (02)2 £2 (12) + 0 (12)
¤
2

∼ 
1− (02) (0 + 2 ln 2) + (02)2

n
(0 + 2 ln 2)2 + 22

o
2

1 + (02) (0 + 2 ln 2) + (02)2
n
(0 + 2 ln 2)2 + 22

o
2

∼ 
h
1− 0 (0 + 2 ln 2)− 02 (0 + 2 ln 2)2 2

i
where  () is the digamma function [11] and 0 ≈ 05772 is Euler’s constant. Thus we have

Φ0 → −2 as 0 → 0 (448)

205



5.2.12 Focal Shift In Axisymmetric Calculations

In the calculations of the focal point shift we use

 =  (449)

0 = 2 ( − )  ln

µ
+ 

− 

¶
(450)

and the focal point shift 

 (+ ) = −0 ln
³
2
√

´
− (Φ02 + 4) + (+ 14) (451)

Note that for  = 0 and  = , we have 0 where

 (+ 0) = (+ 14)

The transcendental equation for 0 can be written as

−(Φ0+2) =
Γ (02 + 12)
Γ (−02 + 12) (452)

giving

 (+ ) = −0 ln
³
2
√

´
+ argΓ (12 + 02) + (+ 14) (453)

Noting that

 = ( − )  () +  () =  ()− 1
2
0 () ln

µ
+ 

− 

¶
gives

 = −0
½
ln
³
2
√

´
− 1
2
() ln

µ
+ 

− 

¶¾
+ argΓ (12 + 02) + {(+ 14)−  ()}

or ignoring terms of order ( − ) 

 ∼ −0
½
ln
³
2
√

´
− 1
2
() ln

µ
+ 

− 

¶¾
+ argΓ (12 + 02) + {(+ 14)−  ()}

or

 (+ ) ∼ −0
½
ln
³
2
p

´
+
1

2
( − )  − 1

2
() ln

µ
+ 

− 

¶¾
+ argΓ (12 + 02) + (+ 14)

or

(+ )  ∼ 1



∙
0
½
1

2
() ln

µ
+ 

− 

¶
+
1

4
0 ln

µ
+ 

− 

¶
 ()− ln

³
2
p

´¾

+ argΓ (12 + 02)
¸
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+(+ 14) 

Dropping the quadratic term in 12

(+ )  ∼ 1



∙
0
½
1

2
() ln

µ
+ 

− 

¶
− ln

³
2
p

´¾

+ argΓ (12 + 02)
¸
+ (+ 14) 

Expansion For Small Separation If the value of 0 → 0 we can expand the gamma function as

Γ (12 + 02) ∼ √ £1 +  (12) 02− 2 (12) 028− 0 (12) 028
¤

∼ √
h
1− (0 + 2 ln 2) 02−

n
(0 + 2 ln 2)2 + 22

o
028

i
and

argΓ (12 + 02) ∼ − (0 + 2 ln 2) 02  0 → 0

to find

 (+ ) = −0
h
ln
³
4
√

´
+ 02

i
+ (+ 14)

or

(+ )  ∼ 1



∙
0
½
1

2
() ln

µ
+ 

− 

¶
− ln

³
4
p

´
− 02

¾¸
+ (+ 14) 

5.2.13 Average Focal Shift

The normalized shift function, without corrections (0 = 0) is

 (+ 0) = (+ 14) (454)

and using

 =  (455)

is

(+ 0)  = (+ 14)  (456)

This can be written as

0 = −  ≥ 0 (457)

where

207



 = − 14
and the inequality displaces the focus to the right of the geometrical focal point (as we found in the 2D

problem [2]). Now for for large values of  (with   1) and , we assume that −  is between 0 and 1

(we might take it to be uniformly distributed) and examine the average

 h0i  ≈ 12 (458)

For example with the frequency range

20971 m−1 ≤  ≤ 6287 m−1
with  = 011176 m,  = 00336969 m we find that

1 = 8 ≤  ≤ 22 = 2
Then we find

h0i  = 1

2 − 1

Z 2

1



2
=

12

2 − 1
ln (21) = 00361286

and

 = + hi ≈ + h0i ≈ 00377346 m (459)

5.3 Stadium Normalization For Axisymmetric Mode

The preceding acoustic case of scalar normalization gives the normalization condition

I


∙




µ
1



∗



¶
− ∗





µ
1







¶¸


= 2
2

2

Z


||2  (460)

or for a real function with unit volume integral
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∙




µ
1







¶
− 





µ
1







¶¸
 = 2

2

2
(461)

If we set




= 0  on 

then

2
2


= −

Z



2


 =

Z 2

−2

Z 2

0


2
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+

"Z 0

0

( = 2) +

Z 0

0

( = −2)
#Z 2

0


2


0

∼ 

Z 2

−2

Z 2

0


2


 cos  = 2

Z 2

0

Z 2

0


2


 cos 

+2

Z 0

0

Z 2

0


2

0
0 sinh 

∼ 

Z 0

−0

Z 2

0


2


 cos  = 2

Z 2

0

Z 2

0


2


 cos 

+2

Z 0

0

Z 2

0


2

 0
 0 sinh 

with metric coefficients

 =  = 

q
sinh2  + cos2 

 =  sinh  cos 

Thus

2


= 2

Z 2

0


2


 cos  + 2

Z 0

0


2

 0
 0 sinh  (462)

The solution in Region 1 is

 = 2
0 (  )

cos 
cos ( sin  − )

= 2
020 (  )

sin 0
cos
¡
 cos 0 − 

¢
 0 = 2−  (463)

where

0 (  ) = 0

√
2


Re
h
−2+ (  0 ) + 2Φ0 ∗+ (  0 )

i
(464)

 =

Z 

0



cos 
= arcsinh (tan ) =

Z 2

0

0

sin 0
= − ln©tan ¡02¢ª (465)

 =
p
2 (466)

+ (  0 ) =20

¡−22¢ (467)
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 =  (468)

The solution in Region 2 is

 =
2

sinh 
0 (

0 0) cos ( cosh  − 00 − 2) (469)

where

0 = − (470)

0 (
0 0) = 0

√
2

 0
Re
£
+ (

0 0−) + −Φ0 ∗+ (
0 0−)¤ (471)

 0 =
p
20 (472)

0 = ±2−  (473)

2000 = 2
0 ln [tanh (02)] = ( − ) (474)

0 =
Z 

∞



sinh 
= ln [tanh (2)] (475)

The solution in Region 3 is

 = 00
1

0
√

Re
h
+

³
0
p
2 0 0

´
+ −Φ0 ∗+

³
0
p
2 0 0

´i
1


√

Re
h
−2+

³

p
2 0−0

´
+ 2Φ0 ∗+

³

p
2 0−0

´i
or

 = (−1) 
04√ sec (Φ02) 0 1

0
√

Re
h
+

³
0
p
2 0 0

´
+ −Φ0 ∗+

³
0
p
2 0 0

´i
1


√

Re
h
−2+

³

p
2 0−0

´
+ 2Φ0 ∗+

³

p
2 0−0

´i
(476)

Here we apply the normalization with only Region 1 and Region 2 solutions separated by the coordinate

value  = 2 (0 = 0) and cosh 0 = . The next subsection discusses the Region 3 contribution, where

the principal value interpretation used here is shown to be justified (the next subsection is restricted to the

 = 0 limit for simplicity). To carry out the integration we introduce a slight displacement ∆ on either side

of the focus, so that the integration range is  = 0 to

210



 = Arcsin (1−∆) ≈ 

2
−
p
2∆ (477)

and from  equal to

 = Arccosh (1 +∆) ≈
p
2∆ (478)

to 0. Thus the integral is

2


= 2

Z 2−
√
2∆

0
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Z 0

√
2∆
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 0
 0 sinh  (479)

Then in Region 1 we have
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 = −202 1
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Now taking the limit as  → 0
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i
In region 2 we write

2

 0
 0
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=
2
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0
√
2Re

∙
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½
 0
+ (

0 0−)− 1

 0
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0 0−)
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 =
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and as  0 → 0
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Now assembling the normalization condition
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i Z 0

√
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Changing variables to  =
R 
0


cos 

=arcsinh(tan ) in the first integral with sin  = tanh and to

0 =
R 
∞


sinh 

= ln [tanh (2)] in the second integral with cosh () = − coth (0) gives
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√
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⎤⎦
Changing to 00 = −0 in the second integral
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or approximating the limits
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Averaging over the rapidly varying sinusoids gives
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where 00 = ln {tanh (02)} = 1
2
ln
³
−
+

´
= −1

4
ln (Λ+)  0. This evaluation made use of a principal

value interpretation of the energy theorem integration (in and 0) at the focal point, which can be more
rigorously justified by considering the contribution from the focal region [2] in the next subsection.

We now adopt Antonsen’s conjecture [1] that

2 =


8

¯̄̄̄
Φ0

2

¯̄̄̄−1
(480)

is the square of a unit Gaussian random variable and that  is a Gaussian random variable with zero mean

and unit variance. This is the same as in the preceding scalar bowtie cavity and assumes the eigenfunction

is even along the orbit. Thus we find
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 ln (Λ+) cosh (2)Re
2
£
−4Γ (12 + 2)

¤
or

0 = 
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¤ (481)

5.3.1 Focal Region Contribution To Normalization

The focal region can be included in the energy theorem integration. The solution in region 3 is
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√
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=
0

0
0 (
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Expanding as we leave the focal region using the asymptotic form

+ (  ) ∼ 
24
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gives

 ∼ 20
04 cos (Φ002) 0

1


√

Re
h
−2+

³

p
2 0−0

´
+ 2Φ0 ∗+

³

p
2 0−0

´i

214



1
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√
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£
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¡
0
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¢−Φ002¤  Region 3→ 1
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 Region 3→ 2

The idea behind a correction is to integrate the exact form minus the two asymptotic limits (one on each

side of the focal point) in the energy theorem.
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or
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Now taking the normal derivatives
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Letting  → 0 in the first expression times  gives
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Letting  0 → 0 in the second expression times  0 gives

µ
 0

2

 0

¶
 0→0

∼ 00 (  ) 2Re

∙
4

Γ (12− 02)

¸
Φ00


and

216



 ( 0 = 0) =
0

0
0 (0 
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The normalization condition is

2


= 2

Z 2
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Z 2

0


2


 sin 00 + 2

Z 0

0


2

 0
 0 sinh 

= 2

Z 

0


2


 + 2

Z 




2

 0
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However, in 2D we found it simpler to examine this correction at the peak  = 0. Let us follow the

same procedure here. The region 3 solution becomes

−Φ00 = Φ0 → −2 as 0 → 0 (489)
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where the Whittaker function takes the form
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p
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Thus the scalar solution in Region 3 is
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0 (0) = 
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0 (0) = (−1)
0p
2 (494)

 (+ 0) = (+ 14)

and
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Note that this function has a change in sign at  =  0 = 0 due to the outer phase derivative (the function
itself should be continuous). Expanding for large arguments gives
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Averaging over the rapidly varying trigonometric functions for high frequencies gives
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To be consistent with the original treatment, where we did not employ the focal shift for continuity, we use

24 =  024 =  (| − |)
in the asymptotic forms. The correction we are after uses the difference of the exact form and these

asymptotic forms
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to give (→∞)
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∼ 2220
Φ0


2 (+ 0)

2
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+
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−− 
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The Region 3 correction thus vanishes as the overall interval of integration becomes large compared to the

focal region   . The principal value definition is therefore OK. Note that the above integration of the

Bessel function assumes that 0 → 0, but the order of the result is valid even if this is not true.

5.4 Scalar Stadium Projections

The projections of the high frequency rotationally symmetric stadium cavity field and of the

axisymmetric random plane wave field are now discussed.

5.4.1 Trigonometric Scar Projection

The trigonometric projection of the high frequency scar solution in the stadium is now discussed. The

projection kernel in this case is motivated by the  = 0 limit of the scar solution

 = 2
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0
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 (0 0 ) cos ( − 2)  (495)

The cylindrical form of the solution connected by
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where
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The cylindrical form of the solution in Region 2 is
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Retaining only the leading terms by averaging over the rapidly varying cosines gives
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Thus we finally have
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Note that for Λ+ → 1
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5.4.2 Focal Region Contribution To Trigonometric Scar Projection

It is instructive to examine the rough size of the correction to the trigonometric projection would arise

from the focal region. The solution in region 3 is
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Expanding as we leave the focal region using the asymptotic form
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The idea behind a correction is to integrate the exact form minus the two asymptotic limits (one on each

side of the focal point) in the projection. Letting  → 0 in the first expression times  gives
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Letting  0 → 0 in the second expression times  0 gives
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However, in 2D [2] we found it simpler to examine this correction at the peak  = 0. Let us follow the

same procedure here. The region 3 solution becomes

−Φ00 = Φ0 → −2 as 0 → 0

 = 00

√
2

0
√
2
Re
h
+

³
0
p
2 0 0

´
+ 2 ∗+

³
0
p
2 0 0

´i
√
2


√
2
Re
h
−2+

³

p
2 0 0

´
+ ∗+

³

p
2 0 0

´i

=
0

0
0 (

0 0)0 (  0)

+ (  0 0) =
1

2

p
24

(1)
0

¡
24

¢
Thus

 = 00


2
0
¡
022

¢
0
¡
22

¢

0 (
0 0) = 0

r


2
0
¡
 024

¢

0 (  0) = 0

r


2
0
¡
24

¢
0 (0) = 

2p
 ln (Λ+)

0 (0) = (−1)
0p
2

 (+ 0) = (+ 14)

Here we employ the focal shift 0 for continuity of the kernel function and therefore take
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Expanding for large arguments gives
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Thus we can write the correction to the scar trigonometric projection for  = 0 as
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Extending these limits to infinity
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1

2
(0)

2
∞X
=0

(−1)
+ 1

(0)
2

"
X

=0

1

22! (+ 1)!

1

(2− 2+ 1)!

#
where the series in brackets for each of the first few ’s is

X
=0

1

22! (+ 1)!

1

(2− 2+ 1)!
= 1  = 0

=
1

2

µ
1

3
+
1

4

¶
=
7

24
  = 1

=
1

24

µ
1

5
+
1

2
+
1

8

¶
=
11

320
  = 2

=

µ
1

7!
+
1

8

1

120
+

1

32 (6)

1

6
+

1

263!4!

¶
=

143

64512
  = 3

so that

Z 0

0

0 () sin ()  =
1

2
(0)

2

∙
1− 7

48
(0)

2
+
11

960
(0)

4 − 143

258048
(0)

6
+ · · ·

¸
and similarly

Z 0

0

( √
2√

cos (− 4)

)
sin ()  =

1

2

p
1

Z 0

0

[sin (2) + 1− cos (2)] √

=

=
1

2

p
1

(
2
p
0 +

∞X
=0

(−1)
Z 0

0

∙
22+1

(2+ 1)!
2+12 − 22

(2)!
2−12

¸


)

=

q
0

(
1 +

∞X
=0

22 (−1)
(2)!

(0)
2

∙
(0)

(2+ 32) (2+ 1)
− 12

(2+ 12)

¸)
Then with

 h0i  ≈ 12

sin (4)

Z h0i

0

0 () sin ()  ≈ 0496

sin (4)

Z h0i

0

( √
2√

cos (− 4)

)
sin ()  ≈ 0565

we find
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∆ ≈ 4


 (−1)0+

s
2

 ln (Λ+)

[− (−1) 035355 + 0069]
Note that the original value for  = 0 is

 ∼ 4√



p
2p

 ln (Λ+)

h
2
+ arccosh ()

i

∼ 4√



p
2p

 ln (Λ+)

∙


2
+ ln

µ
+

q
()

2 − 1
¶¸

∼ 4√



p
2p

 ln (Λ+)

"


2
+ ln

Ã
Λ
14
+ + 1

Λ
14
+ − 1

!#

∼ 4√



p
2p

 ln (Λ+)

∙


2
+ ln

µ√
+ +

√
− √

+ −√− 

¶¸
and therefore

∆ = 

⎡⎢⎢⎣
√
 ()


2
+ ln

µ
Λ
14

+ +1

Λ
14

+ −1

¶
⎤⎥⎥⎦ = 

Ã
1

2
p


!

Using

 = 

with  = 011176 m,  = 00336969 m, and

1 = 8 ≤  ≤ 22 = 2
we see that this is less than a 20% error term for  = 8 and less than a 11% error for  = 22.

5.4.3 Random Plane Wave Trigonometric Projection

The projection is again taken as

 
 =

Z 

−
 (0 0 )

∙
cos ()  ||  

cos ( ||− 2)  ||  

¸
 (503)

In this case let us take the random plane wave to be symmetrized along the orbit (we will take only the

even part of the random plane wave below)

 
 = 2

Z 

0

 (0 0 ) cos ()  + 2

Z 



 (0 0 ) cos ( − 2) 
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where the axisymmetric component of the random plane wave is

 ( 0 ) = lim
→∞

p
4 ()Re

⎡⎣ X
=1

0 ( sin ) 
+ cos 

⎤⎦ (504)

Thus (the factor of 2 is introduced here to include the negative half of the integration interval)

 
 = 2 lim

→∞

p
4 ()

X
=1



Z 

0

cos ( +  cos ) cos () 

+2 lim
→∞

p
4 ()

X
=1



Z 



cos ( +  cos ) cos ( − 2) 

Taking the variance and averaging over the random amplitudes  with h0i = 0


 2


®

= 4 lim

→∞
4



X
=1

"Z 

0

Z 

0

cos () cos (
0) cos ( +  cos ) cos ( + 0 cos ) 0

+2

Z 

0

Z 



cos () cos (
0 − 2) cos ( +  cos ) cos ( + 0 cos ) 0

+

Z 



Z 



cos ( − 2) cos (
0 − 2) cos ( +  cos ) cos ( + 0 cos ) 0

#
Averaging over the random phases using

hcos ( +  cos ) cos ( + 0 cos )i =
1

2

1

2

Z 2

0

[cos ( ( − 0) cos ) + cos (2 +  ( + 0) cos )] 

=
1

2
cos ( ( − 0) cos ) =

1

2
cos ( cos ) cos (0 cos ) +

1

2
sin ( cos ) sin (0 cos )

and taking only the even part (the odd part will vanish if the integration is carried out over both halves of

the stadium) gives


 2


®
 

= 2 lim
→∞

4



X
=1

"Z 

0

cos () cos ( cos ) 

Z 

0

cos (
0) cos (0 cos ) 0

+2

Z 

0

cos () cos ( cos ) 

Z 



cos (
0 − 2) cos (0 cos ) 0

+

Z 



cos ( − 2) cos ( cos ) 

Z 



cos (
0 − 2) cos (0 cos ) 0

#
or
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®
 

= 2 lim
→∞





X
=1

"Z 

0

{cos (( −  cos ) ) + cos (( +  cos ) )} 
Z 

0

{cos (( −  cos ) 0) + cos (( +  cos ) 0)} 0

+2

Z 

0

{cos (( −  cos ) ) + cos (( +  cos ) )} 
Z 



{sin (( −  cos ) 0) + sin (( +  cos ) 0)} 0

+

Z 



{sin (( −  cos ) ) + sin (( +  cos ) )} 
Z 



{sin (( −  cos ) 0) + sin (( +  cos ) 0)} 0
#

or


 2


®
 

= 2 lim
→∞





X
=1∙

sin (( −  cos ) )

( −  cos )
+
cos (( −  cos ) )

( −  cos )
− cos (( −  cos ) )

( −  cos )

+
sin (( +  cos ) )

( +  cos )
+
cos (( +  cos ) )

( +  cos )
− cos (( +  cos ) )

( +  cos )

¸2
Now averaging over the angle  gives


 2


®

=
2



1

2

Z 

0∙
sin (( −  cos ) )

( −  cos )
+
cos (( −  cos ) )

( −  cos )
− cos (( −  cos ) )

( −  cos )

+
sin (( +  cos ) )

( +  cos )
+
cos (( +  cos ) )

( +  cos )
− cos (( +  cos ) )

( +  cos )

¸2
sin 

Now when  →  the first terms peak for  → 0 and the second terms peak for  →  with

cos  = − cos ( − ) and sin  = − sin ( − ). Thus we find (and  = 
p
2)


 2


®

=

2



1

2

Z ∞
0

"
sin
¡
 −  + 22

¢


 −  + 22
+
cos
¡
 −  + 22

¢


 −  + 22
− cos

¡
 −  + 22

¢


 −  + 22

#2
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+
2



1

2

Z 

−∞

⎡⎣sin
³
 −  +  ( − )

2
2
´


 −  +  ( − )
2
2

+
cos
³
 −  +  ( − )

2
2
´


 −  +  ( − )
2
2

−
cos
³
 −  +  ( − )

2
2
´


 −  +  ( − )
2
2

⎤⎦2 ( − ) 

=
2



Z ∞
0

"
sin
¡
 −  + 22

¢


 −  + 22
+
cos
¡
 −  + 22

¢


 −  + 22
− cos

¡
 −  + 22

¢


 −  + 22

#2


=
4



Z ∞
0

"
sin
¡
( − ) + 2

¢


( − ) + 2
+
cos
¡
( − ) + 2

¢


( − ) + 2
− cos

¡
( − ) + 2

¢
( − ) + 2

#2


Now letting

 = 2 ( − )

and


 2



®

= 2 () 

gives


 2


®

=
2



Z ∞
0"

sin
¡
4− 2

¢


4− 2
− cos

¡
4− 2

¢


4− 2
+
cos
¡
4− 2

¢
4− 2

#2


or

 () =
2



Z ∞
0

£
sin
¡
4− 2

¢
− cos ¡4− 2

¢
+ cos

¡
4− 2

¢¤2¡
4− 2

¢2 

=
1



Z ∞
0

[sin (4− ) − cos (4− ) + cos (4− )]
2

(4− )
2



=
1



Z ∞
−4

[sin () + cos ()− cos ]2
2



Note that

 (∞) = 1



Z ∞
−∞

[sin () + cos ()− cos ]2
2
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=
1



Z ∞
−∞

£
1 + cos2  + sin (2)− 2 sin () cos  − 2 cos () cos ¤

2


=
2



Z ∞
0

£
1
2
cos (2)− 1

2
+ 1− cos ((1 + ) ) + 1− cos ((1− ) )

¤
2



= 1 + + 1− − 22 = 1
Integration by parts gives

 () = − 1


£− sin ¡
4

¢
+ cos

¡

4

¢− cos (4)¤2

4

+
2



Z ∞
−4

[sin () + cos ()− cos ] [() cos ()− () sin () + sin ]




= − 1


£− sin ¡
4

¢
+ cos

¡

4

¢− cos (4)¤2

4

+
2



Z ∞
−4

£
() cos (2) + sin  {sin () + cos ()}+ () cos  {sin ()− cos ()}− 1

2
sin (2)

¤




or

 () +
1



£− sin ¡
4

¢
+ cos

¡

4

¢− cos (4)¤2

4
=
2



Z ∞
−4

+

£
1
2
{sin ((1− ) ) + sin ((1 + ) )}+ 1

2
() {sin ((1 + ) )− sin ((1− ) )}− 1

2
sin (2)

¤




+
2



Z ∞
−4

£
1
2
{cos ((1− ) )− cos ((1 + ) )}− 1

2
() {cos ((1− ) ) + cos ((1 + ) )}+ () cos (2)¤




or

 () +
1



£− sin ¡
4

¢
+ cos

¡

4

¢− cos (4)¤2

4
=

1

2
+
1


[(1− ) Si ((1− )4) + (1 + ) Si ((1 + )4)− Si (2)]
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+
1


[(1 + ) Ci (− (1 + )4)− (1− )Ci (− (1− )4)− 2 ()Ci (− ()2)]

=
1

2
+
1


[(1− ) Si ((1− )4) + (1 + ) Si ((1 + )4)− Si (2)]

− 1

[(1 + )Cin ((1 + )4)− (1− )Cin ((1− )4)− 2 ()Cin (()2)]

+
1


[(1 + ) ln (1 + )− (1− ) ln (1− )− 2 () ln (2 ())] (505)

Note that

 (0) =
1

2
+
1


[(1 + ) ln (1 + )− (1− ) ln (1− )− 2 () ln (2 ())] (506)

 (−∞) = 0 (507)

 (∞) = 1 (508)

Thus taking into account the even symmetry along the orbit

 () = 2 () (509)

A comparison of the trigonometric projections for the cavity scar field and axisymmetric random plane

wave field are given in Figure 33. Notice that in the stadium there is a large enhancement in the cavity

scar field relative to the random plane wave field near  = 0, where the cavity modal frequency aligns with

the scar frequency  → . There is in addition the axisymmetric enhancement due to the symmetry of the

field

 2



®


 2



®
=  ()  1 (analogous to the factor of two increase in the 2D even geometry).

5.4.4 Elliptic System Scar Projection

The elliptic projection operator is now discussed. The high frequency scar constructions in prolate

spheroidal coordinates

 =  sinh  cos  =  sinh  sin 0

 =  cosh  sin  =  cosh  cos 0

0   ∞

−2    2  0    2

are given to motivate the projection. The solution in Region 1 is
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Figure 33. Comparison of trigonometric projections of the rotationally symmetric stadium cavity field and

the axisymmetric random plane wave field.
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 = 2
020 (  )

sin 0
cos
¡
 cos 0 − 

¢
 0 = 2− 

0 (0 ) = 0Re
h
−42Γ (12 + 2)

i

0 = 
2p

 ln (Λ+) (1 + −)Re
£
−4Γ (12 + 2)

¤
where

0 (  ) = 0

√
2


Re
h
−2+ (  0 ) + 2Φ0 ∗+ (  0 )

i

 =

Z 

0



cos 
= arcsinh (tan ) =

Z 2

0

0

sin 0
= − ln©tan ¡02¢ª

 =
p
2

+ (  0 ) =20

¡−22¢
 = 

The solution in Region 2 is

 =
2

sinh 
0 (

0 0) cos ( cosh  − 00 − 2)

0 (0 
0) = 0

−2Re
h
−4Γ (12 + 2)

i
where

0 = −

0 (
0 0) = 0

√
2

 0
Re
£
+ (

0 0−) + −Φ0 ∗+ (
0 0−)¤

 0 =
p
20

0 = ±2− 

2000 = 2
0 ln [tanh (02)] = ( − )
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0 =
Z 

∞



sinh 
= ln [tanh (2)]

The projection is taken as

 = lim
→0

2



Z 2

0

1

2

Z 2

0

cos [ + 0 ()]

cos 
 (  )

+ lim
0→0

2

0

Z 0

0

1

2

Z 2

0

cos [ − 2 + 0 ()]

sinh 
 (  )

= 2

Z 

0

cos [ + 0 ()] (0 0 )





+2

Z 



cos [ − 2 + 0 ()] ( 0 2)



 (510)

or (note that this limit definition of the integration around the scar produces a definition without the extra

amplitude divergence factors in the kernel of the projection operator)

 = 2

Z 

0

cos [ + 0 ()] (0 0 ) 

+2

Z 



cos [ − 2 + 0 ()] (0 0 )  (511)

where the metric coefficients are

 =  = 

q
sinh2  + cos2 

 =  sinh  cos  =  sinh  sin 0




=  sinh  sin 




=  cosh  cos 

and for  → 0





→ 1

and for  → 2





→ 1

where
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0 () =


2

½
() ln

¯̄̄̄
+ 

− 

¯̄̄̄
− ln

¯̄̄̄
 + 

 − 

¯̄̄̄¾
(512)

The cylindrical form of the solution in Region 1 is

 (0 0 ) = 2
−2 0 (0 )p

1− 22
cos [ + 0 ()]

0 () =


2

½
() ln

µ
+ 

− 

¶
− ln

µ
+ 

− 

¶¾

0 (0 ) = 0
2Re

h
−4Γ (12 + 2)

i

0 = 
2p

 ln (Λ+) (1 + −)Re
£
−4Γ (12 + 2)

¤
where

 = 2 ( − )  ln

µ
+ 

− 

¶

 = 

The cylindrical form of the solution in Region 2 is

 (0 0 ) =
2p

22 − 10 (0 
0) cos [ + 0 ()− 2]

0 () = −
0

2

½
() ln

µ
+ 

− 

¶
− ln

µ
 + 

 − 

¶¾

0 (0 
0) = 0

−2Re
h
−4Γ (12 + 2)

i
where

0 = −
We now include the exponential ratio for  6= 0 between region 1 to region 2 in redefining the elliptic

projection operator. As in the 2D case [2] we take the operator to have the proper exponential weights

relative to the scar solution, but we remove the growing weight as → ±∞

exp ( || 4) = 24
Z 

0

cos [ + 0 ()] (0 0 ) 

+2−4
Z 



cos [ − 2 + 0 ()] (0 0 )  (513)

Then the elliptic projection is
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exp ( || 4)
n
40Re

h
−4Γ (12 + 2)

io
=

4
Z 

0

cos2 [ + 0 ()]
p

1− 22
+ −4−2

Z 



cos2 [ − 2 + 0 ()]
p

22 − 1
where

0 () =


2

½
() ln

µ
+ 

− 

¶
− ln

¯̄̄̄
 + 

 − 

¯̄̄̄¾

0Re
h
−4Γ (12 + 2)

i
= 

2p
 ln (Λ+) (1 + −)

Averaging over the rapidly varying cosines gives

exp ( || 4)
(


4p
 ln (Λ+) (1 + −)

)
∼

4
Z 

0

p
1− 22

+ −4−2
Z 



p
22 − 1

Thus we finally have


 2



®
= 21 ()  (514)

where

exp ( || 2)1 () = 8 ()

ln (Λ+) (1 + −)

h
42 + −4−2arccosh ()

i2

=
8 ()

ln (Λ+) (1 + −)

h
42 + −4−2 ln

³
+

p
22 − 1

´i2

=
4

cosh (2) ln (Λ+)

(Λ+ − 1)¡p
Λ+ + 1

¢2
"
22 + −2 ln

(¡p
Λ+ + 1

¢
(Λ+ − 1)

³
Λ
14
+ + 1

´2)#2
(515)

where

 =
(Λ+ − 1)¡p
Λ+ + 1

¢2
Λ+ =

µ
+ 

− 

¶2

Scar Projection With Amplitude Divergence Factors If we attempt to include the amplitude

divergence factors in the scar projection then
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exp ( || 4) = 24
Z 

0

cos [ + 0 ()]p
1− 22

 (0 0 ) 

+2−4
Z 



cos [ − 2 + 0 ()]p
22 − 1  (0 0 )  (516)

The solution in Region 1 is

 (0 0 ) = 2
−2 0 (0 )p

1− 22
cos [ + 0 ()]

0 () =


2

½
() ln

µ
+ 

− 

¶
− ln

µ¯̄̄̄
+ 

− 

¯̄̄̄¶¾

0 (0 ) = 0Re
h
−42Γ (12 + 2)

i

0 = 
2p

 lnΛ+ (1 + −)Re
£
−4Γ (12 + 2)

¤
where

 = 2 ( − )  ln

µ
+ 

− 

¶

 = 

The solution in Region 2 is

 (0 0 ) =
2p

22 − 10 (0 
0) cos [ + 0 ()− 2]

0 () = −
0

2

½
() ln

µ
+ 

− 

¶
− ln

µ¯̄̄̄
 + 

 − 

¯̄̄̄¶¾

0 (0 
0) = 0

−2Re
h
−4Γ (12 + 2)

i
where

0 = −
Thus

exp ( || 4) = 4−40 (0 )
Z 

0

cos2 [ + 0 ()]


1− 22

+4−40 (0 
0)
Z 



cos2 [ + 0 ()− 2]


22 − 1 (517)

This appears to be divergent without considering the transition of the solution to Region 3 at the focal
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point (which would then become a major contribution to the projection rather than a small correction, and

represent a poor choice of the projection operator)! Alternatively the projection could be interpreted as a

principal value if we introduced a minus sign into the projection operator definition between the two regions.

The corresponding integration in the energy theorem was evaluated as a principal value limit because it

included the change in sign of the outer phase derivative factor which multiplied the normal derivative of

the solution on the orbit between the two regions. Such new definitions of the projection might be worth

future consideration, but in this section we will not include the amplitude divergence factors in the kernel.

5.4.5 Random Plane Wave Elliptic System Projection

Here we again take the projection to be

exp ( || 4) = 24
Z 

0

cos [ + 0 ()] (0 0 ) 

+2−4
Z 



cos [ − 2 + 0 ()] (0 0 )  (518)

0 () =


2

½
() ln

µ
+ 

− 

¶
− ln

¯̄̄̄
 + 

 − 

¯̄̄̄¾
with the axisymmetric random plane wave representation

 ( 0 ) = lim
→∞

p
4 ()Re

⎡⎣ X
=1

0 ( sin ) 
+ cos 

⎤⎦ (519)

Then

 = 2 lim
→∞

p
4 ()

X
=1



(
−(||−)4

Z 

0

cos [ + 0 ()] cos ( +  cos ) 

+−(||+)4
Z 



cos [ − 2 + 0 ()] cos ( +  cos ) 

)
and averaging over the amplitudes 
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®
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→∞
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(
−(||−)4

Z 

0

cos [ + 0 ()] cos ( +  cos ) 

+−(||+)4
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cos [ − 2 + 0 ()] cos ( +  cos ) 

)2
Next averaging over the phases  , using

hcos ( +  cos ) cos ( + 0 cos )i =
1

2

1

2

Z 2

0

[cos ( ( − 0) cos ) + cos (2 +  ( + 0) cos )] 
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=
1

2
cos ( ( − 0) cos ) =

1

2
cos ( cos ) cos (

0 cos ) +
1

2
sin ( cos ) sin (

0 cos )

and taking only the even part (the odd part will vanish if the integration is carried out over both halves of

the stadium) gives
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Now averaging over the angle  gives
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sin 

Now when  →  the first terms peak for  → 0 and the second terms peak for  →  with

cos  = − cos ( − ) and sin  = − sin ( − ). Thus we find (and  = 
p
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gives

 () =
2



Z ∞
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½
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µ
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¶
− ln

¯̄̄̄
 + 

 − 

¯̄̄̄¾

 =  ln (Λ+)

To account for the evenness along the orbit this is doubled

 () = 2 () =
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"
−(||−)4

Z 

0

cos ( + 0 ()) 

+−(||+)4
Z 1
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For purposes of numerical integration
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Figure 34. Comparison of elliptic projections of the rotationally symmetric stadium cavity field and the

axisymmetric random plane wave field.

 () = 2 () =
2



Z ∞
−4

"
−(||−)4

Z 

0

{cos () cos (0 ())− sin () sin (0 ())} 

+−(||+)4
Z 1



{cos () sin (0 ()) + sin () cos (0 ())} 
#2

 (521)

The comparison of the elliptic projections in the stadium cavity is shown in Figure 34.

6 VECTOR TREATMENT OF AXISYMMETRIC STADIUM

We now consider the electromagnetic vector problem in the axisymmetric stadium cavity.

6.1 Modal Solution In Region One: Between Foci

The parabolic equation in quasirectangular coordinates for the Hertz potential component Π or Π
(or  ) resulting from the vector wave equation is the same as that arising from the three dimensional

scalar Helmholtz equation. Hence we can transform the parabolic equation for the Hertz potential from the

quasirectangular system back to prolate spheroidal coordinates.

Because the solution must be even in  we can write in Region 1
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Π = 
£
 (  )  sin  + ( −) − sin ¤  ||  0

= 
1

cos 

£
Ψ (   )  sin  +Ψ (  −) − sin ¤

= 2
 (  )

cos 
cos ( sin  − )

½
cos ()

sin ()

¾

= 2
 (  )

sin 0
cos
¡
 cos 0 − 

¢½ cos ()

sin ()

¾
 0 = 2− 

where in the even stadium case

 = 

For matching purposes (with Region 2) it is convenient to take

 (  ) = 

√
2


Re
h
−2+ (  ) + 2Φ0 ∗+ (  )

i

 =

Z 

0



cos 
= arcsinh (tan )

= ln (tan  + sec ) = ln

½
tan

1

2
( + 2)

¾
= − ln©tan ¡02¢ª

 =
p
2

+ (  ) =22

¡−22¢
For the case where the mode is odd along the orbit

Π = 
£
 (  )  sin  − ( −) − sin ¤  ||  0

= 
1

cos 

£
Ψ (   )  sin  −Ψ (  −) − sin ¤

= 2
 (  )

cos 
sin ( sin  − )

½
cos ()

sin ()

¾

= 2
 (  )

sin 0
sin
¡
 cos 0 − 

¢½ cos ()

sin ()

¾
 0 = 2− 

where in the odd stadium case

245



 = (− 12)
6.1.1 Behavior Of Zero Mode Near Orbit For Stadium Solutions

The Region 1 behavior of the zero mode  = 0

0 = 0

√
2


Re
h
−2+ (  0 ) + 2Φ0 ∗+ (  0 )

i
is now discussed near  → 0. Again using

+ (  0 ) ∼ −
¡−22¢12 1

Γ (12− 2)

£
ln
¡−22¢ ¡1− 24

¢
+ (12− 2)− 2 (1) + ¡24¢ {− (12− 2) + 2 (1) + 2}+

¡
4 ln 

¢¤
 0
+ (  0 ) ∼ 

1

2

¡−22¢−12 1

Γ (12− 2)

£
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¡−22¢+ { (12− 2)− 2 (1)}+ 2 +

¡
2 ln 

¢¤
  → 0   = 0

and taking


0


= 0
√
2Re

h
−2 0

+ + 2Φ0 ∗0+
i
− 0

to vanish as  → 0 gives the reflection phase

Φ0 = −
−2 ¡ 0

+ − 1

+

¢
2

¡
 0
+ − 1


+

¢∗ = −Γ (12 + 2)

Γ (12− 2)
+

¡
2
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We also have

0 (0 ) = 0Re
h
2−4Γ (12 + 2)

i
  → 0 (522)

which is again − inside the real part times the preceding bowtie result. In general

0 (  ) ∼ 0Re
h
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i
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¡
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¡
4 ln 
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¡
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i
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¡
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In addition


20


(  ) ≈ 0
√
2Re

∙

Φ0


Φ02

µ
 0
+ −

1


+

¶∗¸
and


20


(0 ) ≈ 20Re
∙

−4

Γ (12− 2)

¸
Φ0



6.2 Modal Description In Region Two: Outside Foci

We first modify the quasirectangular coordinate system to the region outside the foci.

6.2.1 Quasirectangular Coordinates Outside Foci

It will be useful in the vector problem to introduce a quasirectangular system of coordinates (0 0 )

0 = 0 cos (523)

0 = 0 sin (524)

where

 = ±2− 0

0 =
p
02 + 02 (525)

cos = 0
p
02 + 02 (526)

sin = 0
p
02 + 02 (527)

We can write

 =  sinh  cos  cos = ± sinh  sin 0 cos = ± sinh  sin
p
02 + 02p

02 + 02
0 (528)

 =  sinh  cos  sin = ± sinh  sin 0 sin = ± sinh  sin
p
02 + 02p

02 + 02
0 (529)

 =  cosh  sin  = ± cosh  cos 0 = ± cosh  cos
p
02 + 02 (530)

Thus the position vector
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 =  +  +  (531)

can be used to define the unit vectors [10]

|0| 0 = 0 =

± sinh p
02 + 02

"
02p

02 + 02
cos
p
02 + 02 +

02

02 + 02
sin
p
02 + 02

#


+
± sinh p
02 + 02

"
1p

02 + 02
cos
p
02 + 02 − 1

02 + 02
sin
p
02 + 02

#
00

− ± cosh p
02 + 02

0 sin
p
02 + 02 (532)

|0| 0 = 0 =

± sinh p
02 + 02

"
1p

02 + 02
cos
p
02 + 02 − 1

02 + 02
sin
p
02 + 02

#
00

+
± sinh p
02 + 02

"
02p

02 + 02
cos
p
02 + 02 +

02

02 + 02
sin
p
02 + 02

#


− ± cosh p
02 + 02

0 sin
p
02 + 02 (533)

We can write that

0 · 0 = 0 · 0 = 1 (534)

and the cross term is



0
· 
0

=
002

02 + 02

"
sinh2 

Ã
cos2

p
02 + 02 − sin

2
p
02 + 02

02 + 02

!
+ cosh2  sin2

p
02 + 02

#

=
002

02 + 02

"
sinh2 

Ã
1− sin

2
p
02 + 02

02 + 02

!
+ sin2

p
02 + 02

#
(535)

Alternatively we can begin in the prolate spheroidal system with metric coefficients

 =  = 

q
sinh2  + cos2  = 

q
sinh2  + sin2 0 = 

q
sinh2  + sin2

p
02 + 02

 =  sinh  cos  = ± sinh  sin 0 = ± sinh  sin
p
02 + 02
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and differential position vector [10]

 =  +  +  (536)

tan = 00 (537)

0 =
p
02 + 02

= − 0

02 (1 + 0202)
Therefore

¯̄̄̄


0

¯̄̄̄
0 =
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 + 



0
 + 
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 + 



0


= − 0p
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 (538)

¯̄̄̄


0
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=

1p
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s
2
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+ 2

02 =
√
00

=
1

0
q
2 sin

2 + 2
02 cos2  =



0

q
sinh2  sin2 0 sin2 +

¡
sinh2  + sin2 0

¢
02 cos2  (539)

As a check, if we transform the metric coefficients and the prolate spheroidal unit vectors in this expression

to the Cartesian system by means of the results in the preceding subsection we end up with the same unit

vector as the preceding expression. Nevertheless these prolate spheroidal expressions are somewhat simpler.

Thus the other direction becomes

¯̄̄̄


0

¯̄̄̄
0 =



0
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0
 + 



0
 + 



0
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0
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0


= − 0p
02 + 02

 + 
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 (540)
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s
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√
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=
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0
q
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¡
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¢
02 sin2  (541)

Taking the dot product gives
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0
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0
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=
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!
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!
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√
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¢
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q
sinh2  sin2 0 cos2 +

¡
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¢
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√
00000 · 0 = 2

¡
sinh2  + sin2 0 − sinh2  sin2 002¢ cos sin (542)

where the metric coefficients are [10]

00 =


0


0
+



0


0
+



0


0
(543)

00 =


0


0
+



0


0
+



0


0
(544)

00 =


0


0
+



0


0
+



0


0
(545)

Of course in the system (0 0 ) it is immediately clear from these representations and the orthogonality

of the prolate spheroidal system that

0 ·  = 0 ·  = 0 (546)

6.2.2 Near The Axis (Orbit)

Note that we expect 0 to have small values on the orbit. Orthogonality approximately holds in the
coordinate system (0 0 ) if  ≈

¯̄


0¯̄. Note that to have  = 
p
sinh2  + sin2 0 ∼

¯̄


0¯̄ =¡
0

¢
sinh  sin 0 we must have 0  1, consistent with our expected value 0 → 0 on the orbit.)

Thus if orthogonality approximately holds, then we can write [10]
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 =  +  +  ≈ 0
00 + 0

00 +  (547)

1

02

q
2

02 + 2
0202 =

1p
02 + 02

s
2

02

02 + 02
+ 2

02 =
√
00 ≈ 0 (548)

1

02

q
2

02 + 2
0202 =

1p
02 + 02

s
2

02

02 + 02
+ 2

02 =
√
00 ≈ 0 (549)

00 ≈ 0 (550)

The coordinate relations in this limit 02 = 02 + 02 → 0 (with 0   ∞) become

 = ± sinh  sin 0 cos = ± sinh  sin
p
02 + 02p

02 + 02
0 ∼ ±0 sinh  (551)

 = ± sinh  sin 0 sin = ± sinh  sin
p
02 + 02p

02 + 02
0 ∼ ±0 sinh  (552)

 = ± sinh  sin 0 ∼ 0 sinh  (553)

 = ± cosh  cos 0 = ± cosh  cos
p
02 + 02 ∼ ± cosh  (554)

Notice that for the positive side or top sign of  = ±2 − 0 the positive coordinate 0 points in the
direction of positive . The metric coefficients become

0 ∼  sinh  ∼ 0 (555)

where

 =  = 

q
sinh2  + sin2 0 ∼ 

q
sinh2  + 02 ∼  sinh  (556)

 = ± sinh  sin 0 ∼ ±0 sinh  (557)

Thus in this approximate limit we can regard them as all equal (except )

0 ∼ 0 ∼  =  ∼  = 

q
sinh2  + 02 ∼  sinh  (558)

Note also that

0 ·  =
−00q

2
02 + 2

0202
∼ − cos (559)
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0 ·  =
−0q

2
02 + 2

0202
∼ ∓ sin (560)

0 ·  =
−00q

2
02 + 2

0202
∼ − sin (561)

0 ·  =


0q
2

02 + 2
0202

∼ ± cos (562)

0 ∼ − cos∓  sin (563)

0 ∼ − sin±  cos (564)

− ∼ 0 cos+ 0 sin (565)

± ∼ −0 sin+ 0 cos (566)

Cross Products From the preceding results the cross products of the prolate spheroidal unit vectors

are

 ×  = 

 ×  = 

 ×  = 
and the cross products of the quasirectangular unit vectors near the axis are

0 × 0 ∼ ± (567)

 × 0 ∼ ±0 (568)

0 ×  ∼ ±0 (569)

6.2.3 Transformation of Scalar Parabolic Equation to Quasirectangular System

The parabolic equation in the scalar three-dimensional axisymmetric case is (for region 2)
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can be transformed from the prolate spheroidal system to this quasirectangular system using

0


0
∼ 0



0
0

0
+ 0



0
0

0
=



0
0 +



0
0




∼ 

0
0


+



0
0


= −

0
0 +



0
0

0


0

µ
0


0

¶
∼ 

0

µ


0
0 +



0
0
¶
0 +



0

µ


0
0 +



0
0
¶
0

∼ 2

02
02 +



0
0 + 2

2

00
00 +



0
0 +

2

02
02

2

2
∼ − 

0

µ
−
0

0 +


0
0
¶
0 +



0

µ
−
0

0 +


0
0
¶
0

∼ 2

02
02 − 

0
0 − 2 2

00
00 − 

0
0 +

2

02
02

and

0


0

µ
0


0

¶
+

2

2
∼
µ
2

02
+

2

02

¶¡
02 + 02

¢
= 02

µ
2

02
+

2

02

¶
to give

2

02
+

2

02
+ 2 sinh 





+
£
2 cosh  + 2

¡
02 + 02

¢¤
 = 0 (571)

where  is now a function of 0, 0, and . This is the same leading order parabolic equation as we find in

the vector case below.

Note that we will later need
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0
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0
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6.2.4 Hertz Potentials

The electromagnetic field is a vector field satisfying in source free homogeneous regions

∇× = −

∇× = 

∇ · = 0

∇ · = 0
and the boundary conditions on the walls (in our case these hold on the end mirrors  = 0)

 =  =  = 0

or in the quasi-rectangular system

0 = 0 =  = 0 (572)

We use the electric Hertz potential Π (we can alternatively use the magnetic Hertz potential Π), with

the fields given by

 = ∇×∇×Π (573)

 = −∇×Π
where the Hertz vector satisfies the vector wave equation

−∇×∇×Π +∇ (∇ ·Π) + 2Π =
¡∇2 + 2

¢
Π = 0 (574)
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2 = 2

and the electric field is thus given by either (262) or, using (263), by

 = ∇ (∇ ·Π) + 2Π (575)

At high frequencies we can make one of the following sets of approximations [5]

Π0 = Φ (576)

Π0 = 0 = Π (577)

or

Π0 = Φ (578)

Π0 = 0 = Π (579)

We cannot satisfy (263) exactly with this approximate choice, so instead we require that the potential Π0

(or in the second case Π0) satisfies the equation resulting from equating 0 (or in the second case 0)

from (573) and (575). Thus the equation for the potential is [5]

£−∇×∇× (Π00) +∇ {∇ · (Π00)}+ 2 (Π00)
¤ · 0 = 0 (580)

or

£−∇×∇× ¡Π00¢+∇©∇ · ¡Π00¢ª+ 2
¡
Π00

¢¤ · 0 = 0 (581)

6.2.5 Approximate Orthogonality And Fields

When we assume approximate orthogonality the equations simplify (as given in Vaynshteyn [5]). We

can derive the following equations by using the orthogonal curvilinear coordinate results for gradient,

divergence and curl [10], using the same metric coefficient  for all three coordinates

 =  = 

q
sinh2  + cos2  = 

q
sinh2  + sin2 0

 =  sinh  cos  = ± sinh  sin 0

0 = ±2− 

 =  =  ∼  sinh  ∼ 0 ∼ 0 (582)

 ∼ ±0 sinh  ∼ ±0 ∼ ±
p
02 + 02 (583)
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Thus the equation for the potential, assuming approximate orthogonality and equal metric coefficients

(for the case where Π0 = Φ), is
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Note that the first and second terms are from (−∇×∇×Π) · 0 and the third term results from

(∇∇ ·Π) · 0 . The fields are
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∙
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3
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2 = 0


0
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20 = −0 
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Alternatively the potential Π0 = Φ satisfies
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The fields are
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∙
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(592)
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∙
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20 = 0
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6.2.6 Asymptotic Solution Of Quasirectangular Equations

We seek a high frequency region 2 solution of the form

Π0 = Φ = (0 0 )  cosh  + (0 0−) − cosh   ||  0 (597)

and insert this into
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then  satisfies
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We now neglect the first term 22 and let (except in the 22 term)

 ∼  sinh 

giving

(2 sinh  + coth )



+

2

02
+

2

02

+
£
2
¡
02 + 02

¢
+ 2 cosh  − csch2¤ = 0 (599)

Now take

 =  ()Ψ (0 0 0) (600)

where we want

 0


= − 2 cosh  − csch

2

2 sinh  + coth 

1 = sinh  +
1

2
coth  (601)

Using this along with the transformation
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0 =
Z 
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sinh 
= ln [tanh (2)] (602)
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µ
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0
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Ψ = 0

Note that

0 =
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sinh 
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sinh 

00 = ln [tanh (02)]

sinh ( − )→ − sinh  (603)

We could also have dropped the terms coth  and csch2 terms compared to the  sinh  and the  cosh 

term (these terms could be accounted for by higher order terms in the asymptotic series just like the

22 term and the higher order terms 0 and 0) to obtain directly

2 sinh 
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02

+
£
2
¡
02 + 02

¢
+ 2 cosh 

¤
 = 0 (604)

which is the same as the preceding scalar case. For this leading term approach we would take

 =
1

sinh 
Ψ (0 0 0) (605)

and obtain the same equation for Ψ. Scaling the independent variables by letting

 0 =
p
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 0 =
p
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gives
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Separating the variables
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0
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¡
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¢
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gives
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µ
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+  02 4
¶
= 0

Each parenthetical term is independent of the variables associated with the others and therefore each equals

a constant. We take the first term as 


0

= −0
or

 = −
00 (608)

Then we can write

2
 02

+
¡
0 +  02 4

¢
 = 0

2
 02

+
¡
0 +  02 4

¢
 = 0
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This is a form of the equation of the parabolic cylinder functions

2

 02
+

µ
 02

4
+ 0

¶
 = 0 (610)

The solution that is outgoing in  is [1]

+ ( ) = −(+2)4
³
− −4

´
(611)

where  ( ) is the standard solution [11]. Following [1] the total transverse solution is taken as the

incident plus reflected form

 (0  0) = Re
h
+ (

0  0) + Φ
0
0∗+ (

0  0)
i

(612)

where the constant  is used for normalization. The transverse boundary condition in  0 is a reflection with
a random phase Φ00

¡
2
¢
which was introduced by Antonsen to match to the chaotic region of the cavity;

it describes the phase relation between a wave leaving the vicinity of the unstable periodic orbit and one

returning [1] with the variation of the th component along the orbit. Figure 9 schematically illustrates

a wave bouncing back and forth between mirrors in the region of the scarred orbit; it leaves the vicinity

of the orbit and eventually returns from the outer chaotic region with transverse reflection phase Φ00
¡
2
¢
.

(For purposes of simplification this figure does not include the vertical evenness of the cavity, which

confines the wave leaving and the wave reflected to either the upper half or lower half of the cavity.) Thus

 =  (
0
 

0
) and  = 

¡
0 

0


¢
are elliptic cylinder functions like in the two-dimensional case [6], [1].
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On the mirror we have

0 = 20 = 


0

∙
1

3


0
¡
2Π0

¢¸
+ 22Π0

0 = 20 = 


0

∙
1

3


0
¡
2Π0

¢¸
and

0 = 2 = 0


0
(Π0)

which are satisfied if

Π0 ( = 0) = 0 (613)

6.2.7 Asymptotic Solution Of Parabolic Equation In Prolate Spheroidal System

The parabolic equation in quasirectangular coordinates for the Hertz potential component Π0 or Π0

(or  ) resulting from the vector wave equation is the same as that arising from the three dimensional

scalar Helmholtz equation. Hence we can transform the parabolic equation for the Hertz potential from the

quasirectangular system back to prolate spheroidal coordinates. In the second region outside the foci we

assume that 0    0 and that cos
2   1. The potential in the even case is then

Π0 = −2
£
 (  )  cosh  + ( −   ) − cosh 

¤
 ||  0

=
1

sinh 

h
Ψ (

0 0)  cosh −2 +Ψ ( 0−0) − cosh +2
i½

cos ()

sin ()

¾

=
2

sinh 
 (

0 0) cos ( cosh  − 00 − 2)

½
cos ()

sin ()

¾
(614)

where

 (
0 0) = 

√
2

 0
Re
h
+ (

0 0) + Φ
0
0 ∗+ (

0 0)
i

(615)

+ (
0 0) =022

¡− 022¢
 0 =

p
20

0 = ±2− 

2000 = 2
0 ln [tanh (02)] = ( − ) (616)
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0 =
Z 

∞



sinh 
= ln [tanh (2)] (617)

The mirror condition Π0 = 0 gives

cos ( cosh 0 − 000 − 2) = cos (− 2) = 0

or

 =  (618)

In the odd case the potential is

Π0 = −2
£
 (  )  cosh  − ( −   ) − cosh 

¤
 ||  0

=
1

sinh 

h
Ψ (

0 0)  cosh −2 −Ψ ( 0−0) − cosh +2
i½

cos ()

sin ()

¾

=
2

sinh 
 (

0 0) sin ( cosh  − 00 − 2)

½
cos ()

sin ()

¾
The mirror condition Π0 = 0 gives

sin ( cosh 0 − 000 − 2) = sin (− 2) = 0

or

 =  (− 12)

Behavior Of Zero Mode Near Orbit For Stadium Solutions The Region 2 behavior of the zero

mode

0 (
0 0) = 0

√
2

 0
Re
h
+ (

0 0 0) + Φ
0
0 ∗+ (

0 0 0)
i

+ (
0 0 0) =020

¡− 022¢
 0 =

p
20

0 = ±2− 

Now taking

 0
0
 0

= 0
√
2Re

h
 0
+ + Φ

0
0 ∗0+

i
− 0
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which when taken to vanish as  0 → 0 gives

Φ
0
0 = −

¡
 0
+ − 1

 0+

¢¡
 0
+ − 1

 0+

¢∗ = 
Γ (12 + 02)
Γ (12− 02)

+
¡
 02
¢

The value as  0 → 0 is

0 (0 
0) = 0Re

h


024Γ (12 + 02)
i
  0 → 0 (619)

and in general

0 (
0 0) ∼ 0Re

h
4Γ (12 + 02)

i


02 ¡1− 0 024
¢
+

¡
 04 ln  0

¢

 0


 0
0 (

0 0) ∼ −0Re
h
4Γ (12 + 02)

i


02 ¡0 022¢+
¡
 04 ln  0

¢ ∼ − ¡0 022¢0
1

 0


 0
0 (

0 0) ∼ −0Re
h
4Γ (12 + 02)

i


02 (02) +
¡
 04 ln  0

¢ ∼ −0
2
0

1

 0


 0

µ
 0



 0
0

¶
∼ −0Re

h
4Γ (12 + 02)

i


020 +
¡
 02 ln  0

¢ ∼ −00 +
¡
 02 ln  0

¢
In addition

 0
20
 0

( 0 0) ≈ 0
√
2Re

∙

Φ00


Φ
0
0

µ
 0
+ −

1

 0
+

¶∗¸

≈ −0
√
2Re

∙
Φ00


Γ (12 + 02)
Γ (12− 02)

µ
 0
+ −

1

 0
+

¶∗¸
and

 0
20
 0

(0 0) ≈ 20Re
∙

4

Γ (12− 02)

¸
Φ00


6.2.8 Approach Of Focal Point

We first take the limits of the outer two regions as the focal region is approached. However to allow

flexibility in phase matching through the focus, we will allow the focal region to shift by a small amount in

the Region 1 and Region 2 solutions by adding a horizontal  shift of , where    is a geometrically

small shift relative to the Region 3 solution. (This can also be viewed as distorting the coordinate with

→ + , which corresponds to a slight reduction of the elliptic cylinder radius of curvature on axis, since

 = 
p
1−. Because the elliptic cylinder has increasing radii of curvature off axis, such a reduction on

axis, might actually represent the stadium mirrors better at a finite wavelength.) Therefore

→ +  (620)
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 →  +  (621)

where    is a geometrically small shift. Thus in Region 1 we find

Π ∼ 2 1√

Re
h
−2+

³p
2 

´
+ 2Φ0 ∗+

³p
2 

´i

0−1 cos
£

¡
1− 022

¢
+  +  ln

¡
02

¢¤½ cos ()

sin ()

¾
 0 → 0

In Region 2 we find

Π0 ∼ 2 1√
0

Re
h
+

³p
20 0

´
+ Φ

0
0 ∗+

³p
20 0

´i

−1 cos
£

¡
1 + 22

¢
+  − 0 ln (2)− 4

¤½ cos ()

sin ()

¾
  → 0

where

0 ln [tanh (02)] = ( − ) 

 = 

Let us restrict attention to the  = 0 azimuthal mode (keep in mind here that the quasirectangular

unit vectors are still present since we only have the  and 0 components of the potential).

Thus in Region 1 we find

Π ∼ 20 1√

Re
h
−2+

³p
2 0 

´
+ 2Φ0 ∗+

³p
2 0 

´i

0−1 cos
£

¡
1− 022

¢
+  +  ln

¡
02

¢¤
 0 → 0

In Region 2 we find

Π0 ∼ 20 1√
0

Re
h
+

³p
20 0 0

´
+ Φ

0
0 ∗+

³p
20 0 0

´i

−1 cos
£

¡
1 + 22

¢
+  − 0 ln (2)− 4

¤
  → 0

Small Shift In Focal Position We can also view this shift as a change in the original coordinate

system ( ) or ( ) or
¡
 0

¢
 =  sinh  cos  =  sinh  sin 0 ∼ 0
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 =  cosh  sin  =  cosh  cos 0 ∼ 
¡
1 + 22− 022

¢
to the focal coordinate system (0 0) or

³bb0´ with
 −  = 0 =  coshb cosb0 ∼ 

³
1 + b22− b022´

 = 0 =  sinhb sinb0 ∼ bb0
Thus the small shift  enters as an additive correction as in the preceding section.

6.2.9 Focal Region Three

In region 1, but near the focus 0  → 0, we approximate the metric coefficients

√
 =





q
sinh2  sin2 0 sin2 +

¡
sinh2  + sin2 0

¢
2 cos2 

∼ 

q
02 + 2 cos2  ∼ 

√
 =





q
sinh2  sin2 0 cos2 +

¡
sinh2  + sin2 0

¢
2 sin2 

∼ 

q
02 + 2 sin2  ∼ 

√
 ·  = 2

¡
sinh2  + sin2 0 − sinh2  sin2 02¢ cos sin
∼ 22 cos sin

We see that for  0 → 0, but 0   that  ·  = 
¡
202

¢→ 0. However for 0 =  () the dot product

is not small, and the coordinates are not orthogonal. Similarly, in region 2, but near the focus  0 → 0, we

approximate the metric coefficients

√
00 =



0

q
sinh2  sin2 0 sin2 +

¡
sinh2  + sin2 0

¢
02 cos2 

∼ 

q
2 + 02 cos2  ∼ 0

√
00 =



0

q
sinh2  sin2 0 cos2 +

¡
sinh2  + sin2 0

¢
02 sin2 

∼ 

q
2 + 02 sin2  ∼ 0

265



√
00000 · 0 = 2

¡
sinh2  + sin2 0 − sinh2  sin2 002¢ cos sin
∼ 202 cos sin

We see that for  0 → 0, but   0 that 0 · 0 = 
¡
022

¢ → 0. However for  = 
¡
0
¢
the dot

product is not small, and the coordinates are not orthogonal.

We anticipate that if  = 
¡
0
¢
there may be issues with the accuracy of the approximate solutions

in the quasi-rectangular coordinate system. One way to deal with this would be to use a different vector

approach, like spherical coordinates with Debeye potentials (or spherical vector wave functions) near one

focal point

 = ∇×∇× () + 0∇× () = −∇× ( ×∇) + 0∇× ()

 = ∇×∇× () + 0∇× () = −∇× ( ×∇) + 0∇× ()
with

¡∇2 + 2
¢
 = 0

Another approach would be to transition to Cartesian unit vectors as the focal point is approached

Π (Region 1) ∼ Π ∼ Π0 (Region 2) (622)

and use

Π = Π
with the scalar Helmholtz equation solved in spheroidal coordinates

¡∇2 + 2
¢
Π = 0

in the focal region 3.

However, for the moment, we try restricting ourselves so that we have simplified the geometry near

one focus by taking  0  1, but still maintain 0   on the region 1 side of the focal region, or

alternatively,   0 on the region 2 side of the focal region. Such an approach should allow us to connect
the region 1 and region 2 solutions, but may be of questionable accuracy at the focal point; however on the

axis with  = 0 in region 1 and 0 = 0 in region 2, which is the path of greatest interest, it may remain valid
all the way to the focal point given the above considerations on orthogonality. Thus we will simply make

the replacement → Π or → Π0 depending on which side we are on, with  being the solution of

1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
cosh2  − sin2 ¢ = 0

or
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1

cos 





µ
cos 





¶
+

µ
1

cos2 
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
sinh2  + cos2 

¢
 = 0

or

1

sin 0


0

µ
sin 0



0

¶
+

µ
1

sin2 0
+

1

sinh2 

¶
2

2

+
1

sinh 





µ
sinh 





¶
+ 2

¡
sinh2  + sin2 0

¢
 = 0

as 0 = 2−  (we are assuming that 2  1 and that 02  1)

1

0


0

µ
0


0

¶
+

µ
1

02
+
1

2

¶
2

2

+
1







µ





¶
+ 2

¡
2 + 02

¢
 = 0 (623)

or taking

Π ∼  = 
¡
 0

¢½ cos ()

sin ()

¾
(624)

1

0


0

µ
0


0

¶
+
¡
202 −202

¢


+
1







µ





¶
+
¡
22 −22

¢
 = 0

Separating variables

 =  ()
¡
0
¢

(625)

∙
1



1

0


0

µ
0


0

¶
+ 202 −202

¸

+

∙
1



1







µ





¶
+ 22 −22

¸
= 0

Taking the separation constant to be 2 we find

1

0


0

µ
0


0

¶
+
¡−2 + 202 −202

¢
 = 0
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1







µ





¶
+
¡
2 + 22 −22

¢
 = 0

Thus we find Whittaker equations in both directions. Letting

0
p
2 =  0

in the first and


p
2 = 

in the second, gives

1

 0


 0

µ
 0


 0

¶
+

µ
− + 1

4
 02 − 2

 02

¶
 = 0

1







µ





¶
+

µ
 +

1

4
2 − 2

2

¶
 = 0

 =  = 0

√
2
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Re
£
+ (

0−) +0 ∗+ (
0−)¤

√
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Re
£
+ (  ) + ∗+ (  )

¤
= 0

1

0
√

Re
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+
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0
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+0 ∗+

³
0
p
2−

´i
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√

Re
h
−2+

³

p
2 

´
+ 2 ∗+

³

p
2 

´i
For purposes of matching we take  =  = −0 and  = Φ0 and 0 = Φ

0
0

Π ∼  = 0
1

0
√

Re
h
+

³
0
p
2 0

´
+ Φ

0
0 ∗+

³
0
p
2 0

´i
1


√

Re
h
−2+

³

p
2−0

´
+ 2Φ0 ∗+

³

p
2−0

´i½
cos ()

sin ()

¾
(626)

Expanding as we leave the focal region using the asymptotic form

+ (  ) ∼ 
24
¡−22¢2 = 

24+4+ ln(
√
2)   →∞

gives

Π ∼  ∼ 20
04 cos (Φ002) 

1


√

Re
h
−2+

³

p
2−0

´
+ 2Φ0 ∗+

³

p
2−0

´i
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1

0
√

cos
£
022 + 0 ln

¡
0
√

¢−Φ002¤½ cos ()

sin ()

¾
 Region 3→ 1

Π0 ∼  ∼ 20−
04 cos (Φ02) 

1

0
√

Re
h
+

³
0
p
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´
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0
0 ∗+

³
0
p
2 0

´i

1


√
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£
22− 0 ln (

√
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¤½ cos ()

sin ()

¾
 Region 3→ 2

These must match to the limiting forms of the outer solutions from the preceding sections

Π ∼  = 2
 (  )

sin 0
cos
£
 cos 0 +  ln
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¡
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¢ª¤½ cos ()

sin ()

¾
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 (  ) = 

√
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´
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³
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£

¡
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¢
+  +  ln

¡
02

¢¤½ cos ()
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¾
 0 → 0

in Region 1, and to

Π0 ∼  =
2

sinh 
 (

0 0) cos [ cosh  − 0 ln {tanh (2)}− 2−Φ12]
½
cos ()

sin ()

¾

 (
0 0) = 

√
2

 0
Re
h
+ (

0 0) + Φ
0
0 ∗+ (

0 0)
i

or

Π0 ∼  ∼ 2



1

0
√

Re
h
+

³
0
p
2 0

´
+ Φ

0
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³
0
p
2 0

´i

cos
£

¡
1 + 22

¢
+  − 0 ln (2)− 2−Φ12

¤½ cos ()

sin ()

¾
  → 0

in Region 2, where

0 ln [tanh (02)] = ( − ) 

− 2−Φ12 =  (− 12)
The functional behaviors are identical, but the phases only match if

0 ln (2
√
)−Φ002 = − −  +  (627)
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−0 ln (2√)− 2− Φ02 =  +  − 2−Φ12 + 0 (628)

and the amplitudes match if

0
04 cos (Φ002)

1√

=  (−1) (629)

0
−04 cos (Φ02)

1√

= (−1)0 (630)

6.2.10 Evenness Conditions On Scar

Because we want the normal derivative to vanish as the scarred orbit is approached

lim
 0→0

½
Re
h
 0
+ (

0 0) + Φ
0
0 ∗0+ (  0)

i
− 1

 0
Re
h
+ (

0 0) + Φ
0
0 ∗+ (

0 0)
i¾
→ 0

lim
→0

½
Re
h
−2 0

+ (  ) + 2Φ0 ∗0+ (  )
i
− 1


Re
h
−2+ (  ) + 2Φ0 ∗+ (  )

i¾
→ 0

where the first is the Region 2 form and the second is the Region 1 form. If we write the real part as one

half the sum of the function and its conjugate, we see that these conditions imply

Φ
0
0 = − lim

 0→0

£
 0
+ (

0 0)− 1
 0+ (

0 0)
¤£

 0
+ (

0 0)− 1
 0+ ( 0 0)

¤∗
and

Φ0 = lim
→0

£
 0
+ (  )− 1


+ (  )

¤£
 0
+ (  )− 1


+ (  )

¤∗
Using the properties of the Whittaker functions and  = −0 we can evaluate these. The properties of the
functions we desire are

+ (  ) ∼ ¡−22¢12−2 (− 1)!
Γ (12 +2− 2)

  → 0   6= 0

∼ − ¡−22¢12 1

Γ (12− 2)

£
ln
¡−22¢

+ { (12− 2)− 2 (1)}]   → 0   = 0

and

 0
+ (  ) ∼ − ¡−22¢−12−2 (12−2) (− 1)!

Γ (12 +2− 2)
  → 0   6= 0
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Figure 35. Sketch of reflection phase meaning in stadium geometry with interior foci.

∼ 
1

2

¡−22¢−12 1

Γ (12− 2)

£
ln
¡−22¢+ { (12− 2)− 2 (1)}+ 2¤   → 0   = 0

and thus (this also works for  = 0)

Φ0 = (−1)2
Γ (12 +2 + 2)

Γ (12 +2− 2)
and

Φ
0
0 = −(−1)2Γ (12 +2 + 02)

Γ (12 +2− 02)
or

−Φ
0
0 = −−(−1)2Γ (12 +2 + 2)

Γ (12 +2− 2)
= −Φ0−(−1) = (−1) Φ0

Thus

Φ00 = −Φ0 + (631)

The single remaining condition then determines 0 = − given a value of the reflection phase Φ0. Note
that this choice of reflection phase conjugate implies that the incoming wave from the outer region travels

toward the scarred orbit in one region, but on the other side of the focus travels away from the scarred orbit

as illustrated in Figure 35. This construction of the transverse dependence has thus allowed a consistent

solution between the two regions to be found.

6.2.11 Summary Of Conditions

The summary of conditions is now given. The first is the vanishing of the normal derivative as the orbit

is approached
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Φ0 = (−1)2
Γ (12 +2 + 2)

Γ (12 +2− 2)

Φ
0
0 = −(−1)2Γ (12 +2 + 02)

Γ (12 +2− 02)
or

Φ00 = −Φ0 +

determines 0 given Φ0 or vice-versa

−Φ0 = 
Γ (12 +2 + 02)
Γ (12 +2− 02)

−2

From the mirror boundary condition we have

Φ12 = − 

where  and 0 are related by

0 ln [tanh (02)] = ( − ) 

This can also be written in terms of the stability exponents as

−0 =  = 2 ( − )  ln

µ
+ 

− 

¶
= 2 ( − ) ln (Λ+)

where

00 = ln [tanh (02)] = −
1

2
ln

µ
+ 

− 

¶
= −1

2
ln

µ
+ + 1

− + 1

¶
= −1

2
ln (+) = −1

4
ln (Λ+)

and

p
 =

p
Λ+ − 1¡p
Λ+ + 1

¢
and where 2± = Λ±, +− = 1 = Λ+Λ− and (± + 1) 2 = (± ) . The phase matching conditions can

be written as

Φ12−Φ002−Φ02 = Φ12−2 =  (+ 0)

 = − − 0 ln (2
√
) + Φ002 +  = − − 0 ln (2

√
)−Φ02 +  +2

or

Φ12 =  (+ 0) +2
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 = − − 0 ln (2
√
)−Φ02 +  +2

and the amplitude conditions give the coefficients as

 = (−1)0−+ 
02

0 = (−1)
0


04√ sec (Φ02)
It appears like the phase Φ12 adds something for odd values of  since it must be a multiple of 2 and

sign changes in the Region 2 solution due to this phase are accompanied by sign changes in  and in the

Region 1 solution (which thus can be absorbed into the amplitude coefficients). Furthermore the factor

sec (Φ02) only enters because we failed to set the problem up with symmetrical factors exp (±Φ02) in the
combinations of Whittaker functions.

6.2.12 Final Set Of Conditions For Axisymmetric Mode

Thus for the axisymmetric mode  = 0 if we set Φ1 to zero we have the evenness condition across the

scar orbit to determine the allowed values of the separation constant 0 in terms of the chaotic phase Φ0

−Φ0 = 
Γ (12 + 02)
Γ (12− 02)

= cosh (02)



Γ2 (12 + 02) (632)

We have the mirror conditions which connect the separation constant values and the resonant frequencies 

 =  (633)

0 ln [tanh (02)] = ( − )  (634)

We also have the focal point shift 

 = − − 0 ln (2
√
)−Φ02 +  (635)

and the amplitude constants (here we note that if  and 0 are both even or odd  is one, but if they have

opposite parities, then  = −1 which cancels the phase shift Φ12 then an odd multiple of )

 = 
02 (636)

0 = (−1) 
04√ sec (Φ02) (637)

To get a feel for the connection with Φ0 for small 
0 we can expand as

−Φ0 = 
Γ (12 + 02)
Γ (12− 02)

∼ 
1 + (02) (12) + (02)2

£
2 (12) + 0 (12)
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2
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∼ 
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(0 + 2 ln 2)2 + 22

o
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1 + (02) (0 + 2 ln 2) + (02)2
n
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1− 0 (0 + 2 ln 2)− 02 (0 + 2 ln 2)2 2

i
where  () is the digamma function [11] and 0 ≈ 05772 is Euler’s constant. Thus we have

Φ0 → −2 as 0 → 0 (638)

6.2.13 Focal Shift In Axisymmetric Calculations

In the calculations of the focal point shift we use

 =  (639)

0 = 2 ( − )  ln

µ
+ 

− 

¶
(640)

and the focal point shift 

 (+ ) = −0 ln
³
2
√

´
− (Φ02 + 4) + (+ 14) (641)

The transcendental equation for 0 can be written as

−(Φ0+2) =
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Γ (−02 + 12) (642)

giving
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2
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´
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Noting that
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Dropping the quadratic term in 12
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Expansion For Small Separation If the value of 0 → 0 we can expand the gamma function as
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6.2.14 Average Focal Shift

The normalized shift function, without corrections (0 = 0) is

 (+ 0) = (+ 14)

and using

 = 

is
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(+ 0)  = (+ 14) 

This can be written as

0 = −  ≥ 0
where

 = − 14
and the inequality displaces the focus to the right of the geometrical focal point (as we found in the 2D

problem). Now for for large values of  (with   1) and , we assume that −  is between 0 and 1

(we might take it to be uniformly distributed) and examine the average

 h0i  ≈ 12
For example with the frequency range

20971 m−1 ≤  ≤ 6287 m−1
with  = 011176 m,  = 00336969 m we find that

1 = 8 ≤  ≤ 22 = 2
Then we find

h0i  = 1

2 − 1

Z 2

1



2
=

12

2 − 1
ln (21) = 00361286

and

 = + hi ≈ + h0i ≈ 00377346 m

6.3 Vector Normalization Condition For Stadium Cavity

The method used for normalization of the eigenfunction components by Antonsen [1] is now put into

the framework of the electromagnetic energy theorem [13]

∇ ·
µ



×∗ +∗ × 



¶
= 

∙
 ()


 ·∗ +  ()


 ·∗

¸
− 


· ∗ −∗ · 


Integrating over the cavity volume and using the divergence theorem (and inserting the electrical properties

of free space)

I


µ



×∗ +∗ × 



¶
·  = 

Z


(0 ·∗ + 0 ·∗)  −
Z


µ



· ∗ +∗ · 



¶


where the unit vector  in the divergence theorem points out of the cavity region.
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6.3.1 Source Free Form Of Theorem

The source free form is thus

I


µ



×∗ +∗ × 



¶
·  = 

Z


(0 ·∗ + 0 ·∗) 
Using × = 0 on the cavity walls, the surface integral on the cavity boundary vanishes

Z


µ



×∗ +∗ × 



¶
·  =

Z


∙µ
× 



¶
·∗ + (×∗) · 



¸
 = 0

However a part of the closed surface  is taken to surround the scarred orbit  =
p
2 + 2 → 0
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×∗ +∗ × 



¶
·  = 

Z


(0 ·∗ + 0 ·∗) 

=

µZ

(1)


+
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(2)


¶µ



×∗ +∗ × 



¶
· 

where the unit normal here  points into the scarred region. We take the fields to be [17], [18]

 = ∇×∇×Π = ∇ (∇ ·Π) + 2Π

 = −∇×Π
6.3.2 Region One

For the first polarization state [5]

Π = Φ

Π = Π = 0

Note that as  =
p
2 + 2 → 0 the fields become  6= 0,  = 0,  = 0,  = 0,  6= 0 at  =  = 0,

where

2 = 




∙
1

3




¡
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µ
2

2
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Π =
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∙
1

3




¡
2Π

¢¸ ∼ 2


Π = 2
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∙
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Π =
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2

2


Π
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2 = 0



(Π) ∼ 0




Π = 0

p
2




Π

2 = −0 


(Π) ∼ −0 


Π = −0 


Π

Thus in the boundary integral with (note that the inward unit normal is oppositely directed from the

prolate spheroidal unit vector)  = − and

 ·  =
q

2
2 + 2

22
∼ cos

 ·  =
q

2
2 + 2

22
∼ sin

 ×  ∼ 

 ×  ∼ 

 ×  ∼ 
we note that ×∗ captures  ×∗  = −

∗
 ,  ×∗ = 

∗
,  ×∗  = 

∗
 

and  ×∗ = −
∗
. But at the center  = 0,  = 0,  = 0 and only 

∗
 survives, but is

orthogonal to  =  . Thus the  derivative is responsible for a contribution
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Noting that  is odd in  =
√
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√
2 cos and that  is odd in  =

√
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√
2 sin and it

appears that these will contribute. The  derivatives may not have even or odd behavior anyway. Thus
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Transforming back to prolate spheroidal coordinates
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×∗ +∗ × 
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· 
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Noting the identities
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and for the axisymmetric case  = 0
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Therefore we find (noting that  ∼  ∼  cos  and  ∼ )
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In the stadium cavity we will take

1 = Arcsin (1−∆) ∼


2
−
p
2∆

where ∆→ 0. Now from the function
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Averaging over the rapidly varying sinusoids for  large gives
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For the time being we retain only the leading order 2 terms
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6.3.3 Region Two

The surface integral in region 2 uses  =  =  ∼  sinh  ∼ 0 ∼ 0 , where for the first polarization

state [5]

Π0 = Φ

Π0 = Π = 0

Note that as 0 =
p
02 + 02 → 0 the fields become 0 6= 0, 0 = 0,  = 0,  = 0, 0 6= 0 at
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Thus in the boundary integral with (note that the inward unit normal is oppositely directed from the

prolate spheroidal unit vector on the negative side of the stadium but in the same direction on the positive

side)  = ± and

0 ·  =
−00q

2
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0 × 0 ∼ ±

 × 0 ∼ ±0

0 ×  ∼ ±0
we note that  × ∗ captures 00 × ∗  = ∓0

∗
 0 , 00 × ∗00 = ±0

∗
0 ,

00 ×∗  = ±0
∗
 0 and  ×∗00 = ∓

∗
00 . But at the center 0 = 0,  = 0,  = 0
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contribution
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Transforming back to prolate spheroidal coordinates
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and for the axisymmetric case  = 0
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Now taking the lower limit in region 2 to be

2 = Arccosh (1 +∆) ≈
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2∆

 =  cosh 0
where ∆→ 0, then we write the contribution from region 2 as (noting that  ∼  and  ∼ 0)
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6.3.4 Combining Two Regions

The preceding two contributions
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The mirror condition Π0 = 0 gives

 =  (645)

The outer region reflection phase we take [1] to be (again this results from a modal spacing that arises

from a single azimuthal parity in the vector case, since the two parities are degenerate) (this also is for the

average even eigenvalue spacing along the orbit)

µ
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where  is the cross sectional area of the axisymmetric cavity and where  is the Gaussian random variable

with unit variance and density
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1√
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6.4 Summary of Results

A summary of the results for the axisymmetric mode  = 0 are (note that this mode is a vector mode,

with electric field on axis  =
p
2 + 2 → 0 polarized in the  direction).

6.4.1 Elliptic System (Prolate Spheroidal Coordinates)

First we Summarize the results in the prolate spheroidal System.

Even Case The even case along the orbit is
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√
2

 0
Re
h
+ (

0 0 0) + Φ
0
0 ∗+ (

0 0 0)
i

Φ00 = −Φ0

+ (
0 0 0) =020

¡− 022¢
 0 =

p
20

0 = ±2− 

 =  cosh 0

 → ± cosh 

0 (0 
0) = 0Re

h
4Γ (12 + 02)

i


02

 0
20
 0

(0 0) ≈ 20Re
½

4

Γ (12− 02)

¾
Φ00


2000 = 2
0 ln [tanh (02)] = ( − )

0 =
Z 

∞



sinh 
= ln [tanh (2)]

The mirror condition Π0 = 0 gives

cos ( cosh 0 − 000 − 2) = cos (− 2) = 0

or

 = 

The outer region reflection phase we take [1] to be
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µ
Φ0

2

¶−1
=
4


2

where  is the cross sectional area of the axisymmetric cavity and where  is the Gaussian random variable

with unit variance and density

 () =
1√
2

−
22

The normalization constant 0 is connected to the volume energy by means of

Z


(0 ·∗ + 0 ·∗)  =

∼ 0
44Re2

h
4Γ (12 + 02)

i ³
1 + 

0´µΦ0
2

¶
ln (Λ+) 

2
0

If we choose

Z


(0 ·∗ + 0 ·∗)  = 20

then

0 =

√
2

2
p
 (1 + 

0
) ln (Λ+)

¯̄
Re
£
4Γ (12 + 02)

¤¯̄
Note that the scalar form of the normalization was similar

Z


||2  ∼ 4
µ
Φ0

2

¶
Re2

£
4Γ (12 + 2)

¤
|Γ (12− 2)|2

2 ln (Λ+) 
2
0

The fields near the axis are

 ∼
µ
1

2
2

2
+ 2

¶
Π =

µ
2

2
2

2
+ 2

¶
Π

∼
µ

2

 cos2 
cos2 

2

2
+ 2

¶
Π ∼ 2Π

 ∼ −0





Π ∼ −0

 cos 




Π

where

 = 

q
cos2  + 2 = 

p
cos2  + 2 + 2 ∼  cos 

 =
p
2 =

p
2 cos
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 =
p
2 =

p
2 sin

 =
q
2 + 2 =

p
2

Odd Case In the odd case for the stadium we have

− 0 = (− 12) =    = 1 2 3 

Π (  ) =
2

cos 
0 (  ) sin ( sin  − )

6.4.2 Cylindrical Form

If we transform back to Cylindrical coordinates on axis, then we rewrite the potential

Π (0 ) =
2

cos 
0 (0 ) cos ( sin  − )

tanh = sin 

 →  sin 

 = Arctanh () =
1

2
ln

µ
+ 

− 

¶
as

Π (0 ) =
20 (0 )p
1− 22

cos [ + 0 ()]

0 () = ( − )  − 1
2
 ln

¯̄̄̄
+ 

− 

¯̄̄̄
and

Π0 ( 2) =
2

sinh 
0 (0 

0) cos ( cosh  − 00 − 2)

= −2 sinh00 (0 0) cos (− coth0 − 00 − 2) = 2 sinh00 (
0 0) sin ( coth0 + 00)

Π0 (0 ) =
2p

22 − 10 (0 
0) cos [ ||+ 0 (||)− 2]
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In the odd case for the stadium

Π (0 ) =
20 (0 )p
1− 22

sin [ + 0 ()]

− 0 = (− 12) =    = 1 2 3 

Π0 (0 ) =
2p

22 − 10 (0 
0) sin [ ||+ 0 (||)− 2] sgn ()

6.5 Vector Scar Projection

We now discuss the projections of the vector scar solution along the orbit of the stadium cavity.

6.5.1 Trigonometric Projection

The trigonometric projection of the solution in the stadium is now discussed.

 = 2

Z 

0

 (0 0 ) cos ()  + 2

Z 



0 (0 0 ) cos ( − 2)  (648)

Note that at the shifted focal point  = + 0

 (+ 0) = (+ 14) (649)

or

(+ 0)  = (+ 14) 

we have continuity of the kernel

cos () = cos ( − 2) (650)

The fields are

2 = 




∙
1

3




¡
2Π

¢¸
+ 22Π ∼

µ
2

2
+ 22

¶
Π =

µ
2

2

2
+ 22

¶
Π

∼ 22Π

20 = 


0

∙
1

3


0
¡
2Π0

¢¸
+ 22Π0 ∼

µ
2

02
+ 22

¶
Π0 =

µ
2

2

 02
+ 22

¶
Π0

∼ 22Π0

and thus
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 ∼ 22
Z 

0

Π (0 ) cos ()  + 2
2

Z 



Π0 (0 ) cos ( − 2)  (651)

∼ 20 (0 ) 22
Z 

0

cos [ + 0 ()] cos ()
p

1− 22

+20 (0 
0) 22

Z 



cos [ + 0 ()− 2] cos ( − 2)
p

22 − 1

∼ 20 (0 ) 2
Z 

0

{cos (0 ()) + cos [2 + 0 ()]} p
1− 22

+20 (0 
0) 2
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{cos (0 ())− cos [2 + 0 ()]} p
22 − 1

Averaging over the rapidly varying terms gives

 ∼ 20 (0 ) 2
Z 

0

cos [0 ()]
p

1− 22

+20 (0 
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p

22 − 1

0 () =
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½
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+ 

− 
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 + 

 − 

¯̄̄̄¾

0 (0 ) = 0Re
h
−4Γ (12 + 2)

i

0 (0 
0) = 0Re

h
4Γ (12 + 02)

i


02

20Re
h
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i
=


√
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0
) ln (Λ+)

 = 2 ( − )  ln

µ
+ 

− 

¶
= −0

 = 

Then


n
220Re

h
4Γ (12 + 02)
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∼
Z 

0
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p
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+
02
Z 



cos [0 ()]
p

22 − 1

0 () =


2

½
() ln

¯̄̄̄
+ 

− 

¯̄̄̄
− ln

¯̄̄̄
 + 

 − 

¯̄̄̄¾
Thus we finally have


 2



®
= 21 () 

where

1 () ∼ 4

(1 + 
0
) ln (Λ+)

"Z 1

0

cos [0 ()]
√
1− 2

+ 
02
Z 

1

cos [0 ()]
√
2 − 1

#2

0 () =


2

½
1

2
() ln (Λ+)− ln

¯̄̄̄
 + 1

 − 1

¯̄̄̄¾
(652)

 =
(Λ+ − 1)¡p
Λ+ + 1

¢2 (653)

Λ+ =

µ
+ 

− 

¶2
(654)

For  = 0 we have

1 (0) =
(2)

ln (Λ+)

"Z 1

0

√
1− 2

+

Z 

1

√
2 − 1

#2

=
(2)

ln (Λ+)
[2 + arccosh ()]

2

=
(2)

ln (Λ+)

h
2 + ln

³
+

p
22 − 1

´i2
For  = 011176 m,  = 010160 m, and  = 

p
1− ≈ 00336969 m, with Λ+ ≈ 3472

1 (0) ≈ 573076 (655)

This can also be written as

1 (0) =
2

ln (Λ+)

(Λ+ − 1)¡p
Λ+ + 1

¢2
"
2 + ln

(¡p
Λ+ + 1

¢
(Λ+ − 1)

³
Λ
14
+ + 1

´2)#2
(656)
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Note that for Λ+ → 1

1 (0) ∼ 1
2

∙
2 + ln

µ
8

Λ+ − 1
¶¸2

(657)

The odd trigonometric projection would be taken as

 = 2

Z 

0

 (0 0 ) sin ()  + 2

Z 



0 (0 0 ) sin ( − 2)  (658)

and noting that

 =  (− 12)
continuity at  = + 0

sin ( (+ 0)) = sin ( (+ 0)− 2)

requires

 (+ 0) = (+ 34)

Shifted Focus If we redefine the trigonometric projection to have the integral boundary at 

 = 2

Z 

0

 (0 0 ) cos ()  + 2

Z 



0 (0 0 ) cos ( − 2)  (659)

the shifted focal location

 = + hi ≈ + h0i ≈ 00377346 m (660)

with  = 011176 m,  = 00336969 m we find that

1 (0) = ()
h
2 + ln

³
 +

p
22 − 1

´i2
 ln

µ
+ 

− 

¶

≈ 529473 (661)

which is not too different from the preceding value.

6.5.2 Elliptic System Projection

How should the field projection in the prolate system be defined in the stadium? We could define it

through the limit process we used previously (note that the quasirectangular unit vector  is part of this

projection operator)

 = lim
→0

1



Z 2

−2

1

2

Z 2

0

cos ( sin  − )

cos 
 (  )

297



+ lim
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or instead using the cylindrical form

 = lim
→0
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 (  )

+ lim
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0
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0 (  )

= 2
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0

cos [ + 0 ()] (0 0 )
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cos [ − 2 + 0 ()]0 ( 0 2)



 (663)

or (hence the limit definitions of the integrals around the scar eliminate the extra divergence factors in the

projection operator kernel)

 = 2

Z 

0

cos [ + 0 ()] (0 0 ) 

+2

Z 



cos [ − 2 + 0 ()]0 (0 0 )  (664)

where the metric coefficients are

 =  = 

q
sinh2  + cos2 

 =  sinh  cos  =  sinh  sin 0

 =  cosh  sin 




=  sinh  sin 




=  cosh  cos 
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and for  → 0





→ 1

and for  → 2





→ 1

where

0 () =


2

½
() ln

¯̄̄̄
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¯̄̄̄
− ln

¯̄̄̄
 + 

 − 

¯̄̄̄¾
(665)

Note again that a scar projection, consisting of a kernel from the scar solution, and a simple line integral

along the orbit will result in a divergence at the focus (a principle value definition would require the

introduction of a minus sign in the region 2 term), unless we introduce the region 3 form of the solution.

The solution in Region 1 is

Π (0 0 ) = 2
−2 0 (0 )p

1− 22
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The normalization constant 0 is connected to the volume energy by means of
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√
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0
) ln (Λ+)

¯̄
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 = 

The solution in Region 2 is

Π0 (0 0 ) =
2p

22 − 10 (0 
0) cos [ + 0 ()− 2]

0 () = −
0
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½
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0 (0 
0) = 0Re
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i
  0 → 0 (667)

= 0Re
h
−2−4Γ (12 + 2)

i
  0 → 0

where

0 = −
We now consider the exponential ratios for  6= 0 from region 1 to region 2 in redefining the elliptic system

projection operator. As in the 2D case [2] we take the operator to have the proper exponential weights

relative to the scar solution, but we remove the weights for → ±∞
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Z 

0

cos [ + 0 ()] (0 0 ) 

+2−4
Z 



cos [ − 2 + 0 ()]0 (0 0 ) 

∼ 24
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Then the elliptic system projection is
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Averaging over the rapidly varying cosines gives

exp ( || 4)
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Thus we finally have
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where

exp ( || 2)1 () = 4 ()

ln (Λ+) (1 + −)

h
42 + −4−2arccosh ()

i2

=
4 ()

ln (Λ+) (1 + −)

h
42 + −4−2 ln

³
+

p
22 − 1

´i2
(670)

 =
(Λ+ − 1)¡p
Λ+ + 1

¢2 =
p
Λ+ − 1p
Λ+ + 1

Λ+ =

µ
+ 

− 

¶2

³
+

p
22 − 1

´
=

¡p
Λ+ + 1

¢2
(Λ+ − 1)

⎡⎢⎣1 +
vuut1−ÃpΛ+ − 1p

Λ+ + 1

!2⎤⎥⎦

=

¡p
Λ+ + 1

¢
(Λ+ − 1)

³
Λ
14
+ + 1

´2
For  = 0 we have

1 (0) =
2 ()

ln (Λ+)

"Z 1

0

√
1− 2

+

Z 

1

√
2 − 1

#2

=
2 ()

ln (Λ+)
[2 + arccosh ()]

2

=
2 ()

ln (Λ+)

h
2 + ln

³
+

p
22 − 1

´i2

=
2

ln (Λ+)

(Λ+ − 1)¡p
Λ+ + 1

¢2
"
2 + ln

(¡p
Λ+ + 1

¢
(Λ+ − 1)

³
Λ
14
+ + 1

´2)#2
(671)

301



Note that for Λ+ → 1

1 (0) ∼ 1
2

∙
2 + ln

µ
8

Λ+ − 1
¶¸2

(672)

Notice that the only difference between the 3D scalar projections and these 3D vector projections is that 

is replaced by 2Π. Because the vector normalization condition for 
20 is equal to one half the scalar

condition for 0 (due to the change in modal spacing in the vector case), the statistics of the projection

will be similar. The actual potential is made up of a sum of different values of , but because the th

components are asymptotically orthogonal at high frequencies, if the eigenfunction is made up of a sum

Π (0 ) ∼
X


Π (0 ) (673)

this projection will pick out the  term of the sum.

6.6 Vector Random Plane Projection

The random plane wave projections are now discussed in the 3D vector formulation for the stadium.

The vector random plane wave representation was constructed in the previous bowtie sections but the

projection operator in the stadium is different.

6.6.1 Vector Trigonometric Projection m=1

Taking the limit  → 0 of the  = 1 part of the random plane wave representation we find that

(=1) ( = 0  = 0) ·  =
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The trigonometric projection in the stadium is taken as
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Now if we form the square and average over  we eliminate the cross terms. Averaging over  , and then

 , followed by  , gives
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We note that when  →  the first term peaks for  → 0 and the second term peaks for  →  with

cos  = − cos ( − ) and sin  = − sin ( − ). Thus we can approximately separate the two terms as
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Note that
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1

4
+
1

2
[(1 + ) ln (1 + )− (1− ) ln (1− )− 2 () ln (2 ())] (675)

 (−∞) = 0 (676)

 (∞) = 12 (677)

Thus taking into account the even symmetry along the orbit

 () = 2 () (678)

A comparison of the trigonometric projections for the cavity scar field and axisymmetric random plane

wave field are given in Figure 36. Notice that in the stadium there is a large enhancement in the cavity scar

field relative to the random plane wave field near  = 0, where the cavity modal frequency aligns with the

scar frequency → . There is in addition the axisymmetric enhancement due to the symmetry of the field
 2



®


 2



®
=  ()  1 (analogous to the factor of two increase in the 2D even geometry [2]).

Shifted Focus The comparison when the trigonometric projection is defined using the shifted focal

point 
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Figure 36. Comparison of trigonometric projections of the rotationally symmetric stadium vector cavity

field and the axisymmetric random plane wave field.
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field and the axisymmetric random plane wave field when the trigonometric projection operator is redefined
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 = 2

Z 

0

(=1) ·  cos ()  + 2
Z 



(=1) ·  cos ( − 2)  (679)

is shown in Figure 37.

6.6.2 Random Plane Wave Elliptic System Projection

Again taking the even  part of the  = 1 plane wave component

(=1even) ( = 0  = 0) ·  =

lim
→∞

p
2 ( )

X
=1


©
cos sin + sin cos  cos

ª
cos cos ( cos )

0 () =


2

½
() ln

µ
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− 

¶
− ln

¯̄̄̄
 + 

 − 

¯̄̄̄¾
and defining the elliptic system projection as we did in the scar section, we find

exp ( || 4)
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)
Then we have
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Averaging over  ,  , and  gives
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Finally averaging over  gives
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Now for large  ∼  we expect that the  integration leads to a peaked value of the first terms of the

integration for  → 0 and for the second terms of the integration for  → . Thus taking  →  with

the first term peaks for  → 0 and the second term peaks for  →  and using cos  = − cos ( − ) and

sin  = − sin ( − )
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Letting  = 
p
2 gives (note that 1 + cos2  ∼ 2)
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Taking 2 − 4 =  gives
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Then because of symmetry along the orbit we define
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For purposes of numerical integration
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 (680)

This is exactly half of the scalar case. The comparison of the elliptic system projections in the stadium

cavity between the scar construction and the random plane wave is shown in Figure 38.

6.7 Numerical Comparison For Stadium

The trigonometric projection from the numerical solution is (the normalization originally used here is

too large by ) shown in the following Figure 39. The additional peaks in this figure are thought to result

from the lack of orthogonality associated with the trigonometric projection operator in the stadium cavity.

Figure 40 has the proper normalization value. This is to be compared to the theoretical result in Figure

37. We do not double this result because we used only the even modes in the histogram construction (unlike
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Figure 38. Comparison of elliptic projections of the rotationally symmetric stadium cavity field and the

axisymmetric random plane wave field for the vector case.
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Figure 40. The first peak of the numerical histogram of the trigonometric projection with corrected nor-

malization in the stadium cavity.

the bowtie case).

The modal density for the modes that are even along the orbit are (the modes that are odd along the

orbit are expected to have the same density) are expected to be



2
∼  (8)

 ∼ (2 − 1) (2 + 1) (8)

1 ≈ 209586 m−1 2 ≈ 628759 m−1

 = 2 + 2 (−) 2 ≈ 00365583 m2

 =
4

3
3 + 2 (−)2 ≈ 000505205 m3

 ≈ 011176 m

 ≈ 010160 m
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 ≈ 511
The numerical solution for the quarter stadium containing only the odd modes along the orbit (since a

perfect electric conductor was used at the symmetry plane) had 478 modes, which is reasonably close to the

expected number.

6.8 Point Statistics For Stadium

Finally, the most direct observable in the cavity is the field as a function of location. Thus we intend to

examine the field point statistics near the focal point in region 3 where. In region 3 we can write the Hertz

potential as

Π ∼  = 00
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The random phase is
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h
1− 0 (0 + 2 ln 2)− 02 (0 + 2 ln 2)2 2

i
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The focal point shift can be written as

 = − − 0 ln (2
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On axis we therefore have
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Note that at the point  = , or  0 → 0 (with  = 0), or  → 0 (with  0 = 0), we find
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In the special case of  = 0 the field on axis reduces to

 ∼ 2Π

∼ (−1)0 
√
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0 (0) = (−1)
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 (+ 0) = (+ 14)

 024 =  (+ 0 − )
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Thus we find
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20 ( (+ 0 − ))  between foci

∼ 
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20 ( ( − − 0))  outside foci

and at  = + 0


2

® ∼ 
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6.8.1 Shifted Focus

The normalized shift function, without corrections (0 = 0) is

 (+ 0) = (+ 14)

 = 

or

(+ 0)  = (+ 14) 

Noting

0 = −  ≥ 0
where
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 = − 14
For large values of  (with   1) and 

 h0i  ≈ 12
With the frequency range

20971 m−1 ≤  ≤ 6287 m−1
and  = 011176 m,  = 00336969 m we find that

1 = 8 ≤  ≤ 22 = 2
as well as

h0i  = 1
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Z 2
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2
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and thus
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µ
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µ
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≈ 407840
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6.8.2 Random Plane Wave Field Statistics

From the random plane wave results with volume normalization for the entire modal field (all ’s) we

had that

Z


D
(=1) ·(=1)

E
   

 ∼ 2



Z max

0

 ()  =


2
To make the volume integral for only the  = 1 mode equal to unity, we must divide the field square by

this result. Having done this, the on-axis random plane wave result is then

D
 (=1)2 ( = 0)

E
=
2

3
(685)
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Figure 41. Focal region field square statistic from scar theory. The grey curve is the evaluation of the scar

point statistic at  = . The black curve shows the field square statistic at a fixed point  = 004 m on the

scar orbit in the focal region.

6.8.3 Focal Point Comparisons

The preceding focal point result can be written as


 2

® ∼ 





ln (Λ+)
=
2

3

322

ln (Λ+)
For the preceding value Λ+ ≈ 3472 we see that with  = 

322

ln (Λ+)
≈ 118937

is the enhancement over the  = 1 random plane wave result. The result (683) is shown as the grey curve

in Figure 41. Note also that at  = 

322

ln
¡
Λ+
¢ ≈ 105317

is the enhancement over the  = 1 random plane wave result. The result (683) with  replaced by the

average focal point  is shown as the grey curve in Figure 42.

6.8.4 Fixed Point Field

To evaluate the field squared statistic at a fixed point  we use the general region 3 expression for  = 0
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®
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®
(3)  (2) ∼
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Figure 42. Focal region field square statistic from scar theory. The grey curve is the evaluation of the scar

point statistic at  = . The black curve shows the field square statistic at a fixed point  = 004 m on the

scar orbit in the focal region. In this case the value of ln (Λ+) has been replaced by ln
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for both results.
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where the outward going solution is given in terms of the Whittaker function as

+ (  0 ) =20

¡−22¢
the random reflection phase is

−(Φ0+2) =
Γ (02 + 12)
Γ (−02 + 12)

the relation between the arguments and the coordinate are
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and in the even case the axial scar wavenumber is

 = 
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For the choice near the average focal point  ≈ 00377346 m (with  = 011176 m,  = 00336969 m ) of

 = 004 m we find the solid black result shown in Figures, 41 and 43. The solid back curve in Figure 42

has used ln
¡
Λ+
¢
in place of ln (Λ+).

6.8.5 Comparison Of Single Mode Solution

A comparison between the scar results and the numerical simulation for
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 = (− 12) (687)

with  = 8 is now given. Because this is an odd case along the orbit we first review the solution for the odd

parity. With the parameters  = 011176 m, ,  ≈ 010160 m,  = 
p
1− ≈ 00336969 m we note that

Λ+ =

µ
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¶2
≈ 347198 (688)

 = (− 12) ≈ 210826 m−1 (689)

 ≈ 211512 m−1 (690)

and therefore

−0 =  = 2 ( − ) ln (Λ+)

≈ 0246375 (691)

Relation Of Function Choice To Prior Even Case In the sections above for the even case of the

stadium we had taken the functions to be defined by
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In the odd case below we are instead using the definitions
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which can also be rewritten as

Π ∼  =
0


 (

0 0) (  ) = −0
√
2

 0
Re
h
−2+ (

0 0) + 2Φ
0
0 ∗+ (

0 0)
i

√
2


Re
£
+ (  ) + Φ0 ∗+ (  )

¤½ cos ()

sin ()

¾
Hence we have in effect flipped the definitions of  (

0 0) and  (  ) from the previous even case and

introduced a minus sign in  (  ).
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Matching Of Solutions Across Focal Region In region 3 we take

Π ∼  = 0
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(692)

Expanding as we leave the focal region using the asymptotic form

+ (  ) ∼ 
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√
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 Region 3→ 1 (693)
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These must match to the limiting forms of the outer solutions from the preceding sections. In region 1

we take

Π = −2
£
 (  )  sin  − ( −) − sin ¤  ||  0
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£
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In region 2 we take
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The region 1 and 3 solutions yield

Π ∼ 20
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which match if (we negate one of the sinusoid arguments to match the phases, which introduces an extra

minus sign in the amplitudes)

−0 ln (2√) + Φ002 =  +  +  (697)

− (−1)0
04 cos (Φ002)

1√
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The region 2 and 3 solutions yield
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which match if

−0 ln (2√)− Φ02 =  +  −Φ12 + 0 (701)
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−04 cos (Φ02)

1√
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Symmetry Conditions On Orbit Region 1 gives
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In the even case we had
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¡
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+ − 1


+
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+
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and thus to leading order we expect the form of the reflection phase in this odd case to be

Φ0 ∼ (1+)2
Γ (12 +2 + 2)

Γ (12 +2− 2)
(703)

and from the second equation

Φ
0
0 ∼ −(1+)2Γ (12 +2− 2)

Γ (12 +2 + 2)
→ −Φ

0
0 ∼ −−(1+)2Γ (12 +2 + 2)

Γ (12 +2− 2)
meaning that

Φ0 = −Φ00 + + 2

where  is an integer. For  even (including  = 0) we can take

Φ0 = −Φ00 (704)

Final Match Conditions If we subtract the two phase match equations from each other
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Φ12 = (
0 − )

and the second equation then yields

−0 ln (2√)− Φ02 =  +  +  (705)

Taking the ratio of the two amplitude equations gives

(−1)−0+1 02 =  (706)

and the second equation yields

0 = 
04√ sec (Φ02) (−1)

0
(707)

Let us choose  = 0 and Φ1 = 0. For the particular example below we will take 0 =  = 3 odd and

+  ≈ 004391542 m (708)

Simplification On Axis For m=0 The electric fields near the axis are approximately taken as

 ∼  ∼ 2Π (709)

 ∼ 0 ∼ 2Π0 (710)
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and the phase is
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in region 2.
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√
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Cylindrical Form Of Region 1 And 2 For the region 1 solution  = 
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Single Scar Mode Comparison Figure 44 shows a comparison of the axisymmetric numerical

simulation (solid black curve), the region 1 (714) and region 2 (715) solutions (light grey curves), and the

region 3 solution (dark grey curves) given by (712) and (713). The single normalization constant 0 (the

factor in 0 (0 )) to match the region 2 (grey curve) to the numerical simulation at the point noted on the

graph. This normalization is done because we only know the statistics of the scar amplitude construction,

and not the actual amplitude for this particular realization of the Gaussian random variable ; but we only

match the single constant 0. The agreement with the simulation looks quite good, including the in the

focal region.

7 ELECTROMAGNETIC AXISYMMETRIC CAVITY

SIMULATIONS

The numerical simulations to support the theory of axisymmetric cavity scars were performed using a

modified version of the body-of-revolution (BOR) radar cross-section code CICERO, which was originally

written by McDonnell Douglas Research Laboratories [21]. This section describes the modifications made

to CICERO, the tests we ran to verify that the new code was working correctly, the statistics obtained for

a BOR cavity with a cross-section in the shape of a bowtie and finishes with some conclusions.
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Figure 44. Modal spatial distribution of the transverse electric field along the orbit in the stadium for a

particular scar  = 8 with  = (− 12) at wavenumber  ≈ 211512 m−1 with half length  = 011176

m, and radius of curvature  ≈ 010160 m,  ≈ 00336969 m, and  +  ≈ 004391542 m. The numerical
axisymmetric simulation is shown as the solid black curve. The results shown by the light grey curve are

a combination of the region 1 (||  ) and region 2 (||  ) solutions. The dark grey curves are the

results from the region 3 focal solution (the two forms are match at the point || = + . The normalization

constant 0 is chosen to match the analytic construction, in particular the region 2 solution (grey curve), to

the numerical simulation (black curve) at the point noted on the graph.
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Figure 45. Code diagram for CICERO_EV

7.1 CICERO Modifications for Eigenvalue Calculation

CICERO is a frequency-domain method of moments (MOM) code that for each frequency of interest

fills an impedance matrix and right hand side and solves for electric and magnetic surface currents. From

knowledge of the currents, secondary quantities such as radar cross section are calculated. Our first

task was to suppress filling the right hand side and instead calculate the eigenvalues and corresponding

eigenvectors of the impedance matrix for a given frequency.

To find the cavity modes numerically, we will sweep over a range of frequencies at a very close frequency

spacing, monitoring the ratio of the largest eigenvalue to smallest eigenvalue. At the frequencies where this

ratio peaks, the cavity is resonant and this is a frequency where we will calculate the electric field throughout

the cavity. CICERO automatically calculates secondary quantities for each frequency, but in this case

calculating the nearfield is computationally expensive. We therefore have a logical (calculate_nf) set in

the code prior to compilation that we can use to suppress the electric field calculation during the frequency

sweep and enable it when we have a list of resonant frequencies.

The diagram of the resulting code CICERO_EV is shown in Figure 45. The code is written in

a combination of Fortran90 and Fortran77. The main code is in cicero_ev.f which calls the original

CICERO subroutines found in CICERO_EV_sub. The module dimmod.f is an old Fortran77

trick to provide proper dimensions to arrays based on the problem being solved through use of an

INCLUDE statement. CICERO_EV obtains the eigenvalues and eigenvectors of the impedance matrix

by calling the subroutine get_eigenvectors, which is in the matrix_module. Inside matrix_module,

get_eigenvectors in turn calls the LAPACK subroutine zgeev.

The subroutines to calculate the near fields are in near_field_module, which uses the

vector_module for vector operations like dot and cross products. The near_field_module contains

subroutines based on another of our method of moments codes, Eiger [23]. In the near_field_module
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we read in the point locations where the electric field is to be calculated in a *.jfg file with a call to the

subroutine read_field_elements from CICERO_EV. We then calculate the electric field at each of

the points using nearfield_fill and write the electric fields and the point locations to files for processing

(write_near_field) and viewing in I-deas (write_nf_ideas).

One input file to CICERO_EV is cicero_freq.lst, which contains the number of frequencies in the

first line and a list of frequencies (in Hz) in the subsequent lines. The second input file to CICERO_EV

is input. This is a modification of the CICERO input deck. The first line contains two integers:

line 1: mode ngauss

The quantity mode indicates the  mode that we are interested in. This is designated  in the next

section. The  mode is in the form  The quantity ngauss is the number of gaussian points for the 

integration. The second line contains a single integer:

line 2: nreg

The quantity nreg is the number of regions in the problem. Metal is by default set to be region 0 and is

not counted as a region. For all of our cavity problems nreg is set to 1 to designate the region inside the

cavity. The third line contains four reals, which define the region’s material characteristics:

line 3: epsr, epsi, mur, mui

where epsr and epsi are the real and imaginary parts of relative permittivity and mur and mui are the

real and imaginary parts of relative permeability. CICERO_EV uses the + time convention. The

fourth line contains a single integer, which is the number of shells associated with the region.

line 4: numshl

Shells are not handled by CICERO_EV so the fourth line should be zero. The fifth line contains a single

integer:

line 5: npi

where npi is the number of points defining a boundary. This must be an odd number. CICERO_EV

only can solve simple cavities at present (cavities completely filled by one region) so a single boundary can

define the cavity. The sixth line contains three integers:

line 6: nir ner nsh

The quantity nir is the interior region id for this boundary (the outward normal of the boundary is defined

as b = b× b  where b is the unit vector defined by the increasing node id direction along the boundary),
ner is the exterior region id for this boundary, and nsh is the shell id for this boundary (always set to

zero). In CICERO_EV we only have one region (plus the 0 metal region) and since we enforce an EFIE,

the direction of the normal in the eigenvalue problem is not important. It must be consistent, however, and

this is why the direction set by increasing node ids must follow a consistent pattern as seen by the example

shown in Figure 46. The next npi entries consist of the  value of the points that define the boundary.

These are grouped in lines of four reals apiece, with the last line having enough entries to make up the npi

total entries. This is followed by npi entries of the  value of the points that define the boundary, in the

same format as the  entries. The last line of input is 0 to terminate the reading of the boundaries.

If the logical compute_nf = .TRUE. in CICERO_EV, the user must input the base name of the

files that will contain the electric field. This base file name with different extensions for each frequency

(*.nfld00, *.nfld01, etc...) is generated and filled for use by the statistical processing code. The base file

name with the *.unv extension is generated and filled for viewing the  field in I-deas.

The outputs to CICERO_EV are cic.out, which contains an echo of the input quantities,

current.out, which contains the eigenvector associated with the smallest eigenvalue for the frequencies

contained in cicero_freq.lst, and condition_number.out, which contains the condition number of the

impedance matrix (largest eigenvalue/smallest eigenvalue) for the frequencies of interest.
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7.2 CICERO Modifications for Electric Nearfield Calculation

7.2.1 Direct Derivation of
−→
  ()

In this section we discuss details of the calculation of the electric near fields at an observation point ().

The scattered  field in terms of vector () and scalar () potentials is
−→
 ()


= −−→ ()−∇ ()

= −
Z
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−
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Z
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The current on bodies of revolution are represented by basis functions oriented in two directions: b and b
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The current continuity equation is
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The time-harmonic form of the continuity equation (assuming a + time convention) is:
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so
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Therefore, the scattered field in terms of the electric current  is
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The electric current has two components
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where 
 is the coefficient of the b0 directed basis, 

 is the coefficient of the
b0 directed basis,  (0)

is a triangle basis function along the curve that generates the body of revolution, and  (0) is the radius
of the body. In the b direction the basis is a Fourier mode ¡¢. The negative sign in in front of the

second series comes from definition.
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For a particular Fourier mode ()
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 is even in 0 about the observation angle  the other quantities under the integration over  are even
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observation plane to  = 0 then  is even around 0 = 0 just like the other quantities. Some of the terms
being integrated are odd around 0 = 0 and don’t contribute to the integral while the even terms can be
integrated over half the support and multiplied by 2.
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Next look at the vector potential term, b component
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Using the same arguments as above we obtain
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Next look at the vector potential term, b component.
− = b · (−)Z
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For each case we will do the integration over the support of the triangle by summing 4 pulse contributions

multiplied by the support of the pulse. With this approximation, we obtain the following equations for the

contribution of the vector potential to the scattered  field.

− = −
2

( P
 




P4
=1 sin 0∆

R 
0
cos0 cos

¡
0
¢
−


00

+
P

 



P4
=1 0∆

R 
0
sin0 sin

¡
0
¢
−


0

)

− = −
2

(

P

 



P4
=1 sin 0∆

R 
0
sin0 sin

¡
0
¢
−


00

−P 



P4
=1 0∆

R 
0
cos0 cos

¡
0
¢
−


00

)

− = −
2

X





4X
=1

cos 0∆

Z 

0

cos
¡
0
¢ −


00 (718)

For the scalar potential contribution to the  field we will first calculate the scalar potential
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The gradient is given by
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In the code we implemented the b and b derivatives as finite differences
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7.2.2 Alternative Derivation of
−→
  ()

An alternative method of obtaining the
−→
  field is to start with the expressions for the impedance

matrix of a cavity with PEC walls in terms of the operator  (·)  which is given in [21]. We will change

the Galerkin testing procedure to point matching at
¡
 0 

¢
and get expressions for the   and 

components of
−→
 . Using this method gives us a way of checking the direct derivation given above.

We will start with the  (·) operator and compare the results using this procedure to the −→  field that
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The contributions to 
 from the vector potential are
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This is identical to what was derived directly in Equation 716. The contributions to 
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Again this is identical to what was derived in Equation 719.

For the b component of  we set  = 0, and we again have contributions from  and 
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This is identical to what was derived in Equation 718.
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This is identical to what was derived in Equation 721. For the b component, we again have contributions
from  and 
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The contributions to 
 that arise from the vector potential are
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This is identical to what was derived in Equation 717. The contributions to 

 that arise from the scalar

potential are
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This is identical to what was derived in Equation 720.

The above equations for
−→
  are implemented in near_field_module in the subroutine lop_nf.

7.3 CICERO Modifications for Magnetic Nearfield Calculation

7.3.1 Direct Derivation of
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The scattered
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 field in terms of vector potential
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The gradient term can be expanded as follows
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The electric current on the wall of the cavity has two components b and b
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 (−→ 0) = b0 ¡0 0¢+ b0 ¡0 0¢
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where in Cartesian coordinates b = b sin  cos+ b sin  sin+ b cos 
and b = −b sin+ b cos
0
 is the coefficient of the

b0 directed basis, 0

 is the coefficient of the
b0 directed basis,  (0) is a

triangle basis function along the curve that generates the body of revolution, and  (0) is the radius of the

body. In the b0 direction the basis is a Fourier mode 0 . The negative sign in the second series comes
from the definition in the original CICERO code.
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Let us, for convenience, look at the two terms of the above equation separately. First for the b0 component
term we obtain
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 is even in 0 about the observation angle ; the other quantities being integrated over 0 are even
or odd about 0 = 0 This way of thinking complicates the elimination of certain terms because we are
looking at components along   and  rather than components along  and  Let’s specialize our

observation plane to  = 0 then  is even around 0 = 0 just like the other quantities. Some of the terms
being integrated are odd around 0 = 0 and don’t contribute to the integral while the even terms can be
integrated over half the support and multiplied by 2.
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For the b0 component term we obtain
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Invoking even and odd symmetry and setting the observation point at  = 0 to eliminate terms we obtain
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The b component of −→ is
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Again doing the calculation term-by-term, for the b0 component term we obtain
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Invoking even and odd symmetry and setting the observation point at  = 0 to eliminate terms we obtain
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For the b0 component term we obtain
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Invoking even and odd symmetry and setting the observation point at  = 0 to eliminate terms we obtain
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The b component of −→ is
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Again doing the calculation term-by-term, for the b0 component term we obtain
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Invoking even and odd symmetry and setting the observation point at  = 0 to eliminate terms we obtain
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For the b0 component we obtain
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Invoking even and odd symmetry and setting the observation point at  = 0 to eliminate terms we obtain
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Alternative Derivation of
−→
  () Since this procedure proved successful for , we do the same

thing with  (·) for 
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where [21]
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Note the division by 0 in Equation 732. This arises because both impedance matrix and right hand side

are multiplied by 0 in order for the magnetic field integral equation to be similar in scale to the electric

field integral equation [21]

To look at the b component we set  = 2
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The terms in this expression are identical to a combination of Equations 725 and 727.

To look at the b component we set  = 0
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The terms in this expression are identical to a combination of Equations 728 and 729.

To look at the b component we have contributions from  and 
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The terms in this expression are identical to a combination of Equations 730 and 731.

The above equations for
−→
  are implemented in the near_field_module in the subroutine kop_nf.

In the near_field_module the variable field_scatt is filled in the subroutine nfield_fill which sets

the observation point  and  and calls get_nearfield which returns all the field components. In

get_nearfield calls are made in sequence to lop_nf, which calculates the components contributing to
−→
 

and to assemble_nf, which multiplies the components by the eigenvector, to kop_nf which calculates

the components contributing to
−→
  and again to assemble_nf. The field is written in a standardized

format for plotting by write_near_field.
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Figure 46. BOR geometry

7.4 Running CICERO_EV

In this section we describe the steps needed to run CICERO_EV and get out a set of files containing

the electric fields in a cross section of the BOR so that we can get statistics on them. These steps are

complicated in part because we have to generate an input deck for CICERO. Although we have software

that does this from a mesh generated by PATRAN, we don’t have software for a mesh generated by

I-deas, so we have to kluge an input deck together.

Step 1. Use I-deas to generate a boundary of the BOR in the  plane as shown in Figure 46. Other

than the exception discussed in Step 3, I-deas orders the element and node ids on a boundary so that they

increase monotonically as we progress along the boundary. This feature is a requirement for the CICERO

input deck. Also, the number of points on the boundary must be odd.

Step 2. Convert the I-deas *.unv file to a *.jfg file using i2j [23].

Step 3. I-deas first writes out the end node ids of a boundary and then writes out the intervening ids.

We use a text editor to edit the *.jfg file and put the nodes in the order needed by CICERO. Using the

nodes on the two boundaries shown in Figure 47 as an example , we change the node order in the *.jfg file

from column 1 to the order shown in column 2.

original order modified order

id1 id1

id2 id3

id3 id4

id4 id2

id5 id5

We also change very small numbers
¡
 = 10−17

¢
to ( = 00)  Use the display of nodes in I-deas to help

with editing the *.jfg file.

Step 4. Run convert_jfg.f which converts node data given in the input.jfg file to a format needed
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boundary 1
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Figure 47. I-deas node numbering scheme
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by the CICERO_EV input deck input. The formatted file is in input.pnts.

Step 5. Edit input by creating the first six lines in accordance with the description in Section 7.1

above and then inserting input.pnts.

Step 6. To run a frequency sweep to find the cavity resonances by the behavior of the condition number.

Modify CICERO_EV.f by setting calculate_nf = .FALSE. Run generate_frequency_lst.f, which

outputs the file cicero_freq.lst. Run CICERO_EV with input and cicero_freq.lst to obtain the

output file condition_number.out.

Step 7. Run the code general_wg.f which takes the file condition_number.out and outputs the

file frequency.lst, which gives the frequencies where a peak in the condition number occurs.

Step 8. Use I-deas to generate a visualization grid. Output the grid as a *.unv file. Convert the grid

to a *.jfg file using i2j. Modify cicero_ev.f by setting calculate_nf=.TRUE. Edit frequency.lst

to have the correct format (frequency.lst groups the frequencies in groups of twenties) and copy to

cicero_freq.lst. Run CICERO_EV again to get individual files containing the electric field on the grid

for each frequency in cicero_freq.lst. These files are labeled with a base name given by the user and an

extension *.nfld??. Where ?? designates a number long enough to accommodate all the frequencies in

cicero_freq.lst.

Step 9. Change the names of the electric field files using scripts. For example, with a base name of

axbt so that the near field files generated are: axbt.nfld00, axbt.nfld01, ... axbt.nfld99 , we change

the file names to ones that have the frequency in the base name and an extension of *.nfld0. The previous

example gets changed to axbt_1.4GHz.nfld0, axbt_1.5GHz.nfld0,...axbt_2.0GHz.nfld0. Make a

list of the base name of all *.nfl0 files that we are going to get statistics on in nearfield.lst.

Step 10. Run abt_m0.f Inputs are all the *.nfld0 files and the nearfield.lst from Step

9 and the file kp.lst, which contains a list of the resonant wavenumbers for a bouncing ball mode.

The codes bowtie_kp_even.f and bowtie_kp_odd.f generate kp.lst. Output of abt_m0.f is

bin_stat_m0.txt, which provides data for a histogram plot and ef_scatter_m0.txt, which is the

un-binned histogram data.

7.5 Analytical Problem

In this section we will analytically solve for the modal  and  fields inside a PEC cylindrical cavity

having a radius  =  and length  = . We will also calculate the wall current
−→
 and a quantity related

to the wall charge: ∇ ·−→ analytically. The numerical calculations using CICERO_EV for a cylindrical

cavity will be compared to these analytic solutions to give us confidence that the numerical calculations are

correct.

7.5.1 TM Modes

For modes TM to b we have the magnetic potential [24]
−→
 = b

For the cylindrical cavity  must have the form

 = 

³


´
 cos

³


´

where  = 0 1 2 ;  = 1 2 3 ; and  = 0 1 2 ;  is the Bessel function of the first kind, order n. 

353
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On the side of the cylinder ( =  b = −b)
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The derivatives of the Bessel function are for the first derivative
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and for the second derivative
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The resonant frequencies of the TM modes are
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7.5.2 TE Modes

For modes TE to b we have the electric potential [24]
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The resonant frequencies of the TE modes are
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7.6 Verification of n=0 Modes

If we numerically solve for the modes in PEC cylindrical cavity where the radius  = 1 m, and the

length  = 1 m using CICERO_EV and compare to the analytic solution from the preceding section, we

obtain the following results for the resonant frequencies when  = 0

CICERO_EV (MHz) Analytic (MHz) Mode

115.4 114.75 TM010

190.6 188.78 TM011

238.7 236.43 TE011
266.4 263.38 TM020

306.8 303.04 TM021

326.1 321.00 TM012

CICERO_EV is a method-of-moments (MOM) code which has two parts. We first solve for the

current on the wall of the cavity; then in a separate step we solve for the electric field throughout the

interior of the cavity due to the wall currents. This naturally divides the verification procedure into two

parts: 1) verification of the current calculation and 2) after demonstrating that the current is correct,

verifying the field calculation.

7.6.1 TM010 Mode

This is an  = 0 mode that CICERO_EV finds at 115.4 MHz (114.75 MHz analytically). We will

first do a comparison of the wall current calculated numerically and analytically. For this mode, only 
exists on the wall of the cavity. This is compared in Figure 48 which plots  along the boundary  from

 = 0  = −05 to  = 1  = −05 to  = 1  = 05 to  = 0  = 05. This boundary description will be
used for all subsequent plots of

−→
 () in this report. Since we are dealing with comparisons of eigenvectors,

which can differ from each other by a complex constant, we scaled all analytical quantities ( and )

associated with this mode by the factor (−02672 00)  This factor was obtained by requiring the analytic
and numerical current to match at  = 15 m. The comparison of current is good except for deviations

adjacent to the axis, which comes from representing  as a triangular basis function in CICERO_EV,

and at the corners ( = 1 and  = 2 m), which we believe is due to discretization.

Equations 733-735 show that for this mode  =  = 0 and

 = −0 (01)
Figure 49 shows the  component of the field as calculated by CICERO_EV. The field is small

throughout the space except at the ends of the cylinder on the axis where there is a hot spot that doesn’t

obey the boundary condition and is asymmetrical in . This is obviously an error possibly caused by the

afore-mentioned basis representation at the axis.

Figure 50 shows proper behavior for the  field component except near the axis ends where, again

there is an un-physical hot spot — not as obvious as with  because it is being masked by the correct

on-axis maximum of . Figure 51 is a more detailed comparison of  () at  = 0 as calculated by

CICERO_EV to the scaled analytic result. The agreement is good even as the observation point

approaches the boundary.
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Figure 48. TM010 mode current on boundary. Only  is non-zero

Figure 49. TM010 mode 
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Figure 50. TM010 mode 
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Figure 51. Comparison of  () at  = 00 m,  = 0
0
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Figure 52. TM010 mode 

The only component of  field in the cavity for this mode is  which is plotted unscaled in Figure 52.

Again, the form looks good except for a slight non-uniformity in . Figure 53 compares  () at  = 0

calculated by CICERO_EV to the scaled analytic result. The agreement is good until about one-half a

cell away from the boundary (the boundary elements in this problem are 01 m long), then  calculated

by CICERO_EV deviates from the analytic results and doesn’t match the wall current calculated by

CICERO_EV
³b×−→ =

−→

´
This behavior indicates that this discrepancy is due to the singularity

contribution from the wall element that is being approached. This singularity, which is contained in thee (·) operator for calculating the current, but is also specific to test locations on the wall, was ignored in
calculating

−→
 . To avoid this problem we have to maintain a one-half wall cell distance between the wall

and the near field location when obtain the cavity statistics. This occurs automatically if the elements

forming the near-field grid locations near the wall are the same size as the wall elements. This is the case

in Figure 52.
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0
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Figure 54. TE011 mode current on boundary. Only  is non-zero

7.6.2 TE011 Mode

This is an  = 0 mode that CICERO_EV finds at 238.7 MHz (236.43 MHz analytically). Figure 54

shows a comparison of  () which is the only component of the current for this mode. The comparison

is good except for the axis and corners. For this mode we scaled the analytical quantities by the complex

factor (00 14745) 

Equations 736 - 738 shows that TE011 mode has  =  = 0 and

 = 0
0
0

¡
0

¢
sin ()

 is plotted unscaled in Figure 55. The form of the field looks good as discussed in [25] and better than

the above TM results. Figure 56 shows the comparison of  () at  = 00 m. There are no discrepancies

for the tangential  field as it approaches the wall because the singular behavior is included in the  (·)
operator and thus in the tangential  field calculation.

363



Figure 55. TE011 mode 
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Figure 56. Comparison of  () at  = 00 m,  = 0
0
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Figure 57. TE011 mode 

Figure 57 shows the unscaled  over the cavity cross-section. Figure 58 shows  () at  = 05 m.

The comparison is good except for near the wall for the reasons given previously.
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Figure 59. TE011 mode 

Figure 59 shows the unscaled  field over the cavity cross-section and Figure 60 shows  () at

 = 00 m.
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Figure 61. TM020 mode 

7.6.3 TM020 Mode

The TM020 mode has  =  = 0 and

 = −0 (02)
This is the behavior shown by the CICERO_EV results in Figure 61 with the same problems near the

ends of the axis discussed previously.

7.7 Verification of n=1 Modes

If we numerically solve for the modes in PEC cylindrical cavity where  = 1 m, and  = 1 m using

CICERO_EV and compare to the analytic solution from the preceding section, we obtain the following

results for the resonant frequencies when  = 1

CICERO_EV (MHz) Analytic (MHz) Mode

175.9 173.7 TE111
184.0 182.5 TM110

238.1 236.4 TM111

The resonant frequencies predicted by CICERO_EV have correspondence with the analytical modes

as indicated in the table. We decided to use the TE111 and TM111 modes as our  = 1 test cases.

7.7.1 TE111 Mode

For the TE111 case, in order to understand the connection between current and field results, we

examined in detail why  of this mode was small compared to the other components. We knew that 

due to the vector potential from currents on the top and bottom of the cavity had to be identically zero

because both  and  on these two surfaces didn’t have a  component. We checked the code and  ()

was indeed zero. Therefore,  () from the top and bottom surfaces also had to be zero. This meant that
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Figure 62. Comparison of analytical and numerical wall current for TE111

 had to be constant with respect to  variation, which could only happen if the charge on top and bottom

of the cavity was zero and this would happen only if  and  were in related in very specific ratios.

We used the analytical calculation of the wall current and wall charge discussed above to understand the

behavior of the current and charge on the walls and compare them to the values given by CICERO_EV.

The analytical expressions for the TE modes indicate that at each point along the bottom and top of

the cylinder, the charge due to  and  must cancel each other out. This gives the clue that the two

components must be 900 out of phase with each other, i.e. if  is real and negative, then  is purely

imaginary and has a negative imaginary part. The two components must be in the correct ratio with

respect to each other for this charge cancellation to occur. Since the charge has a sinusoidal variation along

the side of the cylinder, there will be a  component of the field from the scalar potential which must be

cancelled by the  component of the vector potential.

A complicating factor is that, as discussed previously, if an eigenvector is a solution to an eigenvalue

problem, then a complex constant times the eigenvector is also a solution to the eigenvalue problem. If we

find the complex constant that relate the analytical and numerical solution of one component of the current,

then all quantities, such as charge and electric field should be related by the same complex constant. For

the TE111 case of interest, we multiply the analytical solution by the factor (−20864)  A comparison of
the numerical versus analytical current density is shown in Figure 62. This shows that CICERO_EV

is calculating the current density correctly. There are slight discrepancies near the junctions between the

bottom and the side surfaces (1 on the abscissa) and between the top and side surfaces (2 on the abscissa).

Figure 63 compares the numerical versus the analytic ∇ ·−→ which is related to charge density. Here the

numerical results oscillate around the analytical results, particularly on the top and bottom surface where

the charge density is analytically zero. This oscillation is to be expected, since the current density is being

differentiated and numerically we should expect the field from the charge to be small, but not identically zero.

In Figures 64-67 we compare various components ( and ) of the analytical  field to the same

components from CICERO_EV at various cuts in the  = 00 plane. The cuts are at  = 05 m (midway

between the end planes of the cylinder) and at  = 05 (half-way to the outer radius). Most of the results

show good agreement except for  along the  = 05 m cut near  =  in Figure 64. Initially we thought

this was due to the fact that we were approaching a junction between two elements on the outer surface, but

when we moved the end point down to where it intersected the outer surface in the center of the element,
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Figure 63. Comparison of analytical and numerical ∇ ·−→ for TE111
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Figure 64. Comparison of  () at  = 05 m,  = 0
0

the anomalous results remained. This bears further examination. Again because of the way we obtain our

near fields when building cavity statistics this is not a problem.

For the TE111 modes the color plots of   and  shown in Figures 68 - 70 show good behavior of

the results. Analytically  should be identically zero, which is not the case in Figure 70. If we look at

the scale on the right side, however, the highest value of this component is the same order of magnitude as

the lowest value of the other two components. This finite value of  is due to numerical error and should

improve with a finer grid.

372



0.0 0.2 0.4 0.6 0.8 1.0

rho (m)

-150

-100

-50
E

y 
(V

/m
)

Ey Cicero_ev
Analytic Ey scaled by -j208.64

TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz, z =0.5 m, phi=0 degrees

Figure 65. Comparison of  () at  = 05 m,  = 0
0

0.0 0.2 0.4 0.6 0.8 1.0

z (m)

-200

-150

-100

-50

E
x 

(V
/m

)

Ex Cicero_ev
Analytic Ex scaled by -j208.64

TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz, rho=0.5 m, phi=0 degrees

Figure 66. Comparison of  () at  = 05 m,  = 0
0
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Figure 67. Comparison of  () at  = 05 m,  = 0
0

Figure 68. Correct  for TE111 mode

374



Figure 69. Correct  for TE111 mode

Figure 70. Correct  for TE111 mode
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Figure 71. TE111 mode 

Next we will compare the  field to analytical results. Figures 71 through 76 shows  and 

over the cross-section of the cavity and comparisons with analytical results for various cuts across the

cavity.
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Figure 72. Comparison of  () at  = 025 m,  = 0
0

Figure 73. TE111 mode 
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Figure 74. Comparison of  () at  = 025 m,  = 0
0

Figure 75. TE111 mode 
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7.7.2 TM111 Mode

In this section we will compare the TM111 mode at the resonant frequency of 2381 MHz. Figure

77 shows good agreement between the analytical and numerical current density. There is error near the

junctions between the side and the top and between the side and bottom and it is more error than we

saw for the TE111 mode. In this case we have to scale the analytical results by the factor (−02425 00) 
Figure 78 shows comparison between analytical and numerical calculation of ∇ · −→  For this case there

is a significant deviation between analytical and numerical results near the axis of the cylinder. More

disturbingly, there is a sign error between the two results — the scaling factor is (+02425 00). We will

have to examine this further.

Figures 79 - 83 show comparisons between analytical and numerical results of ,  and  in the

 = 00 plane for cuts along  and  (the same as we did for the TE111 modes). Comparisons for  along 

at  = 05 m are not plotted because both numerical and analytical calculations show  = 0 The results

show the same trend as the TE111 results.  shows a sharp, anomalous discontinuity near  =  in Figure

79.  exhibits the same behavior near its endpoints in Figure 83.  shows a consistent sign error and

 () shows excessive error and non-conformance to the boundary condition (it should go to zero at the

boundary) in Figure 81. The results overall are worse than the TE111 results.
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Figure 79. Comparison of  () at  = 05 m,  = 0
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Figure 80. Comparison of  () at  = 05 m,  = 0
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Figure 81. Comparison of  () at  = 05 m,  = 0
0
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Figure 82. Comparison of  () at  = 05 m,  = 0
0
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Figure 84.  for TM111 mode

Figures 84 - 86 show color plots of the TM111 mode. Overall the results look reasonable. The jumps

in field near the boundary seen above are not seen in the color plots. The boundary condition for  and

 near the axis don’t seem to be correct. This will have to be checked out in the future.
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Figure 85.  for TM111 mode

Figure 86.  for TM111 mode
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Figure 87. TM111 mode 

Figures 87 through 90 shows  and  over the cross-section of the cavity and comparisons with

analytical results for various cuts across the cavity.
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Figure 88. Comparison of  () at  = 025 m,  = 0
0

Figure 89. TM111 mode 
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Figure 90. Comparison of  () at  = 025 m,  = 0
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7.8 Statistical Results

The previous section demonstrated that CICERO_EV can find modes and predict  and  fields in

a cross-section of the cavity for  = 0 and  = 1 In this section we will discuss obtaining statistics for

the axisymmetric bowtie cavity. Figure 91 shows a quarter bowtie cross section that is revolved around

the  axis to form a cavity. The body of revolution (BOR) has curved ends with a radius of curvature of

. The distance from end to end along the center line is  The sides of the BOR are also curved with

a radius of curvature of  The radius of the BOR at point midway between its two ends is 2 The

cross section being considered was taken to be at  = 0, so instead of  we used 

The particular geometry solved was where  =  = 20 m,  = 10 m and  = 15 m. We set

 = 0 in input and swept over the range 1 GHz to 3 GHz. We found 472 modes, both TE and TM. We

decided to concentrate only on the statistics of , which is non-zero only for the TM modes. Of the 472

total modes only 166 were TM modes, the remaining 306 were TE modes. In obtaining the statistics we

actually looped over all modes and skipped the results that had  = 0 over the entire cross section. A

typical mode structure plotting  for the TM mode at 10164 GHz is shown in Figure 92. Originally we

solved a complete cavity rather than the half cavity but found that there was a degeneracy for each mode

that caused the field to be asymmetrical in the  direction. Adding the PEC plane through the center of

the cavity at  = 0 removed the degeneracy and enforced symmetry.

Let  = 2 and  be the focus location

 = 
p
1 + (739)

Then the scar frequency separation factor () is

 =
(0 − )

ln
h
+
−
i (740)

where 0 = 2 ( is one of the 106 resonant frequencies calculated by CICERO_EV and  is the

speed of light) and  = 2;  = 1 2 3 4
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Figure 92. TM mode at 1.1064 GHz
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For each value of 0 we first normalize each value of  contained in the *.nfld0 file by the quantityZZ
 ( )

∗
 ( ) 

where the integral is taken over the area of the quarter-bowtie cross section. At resonance the fields should

be all real to within a complex constant. We find the phase of the largest  field within the cavity and

divide each value of  by this phase to remove the complex constant and make the fields real. For every

value of 0 we loop over all values of  calculate  for each combination and calculate the quantity

0 =

2Z
0

e (0 ) cos () 

by integrating numerically, where e(0 ) is the  field along the  axis of the BOR normalized as

described above. The quantity 
2
0 is calculated and added to one of 100 bins between the values of

 = [−15 25] At the end of accounting for all 0  combinations the values of each bin are divided by the
number of entries contributing to each bin. The result is shown in Figure 93.

Next we will discuss obtaining statistics for the axisymmetric bowtie cavity for the  = 1 mode. The

particular geometry solved was where  =  = 20 m,  = 10 m and  = 15 m. The boundary

elements and the elements used to get locations to calculate the near field both had edge lengths of around

1 cm. We set  = 1 in the file input and swept over the range 1 GHz to 3 GHz monitoring the condition

number of the impedance matrix. The condition number as a function of frequency is shown in Figure

94. Each peak of the condition number is a frequency where a mode of this cavity occurs. Counting the

peaks,we found 874 modes over this frequency range, that could be TE or TM. For each of these modal

frequencies we solve for
−→
 and

−→
 at a series of points that span the cross-section of the bowtie. The fields

for each modal frequency are stored in a separate *.nfld0 file. A typical mode structure plotting  for

the mode at 10164 GHz is shown in Figure 95.

Where  and  were defined above in Equations 739 and 740 and where 0 = 2 ( is one of

the 874 resonant frequencies given at the peaks in Figure 94 and  is the speed of light) and  = 
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;  = 1 2 3 4100 To obtain the statistics we loop over all the different combinations of 0 and .

For each value of 0 we first normalize each value of  (0 ) (along the b axis) by the quantityZZ

−→
 ( ) ·−→ ∗ ( ) 

where the integral is taken over the area of the bowtie cross-section. At resonance, all the field components

should be real to within a complex constant. We find the phase of the largest  field within the cavity

and divide each value of  (0 ) by this phase to make the quantity real. Then for each 0 we loop over

all values of  calculate  for each combination and calculate the quantity

 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z
0

 e (0 ) cos ( + 0)  if  is odd

Z
0

 e (0 ) sin ( + 0)  if  is even

by integrating numerically, where e(0 ) is the  field along the  axis of the BOR normalized as

described above,

0 = (0 − )  − 1
2
 ln

∙
+ 

− 

¸
and

 =

∙
1− 2

2

¸− 1
2

The quantity 
2
 is calculated and added to one of 100 bins between the values of  = [−15 25]

depending on the calculated value of  After accounting for all 0  combinations, the values of each

bin are divided by the number of entries contributing to each bin. The result is shown in Figure 96.
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7.9 Numerical Conclusions

In this section we have discussed how we modified CICERO to obtain CICERO_EV. This allows

us to find modes and calculate the fields inside a PEC axisymmetric cavity. We have carefully checked

the results from CICERO_EV with analytical results on a circular cylinder for  = 0 and  = 1 and

have found good agreement. We believe that the code will work for all values of  We used the code to

calculate field statistics in an axisymmetric bowtie cavity. These statistics are compared to the vector scar

theory in [28].

During the course of obtaining the bowtie cavity statistics, we found that the scaled fields inside the

cavity were not entirely real and this could indicate a modal degeneracy. This could be due to formulating

the fields in terms of  rather than a combination of sin () and cos()  A second problem is the

problem seen at the wall-axis junction for the TM010 mode discussed in [25]. This could be solved by

using a finer grid. Finally, we could try to add the singular terms to the  field calculation so that it will

give accurate results next to the cavity wall. This is the subject of future work.

8 CONCLUSIONS

This report explores the construction of high frequency electromagnetic scar enhancements along

periodic orbits in axisymmetric convex (bowtie-like geometry) and concave (stadium-like geometry) walled

cavities. In particular the method that Vaynshteyn [5] introduced to treat high frequency electromagnetic

stable orbits is adapted to the unstable scar case. A random phase reflection is introduced, as Antonsen did

in the two-dimensional bowtie cavity [1], to simply represent the outer chaotic region of the cavity.

The acoustic scalar problem is treated first. Next, emphasis is given to the vector nature of the

electromagnetic problem; in particular, the quasi-rectangular coordinate system introduced by Vaynshteyn

[5] is explored and the vector modal representation is constructed. The critical normalization condition

introduced by Antonsen [1] is examined through the use of a source free electromagnetic energy theorem

where the boundary of the scarred orbit connects the scar amplitude to the total energy in the cavity.

Several approaches to this normalization are discussed, and the approach where the quasirectangular

Hertz potential components are transformed to the prolate spheroidal system seems to be successful. The

distribution plots are constructed for the axisymmetric scar along the center line of the cavity. We also

consider the contribution from the magnetic Hertz potential (or alternatively the orthogonal polarization of

the electric Hertz potential) to the polarization of the field.

The random plane wave construction is also carried out for the scalar and vector cases. The first

azimuthal mode of the field is extracted and renormalized over the cavity volume; comparisons to this

result confirms the proper asymptotic limits of the scar theory. We also discuss the enhancement of this

first azimuthal mode on the central axis of the cavity due to the axisymmetric symmetry of the problem.

Comparisons of the theoretical scar distribution with the axisymmetric numerical simulations are

discussed for the first azimuthal mode in both convex and concave walled cavities. These comparisons

include both Fourier projections along the scarred orbit, as well as field point statistics along the scar orbit

and near the interior foci (in the concave case). Finally, a comparison is made for a single realization of

the scar mode in the concave walled stadium cavity, which confirms that the theoretical scar construction

captures the focal region features of the high frequency electromagnetic solution.
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