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Abstract

This report examines the localization of high frequency electromagnetic fields in three-dimensional
axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these
orbits lead to unstable localized modes are known as scars. This report treats both the case where the
opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave,
leading to interior foci. The scalar problem is treated first but the approximations required to treat the
vector field components are also examined. Particular attention is focused on the normalization through
the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as point
statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with
an axisymmetric simulation. This axisymmetric case forms the opposite extreme (where the two mirror
radii at each end of the ray orbit are equal) from the two-dimensional solution examined previously (where
one mirror radius is vastly different from the other). The enhancement of the field on the orbit axis can be
larger here than in the two-dimensional case.
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Three-Dimensional Electromagnetic High Frequency Axisymmetric
Cavity Scars

Larry K. Warne and Roy E. Jorgenson,
Electromagnetic Theory Dept. 1352,

Sandia National Laboratories
P. O. Box 5800
Albuquerque, NM 87185-1152

1 SUMMARY

Cavity modes at high frequencies tend to exhibit statistical homogeneity except in regions where
periodic modes are supported by boundary topology. These enhanced regions can take the form of localized
stable modes such as laser-type “bouncing-ball modes” or “whispering-gallery modes”, which do not
interact with the remainder of the cavity due to confinement by the caustic surfaces associated with these
types of modes. Enhancements can alternatively be associated with unstable periodic ray orbits. These
“scars”, as they have been called, are local enhancements of cavity fields over the chaotic background along
unstable periodic ray trajectories. These enhancements do interact with the remainder of the cavity, and
hence can be excited by sources anywhere in the cavity.

These unstable scars are the subject of this report. Unlike in the case of stable modes, which are
confined by caustics, the unstable modes have propagation transverse to, as well as along, the orbit
direction. Hence a reflection with a random phase coefficient is used to capture the return from the outer
chaotic region. The eigenvalue density in the cavity, which depends on the overall cavity volume, is used to
normalize the statistics of this random reflection phase.

Previously, we have investigated these scars in two-dimensional convex and concave walled cavities.
The present report discusses scar effects in a three-dimensional axisymmetric cavity. This arrangement
captures the scarring when the mirrors at the ends of the orbit have the same radius of curvature in both
azimuthal orientations; this case thus compliments the two-dimensional case, where one of the mirror radii
of curvature is infinite.

In three-dimensions the electromagnetic problem also requires treatment of the vector problem.
We begin each investigation with the scalar acoustic problem and then introduce the vector case. A
quasi-rectangular coordinate system is introduced to treat the vector problem.

To make clear the enhancements resulting from the scar effects comparisons are done with purely
chaotic fields represented by collections of random plane waves. These are constructed for both the scalar
and the vector cases, for both the full three-dimensional case as well as the axisymmetric geometry.

It is crucial in these investigations to compare theoretical results with rigorous simulations of the cavity
modal solutions. This was done by modification of a body of revolution scattering code. Cavity modes
were identified by examining the solution condition number as a function of frequency. Normalization of
the modes was carried out by integration of the field square over the cavity volume. Projections of the
field along the orbit, or the field square at a point, were examined by gathering the results at the various
modes and binning them as a function of the separation between modal frequency and scar frequency; the
scar frequency is associated with condition that the free space wavenumber times the orbit length is a
multiple of pi divided by two. These numerical comparisons help verify the vector scar constructions and
the underlying assumptions made regarding the chaotic reflection phase from the outer chaotic region of
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the cavity.

The end goal of these investigations is to enable an interior high frequency ray method to be used in
order to model the problem in an efficient manner. Because, the fields in the cavity at high frequencies can
vary due to small perturbations of the cavity geometry, or with small frequency shifts, it is believed that a
method which captures the statistical properties of the field in the cavity would give results that could be
most useful in describing the shielding. For our purpose it is important that such a technique capture the
extreme statistics that are dominated by the presence enhanced field regions (hot spots) created by periodic
orbits supported by the boundary topology.

1.1 Convex Walls

The cavity with convex walls does not generate interior focal regions and the high frequency scar
construction holds over the entire orbit across the cavity. The source free electromagnetic energy theorem is
used to normalize the scar amplitude, such that the integral of the square of the field over the entire cavity
has a chosen value, even though the construction is only valid in the vicinity of the scarred orbit.

Fourier and other types of projections of the field along the orbit are taken which illustrate scar effects
versus the random plane wave chaotic field. Comparisons with the numerical simulations verify the behavior
of these modes.

The field squared statistics at points along the orbit are also examined. In the convex cavity these
statistics are similar to the chaotic random plane wave statistics. Nevertheless, there is a large enhancement
of the field along the central orbit that results from the axisymmetric nature of the cavity mode (when
this mode is normalized throughout the cavity volume). This field enhancement is of a similar nature to
the factor of two enhancements that were observed in two-dimensions along the symmetry planes of those
cavities (when either the even modes were normalized over the cavity area).

1.2 Concave Walls

The cavity with concave walls generates interior focal regions and the high frequency scar construction
treats the orbit over several separate intervals about and in the focal region. These are asymptotically
matched so that a single scar amplitude determines the levels in all three regions.

The asymptotic matching of the solution phases actually requires a subwavelength shift of the focal
region position with respect to the other two regions. An alternative view of this shift is that it arises from
a refinement of the elliptical mirror radius used in the scar construction to better fit to the constant radius
spherical mirrors at the short but finite wavelength involved. This view provides additional insight into the
value that must be chosen for the subwavelength shift.

The electromagnetic energy theorem is again used to normalize the results, but it must be applied over
the entire orbit encompassing the three regions of scar construction. In the high frequency limit the energy
theorem integration can be taken in the form of a principal value, including only the two regions about the
focal region.

The projections of the field along the orbit exhibit a peak when the scar frequency and modal frequency
align, which is missing in the random plane wave representation. The field squared statistics in the focal
region also exhibit this peak which is well above the level of the random plane wave statistics; this is on top
of the symmetry enhancement on the central axis of the cavity.
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Comparisons with numerically generated histograms show reasonable agreement with these theoretical
statistics for the field projection and the field squared in the focal region. In addition, a comparison of
the deterministic field behavior along the orbit from the scar construction and the numerical simulation
confirm the matched functional form of the scar; this single mode comparison is made by normalizing the
scar construction at a single point along the orbit to the simulation.

21



f PMC
: Groundplane

Ly/2 Rx

Groundplane

Figure 1. Quarter bowtie cavity geometry

2 INTRODUCTION

This report is directed at understanding the high frequency behavior of modal fields in axisymmetric
three dimensional cavities. The idea is to capture how the modal fields can depart from statistical
homogeneity because of certain types of boundary topologies. In particular, the localization of the
eigenfunctions about unstable periodic orbits, known as scarring, is investigated. The approach used by
Antonsen [1], on convex mirror geometries in two dimensions, is generalized [2], [3], [4] by introducing the
curved ray path formalism, used previously by Vaynshteyn [5] on stable orbits. This combined approach
was used recently to investigate scars in two-dimensional geometry [6], [7].

This report explores both the scalar (acoustic) [8], [9] and vector (electromagnetic) problems in
three-dimensional axisymmetric geometry, first with convex walls, and second with concave walls supporting
interior foci. The mirror boundaries at the ends of the orbit each have two equal radii of curvature in this
axisymmetric geometry, which is the other distinct limit from the two-dimensional case, where one of the
radii becomes infinite. This feature leads to differences in field enhancement along the orbit relative to the
two-dimensional case.

This is a fairly long report so redundancy in derivations and definitions of quantities for the various

sections have not been eliminated; hopefully the structure of the sections (as well as the preceding summary)
make it possible to read without this repetition being a distraction.

3 CONVEX MIRRORS AND ROTATIONAL BOWTIE CAVITY

The bowtie cavity has been used as a canonical shape for a cavity with convex shaped mirrors. One
quarter of this cavity is shown in Figure 1. Here we consider rotating this about the z axis (and renaming
the axes as z and r) to form the rotationally symmetric cavity shown in Figure 2.
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Figure 2. Axisymmetric three dimensional bowtie cavity.

3.1 Curved Trajectory Analysis

Vaynshteyn [5] has treatments for stable modes between concave mirrors. Here we wish to consider the
generalization to unstable modes between convex mirrors. For three dimensions and axisymmetric geometry
the prolate spheroid is fit to the local boundaries at the ends of the unstable orbit £ = £, as shown in Figure
3. The prolate spheroidal coordinates ({, ¢, &) are related to the cylindrical system (r, ¢, z) by means of

r = dsinh C cos & (1)
= dcosh(siné (2)
where
0<(<oo 3)
—m/2<E<T/2,0< o< 2T (4)

To match the local radius of curvature R at the ends of the orbit we take the focal positions (which in
this case are exterior to the region) to be

d=0/1+ R/l (5)

Thus the orbit extends over the range —&, < £ < £, with ( — 0 and
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Figure 3.
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Fitting radius of curvature of the end walls (or mirrors) to the prolate spheroidal coordinates.



or

sin€y = 1/v/1+ R/¢ (8)

3.2 Scalar Field High Frequency Approximation

The modes of the scalar Helmholtz equation

Viu 4 k*u=0 9)
are first investigated. The metric coefficients in the prolate spheroidal system of coordinates ((, ¢, &) are
[10]

he = he = d\/sinh2 ¢ +cos2é = d\/cosh2 ¢ —sin?¢ (10)

h, = dsinh ( cos & (11)
The Helmholtz equation can then be written in these three-dimensions as [9]

1 g cosg@ + 1 +—1 @
cos & O o€ cos?¢  sinh?¢ /) 0p?

10 /(. Ou 2 (i 12 2 _
ShC ac (smh((%) + 7% (sinh® ¢ + cos®§) u =0 (12)
or
L 2 cosg% + 1 +—1 @
cos & O€ o¢ cos?¢  sinh? () 92
R R T RN
+sinh<8§ <31nh(8<)—|—'y (cosh ¢ —sin 5)u-0
where

v =kd =ki/1+ RJ{ (13)

On the mirror we want

u=0,8§==%, —Co < <G (14)
We assume v >> 1 and that sinh® ¢ << 1. We take the function u to be even about the z axis. We seek a
solution of the form [5]
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w=W((,6) 7 E LW (Cp, =€) e TE
Substituting into the Helmholtz equation gives

L0 (Y (e (L L) O
cos & ¢ o8 o€ 1708 8{ cos?{  sinh?¢ /) O0p?

s ac ¢
Now for high frequencies v >> 1 we ignore the term [5]

1 0 ow
cosf@{ < Obf_)

and taking sinh?¢ << 1 we can replace sinh ¢ by ¢ and neglect the term

1 9*W
cos? £ Jp?
Then

10 ow
Za_C (C ac ) +12’ycos§ 85

1 9*°W

B

+ (v2¢* —i2ysiné) W =0
Next taking

1
cosé

T =1/21¢

COS

3
o= / & _ arcsinh (tan¢)
0 cos&
oo = arcsinh (tan¢)

¢ =dsing,

14

tan&, = —d2 =

op = l1 <2+§) = Arcsinh (\/K/R)
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where the two exact stability exponents [12] can be written as
LA
T \d—¢

(k= k) L2
Arcsinh [ L/ (2R)}

The separation constant s is then

5p = (k — ky) /o0 = 2 (k— ky) L/ In (Ay)

These give
L0 (W Lo oW
TOT or 8{8
%5‘ + (7?/4 —isin&) W

or

190 ov 1020  ov 72
T— +i1—+—T =0
Tor or

——+1
72 02 do 4
The boundary conditions on the mirror result in

v (Ta 2 700) = ei2k£7i(2p71)7r\p (Ta 2 UO)

Taking
U =9, (1,0)cos (my)
or
U =T, (,0)sin (my)
gives
10 ov,, 0w, 2 m?
T@T(T 87’)+Z 0o +(4: T2 m
Letting
Vo, (’7', U) = eiiSG’l/}m (Ta 3)
gives
1 = i2kt—i(2p—1)m—i2s00
and

kl—(p—1/2)7 = s,00

(22)

(23)
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or

kl—spo0=(p—1/2)m=kpl,p=1,2,3,..

with
1d i, 72 m?
Tar <d_> + (z“‘? Ym =0
If we let
2 =
then
Ld (v, _1dod ( dedb,)_,d
Tdr dr ) " rdrdo \"dr av ) “dw \"
and
d dip,, v s m? B
@ ( e )*(zﬁ@)%—o
Now taking
1
Y = me
gives

di,, dw,, Wm
Y _\/5< dv 211)

d A, \ dw,, Wy,
%<v dv )_\/q_}diﬂ +\/5( v)

d? 1 2 1—m?
w12 1
dv?

This is a form of Whittaker’s equation [11]

Fw ((Lm 1oAY
dz? 4 z 422 N

Wy = My (2) , Wi (2)
Therefore in our equation with z = —iv

dem+ —l—l-%—i-l_mQ w =0
dz? 4 z 422 me
and
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)

(27)
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Kk =1s/2

+m =2u
we obtain solutions [11]

Wy, = My, (—iv) , W, (—iv)
Noting that [11]

Wi (2) ~ 2re#? |z| = o0
let us take the outward going wave to be

Wi (v,m,s) =W, (—iv)

(35)

The total solution with a random phase reflection coefficient from the outer region of the high frequency

cavity [1], [2] is

Wy, = Re [Wy + e'®o Wi

In summary the potential is then

2 3 Ccos (m
u = Ewm (1,8)cos (ysin& — so) { “in ((mz)) }
where
2 )
wm = Cmg Re [W+ + e'L@OWj_]
WJF (7—7 m, 5) = Wis/2,m/2 <_i72/2)
and
W+ (7‘, m,S) ~ (_i,7_2/2)is/2 6iT2/4 _ (_iv)is/Q eiv/2 . T — 00
1 e
Uy ~ Cm% Re [(_i'l])lb/2 etv/2 + ei®o (Z?}) is/2 e—w/2:| v — 00

with

kt —spo0=(p—1/2)m=kyl,p=1,2,3,...

(k—kp) L/2
Aresinh [ I (23)}

5p = (k — k) 0 = = 2(k—k,) L/In(A+)

(36)
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oo = arcsinh (tané,) = 1ln (d_M) = iln (Ay)

2 \d—7¢
d+ 0\ *?
Ay = (222
o= (72)

and on axis we can write

. . z 1 d+z
o = arcsinh (tan £) = arcsinh <W) =3 In (ﬂ)

3.2.1 Neumann Boundary Conditions

On the mirror we now want

0
a—zzoa§:i§07—Co<C<Co

The scalar field is
u=W(C ¢, T LW (C, 0, =€) e 75E

v =kd=ki/1+ R/l

Next taking

1
~ cosé

=25

3
o= /o de = arcsinh (tan &)

cosé

oo = arcsinh (tan ;)

¢ =dsin¢,,
_ 1
tanfo = \/ﬁ
1 d+ 1 .
00 =3 In <m) = Arcsinh (\/E/R)

The separation constant s is then
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(k — kp) L/2

Arcsinh [\/m}

The boundary conditions on the mirror result in

5p= (k — k) /0 =

=2(k—ky) L/In(A)

v (7-7 2 _UO) = eile_iQPTr\Ij (Ta ©s UO)
Taking

U =", (1,0)cos (my)
or

U =W, (1,0) sin (my)
and letting

\Ilm (T, 0) = eiisawm (T, 3)
we see that

1 — pi2kl—i2pr—i2soo

kl — pm = 5,00

kl —spo0 =pr =kpl,p=0,1,2,3, ...
3.2.2 0Odd Symmetry Along Orbit

In the case of odd symmetry along the orbit we take

w =W (C7 9075) eivsinﬁ -w (Cv 2 _5) e—i'ysin&
The boundary conditions at the mirrors imply that

+iu (C’ i) :l:f(]) =W (C, 2 50) ei’Y sindo _ w (Ca P _50) efi’y sinfo — 0
Now with

1
cosé&

U =1, (r,a){ cos (mgp) }

sin (m)

\Ijm (Ta U) = e—isawm (’7’, S)
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™= /3¢ (45)

3
o= /0 d.fg = arcsinh (tan &)

COS

oo = arcsinh (tan &)

¢ =dsing,
we find

1= ei2k€—i2p7r—i2500

or

kl — pm = 5,00

kl —spog =prn=kpl,p=1,2,3,... (46)
Thus we have
2 . . cos (mep)
u = _cosﬁwm (1,8)sin (ysiné — so) { sin (mgp) (47)

where again we could take

Yy = cm? Re [W, + e W7

W+ (T7m75) = Wis/Q,m/Q <—272/2) (48)
3.2.3 Whittaker Function Calculation

We now want to summarize the generation of the Whittaker functions used here. We are interested in
generating the function [11]

W+ (7'7 m, S) = Wis/Q,m/Q (—272/2)

= ™ (—ir2)2) R (12 4 my2 — is /2,1 4+ m, —it2)2) (49)
The power series form can be found from [11]

()™

Uem 1.9 = ot

[M(a,m+1,2z)Inz
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+]Zo m—l—l Y(atg) = (L+7) —9 (1 +m+ )}
—I-(n;(_a)l)!z_mM (a—m,1—m,z),,
where
m 1( B
M(a—m,l—m,z)mzz(?_
n=0
M (a,1,2), =0
M (a,0,2); =1
and
o M (a,b,z) w2 MA+a—0,2-0b,2)
Ula,b2) = S0 [F(1+a—b)1“(b)_zl T(a)D(2—0)

M(a,m+1,z):§: (@), %

The asymptotic form can be found from [11]

R-1
Ua,b,z)=2"¢ [Z (a), (1 :;a =0y (—2)"+0 (|ZR>] , —gﬂ' <arg(z) < gw
n=0 '

@, la=m), (—2)"+0 (zI_R)l , —gﬂ <arg(z) < gﬂ

W+ (7'7 m, S) = Wis/Q,m/Q (—272/2)

W) = o7 (ir%2) 1 {0 i e} 0 ()

An integral representation is [11]

r (a) U ((L, b, z) = / efzttafl (1 + t)biail di
0

(54)

(55)

(59)

(60)
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Re'™/2 0
:/ e* e (1 +t)b*“*1dt+/ e # e (1 + )" e Rdy
0 /2

0

R ) ‘
T (a) U (a,m +1, —’iZ) ~ eimw/Q/ e~ #tpa—l (t o Z<)mfa dt + ZRm/ eieszezm@dw
0 w/2

/2 i /2 . ) ) o0 1
/ el(e zR+m<p)d<p _ / e(—sm p—+icos w)zR-‘rzmgode ~ / e—goszSO _
0 0 0 zR

R .
T (a)U(a,m+1,—iz) = ™™/? / e e (t— )" dt — LRm-1
z
If m = 0 the boundary term vanishes and if m = 1 it is a constant as R — oo. However, the asymptotic

expansion of the integral is
. oo
I'(a)U (a,m+1,—iz) ~ e“”/2/ e dt =T (a) (—iz) "¢ (61)

0
which is the desired asymptotic form; thus this integral form is the analytic continuation of the function for
this phase of argument z = 72/2

T
0
Near the lower limit with 1/2+m/2 —is/2 =a

z/ e—ztta—l(Hit)m—adtNia/ (L= st )5 (it (m—a)+ - - ) dt
0 0

Near the upper limit

im/ e (1 — /)™ dt ~ im/ e (1 —i(m—a) /t+-- ) dt
R R

1 —1 [ 1 9 [
~ g |:—€ZRRm1 + m / eztthdt:| o ierl (m o a) |:—€2RRm2 + m / eZttm3dt:| 4.
z z R z z R

~ g leszRmfl + m- 1672RRm72 + (m — 1) (m — 2) /OO efzttmfiidt 7Z~m+1 m-a eszRm72+.“
z 22 22 R z

Nlime—zRRm—l 1+(m—1)/z—z(m—a)} NI
z R

The Bessel series can also be used [11]
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M (a,b, Z) = 62/21_‘ (b —a— 1/2) (Z/4)a—b+1/2

= (2b—2a—1) (b—2a) (b—a—1/24+n
Z( ) ( ) ( / )

nl (), (=1)" Tp—a1/24n (2/2) (62)

n=0

3.2.4 Form For Vanishing Argument
The limit s = 0 is of interest.
W, (1,m,0) = Wo /2 (—i7%/2)
= ™ (—ir2)2) R (172 4 my2,1 4 m, —ir?/2)

_ ei72/4 (7i72/2)1/2+m/2 gei(mﬂ)w/%i#m (72/2) —m/2 HS}Q (72/4)

1 / 2 i(m+1)m/4 1 2
NOW lf we haf\/e m = O m addlthIl, thlS beC()HleS

1 .
Wi (7,0,0) = 57 w2 HY (72 /4) (64)

3.2.5 Value Near Origin

The value of the Whittaker function and its derivative are now considered at the origin.
Wy (7,m,8) = Wiajpmya (—it2/2) = €714 (—ir2/2) V22 0 (1/2 4 m)2 — is/2, 1+ m, —ir?/2)

Wi (0,m,s) = lim [*iTWi/s/z,m/z (7i72/2)}

To get a feel for these let us expand the function in a power series about the origin.
W_|_ (7'7 m, S) = Wis/Q,m/Q (—272/2)

— oim/4 (_iT2/2)1/2+m/2 U (1/2 Fm/2 —is/2,1+m, —i72/2)
The power series form can be found from

()™

U(a,erl,z):m

[M(a,m+1,z)Inz
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Y m—l—l Y(ati) = 1+7) - ¢ 1+m+))}
Jj= O
_1_(77;(—@)1)' "M (a—m,1—m,z)
M(a—m,1-m,z2),, mz:
n=0
M (a,1,2), =0
o M (a,b,z) 1o M1 +a—5b,2—-b,z)
Ula.b2) = S0 [F(1+a—b)F(b)_Z b T(a)D(2-0)
M (a,b, z) i
n:()
Thus
S s
= (a)j
2 Tnap i Vet A+ -y tm )
=0
+(m—l)!z_m’”zﬂ m), 2"
I (a) — (1-m), n!
Wi (r,m,s) = et /4 (7i72/2)1/2+m/2 U(1/2+m/2—is/2,1 4+ m,—it*/2)
.9 en1/2—m/2 (m—1)!
~ (i) NI e R R
NW+O(TZIHT) s 7'—>07 m:1
9 172 1 . 9
—(—’LT /2) m [ln(—ZT /2)
+{y(1/2 —is/2) —2¢p()}] , 77— 0, m=0 (65)
and
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/ . , —1/2-my2 (1/2 =m/2) (m — 1)!
Wi (rim, ) ~ =i (=i7/2) T (1/2+m/2—is/2)

, T—0, m#0

—1/2 1 .9 .
— |In(— 2 1/2 —is/2) — 24 (1 2 0 =0 (66
g I (7)1 —is/) 2w () 2] L T =0, m=0 (60
The higher order singularities for m > 0 are reminiscent of the Hankel function in cylindrical coordinates.
The reflected phase would need to cancel these just as the addition of the Hankel function of the second
kind leads to Bessel functions. The introduction of a multipolar source at the origin would generate such
singularities away from resonance. Thus with the solution

~ iT% (7172/2)

2 .
U, (T,8) = Cm% Re [W, + e W;] (67)
if we impose
0¢m ! Do 117/
TW:cmﬁRe[WJr—i—e Wil =4, =0, 7—0 (68)
then
\/_ / 1 iPg / 1 :
Cm 2Re W+—;W+ +e W_;’__;W_A'_ :O (69)

or by taking the sum of the function and its conjugate

(14 %0) (W/+ - %w;) T (14 e) <Wf+ - %m) ~0

and

1
eiq)o - _ (W‘/|‘ — ;W+)* (70)
(W —2Wy)
Thus to leading order we expect the form of the reflection phase to be

i®g ~ z7r(1+m /QF(1/2+m/2+zs/2) (71)
I'(1/24+m/2—is/2)

For general values of m a more accurate treatment of the asymptotic form of W, is required to cancel all

singular terms on the axis.

€

Value Near The Origin For m=0 Function Using the expansions for m = 0 we can write
it /a (s 29\ 1/2 1 - (1/2 —is/2), 279\ 2
W,y (7,0,5) = —e (—it?/2) T2 —is/2) ngo P (—i7?/2)" In (—it?/2)
(1/2 —is/2), (~ir?/2)’ _ , .
Z {v(1/2—is/2+47) = 2¢ (1 +7)} (72)

|2
-0 J:
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and then near the origin we have

Wy (7,0,8) ~ — (7i72/2)1/2 T L [In (—it?/2) (1 — s7%/4)

(1/2 —is/2)
+9(1/2 —is/2) — 2 (1) + (s7°/4) {—¢ (1/2 —is/2) + 24 (1) + 2} + O (7' In7)]

—-1/2 1

W09 ~irg (-i7)2) " ey

I (—ir?/2) + {¢ (1/2 —is/2) —2¢) (1)} +2+ O (*In7)] , 7—0, m=0
3.2.6 Wronskian

The Wronskian for these functions is

WIWE — W W =

—i72/2

—ir (M _ 1/2> o2 /4 (—i¢2/2)1/2+m/2 U (1/2 Fm/2 —is/2,1+m, —iT2/2)

et/ (it%/2) Yt g (1/2+m/2+1is/2,1+m,it*/2)
—ire ™/ (—ir2)2) PR (1)2 4 my2 — is 2,1+ m, —ir?)2)

et/ (i72/2)1/2+m/2 U(1/2+m/2+is/2,1 4+ m,iT?/2)

1/2 2 , m
—iT (ﬂ _ 1/2) 617-2/4 (77:7_2/2)1/24‘ /2U (1/2+m/2 B 13/2,1 +m7 7,”_2/2)

iT2/2

e (ir2)2) VTR U (1)2 4 my2 + )2, 1+ m, ir?/2)
—ire ™ (—ir2)2) VU (12 4 my2 — is/2,1 + m, —ir2/2)
e (ir2)2) VTR U (1)2 4 my2 + is)2, 1+ m, ir2/2)

— —ir (r2/2) " [<U (1/2 4+ m/2 — is/2,1 + m, —iT?/2)

U(1/2+m/2+is/2,1 4+ m,it?/2)
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+U' (1/2+m/2 —is/2,1 4+ m,—ir?/2)
U (1/2+m/2+is/2,1+ m,iT?/2)
+U (1/24+m/2 — is/2,1+m, —it?/2)

U (1/24+m/2+is/2,1+m,it?/2)]
Now noting that [11]

U(a,b,z)e*U (b—a,b,—z)
~U(a,b,z)e*U" (b—a.b. — z) — U’ (a,b,2) e*U (b — a,b, —z)

e I

we have

_UU*+UU*+UUY = e~ Ti(1/2+m/2+is/2) (*’L‘TQ/Q)_H_M
and thus the Wronskian of the solutions is

WIWE — Wy W = ire™mtis/2) (72 /2)™" (75)
3.2.7 The Axisymmetric Field

We will be focused on the axisymmetric case since we expect this will generate the largest values on
axis. The case where m = 0 results in

2 .
u= cosﬁdjo (7,8) cos (ysin& — so) (76)
where
2 .
¢0 = CO% Re [W+ + elq)O Wi] (77)
and

W, (1,0,8) ~ — (—ir?/2) 1/2 m [In (—i?/2)

+{v(1/2—-is/2) =2 (1)} + O (r’In7)] , 750, m=0
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—-1/2 1

1,
Wi (r,0.) ~irg (<7 /2) 7wy

[In (—i7?/2) + {v (1/2 —is/2) =2 (1)} + 24+ O (*In7)] , 7 =0, m=0
Because of the symmetry of the m = 0 scalar field around the center of the orbit, we apply the condition

T%% = coV2Re [W] + W] — v

=coV2Re | (W} + " PWY) — % (Wy+e®Wi)| —0 (78)

which gives

(WL twy)
(W, —1w,)’

[In (—ir?/2) + {v (1/2 —is/2) — 2¢ (1)} + 2] — [In (—ir?/2) + {¢ (1/2 —is/2) — 2¢ (1)}]
[n(i72/2) +{¢ (1/2 +1is/2) — 2¢p (1)} + 2] — [In (i72/2) + {p (1/2 + is/2) — 2¢ (1)}]

T(1/2+is/2) ,
Tz O T
T (1/2+is/2) ,
= iTaa s Y ()

It is interesting that if we had imposed the condition

(79)

Re [W] + W] —0,7—0
we arrive at the same reflection phase in the limit (although the accuracy is not as great since it is only
logarithmic here)

oo WL08) | T(1/2+4is/2)
Wi (7,0,5) r'(1/2—1is/2)
Note also that because of the actual order of error O (72) we actually have 9¢,/07 — 0 as 7 — 0. The
value of the function

T(1/2+1s/2)

2
Yo (7, 8) ~ 004 Re |W, (7,0, 5) + "T(1/2—1is/2)

W (7,0, s)}

near 7 = 0 is

efiw/él
o (1,8) ~ coRe m{iﬂJﬂb(l/ZJﬂ‘s/?)¢(1/2i3/2)}+0(7’21n7')] , T—0

40



_ —im/4
co Re [e T
_ —im/4
co Re [e T
_ —imw/4
co Re [e T

=coRe [e_“r/‘l T

In addition we use

and

to arrive at

4 OwoT

1

—{imr+wcotw — 18 2lnT
(1/2_2,8/2){ + meotw (1/2 —is/2)} + O (771 )]

1

T2 —is/9) {im + mtan (irs/2)} + O (7 11’1T):|

T

T2 -2 {1+ tanh(rs/2)} + O (7 11’1T):|

iT e71'3/2

(1/2 —is/2) cosh (7s/2)

+0(r° 1n7)}

=coRe [ei”/4e”5/21" (1/2+1is/2) + O (72 lnT)]

1
W (7,0,s) — ;WJr (1,0,5) =

efiw/él\/i

fm [1+O(721n7')] , T—0

9 A
To -t = coV2Re [W + " ®oWir] — 1

32

1o ~ coV2Re [z‘%e“’o (W, — Wy /T)*}

€i<I>0 e—iﬂ'/4\/§

ratisa o)

~ coﬁ% Re
Ow

(81)

(82)

For 7 — 0 (72 = 2v) this also means that the energy flux from the center vanishes (see the intensity vector

in the acoustic section below)

In fact in this case udu/9T — 0.

3.2.8 Eigenvalue Density

The density of cavity eigenvalues will be needed in the normalization sections of this report. Here we
simply review results for three-dimensions as well as the axisymmetric problem.

Three Dimensions From Courant [15] the number of eigenvalues is

N ~ E*V/ (67°)
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and thus

dN 9 9
or
dk? ok 9
In the vector case we have twice the number
N ~ E*V/ (3n?) (85)
Axisymmetric Problem The number of eigenvalues in an axisymmetric 3D problem is now
discussed. The differential equation
(V2 +E)u=0 (86)
in the cylindrical coordinate system is
10 Ju d (0Ou 1 0%u
2= — == — 4 ku=0 87
pOp (pap)+3z (3Z)+028<p2+ B &)
Now take u to have dependence cos (myp)
19 [ du 9 (0Ou m?
2,2 (=) - = Ku=0 88
pop (pﬁp)Jr@Z ((‘92) g T ®3)

In the terminology of Courant and Hilbert [15] we can write this as

O (20 L 9 (L9 gt apu=0
oz \P oz dy pay a4 pu=

where (p > 0,p > 0)

q=m?/p
with boundary condition

1o}
a—u+au:0, c>0

n
The number of eigenvalues is asymptotically equal to
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. VA P 4 _0
AILH; 477//Gddy_ //dd 4

where Ag represents the area of the cavity in the original p, z space (with p > 0). Translating back to our
original notation gives

ki2
N~—A
40 (89)

Now taking the derivative

AN dk? AN AN &
ok~ akae g~

dN A
— 22 (90)
. . _dk? 4w
Setting the total cross sectional area of the axisymmetric cavity to

A =24, (91)
we find

2
dlj“v =87 /A (92)

We would have twice this spacing if we restrict attention to odd or even along the orbit and thus

Ak? ~ 167/A (93)

In a vector problem we would expect twice the number

N~—A)=—A (94)
m
Now taking the derivative

AN dk? dN AN &
S _ O T ot Mg
dk — dk dk? a2 T 0

dN A
— ~ — (95)
. . : _dkz o Ar . )

This is the same density as found in a Cartesian 2D cavity of area A in the scalar case. As to why this
electromagnetic density is the same as the scalar case: evidently the number from Courant and Hilbert
corresponds to only one azimuthal parity. This is actually what we desire in the axisymmetric geometry,
since we will be focusing on only one parity. Evenness along the orbit would result in a further reduction
by a factor of two

a4
dk? 8w

43



3.2.9 Bowtie Area & Volume

The rotationally symmetric bowtie cavity area and volume are given here since they are frequently
used.

Bowtie Cavity Cross Sectional Area The area of a bowtie cavity is now given. Referring to
Figure 4, the area of the red right triangle is

A= % (Lz/2+ Ry) (Ly /2 + Ry) (97)

The vertex of the green triangle must now be located. Letting

= (Ly/2+ Ry)* + (L,/2 + R,)’ (98)
and using the law of cosines

R2 + R2 _ 02

W = cosy = sin (g - X) (99)

or

L§/4+RmLm+L§/4+RyLy T
= si —_ — ]_
2R, R, s (X 2) (100)
Next the law of sines gives
sina  sinf  siny
= = 101
R, R, c (101)
The area of the green triangle is
1 1 1
Ay = §ch sina = §cRy sin f = §RrRy sin (102)
The area of the R, circle included in the red triangle is
1 L./2
A, = ERZ {arcsin (@) - 5] (103)
The area of the R, circle included in the red triangle is
1 L,/2+ R
A, = §Ri [arcsin <M) - a} (104)
c
One quarter area of the bowtie cavity is then
A/d=A, —A;— A, — A, (105)

As an example if we take L, = L, =2 m, R, = 1.5 m, and R, = 10 m then A, = 55/4 m?, ¢ = 11.28051
m, sin (y —7/2) = 5/6, sinx = 0.5527708, A, = 4.145781 m?, o = 0.5121158, A, = 0.9396044 m?,
B = 0.07356975, A, = 7.495343 m?, and

A = 4.677086 m? (106)
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Figure 4. Geometry of bow tie cavity and circular walls used in the calculation of the interior cross sectional
area.

45



Volume Of Rotationally Symmetric Bowtie The parameters are R, = 1.5 m, Ry, = 10 m, and
L, =L, =2 m. The volume of the rotationally symmetric bowtie is found by using the volume of a right

angle cone

and that of a spherical cap

The red cone has volume

1
V;"c:_
3

The top angle of the red cone is

7 (Ry + Lo /2)” (Ry + Ly/2) ~ 71.9948 (1) m®

Ry + Ly /2

= t _—
arctan (Ry —I—Ly/2

> ~ 0.223477 (2)

The yellow right angle cone has volume

1 .
Vye = gﬂ'Rz cos® (0 — B) tan® R, cos (0 — B) =~ 52.2912(3) m®
The spherical cap volume is (8 = 0.07356975)

_ !

Vs
3

TR3 (1~ cos (0 — 8))° [3— (1 — cos (0 — B))] =~ 0.393661 (4) m®

The volume of a rectangle of height h ,extending from r¢ to rg + I, spun around the y axis is

ro+1
Viee = 27Th/ rdr = mh [(7’0 +1)? — 7‘(2]:| = whl (2r¢ + 1) ~ 14.0441 (6) m?
where b

ro = Ry sin (0 — ) ~ 1.49346 (5) m
h=L,/2+ R, (1—cos(0—p)) ~ 111215 m

=Ry + Ly/2—ro ~ 1.00654 m

The rotation of a circular cap of height h, base position ry, and radius r1 gives

ro+h \/ri—(ri+ro—r)? ro+h 2
VC:27T/ rdr/ dy:27r/ \/T%*(’fj‘i*?’o*?’) rdr
ro

To 0
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(110)

(111)
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T1 T1 T1
:27r/ \/7’%7u2(rl+rofu)du:27r(r1+T0)/ \/T%*’U,Qd’UJ727T/ r? — v2udu
7’17]7, r]— —

h ’I‘lh

—h 2 — 1
=27 (r1 +79) e (2r1 —h)h — 2L aresin 2 n + zr% —2m= (2r1h — h2)3/2

2 1 4 3

~ 3.08631 (7) m? (115)
where

rn=R,=15m (116)
h = Rysin (0 — B) — L,/2 ~ 0.49346 m (117)
ro=L;/2~1m (118)

The bottom triangle can be handled by the following formula

ro+1 h(r—ro)/l 2th ro+l 27h 1 E 1 1 1
vtzzw/ rdT/ dy="2 | (r—ro)rdr = T2 |2 (o + 1) — 208 — <o (ro +1) + =1

o 0 U Sy I |3 30 2 2

- ghl (310 + 21) ~ 2.13341 (8) m® (119)

where
I = htan ~ 0.252761 (9) m (120)
h=R,(1—cos(0—p))+L,/2~~1.11215m (121)
7o =Ry + L,/2 — 1~ 224724 m (122)

Thus
V/2=V,e = Vye = Vi = Vo = Vyee + V; & 4.31296 m® (123)

or

V = 8.625920602 m® (124)

3.3 Acoustic Energy Normalization

A scalar physical wave problem of interest is acoustics. The equations are [14]
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Figure 5.

Geometry for the calculation of the rotationally symmetric bow tie volume.



0
p@tg

0
Hap——V'Q

(125)

(126)

where u is the particle velocity, P is the pressure,  is the compressibility, and p is the density. Our scalar
function u corresponds to the pressure P in this subsection. Thus eliminating the velocity gives the scalar

wave equation

Par \ "ot

wt

9 <mﬁp> =Vvip

Let us suppress time harmonic dependence e~
wpu = VP

iwkP =V -u
and with P taking the place of the scalar u

V2P +w’kpP = (VP +k*) P =0
Note that the acoustic energy flux is represented by the intensity [14]

I = Pu= PVP/ (iwp)
Now examine the quantity

1
=i(pu-u"+~KP*P)=1i <T IVP]* + m|P|2>
w?p
or

oP . Lo (1 1
v {8w< vp) P%<;VP)}— 2(|VP| +w plﬂ:|P|)

1
= (IvP* +&*|P)?
w2
where the wavenumber is

k= w?pk
Now using

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)
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|VP\2 =VP.-VP*=V.(P*VP) - P*V?P =V (P*VP) +k? \P\2
for either the soft outer boundary with P = 0 or the hard outer boundary with 9P/dn = 0 gives

2
j{ opP lvp* _p*i lvp .ﬂdszgk_/ |P|? dV
ow \w ow \w w? Jy

oP (10P*\ . 8 (1P
- P& G5) P (Ga)] (139

Ssecar

If the pressure is taken to be real

P (18P o (10P
f [w (5%)‘13% <;%)]ds
Sscar
—2k—2/ \P|* dV (136)
=25
In addition if we take 5P
% =0 , On Sscar (137)
then
9P k2 2
_ P -9 P 1
%[awan]ds w/v\\dV (138)

scar

where here n points into the scar region.

3.3.1 Application Of Scalar Field Normalization
The above acoustic case of scalar normalization gives the normalization condition

J o (R0e) 2 (100Y] 4
Ow \w On u@w w on

scar

k2 9

=2 ; lu|® dV (139)

or for a real function
Oou (1 0u 0 [10u k2 9
Sscar

If we set

Z—Z =0, on Sseqar (141)
then
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k2 2 5 0 (Ou B 0%u
2; /V |u|”dV = —/SSW‘u % (%/u> ds = —/SscmuawandS
o 2m 27 92w 27
/ / awh 8<h pdphedé ~ d/ / Cdcpcosfdﬁ d/ /

with metric coefficients

he = he = dy/sinh® ¢ + cos2 ¢

hy = dsinh ¢ cos ¢

where for the axisymmetric field

2

cos&
The normalization in this case, with a unit volume integral, is

u=——1) (7,5) cos (ysin — so)

k2 S0 92y
2; = 27rd/£0 uawaTTcosfdf

Thus noting

2 .
Yo (1,8) = 004 Re [W, + e W;]

Py ~ co Re [e“/%”/‘*r (1/2+1is/2) + O (72)] ; 70

82
~ co \/_

T(1/21is5/2)

Tdcp cos &d€

) —imw/4
PPN

8w8
where
kl—s,o0=(p—1/2)m=kyl,p=1,2,3,...
5y = (b= ) ffg = — ) L2 oy ym(ay)
Arcsinh [ L/ (2R)}
and

. . z 1 d+z
o = arcsinh (tan §) = arcsinh <W) =3 In (ﬂ)

sinho = tan¢

(142)

(143)



cosho =secé

tanho = sin &

do = sec&d€

we find

2 S0 92y
2; _27rd/ U35 T cosédE

—&o woT

dg

cosé&

£o ) «] 0P
~ 87d Po (0, 5,) coV2Re [iez% (Wi —W,/7) ] % cos? (ysiné — s0)
—&o

. % g0
~ 167dibq (0, 5,) cov/2 Re [iezq’o (WL —Wy/T) } % / cos? (ytanh o — so) do
0

0®¢

~ —87Td’l/)0 (0, Sp> C()\/iRe |:’L <VVJIr — %W+>:| %

0o

~ 16mdc Re [e™#/2e™ /4T (1/2 + isp/2)} Re [F

eiﬂ/4 :| &
(12— i,72)

0o
ow

2 [ im/4 :
16 dc2emn? Re? [e™/4T (1(2 + 155/2)} %00
0(1/2 —isp/2)| 0w

i Re” [e/4T (1/2 + is,/2)] Ok? 0%

~ 16mwdcie —0
’ D (1/2—is,/2)P w9k "

Re? [e7/4T (1/2 +is,,/2)] 8,
527 ok
T (1/2 = isp/2)]|

]{32
~ 32 mdciemsr/?
w

or

Re? [e™/4T (1/2 + is,,/2)] 0%,
; 2 k20
T (1/2 — isp/2)|

k? 2 K 2 TSp/2
2— | |u]"dV ~ 32—mdcge™r (144)
w Jv w
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The phase @ indicates the reflection phase of the pth component. Following Antonsen [1] the
average derivative is set by taking A®y = 27 and the spacing between eigenvalues to be given by the
Weyl asymptotic result Ak ~ 72/ (k*V), or Ak* = 2kAk ~ 272/ (kV) [16]. Note in the acoustic case
Ak ~27%/ (k*V) [15] and Ak? = 2kAk ~ 472/ (Vk). In this case we are interested in the scar amplitude
on axis (like the even-even eigenvalues in the 2D problem). These m = 0 eigenvalues (m = 0 is the only
azimuthal mode giving values on axis) which have even symmetry along the orbit are spaced as [1] (this
is twice the spacing discussed previously where the extra factor of two results from arbitrarily taking the
eigenfunction to be even along the orbit)

Ak? ~ 167/A (145)
where the area is
1 oo
§A =Ag= / p(z)dz (146)

where p(z) > 0 is the radius of the cavity. Thus we take [1]

ddo\ "' 8
WS = v’ (147)

where v is the Gaussian random variable with unit variance and density

1 2
= ¢ V/? 148
v e
W)= —= (148
discussed previously. If we had used the eigenvalue spacing for the 3D acoustic cavity

d(bo -t 2w 2
== ="y
dk? VEk

We recall that in the 2D case we introduced a factor of two (we also used a factor of two for evenness along
the orbit) to account for evenness about the normal to the orbit.

Now introducing this outer phase derivative gives the normalization constant

e 2| (1)2 + sy /2) [ dDy\ ™
Re? [eiﬂ/41“ (1/2 +isp/2)] (W) /[AmdIn (Ay)] ~ C%

B 2~ T5p/2 |1" (1/2 + isp/2)|2
Cg =0 Re? [ei”/‘lr (1/2+ isp/g)} / [AmdIn (Ay)]
- e /4D (1/2 + sy /2)|
co =0 VA(m/2)dIn (Ay) Re [e7/4T (1/2 + is,/2)] (149)
and
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2
cosé

Uy = ——y (7, 5,) cos (ysin€ — s,0) (150)

4 (0,5,) = co Re [e”?/?e”/‘*r (1/2+ z‘sp/2)} 0 (151)
or

24 d dtt
Up = 7m¢0 (O,Sp) Cos [kz— (k —kp) {1In (d+j) /In (d——i_@>]

This can also be written as

up = 2 (0, 5,) cos {kz - %sp In (%)] Ny

or
up = 2104 (0, 8p) cos [kpz + po (2)] //1 — 22/d? (152)
where
1 d+7¢ d+z
po(2) = 35 {1n (m) (z/0) — In (d — z)} (153)
¥ (0,8p) = coRe [e””/2ei”/4F (1/2+ isp/Q)} , T—0 (154)
Odd Symmetry Scalar Field Normalization Again for a real function with unit volume integral

ou (1 0u 0 (10u k2
f [% (;a—n) "B (5%)]“:25

scar

If we again set

ou
% =0 , On Sscar
then

k2 0%u So 2™ 92y
2— = — ———dS = ————h,dphed
w /Swuawan /_50/0 “amag edipheds

&o 2m 82u €o 27 a2u
~d d d¢ =d d d.
/_go/o g e cosedt /_5/0 Uy TP cosEde
The axisymmetric field with odd symmetry along the orbit is
2 . .
u= cosgwo (1,8)sin (ysiné — so) (155)

The normalization in this case is
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2 S0 92y
2; _27rd/ U355 T cosédE

—&o woT
o y «] 0®g . . d§
~ 8md - Yo (0,5,) coV2Re {ze o (WL — Wy /T) ] o sin? (ysin & — s0) cos €
. 0P ! * 8{)0 70 22
~ 167dib, (0, 5,) cov/2 Re [ze o (Wi —Wi/T) } o sin” (ytanh o — so) do
0
) 1 0P
~ —8mdi, (O,SP)COﬁRe {z (VVJ'r — ;W+>} 8—500
) i /4 o
~ 2 wSp/2 iw/4 . € v=o
167wdc; Re |e e F(1/2+zsp/2)} Re [—F(l/Qisp/Q)} R

Re? [e!™/4T (1/2 + is,/2)] 0%,
— 0,
T2 —isp/2f 0w

~ 16mdcie™»/?

e ;o RED [T (1/2 + is,/2)] Ok 8D
N167Td0(2)€ »/2 [ — g }G—WUO
T(1/2 —isp/2)] w

Re? [e"™/4T (1/2 + is,/2)]| 0%,
527 ok
T (1/2 = isp/2)|

k‘2
~ 32 mdciemsr/?
w

or
Re? [e™/4T (1/2 + is,,/2)] 0%,

k? 2 k? 2 wSp/2
2— | |u]dV ~ 32—mdcge™®r 5 —7500
w Jv w T (1/2 —isp/2)| ok

Re? [e"7/4T (1/2 + s /2)] 0%o
T (1/2—is,/2))F Ok

/ lul> dV ~ dmdcie™r/? In(Ay)
v

These m = 0 eigenvalues (m = 0 is the only azimuthal mode giving values on axis) which have odd
symmetry along the orbit are spaced as [1] (this is twice the spacing discussed previously where the extra
factor of two results from arbitrarily taking the eigenfunction to be odd along the orbit)

Ak* ~ 167/A
where p (z) > 0 is the radius of the cavity. Thus we again take [1]

Ao\ " 8,

-9 =2y

dk? A
where v is the Gaussian random variable with unit variance and density. Now introducing this outer phase
derivative gives the normalization constant

%)



e—ﬂ'sp/Q 1S g B
T (1/2 +is,/2)] (d%) /[rdn (Ay)] ~ &

Re? [e/4T (1/2 + is,/2)] dk?
or
—7Sp/2 : 2
2= v226 i T (1/2 +zt9p/2)| / [Amdin (A4)]
Re? [e™/4T (1/2 + isp/2)]
or
. e/ T (1/2 +isy/2)|
O VA (r/2)dIn (Ay) Re [e7/4T (1/2 + is,/2)]
and
2 . .
Up = cosfwo (7,8p)sin (ysing — s,0)
or

o . d+ d+¢
Up = \/ﬁiﬁo (0, sp) sin {kz — (k—ky)In (d— 2) /i <d—i_€)]

This can also be written as

1
up = 2104 (0, sp) sin [kz ~ 5% In <%>] /1 —22/d?
or

up = 24 (0, sp) sin [kpz + po (2)] /A/1 — 22/d? (156)
3.4 Projections Along Orbit (Even Symmetry)

Projections of the scarred eigenfunction along the orbit will now be discussed. In two dimensions
[2], [6] we considered a trigonometric (or Fourier) projection as well as a scar (or Galerkin) projection
of the eigenfunction. The first was useful to exhibit the Fourier decomposition of the eigenfunction and
the second was useful because it restores certain approximate orthogonality properties among the scarred
eigenfunctions. In the present section we will begin with the scar projection followed by the trigonometric
projection and show the limiting connections between them. In three-dimensions there is also a reason to
consider a third definition that avoids certain divergence issues that may arise with interior foci.

3.4.1 Scar (Galerkin) Projection

Instead of representing the eigenfunction in terms of Fourier components suppose we define the
projection operator as (note here that we have taken the inverse square root in contrast to the 2D operator)

¢
V, = 2/ (1- 22/d2)71/2 cos [kpz + po (2)] u (0, 2) dz (157)

0
Because the pth components are asymptotically orthogonal at high frequencies, if the eigenfunction is made
up of a sum
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u(0,2) ~ Zup (0, 2)

this projection is

¥4
Vi, ~ 41y (0, 5,,) / (1= 22/d?) "% cos? [kyz + po ()] dz

Now averaging over the rapidly varying k,x we find

¢/d i ¢/d 1 1
Vp~2dw0(07sp)/0 (1—2%) dz:d¢0(0,sp)/0 <1z+1+z
e ) 1+¢/d
~ Tsp /2 jim/4
co Re [e e F(1/2+zsp/2)]d1n'1€/d'

TSy /4 ;
e |F(1/2+Zsp/2)|d1n’d+£’

VA(T/2)dIn (Ay) d—1/
e D (/2 4 isy/2)]
A2nd/In (A4)

where

d+7¢ 1
In (m) = 511’1 (A+>

Taking the average of the square yields

(kLV}) ~ L*G1 (sp) /A
where

e™r/2 |1 (1/2 +is,/2)| kL,

Gl (SP) = o1t

n(Ay)

Recall that in 2D we had

(VELV2) =[2Gy (s,) /A

where

2v/L]dexp (ms,/2) [T (1/4 — is,/2)[*
(m/2)In (Ay)

/ luf2dS = 1
A

G1 (Sp) =

and we set

)a:

(158)

(159)
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In 3D if we had defined

(LV;) = L*G1 (sp) /A (160)
then
(L/d) exp (wsp/2) T (1/2 = isy/2)[?
= 161
Grlor) (/2 (A,) oy
Note that
[0 (1/2 —isy/2) = ——F— (162)
*p ~ cosh (7s,/2)
and
(L)) /In(Ay)
G (sp) = 1+ exp (—msp) (163)
The asymptotic forms are
G1(sp) ~4(L/d)e ™r/In(Ay) , sp — —00 (164)
- 2(L/d)
Gy (5,) ~ A(LJd) [T (Ay) , 5, — +00 (166)
where here we set
/ lul>dV =1
1%
where again
kl—s,o0=(p—1/2)m=kyl,p=1,2,3,...
- L/2
sy — B L2 o) /(M)
Arcsinh [ L/ (2R)]
3.4.2 Trigonometric (Fourier) Projection
The trigonometric projection is
¢
Vp = 2/ cos (kpz)u (0,2) dz (167)
0
up = 21 (0, 8p) cos [kpz + po (2)] /+/1 — 22/d? (168)
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Then neglecting the sum term we have

dz

~ 20y (0,5y) /f eos [ {n (757) /0 - (72 wd*/d

Ifweletd >> /¢

¥/
Vy ~ 2004 (0, 5,) / cos [po ()]

e™s /T (1/2 4 isp/2)]

Vi ~ 24 (0, 5p) £ ~ 20

VA(r/2)dIn (A)
(LV?) = L*G1 (sp) /A (169)
e™sp/2 s 2
G o) = B (1) )
e/ (1/2 + s, /2) T (1/2 — is, /2) N
= /) (L/d) /In(Ay)
2€7rsp/2 Qe‘n'sp/Z

= S (12 i) LD ) = ey (/) /()

4
plk = (L/d)/In(Ay)
If we let R >> L and take A, — 1 with
(L/d) /0 (Ay) ~ 172 (170)
then
2
Gy (sp) — (171)

14 exp (—msp)
which is the limiting case of the result from the preceding subsection.

3.4.3 Elliptic System Projection

Another way to define the projection is to carry out an integration around the scar in prolate spheroidal
coordinates. The resulting projection is

¢ =dsing,
™ cos [k cos [kyz + po (2)]
b = lim = / 3 -/ (0. hodpheds (a72)
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¥4
Vo= [ cosliye 40 ()] (0,09 he

o= fu (420) - (229}

Z—z:dcosﬁz V& — 22 =dy/1— 22/

where

Then we obtain

¢
Vp = 2/ cos [kpz + po (2)] © (0,0, 2) dz
0
r = dsinh ( cos&

z = dcosh(sin&

he = he = dy/sinh® ¢ + cos2 & ~ dcos & = /d? — 22

hy, =1 =dsinh(cos§ ~ d{cos& = (\/d? — 22
Note that this limit definition of the integral around the scar eliminates the extra amplitude divergence
factor from the kernel of the projection operator. This is a useful definition when interior foci are present
since the projection operator then converges without the need for special treatment of the focal region.
Now inserting u as

up = 2104 (0, 8p) cos [kpz + po (2)] //1 — 22/d?

, e T4 |T (12 + iy /2)|
VA (r/2)dIn (A1) Re [e7/4T (1/2 + is,/2)]

Co =

o (0,5p) = coRe [emp/Qe”/‘lI‘ (1/2+ is,;/?)}

_ ve“p/‘* T (1/2+is,/2)]
VA(m/2)dIn(Ay)

gives

dz

¥/
Vi, = 499 (0, 5,) / cos? [kyz + po (2)]
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¢ ¢/d
dz dz
~ 2, (0, Y oduy, (0, — & 2q, (0, in(¢/d
o ( sp)/o =y Vo (0, 8p) ; — 1 (0,s,) arcsin (¢/d)

/40 (1/2 + is, /2)|

= v2d arcsin (¢/d
VA(7/2)dIn (As) (/)
and thus
Lv2 _ Lgdeﬂ-sp/2 |F<1/2+7’8p/2)|2 -2 g d) = L2G A
(LV?) = AT (AL) arcsin” (¢/d) = 1/
|F (1/2 + ZSP/Q)‘ = COSh <7T8p/2)
eﬂ'sp/Q is 2 eﬂ'sp/Q
G =4 ‘1;(1:1/ 5;) 2/ DE 40 arcsin? (¢/d) = o Ajcosh gy (/) mvesi (1)

K/d:\/m_lz A+_1
VA +1 (VA +1)°

B 2 4(d/¢) arcsin® (¢/d)
~ 1+exp(—7spy) In(Ay)

G1 (173)

3.5 Scalar Random Plane Wave

The random plane wave construction is now discussed in the three-dimensional scalar formulation.
Initially this is not constructed in axisymmetric geometry but in full 3D. This is compared with the
axisymmetric m = 0 solution next because this is the solution that exists as the scar orbit is approached in
the axisymmetric scalar acoustic case.

3.5.1 Scalar 3D Random Plane Wave Construction

Following [1]

N
up = lim \/2/(VN)Re | aje’® ks (174)

N—oc0 —
]:
where a; are real random numbers with <a?> =1, | Eji = k are random vectors uniformly distributed in

angles, and the random phases «; are uniformly distributed on a 27 interval.

Checking the normalization in 3D, we first average over the amplitudes

N N
up = lim /2/(VN)Re > ael TR D] (VN)Re | Y ajet T

— 00

j=1 /=1
and
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N N’
<ug>a]_ = I\}gnoo v2/(VN) ZlNl’iEloo V2/(VN") Z (ajaj/>aj cos (aj —|—Ej 'E) cos (aj/ —|—@j, 'E)
Jj=

/=1
where the amplitudes a; for different j values are regarded as independent and the cross terms vanish

Next, averaging over the phases

11 [°7 1
(cost (o5 41y 1)),, =505 [ [ eos2 g 4y 2)]doy =
Thus

We also note, upon letting

kj =k (e,sinfcosp+ g, sinfsing + e, cosf)
and carrying out the average over angles

o\ 1 5 B 1 2w T ) . B 1
(uz) = E/M <ur>aj7aj Q) = ), dgp/o <ur>aj,aj sin 0df = v

3.5.2 Trigonometric (Fourier) 3D Projection

Let us first consider the random plane wave projection with the simplifying assumption of d large

‘
Vor :/ cos (kpz) ur (0, 2) dz (175)
—r
Taking the projection

N ¢
Vor = Nlim v2/(VN) Zaj/ cos (kpz) cos (aj + kz cosb;) dz
—00 = "y

and squaring

N
VI,{:th V2/(VN)Y
j=1
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hm v2/ (VN') Z ajaj / / cos (kpz) cos (kpz') cos (aj + kz cos6;) cos (ajr + kz' cos0;/) dzdz’

If we average over the amphtudes a; and regard different j values as independent the cross terms vanish

<V172T’>aj,aj = ]\}—mx: VN Z/ / cos (kpz) cos (kpz') (cos (aj + kz cos ;) cos (avj + k2’ cosb); )>aj dzdz'

2m
(cos (aj + kzcos b)) cos (aj + k2’ cos b)), = L% / [cos (k (z — 2") cos 0;) + cos (2a; + k (z + 2) cos 0;)] dov;
! 0

2

1 1 1
= 5 cos (k(z —2")cosb;) = 5 ¢os (kzcosB;) cos (kz' cosb;) + 3 sin (kz cos ;) sin (kz' cos 0;)

N—o0

N e ¢
1
2 _ . / / ) /
<V1'w>aj’aj = lim VN g /—e cos (kpz) cos (kzcos ;) dz /—z cos (kpz') cos (kz' cos0;) dz
J

N
= lim ‘1/—/;1/, Z / . [cos (kpz — kzcosB;) + cos (kpz + kz cos ;)] dz

N—o00

¢
/ [cos (kp2" — k2’ cos @) + cos (kpz' + k2’ cos ;)] dz
.,

or

N . . 2
—kcosB;)¢  sin(k, + kcosb;)l
= i P J
< Nl—rgoV Z[ kp —kcos@ + kp + kcos0; ]

2“ / sin (k, — kcos@)¢ sin(k, + kcos0){ 2‘in9d0
47TV kp — kcos kp + kcos6 >

1 [T [sin(k, —kcosf)¢ sin(k,+ kcos6)l 2
=— 0do
2V [ kp — kcosf i kp + kcosf S
Changing variables to z = cos 0 gives

1 [ [sin(ky, — ka)l sin(k, + kz)€]?
V2 - P P d
(Ver) 2V / [ kp — kx * kp + kx v

_ 1 /1 sin® (k, — kx) ¢ _sin(k, — kz) Csin (k, + kx) € sin® (ky, + kx) £
2V Ja (kp — k)’ (kp — k) (kp + kz) (kp + kz)?
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1 (kp+R)C Gin2 o 1 ke 1 1 (kp+R)C in2 o
=— €/ ——dx+ — [cos (2z) — cos (2k,0)] ( + ) dx —|—€/ dx
ka (k:pfkr)f LEQ Qkp ) P kpé — X kpﬂ + T (k:pfkr)f .TQ
¢ /(k p+k)l sm z 1 (kp+k)e dz
= — —dx cos (2 (k,f — x)) — cos (2k, )] —
2kV (kpfk)z .’L'2 Qk 6 (k; 7](;)[ [ ( ( P )) ( P )] T
1 [Ueptk)e d (kp+k)e
[cos (2 (x — kpl)) — cos (2K, 4)] < / sz L iz
Qkpg (kp—k)e (kp—Fk)L 4

!

kv

kp—k)L z? 2kpl (kp—k)e

(hy k)L (kp+k)e
/ sin? Z o+ 1 {sin (2k,0) sin (22) — cos (2k,€) (1 — cos (2z))} df]
(

_ {sin2 (kp + k)L N sin? (k, — k) ¢

AR ARCELL *Si(ﬂk‘wk)é)Si(?(kpkm}

o S0 (2R 0) {812k + K) ) = 81 (2 (ky — ) 0}

5 08 (2k,0) {Cin (2 (ky + k) 0) = Cin (2 (ky, — k) )}

>:i{_sin2(kp+k:)£ sin? (k, — k)¢

(kp + k) € (ky — k)¢ +Si<2(’fp+k)€)—si(2(kp—k)g)]

g S0 (k) {52 (k) ) =51 2 (ky — ) 0}

cos (2k,0) { Ci (2 (kp — k) £) = Ci(2 (ky + k) €) +In (kp Hﬂ)}

2k, kV k, —k

or

_ sin? (k, + k)¢  sin®(k, — k)¢
<VP2T>_W {_ (kp + k)¢ (kp — k) 0

4si (2 (kp + k) 0) + 7/2 — Si (2 (ky — k:)E)]

oy S0 2 {51 2 (4 K) 0+ 7/2 = 81 2y = 1) 0)

1
RETaRT cos (2k,0){ —Cin(2(k, —k)€) — Ci(2 (kp + k) ¢) + In (kp, + k) + 7}
Retaining only the O (1/k) terms gives
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sin? (k, — k) ¢
") = kV (kp — k)€

5

— /2 —Si(2(k, — k) 0)

Returning to the preceding form with integrals in  we note that when k — k, the first term peaks for
6 — 0 and the second term peaks for § — 7 with cosf = —cos (f — ) and sin = —sin (f — ). Thus we

find (and 0 = (/+\/k{/2)

k, —k + k6% /2 ky—k+k(0—m)°/2

e [ [sm(kp_mke?/g)ﬂ s b [ [sin(k p ko k(0 - >/2) ] o

1
v

2
> 'gin (k, — k + k6%/2) ¢
/ lsm(p + /) ] 0db
0

ky — k + k0% /2

e  [sin ((k, — k) £+ ¢?) ]’
v || 2

-V (k)2 ky — k) £+ C2

Letting

A=2(k—kp)L (176)
this becomes

L[> sin®(A\/4-¢?)
V2= — — = > dd
(Ver) Vk/o 1O ¢d¢
If we define
(kLV;}) =L*G(\)/V (177)
we obtain

Y sin® (A/4 — CQ)
“ _/0 iy

1 [ sin®(\/4 — 5) 1 [ sin¢
=5 | ——=rde = d
2 /0 i-gf T2 /—/\/4 e«

1 [ sin®¢ 1 (% sin%¢
== d¢ + = d
2 /0 ERANE /_M R

dg

lsm (\4) 1 sin (2¢)
2 /4 +2/>\/4 3

7 sin? (/\/4)
=1 a o t3 Si(A/2) (178)
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The limiting cases are
GA)~—=-1/A—=0, \—> —00
G(0)=m/4

G (00) =7/2

Notice that the previous projection of the axisymmetric cavity scar field had the normalization

(LV}) = L*G1 /A
whereas this projection of the 3D random plane wave field has normalization

<kLVpQr> =G\ L*)V
These are not the same, and the difference argues that

(LV?) /(LV2) =0 (kV/A) >> 1 (179)
To understand this enhancement in value due to the axisymmetric nature of the cavity scar field we next
attempt to construct the analog of the axisymmetric random plane wave field. We should also note that this
enhancement in value represents the enhancement due to the axisymmetry of the cavity field, analogous to
the factor of two due to the even symmetry enhancement perpendicular to the orbit, observed previously
in 2D [2], [6]. This factor of two enhancement persisted when the symmetry of the outer wall of the cavity
was broken but the local even symmetry was maintained on the mirrors at the ends of the high frequency
ray trajectory, as observed in the case of the asymmetric bowtie cavity [2], [6]. We might conjecture here
that the key in the axisymmetric case is the local symmetry of the mirrors at the ends of the orbital ray
trajectory.

3.5.3 Construction Of Scalar Axisymmetric Random Plane Wave Field

Using the plane wave cylindrical decomposition

ik _ yikzcosb; Z eim(@7¢j)Jm (kpsin6;) (180)

we take the m = 0 term only to construct the axisymmetric random plane wave field

N
ur =g lim +/2/(VN)Re > " a;Jo (kpsin ;) et tikzcosts (181)
j=1

We will insert the constant ug to obtain the desired normalization. To check the normalization we first
average over the amplitudes (without w)
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N
uﬁ: lim /2 VN Re ZajJO (kpsin9j>eiaj+ikzc039j

N—oo -
J=1

N
2/ (VN) Re Z a’j'JO (k;p sin 9],/) eiaj/Jrikz cos 0/
j'=1
and

<u2> = hm /(VN) Z hm vV2/ (VN

N/
Z (ajaj/)aj Jo (kpsinb;) Jo (kpsinf;/) cos (a; + kz cos6;) cos (ajr + kz cos ;)
=
where the amplitudes a; for different j values are regarded as independent and the cross terms vanish

N
(uz), = lim —Z (kpsin@;) cos® (o + kz cos ;)

Next, averaging over the phases

11 [ 1
(cos (aj +k; 1)), = 2__/0 [1+cos2(ay + kzcosb;)]da; = 5

and
1 X
2 _ Z 2 Py
<ur>aj,04j - 1\}5{1)0‘/_]\[ _ 1J0 (kpsing;)
J:

Finally, averaging over 0

- /2
(u?) = %/0 J2 (kpsin ;) sin 0;d0; = %/0 Jg (kpsin6;) sin 0;d0;

zdx

l/lﬁ(k LA /kpﬁ()i
SV 7? e Vi—a2 Vkp )y “° v Vk2p? — 22

Inserting the asymptotic form for the Bessel function gives

(w2) ~ e | " cost (¢ - /1) 2 = 14 s (20)]
~ — T = 11 _—
o Vimkp Jo ! Vk2p2 — 22 Vrkp Jo ! VEk2p? — a?

1 kp dx

1 1
“Vrkp Jo Vg -2 VrkpJo VI V'

Alternatively for small values of kp we set the Bessel function to unity

kp>>1
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1 4 1 4 1
<u$>=w/0 JZ (kpsin@)sin@d@zW/O sin@dﬁwv , kp<<1

Note that if we integrate over p

271'/ <u2> pdp = 271' / / JZ (kpsin @) pdpsin 0dO

1 T p?
—or— [ L [J2 (kpsin6) + J2 (kpsin6)] sin 60
2V J, 2

Now asymptotically expand for large kp

p T
27r/ (u2) pdp ~ L/ [cos® (kpsin@ — m/4) + sin® (kpsin 0 — 7/4)] df = s
0 EV Jo kEV

If we integrate this expression over the cross section we find

r(2) 7rA0 TA
2 2 ~ — — _
/ i / (ur) pdpds 2kV p(2)dz =37 = o
Thus if we replace V by 1A/ (2k) (or set u3 = 2kV/ (ﬂ'A)) we will have the desired normalization

N
Up = ]\}im 4k/ (mrAN)Re Zaon (kpsin ;) e'@itikzcost; (182)
oo =

3.5.4 Trigonometric (Fourier) Projection Of Axisymmetric Random Plane Wave Field

Taking the trigonometric projection on the axis (p = 0)

¢
Vor :/ cos (kpz) ur (0, 2) dz
)

N L
= A}im V4k/ (mAN) Z a; / cos (kpz) cos (o + kz cos ;) dz (183)

Except for the normalizing factor ug = /2kV/ (wA) this is the same as in the preceding subsection.
Therefore, multiplying by u we find

2L sin (/\/4 C)
\ >—7TA/ ooy &
with
A=2(k—-ky)L
Defining
(LV;}), = L*G () /A (184)
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gives

2 [ sin? (\/4—¢?
c=-= s A6 e
mJo  (M4-=¢F)

Note that we expect to have to multiply by a factor of two to account for the symmetry (say, even) assumed
along the orbital direction (the perpendicular direction has already been accounted for by the axisymmetric

construction)
G\ =2G(\) =1— %Smi(f;“) 4 % Si(3/2) (185)

This symmetry along the orbit was not imposed on the random plane wave construction. Also this scaling
is now consistent with the cavity scar field. Note that

Gs(A\)~—=4/(7\) =0, A = —oc0 (186)

G, (0)=1 (187)

G, (00) =2 (188)

Axisymmetric Trigonometric Projection By Averaging It is interesting that we can also obtain

this result easily from the 3D projection by averaging over azimuth

1 27 0
74— dcp/ cos (kpz) ur (p, @, 2) dz
—t

pr 2 0

N 2m l
1
= J\}E)noo v2/(VN) Zaj% /0 dgo/z cos (kpz) cos (aj + kz cos0; + kx sin 6 cos ®; + kysind; Singoj) dz
Jj=1 B
N 1 27 0
= A}gnoo v2/(VN) Zaj%/o dap/écos (kpz) cos [a; + kzcosb; + kpsin 0 cos (@; — @) ] dz
i=1 -

N 2 14
1
= Nlim V2/(VN) E a5~ / dgp/ cos (kpz) cos [a; + kzcosf; + kpsin 6, cos (¢)] dz
— 00 j:l 0 iy

N—o0

N ™ 0
1
= lim /2/(VN) E aj%/o dcp/zcos (kpz) cos (aj + kzcos8; + kpsinb; cos ) dz
Jj=1 -

N T £
1
—|—A}im v2/(VN) g aj2—/ dgo/ cos (kpz) cos (aj + kzcosb; — kpsiné; cos ) dz
—© : ™ Jo —
j=1
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N—o0

N T 0
1
= lim /2/(VN) E aj—/ dap/ cos (kpz) cos (a; + kz cos0;) cos (kpsin 6 cos @) dz
; ™ Jo —
j=1

N ¢
= lim /2/(VN) E a;Jo (kpsin Oj)/ cos (kpz) cos (a; + kzcosb;) dz
i=1 -

N—o0

We have to renormalize by the factor we determined above u2 = 2kV/ (wA) to obtain the preceding result.
There is a question here about what choice of normalization is most useful. If the three-dimensional random
plane wave normalization is used, and the m = 0 component is simply extracted, then this result for the
projection is obtained. If, on the other hand, we normalize the m = 0 component alone, then preceding

result with the u3 factor is obtained.

3.5.5 Comparison Of Scar And Random Plane Wave Projections

Let us compare the flat limit A, — 1 of the scar projection

2
G (sp) = 1+ exp (—msyp)
with the preceding elliptic scar result
Ay -1
e/d — ( + ) !
(VAL +1)
2 4(d/¢) arcsin® (¢/d)
G =
1 (sp) 1+ exp (—msp) In(Ay)

and with the trigonometric projection of the axisymmetric random plane wave result

G =1 4sin” (A\/4)

Ve +%Si(>\/2)

where

sp=2(k—kp)L/In(Ay) = A/In(Ay)
For example with L =2/ =2 m and R = 10 m we find

d=0/T+ R/l ~ 33166 m

d—+0\?

A, = (2=
+ d—1¢

~ 3.47198

(189)

(190)

This comparison is shown in Figure 6. Notice that there is a sharper cutoff for the cavity scar field than for
the random plane wave field. However there is no peak near s, = 0, where the cavity mode frequency aligns
with the scar frequency k — k,. There is of course the common axisymmetric enhancement u3 = 2kV/ (7 A)

(analogous to the factor of two increase in the 2D even bowtie).

Note that for R/L = 1 we find
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Axisymmetric Scar Projection
------- Axisymmetric Random Plane Wave
Axisymmetric Projection with Stability Exponent

2.0 7

=
(6]
|

A, =3.47198

Gl(Sp!LGS(k)
o

o
)]
|

0.0

Sp = A llog(A,)

Figure 6. Comparison of projections of the random plane wave field and the cavity field as a function of
the difference of cavity modal frequency and scar frequency.
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— AXisymmetric Scar Projection
------- Axisymmetric Random Plane Wave
Axisymmetric Projection with Stability Exponen

.........
................

1.5 A, =13.9282

Leareesenmase -
sonsmmanne-t

0.0

-10 -5 0 5 10
S, = Allog(A,)

Figure 7. Comparison of projections of the random plane wave field and the cavity field as a function of
the difference of cavity modal frequency and scar frequency for a smaller radius of curvature at the ends of
the periodic ray trajectory.

d+?¢
A, = —=
* d—10

the comparison of which is shown in Figure 7.

2
> ~ 3.47198 and 13.9282

Somewhat surprisingly the elliptic projection and flat limit projections overlay. To understand why let
us plot the quantity

resin?
F(A) = 4(d/€)lj(‘“’;+) (t/d) (191)

as a function of A;. We see in Figure 8 that it is nearly unity for a very large range of stability exponents.

4 VECTOR TREATMENT OF AXISYMMETRIC BOWTIE

We now turn to the consideration of the vector electromagnetic problem. We first investigate the
properties of a quasirectangular coordinate system [5] based on the prolate spheroidal system. We then
construct the high frequency approximate solution for the Hertz potentials in this system. The vector
electromagnetic energy theorem is used to normalize the eigenfunctions in this system. The vector random
plane solution is constructed in three dimensions and for the axisymmetric case. Projections of the
scar theory and random plane waves are compared to electromagnetic numerical simulations using an
axisymmetric code. The field at various locations in the cavity is also compared to the random plane wave
construction.
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Figure 8. The quantity F' (Ay) is very close to unity.
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4.1 Unit Vectors in Prolate Spheroidal Coordinates

It will be useful in the next subsection to have the relations between the prolate spheroidal unit vectors
and the Cartesian unit vectors which are now given. The prolate spheroidal and Cartesian coordinate
systems are related by

x =rcosp = dsinh(cos&cosp

y =rsing = dsinh ( cos € sin

r =22+ 92 = dsinh {cos¢

z =dcosh(siné
The position vector in Cartesian coordinates is

r=xe, +ye, + ze, (192)
The unit vectors can be found by differentiation [10]

% [ *%*8—:66 +@e +%e
AC|=S —a¢  acTE T acTY T acTF
= dcosh ( cos § cos pe,, + dcosh ( cos{sin pe, + dsinh (sinée,
where
) _ d\/cosh2 Ccos? € + sinh? ¢sin? € = hy
¢
or
cosh ¢ cos § cos pe, + cosh (cos{sinpe, + sinh (sinée, (193)
Q =
¢ V/cosh? ¢ cos? € + sinh? ¢ sin? &
Similarly
@ e —@—@e +@e +%6
S I T T
= —dsinh (sin§ cos pe, — dsinh ¢sin{sin e, + dcosh ¢ cosée,
o = d\/sinh2 Csin? € + cosh®  cos? € = hg
23
or
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—sinh ¢ sin§ cos pe, — sinh (sin{sin e, + cosh ( cose,

€ = (194)
¢ V/sinh? ¢ sin? € + cosh? ¢ cos? €
Finally
of, _or_ox, 0y,
dp|™f 0o 0o *  Op Y
= —dsinh ( cos§ sin e, + dsinh ¢ cos § cos pe,,
0
8—f = dsinh Ccos€ = hy,
or v
e, = —sinpe, +cospe, (195)
Of course in this orthonormal system
€ =€ =€, E,=1 (196)
ecree =g, = e, e =0 (197)

4.2 Quasirectangular Coordinates
It will be useful in the vector problem to introduce a quasirectangular system of coordinates (v, n, &) [5]
v=_cosy (198)

n = (sinp (199)
where

(=2t (200)
cos p = v/y/v% +n? (201)

sing = n/v/v? +n? (202)

We can write

inh /02 + 2
uv (203)
V2 +n?

x = dsinh (cos&cosp = dcos

(0]



sinh /02 + 12
y = dsinh { cos{sinp = dcosfun (204)
Vo2 +n?

z = dcosh(sin{ = dsin € cosh \/v? + n? (205)

Thus the position vector

r=xe, +ye, + ze,
can be used to define the unit vectors [10]

|Or/0v|e, = Or/ov =

d § i
cos§ v cosh /02 + 12 + 277 5 sinhy/v? +n?| e,
VR VR P v
dcosé& 1 1
cosh\/v? +n? — ————=sinh /v? +7? | vne
\/,UQ n n2 \/U2 n 772 n U2 + 772 n n—y
dsin& .
+——=—wsinh \/v2 + n?%¢, (206)
VR
|0r/0n| e, = Or/on =
dcos& / 1 inh 4/
cosh /12 + 2 _ - sinh y/v2 + 772 vne,
VAR [ o
d g ’
cos& n cosh /02 + 72 + % sinh \/v? + n? &y
VR [P v
dsin & .
+———nsinh \/mﬁ (207)
We can write that
e.-e.=e, e = 1 (208)

Svt&u T &t &y
and the cross term is

Oor Or d?>vn

v dn  v+?

v2 + 2

sinh2 /02 + 12
sin” € sinh® /2 472 4 cos” € (Cosh2 N R ik )

o (209)
Alternatively we can begin in the prolate spheroidal system with metric coefficients

d?vn ) sinh? \/v? + 7?2
= 7"72 lsmh2 vV v2 + 7]2 +COSQ§ (1 — 1)2—_"_772
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he =he = cl\/sinh2 (+cos?é = d\/cos2 ¢ +sinh? \/v2 + 2

hy = dsinh ¢ cos§ = d cos & sinh /02 4 12

and differential position vector [10]

dr = hed€ee + hodpe, + hedCe, (210)
Therefore
or|  or o€ Op ¢ Oy ¢
70|18 = 3, —hga e£+h¢a —Lp+hCa eg—hspa —saJrhCa (e
7 v
= et e s .
or 1 72
—=| = 2 202 =
| SR tng? \/h“a e e Jov

1 d
= Z\/h?a sin? ¢ + thQ cos? p = E\/sinh2 Ccos? Esin? o + (sinh2 ¢+ cos?§) C?cos?p

d
= —\/sinh2 Csin® ¢ sin? o + (sinh2 ¢ + sin? ¢) ¢?cos? ¢ (212)
As a check, if we transform the metric coefficients and the prolate spheroidal unit vectors in this expression
to the Cartesian system by means of the results in the preceding subsection we end up with the same unit
vector as the preceding expression. Nevertheless these prolate spheroidal expressions are somewhat simpler.
Thus the other direction becomes

or or o€ o ¢ ¢ 9¢
’8_77 €, = 8_77 = hga—nﬁg + h¢8—n§¢ + hga—ngc = hWa—nQP + hga—nﬁg
_ v /.
= hy 2P e, + h¢ — 772§< (213)
Or 1 v2
= = h2 h2n2 =
‘377 \/v2+772\/ oz = Vi

1 d
= Z\/hi cos? p + hg(Q sin? p = Z\/sinh2 Ccos?&cos? p+ (sinh2 ¢+ cos?¢) ¢?sin?p

d
= Z\/sinh2 Csin? € cos? ¢ + (sinh2 ¢ + sin® ¢) ?sin?p (214)
Taking the dot product gives
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or
ov

or
on

T Qv O

2 - 2
__un 2 hcp . uny o 9 2 sinh” (cos? &\
= e (hc b 772> = tn 5d (slnh ¢+ cos“ &+ BT o = /9oy (215)

or

¢ (h?—h? /42) on (V2 4 n?) (hQ—hQ /g2)
\/h n? + hiv 2¢2 \/h2v2—|—h2 2¢2 \/h n? +h2v2 (v +n?) \/h2v2—|—h2 (V2 +1n?)

—’U '_n

¢ (hg — hi/g“?) cos sin ¢

\/hgJ sin? ¢ + hg(Q cos? go\/ha cos? p + h%CQ sin? ¢

¢? (Sinh2 ¢ 4 cos? € — sinh? ¢ cos? 5/42) cos @ sin @
\/sinh2 ¢ cos? Esin p + (sinh® ¢ + cos? €) ¢* cos? gp\/sinh2 ( cos? £ cos? p + (sinh® ¢ + cos2 &) ¢(*sin’ ¢

¢? (Sinh2 ¢ 4 sin? ¢’ — sinh? ¢ sin? 5’/(2) cos @ sin @
\/sinh2 Csin? ' sin? o + (sinh2 ¢ + sin? f/) ¢? cos? cp\/sinh2 ¢sin? ¢’ cos? ¢ + (sinh2 ¢ + sin? f') ¢?sin?p

VIou Gy * €y = d? (sinh2 ¢ +sin® ¢ — sinh? ¢ sin? 5’/{2) cos psin (216)
where the metric coefficients are [10]

Oxrdx Oydy 0z 0z

9= 3050 T Buov | Guou (217)
Oxdx Oydy 0z0z

Jon =y, 077 Jdvdn  0Ovon (218)
Ordr Oydy 0z0z (219)

9= Gy o " non * ooy
Of course in the system (v, n,§) it is immediately clear from these representations and the orthogonality of
the prolate spheroidal system that

ey e =ey e =0 (220)
4.2.1 Near The Axis (Orbit)

Note that we expect ¢ to have small values near the orbit. Orthogonality approximately holds in the

coordinate system (v, n,€) if he = h,/¢. Note that he = dy/sinh®¢ + cos? € ~ h, /¢ = (d/¢)sinh ( cos &

where we must have ( << 1, consistent with ( — 0 on the orbit.

78



Thus if orthogonality approximately holds, then we can write [10]

dr = hedCee + hodpe, + hedéee ~ hydve, + hydne, + hedte, (221)
Gov = B2, (222)
Gon =0 (223)
G = hiy (224)

The coordinate relations in this limit ¢* = v? +7? — 0 (with —7/2 < £ < 7/2) become

inh /02 1+ 12
uv ~ vd cos & (225)
/’U2+7']2

x = dsinh ( cos& cosp = dcosé

inh «/02 £ 12
yzdsinh(cosfsincp:dcosgunNndcos§ (226)
VU2 +n?
r = dsinh ( cos§ ~ d( cos& (227)
z =dcosh(siné = dsin € cosh \/v2 + 12 ~ dsin¢ (228)

Notice that for —m/2 < £ < 7/2 the positive sign of v points in the direction of positive 2. The metric
coeflicients become

hy ~ dcos§ ~ hy, (229)
where

he = he = dy/sinh® ¢ + cos2 € ~ dy/cos? € + (* ~ dcosé (230)

hy, = dsinh (cos & ~ (dcos¢ (231)
Thus in this approximate limit we can regard them as all equal (except h)

By ~ hy ~ he = he ~ h = dy/cos? € 4 ¢° (232)

Note also that

h
e = v ~ cos (233)

v &
\/h2n? + hEv¢?
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hen

€y €y, =— =~ —sing (234)
h2n? + hiv*(
h
b ec=——S1___sing (235)
h2v? + hin*C
h
€y -y = il 5 ~ COs Y (236)
\/h2v? + h%nQC
€, ~ € Cosp —e,sing (237)
€, ~esing +e,cosp (238)
€~ €,C08p + e, sinp (239)
€, ~ —€,sinp+e, cosp (240)
Cross Products From the preceding results the cross products of the prolate spheroidal unit vectors
are
€ X e =€, (241)
e X e, =g (242)
e, X e =g (243)
and the cross products of the quasirectangular unit vectors near the axis are
€y X &y~ & (244)
€ X €, ™€, (245)
Qn X Qf ~ &y (246)

4.2.2 Transformation of Scalar Parabolic Equation to Quasirectangular System

The preceding parabolic equation in the scalar three-dimensional axisymmetric case was (16) or
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1 02w 2 o .
—&—? 32 —|—('yQC —zQ'ySlng)Wzo

This can be transformed from the prolate spheroidal system to this quasirectangular system using

BW oW Ov oW on oW ow

“ac ~Sawac Camac - el oy (247)
oW OWau IWay W W
B0 v ap oy o' ay? (248)
C Ca_W 3 0W +8_W +£ 8_W +8_W
ac\>ac ) a0 \au T oy an \av " Ty )"
PW ., oW W oW PW ,
~ — 24
I WL w L L e A v (249)
FW o (oW oW N O (oW L OW N
0p? ov R on K on RN on
PW ., oW _PW oW PW
Y T e e o 250
and
W\ PW  (PW WY\, o o [PW W
CC(C_C> 2N<3v2+3n2)(v ) =¢ <3v2+3n2) (251)
as
oW oW Cosg_W
ov? on? g o0&
+ [ (v + %) —i2ysing] W =0 (252)

where W is now a function of v, , and £. This is the same leading order parabolic equation as we find in
the vector case below.

Note that we will later need

oW oW ow ow
C—C a—v+a—n77——4 05<P+—Cbln<ﬂ (253)
oW oW ow ow . oW
%N—En—ka—nv——mgsmw—l—a—nghosgo (254)

or
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Ca—W Ca—Wcos —a—Wsin
du ~STac CPYT gy Y

oW oW W
— ~ (——sinp + — cos 255
o ¢ o St 5 cose (255)

4.3 Hertz Potentials

The electromagnetic field is a vector field which in source free homogeneous regions satisfies

V x H = —iweE (256)
V x E = iwpH (257)
V-H=0 (258)
V-E=0 (259)

and the boundary conditions on the walls (in our case these hold on the end mirrors £ = +£;)

E;=E,=H;=0 (260)
or in the quasi-rectangular system

E,=FE,=H:;=0 (261)
We use the electric Hertz potential IT, (we can alternatively use the magnetic Hertz potential IT, ), with
the fields given by

E=VxVxI, (262)

H = —iweV x II,
where the Hertz vector satisfies the vector wave equation

~VxVxI +V(V-I)+ kI, = (V> + k) I, =0 (263)

E* = w?ue
and the electric field is thus given by either (262) or, using (263), by

E=V(V-1L)+ kL, (264)
At high frequencies we can make one of the following sets of approximations [5]
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I, = ® (265)

I, =0 =Tl (266)

or
M, =& (267)
M, = 0= Il,¢ (268)

We cannot satisfy (263) exactly with this approximate choice, so instead we require that the potential Il
(or in the second case Il.,) satisfies the equation resulting from equating £, (or in the second case E))
from (262) and (264) [5]. Thus the equation for the potential is [5]

[—V XV x (Eevgv) +V {V ' (Hevgv)} + k2 (HEUQ’U):I "€y = 0 (269)
or

[V %V x (Meye,) + VAV (ene,) } + 52 (Tene,)] - €, =0 (270)

4.3.1 Approximate Orthogonality And Fields

When we assume approximate orthogonality the equations simplify (as given in Vaynshteyn [5]). We
can derive the following equations by using the orthogonal curvilinear coordinate results for gradient,
divergence and curl [10], using the same metric coefficient h for all three coordinates

h=d\/cos? &+ (? =dy/cos2 & + 02 +n2 ~dcosé (271)

Note that h, = dsinh{ cos§ ~ (dcos& ~ h(. The potential II.,, = ® then satisfies [5]

1 9 1 0
{—V X |:ﬁ_na—§ (hHeU) — ﬁgga—n (hHev):| } "€y,

10
{7 [y 0me)| } e e =0 (212)
or
o 10 o (10
8_5 {Ea_g (hHev)} + 8_7’} {Ea_n (hHev>}
9119 .y 2217
g [h3 —(n Hev)] +E2R2TL,, = 0 (273)

or in spheroidal coordinates, using (255)

VW s — W
du ~ Sac CPY T gy Y
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W W, W
on " °a¢ MY

¢ 9

cos

it satisfies

0

10 0 (10 0
7 {Ea_g (hHev)} + % {Ea_g (hlle,) sin g + 9% (hHeU)cow} sin ¢

S =
N

10 (10
tap {E_ (hlley) sin g +

o (hIl,,) cos gp} cos

[

g {__ (h*T,,) cos ¢ — i%% (hQHev) sin g0:| sin g + k2h* ., = 0

or

o (10 o (10 110
a_g{%a_g(hnev)}_F ({hag(hnev)}+2{ﬁa_g“(hﬂev)}

1|9%n 3 [on\? 1/10h
- | — — = - Hev 2 = T A~ Hev.Q
i |3 () et s f (350 st
LWy oo g
CQ 8@2 ev —

or

s lam ot g { o e+ 1 {33t}

0%2h—2 10h
——h2 e II.,, cos? <p+§ <h0C) I, sin® ¢

+i 011,
CQ 8@2

h21l,, = 0 (274)

Using the asymptotic metric coefficient form

h=d\/cos2&+ (¢ ~dcosé = £dsing ~ +de’

gives

o (10 o2 18
a‘s{ﬁa_g(h“w)}*%H cac!
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1 9%,
— + E*h*M,, =0 (275)

L 2 0085% + 1 —|——1 @
cos & O 0¢ cos?{  sinh?¢ /) 0p?

<sinhgg—lé) + 92 (sinh2 ¢ + cos? §) U=

and for ( << 1 it becomes

1 8( 8u> 0%u  10u
—=|cosb—= |+ —=S+=%=

cos & O€ o0& ¢ ¢ o
(= D)2 o eu =0
(c%?f C2) 97 ~v* cos” &u
or
@ ta gﬁu 4 0%u L1 10u
ol 9 o T CaC

+42 (cos2£ —m?%sec? € — mQ/CQ) u=0
The preceding equation for the Hertz potential can be written as

o2 02 1 3
—II., — tan ey + == Hew + =
9 fas o et eact

+ (72 cos? £ — (m2 + 1) sec? £ — m2/C2) I, =0
Since our main focus is m = 0, in the vector case

0?2 0? 1 3
—II., — tan ey + —5ev + =
o€ % ot Tac!

+ (72 cos? &€ — sec? &) 1oy, =0 (276)

The m = 0 scalar case is
& — tan 6% + i + l@
o€? o6 a¢t ¢
+y%cos® éu =0 (277)

As long as 72 cos? € >> 1 these two are the same. As the focus is approached & — /2 this equivalence
eventually fails; but we are also not sure about the accuracy of the equation for I, in this limit since the
asymptotic orthogonality of the quasirectangular coordinates breaks down there.
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Note that the first and second terms of the quasirectangular form are from (-V x V x II,) - ¢,, and the

third term results from (VV -II,) - e,,. The fields are

o190
hQEU = h% |:—38— (hQHeU):| + k2h2HeU
o190
h2E = ha—n |:—38— (hQHeU):|
o1 0
W Ee = T [—33— (hQHeU):|
and
9 0
h*He = zweoa (hley)

0
h’H, = fiweoa—g (RIl,)
Alternatively the potential 1I.,, = ® satisfies

& {igon) (i)

o1 0 ,, 2,9 B
+han [h38n (h Hen)} + E*h*e, = 0
The fields are

210
2 _ 2
WEy = ho [_h3 . (h Hen)]

19
2 2 272
WE, = by {—hs 7, (1 Hen)} + K2K7TL,,

010
h2Ee = hoe {ﬁﬁ_n (h2Hen)}

and

h?He = —iweg 86 (hILe,)
h*H, = iwe 2(hH )
v = Oaé. en

4.3.2 Asymptotic Solution Of Quasirectangular Equations

Let us take
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(278)

(279)

(280)

(281)

(282)

(283)

(284)

(285)

(286)

(287)

(288)



e =2 =W (U777a§) ei'ysinﬁ +W (’U,?’], _g) €

and insert this into

then W satisfies

or

or

0 10h 0 [(10h
72(2ifysin£+<wcos§+ 5) <h(’)§>+ <h877>+h

02 10h\ 0O 0 (10h 0
st (7e) g+l (7€) + 3

9 190 2 272 —
+hav |:h3 BN (h Hev):| + k*h Hev -

Gl + <z2 cosé& + —8—) ow
¢’ ! hoE) o€

—iysin &

(g 0}

0

+h§ [hia% (h2W)] + o {Ea_n (hW)}

[kth—'y cos? € — iysiné + (wcos{—i— 65) <

10 (, oW ow
7 OE <h a€ ) —|—z2’ycos£—§

1 0h
hagﬂw_o

3 2 Oh
ov

We now neglect the first term 92W/9¢* and let (except in the k%h? term)

giving

h ~ dcos&

8W 82W O*wW
+

(i2ycos€ — tan§) ——

f on?

h? 0v

o

(289)

(290)
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+ [72 (U2 + 7]2) — i2ysin € — sec? 5] W =0 (291)
Now take

W = f (f) v (Uv 7, 0) (292)
where we want

f!i2ysiné +sec? &

f i2ycosé —tané
or

1/f:cos§+%tan§ (293)

Using this along with the transformation

&
o= /0 c:)iff = arcsinh (tan &) = In (tan & + sec§) (294)

gives

o, e\ 0V Y
it cosé ) 0o Ov?  On?

+ [ (v )] ¥ =0 (295)
We could also have dropped the terms tan & and sec? ¢ terms compared to the v cos& and the vysiné term
(these terms could be accounted for by higher order terms in the asymptotic series just like the 52W/ bl
term and the higher order terms dh/dv and dh/0n) to obtain directly

. oW  O*W  02W
22’}/COS§8—g + W + 8—772

+ [v? (v +7?) —i2ysing] W =0 (296)
which is the same as the preceding scalar case. For this leading term approach we would take

1
W = E\I’ (v,m,0) (297)

and obtain the same equation for W. Scaling the independent variables by letting
Ty =4/ 27V (298)

Ty =1/27m (299)

gives
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ov  9*w 9w 1, ., 5
) — — + - =0 300
280+3T%+8T§+4(TI+T?J)\II (300)

Separating the variables

U (T2, Ty, 0) = Py (T2) Yy (7)) P (0) (301)

gives

i O 1 9% 2 1%y, |

——= — = 4 — 4) =0
(7:50)+ (55 )+ (5 oy, T T/

Each parenthetical term is independent of the variables associated with the others and therefore each equals

a constant. We take the first term as s

o, .
aﬁ = isve
or
Y= i (302)
Then we can write
Oty + (Sa+T2/4) Yy =0 (303)
or2 e z a
0%
87’517 + (sp+T72/4) 1, =0 (304)
where
Sq+ Sp =35 (305)
and

v (Tacy Ty U) = eiisa(jd}a (Saa Tac) eiisbgwb (Sba Ty) = eiisadja (Saa Tac) Py, (Sb7 Ty)
This is a form of the equation of the parabolic cylinder functions

0%y 72
w+(q+s)¢: (306)
The solution that is outgoing in 7 is [1]
Uy (s,7) = e "6H/2/4y (—isme_i”/‘*) (307)

where U (a, z) is the standard solution [11]. Following [1] the total transverse solution is taken as the
incident plus reflected form

¥ (s,7) = cRe [Uy (5,7) + U7 (s,7)] (308)
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Figure 9. Illustration of reflected wave from outer region returning with phase ®.

where the constant ¢ is used for normalization. The transverse boundary condition in 7 is a reflection with
a random phase & (kQ) which was introduced by Antonsen to match to the chaotic region of the cavity;
it describes the phase relation between a wave leaving the vicinity of the unstable periodic orbit and one
returning [1] with the variation of the pth component along the orbit. Figure 9 schematically illustrates
a wave bouncing back and forth between mirrors in the region of the scarred orbit; it leaves the vicinity
of the orbit and eventually returns from the outer chaotic region with transverse reflection phase @ (kQ)
(For purposes of simplification this figure does not include the vertical evenness of the cavity, which
confines the wave leaving and the wave reflected to either the upper half or lower half of the cavity.) Thus
Y, =1, (Sa,T2) and ¥y, =1, (sp, 7,) are elliptic cylinder functions like in the two-dimensional case [6], [1].

The perfect conductor boundary conditions imply

E,=E,=H:=0, £ =%¢, (309)
or using the preceding relations for the field in terms of the Hertz potential

h’E, = h_aau [—hlg —51 (hQHeU)] + k2R3,
o109
2 _ 2
WE, = h—an [—hg 50 (h Hev)]

)
h*He = iweog (hII.,)
or
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010
2 _ 2
WE, = ho [_h3 3 (h Hen)]

0
2 —
hEn—han[

1

0
5 (h2nen)} St P

0
h*He = —iweg - (hley)
v
We see that we must take the potential to vanish on the mirrors for the perfect conductor boundary
conditions

Iy, = Hen =0, 5 = :I:fo (310)
Then in the present case

—17y sin iy sin —i(2p—1)m
e ™ 5f>\I/(7',c,7'y,—c70):e’Y €op—i(2p )\I/<Tx,7'y,0'0)

or
4 (7—17 Ty, _00) = ei2k€_i(2p_1)ﬂ-\ll (TI, Ty, JO)
or
1= eiQk)Z*i(Qp*l)ﬂ'*iQSO’o

2kl =(2p—1)mw+2s00=2p—1)7+2(sq + Sp) 00

or
d+/?
(k—kp)l = sog = sln(tan, +sec&,) = sln d—+€
1

where

(AT
S \d—¢
are the stability exponents of the orbit and

Ay = {1+L/Ri (1+L/R)2—1r

kl=p-1/2)7, p=1,2,.. (312)
where p is a large integer representing the number of half wave variations along the z axis. The quantities
sq and sy are the transverse numbers of half wave variations (not necessarily integers in this unstable case,
and usually random functions versus eigenvalue), where s = s, + s5. The preceding result thus connects the
eigenvalue k& minus the wavenumber in z, or k,, to the sum of the transverse variations.

91



ey = 21, (Sa,T2) Yy (Sp, Ty) cos (ysing — so) / cosé
d)a (Sa, Tz) =cq Re [U+ (Saa TI) + eitboankk (sa, Tr)]

¥y, (sp, Ty) = b Re [U+ (sp, Ty) + ei(I)‘”’Uf[r (s, Ty)]
Note that if the eigenfunction II.,, is chosen to be even with respect to the normals of the orbit n and v
(say, perfect magnetic conductor or PMC at = 0 and perfect electric conductor or PEC at v = 0, resulting

inE, #0, E,, =0, Ec =0, H. =0, H, # 0 at v =1 = 0) where

19 A o
2 _ 2 212 212 _ 212
WE, = ho {hi”av (h HEU)]+k WMy, ~ <8v2+k h)Hev_ (2’}/87_%—"-]6 h)HeU

2 62

a1 0 13}

2 —p= |2 (p2 ~—_ =2y—
By = h@n [ 3 v ( Hev)] ondv fev 2787'7;87'35 Hev
h2E, — hﬁ 19 (h°T1,,) 8_21] —./2 a_zn

€T [h3aw Ve | T acan e T Vi bear,

h*He = z‘waoa% (hIIey) ~ z‘waoha%nev = iwsm/Q’yh%Hw

0 15} 15}
h*H, = —iweg a€ (hIl.,) zwsohagﬂev ZWthagﬂev

then we have the resonance conditions

Re [U} (54,0) + € U7 (54,0)] =0

Re [U/. (s4,0) + e U7 (s5,0)] =0

or

Using this with the Wronskian
U\Uy —UU; =i
gives

_Im (U (54,0)]

Re [Us (54,0) + €U (54,0)] = U, (54,0)]
+ (Sa
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Im [U—/i— (Sb, 0)]

Re [Uy (sp,0) + €™ U7 (s5,0)] = 7 ( 0>|2
+ (Sb,

Onaxisv=n=0o0r 7, =7, =0 and

1
o = arcsinh (tan¢) = 3 In (jii)

sin€ = z/d

cosé =+/1—22/d?

Iy, = 29, (S4,0) 9y (sp,0) cos [kz - 51 In <§jz>} /1 — 22/d2

_ g2 V% (s O I [O% (50, O] (o) T= @

UL (50, 0)* |UL (s1,0)]"

= (428) 0 (422)

This raises the question: how are the two variations s, and s, (as well as the reflection coefficient
phases @, and Pg;) connected to the azimuthal quantum number m? In the axisymmetric case we might
argue that the two dimensional randomness is collapsed to one dimension, and therefore these are related.
In fact our main interest is in the lowest transverse mode (m = 0) with the vector nature put in through
the selected component of the Hertz potential. Does this mean that in the axisymmetric geometry we can
take s, = sp (and Poq = Pop)?

where

Alternatively for the other polarization

Heﬁ =db=W (,U7777£) ei’ysin& W (U, n, _f) e*i'ysing

0? 10h 0 0 [10h 9 f19
gl g e g {7} L (0o}
D10 oy ] e,
thy [h38n (h Hen)}Jrthen—O

or
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0 10h 0 1 0h 0 2 Oh
2 -2 - . - _ - _ - —
* [7 < (”COS“ ag) <h 85) "o (hav) e (h? anﬂ =0

and the procedure follows the same lines as in the preceding polarization state. We might expect that for
arbitrary outer chaotic regions both polarization states would be generated and coexist.

In the next section we will find it more convenient to solve for the quasirectangular Hertz potential
component in the prolate spheroidal system.

4.3.3 Asymptotic Solution Of Parabolic Equation In Prolate Spheroidal System

The parabolic equation in quasirectangular coordinates for the Hertz potential component IL., or Il,
(or W) resulting from the vector wave equation is asymptotically the same (particularly for the m = 0
mode) as that arising from the three dimensional scalar Helmholtz equation. Hence we can transform the
parabolic equation for the Hertz potential from the quasirectangular system back to prolate spheroidal
coordinates.

Even Case The potential is then
e, = iwm (1,8)cos (ysiné — so) { o8 (mp) } (313)
cos & sin (my)
Y, = cm? Re [W, + e ®oW;] (314)
W (1,m, s) = Wigja,mya (—i7%/2) (315)
r= V27 (316)
kl —spo0=(p—1/2)m=kyl,p=1,2,3,... (317)

and the same holds for the II., polarization state.

Odd Case As in the scalar case for the mode that is odd along the orbit
I, = iw (1, 8)sin (ysin€ — so) cos (me) (318)
T cosET N sin (m)
where
kl —spoo =pn=kpl,p=1,2,3,... (319)
Behavior Of Zero Mode Near Orbit Since our main focus will be m = 0 we now examine the
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behavior of the zero mode

2 4
Yy = Cog Re [W+ + GZ(POW_T_]
near the orbit at 7 — 0

1/2 1

W (.0.8) ~ = (=im*/2) " w7y

[In (—i7%/2) (1 — s7°/4)

+9(1/2 —is/2) — 2 (1) + (s7°/4) {—¢ (1/2 —is/2) + 24 (1) + 2} + O (7' In7)]

—-1/2 1

Wi (7,0,5) ~ iT% (—ir?/2) T (1/2—is/2)

I (—ir?/2) + {¢ (1/2 —is/2) —2¢) (1)} +2+ O (r°In7)] , 7—0, m=0
Now taking

61/7’_0 = ¢9v/2Re (Wi + EZ%W*/] —

If this is set to zero as 7 — 0 to solve for the reflection phase

1 . 1 .
Re WL—;WJF)—FGZ(I)O (W%,*_;WJF)]_)O’T_)O

we find the same result as in the scalar case

oy (WL—LWy)  T(1/2+is/2)
=ty T 00

Such a condition on the electromagnetic field implies that (E¢ = 0 and H¢ =0 as ( — 0) by means of

82
o0& av

2
E ~
h"Ee aga

h*Hg ~ iweoh

Thus near 7 — 0 we again find

9 A — 0
_Hev = oV 2 _Hev
on zwsohan 787’

16 (0, 5,) = co Re [emp/ 261740 (1/2 + isp /2)} (320)
and in general

1

¢0 (Tv 5) ~ CO? Re |:_ (_i72/2)1/2 m
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{In (—i7%/2) (1 — s7%/4) + 9 (1/2 —is/2) — 24 (1) + (s72/4) (= (1/2 —is/2) + 2¢ (1) + 2) + O (7' In7T) }

L9, 1/2 1
—i(°/2) T(1/2—is/2)

{In (i72/2) (1 — s72/4) + ¢ (1/2 4 i5/2) — 20 (1) + (s7°/4) (= (1/2 +is/2) +2¢ (1) +2) + O (r*In7) }]

—im/4 1

~eoRe | e T )

{In (—i7?/2) (1 — s7%/4) + 1 (1/2 —is/2) — 2¢ (1) + (s7°/4) (—¢ (1/2 —is/2) + 2¢» (1) +2) + O (r'InT) }

—im/4 1

e T2 =2

{In (ir?/2) (1 — s72/4) + ¢ (1/2 + is/2) — 2 (1) + (s72/4) (= (1/2 +is/2) + 24 (1) + 2) + O (7' In7) }]

. 1
~co R —in/4
e [e T (1/2—is/2)

{im (1—s72/4) + (¥ (1/2 +is/2) — 1 (1/2 — is/2)) + (s7°/4) (¥ (1/2 —is/2) — ¢ (1/2 +is/2)) + O (t*InT) }]

i /4
~ ¢g Re L_\ ¢

—(1/21‘5/2)} [m—i{Y(1/2+is/2) — (1/2 —is/2)}] (1 — s7/4) + O (7*In7)

Noting that

v (1/2+1is/2) — 4 (1/2 —is/2) = wcotm (1/2 —is/2)

B sinm (1/2 —is/2) _Wcos(iﬂs/2) " i cosh(ws/2)

ekl (1/2 —is/2) sin (ims/2) 7 sinh (ms/2) _ im tanh (7s/2)

Then

eiTr/4
o (1,8) ~ coRe {m} 7 [1 4 tanh (7s/2)] (1 — s72/4) + O (t*InT)

~ coRe [6”/41" (1/2 +1is/2) coshm (5/2)} [1+ tanh (7s/2)] (1 — s7°/4) + O (7" In7)
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~ coRe {ei”/ﬁ‘ (1/2+is/2)} ems/? (1—-572/4) + O (r*In7)

T%?/)O (1,8) ~ —co Re [e”“F (1/2+ is/?)} ems/? (57'2/2) +0 (74 InT) ~ — (s72/2) 9

10 ) <
—_— ~ — im/4 . Ts/2 4 L _5

7'37'1/}0 (7,5) coRe [e F(1/2+28/2)] e™/*(s/2) + O (r'In7) 27/’0
10

gy (T%%) ~ —coRe [ei’r/‘lF (1/2+ is/2)] e™/?5s 4+ 0 (7?InT) ~ —s1hy + O (r*In7)

In addition

78—7_0 (1,8) = coV2Re KWJ’F — ;W+) 1 i® (er B ;W+) ]

02 0P a5, , 1 -
U (1,5) ~ coV2Re [za—we (VV+ - ;W+> ]

~ —cov/2Re [%% (Wi ) %W+)*}

and

Y,
OwoTr

eiw/4 0@0
0.0~ 20me rm|

4.4 Vector Normalization Condition

The method used for normalization of the eigenfunction components by Antonsen [1] is now put into
the framework of the electromagnetic energy theorem [13]

OE . .. OH\_ [0@n), .. 0@, ] OE . _ 0l
V'(awxﬂ +& X6w>_z[ ow L g B E | Tyl & (821)

Integrating over the cavity volume and using the divergence theorem (and inserting the electrical properties
of free space)

oE 0H oE 0J
i(@wx_ N 0w> ndS Z/V(MO_ L +eE-E)dvV /V<8w L +E 8w)dv
where the unit vector n in the divergence theorem points out of the cavity region.

4.4.1 Source Free Form Of Theorem

The source free form is thus
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E H

f(8—XH*+E*X8—)-QdS=i/(uoﬂ-ﬂ*—l-&?oE'E*)dV (322)
S 6&1 6&1 14

Using n x E = 0 on the cavity walls, the surface integral on the cavity boundary vanishes

e« L) s - Y gy ) 2] as =

However a part of the closed surface Sy, is taken to surround the scarred orbit { = y/v2 + 7% — 0

oF OH
E L H L E = — H. 0 5.E )
/Smr <8w I e 6w> ndS l/‘/(ﬂo— H™ +eok- E*)dV (323)

where the unit normal here n points into the scarred region. We take the fields to be [17], [18]
E=VxVxO =V(V-II) + kI,

H = —iweV x II,
where for the first polarization state [5]

Ile, =@

Mg, =g =0
Note that as ( = \/v? +n? — 0 the fields become E,, # 0, E, =0, Ec =0, H. =0, H, # 0 at v =10 =0,
where

o1 0 02 0?
2 _ 3 91 L Y o 272 s 272 _ o 272
h U_hav {h3av(hﬂev)]+khﬂw <82+kh) (QVaTg—s—kh)H
g1 0 02 02
2 _ 2 ~ —_— =2y—
hE, = h(’)n [h?’ 9 (h Hw)] (’)navnev 2767748796 1I.,
o190 9?2
2, Y| L O o ~
hEg—h85 {h 5 90 (h Hev)] 6§ =\/2v 858

hQHg = waoa_n (hHev) ~ Zw&‘oha—nﬂev = fweg /27}}'8_7—1}1—[

0 0 0
h2H =—1 oz (Alley) ~ —i ailley = —1 - lew
n weg o€ (hIl,,) MEOh(’)g zu.zsohag ,

Thus in the boundary integral with (note that the inward unit normal is oppositely directed from the
prolate spheroidal unit vector) n = —e. and
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h
e = <Gv

v & = =~ CO8p
\/ hEN? + hiv¢
hedn

e = ~ sin
\/h2u? + h2n2¢?

I

g X ey~ g

€, X €~ €,

we note that £ x H* captures F,e, X Hg‘g£ =-F H €, E €, X H*e =FE,He nEes E, €, X ngg E,,HEQU
and Eee, x Hpe, = —E¢Hye,. But at the center E; = 0 E: =0, Hg = 0 and only E H*eg survives, but is
orthogonal to ﬂ =g Thus the w derivative is responsible for a contribution

OE 8E§ 8E§ 8E§ v
— H = H* . ~ ——H*cosp = —— H
<3w % > gc ow _C ow n cose ow i V2 + 772
. OH , OH; L OH, LOHe 1
(B 55) = Fifgte, e~ it sing = -

v 8&) A /U2 +772
V2yv = /2y( cos ¢ and that H is odd in 7, = /2yn = \/27(sin ¢ and it

appears that these will contribute. The w derivatives may not have even or odd behavior anyway. Thus

Noting that E¢ is odd in 7, =

OF * * 8ﬁ 8E§ v 8H§ n
xH" + E* x — ~ | —=—H E}
<0W + x 0W> o <8w 7],/U2+7]2+ Y Ow ,/UQJ'-T}Q

1 2y 1 0°M,., oI, 0?11, 2y 92 )

~ iweg— a9 I

weoy /;5]?;5[h2aw650¢z 2 = awar, v\ o TR ) e
z Y

Transforming back to prolate spheroidal coordinates

I:

oE . . oH
(%XH +FE x%>

1 [1 0%1L,,, oI, 0°11,, . <1 0? ) *}
~ WEY— 3 — 1I

12 Bwdean e P T Fuan ¢
Noting the identities
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2

82—W 82—WCOSQ +la—sin2 7182—W231n Ccos +i8—WQsin cos p + —5 —— sin
g " YT T T Cacap TR T @ gy TN T gy M ¥
W OW oW
an "¢ YT (g
and for the axisymmetric case m = 0
auv ~ ac CPY
—82W —82W cos? —I—la—vvsin2
g0 T H YT e MY
ow _ow
on ~o¢ MY

and

/Qﬂa—wcos d a—W'/chos2 d _ﬂ_@_W
o ov P f, YT

/2”8_W62W sin pd 6_W82_W " cos? psin? @d —I—l (0_W)2/2W sin® pd

o On 0Ov? pap o¢ a¢t Jo 7 wae ¢\ o¢ 0 vy
10_W82_W 27r(1+cos2 ) (1 —cos2¢p)d +11 <8—W>2/2ﬂ(100s2 )*d
19¢ a2 J, 4 7w Tae\ac) o o
1OW &2W [27 11 [ow\? [~

~ 1 —cos?20)dp + == (—) / 1 — 2cos 2 + cos? 2¢) d
4 aé' a§2 o ( COS SO) ¥ 4< aé- 0 ( @ SO) 2

T (o)
4 9¢ \ o¢? ¢ac)

/%a—wsin d a—W/%sin%odgo—wa—W
T o

or

MIOE . .. OH
/0 (@ xH +F X%)'ﬂd@

om[1 Py 01, | %My 11 8_2 3110 +E2) I
WO | 2 wdeac o T Bwdc \dh2ac? T An2¢C ev
Therefore we find (noting that he ~ h and hy, ~ h¢
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i/(uoﬂ-ﬂ*JreUE-E*)dV:/ (8—Exﬁ*+ﬂ*xa—ﬁ)-nds
y 6. \@ 9

scar w w
So /OE 0H
— —_— H* E* —_— .
/50 <_8w x H* + E* x _&u) nhedhydo

o [1 9%, OIIF, %M, (110> 3110
~ 7 _ ev cv - = - - H*
wweom /, . {h? Dwococ 9 | dwac <4 o Tamcac T F > w] heé

S [ 531, OIF 211 110 [/ oI
N, ev ev ev - ev 21—[* 2 QH*
“"50”/_50 [Cawagac 96 amac {4<ac <§ a 6“)““ " H “/h

o [ [ P, O, 0%, 110 ([ om, . 0 g
Nzwsog/go [TawagaT 3¢ +T@w87‘ {271;5 (TW_‘_QHG’U) +~” cos fHEUH d¢/ cos¢

T /50 [ d*,,, OTI%, L.,
d

. ) .
iweg » T@w@f@r o +'yTawaTHeU(’ycos§ s)]dﬁ/cosg

where we used

———1py (T) ~ —co Re [e”/‘lr (1/2 + is/2)} €™/ (5/2) + O (r41n7) ~ _g%

10 0 .
Tor (75%) ~ —coRe [e”MF (1/2+ 13/2)] e™/?s 4+ 0 (7'2 In 7') ~ —sthg+ O (7'2 In T)

to evaluate the last term in brackets. Now from the function

2
cos &

v = o (7,8) cos (ysin& — so)

= 21, (7, 8) cosh o cos (ytanh o — so)

¥ (0,8) = coRe [e”/‘lF (1/2 + 15/2)] ems/?

2 imw/4
% (O,S) ~ 200 Re{r(ei} 8(DO

T owor 1/2 —is/2) | Ow
Olle, J [cos(ysin& —so)| 9o 0 [cos(ysing — so)
7€ J“““”%?[T]_2%(7’5)%80[ cos €

= 21 (7, 8) cosh 08i {cosh o cos (ytanh o — so)}
o

= 20 (7, s) {sinh o cosh o cos (ytanh o — s0) — (y — s cosh? o) sin (ytanho — so)}
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where we have used

sinho = tan ¢
cosho =secé
tanho = sin &

do = sec&d€
we find

<Z—E Xﬂ*+E*Xa—ﬂ)'ﬂdS

w - w

i [ ol i+ eom B av = [
14 Sscar

™ oo 83Hev OIT* 821——[@1; ,
~ 1 — ev T b B p
o / [T OwoEdT O€ +I7 Dwor v (’YSGC o s)] o

d
32 g0
~ iweogll {T&;goT (0, s)} ¥, (0, s)/

g0

—0p

[{sinh o cosho cos (ytanho — so) — (v — s cosh? o) sin (ytanho — so) }2

4+ cos? (ytanh o — s0) (v—s cosh? )] do
Averaging over the sinusoids for large v gives

i [ ol i+ eomEav = [
5

Sscar

oL x .« 0H
<%xﬁ +E xa )~ndS

W t

o2
~ iw50%2 {T&fg: (0, s)} ¥ (0, 8)

oo
/ [{sinh2 o cosh® o + (v — s cosh® 0)2}

go

+y (’y — scosh? 0‘)] do
For the time being we retain only the leading order 72 terms

/ (noH -H* +eoE - E*)dV
14

™ Pty 2
~ Sweog {TawaT (0, s)} ¥y (0,8) 700
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i /4 o
9 5 e 0
wepk“dml6es Re {—F a2=i2) } o

Re [e”“r (1/2+ iS/Q)} ™o
,d%, Re2 [em/4p (1/2+ 13/2)] o8/

~ gok*dr8ci—
’ Ydk? |0 (1/2 —is/2)

In (A4)

The phase ®q indicates the reflection phase of the pth component. Again following Antonsen [1] the
average derivative is set by taking A®g = 27 and the spacing between eigenvalues to be given by the Weyl
asymptotic result for the vector case Ak ~ 72/ (k*V), or Ak? = 2kAk ~ 272/ (kV) [16]. Note in the
acoustic case Ak ~ 272/ (k?V) [15] and Ak? = 2kAk ~ 4n?/ (V'k). In our case we are interested in the scar
amplitude on axis (like the even-even eigenvalues in the 2D problem). Setting the total cross sectional area
of the axisymmetric cavity to A = 24,

1 oo
§A:A0:/ p(z)dz
— 00
The modal spacing in the scalar case is (this corresponds to a single azimuthal parity since the two parities

are degenerate)

dk?
Note that we will take half this spacing for the electromagnetic vector modes (again this corresponds to a
single azimuthal parity)

dk?
Note that by choosing the eigenvalue spacing to be one half that of the scalar case, results in a one half
being inserted into the theoretical strength of the square amplitude. However, we are picking only the even
modes with respect to z so that (this symmetry doubles the square amplitude)

dk?
W = 87T/A
Thus we take [1]

dbo\ " 4,

-=9 = —y

dk? A
where v is the Gaussian random variable with unit variance discussed previously. If we had used the
eigenvalue spacing for the 3D electromagnetic cavity Ak? = 2kAk ~ 272/ (Vk), but even along the z

direction, we would have obtained

Ao\ 21
(W = 75
We recall that in the 2D case we introduced a factor of two (we also used a factor of two for evenness
along the orbit) to account for evenness about the normal to the orbit, but here we are assuming that the
axisymmetric case (say cos @ parity) is handled by starting with the axisymmetric 3D scalar problem.

Thus the energy theorem along with the outer phase derivative connects the normalization constant cg

103



with the integration of the field energy throughout the volume

/ (noH -H* +eoE - E*)dV
14

dq>0> Re? [T (1/24i8/2)] o) (Ay) (co)? (326)

€o8dm <dk2 T(1/2— is/?)\Q
We suspect there is an equal contribution to the energy from the corresponding other component of electric
Hertz potential (the magnetic Hertz potential is constructed later), but this would correspond to the other
degenerate parity of the field in azimuth. Note that the scalar normalization was

Re? [/ (1/2 +is,/2 ®
/\u|2dV~47rd e le ( / +ZS§/ ) d—20 e™r/21n (Ay) 2
v T (1/2 —isp/2)| dk

Thus the factor of two apparent here in the vector case results from including equal contributions from the
electric and magnetic energies. In the scalar case we took

/ lul>dV =1
14

In the vector case we will take

/ (ol - H* + 20 - E*) dV = 25 (327)
14

Because the modes in the vector case are twice as dense as in the scalar case, we actually end up with one
half the squared amplitude of the scalar case.

4.4.2 Summary of Results

A summary of the results for the axisymmetric mode m = 0 are (note that this mode is a vector mode,
with electric field on axis ( = /v? + 12 — 0 polarized in the ¢, direction).

M= —2 0o (7.5) cos (7sin € — s0) (328)

Vo = cog Re [W, + W] (329)

Wy (7,0,8) = Wiga0 (—i7%/2) (330)

= V¢ (331)

Kl —s,00=(p—1/2) 7=k, p=123, .. (332)

Note that
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¥ (0, 8,) = co Re €™/ 2™ /4T (1/2 + is,/2)| , 7 — 0 333
0 P P

and near the orbit

Yo (1,8) ~ coRe [e”“l" (1/2+ 18/2)] ems/? (1—s7%/4)+ O ("' In7)

32¢0 ez’w/4 AP,
~2 B — -
T wor (08) ~ 2o Re [F(1/2 - 13/2)] O
The outer region reflection phase we take [1] to be
% - _ 4 (334)
akz) A’

where A is the cross sectional area of the axisymmetric cavity and where v is the Gaussian random variable
with unit variance and density

— L e
f)= o= (335)

The normalization constant ¢g is connected to the volume energy by means of
/ (o - H* + coE - E*) dV
%

In (Ay)eo (K2eo)” (336)

S (d(I)O) Re? [¢"/1T (1/2 +is/2)] /2
dk? I (1/2—is/2)[?
Note that the scalar form of the normalization was similar

d®g 2 [T (1/2 +is,/2)]
— op
The fields near the axis are

2 2
E, ~ <ia— + k2) I, = (2_’)/8— + k2) I,

12 92 h2 o
2k 02 9 9
h (dcosQ€ Lp5‘ z Tk )H ~ e (337)
Hn - 77:(.4.760 0 77:(.4.750 0

h 6_§ ew ™ dcos§6_§
where

h=d\/cos? &+ (? =dy/cos2 £ + 02 +n2 ~dcosé
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In the case where the eigenfunction is odd with respect to the orbit center

Cylindrical Form
potential

as

where

106

= B = T cosg
ry = VB = Vi sing

T=4/T2+7i=1/27(

kl —spog =pn=kpl,p=1,2,3,...

I, (1,€) = Yo (7,8) sin (ysin € — so)

cosé

If we transform back to Cylindrical coordinates on axis, then we rewrite the

2
cos &

ILey, (0,€) =

Y (0, 8) cos (ysin& — so)

tanho = sin &

z — dsiné

1
o = Arctanh (z/d) = 3 In (ij)

2'9[}0 (07 517)

NI

M., (0,2) = cos [kpz + po (2)]

1 d+z
po (2) = (k—kp) z — §spln (ﬂ)

=g {erom () -n ()]

L [d+/¢ 1
gp = 5111 <m) = Zln(A+)

(338)

(339)



d+0\*
Ay = <m) (340)

and the separation constant s is
sp=(k—kp)ljog=2(k—Fky,)L/In(Ay) (341)

kl=(p—-1/2)7

In the case where the solution is odd along the orbit

I, (0,2) = 20 (0,5p) sin [kpz + po (2)]

V1= 22/d?
kl —spo0=pr=k,/{,p=1,2,3,...

4.5 Vector Scar Projection

We now discuss the projections of the vector scar solution along the orbit.

4.5.1 Trigonometric (Fourier) Projection

The trigonometric projection is taken as

¢
Vp = 2/ cos (kpz) By, (0, 2) dz
0

¢
~ 2/ cos (kpz) k*I,, (0, 2) dz (342)
Using ’
_ 21% (07 Sp) .
Hev (07 Z) = \/TW [¢0)] [kipZ + po (Z)]
gives

dz

¢
V,, ~ 4k, (0, sp) / cos (kpz) cos [kpz + po (2)] (343)
0

dz

¥/
~ 22, (0, 5,) / {cos (po (2)) + cos [2Kyz + po (2)]}
0

Averaging over the trigonometric functions gives
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dz

1= oo (52 - (222))

o (0,5,) = coRe [e”sp/26i7/4f (1/2+ isp/Q)} (344)
In the limit where d >> ¢ we find that py () — 0 (the same as s, — 0) and the amplitude divergence factor

/1 —22/d?> — 1 so that

4
V, ~ 2k%co Re [ew/?e”/‘lrup+¢sp/2)} / cos (po (2))
0

where

V,, ~ 2k?co Re [e”sp/Qei”/4F (1/2+ isp/2)] 14
Then using the normalization condition (we have changed this to twice gg, since the electric and magnetic
energies are assumed to be equal, in order to be more consistent with the scalar normalization)

2¢0 =/ (moH - H* + eoE - E*) dV
14

N d®o\ Re® [¢™/4T (1/2 + is/2)]
sdm (de) T (1/2—is/2)]?

oo\ _ 4,
dk? A

e™/21In (Ay) o (k200)2

v (1/2 —is/2)]

k'QCO = - -
V/TAdIn (AL ) Re [e/4T (1/2 4 is/2)] ems/4
we find
- 20T (1/2 —is/2)|e™s/4¢
i TAdIn (M)
Now taking
(LV?) = L*G1 (s) /A (345)
we find

IT(1/2 —is/2)|* €™/ (2¢/d)

Guls) = wln (Ay)

e ed) 2L/d
~ cosh(ms/2)In(Ay)  (1+e™)In(A,) (346)

where we have used
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™

T (1/2+is/2)f" = cosh (7s/2)

Now let us use

In(A,) = 2In (d+ﬁ) ~2L/d
to yield
1
Gl (S) (1 +e_ﬂs)

4.5.2 Elliptic System Projection

If we take the projection to be defined by a surface integral about the scar (the quasirectangular unit
vector e, is part of this projection operator) we will obtain (note that this limit definition of the integration
around the scar produces a definition without the extra amplitude divergence factors in the kernel of the
projection operator)

2 .
cos (ysin€ — so
Y /5 o / g )EU (¢, 0, 8) hpdpheds

¢(—0¢d cosé
B T cos (ysiné — so) oy
%@ / = / ot L, (0. hodgheds (347)

where

and the Hertz potential on axis is

I, (0,¢) = éwo (0, 5) cos (ysin& — so)

tanho =sin¢

d+ ¢

(k—kp)l = sog = sln (tan, +sec&,) = sln =7

1
=57 In(Ay)
and the metric coefficients near the axis are

he = he = dy/sinh? ¢ + cos? & ~ dy/cos? € + (2 ~ dcos€
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hy = dsinh (cos§ ~ (dcosé
Thus we find

o
V,, ~ 2k*d, (0, s) / cos? (ysiné — so) dé
—£

0
Now for large v we average over the sinusoid and approximate the integration as ¢,

Vy, ~ 2k2d€thg (0, 5) (348)
where

o (0,8,) = coRe [e”P/Qei’TMF (1/2+ isp/Q)}
Inserting the amplitude coefficient from the energy theorem

2eo=/ (toH - H* + £oE - E*) dV
\%

dk?

N d®o\ Re® [T (1/2 +is/2)] ., 2.2
sir () Tz o)

e\ _ 4,
dk? A

or with the volume integral taken as 2¢g

e/ D (12 + s, /2)

U/ Ardn (A;) Re [e/AT (1/2 + isp/2)]

k‘200 =

gives

e™sr/4 |1 (1/2 +is,/2)|

Po (0,8p) = v k2\/Ardln (A})

Thus the projection is

e™/4 [T (1/2 + s, /2)]

V, ~ 2d

p o Tndin(h)
Now using

&y = arcsin (¢/d)

and

T (1/2 —is,/2))> = —

IT(1/2 = isp/2)] cosh (7s,/2)
we find
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meo/2 |T (1/2 + sy /2)|”

L 2 — 4L, 2€ 2

(L) d Ardln (Ay) %

ALd e in® (¢/d

B Aln (A4)cosh (7s,/2) arcsin” (£/d)
Ld

8arcsin? (£/d)

T Aln(Ay) (1 +e o)
Then with

(LV}) = L*G1/A

we find

_ (d/L) e
G (sp) = A (5 e_mp)Sarcsm (¢/d)

The limit d >> ¢ gives

d+/

and

2L/d 1
In(AL)(1+e 7)) 14+e 7

G1(sp) —

4.5.3 Scar (Galerkin) Projection

(349)

From an application point of view we may want a the field projection taken as a simple line integral

along the orbit

50 in —_
=/ cos(ysing = 50) 4 &) hede

—¢, cosé

S0 cos (ysiné — so)
= k211, (0, &) hed
/_ . ot (0,€) hed€
where the Hertz potential on axis is

2
cos&

I, (0,¢) = ¥ (0, 8) cos (ysin& — so)

tanho =siné

do = sec&d€

(350)
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and the metric coefficient near the axis is

he = d\/sinhQC—l—cosQf ~ dy/cos? € + (%~ dcosé
Thus we find

€o
V, = 2k*dy, (0, s)/ cos? (ysin€é — so) de

—&, cos &

oo
= 2k%dy, (0, 5) / cos? (ytanh o — so) do
—oo
Now for large v we average over the sinusoid and approximate the integration as o

V,, ~ 2k*dogi, (0, s)
Plugging in

e/ T (12 + s, /2)]

Yo (0,5p) = v k2\/ArdIn (AL)

gives

1 , dln (Ay)

~ — WSP/4 +
Vy 5 0€ IT'(1/2 4 isp/2)| i

Now using

T (1/2 —is,/2))? = ————

T2/ =
we find

(pvzy— Y Ldn(h) 1 Ldin(A.)
P/ cosh (ms,/2) 4A C l4e T 2A

Then taking
(LV}?) = L*G1/A
gives

G, = L) (Ay) /2

14 e 7
In(Ay) =2In %

Note that if we take the limit £ << d then In (A4) ~ 2L/d and
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1

1~ T+emr

4.5.4 Scar (Galerkin) Projection Using Cartesian Form

This can also be carried out using the Cartesian form of the asymptotic solution
¢ —1/2
V, = 2/ (1—22/d%) cos [kpz + po (2)] By (0, 2) dz
0

~2 /Z (1= 22/d2) "% cos [kpz + po (2)] KTy (0, 2) dz (351)
0

where

o (0 (2]

2’(/}0 (07 SP)

In the case where the parity along the orbit is odd the projection is taken as

IL., (0,2) = cos [kpz + po (2)]

¢
V, = 2/ (1- 22/d2)71/2 sin [kpz + po (2)] Ey (0, 2) dz
0

~2 /z (1= 22/d2) " sin [kyz + po (2)] KT, (0, 2) dz (352)

Notice that the only difference %etween the 3D scalar projections and these 3D vector projections is that
u is replaced by k2?II.,. Because the vector normalization condition is the same for k?cy as the scalar
condition for ¢y, the statistics of the projection will be similar. The actual potential is made up of a sum of
different values of p, but because the pth components are asymptotically orthogonal at high frequencies, if
the eigenfunction is made up of a sum

ey (0,2) ~ > Tewy (0, 2) (353)
P
this projection will pick out the p term of the sum
¢ -1
V,, ~ 4kt (0, sp)/ (1—2%/d*) " cos® [kypz + po (2)] dz (354)

0
Now averaging over the rapidly varying k,z we find

, ¢/d ot , i ;o 1
~ 2k°d 1-— dz = k*d d
V, wO(O,sp)/O (1-2%) "dz wO(O,sp)/O (1—z+1+z> 2z
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; 1+¢/d
~ coRe [e”SP/QeZ”/4F(1/2+isp/2)] deln‘ +4/ ‘

1-4/d
TSy /4 .
L |F(1/2+zsp/2)|d1n’d+£’
VArdIn Ay d—1¢
dhl (A+)

1
~ ST (1/2 45, /2)

where in the preceding result we have chosen the normalization

TA

/(uoﬁ-ﬂ*+6oﬂ~ﬂ*)de2&)
1%
to find the amplitude as given by

Re? [e™/AT (1/2 2
8rd (4 > e le (1/2 + isp/2) e™»/2In (A4) (k200)2 ~ 2

2
—v

A T (1/2 — isp/2)|?
Recall that in the 3D scalar case we had set

lul*dV =1

%
In this 3D vector case, taking the average of the square, yields

TSp /2
(LV2) ~ e D (12 4 sy ) L) e Ll (L)

irA " cosh (msp/2)  4A
where we used

™

D (1/2 — is,/2))> = cosh (75,72)

Now writing

(LV?) = L*G1 (sp) A
gives

1

(o) = Temme

(d/D)In(A+) /2

the same result.

Trigonometric Projection Limit If we expand for £ << d

1 d+¢

we obtain the 3D trigonometric projection
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(LV?) = LGy (sp) /A (355)
where

Recall that in 2D we had taken

(VELVZ) = L2G1 (s,) /A

where

2/L]dexp (ms,/2) [T (1/4 — is,/2)[*
(r/2)In (Ay)

G1 (Sp) =
and in the ¢ << d limit

where we had set

/stzl
A

4.6  Vector Random Plane Wave

The random plane wave construction is now discussed in the 3D vector formulation. Initially this is not
constructed in axisymmetric geometry but in full 3D. It is compared with the axisymmetric m = 0 solution
only because this is the solution that exists as the scar orbit is approached in the electromagnetic case. We
need to include the random vector direction in this calculation, which is done later in the section.

4.6.1 Vector 3D Random Plane Wave Construction

The vector field random plane wave representation can be written as

N

. . 1o +ik . r

E,. = A}gnoo v2/ (VN)Re Zaj (cos e+ sing,e;) e T (356)
Jj=1

where the polarization angle ¢,,; is uniformly distributed on 0 to 27, e; is perpendicular to k; and

€ = (k; x g;) /k. Now if we take

N
T X . io+ik-r
BB, = Jim VATV Re | S0 (cosipye, +5ingy) 55

Jj=1
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N

v2/(VN)Re Z ajr (cos ©pirej +sinp, el ) el kL
=1
and

(E,-E.), = hm v2/(VN) Z hm v2/ (VN') Z a;ja;) , cos (a]—i—k )cos(aj +kj

Jj’'=1

(cos Ppit; T sin <ppj§;) (cos PpjrLjr T sin cpm/e] )
where the amplitudes a; for different j values are regarded as independent and the cross terms vanish

N
(£, E,), = lim iN 20052 (aj +k;-1)

and averaging over the phases

I 1
(cos (o + ;1)) = g [ [ heos2 (e 4k )] day = 5
Thus
N
. 2 1 1
Er-Brloyo, = i 75D 557
4.6.2 Vector 3D Trigonometric (Fourier) Projection
The trigonometric projection (d large) on the vector random plane wave field is

1

¢
Vpr = / cos (kpz) By (0,2) dz = / cos (kpz) e, - £, (0,2)dz
—¢ —¢
or

¢
= lim /2/(VN) Zaj e, - (cosp,e;+sing,; j)/écos(kpz)cos(ozj+kzcost9j)dz

N—o00

N —oo

¢
= lim /2/(VN) Zaj (cosgp,e; +sing, e ])/Zcos (kpz) cos (a; + kzcosb;) dz

ki=k (gx sin 6; cos p; +e,sin 0, sin ¢, +e,cos Qj)

Q]'Ejzo
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Let us take

€; = g, sinfo; cos py; + ¢, sinbo; sinp,,; + ¢, cos Oo;

with
€; - kj =sinb;cosp;sinby; cospy; +sinb; sin p; sin o sin g ; + cos f; cosfy; =0

= sin 0 sin 6y cos (<pj - Lpoj) + cos 8 cos Oy,
We can define the unit vector e; by taking fo; = /2 and ¢; = ¢; — 7/2 or

€; =€, 8inp; —e, o8y,

Then we take
[ ] . ] . Q] . . 1 . — .
¢ = (e, sinb;cos p; + ¢, sinb;sing; +e, cosb;) x (g, sinp; — ¢, cosp;)
= ¢, cosf; cos ©; +e,co8 0, sin p; — €, sin 0;

Then the projection becomes

N ¢
Vpr = lim_ V2/(VN) Z a; (cos @, sing; + sinp,; cos 0 cos ;) /4 cos (kyz) cos (aj + kzcosb;) dz

j=1
Now form the square
N
Vor = lim /2/(VN)}
j=1
N/
Nl/iLnOO vV2/ (VN') Zl a;ja; (cos pj Sinp; +sinp,,; cos B cos cpj) (cos pjr SN +sinp,,;r cos O cos goj,)
Jj'=

¢ e
/ / cos (kpz) cos (kpz') cos (aj + kz cos8;) cos (ajr + kz' cos0;/) dzdz'
—¢J—¢

If we average over the amplitudes a; and regard different j values as independent the cross terms vanish

N ot
2
<V;02T>aj,aj = lim VN Zl/—z /—e cos (kpz) cos (kpz') (cos (a; + kz cos ;) cos (aj + k2’ cosaj)>aj dzdz'
=

<(cos @, Sinp; + sin g, ; cos 0 cos <pj)2>¢. »
J1°7PJ

The final additional factor arising from the vector nature of the field averages to

117



1
<(COS pj Sinp; +sinp,,; cos B cos cpj)2> =1 (1 + cos? Gj)
©jPpi
and before we had the average over the phases as o

2m
(cos (aj + kzcosB;) cos (aj + k2’ cos b)), = L% / [cos (k (z — 2") cos 0;) + cos (2a; + k (z + 2) cos 0,;)] dav;
! 0

2

1 1 1
= 5 cos (k(z —2")cosb;) = 5 cos (kzcosB;) cos (kz' cosb;) + 3 sin (kz cos ;) sin (kz' cos ;)

This means that

N ¢ ¢
. 1
vy = A}gnoo N j; (14 cos®0;) /—z cos (kpz) cos (kzcos ;) dz/ cos (kpz") cos (kz' cosb;) dz

T
p aj,Q5,L5,Ppj

N ¢
Z (14 cos®6;) / [cos (kpz — kzcos ;) + cos (kpz + kzcosb;)] dz
= —¢

~

/ [cos (kp2" — k2’ cos0;) + cos (kpz' + k2’ cos ;)] dz’

~

or

2\ 1/4 sin (k, — kcos@;) ¢  sin(k, + kcosf;) ¢ 2
<Vp > h VNZ 1+CO i ) kp — kcos0; + kp + kcos 0

Now replace the summation Wlth the averaging over the sphere of 47 solid angle

14 7T sin (k, — kcos@) ¢  sin(k, + kcos0){ 2 9 .
{Vir) 47rV/ / [ kp — kcos * k, + kcos0 (1+ cos™0) sin 99

1/4 (" [sin(k, —kcos@) ¢ sin(k,+ kcosf) /! 2 2
== 1

2V / { kp — kcosf - kp + kcosf (1+ cos™6) sin 66
Changing variables to z = cos 6 gives

1 ' [sin(k, — kz) ¢  sin(k, + kz) (1>
2\ _ _— P P 1 2 d
(Vi) QV/_ { ke |kt ke ] (1+27%) do

1t [Sin2 (kp — k)¢ _sin(k, — kx) £sin (k, + kx) € sin® (k, + kx) € (1+2%) da

ki (ky — k) (kp —kz)  (kp + kz) (kp + k)
Instead we note that when & — k,, the first term peaks for § — 0 and the second term peaks for 6 — .
Thus letting 0 = ¢//kl/2 gives (note that 1 + cos? § ~ 2)
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oo 14 (7 [sin (ky — k+ k6%/2) €] v [sin (y+ k=K (0—m)° /2) € ’ .
<Vpr>_7/0[ kp — k + k6?/2 ]9d9+/0 [ kp+k—k(@—m)?/2 (m=0)df

2

_ 02 & sin((kp—k)£+§2)
_Vké/o [ (ky — k)42 e
Now taking
A=2(k—kp)L
gives
2
oy L2 [sin(=A/4+ )

Letting ¢* = ¢ gives

(V) L? /OOO [sin(—x/4+g)]2d§

VikL Y
- ViZL /, o;/4 sin” _§
e [ et
- Vilj‘L _Sini(/Z\LM) + [ O;/4 sin (2€) %1
- [ [ e

L? [_ sin? (\/4)

~ VakL i g WQ)}

Now letting

(kLV;}) =L*G(\)/V (358)
gives
1 sin? (\/4) « .
G =y 3 +5 +Si ()\/2)] (359)

Thus the 3D vector case gives exactly half the result of the 3D scalar case.
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4.6.3 Extraction Of m=1 Mode From Vector Plane Wave Representation
The vector field random plane wave representation can be written as

N
E,. = A}gnoo v2/ (VN)Re Z aj (cosppe; +sing,;e;) e T (360)
j=1
where a; are real random numbers with <a§> =1, Ej} = k are random vectors uniformly distributed in
angles, and the random phases a; are uniformly distributed on a 27 interval. We now wish to extract the
part that has cos ¢ dependence. If we transform the unit vectors to cylindrical coordinates

N
B, = i VTN ascon i1+

[gp {cos Pp; Sin (<pj — gp) + sin,,; cos 0; cos (ij — gp)} +e, {sin p,j cos b sin (ij — <p) — COS(p,,; COS (ij — <p)}

—e, sing,; sin 6;]

N

= A}gnoo v2/(VN) ;aj cos (kpsind; cos (p; — @) + kzcos0; + a;)

[Qp {Cos Pp; SiN (<pj — gp) + sin,,; cosf; cos (cpj — 4,0)} +e, {sin ,,; cos 0 sin (cpj — <p) — COS(p,,; COS (cpj — <p)}

—e,sing,; sin 6;]
Now let us multiply by cos ¢ and integrate over the interval from —m to m

27 7r+<,oj

L, cospdp = / L, cos pdyp

0 77T+ij

N 7r
= Nlim v2/(VN) Zaj/ cos (kpsin 0 cosu + kz cos 0 + ;) (cos ucos p; — sinusin @)
— 00
Jj=1 -

[gp {— €08 (p,,; Sinu + sin ¢, ; cos 0 cos u} +e, {— sin ,,; cos 0 sinu — cos p,,; cos u} — e, sinp,; sin Oj] du

The cosusinu and sinwu terms vanish (since the cosu in the phase is even in u) and

2 N
/ E, cospdp = ]\}im v2/(VN) Z 2a; / cos (kpsinf; cosu + kzcos0; + o)
0 — 00 j:l

™
0
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2 2 2

[gp {cos p; Sin” using; +sinp,,; cos 5 cos” u cos ij} +e, {sm 5 cos b sin” usinp; — cos,,; cos” u cos ij}

—e, sinp,,; sinf; cosucos ¢;| du

N ™

= A}E»noo 2/ (VN) Zaj /0 cos (kpsinf; cosu + kzcos0; + ;)
j=1

[gp {cos ©p; (1 —cos2u)sing; +sinp,; cos f; (1 + cos 2u) cos cpj}

+e, {sing,; cos0; (1 — cos2u)sin; — cosp,; (1 + cos 2u) cos p; }

—e.2sin @,; sin 0 cosu cos ¢, du

Now using the identities [20]
/ cos (z cosu) cos (nu) du = mcos (n/2) J, (2)

0
/ sin (z cosu) cos (nu) du = 7sin (nw/2) Jp, (2)

0

yields

27 N
/ E,. cospdp = W]\}im v2/(VN) Zaj le.2sin (kz cos0; + a;) sinp,; sin0;.J; (kpsin ;) cos ¢;
0 —00 <
Jj=1

+e, {cos,; (Jo (kpsinb;) + Jo (kpsin6;)) sin ¢, + sin @, ; cos 0; (Jo (kpsinb;) — J (kpsinb;)) cos ¢, }
cos (kzcosb; + a; )
+e, {singp,; cos0; (Jo (kpsinb;) + Ja (kpsin6;)) sinp; — cos@,; (Jo (kpsinb;) — Ja (kpsind;)) cosp; }

cos (kzcos0; + ;)]
Thus the m = 1 random plane wave (even in ¢) is (we are removing the integration of cos? ¢ from 0 to 27
by means of the 1/7)
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_ 1 27
EMm=Y = = cos<p/ E, cospdp =
™ 0

N
Nlim v2/(VN) coscpZaj le.2sin (kz cos 0 + a ) singp,; sin0;.J; (kpsin ;) cos ¢,
oo =

+e, {cos,; (Jo (kpsin0;) + Jo (kpsin6;)) sin ¢, 4 sin @, ; cos 0; (Jo (kpsinb;) — J (kpsinb;)) cos ¢, }
cos (kzcosb; + a; )
+e, {singp,; cos0; (Jo (kpsinb;) + Ja (kpsin6;)) sin; — cosp,; (Jo (kpsin;) — Ja (kpsind;)) cos; }

cos (kzcos0; + ;)] (361)
Note that

. . Ji (kpsind;)
Jo (kpsin®;) + Jo (kpsinf;) = QW
Jo (kpsin®;) — Jo (kpsin6;) = 2J; (kpsin ;)
For the projection we will examinee, - E,. =¢e n E, at ¢ = 0. First let us check the normalization over the
cavity by taking the dot product of this field with itself

N
= A}gnoo {2/ (VN)}cos? ¢ Z [4sin® (kz cos0; + o) sin® ©pj sin® 0;J7 (kpsin ;) cos ®;
j=1

(B¢ . BV

+ {cos ¢, (Jo (kpsin0;) + Ja (kpsin0;)) sin; + sin@,; cos 0 (Jo (kpsin ;) — Jo (kpsin6;)) cos ij}2
cos® (kzcosf; + ;)
+ {sinp,; cos 0; (Jo (kpsinb;) 4 Jo (kpsin6;)) sin; — cos,; (Jo (kpsin6;) — Jo (kpsin6;)) cos 90]‘}2

cos® (kzcos0; + o)
where we have averaged over the amplitudes a; and used their independence. Next we average over the
phase a;
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N
_ _ 1
<E$m—1) . Egm—1)>aj7aj =3 Jim {2/ (VN)}cos® ¢ Z [4sin® p,; sin® 0;J7 (kpsin 6;) cos® ¢,

Jj=1

+ {cos p,; (Jo (kpsinb;) + Jo (kpsin0;)) sin @; + sinp,; cos 05 (Jo (kpsinb;) — J» (kpsin6;)) cos SOj}2

+ {sinp,; cos 0; (Jo (kpsinb;) + J (kpsin;)) sin p; — cosp,; (Jo (kpsinb;) — J5 (kpsin0;)) cos (‘pj}2:|

Then averaging over the polarization angles ¢, gives

N
<E£m:1) .Egm:1)> = i A}im {2/ (VN)} cos® goz [4sin®0;J7 (kpsin ;) cos® ®;

5,5, Ppj j=1
+ (1 + cos® 6;) {(Jo (kpsing;) — Jo (kpsin;))? cos® ; + (Jo (kpsin8;) + Jo (kpsin6;))* sin? H

Next averaging over ¢; gives

N
- - 1
-1 =1 . . :
<E$,m ). Em )> =3 Jim {2/ (VN)}cos? ¢ E [4sin®6;J7 (kpsin6;)

aj,05,Pp5,P; =1

+ (1+ cos?6;) {(JO (kpsin®;) — Jo (kpsin0,))2 + (Jo (kpsin ;) + Jo (kpsin9j))2}]
or

N
= 1\}51100 {1/ (VN)} cos® @Z [sin®0;J7 (kpsin0;)

j=1

<E£m:1) ] Egm:1)>
- o 5,05, PpjsPj

Averaging over §; gives

<E(m:1) 'E(m:1)>

=r

1 us
= (1/V) cos? @5/0 sin 0 [sin® 0;J7 (kpsin6;)

Aj,Q5,PpisPj

) 2
20\ L1 g o (o (kpsing;) .
+(1+cos 9]) {(J1 (kpsinf;)) +< kpsin; “s

Changing variables to u; = cos 0, gives

1
<E£m:1) -E$7’l:1)> = (1/V)cos® <p/ [(1 —ui) J} (k;p, /11— u?)
;@5 Pp;sp;:0; 0
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2
S e e =
J

SN

Now changing to w; = /1 — uj

1
(Em=n - =) = (/Vyeos o [ [uh 3 (hpw)
0

aj7@j7§5p_ijj79

(362)

+(2- w){<J1<kp >>2+ < ’“”“’J } “’ﬂd“’ﬂ

kEpw; 1

If we integrate over the volume before taking any limiting cases of kp (such as kp — 00), we find

plnax
/ <E$,m:1) E£m21)> / / w Jl (kpw])
1% apajwm‘a%

+ (2 wj) {(J{ (kpw;))* + <7J1 (kpw])> H pdp— 2

kpw; 1/17w]2.

For kp =0

_ _ 1 ! 1 I
E(mfl) . E(,mfl) =0 > — (—) 0052 / _— } 1-— w2 w,idw;
<_T = (p ) aj,05,Ppi:P;j ,9j 2V 4 0 /1 — ’UJJQ ’ ! !

15
= —=cos’ ¢

For kp — oo we might consider expanding the Bessel Functions in their asymptotic forms

Ji(2) ~ 2/ (7z) cos (z — 37 /4)

Taking the integration to average over the squares of the sinusoids we would arrive at

<E£m:1) . E(m=D l/V cos? l/V cos® ¢ , kp — oo

>aj704j7§0pj7997 / /1 —

If we integrate over the cavity volume using this asymptotic form for large kp we find

Pmax  [2T £(p)
JREERNE av— [ [Cap [ 7 {Een g d2pdp
14 GG PpjsPj 0 0 —£4(p) G, QG PpjsPj
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Pmax
= / <E£m:1) ~E£m:1)> 27l (p) pdp
0 aj,0,Pp5,¢;5 ¢=0

If we use the asymptotic form we find

— - 2r  [Pmax TA
Em=1 E<m*1>> AV ~ == / 0(p)dp = —— 363
/V <_T =" 5,0, 5P kV 0 (p) 2kV ( )
where A is the total cross sectional area of the cavity. Note that if we had included the sin ¢ terms from

the 3D random plane wave representation we would expect this result to be doubled.

It is instructive to examine the sin¢ terms. So let us multiply by sin ¢ and integrate over the interval
from —7 to w

2 7r+goj
/ E, sinpdp = / E, sinodp
0 -4,

N ™
= A}im v2/(VN) Zaj / cos (kpsin 6 cosu + kz cos 0 + ;) (sinwcos @; + cosusin @)

le, {—cos i, sinu+sing,; cosbjcosu} + e, {—sing,; cosb;sinu — cos p,; cosu}

—e,sing,; sin 0;] du
The cosusinu and sinw terms vanish (since the cosw in the phase is even in «) and

2w N T
/0 E, sinpdp = ]\}Enw v2/(VN) Z 2a; /0 cos (kpsinf; cosu + kzcos 0, + ;)
j=1
[gp {— COS (p,,; COS P sin® u + sin pjSinp; cosb; cos? u}

. ENC I . 2
-l-gsp{ sin,,; cos ¢; cos 0 sin” u — cos ,,; sin ¢, cos u}

—e. singp,; sinf; cosusin goj] du

N—o0

N w
= lim /2/ (VN)ZCL]'/ cos (kpsinf; cosu + kzcos0; + a;)
=t 70

e, {—cosp,; (1 —cos2u)cos ¢, + sing,; cos b (1 + cos 2u)sin ¢, }

+e, {—sing,; cos0; (1 — cos2u) cos p; — cos @,; (1 + cos 2u) sin ¢, }
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—e,2sinp,,;sinf; cosusin cpj} du

Now using the identities [20]
/ cos (z cosu) cos (nu) du = mcos (n/2) J, (2)

0
/ sin (z cos u) cos (nu) du = 7sin (nw/2) J,, (2)

0

yields

2m N
/ E, sinpdp = W]\}im v2/(VN) Zaj le.2sin (kzcos0; + aj) sing,; sin0;.J; (kpsin ;) sin ¢,
0 —0 -
j=1

+e, {—cosp,; (Jo (kpsinb;) + Jo (kpsinb;)) cos @; + sinp,; cos0; (Jo (kpsin;) — Ja (kpsin6;)) sinp; }
cos (kzcosb; + ;)
+e, {-sin @pjcost; (Jo (kpsind;) + Jo (kpsind;)) cos p; — cosp,; (Jo (kpsind;) — Jo (kpsin b)) sin <pj}

cos (kzcosf; + ;)]
Thus the m = 1 random plane wave (odd in ¢) is (we are removing the integration of sin® ¢ from 0 to 27
by means of the 1/7)

. 1 27
Em=Y = Zging E, sinpdp =
™ 0

N

A}im v2/(VN) singoZaj le.2sin (kz cos0; + o) sin g, sin6;.J; (kpsin ;) sin p;
[eS) =

+e, {—cos,; (Jo (kpsin®;) + Ja (kpsinb;)) cos p; + sing,; cos0; (Jo (kpsinb;) — Jo (kpsin6;)) singp; }

cos (kz cosf; + o)

+e, {=sing,;cos0; (Jo (kpsinb;) + Ja (kpsinb;)) cosp; — cos,; (Jo (kpsinb;) — Ja (kpsinf;)) singp; }

126



cos (kzcos0; + ;)]
Again let us check the normalization over the cavity by taking the dot product of this field with itself

N
<E£m:1) . E("‘:l)> = J\;im {2/ (VN)}sin? ¢ Z [4sin? (kz cos0; + a;) sin® Ppj sin® ;J7 (kpsin 0;) sin® ®;
aj —00

¢
j=1

+ {—cosp,; (Jo (kpsin;) + Jo (kpsin b)) cos ;4 sin g, cos0; (Jo (kpsin ;) — Jo (kpsin6;)) sin cpj}2
cos® (kzcosO; + ;)
+ {sinp,; cos ; (Jo (kpsinb;) 4 J2 (kpsin6;)) cos ; + cos p,; (Jo (kpsin;) — Jo (kpsin6;)) sin cpj}2

cos® (kzcos0; + o)
where we have averaged over the amplitudes a; and used their independence. Next we average over the
phase «;

N
_ _ 1
<E§m—1> -Egm—1>> = = lim {2/ (VN)}sin® o> [4sin® o, sin® 0, J7 (kpsin6;) sin® o,
aj,o 2 N—oo =

+{—cosp,; (Jo (kpsin;) + Jo (kpsin b)) cos ; 4 sing,; cos0; (Jo (kpsin ;) — Jo (kpsinb;)) sin cpj}Q

+ {sinp,; cos 0; (Jo (kpsinb;) 4 J (kpsin6;)) cos ; + cos ,; (Jo (kpsinb;) — Jo (kpsin6;)) sin (‘pj}2:|

Then averaging over the polarization angles ¢, gives

N
— - 1
<E£m*1) 'E£m71)> o =1 A}im {2/(VN)}sin® ¢ g [4sin®0;J7 (kpsin ;) sin® ®;
Qj 05, P —00 =

+(1+ cos? 0;) {(Jo (kpsin;) — Ja (kpsin Gj))2 sin? @; + (Jo (kpsin8;) + Ja (kpsin 0]-))2 cos? ®; H

Next averaging over ¢; gives

N
_ _ 1
<E£m—1) .Egm—1)> =3 A}Enoo {2/ (VN)}sin? ¢ Z [4sin®6;J7 (kpsin6;)

Aj,05,Ppi:Pj j=1

+ (1+ cos?6;) {(JO (kpsin0;) — Jo (kpsin0;))% + (Jo (kpsin ;) + J (kpsin9j))2}]
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or

N
<E$m:1> .E&m:”> = lim {1/ (VN)}sin®¢ > [sin®0,J7 (kpsin6;)
4,05 9p 05 N0 =1
' 9 Ji (kpsin6,)\ >
+ (1 + cos ;) {(J{ (kpsind;))” + (W

Averaging over §; gives

<E£m:1) ~E$m:1)> = (1/V)sin® @%/ sin 6 [sin2 0,;J3% (kpsin6;)
0

A5,05,Pp5,P;4

kpsin 6

+ (1 + cos®0;) {(J{ (kpsinb;))” + (M) }] do;

Changing variables to u; = cos; gives

(g 'E5m21)>a].7%_#,m% = (1/V)sin® ¢ /0 1 (1= 2) 72 (kpy 1= u2)

2
F () (7 (ko T=2)) Jlk(];’:/_ Vllujﬁ du;
J

Now changing to w; = /1 —u

<o

1
<E£m:1) .E£7'l:1)> = (1/V)sin? go/ (w3 I} (kpw;)
0

A5, 05, PpisPj

+(2 w5 ){(Jl (kpwj))Q_'_ (M) }1 _widw;

k:pwj 1 — w2

For kp — oo we might consider expanding the Bessel Functions in their asymptotic forms

J1(2) ~ 2/ (7z) cos (z — 37 /4)

Taking the integration to average over the squares of the sinusoids we would arrive at

(g g /vy

/ l/V sin? ¢, kp — 0o
ajvajv‘ijvSDJ /1 —

We next integrate over the cavity volume

128



ptnax 27T Z(p)
JRERi av— [ [Cap [ (e pm) dzpdp
\% A5 5, Ppj P 0 0 —£(p) A5 X5, PpjsPj

Pmax
- [ (B 20 (p) pdp

5,05, P55 P=T/2
If we use the asymptotic form we find the same result as previously for the cos ¢ contribution

(m=1) | m=1) Rl _ 4
/V <E L >aj,aj,@pj,¢j Wy | (0l =55
Note that by not adding this into the normalization (which would reduce the final result by a factor of two)
we are being consistent with the theory, only using the potential component II., and not adding in the
contribution of Il.,, which is also consistent with the simulation. In other words only a single parity was
included in the simulation, the random plane wave normalization, and the theory.

The desired projection had we retained the sin ¢ terms is

E=D (p=0)-e, =B (p=0)-¢,cos0 — B (p=0)-¢,sine

with

E&m:l) _

N
]\}im v2/(VN) Z a; [e.2sin (kzcos 0 + a;) sinp,; sin0;.J1 (kpsin ;) cos (¢; — ¢)

+e, {cos ®p; (Jo (kpsind;) + Jo (kpsind;)) sin (goj — ) +sin ¢p;cost; (Jo (kpsinb;) — Jo (kpsinf;)) cos (goj -9}
cos (kzcosb; + ;)
+e, {sing,; cos0; (Jo (kpsin;) + Ja (kpsin6;)) sin (p; — ) — cosp,; (Jo (kpsinb;) — J5 (kpsin;)) cos (¢; —¢) }

cos (kzcos0; + ;)]
Thus

BV (p=0)¢, =

=T

N

]\}13100 v2/(VN) Jzz:l a; [cos ¢ {cos ®p; Sin (ij — ) +sin ¢ cos B cos (ij -0}
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—siny {sin pj cos b sin (goj — <p) — COS(p,,; COS (goj — <p) }] cos (kzcosb; + )

N
= Jim_ V2/(VN) Z; a; {cos p,;sing; +sing,; cos; cos p; } cos (kz cos0; + o) (364)
=

which is the same as the following expression based on the even solution when we take ¢ = 0.

4.6.4 Trigonometric (Fourier) Projection of Random Plane Wave m=1 Mode

In the even case, taking the limit ¢, p — 0 the projection is given by (if we had retained the
sin terms from the 3D random plane wave form, we could alternatively have taken the result
—E" "V (p=0,p=7/2) ¢,)

E,E,"l:1) (p — 07 p= O) . Qp =

N
Jim v/2/ (VN) Z a; {cos g, ;sing; +sing,; cos; cos p; } cos (kz cos 0 + o)

j=1
and the projection is taken as

14

Vor = Egm:1) ~e,cos (kpz)dz =
,

N
]\}iinoo v2/(VN) Z:l a; {cos ®p; Sin@; +sin g, ; cos 0 cos <pj}
=

¢
/ cos (kzcos0; + ;) cos (kpz) dz
—t

N
1 . . .
=5 A}gr})o v2/(VN) E 1 a; {COS(,Dpj sin g, + sin ¢,,; cos 0; coscpj}
=

¢
/ [cos (kzcosO; + aj — kpz) + cos (kzcos O + o + kpz)]| dz
—t

N
1 . . .
=5 A}gr})o v2/(VN) E 1 a; {COS(,Dpj sin g, + sin ¢,,; cos 0; coscpj}
=

sin (k€ cos0; + coj — kpl) + sin (k€ cos; — a; — kpl) N sin (k€ cos0; + o + kpl) + sin (k€ cos0; — a; + kpl)
kcosO; —ky kcosO; + ky

N
= ]\}Enoc v2/(VN) ;aj {cos g, sin ¢; +sing,; cos; cos gpj} coS
i=
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sin (klcos0; — ky0) N sin (k¢ cos 0 + k,0)
kcosf; — kK, kcosO; + ky
Then we take

N

<‘/1-927">a_7- = ]\}Enw {2/(VN)} Z {cos? Ppi sin? @; + sin? Ppi cos? 0 cos? o} cos?
j=1

sin (k€ cos0; — kpf) n sin (klcos 0; + k() ?
kcosO; —ky kcosO; + ky
and

1 [" sin (klcos0; — ky0)  sin (klcos; + k()% .
2 _ 1 29_ J P J P 0.do;
<%T>“J!aﬁ‘ﬁm‘v<ﬂjﬁj 8V /0 (14 cos”6;) kcosf; — ky * kcosf; + kK, I

_ L ey [tk ko) € sin(but k) € y
s ), (ku—kp) € (ku+kp) ¢
_er (1 +u?) [Sin(’f“j —kp) € sin (ku, + kp)er du;
v J L (kuy —kp) £ (R + k) € ]

Instead we note that when £ — k, the first term peaks for 6; — 0 and the second term peaks for 6; — .

Thus letting 6; = ¢/+/kl/2 gives (note that 1+ cos?§; ~ 2)

1 (7 sin (k€cosf; — k,¢)  sin (klcosl; + kyl) z
2 = — 1 20. J jd J D . .
<‘/1)T>aj7aj7¢pj7wj7gj 3V /0 (1 + cos®0;) [ kcos 0, —F, + koos0; + I sin6;d0;

Nl_/z}/’r lsin(k‘p—k+k9?/2)£129jd9j+/ﬂ |:Sin(kl’+kk<eﬂ7r)2/2)£]2(ﬂ_9j)dgj
0 0

4 kp — k + k67 /2 ky+k—k(0; —7)° /2
. 2\ 12

o /oo sin ((kp — k) £+ ¢%) cdc

T VEC (kp — k) 0+ ¢
Now taking

A=2(k—ky)L
gives
2

2 o fsin (=A/4+ (7
L/O[s( /44 ¢?) cdc

2\ _
Vor) = yaiz M4+ ¢

Letting ¢* = ¢ gives
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L2 [ [sin(-)\/4+6)]°
(Vo _V4kL/0 [ —\A+E ] d

L2 /oo ; ) gdg
= in“ &£—
VAKL | )4 ¢?

_L? sin? (\/4) < dE
TV | a4 +/_A/425m50%5?]
L2 sin? (\/4) < N
T VAL | a4 +/Wsm( 9%
L2 sin? (\/4) o de
T VKL | A/ +/_W Smg?]

L? [ sin? (\/4)

~ VakL i Tz th WQ)}

Now letting

(kLV;}) =L*Go(\) )V (365)
gives
Go(A) = i [—W + 2+ SI(0/2) (366)

If we renormalize by the asymptotic result

_ _ A
R(m=1)  p(m=1) L4
/‘; <_T = >aj,aj,gppj,<p]- v 2V (367)
we find
(LV7), =L*G(X) /A (368)
2 1 2sin®(A\/4) 2 ..

Introducing the symmetry about z = 0, which doubles this result, gives

1 [ 2sin?(\/4) 2 ..
Gs(/\)—QG()\)—2 [ PV +1+7r81()\/2)] (370)
This has now rigorously established the vector random plane wave result, accounting for all parts of
the cos ¢ (and sin ) fields in the cylindrical system, to be consistent with the axisymmetric numerical
simulation. The asymptotic level (unity) for A >> 1 is compared in the figure below with the histogram
from the numerical simulation, and appears to do a reasonable job of representing the histogram value. In

addition this provides a check on the asymptotic level of the vector scar theory (in particular the asymptotic
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eigenvalue density being twice that of the scalar m = 1 axisymmetric case).

Note that

Gs(A)—0, A—> —oc0 (371)
G (0)=1/2 (372)
Gy (00) = 1 (373)

The m = 1 vector case gives exactly half the result of the axisymmetric scalar case (as would be anticipated
from the energy theorem with the modal spacing being taken as one half the scalar case)! Note that the
factor 2kV/ (wA) relating the axisymmetric projection to the non-axisymmetric projection can be thought
of as a symmetry enhancement in axisymmetric 3D, analogous to the factors of two in the Cartesian

2D geometry. At high frequencies this value can be large 2kV/ (7 A) >> 1; it thus represents the major
enhancement of the squared field along the scar in the convex wall geometry, and is shared with the random
plane wave (with axisymmetric symmetry enforced) behavior.

Simple Vector Random Plane Wave m=1 Mode Trigonometric Projection In the vector
case taking the trigonometric projection

L

¢
Vr = / cos (kp2) By, (0,2)dz = / cos (kp2) e, - E,(0,2)dz (374)
¢ —£

¢
= / cos (kpz) e, - B, (0,2)dz
—t

N—o0

N ¢
Vpr = lim /4k/ (T AN) Zajgw - (cos ®p;€; +sin gppjg;») / cos (kpz) cos (aj + kz cos8;) dz (375)
i=1 -

N ¢
= Nlim V4k/ (T AN) g aj (cos,;sinp; +sin g, ; cos 0 cos @) / cos (kpz) cos (o + kz cosb;) dz
— 00 iy

j=1
But this is the same as the preceding non-axisymmetric expression except that it is multiplied by

\/2kV/ (mA) yielding

with

GO = % [—L ;/Z/ Dy T HSi(V2)

For the even case along the orbit we expect to multiply by two

S
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Gy () = 2G (\) :% —%%/;/4) +1+%Si()\/2)
sp=A/In(Ay) (376)

4.6.5 Statistics Of Random Plane Wave Field Component Off Axis

The random plane wave field for a single Cartesian component is

N
E.=¢, E, = A}gnoo vV2/(VN) Za]— cos (kpsin 6 cos (ij —¢) + kzcos; + a;)

Jj=1

[cos @ {cos p,,; sin (@; — @) +sing,; cosb;cos (p; — )} —sing {sing,; cosbsin (¢; — ) — cos g, cos (p; — @) }]

N—o0

N
= lim +/2/(VN) Zaj cos (kpsind; cos (p; — @) + kzcos0; + a;)
j=1

(cos ¢, sin @ + sin @,,; cos 0 cos @) (377)
Then squaring and averaging over the amplitudes a; gives

<E72x>aj = lim — Zcos (kpsin0; cos (¢; — @) + kzcos0; + ) (cos g, sinp; + sin g, ; cos 0 cos <p]—)2

N
(E2.) = lim L E cos . sin; + sin g, ; cos 0 cos -)2
) aj,05 T Nooeo VN Ppj SIM P Ppj 3 COS @;
Averaging over ¢, ; gives
N
2 2 2 2
E sin“ . + cos” 0; cos” .
T"E>aj70tj799p] N—>oo QD] J SOJ)
Averaging over p; gives
N
E? E 1 + cos 9
< Tx>a77a]y¢p]a§0] N*}OO —

Finally averaging over 6; yields

_ Lt 20 Veinoodo — - [ 2 1 L
<m> 4V2/ (1—|—cos 9J)sm9jd9j—8‘//l(l+u)du 4V(1+3)_3V
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The vector field we constructed this from

N

E, = lim \/2/(VN)Re |} a; (cospy e; +sinp,;ef) e b
j=1
where the polarization angle ©pj is uniformly distributed on 0 to 2, €; is perpendicular to Ej and

¢ = (k; x ¢;) /k, has the desired normalization

2 L1 1
(&, ‘Er>aj,aj - J\}E,noo VN Zl 27V (378)
=

Hence the single Cartesian field component has one third the contribution to the energy density of the
vector total

1
(VEL) =3 (379)

We really want the z component of the m = 1 mode in ¢. The m = 1 random plane wave (even in ¢)
is (we are removing the integration of cos? ¢ from 0 to 27 by means of the 1/7)

- 1 2
Em=D = Zcosp [ E,cospdp =
m 0

N
]\}i_r)noo v2/(VN) coscpZaj [e.2sin (kz cos 0 + a;) singp,; sin0;.J; (kpsinb;) cos ¢,
j=1
+e, {cos ¢,; (Jo (kpsin;) + Jo (kpsin6;)) sin g, + sinp,; cos0; (Jo (kpsin ;) — Jo (kpsinb;)) cos @, }
cos (kz cosf; + o)

+e, {sinp,; cos0; (Jo (kpsinb;) + Jo (kpsin6;)) sing,; — cos ¢,; (Jo (kpsinb;) — Jo (kpsinb;)) cos ¢, }

cos (kzcosb; + o)

Note that
. . J1 (kpsind;)
Jo (kpsin@;) + Jy (kpsinf;) = QW
Jo (kpsin®;) — Jo (kpsin®;) = 2.J7 (kpsin ;)
Thus
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N
L EMm=Y = lim \/2/(VN)cosap2aj[

B =c¢
N—o0

Jj=1

cos ¢ {cosp,; (Jo (kpsinb;) 4 Jo (kpsinb;)) sin @, + sing,; cos b (Jo (kpsinf;) — Ja (kpsinb;)) cosp; }
cos (kzcosb; + ;)
—sing {sinp,; cos0; (Jo (kpsinb;) + Jo (kpsinb;))sinp; — cos @i (Jo (kpsin;) — Jy (kpsinb;)) cos p; }

cos (kzcosf; + ;)]
Then if we square this result and average over a;

<E£§;":1)2>aj = Jim VLN cos® ¢ Z [

cos p {cosp,; (Jo (kpsinb;) + J5 (kpsin6;)) sin @, + sing,; cos 0 (Jo (kpsinf;) — Ja (kpsinb;)) cosp; }
cos (kzcosb; + ;)

—sing {sing,; cos0; (Jo (kpsinb;) + Jo (kpsinb;))sin; — cos,; (Jo (kpsin8;) — Jo (kpsinb;)) cos ¢, }

cos (kzcosf; + aj)]2

Next averaging over «; gives
(Bp=v2) = Jim oot o)
cos® ¢ {cos p,; (Jo (kpsinb;) + Jo (kpsin6;)) sin g, + sinp,; cos0; (Jo (kpsinb;) — Jo (kpsin;)) cos cpj}2
—2sin g {sinp,; cos0; (Jo (kpsinb;) + Jo (kpsin b)) sing,; — cos @,; (Jo (kpsinb;) — Jo (kpsinb;)) cos @, }

cos o {cosp,; (Jo (kpsinb;) + J5 (kpsin6;)) sin @, 4 sing,; cos 0 (Jo (kpsin0;) — Ja (kpsinb;)) cosp; }
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+sin” ¢ {sin @y cosl; (Jo (kpsind;) + Jo (kpsind))sinp; — cos @, (Jo (kpsin0;) — Jo (kpsinby)) cos goj}Q

Averaging over p; gives

rTT

N
1
(m:1)2> — T 2
<E aj,05,Pp; 1\}1—I>rcl>o VN @;[

cos? ¢ {(Jo (kpsin®;) + Jo (kpsin6;))? sin @; +cos® 0; (Jo (kpsinb;) — Jo (kpsin 0;))° cos® ij}
—2sin @ cos ¢ (cos® §; — 1) sing; cos; (Jo (kpsinb;) — Ja (kpsin6;)) (Jo (kpsinb;) + Jo (kpsin6;))

+sin? ¢ {0052 0; (Jo (kpsin8;) + Ja (kpsin6;))” sin® ¢; + (Jo (kpsin8;) — J2 (kpsin 0;))° cos? cp]—}

Next averaging over ¢; gives

N
1
(m=1)2 o 2
<Erz >aj,o¢j,<pm-,gaj ngnoo 4V N cos Sojz::l [
cos? {(Jo (kpsin®,) + Jo (kpsin6,))? + cos® 0; (Jo (kpsin 0;) — Jo (kpsin 9j))2}

+sin? {0032 0; (Jo (kpsinb;) + Jo (kpsin Hj))2 + (Jo (kpsinf;) — Jy (kpsin Hj))2}
Finally averaging over 6; gives

E(m:1)2> = — cos®
< " aj,05,9pi:95.05 8V 7 [

cos? <p/ sin 6; {(JO (kpsin®;) + Jo (kpsind;))® + cos? 0; (Jo (kpsin6;) — Jo (kpsinﬁj))z} db;
0

+ sin? QD/ sin0j {COS2 Hj (Jo (kpsinGj) + Jo (kpsinﬁj))Q + (Jo (kpsin 0]) — Jo (kpsin 0]))2} dﬂj
0
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Letting u; = cos0;

1
E(m:1)2> _ 2
< " aj,05,9,5,05,0; 4V s [

s {0 o) ) 408 (0 () 0 )
o [ 0T 40 o) (o o 8) (=)

At p=0
(BG=7) _ 1
e aj,a5,9,5,¢;,0; 4V

[ {0 oo =) 0 s T=0)) 0 (o (/) ()

or

If we were to let w; = ,/l—u?

—1)2> _ l
ajvaj790pj7<raj70j 14

/o1 { (M)Q + (1= wj) (1 (kpwj)f} _wydw;

kpw; V1 w?

On axis p = 0 we find

I 1

E(m=12 :0> =— | Q+ud)du = —
< T (ﬂ ) aj,aj,tppjytﬂjﬁj 4V o ( + uj) Uj 3V
Note that, the m = 1 mode was originally extracted from the random plane wave representation, which was
itself normalized using the full set of azimuthal modes

(380)
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(B, E)=1 (3s1)

Hence, in terms of a normalization involving the random plane wave representation (including all the
azimuthal modes), there is no enhancement along the axis (since 1/ (3V') is what one would expect of

a single component). However, because the resonant frequencies of these different m modes will not, in
general, be degenerate, this indicates that the spatial normalization of the m = 1 modes alone will be
required at the resonant frequencies of these modes. Thus, the enhancement on axis p = 0 will be real
for these modes. This fact therefore represents a statement about the enhancement of the tail statistics
resulting from symmetry conditions (in this case affecting the m = 1 mode).

Thus, in the m = 1 case, we note that

Pmax

_ _ 2m TA
p(m=1)  p(m=1) dV ~ == {(p)dp = —
/‘;’ <_T = >aj,aj,gppj,ap]- k)V 0 (p) p ka

where A is the total cross sectional area of the axisymmetric cavity. Hence, if we renormalize (multiplying
the field square by the ratio of the 3D normalization (unity) to the axisymmetric normalization (%), we
would find that the mean square field at ¢ = 0 (we expect this to double the mean over the azimuth for the

cos ¢ parity) is

_ o2kV [ [ [Ty (kpw;)\° 2| wjdw,
E(m_1)2 — / 1 J 1 — w2 / ) Je%Y 9
<V re > TA Jo kpw; - ( wj) (r (k) 1 — w? (382)
J
On axis this mean square is

(VEG=2(p=0)) = = (383)
Using the asymptotic form for the Bessel functions for large kp

J1(2) ~ /2] (mz)cos(z —3m/4) , z2>>1
gives the mean square

- 2V ! V
m=1)2 2
<VE,(,3c ) >~ 3 /0 2/1 wjdwj—2 , kp>>1 (384)

4.7 Comparisons Between Simulation And Electromagnetic Scar Theory

In this section the projection definition will be taken as

‘ 2/ 12\ ~1/2
Vp = 2/ (1—27/d%) cos [kpz + po (2)] By (0, 2) dz (385)
0

in the even case or

vz/£(1 2/d2) "% sin [k + po (2)] By (0, 2) d (386)
p = ; z in |kyz + po (2 v (0,2)dz

in the odd case. The amplitude divergence factor (1 — 22 /d2)71/ ? (included in these) can lead to
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convergence problems in the stadium sections below, where the definitions involving a surface integration
around the scar are preferred, but in this case the foci are far outside of the cavity region and the results
with or without these factors are expected to be nearly the same. The normalization in the numerical
simulation is taken as (note that the radial coordinate weight p must be present here to get the volume
weighting correct)

/ pE-E*dS = 1
A)2

(at the peak of the azimuthal variation, since the variation e/¢ is assumed in the numerical calculation).
This means that

/E-E*dV:ﬂ'/ E-E*pdS =7

1% A/2

where a factor of one half has been taken into account because of the azimuthal variation associated with
the cos ¢ or sin ¢ mode (if we allowed both degenerate azimuthal modes to be present then the result is
27). Thus we divided the amplitude of the square of the simulation results by 7 to achieve the proper mean
square volume integration. Furthermore in the simulation we did not restrict ourselves to the even modes
in z. This means that we needed to multiply by a factor of 2 (just like with G5 (A\) = 2G ()\)). Although
the odd definition was also used in the simulation for half the values of k,, we also divided by the total
number of s values that fell within the bin in the histogram (hence, the addition of the odd definition
simply improved the resolution but did not double the value, and we must double the value after the fact).
We believe this is true because there are different k, values for the odd modes, and hence their addition
does not double the histogram results.

In the theoretical model we enforced

/ (@ﬂ-ﬂ“rﬂﬂ*) v =2 (387)
v \ €0

or equating the electric and magnetic energies (where we included the azimuthal variation in the volume
integration, resulting in a one half factor)

/E-E*dew/ E-E*pdS =1 (388)
1% A2

The other polarization state could be included by considering either 11,,, or IL.,. Since the simulation
did not include the second state of azimuthal parity, we leave it out in the theoretical model as well.
This raises questions about consistency between the simulation with cylindrical coordinates versus the
high frequency theoretical model using the quasirectangular Hertz potentials? Do the modes require the
pair Il.,, ., or for the ninety degree parity case Il,,IL,,,, and what is the level of the accompanying
magnetic potential (either II,,, or II,,,); does it contribute to the normalization? But if this were so, why
would we get the appropriate level versus the random plane wave for large s? Consistency with the random
plane wave limit is thought to exist because we did not include the other parity in the random plane wave
normalization as discussed in the preceding sections. We will demonstrate below that these other choices of
potential are needed to include other polarizations with respect to the azimuth, and at high frequencies to
leading order only one seems to be needed.

Figure 10 shows a simulation of an axisymmetric scar in a rotationally symmetric bowtie cavity [19].
Figure 11 shows a comparison of the preceding theory with a histogram from the numerical simulation
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Figure 10. Simulation of axisymmetric scar in rotationally symmetric bowtie cavity.

of the axisymmetric scar [19]. At high frequencies we note that the factor 2kV/ (mA) >> 1 relating the
axisymmetric projection to the non-axisymmetric projection can be thought of as a symmetry enhancement
in axisymmetric 3D, analogous to the factors of two in the Cartesian 2D geometry; it thus represents the
major enhancement of the squared field along the scar in the convex wall geometry, and is shared with
the random plane wave (with axisymmetric symmetry enforced) behavior. As we found in the 2D case,
we expect this high frequency enhancement to persist even if the outer boundary breaks the axisymmetry.
Figures 12 and 13 show a numerical simulation with finer gridding and the combined two results.

The modal density for modes that are even along the orbit (the density of modes that are odd are
expected to be the same) can be used to find the number of expected modes in the frequency range between
1 GHz and 3 GHz

dN

N ~ (k2 — kl) (klz + ]{11)14/ (87‘(’)
k1 ~20.98 m™}, ko~ 62.79 m!
A ~ 4.677086 m?

N =~ 654
In the simulation for the quarter bowtie which should capture the odd modes along the orbit (since we
used a perfect electric conductor at the center) we observed 626 modes between 1 GHz and 3 GHz, which is
close to the expected number.
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Axisymmetric Bowtie m=1

Integrate from z=-1to 1

kO= 874 values 20.98-62.79
kp= 100 odd/even values 1.57-157.7
1.6 | 100bins
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Figure 11. Comparison of theoretical vector scar prediction with histogram from numerical simulation.
The random plane wave results are also shown.
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Axisymmetric Bowtie m=1

Integrate from z=-1to 1

k0= 874 values 20.98-62.79
kp= 100 odd/even values 1.57-157.7
100 bins

1 Numerical Simulation
- Theoretical Scar Distribution
------- Random Plane Wave

0.0 ARRRANARRRRARARRA RN ARRARRARRRARAIN

5-4-3-2-1012 3456 78 9101112131415

Figure 12. Electric field statistics from simulation (histogram) and from 3D scar theory (solid curve) for a
rotationally symmetric bowtie cavity (dotted curve is non-scarred, random plane wave result). The abscissa
is proportional to the frequency separation between the modal resonance and the orbital scar frequency. A
finer grid was used in this simulation.
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Axisymmetric Bowtie m=1

Integrate from z=-1to 1

15 i I](z: iﬁ‘()sodd/even values 1.57-157.7
#1 A | - B
1.0 jiﬁ - MT =
o) LT 1%
051 T C— Numerical Simulation
| - Theoretical Scar Distribution
I A — Random Plane Wave
00 AR AR EAERRRIN
5-4-3-2-10 1234556789101112131415

Figure 13. Electric field statistics from simulation (histogram) and from 3D axisymmetric scar theory (solid
curve) for a rotationally symmetric bowtie cavity (dotted curve is non-scarred, random plane wave result).
The abscissa is proportional to the frequency separation between the modal resonance and the orbital scar
frequency. The narrow bins are from a additional simulation with much finer gridding of the cavity walls.
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Figure 14. The normalized field squared behavior at at various distances from the symmetric axis of the
axisymmetric cavity compared to the simple asymptotic result far from the axis.

4.7.1 Point Statistics

We now compare field statistics at points in the cavity from the numerical simulation and the random
plane wave results (in the convex walled cavity there is not much difference between these as we observed
in two-dimensions [2]). The point statistic on axis for the random plane wave (from the cos ¢ parity with
p=0)is

. 2KV
(VEG=2(p=0)) = = (389)

and in general (for the cos ¢ parity at ¢ = 0)

<VE§’;“:1)2> _ Q:X /01 { <J1 (kpwj)>2 fa- w?) % (kpwj))Q} _widw; (390)

kpw; \/1— w3

_ 2v ! 1% 3 2kV
vEm=02\ , 2V [ i, = 3 2kV
< e > 772Ap/0 L= wjdu; 2npA  4kp3mA’ kp>>1 (391)

with normalization

(B0 gD = (392)

kS
=

The random plane wave in full 3D gives
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(VE?) = 3
with normalization
1
(E, E,)=

Thus the enhancement factor in the point statistics due to the symmetry is again 2kV/ (wA). For

the range k = 20.98 — 62.79 m~! we expect that 2kV/(rA) = 23.73 — 71.02. Thus we expect that
<VE§$ (p= 0)> = 7.91 — 23.67. To average over frequency we use the modal spacing associated with the
eigenvalues along the orbit in the m = 1 vector case

dk? dk
dN—Qk;——47T/A
Thus
2%V 1 N(k2) oy
VEM™=2 (5, =0 / AN
< (P )>k N £<37A ~ N(k2) — N (k1) Jyq) 374

k. k. k k.

2 9kV dN > AN 2 9kV 2
_ @y k
/kl AT dk// dk = /k S kdk/ A ked

2V 2k3 -k} 2V
= - = k) =~ 17.75 ~ 2 (8.
3TA3k: —k? 37TA< ) 775 (8.88)

where for the numerical simulation comparisons we used

2 k2 + kokr + k2
(k) = g% ~ 45.36 m™!
2 1

The factor of two associated with the ¢ = 0 evaluation of the cos ¢ parity was separated out here. This
normalized field square function is shown in Figure 14. Comparisons of the level

Far away from the axis the value is nearly independent of &k

_ v
VE(m—1)2> ~ ckp>>1
< " k 2mpA P
Note that we can apply this asymptotic formula even to the p = 0.1 m case since kp > 2.1 for all these
off-axis cases (see the preceding graph showing a comparison of the asymptotic formula to the numerical

evaluation of the random plane wave point statistics for kp).

<VEm1 —01m> 2 (1.4676)
<VE<m1 —o2m>~2 (0.7338)
<VEm1 —04m>~2 (0.3669)
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Axisymmetric Bowtie Point Value at (0.0,0.0)
Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m®

k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157.1
] - 100 bins =X
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Figure 15. Field point statistic at the center of the orbit as a function of the scar frequency separation s.
The horizontal line is the random plane wave level.

Axisymmetric Bowtie Point Value at (0.0,0.2)
Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m*

k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157.1
12 100 bins I
10 - - = B
8 B L 1 [ =
A
W ]
v 6 i
=
4
2
0

-5 -4 -3 -2 -1 0 1 2 3 4 5
S

Figure 16. Field point statistic at 0.2 m from the center of, but along the orbit, as a function of the scar
frequency separation s. The horizontal line is the random plane wave level.
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Axisymmetric Bowtie Point Value at (0.0,0.4)
Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m*

k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157
12 — 100 bins

10 M — —

V<EZ>

0 . ;
-5 -4 -3 -2 -1 0 1 2 3 4 )
S

Figure 17. Field point statistic at 0.4 m from the center of, but along the orbit, as a function of the scar
frequency separation s. The horizontal line is the random plane wave level.

Axisymmetric Bowtie Point Value at (0.0,0.6)
Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m®

k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157.1
] 100 bins
12| ]
& 8 — L L
L
vV
=
4
0

-5 -4 -3 -2 -1 0 1 2 3 4 5
S

Figure 18. Field point statistic at 0.6 m from the center of, but along the orbit, as a function of the scar
frequency separation s. The horizontal line is the random plane wave level.
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Axisymmetric Bowtie Point Value at (0.0,0.8)
Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, \V=8.626 m®

k0= 1029 values 20.984-62 854
kp= 100 values 1.57-157.1
12| - 100 bins
10 | Bm - ]
8 ]| —_| [ ]
X HEN || L |
W
vV 6
>
4
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5 4 -3 -2 -1 0 1 2 3 4 5
]

Figure 19. Field point statistic at 0.8 m from the center of, but along the orbit, as a function of the scar
frequency separation s. The horizontal line is the random plane wave level.

Axisymmetric Bowtie Point Value at (0.1,0.0)

Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m®

k0= 1029 values 20.984-62.854

kp= 100 values 1.57-157.1
W - 00 hins
207 —
15 - — —
A - T 1 ==
o -
L\|I,’,| — ||
> 1.0
0.5
0.0

Figure 20. Field point statistic at a radial distance of 0.1 m from the orbit at its axial center, as a function
of the scar frequency separation s. The horizontal line is the random plane wave level.

149



Axisymmetric Bowtie Point Value at (0.2,0.0)
Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m°

k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157.1
1.0 — 100 bins

0.8 - =

0.6 . =

V<EZ>

0.4 —

0.2

0.0

-5 -4 -3 -2 -1 0 1 2 3 4 5
S

Figure 21. Field point statistic at a radial distance of 0.2 m from the orbit at its axial center, as a function
of the scar frequency separation s. The horizontal line is the random plane wave level.

Axisymmetric Bowtie Point Value at (0.4,0.0)

Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4 677 mZ, V=8.626 m®

k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157.1
06 [ 100 bins

0.5

0.4 ] —

03]

V<EZ>

0.2

0.1

0.0

5 4 3 2 41 0 1 2 3 4 5
s

Figure 22. Field point statistic at a radial distance of 0.4 m from the orbit at its axial center, as a function
of the scar frequency separation s. The horizontal line is the random plane wave level.
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Axisymmetric Bowtie Point Value at (0.4,0.4)

Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m°
k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157.1

E, 100 bins

0.5

0.4

V<EZ>
|

0.2

0.1

0.0

Figure 23. Field point statistic at a radial distance of 0.4 m from the orbit, and displaced by 0.4 m from
its axial center, as a function of the scar frequency separation s. The horizontal line is the random plane
wave level.
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Axisymmetric Bowtie Point Value at (0.6,0.0)
Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m®

k0= 1029 values 20.984-62.854

kp= 100 values 1.57-157.1
i 100 bins

037 ]
A 020 L = M - B
o4 || -
L
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S

Figure 24. Field point statistic at a radial distance of 0.6 m from the orbit at its axial center, as a function
of the scar frequency separation s. The horizontal line is the random plane wave level.

<VE£;":1>2 (p=0.6 m)> ~ 2(0.2446)
<VE§;":1>2 (p=0.8 m)> ~ 2(0.1835)

<VE§;"=1>2 (p=1 m)> ~ 2(0.1468)

This last figure may not represent an accurate comparison since the cavity half dimensions are each 1
m. Thus we are approaching the outer boundary in the simulation for this case.

4.8 Magnetic Hertz Potential

We now repeat the set up of the vector problem using the magnetic Hertz potential to examine the
differences in the application of the boundary conditions and in the field polarization at the scar orbit. The
electromagnetic field in a source free region satisfies

V x H=—iweE

V x E=iwuH
V-H=0
V-E=0

and the boundary conditions on the walls (in our case these hold on the end mirrors £ = +£;)
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Axisymmetric Bowtie Point Value at (0.6,0.6)

Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m*
k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157.1

— 100 bins N,
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Figure 25. Field point statistic at a radial distance of 0.6 m from the orbit, and displaced by 0.6 m from
its axial center, as a function of the scar frequency separation s. The horizontal line is the random plane
wave level.

Axisymmetric Bowtie Point Value at (0.8,0.0)
Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m"

k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157.1

0257 100 bins__
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S5 4 3 -2 A 0 1 2 3 4 5
S

Figure 26. Field point statistic at a radial distance of 0.8 m from the orbit at its axial center, as a function
of the scar frequency separation s. The horizontal line is the random plane wave level.
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Axisymmetric Bowtie Point Value at (0.8,0.8)
Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m®

k0= 1029 values 20.984-62.854
kp= 100 values 1.57-157.1
— 100 bins

0.25

0.20 — 1 -

015} — [ ]
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Figure 27. Field point statistic at a radial distance of 0.8 m from the orbit, and displaced by 0.8 m from
its axial center, as a function of the scar frequency separation s. The horizontal line is the random plane
wave level.

Axisymmetric Bowtie Point Value at (1.0,1.0)

Lz=2 m, Lx/2=1 m, Rz=10 m, Rx=1.5 m, A=4.677 m?, V=8.626 m"
k0= 1029 values 20.984-62 854
kp= 100 values 1.57-157.1

A 100 bins.
0.25 e
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Figure 28. Field point statistic at a radial distance of 1 m from the orbit, and displaced by 1 m from its

axial center, as a function of the scar frequency separation s. The horizontal line is the random plane wave
level.
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Axisymmetric Bowtie Point Value at x=0.0, z=0.2
L,=2m, L/2=1m, Rz=10 m, R =1.5 m, A=4.677 m?, V=8.626m*

1 Numerical Histogram
— Analytic Random Plane Wave
12 | | Mean of Numerical Data -

107 = F* - |

V<E, 2>

Figure 29. Field point statistic at 0.2 m from the center of, but along the orbit, as a function of the scar
frequency separation s. The numerical mean value is also shown as the horizontal red line. The blue line is
the random plane wave level.

Mean field V<E 2> as function of radius
L,=2m, L,/2=1m, R,=10 m, R,=1.5 m, A=4.677 m?, V=8.626 m*
‘ [ ‘ [ ‘ [
4 Numerical Simulation
02— === Random Plane Wave (m = 1}

k = 1029 values 20.984-62.854 m}
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o
—

TN

o ——
0.0 0.2 0.4 0.6 0.8 1.0
p (m) =x (m)

Figure 30. Variation of field point statistic as a function of radial distance from the orbit. The black
diamonds are from the numerical simulation and the blue curve is from the random plane wave theory.
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Ec=FE,=H:;=0
or in the quasi-rectangular system

E,=E,=H;=0
We now use the magnetic Hertz potential II,, with the fields given by

H=VxVxIL, (393)

L =iwpV x Hm
where the Hertz vector satisfies the vector wave equation

~VxVxI, +V(V-1I,)+ k1, = (V> +k*) 1, =0 (394)

and the magnetic field is thus given by

H=V(V-1,) + kI, (395)
At high frequencies we can make one of the following sets of approximations [5]

M, = ®
M,y = 0 = TLe
or
., = &
My = 0 = e

We cannot satisfy (394) exactly with this approximate choice, so instead we require that the potential IT,,,,
(or in the second case II,,,) satisfies the equation resulting from equating H, (or in the second case H,,)
from (393) and (395). Thus the equation for the potential is [5]

[~V x V x (ILe,) + V{V - (I,.e,)} + & (Mnoe,)] €, =0

or

(-9 %7 x (Ley) + V(T (Tugey)} + K (Tage,)] -€, =0
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4.8.1 Approximate Orthogonality And Fields

When we assume approximate orthogonality the equations simplify (as given in Vaynshteyn [5]). We
can derive the following equations by using the orthogonal curvilinear coordinate results for gradient,
divergence and curl [10], using the same metric coefficient h for all three coordinates

h=d\/cos? &+ (* = dy/cos2 € +v2 +n2 ~ dcosé

The potential II., = ® then satisfies [5]

0 (10 0 10

ac ) - ac hHmv a- Y7 a. hHmv

g% (e (o) | + 3 Ly (1)

o1 0

he— =%

* ov [lﬁ ov (

Note that the first and second terms are from (—V x V xIL ) - e, and the third term results from

(VV-1L,) - e,- The fields are

hZHmv)] + k*h2 M = 0

h*H, = ha% [%a% (hQHmU)] + K2R L,
a1 0
2 i N 2
Wi Hy = hy [hg 50 ( Hmu)]
a1 0
2 S R 2
W He = i [h3 ay nmv)]

and

h’E, = z’o%a% (RI,0)
Alternatively the potential IL,,, = ® satisfies

o (10 0 (10
% {Ea_g (hHmn)} 3 {E% (hHmn)}

(hQHmn)} + kR =0
The fields are

910
WH, = ha [?%(hzﬂmn)]
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o1 0
h?H, = ha {h—a— (hQHmn)} + k*h* 1L,
h?He = ha% {i 0 (thmn):|

and
2 . 0
h*Ee = w7 (hIlpmy)

N
h*E, = ikt (hIL)

4.8.2 Asymptotic Solution Of Quasirectangular Equations

Let us take

IL,,=®=W (U, n’g) ei’ysinf W (’U,n, _g) e—i7s111§
and insert this into

02 10hY\ O 0 (10h g (10
g (198 gt + o (75 + 3 77 1)}

o1 0
h=— | == (h*TL,, k2h210,,, =
e [h3 ov ( )] + 0
then W satisfies

il + <z2 cosé + —8—) oW
o¢? ! hog) o

+h5% [%a% (hQW)] + 5 {Ea_n (hW)}

[lﬂQhQ—’Y cos® € —iysiné + (nycosg+ af) <}1ng>} mee

or

(— ")

0 10h 0 (10h 0 (2 0h
722 —rysm§+<wc%£+a£) <h(’)§>+ <E8_n>+h% <ﬁ%)}W:O
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We now neglect the first term 92W/ 92 and let

h ~ dcos&
giving
. ow  o*w  PW
(Z2’YCOS€ — tanf) 6—5 —|— W —|— 8_172
+ [v* (v* +7n°) — i2ysiné —sec? ] W =0
Now take

W:f(f)‘p(vﬂlaa)

where we want

f' i2ysin€ +sec? &

f i2ycos& —tan¢
or

1/f =cos€ + %tanf

Using this along with the transformation

13
o= / de = arcsinh (tan &) = In (tan & 4 sec &)
0

cosé
gives

12 8_‘1’ + —62\11 + —62\11
Yo T ou2 on?

+72 (U2 + 7]2) U=0
We could also have dropped the terms tan ¢ and sec® ¢ terms compared to the v cos¢ and the ysiné term
(these terms could be accounted for by higher order terms in the asymptotic series just like the 92W/ o&?
term and the higher order terms dh/0v and Oh/0n) to obtain directly

. LW PW OPW
zQ’ycosfa—g—l—W—I—a—nQ

+ [72 (U2 + 772) — 12y Sinﬂ W =0
which is the same as the preceding scalar case. For this leading term approach we would take

1
W=—u
cosE (v,n,0)

and obtain the same equation for W. Scaling the independent variables by letting
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r = T
Ty:\/%n

gives

ov  9*0 §*U

Lo
A< v=0
e orz 0t + 4 (72 + Ty)

Separating the variables

U (T, Ty, 0) = Yo (T2) ¥y (1) Y (0)

gives

i O 1 0%y 9 1 0%, 9

——= — = 4 — 4) =0
(wc Jdo ) * (77[%1 or2 tra/4)+ Yy, 072 +Ty/

Each parenthetical term is independent of the variables associated with the others and therefore each equals

a constant. We take the first term as s

0, .
E
or
wc _ e—isa

Then we can write

P,

a2+ (sa+72/4) 0, =0
o2

a;%b + (s +75/4) by, =0

Sq+Sp =35

v (7'17 Ty U) = e_isaa¢a (Saa TI) 6_i8b0¢b (Sba Ty) = 6_“"% (Saa TI) Uy (Sba Ty)
This is a form of the equation of the parabolic cylinder functions

0?1 72
W+<Z+s>¢_o (396)
The solution that is outgoing in 7 is [1]
Uy (s,7) = e "6H/2/47 (—is,Tefm/‘l) (397)

where U (a, z) is the standard solution [11]. Following [1] the total transverse solution is taken as the
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incident plus reflected form

¥ (s,7) = cRe [Uy (5,7) + €U (s,7)] (398)
where the constant c is used for normalization. The transverse boundary condition in 7 is a reflection with
a random phase ® (kz) which was introduced by Antonsen to match to the chaotic region of the cavity;
it describes the phase relation between a wave leaving the vicinity of the unstable periodic orbit and one
returning [1] with the variation of the pth component along the orbit. Figure 9 schematically illustrates
a wave bouncing back and forth between mirrors in the region of the scarred orbit; it leaves the vicinity
of the orbit and eventually returns from the outer chaotic region with transverse reflection phase & (kQ)
(For purposes of simplification this figure does not include the vertical evenness of the cavity, which
confines the wave leaving and the wave reflected to either the upper half or lower half of the cavity.) Thus
Y, =1, (Sa,T2) and ¥, = 1, (sp,7y) are elliptic cylinder functions like in the two-dimensional case [6], [1].

The boundary conditions imply

E,=E,=H:=0, { =%,
or using the preceding relations for the field in terms of the Hertz potential

1
h*H, = ha% [Fa% (hQHmU)] + K2R L,

(11,

and

.0
h’E, = iwopo pe (RIT,0)

h=d\/cos? &+ (? =dy/cos2 £ + 02 +n2 ~ dcosé

or

o1 0
2 _ 2
h?He = h—ag [—h3 50 (h Hmv)]

. 0
W Ey = iwhge (WTT)

we see that we must take the potential to satisfy on the mirrors

161



h Fpyes ~ = (AlLp,) = 0 ~ — i

Mo oh O (1 V_ 1 (0w o Oh
9€ o€ " o€ ") oc "o

or

oIl oIl
8gw — Il 8in€ ~ 0 ~ cos & Y

cos& + I siné , € = £,

Then in the present case

Dy = @ =W (v,7,€) 75 £ W (v,7, =€) e 751¢

W = colsflp (v,n,0)
Ty = \/%v
Ty =271
U (Ta, 7y, 0) =Y, (T2) y, (Ty) Y (0)
W, = o150
¥ (s,7) = cRe [Uy (5,7) + €U (s,7)]
iy cos€g [\I, (T4, Ty, E£00) etivsingy (Tas Tys FO0) eﬂfysin&o]

sin¢

~ =+
cos &,

[\IJ (Ts Ty, £00) eFsinto L g (7, Ty, Foo) €T sin 50]

U (74, Ty, £00) etrsingo g (Ta, Ty, Foo) eFirsingo

or
U (T4, Ty, 00) esinto L W (7, Ty, —00) e~ rsingo
or
b (Fa) by (1) €70 6071570 5 (1) () €Tt
or

ez?’ysmfofﬂsao _ t9/‘127r;o . p= O, 17 27
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or

vsiné&, — sog = p
or

(k—kp)l=s0p=sln(tan&, +secéy) = sln ;ii-i

1
= SZ In (A+)

where

NCETASE
S \d—/
are the stability exponents of the orbit and

Ay = {1+L/Ri (1+L/R)2—1r

kpl =pm, p=1,2,..

where p is a large integer representing the number of half wave variations along the z axis.

Alternatively in the case where the potential is odd along the orbit we take

My = @ = W (v,7,€) €75 =W (v,7, —€) e~ 7™"¢
and boundary condition

Z’Y CO.S g() [\IJ (Trv Ty, :ta()) e:l:i'y sin&o + 1 (Tm, Ty, :FO'()) ejF” sin 50]
LY U (74, Ty, £00) €750 — W (1,7, Fop) eT51 0
4 y
cosé, :

U (T4, Ty, £00) etrsingo o _\p (Tas Ty, Fo0) eFivsingo

or
U (T4, Ty,00) ersinto W (7, Tys —00) e~ rsingo
or
 (72) by () €TI0 s (7)1, () e IS
or
ei2'ysin£0—i250'0 — ei27r(p—l/2) . p= 1727
or

ysing, — sog =7 (p— 1/2)
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and
(k—kp)l=s0p=sln(tan&, 4+ sec&y) = sln %

1
= SZ In (A+)

kl=m-1/2)7, p=1,2,..

The quantities s, and s, are the transverse numbers of half wave variations (not necessarily integers in
this unstable case, and usually random functions versus eigenvalue), where s = s, + sp. The preceding result
thus connects the eigenvalue k minus the wavenumber in z, or &, to the sum of the transverse variations.

Hmv = 21% (Saa T:E) wb (3b7 Ty) COS (ry sin§ - 50) / COSf
Vo (5a,T2) = caRe [Uy (S0, T2) + eiq’oankr (Sa:72)]

Wy (sp,Ty) = Re [U+ (sp, Ty) + eiq)"”U_Tr (b, Ty)]
Note that if the eigenfunction IT,,, is chosen to be even with respect to the normals of the orbit n and v
(say, PEC at n = 0 and PMC at v = 0, resulting in H, #0, H, =0, H =0, Ec =0, B, #0at v =1 =0)
where

WH, = hl ig(}ﬁﬂ )| + B2 R ~ O RR) T = 278—2+k2h2 Il
Y ov | h3 Ov " " ov? " or? "
o1 0 2 2
2H == 735 h2Hmv ~ —Hmv =2 7Hmv
Wy han {hg’ av( )} ondv Vafyafw
W2H. — hﬁ 19 (h,y,,) 8_21'[ - /2 8_21'[
€T [ m3ao V| Y ggae ™ T Vi Bear,

and

. 9 , 9 . 0
h’Ee = —zqua—n (PILpe) ~ —zwﬂoha_nnmu = Ty 2’7ha—7_yHmv

0
Iy = twpgh =1,

0 0
2 — —_ ~ 1 —_—
h*E, = iwpy o€ (A ) zwuoh(% o€

then we have the resonance conditions
Re [U/. (s4,0) + €U} (54,0)] =0

Re [UY (s3,0) + €U (s5,0)] =0
or
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Using this with the Wronskian

U.Uy —UU; =i
gives

_ Im [U% (50,0)]

Re U (n,0) 47U (0] = L
+ (Sa

Tm [T, (s5,0)]

Rdam%m+a%WiMﬁﬂ=|w< o)
+ Sby

Onaxisv=n=0o0r 7, =7, =0 and

1
o = arcsinh (tan¢) = 3 In (jii)

sin€ = z/d

cos€ = /1 —22/d?

I = 24, (8a,0) ¥y (81, 0) cos [kz - 8% In <§jz>} /1 —22/d?

Im U, (s4,0)] Im [UY, (s, 0)]
=2¢2 + 5 5= cos [kpz +po (2)] /1 — 22 /d?
04 a0 oo

- (- (12

Our main interest is again the lowest transverse mode (m = 0) with the vector nature put in through the
selected component of the Hertz potential.

where

In the odd case we have

Oy = @ =200, (14) Yy (Ty) sin (ysin€ — so) / cos
or

165



0 = 20, (Sa,0) ¥y (s, 0) sin [kz - séln (ij)} /1= 22/d?

U s0,0)] 1 [0 (5,0)] —
= 2ic? + sin [kpz +po (2)] /1 — 22 /d?
AT AT, "

Alternatively for the other polarization

Iy =0=W (Uﬂ?,f) elrsing | W(U,n, _5) e—ivsing

0? 10h 0 0 (10h d (10
e (e )+ 7 (s 0o}

_Hm ___Hm Hm
8§2 n + h 85 85 mn + n

or

st s (ireome s L) (LY, 2 (100 0 (2 0n\]
+[7C +(WCOS§+85 I O +8U s +h317 72 on W=0

and the procedure follows the same lines as in the preceding polarization state.

We would expect that for arbitrary outer chaotic regions both polarization states would be generated
and coexist.

4.8.3 Asymptotic Solution Of Parabolic Equation In Prolate Spheroidal System

The parabolic equation in quasirectangular coordinates for the Hertz potential component IL,,, or IL,,,
(or W) resulting from the vector wave equation is the same as that arising from the three dimensional
scalar Helmholtz equation. Hence we can transform the parabolic equation for the Hertz potential from the
quasirectangular system back to prolate spheroidal coordinates. The potential is then

2

Hmv =<
cosé

¥, (7, 8) cos (ysin& — Sg){ cos (me) }

sin (mep)
V2 PR
Vo = em=—Re [Wy +e o]

W+ (7'7 m, S) = Wis/Q,m/Q (—272/2)
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T=1/2¢

kt —spo0=(p—1/2)m=kyl,p=1,2,3,...
In the odd case

21
cosé
The same holds for the IL,,, polarization state.

mu —

U (7, 8)sin (ysin € — s0) { sin E:Zg }

Behavior Of Zero Mode Near Orbit The behavior of the zero mode m = 0

Yo = CO? Re [W, + e W7

is now discussed near 7 — 0. Now taking

T% = coV2Re [W—/s- + ei%Wi’] — 1y —0
gives
; T(1/2+1is/2)
Z‘Po — 2
¢ ZF(1/2—is/2)+0(T)
and

o (0,5p) = coRe [e”P/Qe”/‘lI‘ (1/2+ isp/2)}
Yo (T,8) ~ ¢o Re [e”/‘lF (1/2+ 28/2)] ems/? (1—572/4) + O (r*In7)

7%1/10 (1) ~ —coRe [e”MF (1/2+ is/Z)} ems/? (s72/2) + O (t*InT) ~ — (572/2) 1,

1o

;87'1/}0 (1) ~ —coRe [e”“l" (1/2+ 25/2)} e™s/2 (s/2)+ O (74 lnT) ~ —%1/10

TOT

19 (T%’IZJO) ~ —coRe [e”/‘ll" (1/2+ i5/2)] e™/2s + 0 (7'2 InT) ~ —s1hy + O (72 InT)

Y,
OwoTr

4.8.4 Vector Normalization Condition

eiﬂ'/4 8@0
0.9~ 20me |

The method used for normalization of the eigenfunction components by Antonsen [1] is now put into
the framework of the electromagnetic energy theorem [13]
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OB o g OHY _ [0n) . 0(we) o 0
v.<8wxﬂ +E" X c(?w)_z[ Oow H-H + Oow ow T T dw

Integrating over the cavity volume and using the divergence theorem (and inserting the electrical properties
of free space)

E~E*}—

é(%xﬂ LB x 8w)-ad5—z/V<uoﬁ H* + 0B -E)dV /V<aw I +E &u)dv

where the unit vector n in the divergence theorem points out of the cavity region.

4.8.5 Source Free Form Of Theorem

The source free form is thus

(09

E H
% (8—_ x H* + E* x 8__) -QdS:i/ (woH - H* +eoE - E*)dV
S 8 8&1 14
Using n X £ = 0 on the cavity walls, the surface integral on the cavity boundary vanishes

OF oH OF o0H
Scavity aw aw Scavity 8W 8W
However a part of the closed surface Sy, is taken to surround the scarred orbit { = y/v2 +n%2 — 0

B H
/ <8—_X£*+E*xa—_>-ﬂds=i/(Moﬂ~£*+eoﬁﬂ*)d‘/
Sscar aw aw 1%

where the unit normal here n points into the scarred region. We take the fields to be [17], [18]
H=VxV Xﬂm :v(v'ﬂm)+k2ﬂm

L =iwpV x Em
where for the first polarization state [5]

Iy, =@

Iy = e =0
Note that as ( = y/v? +n? — 0 the fields become H, # 0, H, =0, He =0, Ec =0, E, #0at v =1 =0,
where

2
thvzha[1a )

9?2
2 272 2,2 252\ [1
ov | h3 Ov (h Hmv)] R e ~ (81}2 KR )Hmv (2787'326 Woh ) m
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2 2

51, =2 7Hmv
nov ’yaTy@Tx

ik &
2 _ 2 ~ /
Wl = e [h3 o Hm“)] oca " = V¥ 5¢ar,

. 0 . 0] . 0
hQEf = _ILWMOa_T] (hHmv) ~ _Zwﬂoha_nnmv = —Wlgy/ 27h8_7'yH

. 0 . .
hQETI = pr‘Oa_é- (hHmU) ~ Zwuohag Hmv /Lwﬂ’ohag Hmv

Thus in the boundary integral with (note that the inward unit normal is oppositely directed from the
prolate spheroidal unit vector) n = —e, and

h(CU
er = ~ COS

€y " E¢
\/h2n? + h3v¢?
heCn

€y E¢ =
\/ P22 + ¢

€, X €y~ €

~ sin

g X ey~ g

€y X € ™~ €,
=£
we note that £ x H* captures Engn x Hre, = E H* vEe> E €, X H Eane Efe& x Hhe, = EgHv_n7

and Egg5 X H;;Qn = —EgH;;gv. But at the center H =0, HE =0, Eg =0 and only —E,H e survives, but
is orthogonal to n = e.. Thus the w derivative is responsible for a contribution

OE OF OF OF
W

Qw VT EC T Qw Ow U\/UQ—TUQ

0H OH; OH¢ OH¢ v
E* x — =E,——e, e ~ E, = =F——
( Ow ) " Ow Cy " 9w COsS @ T Ow /’U2 + 772
Noting that H¢ is odd in 7, = /27v = /27(cos ¢ and that E¢ is odd in 7, = /2vn = v/27(sin ¢ it
appears that these will contribute. The w derivatives may not have even or odd behavior anyway. Thus

(g—ExH*—i—E*xa—H) ﬂ~<%H* N Qe v )

w Ow ow v+ n? T Ow v 42

1 V2 [0 <27 o2 2) 1 011, 03I, ]
~ — — _— k * _—
O e [awaTy T \w2az TV ) T Y i e Guagar,
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Transforming back to prolate spheroidal coordinates

W

. 1 [0%10,,, . 1 02 Ao 1 01, 81'[:‘,w .
WHOL | Taman PP\ h2 ez V2 owoton oe ¥
Noting the identities
3_W 8_W CcoS ¢ — 1oW sin
v " Tac “PY T g MY
Gl 82—WCOS2 + la—VVsin2 ! 82V[/Qsm cosp + — L 8VV?sm cosp + — ! 82—W
8_W 8_W sin ¢ + 1 0 cos
an " ac P Cap 7
and for the axisymmetric case m =0
v~ Tac ¥
W _82W cos? ¢ + ! 8_W sin?
vz " o (NPT e Y
ow_ow
an "¢ MY

and

/ " ow —82 sin pd ow —62 cos? psin? pdp + = (8 > / sin® pd
o On 0v? v ¢ a¢? 4 dad ¢\ 9¢ 0 v
10W 8?*W <8W> 2
~——— 1+ cos2p) (1 —cos2p)d —I— / 1—cos2p)”d
19C o Jy ( ) ( p)dp ic\ac) J, ( @) dy
1LOW O*°W 11 (oW 27

~o 1— cos?2p) d +——(— / 1— 2cos2p + cos? 2¢) d
19C o0 J, ( cos” 2¢) dyp 1¢ \ac ; ( cos 2 + cos” 2¢) dyp

T oW ("W
4 0¢ \ a¢?
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or

e T [P (11 8110\ 1 9, O,
For | awac \3w2 a2 tawcac ) et i aueac o

Therefore we find (noting that he ~ h and hy, ~ h()

i/(uoﬂ-ﬂ*JreUE-E*)dV:/ (8—Exﬁ*+ﬂ*xa—ﬁ)-nds
% g Ow Ow

scar

o E H
= / (g—— x H* + E* x %——) - nhed€hyde

—£& W w

3 *
1 O3, 8Hmv} nde

-3 /Eog 0Ty li8_2+§ l__|_]<;2 m +—
RO ) S Towac \dn2 a2 T At o mo T2 QwaEdl  oe

‘ S [ Py O, | P, (110 (0L, \ P

or

9 (T% + zn:nv) + 4% cos” gnfm}] d¢/ cos¢

o T /fo Ta3Hmv aH,*m+TaQHmU 0 L1
Hog dwdEdT  Of awor X7

_EO

(% [ 93, OI 0*11
~ i n muv mu muv I 26 .
zw,uod /50 {Tawagaf B¢ + 7 g m (7005 £ s)} dg/ cosé

where we again used
19 i /4 . Ts/2 4 S
o (7) ~ —co Re [e I (1/2+ zs/z)] €™/ (5/2) + O (*In7) ~ —vy

19 (T%%) ~ —coRe [e”/‘lF (1/2+ is/2)] ™25+ 0 (T?InT) ~ —sthy + O (r*In7)

TOT
to evaluate the limit of the final terms in the brackets. Now from the function

2
~ cosé

mo o (7,8) cos (ysin€ — so)

= 21y (7, s) cosh o cos (ytanh o — s0)
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e (0,5) = o Re [e”/‘*r (1/2 + is/Q)] ems/?

T

(92’1/10 ei7r/4 a(po
awar (08) ~ 2o Re{r (1/2—is/2) } A

oI, 0 {cos (vysin¢ — so)

6§ = 2"/}0 (Ta S) 8_5

] 2y (7, 5) do 0 [cos (vsin€ — so)

cos& 6_§ o cosé

= 21 (T, s) cosh 082 {cosh o cos (ytanh o — so)}
o

where we have used
sinho = tan¢
cosho =secé
tanho =siné

do = sec&dé
we find

z/ (4oH - H* +EOE-E)dvz/ (8—E X H* + E" x 8—ﬂ) ndS
14 Sscar aw aw

0%y

OwoT (07 S) ¢0 (07 S)

~ —iw,uoélgT

oo
/ [{sinh o cosh o cos (ytanh o — so) — sin (ytanh o — s0) (y — s cosh? o) }2

—0g

4+ cos? (ytanh o — s0) (v—s cosh? )] do
Averaging over the rapidly varying sinusoids for v large gives

E H
i [ ot bk B v = [ <8—_Xﬂ*+ﬁ*xa—_)'ﬂd5
% g Ow Ow

. ™ 32¢0
~ —Wﬂo2ETM (0,8) 1y (0, s)

oo
/ [{sinh2 ocosh? o + (’y — scosh? 0)2}

—0o0
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+y (’y — scosh? 0')] do
For the time being we retain only the leading order 72 terms

/ (o - H* +20E - E*)dV
\4

9%y

wOT (0’ S) 7/}0 (07 S) 720—0

~ fSwuogT

~ —wppk?dr16c; Re { T

ei”/‘* }6‘1)0
(1/2 —1is/2)

- im/4 ; Ts/2
B Re {e I‘(l/2—|—zs/2)} e %aq

d(bo R62 [eiﬂ'/4r‘ (1/2 + l8/2)] Ts/2
e

dk? |0 (1/2 —is/2))? n{A+)

~ —poktdr8c?

The phase ®( indicates the reflection phase of the pth component. Following Antonsen [1] the average
derivative is set by taking APy = 27 and the spacing between eigenvalues to be given by the Weyl
asymptotic result for the vector case Ak ~ 72/ (k*V), or Ak? = 2kAk ~ 272/ (kV) [16]. Note in the
acoustic case Ak ~ 272/ (k?V) [15] and Ak? = 2kAk ~ 47?2/ (V'k). In our case we are interested in the scar
amplitude on axis (like the even-even eigenvalues in the 2D problem). Setting the total cross sectional area
of the axisymmetric cavity to A = 24,

%A:Aoz/ p(z)dz

—0o0
The modal spacing in the scalar case is (this is for a single azimuthal parity, since the two parities are
degenerate)

dk?
Note that we will take half this spacing for the electromagnetic vector modes (again this is for a single
azimuthal parity, since the two parities are degenerate)

dk?
Note that by choosing the average eigenvalue spacing to be one half that of the scalar case, results in a one
half being inserted into the theoretical strength of the square amplitude. However, we are picking only the
even modes with respect to z so that (this symmetry doubles the square amplitude)

dk?
W = 87T/A
Thus we take [1]

ddo\ ' 4
0 :_UQ

dk? A
where v is the Gaussian random variable with unit variance discussed previously. If we had used the
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eigenvalue spacing for the 3D electromagnetic cavity Ak? = 2kAk ~ 272/ (Vk), but even along the z
direction, we would have obtained

dq)o -1 - 2T 2
(W =75
We recall that in the 2D case we introduced a factor of two (we also used a factor of two for evenness
along the orbit) to account for evenness about the normal to the orbit, but here we are assuming that the
axisymmetric case (say cos @ parity) is handled by starting with the axisymmetric 3D scalar problem.

Thus the energy theorem along with the outer phase derivative connects the normalization constant cg
with the integration of the field energy throughout the volume

/ (o - H* + o - E*) dV
\%

2

Re? [e7/4T (1/2 4 is/2
~ —p8dm <@> e [em'T(1/2+is/2)] e™/?In (Ay) (Kco)

dk? D (1/2 —is/2)[?

d(I)O) Re? [e'™/T (1/2 +is/2)] , 2
~ go8dm | — e™/21n (Ay) (—ik*n,c
’ (dk2 T (1/2 —is/2)[* (44) (=i noco)

Note that the scalar normalization was

ddy\ Re® [e™/T (1/2 +is,, /2
/ lul> dV ~ 4ddr <_§) e le W/ ZSS/ ) €™ /2 1In (A}) 2
v dk T (1/2 — isp/2)|

and the previous vector normalization was

/ (oH -H* + o - E*)dV
v

2

d<I>0> Re® [ei™/4T (1/2 +is/2)] 7s/2

~ go8dm (W (12— is/2)P e™/?In(A) (KPco)

In the odd case

24
cosé

My = 1/’0 (Ta 3) sin (7 SiIIé' - SJ)

= 2itp, (7, s) cosh o sin (y tanh o — s0)

¥ (0,8) = coRe [ei”/‘lF (1/2 + 15/2)] ems/?

621/)0 et /4 o,
Tawar () = 20 Re{r (1/2 - is/2) } o
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M
€3

0 [sin(ysin& —so)] . 0o O [sin(vysiné — so)
o< cos& = 2itpy (7,5) o€ Do cos&

= 2i) (7, 9)

= 2i1p, (7, ) cosh aai {cosh o sin (ytanho — so)}
o

where we have used
sinho = tan
cosho = secé
tanho =sin¢

do = sec&dé
Therefore we find (noting that he ~ h and hy, ~ h()

E H
i/(uoﬂ-ﬂ*+aoE-E*)dV=/ <8—_Xﬂ*+ﬂ*x8—_)-ﬂd5
1% Sscar aw aw

€o 3 . 2
[ [ M Py (ycost )] cong

TR o Towdcor o T dwor
. m_ %1y
~ _’LwMO4ETaw8T (07 S) ¢0 (07 S)

oo
/ [{sinh o coshosin (ytanh o — s0) + cos (ytanho — so) (y — s cosh? o) }2

—0g

+ysin? (ytanh o — so) (v—s cosh? )] do
Averaging over the rapidly varying sinusoids for v large gives

E H
i [ ot bk B v = [ <8—_Xﬂ*+ﬁ*xa—_)'ﬂd5
% g Ow Ow

T 02
0%,

~ —ZCU,LLO2d OwdT (0, S) 1/’0 (0, S)

oo
/ [{sinh2 ocosh? o + (’y — scosh? 0)2}

—0o0

+ (’y — scosh? 0)] do
For the time being we retain only the leading order 72 terms
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/ (ol - H* +eoE - E*)dV
1%
T 02
~ —SwuogT—awas_ (0, 8) 9y (0, ) Yoo

i /4
_ 2 2 e’ 8(130
wiok“dml6cg Re {—F a2=i2) } N

The phase @ indicates the reflection phase of the pth component. Thus we take [1]

Re [ei”/4f (1/2+ is/Q)} ™/ 2ay

ddo\ "' 4,

>=0 =

dk? A
where v is the Gaussian random variable with unit variance discussed previously. Thus the energy theorem
along with the outer phase derivative connects the normalization constant ¢y with the integration of the

field energy throughout the volume
/ (moH - H* + eoE - E¥) dV
1%

e™/21n (Ay) ¢

d%) Re? [e7/4T (1/2 +is/2)]

~ — o k*8dm (—
o Az ) N (12— is/2)P

d@o) Re? [e"™/4T (1/2 +is/2)) rs/2

~ go8dm | —= e In (A —ik’n,c 2
’ (dk2 0 (1/2 —is/2)* (44) (Zi#k"noco)

4.8.6 Summary of Results

A summary of the results for the axisymmetric mode m = 0 are (note that this mode is a vector mode,
with magnetic field on axis ( = y/v? + 7n? — 0 polarized in the e, direction).

Even Case In the even case

2

Hmv =
cosé&

o (1,8) cos (ysin€ — so)
2 4

w(] = 604 Re [W+ + ezqz‘DWi]

W_|_ (T, 0, S) = Wis/2,0 (—272/2)

=25

kl —sp,o0=pr=ky/l,p=1,2,3,..
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Note that

$0(0,5,) = co Re [e7/2e™/ T (1/2 45, /2)] 70
and near the orbit

Yo (T,8) ~ coRe [e”/‘lf (1/2+ 13/2)] ems/? (1—572/4) + O (r*In7)

9%y
OwoTt
The outer region reflection phase we take [1] to be

imw/4 1)
T (0, 8) =~ 2co Re [F c ] 9%

(1/2 —1is/2)| Ow

o\ _ 4,
dk? A

where A is the cross sectional area of the axisymmetric cavity and where v is the Gaussian random variable
with unit variance and density

—v?/2

1
f(U): \/ﬁe

The normalization constant cg is connected to the volume energy by means of
/ (o - H* + o - E*) dV
1%

s N 2
e™/21n (Ay) o (—ik*ngco)

S <d<I>o) Re? [e7/4T (1/2 +is/2)]

dk? )0 (1/2 — is/2)

Note that the scalar form of the normalization was similar

Re? [e7/4T (1/2 4 is, /2
/\u|2dv~4d7r (di’g) e [em T/ HSS/ ) e™/2In (Ay) &2
v dk T (1/2 —isp/2)]

The fields near the axis are

2k 02
~ <7 cos? =+ k2) O, ~ k1L,

iwpy O why O
h o0& ™  dcos€ ¢ ™

where
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h=d\/cos? &+ (? =dy/cos2 £ + 02 +n2 ~dcosé
Te = /270 = /27( cos ¢
Ty = /27N = +/27(sinp

TZ\/T%‘FT?/:\/%C

Odd Case In the odd case we have

kl —s,o0=(p—1/2)m=kyl,p=1,2,3,...

2i
IL,0 ; = ’ i i -
(1,€) cosfwo (1, 8)sin (ysin & — so)
Remark On Normalization Our approach for checking the normalization is now the following.

We take the two potentials I, and II,,, each normalized to have the same volume integrals, but opposite
parities so that the resonant frequencies are the same. We then look at the projection of the field £, (which
is made up of contributions from both potentials) to see if it has the same statistics as the projection of
the field E,. If these two field component projections have the same statistics this indicates that the two
potentials have been normalized properly with respect to each other?

Cylindrical Form If we transform back to Cylindrical coordinates on axis, then we rewrite the
potential

I, (0,¢) = ¥, (0, 8) cos (ysin € — so)

2
cos&

tanh o =sin¢

z — dsiné

1 d+z
o = Arctanh (z/d) = §ln (d z)
as

211[}0 (07 SP)

J1- 2/

I, (0,2) = cos [kpz + po (2)]
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1 d+z
po(z):(k—kp)z—ispln<d_z>

where

1 d+4 1

the two exact stability exponents [12] can be ertten as
AN
= \d—¢

= (k — ky) /o0 = 2(k — k) L/ In (A4)

The separation constant s is

In the odd case (dropping the i factor by simply redefining the coefficient)

2"/}0 (07 SP)

V1—22/d?

kl—s,o0=(p—1/2)m=kyl,p=1,2,3,...

I, (0,2) = sin [kpz + po (2)]

4.8.7 Vector Scar Projection

We now discuss the projections of the scar solution along the orbit with the magnetic Hertz potential.

Elliptic System Projection If we take the projection to be defined by a surface integral about the
scar (note that the quasirectangular unit vector €, is part of this projection operator) this limit definition
of the integration around the scar produces an integral without the extra amplitude divergence factors in

the kernel of the projection operator (noting that he ~ h, hy, ~ h(, and h ~ dcos€)

2T sin (ysin & — )
=i L [ o), e T O hadpheds

1 /50 1 sin (ysiné — so) . 1 8

I T e oy gty () hedeheds
2m
= %li% " 27r/ sin (ysin€ — so) i zw,u08§ mo (,§) dpd€
o
~ —iwpy2t, (0, 8) 'y/ sin? (ysin & — so) d¢
—&o

~ =W 27 (07 5) €o
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where we have used

7]
o€

. 0 .
hQE77 = zwuoa—g (hIL ) ~ iwpgh—==11,
Thus

Vp ~ *iUOQdefodjo (0,s)
which is —in, times the V), of the preceding case using Il.,, but this is accounted for by the different result
from the normalization (the electromagnetic energy theorem). Hence this case at high frequencies seems to
be a rotation of polarization to E, from E, in the previous IL., case.

Scar (Galerkin) Projection Alternatively we may not want a surface integration definition of the
field projection, but instead a simple line integral along the orbit. Because the field from the magnetic
Hertz potential will be added to the field from the electric Hertz potential the projection operator must be
defined consistently. Thus we take (note that the derivative involves 1/hg¢)

€0 i 1 —
Vp=/ sin (ysin& SU)EW(O,f)hgdé

—& cos&

. % sin (ysiné — so) 0
~ Zw:u() /60 Ta—fnmvdg

%o sin? (ysin € — so)

~ g2t 0.5) [ ¢

—& cosé

g0

~ —iwig2y1, (0, 8) / sin? (ytanh o — s0) do

—0p

~ —iwi27, (0, 8) o9 ~ —ing2k*dogib (0, s)
where

1 d+ ¢ 1
gg = §1H m = ZID(A+)

which again is —in, times the V}, of the preceding case using Il.,, but this is accounted for by the different
result from the normalization (the electromagnetic energy theorem).

For the odd case the projection of E, derived from II,,, is

o 1 —
Vbz/ cos (ysiné SU)EU(O,f)hgdf

—& cos&

) S0 cos (ysiné — so) 9
~ ieoptg / e e e

) . o
again with
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. 0 , 0
h’E, = zwuoa—g (hIl,) ~ zw,uoha—gﬂmv

and where the Hertz potential on axis in this odd case is (dropping the 4 factor by redefining the coefficient)

2
cosé

My (07 g) = 1/}0 (Oa S) sin (7 sin§ — SO’)

Thus we find

%o cos? (ysiné — so)

Vi~ g 20 (0.5) | e
oo

~ 1wy Y2, (0, 3) / cos? (ytanh o — s0) do
oo

~ iwhg Y21 (0, 8) o0 ~ 192k dooy (0, 5)
4.8.8 Remarks On Polarization And Hertz Potential Contributions

These projection results for F, derived from II,,, are therefore identical to the projection with F,
derived from II.,. If we can show that the contribution to the projection of £, from Il is of lower
order, then we will have succeeded in showing that the projection of E, is the same as that of F,, using
the corresponding Hertz potentials II,,,, or Il.,, with each carrying the same contributions to the energy
normalization condition. In summary, if we show that the Hertz potential II., does not contribute
significantly to the projection of E,, it also would follow that with the use of the two Hertz potentials
IL., and Il., that only IL., contributes significantly to the projection of E, and only Il, contributes
significantly to the projection of F,, even though each contributes equally to the normalization conditions.

The contribution from the other Hertz potential II.,, is

wE, =l ii(hZH ) O, =2 o
T 0n | h3 0w v onov- < ’73@8796 v
where
= 4y (7, ) cos (ysin€ — s0)
ev — COS£ 0 \7,S)COsS (7 sm SO
= 21, (7, s) cosh o cos (ytanh o — s0)
and

v=_{_cosyp

n = (sinp
Stepping back to the original form of the electric field in the direction of the electric Hertz potential
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%" L, 2,
~ | == cos® p=—— + k? | I, ~ E?TI
(dcos2§ Y orz + v v
we see that the O (k*d?) = O (7?) term was dominant. Hence the other component E,, involving twin
transverse derivatives

o1 0 9? 02
20 _p 2 | (2 ~ __ =2y —
Wk = h@n [h3 ov ( ev)] ondv Mev =27 0Ty 07, Hew

is of O(1/v) = O (1/(kd)) of the component in the direction of the potential, and hence can be ignored.
Note that the electric field contribution F,, arising from Il,,, was taken as the same order as E,, arising
from II., due to the normalization condition in the energy theorem.

5 CONCAVE MIRRORS AND ROTATIONAL STADIUM
CAVITY

The rotated stadium-like cavity has three regions to consider. The inner region 1 has a field description
similar to the bowtie cavity. The outer region 2 is a complementary region outside the foci and the focal
region 3 involves a product form of special functions near the foci.

5.1 Curved Trajectory Analysis

Vaynshteyn has treatments for stable modes between concave mirrors. Here we wish to consider the
generalization to unstable modes between concave mirrors. Following Vaynshteyn [5] we have Figure 31
where

7 = dsinh ( cos&
z =dcosh(sin&
0< (<00
—r/2<E<T/2,0< <2
We take
where
¢ =dcosh(, (401)
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¢ =-G

Figure 31. Fitting of prolate spheroidal coordinate system to radius of curvature of rotationally symmetric
stadium cavity.
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On the mirror we have

r = dsinh {jcos&

z =dcosh(ysiné

\/1 — [r/ (dsinh ¢,)]? = sin¢

As r — 0 we have

sng ~ 1 - 2 [r/ (dsinh )
and

r? cosh (,

2d sinh? ¢,
On a circle of radius R, centered at (0, z9) where zo = dcosh (, — R, we can write

z ~ dcosh(y —

(z—20)* +r? = R?

2

z=dcosh(y— R+ R?—1r2~dcosh(, — -

2R
Thus
R = dsinh® ¢,/ cosh ¢,
Also
R =d(cosh(, — 1/ cosh(,)

¢ = dcosh(,
and

R=1(—d*/t

d=+\/t({—R)=1/1-R/l

In examples below we will take £ ~ 0.11176 m and R ~ 0.10160 m, and d = 0.0336969 m.

5.2 Scalar Field High Frequency Approximation

(402)

Figure 31 shows the regions near the scarred orbit on the major axis. The modes of the Helmholtz

equation
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Viu+k*u=0
are now investigated. This can be written in these three-dimensions as [5]
T S S B
cos & O 0¢ cos?{  sinh?¢ /) 0p?

du
9¢

L g (sinh(

+sinh< c ) + 2 (coshQC — sin® f) u=0

where

v =kd=ki\/1- R/ (403)

We assume v >> 1. On the mirror we want

w=0,¢=Cy, 0< J¢] < 7/2 (404)
5.2.1 Modal Description In Region One: Between Foci

We will solve the problem separately in the several regions of the stadium cavity. The high frequency
analysis in the first region is the same as for the bowtie cavity, which we repeat here for convenience. We
assume in the first region that we are inside the foci with —§, < £ < £, and that near the orbit we have
sinh? ¢ << 1. We assume v >> 1 and that sinh? ( << 1. We take the function u to be even about the z
axis. We seek a solution of the form [5]

w=W (G0, ) €750 4 W ((, 9, —€) 7000
Substituting into the Helmholtz equation gives

Lg fa_W + (32 ga_W + 1 + 1 62W
cos & ¢ o8 o€ 1708 0¢ cos?{  sinh?¢ /) O0p?

1 0 /. ow . 12 o .
+sinh§8_C (Slnh<8—C> + (’ysmh (—z2sm§) W =0

Now for high frequencies v >> 1 we ignore the term

1 0 O
00850_5 (C%fa_g)

and taking sinh?¢ << 1 we can replace sinh ¢ by ¢ and neglect the term

1 0w
cos2 & D2
Then

1g( a—W)-i-iQ cos{a—W
coc \>ac TR 9e
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Next taking

These give

or

Taking

or

gives

Letting

gives

If we let 72 = 2v

186

2
+%%7VZ + (v2¢* —i2ysiné) W =0

1
cosé

T= V2

3
o= /0 & _ arcsinh (tan¢)

cos&

oo = arcsinh (tan¢,) = In (tan ¢, + sec&;)

1a<aW), do OW
— (1) +

ror \"or ¢eos 8_§E
1 9*wW .
+§a—<p2+(7'2/4—zsm£)W:O

lg 7-8_\1/ +i82_\1/+i8_\11+T_2\11—0
TOT \ OT 72 Op? do 4

U =", (1,0)cos (my)

U =T, (1,0)sin (my)

10 ov,, ov,, 2 m?
— T — | +i—F+———=|¥,,=0
or Jo T

Y., (T’ 0) = eiisgwm (T’ S)

1d i, 72 m? B
P (d—) * (z“‘?)%—o



Ld ( vy _ldvd ((dvdiy) _,d ( di,
TdT TdT T rdrdv TdT dv dv vdv

d i, v s m? B
d_< dv)+(z+§—ﬂ)¢m—0

Now taking

gives

d,, dw,, wWmn
v _\/E< dv 21})

2 (8) - i ()

dv dv dv?
d2wm+ l_i_s/_Q_i_l—m2 w =0
dv? 4 v 42 e

This is a form of Whittaker’s equation

Wy = My (2) , W (2)
Therefore in our equation with z = —iv

Noting that

Let us take

and then
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Wy, = Cm Re [W+ + ¢'®o W_t]

The potential is then

w=—, (ns)cos(vsin&—so){ cos (mep) }

cos 5 sin (’ITI,QO)

2 .
U, = cmg Re [Wy + e@OWi]

Wi (1,m,s) = Wis/2.m/2 (—”2/2)
5.2.2 Modal Description In Region Two: Outside Foci

In the second region outside the foci we assume that 0 < ¢ < ¢, and that cos?¢ << 1. We seek a
second solution of the form

u=W(C 0,8 TN LW (¢, 0, =€) e TN g > ¢, (405)
7 = dsinh ( cos&

z =dcosh(sin¢&
Note that the sign change in the exponential goes with the sign change of ¢ before the limit & — 7/2 is
applied. The parity in £ is actually required since the Region 1 matching (which is even in £) will make the
disjoint region two’s have even parity also. The fact that this introduces the standing wave in Region 2 is
comforting.

Substituting into the Helmholtz equation

L ﬁ cosia—u + 1 —|——1 @
cos & O o€ cos?¢  sinh?¢ /) 0p?

au

1 0 (. .
—l—ma—C( )—1—72 (coshQC—s1n2§)u:O

and using

L 9 (sinh (%) = L 9 (sinh C%We” cosh C)

sinh ¢ 9¢ ¢ sinh ¢ 9¢
1 0 ow . 0 .
— : iy cosh ¢ - s 1.2 i~y cosh ¢
S ac (smh C—aC e ) + iy S OC (sinh? (We )
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; 1 0 oW oW
_ piycosh( : . i . A2 nh2
e {Sinhg_aé (smh(—aC ) -1-22’ysth—8< + 127y cosh (W — v~ sinh® (W

gives

L 2 cos& 8—W + ! + ! il
cos & O€ o¢ cos2§  sinh®¢ ) Op?

ow
o¢

0

L LD (oW
sinh ¢ 9¢

o + (i2ycosh ¢ + 7% cos® ) W =0

<Sinh ¢ > + 42y sinh ¢

Let us now substitute the second term W ((, ¢, —€) e~#7°**h< into the Helmholtz equation

—1 2 cosfa—W + L + ! alld

cos & O€ o0& cos?§  sinh®(¢ ) O0¢?
L 0 (e o sinh e 1 (s 1 2 (og2 _
+sinh§8( (blnhC 3() zQ’ysmh(aC + (—i2ycosh ¢ +~*cos? §) W =0

The original equation is not recovered by choosing a change in sign of £. It can be recovered by a +in shift
in ¢ where cosh (¢ £ im) = — cosh ¢ and sinh ({ £+ iw) = —sinh {. Let us take

u=W(C,0,8) e W ((—im p,€) e g > & (406)
Now for high frequencies v >> 1 we neglect the term

1 0 ow
Y (sinh

sinh ¢ 9¢ (Sm ¢ )
and for cos? ¢ << 1 the term

1 o*W
sinh? ¢ d¢?
to give

1 a Ea_W N 1 o*wW
cos& 0¢ €08 o0& cos? & Op?

+i2y sinh(aa—vg + (i2ycosh ¢ +7* cos® ) W =0
Using cos? £ = cos? (/2 — |¢] — 7/2) = sin? (1/2 — |¢]) = (7/2 — |€])® = £, we have

li (5’ 8W) i@Q_W
goe \" o) " ¢” o

ow
+i2v sinh Ca—c + (i2ycosh¢ +72¢%) W =0 (407)
We will focus on the £ > 0 side so we can define ¢ = 7/2 — ¢, |§" < /2 —¢,. To generalize to both sides
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of Region 2 we can take ¢’ = +7/2 — £. Now letting

and

gives

Note that

1
W = sinhC\Ij (408)
= /2v¢ (409)
I = /C d< = In [tanh (¢/2)] (410)
7= w sinh¢ &
. 0 . oo’ 0 0
blnhga—é_ = btha_CW = %
10 (L0u), 1o
~or \" or 7'2 92
ov 72
+Z% + T‘I’ =0

af:/“” d :_/C de
oo sinh ¢ o Sinh ¢

o = In [tanh (¢y/2)]

sinh (¢ — im) — e " sinh ¢ (411)

Because of the mirror boundary condition this equation must be integrated under the restriction that

Letting

or

gives
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v (T/a ' U(/)) =V (T/a ®, _OJO) eiX

X=—2vycosh(y+m(2n—1)+m=—-kL+7(2n—-1)+7

U =, (1,0) cos (myp)

U =", (1,0)sin (my)



7' or' or' e
and taking
U, (7,0") = ey, (7)) (412)
gives
1 d ,d T2 , 2
-2 m S - = 41
’dT’( dT'>+<4+ T/2 Ym =0 (413)
The mirror condition gives
1= ei23/06+ix
2s'al,+ x =2n'm
2s'oy =2n'tr+kL—7m(2n—1)—7=2(n'—n)7+ kL
=-2pr+kL=(k—k,)L (414)
where
kpL = 2k, = 72p (415)
p=12.. (416)
We take the real part at the end of the Region 2 construction.
5.2.3 More Symmetrical Version Of Region Two Solution
It turns out to be convenient to take the solution in Region 2 as
(417)

u=e W (Cp,€) €O LW —im g, €) e TN e > &
This choice eliminates a factor €'™/2 that would appear in subsequent sections.

5.2.4 More General Version Of Region Two Solution

To make sure we have not missed any choices in the second solution, suppose we take the solution in
Region 2 to be more generally

u= e—iTr/Q—i<I>1/2 [W (C,w7§) ei’ycosh( + eifblw(c _ ,L'ﬂ.’so’g) e—i’ycosh(} , ‘§| > EO
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1 ; ir /o —; ; ; cos (mep)
_ v, 11\ iycosh—im/2—iPy /2 m r iy cosh (+im/2+i®Dq /2 )

sinh ¢ SELOL + ¥ (7, =) ] sin (mey)

-2 ¥, (7', 8') cos (yeosh ¢ — 8’0’ — /2 — B, /2) (mp) (418)
sinh¢ "™ 7 ! sin (mp)
where
2 -

W, (77, 8") = cmg Re [W+ (r',m,s") + e"bOWi (7', m, s/)] (419)

W+ (T/, m, 8/) = Wisl/g,m/g (—’iT’Q/?)
=2 (420)
¢ =4r/2-¢ (421)

2s'c(, = 25" In [tanh (¢ /2)] = (k — kp) L (422)

¢ d
o' :/ sini( = In [tanh (¢/2)]

oo
The mirror condition gives

cos (ycosh(y — s'ofy — /2 — ®1/2) = cos (kpl — /2 — ®1/2) =0
or

kl —m/2 —®1/2=7(p—1/2) (423)
At this point we can think of k, and hence s’ as still arbitrary (k, and s’ are directly related). The
introduced phase ®; is selected to match the mirror boundary condition.

5.2.5 Modified Region One Solution
Because the solution must be even in £ we can write in Region 1

u=C[W (e ™+ W (¢, —E) e 5] [¢] <&

1
cosé

=C [V (7,0,0) 78 4 U (7,0, —g) e~ 70 ¢]

oo ¥m(T:8) (vsiné — s0) { cos (me) }

cosé sin (mgp)
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Y (7, 5) (T’,s) cos ('y cos¢ — sa) { cos (mep) } L =m/2-¢ (424)

m
sin¢& sin (mp)
For matching purposes (with Region 2) it is convenient to insert the imaginary unit into the definition

=2C

2 . . )
Y (T,8) = cmg Re [efW/QW+ (tr,m,s)+ e”/Qe@OW_t (r,m, s)] (425)

3
o= /0 @ _ arcsinh (tan§)

cosé&
=In(tan{ +sec§) =1n {tan% &+ 77/2)} = —In {tan (¢'/2)} (426)
=21

W+ (T7 m, 5) = Wis/27m/2 (717‘2/2)
5.2.6 Behavior Of Zero Mode Near Orbit For Stadium Solutions

The Region 1 behavior of the zero mode m =0

2 , , ,
1/}0 (7-, 8) = CO£ Re [G_W/QWJF (7_’07 S) + €ZW/261(D0W1 (7.70’ S)}
T
is now discussed near 7 — 0. Noting the behavior of the Whittaker function

1/2 1

W, (7,0,5) ~ — (—it?/2) I(1/2—1is/2)

[In (—i7?/2) (1 — s7%/4)

+ (1/2 —is/2) — 20 (1) + (s7°/4) {—2p (1/2 — is/2) +2¢ (1) + 2} + O (" In7)]

WJlr (T, 0, 8) ~ iT% (—i72/2)71/2 T (1/217 25/2)
[In (—i72/2) + {¢ (1/2 —is/2) =2 (1)} + 2+ O (*In7)] , 7 =0, m=0
and taking

0 . , )
7'—5@0 = coV2Re {e_”/Q Wi + ei™/2¢1%0 Wi’} — g (427)
to vanish as 7 — 0 gives the reflection phase

oo _ TP WL - 2Wy) (W — 2 W)

W - TWy) (W~ )’

193



T'(1/2+1s/2)

R R ()

Thus near 7 — 0 we find

imw/4

(428)

¥y = co Re m {In (=i72/2) —In (i72/2) + ¢ (1/2 —is/2) — ¢ (1/2 + is/2)} + O (r*In7)

Noting that

Y (1/2+1is/2) = (1/2 —is/2) = meot w (1/2 — is/2)

_ﬂ_cos77(1/2—is/2) :Wsin(iﬂs/Q) . sinh (7s/2) i tanh (s
- Usinm (1/2 —is/2) cos (irs/2) i cosh (1s/2) tanh (7s/2)

gives
o (0,5) = co Re [—eiﬂﬂm (im 4+ (1/2 +is/2) — b (1/2 — is/2)}]
=coRe {_em/4m {im+mecotm (1/2 — 13/2)}}
= ¢ Re {_emMm {im + 7 tan (ms/?)}]
=coRe 71'6_“1'/4; anh (7s
o R [ F(1/2—i3/2){1+t h ( /2)}}
. 7T€7i7r/4 1 e7rs/2
oRe [ T (1/2 — is/2) cosh (778/2)}
=coRe [e_”/‘le”smf (1/2+ is/2)}

1o (0,8) = coRe [6”3/26_”/41" (1/2+ 15/2)] , T—0
which is —¢ (inside the real part) times the preceding bowtie result. In general

¢0 (Tv 5) ~ CO? Re |:_ (_i72/2) v m

(429)

{In (—ir?/2) (1 — s72/4) + 1 (1/2 —is/2) — 24 (1) + (s72/4) (= (1/2 —is/2) + 2¢ (1) +2) + O (" In7) }
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c . 2,00 1/2 1
+i(/2) T(1/2—is/2)

{In (i72/2) (1 — s72/4) + ¢ (1/2 4 i5/2) — 20 (1) + (s7°/4) (= (1/2 +is/2) +2¢ (1) +2) + O (r*In7) }]

—1

R )

~coRe|—e

{In (—i7?/2) (1 — s7%/4) + 1 (1/2 —is/2) — 2¢ (1) + (s7°/4) (—¢ (1/2 —is/2) + 2¢) (1) +2) + O (r'InT) }

1

T(1/2—is/2)

_—im/4
{In (i2/2) (1 — s72/4) + ¥ (1/2 4+ is/2) — 24 (1) + (s72/4) (= (1/2 +is/2) +2¢ (1) +2) + O (r* In7) }]

~ —imw/4 —1i
co Re [6 T(1/2—is/2)

{im (1 — s7%/4) + (¥ (1/2 +1is/2) — ¢ (1/2 — is/2)) + (s72/4) (¢ (1/2 — is/2) — ¢ (1/2 +is/2)) + O (r*In7) }]

—im/4

~ ¢co Re {F c

(1/2_1-5/2)} [m—i{Y(1/2+is/2) — (1/2 —is/2)}] (1 — s7/4) + O (7*In7)

Then

efiﬂ'/4
L e

} 7 [1 + tanh (7s/2)] (1 — s7%/4) + O (7 In7)
~ coRe [e_i”/‘lF (1/2 4 is/2) coshm (5/2)} [1+ tanh (rs/2)] (1 —s72/4) + O (t*InT)

~ coRe [e‘”“l" (1/2 + 25/2)} ems/? (1-572/4) + O (r*In7)

7'(%1&0 (1) ~ —coRe [e‘”“F (1/2+ is/2)} e5/2 (57'2/2) +0 (7’4 1117') ~— (87’2/2) Yo

%%wo (1) ~ —coRe [67”/41" (1/2+ is/2)} e™/2(s/2) + O (74 InT) ~ 721/10

%837 (T%?/}O) ~ —co Re [67”/4F (1/2 + is/2)] ™25 + 0 (7’2 lnT) ~ —=sthy+ O (72 1117')
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In addition

"or

1y 00w, in)2 r_ 1 ’
U (1,5) ~ coV2Re {zme e <W+;W+> }

91y
TawaT

efiﬂ"/4 8(1)0
(0,) ~ 2co Re [r 1/2— 13/2)] O

The Region 2 behavior of the zero mode

2 7
o (7,8') = Cog Re {W+ (77,0,5") + %o Wi (7,0, 5')]

is the same as the previous bowtie sections but with primed arguments, where
=2

¢ =tn/2-¢
Again taking

o
T 87(’)

= coVZRe [W/ + W] -y

to vanish as 7 — 0 gives

(Wi —3Wy) _ D(1/2+4is'/2)
wr—Lwy)"  T(1/2-is/2)

+0 (7"2)

Thus near 7/ — 0 we find

1y (0,5") = co Re [e“/me”/‘lf (1/2+ is’/2)}

o (7', 8") ~ coRe [e”MF (1/2 + is’/Z)} e /2 (1-5s'7?/4) +0O (" In7')

T/%Z/JO (',8") ~ —coRe [e”“F (1/2 + is'/2)] ems' /2 (s'7%/2) + O (T In7') ~ — (s'72/2) 1,
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10

/
— 3700 (78) ~ —coRe [T (1/2 4 i/ /2)| /2 (5//2) + O (" In ') ~ =S

1 , ,
—/% (T’%lﬁo) ~ —co Re [e”MF (1/2 + is'/2)] e™ /28 + 0 (7"2 In7') ~ —s"Yy+ O (7"2 Int')
T Or T

In addition

9 1 N LN
T alﬁ? (T’,s') = CO\/§RE} |:(VVJ/r — ;WJr) +ez<b0 (WJ/F . ;W+> :|

0%y 0P} .o 1 -
/ 0 AN ; 0 idg, r -
T i (7',s") = coV2Re {z 90 € (WJr T/W+) ]

and

7_/ 8271[}0
OwoT’
5.2.7 Approach Of Focal Point

i /4 o’
N2 ¢ 1%
(0,7) ~ 2¢o Re [F(l/Q—is’/Q)} Do

We first take the limits of the outer two regions as the focal region is approached. However to allow
flexibility in phase matching at the focus, we will allow the focal point to shift by a small amount in the
Region 1 and Region 2 solutions by adding a small z shift relative to the Region 3 solution. This can also
be viewed as distorting the the coordinate with d — d + §, which corresponds to a slight reduction of the
prolate spheroidal radius of curvature on axis, since d = £4/1 — R/{; because the prolate spheroid has
increasing radii of curvature off axis, such a reduction on axis might actually represent the stadium mirrors
better at a finite wavelength (this also explains why this shift is taken to be positive since R shrinks on
axis). Therefore we let

d—d+6 (431)

v — v+ kd (432)
where § << d is a geometrically small shift. Thus in Region 1 we find

u~ 2Cc,, \/1’7C Re [e_”/QW-f- (\/%C,m, s) + ei”/Qei%W.t (\/%C, m, 3)}

sin (my)

§/71 oS [7 (1 . §/2/2) + kS + sln (5//2)} { Ccos (m%@) } 7 fl 0
In Region 2 we find
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U~ QCmﬁ Re {WJr (\/ﬂf/, m,s') + e“’éWfr (\/ﬂflﬂm s’)}

creos [y (14 /D) +s - (o) - -y { S e

n (mgp)
where
s'In [tanh ((y/2)] = (k — kp) ¢
kl —m/2—®1/2=7(p—1/2)
Small Shift In Focal Position We can also view this shift as a change in the original coordinate

system (r, 2) or (¢,€) or (¢,£)
r = dsinh ( cos & = dsinh siné’ ~ d¢¢’

z=dcosh(siné = dcosh(cos¢ ~d(1+¢*/2—¢7)2)
to the focal coordinate system (r/,z") or (Z,E/) with

z2—0=2 = dcosh/g:cosg ~d (l —&-22/2 —2/2/2>

, . ~ . ~ A~~~
r=r =dsinh(sin{ ~ d¢¢
Thus the small shift d enters as an additive correction as in the preceding section.

5.2.8 Focal Region Three

Near the focus £ = /2 and ¢ = 0 we approximate the Helmholtz equation

L 2 cosf@ + 1 +—1 @
cos & ¢ o€ cos?¢  sinh?¢ /) 9p?

+— L i (sinhg%) + 42 (coshQC—sin2§)u: 0

sinh ¢ O¢ aC
or
LAY (PP N (S S S
cos € 9 9¢ cos?¢  sinh? (/) 9p?
1 g 1 % 2 : 2 2 N
+smh(8g (Smhgac) + 7% (sinh® ¢ + cos®§) u =0
or
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SN AN
Sind o (Smg o€ ( eF sinh2<> e

1 0 ,
+sinh§5'—( (smhgac) + 72 (sinh2C+Sin2§)u:0

as & =7/2 — £ (we are assuming that ¢* << 1 and that £? << 1)

é./ aé./ 85’ 5/2 CQ 6@2

9 (g%) () u=0 (433)

or taking

w=u (€ { e 1 (434)

Separating variables

U = Ry (C) Zm (5/) (435)
110 ,0Zm, 2412 2 /612
Zozae (<58 e

110 9 2,2
|z (g )+t -] =
Taking the separation constant to be 2vg we find

L (5' 82’7) + (=29 +77%" -m? /%) 2

19 ( R o o
yiry: C—>+ 27 +7°C —m”/C7) R
Thus we find Whittaker equations in both directions. Letting

EVoy=r

in the first and
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in the second, gives

Therefore we take as the solution

2
Um = XL = Cocmi/_ Re (W4 (7',m,—g) + BW; (7',m, —g)]
T

2
g Re [W+ (T,mmg) + BW;E (Tama g)]

_Cocmg,\/_ o [W (€v2r,m,—g) + BW; (€v/27,m,~g) |

e e [T (Vg 4 B (CyFmg)

For purposes of matching with the other two regions we take g = s = —s’ and B = ¢'®° and B’ = i®o

UZCOCmg\/_ [W+(§\/_,m S)—&—e@oW* (5\/_,771 S)]

v Re [ T2y, (C\/Q_,m, —s’) + .e”r/Qei(I)OI/V_Tr (C\/Z_,m, —s')] { (s:?r? ((zg)) } (436)

Expanding as we leave the focal region using the asymptotic form

W+ (T, m, 8) ~ eir2/4 (_Z-T2/2)is/2 _ €i7—2/4+s7r/4+is 1n<7—/\/§) , T — 00
gives

u ~ 2Coe” ™4 cos () /2) cmﬁ Re [e*i’r/2W+ (g‘\/2_, m, —s’) + e 2eitopyy (C\/Q_,m, —s’)}

sin (m)

5'\1/3 cos [5'2')//2 +s'In (£'/7) — /2] { cos (me) } , Region 3 — 1

u ~ 2Coe™* ™ cos (94 /2) cmg,\/_ [W+ (§ V2, m, s) —l—e’%W* (f V2, m, s)]

cos [¢37/2 — ' In (C/7) — /2 — By /2] { cos (mp) } Region 3 2

1
Nai sin (mep)
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These must match to the limiting forms of the outer solutions from the preceding sections

u = 2CMT§’,S) cos [ycos¢ + sln {tan (¢'/2) }] { cos (m:p) } N R

sin sin (m)

2 . . )
Y, (1,8) = cmg Re [672W/2W+ (tr,m,s)+ eZ”/QeZq)OW_t (r,m, s)]
or

1
u ~ 2C

?cm% Re [e_i”/2W+ (Cm,m,s) + e"’T/Qeiq)OVVJ*r (C\/Q_, m, s)}

sin (my)

cos [’y (1—§/2/2)+k5—|—81n (5//2)}{ cos (M) } L€ =0

in Region 1, and to

2

u= il (7) cos [y cosh ¢ — s/ In {ranh (¢/2)} = /2 = ®1/2) { i) }

2 L/
b« o 1 2 503 )]

or

U~ %cmg,\l/7 Re {WJF (5’\/27,171,3') + ei%Wi (5'\/2_,m,s’)}

cos [7(1—&-(2/2)+k6—5'1n(§/2)—7r/2—<1>1/2]{ Z?;((ZZ)) } , (=0

in Region 2, where
s'In[tanh ((y/2)] = (k — kp) ¢

kpl —m/2—®1/2 =7 (p—1/2)
The functional behaviors are identical, but the phases only match if

s'In(2y/7) —®,/2= -y —ké+nrm

—s'In(2y7) —7/2—®g/2 =7+ ké —7/2 — D1 /2+n'7
and the amplitudes match if

' 1
Coe® ™4 cos (®),/2) — = C (—1)"
0 (0/)\/,7 (=1

(437)

(438)

(439)
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Coe ™4 cos (90 /2) — = (—1)" (440)

=S
VA

5.2.9 Evenness Conditions On Scar

Because we want the normal derivative to vanish as the scarred orbit is approached

T'—0

o 1 o
lim {Re [I/V_'Ir (7',m, s') + e PoW (7,m, s')} — —=Re {W+ (r',m, 8') + e PoWr (7', m, s’)]} —0
T

. o 1 , o
lim {Re [e_”/szr (1,m, 8) + ™/ 2 POW (1, m, 5)} - Re [e_“r/QWJr (1,m, 8) + e/ 2 POWT (1,m, s)} } —0

T—0

where the first is the Region 2 form and the second is the Region 1 form. If we write the real part as one
half the sum of the function and its conjugate, we see that these conditions imply

6% — _ lim (WL (7',m,s") = LW, (7/,m, s')]
=0 I:W—/&- (7_/7 m, S/) - %W'i‘ (Tla m, S/):I "

and
% _ lim (W (r,m,s) — LW, (1,m,s)]
=0 [er (t,m,s) — %W+ (r,m, S)Tk
Using the properties of the Whittaker functions and s = —s’ we can evaluate these. The properties of the

functions we desire are

(m—1)!

. 1/2—m/2
Wy (r,m,s) ~ (=ir?/2)" /p<1/z+m/z_¢s/z)’”0’m¢°

o (mirf2) P e [ (ir2)

(1/2 —is/2)

+{v(1/2-is/2) =24 (1)} , 7—0, m=0

and
. ) , ~1/2-my2 (1/2 —=m/2) (m — 1)!
Wi (1,m,s) ~ —it (—it?/2) T2 1m2—is/2) T—=0,m#0
NZ‘T% HAT?/QYWW [In (—=i7%/2) + {¢ (1/2 —is/2) =20 (1)} +2] , 7—0, m=0

and thus (this also works for m = 0)

pito _ gim(m-1)/2L (1/2+m/2 +1is/2)
L (1/2+m/2 —is/2)
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Figure 32. Illustration depicting the reflection of the waves of the scarred orbit from the outer chaotic
region, with an inversion of the reflection phase on the other side of the focal point.

and
0% — 7ei7r(m71)/2r (1/2+m/2 +is'/2)
L(1/24+m/2—is"/2)
or
i) _ _efm(mq)/QF (1/24+m/2+is/2) — _iPo—i(m-1)m _ (—1)™ &i®o
I'(1/24+m/2—is/2)
Thus
D) = —Pg + mm (441)
The single remaining condition then determines s’ = —s given a value of the reflection phase ®j. Note

that this choice of reflection phase conjugate implies that the incoming wave from the outer region travels
toward the scarred orbit in one region, but on the other side of the focus travels away from the scarred orbit
as illustrated in Figure 32. This construction of the transverse dependence has thus allowed a consistent
solution between the two regions to be found.

5.2.10 Summary Of Conditions

The summary of conditions is now given. The first is the vanishing of the normal derivative as the orbit
is approached

ei‘I’o — ei‘n’(m—l)/2r (1/2 + m/2 + 18/2)
L (1/2+m/2—is/2)

o) _ _eiw(m—l)/2r (1/2+m/2 +is'/2)
I'(1/24+m/2—1is'/2)

ei

or
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/
&) = —Dy +mm
determines s’ given ®( or vice-versa

e—i®0 _ iF (1/2+m/2+is'/2) o—imm/2
L'(1/24+m/2—1is'/2)
From the mirror condition

D1/2 =kpl —7p
where k, and s’ are related by

s'In[tanh (¢y/2)] = (k — k) ¢
This can also be written in terms of the stability exponents as

' =s=2(k—k,)¢/In (%) —2(k— k) L/In(A)
where
1 {+d 1 AL +1 1 1
and

Ap—1
djl =Y+
(VAL +1)
and where A2 = Ay, Ay A_ =1=A,A_ and (A 4+ 1) /2 = (£ £+ d) /R. The phase matching conditions can

be written as
@1/27@6/27@0/2:(@1/27’”’”{/2:7T(77J+TL/)

kd = —y — ' In(2\/7) + ®5/2 + nm = —y — ' In (2\/7) — Po/2 + nm + mm/2

or
& /2=m(n+n")+mnr/2

k6 = —y —s'In(2\/7) — ®o/2 4+ n7 + mn /2
and the amplitude conditions give the coefficients as

C = (—1)" e
Co = (—1)" ™4 /ysec (®g/2)
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It appears like the phase ®;/2 adds something for odd values of m since it must be a multiple of 7/2 and
sign changes in the Region 2 solution due to this phase are accompanied by sign changes in C' and in the
Region 1 solution (which thus can be absorbed into the amplitude coefficients). Furthermore the factor
sec (g /2) only enters because we failed to set the problem up with symmetrical factors exp (£®y/2) in the
combinations of Whittaker functions.

5.2.11 Final Set Of Conditions For Axisymmetric Mode

Thus for the axisymmetric mode m = 0 if we set ®; to zero we have the evenness condition across the
scar orbit to determine the allowed values of the separation constant s’ in terms of the chaotic phase ®q

—iag _ [ L(1/241s'/2) /oy Lo ”
e ® —Zm—COSh(ﬂ'S/2);F (1/2+28/2) (442)

We have the mirror conditions which connect the separation constant values and the resonant frequencies k

kpl =mp (443)
s'In [tanh ((y/2)] = (k — kp) ¢ (444)

We also have the focal point shift §
kd = —y —s'In(2y7) — ®o/2 + nm (445)

and the amplitude constants (here we note that if n and n’ are both even or odd C' is one, but if they have
opposite parities, then C' = —1 which cancels the phase shift ®;/2, then an odd multiple of )

C=e'/? (446)

Co = (—1)" ™%y sec (B /2) (447)

To get a feel for the connection with ® for small s’ we can expand as

iwe _ L(1/2+is/2) 1+ (is'/2) 9 (1/2) + (is'/2)% [* (1/2) + ¢ (1/2)] /2
U(1/2—ids'/2) 1 (is'/2) ¢ (1/2) + (is'/2)* [¥* (1/2) + ¢’ (1/2)] /2

1—(is'/2) (v +2In2) + (is 2

//2
~ 1
14 (is'/2) (v +21In2) + (is'/2)

' +21n2) +7r2/2} /2

' +2In2) +7r2/2} /2

{o
{
~ i {1 —is' (4 +2In2) — s (y’+21n2)2/2}

where 1 (z) is the digamma function [11] and v’ ~ 0.5772 is Euler’s constant. Thus we have

&y — —7/2ass —0 (448)
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5.2.12 Focal Shift In Axisymmetric Calculations

In the calculations of the focal point shift we use

kpl =mp (449)
o =2 (ky — k) £/ In (%) (450)

and the focal point shift §
k(d+6) = —s'In (2@) — (Bo/2+7/4) + (n+1/4) 7 (451)

Note that for s =0 and k = k,,, we have §, where

kp(d+00) = (n+1/4)7
The transcendental equation for s’ can be written as

it@otnyz) _ L824 1/2) (152)
I'(—is'/2+1/2)
giving

k(d+6)=—s'In (2@) +argT (1/2+is'/2) + (n+1/4) 7 (453)
Noting that

kd = (k — ky) £(d/£) + kyl (d/£) = pr (d/£) — %5 (d/6) In (if—j)

gives

ké = {1n(2\/_)——(d/€) (g j)}—I—argI‘(l/Z—l—is’/Q)—l-{(n—l—1/4)—p(d/é)}ﬂ'

or ignoring terms of order (k — k) 0

kpéw—s’{ln(Q\/_)——(d/f) (g d)}—I—argI‘(l/Z—l—is’/Q)—l-{(n—l—1/4)—p(d/ﬁ)}ﬂ'

or

kp (d+6) ~ —5 {m (2\/1@) + % (k — k) [kp — % (d/¢)In (ﬁf—j)} +argD (1/24is'/2) + (n+1/4) 7

or

(d+6)/£~é{s’{%(d/ﬁ)lm(?—j)—kis’l (ﬁ*j)/ (2\/_>}+argF 12+ is'/2)
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+(n+1/4)/p
Dropping the quadratic term in 1/k?

(d+5)/£~i[5'{%(d/e)1n(ﬁ+d) ln(2\/_>}+arg1" 1/241is'/2)| + (n+1/4) /p

kpl

Expansion For Small Separation If the value of s’ — 0 we can expand the gamma function as

T (1/2+is'/2) ~ /7 [L+1p(1/2)is' /2 — p* (1/2) s /8 — ' (1/2) s /8]

~ T {1 — (v +2In2)is' /2 — {(7’ +2In2)° +7r2/2}5'2/8}

and

argl (1/2+is'/2) ~ — (' +2In2) &’
to find

k(d+6) =5 [In (4VEd) +7//2] + (n+1/4) 7

or

(d+5)/£~é[s’{%(d/ﬁ)ln(ﬁer) In (1/%d) - ’y/QH (n+1/4) /p

5.2.13 Average Focal Shift

The normalized shift function, without corrections (s’ = 0) is

kp(d+do) = (n+1/4)7
and using

kpl =pm
is

(d+d0)/l=(n+1/4)/p
This can be written as

kpdo/m=n—n,>0
where

(454)

(455)

(456)

(457)
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ne =pd/l —1/4
and the inequality displaces the focus to the right of the geometrical focal point (as we found in the 2D
problem [2]). Now for for large values of p (with d/¢ < 1) and n, we assume that n — n. is between 0 and 1
(we might take it to be uniformly distributed) and examine the average

kp (d0) /m~1/2 (458)
For example with the frequency range

209.71 m~ ' <k <628.7m !
with £ =0.11176 m, d = 0.0336969 m we find that

p1=8<p<22=p
Then we find

1 dp 12

do) /€ = / — =—"——1n = 0.0361286
@} / pP2—p1Jp, 20 p2—p1 (P2/p1)

and

de = d+ (5) ~ d + (60) ~ 0.0377346 m (459)

5.3 Stadium Normalization For Axisymmetric Mode

The preceding acoustic case of scalar normalization gives the normalization condition

f [y 0 (1]
Ow \w On u@w w on

scar

k2 2
=2— [ |u|"dV (460)
w2 v
or for a real function with unit volume integral
Ou (1 0u 0 (10u k2
— | =) —uz— | —%5 =2— 461
_74 |:8W (w 6n) Y ow <w 871)] ds w? (461)
SSCU,')"
If we set
0
% =0, on Sscar
then

k2 o%u /2 27 92u
2= ds = =" _h,dphed
w /Swuawan S /—w/z/o u@wha‘?g‘ pdphedg
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_|_

/2 27
<
w/2

€o
~af [
—& 70

with metric coefficients

Thus

W

The solution in Region 1 is

— % s7r/2’¢0( )

where

[ e=n2+ / Y= —w/z>] [ i g hedghcdd

/2 p27
= 2d/ / Tdcp cos &d€
Co 27
+2d/ / 8 O¢ ,§ de sinh (d(
82 w/2 2T
CCdcpcosfdﬁ = Qd/ / TdcpCObfdf

7' 'd sinh ¢d¢

Co 2m
+2d / /
he = he = dy/sinh® ¢ + cos2 &

hy, = dsinh ¢ cos§

woT

2 /2 2 Co 2
K = 27rd/0 uaag Tcos&dE + 27rd/0 U%T' sinh (d(

C% (Tv S)

Up =2 Wcos(’ysinf — $0)

e cos (yeos&' —so) , & =m/2—¢

B . o
Yo (T,8) = Cog Re [67”/2W+ (1,0,8) + eZ”/QeZ%W_t (7,0, 5)}

3 d¢
J:/O cos&

w/2 dg/
» siné’

= arcsinh (tan¢) = / —In{tan (¢'/2)}
T=1/2%¢

W+ (T, 0, S) = Wis/Q,O (—272/2)

(462)

(463)

(464)

(465)

(466)

(467)
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kpl = mp (468)

The solution in Region 2 is

2

Up = mwo (7', 8") cos (ycosh ¢ — s'0’ — 7/2) (469)
where
s'=—s (470)
o (77,8") = Co? Re [W+ (7,0, —s) + efi%Wi (7,0, fs)] (471)
T =/2¢ (472)
& =4r/2-¢ (473)
2s'c(, = 2s'In [tanh (¢ /2)] = (k — kp) L (474)
¢ d

o = / Smﬁ = = Inftanh (¢/2) (475)

The solution in Region 3 is
u, = Coco———= Re [W+ (5/ 2,0, 3’) + e "o ({' 27,0, s’)}

1 ) ) )
——Re [e_Z”/2W+ (C 27,0, —s') + e’”/Qe@OWf; (§ 2,0, —s')}

or
up = (=1)" es,”/‘lﬁsec (®0/2) coﬁ Re {W+ (5/ 2,0, s') + e "o (f/ 2,0, s’)}

1 . ) )
——Re [67”/2W+ (Q 27,0, fs') + €™/ 21 Py (C 2,0, fs’ﬂ (476)
VA "

Here we apply the normalization with only Region 1 and Region 2 solutions separated by the coordinate
value ¢ = /2 (¢’ = 0) and cosh ¢, = ¢/d. The next subsection discusses the Region 3 contribution, where
the principal value interpretation used here is shown to be justified (the next subsection is restricted to the

s = 0 limit for simplicity). To carry out the integration we introduce a slight displacement A on either side
of the focus, so that the integration range is £ = 0 to
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¢ = Aresin (1 — A/d) ~ g — V2A7d (477)

and from ( equal to

¢ = Arccosh (1+ A/d) = \/2A/d (478)
to (p. Thus the integral is

k2 \/TI'/Q—\/QA/C[ 82U

—= 2rd ; uawaTTcosfdf
d " O h{d 47
+27 /2A/ G ——— 7' sinh ¢d( (479)

Then in Region 1 we have

0%u
owoT

! 1 oo ) 1 *
— _ 9,8 /2~ . _ 0 i® , 1
! 26 COS§ o8 (’Y Sln§ SJ) CO\/§ 8W Re |:e {W+ (T, 07 S) TW+ (T7 07 S)} :|

wy  T(1/2+is/2)
c T2 —is/2)

¥ (0,5) = co Re |e™"™/*e™ /2 (1/2 + is/?)}

Thus
0%u / 1 0P e~im/4
_ s'm/2 : o _O
ooy~ deoet Mg cos (ysing = s0) 7 Re {r 12— is/Q)}
U 265/”/2M cos (’y cosé — so)
cos &
Now taking the limit as 7 — 0
2 2
P .
uai;_rcosf = i s'm/2_0_ cos§ cos? (ysiné — so) % cosh (7s/2) Re? [6_”/4F (172 + is/Q)}
2
= 781_ s ”/20;5 cos? (ysiné — so) aak gig cosh (7s/2) Re? [ —m/AD (12 —l—is/2)]
_ 16k o528 . d®y 2 [ —in/4 -
— cosf cos? (ysin €& — so) e cosh (7s/2) Re [e F(l/2—|—zs/2)]

In region 2 we write

0%u i
OwoTt’
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co\/_Re [ e %o {VVJ'r (7,0, —s) — %WJF (', 0, —s)} ] % cos (ycosh ¢ — s'o’ — m/2)

_ 2 o ’
u-sinwaO(T,s)cos('ycoshC s'o’ —m/2)

and as 7 — 0

0%u r_ I(1/2—is/2) €™/4/2 0%
w57 =~ sn hCCo\/_Re T(1/2+is/2) T (12— i52) | dw cos (ycosh¢ — s'a’ —7/2)
4 i7r/4 8@0
= mcOR [m] 0 cos (ycosh¢ — s'o’ — 7/2)
u= ﬁ% (0,5") cos (ycosh ¢ — 8’0" — 7/2)
2

= —ms/2 —im/4 . I
sinh ¢ ¢ Re [6 F(l/?-i—zs/?)} cos (ycosh ¢ — s'o’ —m/2)

2 .
o (7', 8") = Cog Re [W+ (7,0, —s) + eﬂ%Wf_ (7',0, fs)]

¥ (0,5") = coe™™/? Re [e_i”/‘lf (1/2 + is/2)}

2

/s
“—awaﬂT sinh ¢
= 8 c? _”/QRe[ —im/Ap (1/2—}-%5/2)} i 9% —— cos? (ycosh (¢ — s'a’ — 7/2)
smhc I'(1/2—is/2)| Ow 7
8/7T 2 o~ 8/2 —im/4 . Ok? 9P . ’
~ hC Re? [ F(1/2—|—zs/2)} o D2 cosh (75/2) cos? (ycosh ¢ — s'a’ — 7/2)
16/7T k 2 —ms/2 —im/4 d®o . ’
“She @ cge Re? [ I'(1/2+is /2)} e cosh (75/2) cos? (ycosh ¢ — s'0’ — 7/2)

Now assembling the normalization condition

kQ k —7rs/2 Qd(I)

m/2—+/2A/d dg
o= 32d 2 cosh (75/2) Re? [ —im/Ap (1/2—|—i5/2)} / cos? (ysin& — so)

0 cos&
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dg
sinh ¢

o
—32dk e /22 d<I)2 cosh (7s/2) Re? [ —m/AD (1/2 + 15/2)] / cos? (ycosh ¢ — s'0’ —7/2)
dk J7ATd

Changing Variables to o = fﬁz =arcsinh(tan§) in the first integral with sin{ = tanho and to
o' = f Smh( = In [tanh ({/2)] in the second integral with cosh (¢) = — coth (¢/) gives

2 2
P .
Lag 32dk—e_”/202d— cosh (7s/2) Re? [e‘”“F (1/2 +1is/2)
w w 0 dk2

arcsinh{tan (7r/27\/2A/d) } In{tanh({y/2)}
/ cos? (ytanho — so) do — cos? (ycotho' + s'a’ + 7/2) do
0 ln{tanh ,/A/(Qd)}
Changing to ¢”” = —¢’ in the second integral

2 2 d®,
= = 32d=e "2 T cosh (ws/2) Re? [ —im/AD (1/2 + is/2)

Oar?
arcsinh{cot \/QA/d} — In{tanh({,/2)}
/ cos? (ytanh o — so) do + cos? (ycotho” — s'c"” — 1/2) do”
0 - ln{tanh ,/A/(zd)}

or approximating the limits

k2 k2 dd,
= = 324"} T cosh (ws/2) Re? [ —im/AD (1/2 + is/2)
w dk?

cos? (ytanho — so) do + sin? (y cotho” — s'0") do”’
0 - ln{q/A/(Qd)}

Averaging over the rapidly varying sinusoids gives

/—1n{1/A/(2d)} —ol o

2 K e 20%0

— —im/4 .
- 16d %2 cosh (7s/2) Re? [ I'(1/2+1is/2)

do_ + 1

/—1ﬂ{\/m} —a},
0 n{/A7aD)

or

P )
~ —16de_”s/2cg% cosh (ms/2) Re? [6_”/4F (1/2 + is/Q)} o
or

0%
1~ 4de™ ™%/ C;kQ cosh (7s/2) Re? [ /AT (1/2 + 15/2)] In(Ay)
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where o(, = In{tanh ((,/2)} = 1In (ﬁ;—g) = —1In(A4) < 0. This evaluation made use of a principal

value interpretation of the energy theorem integration (in (and ¢’) at the focal point, which can be more
rigorously justified by considering the contribution from the focal region [2] in the next subsection.

We now adopt Antonsen’s conjecture [1] that

-1
v = 4 1d% (480)
8 | dk?
is the square of a unit Gaussian random variable and that v is a Gaussian random variable with zero mean
and unit variance. This is the same as in the preceding scalar bowtie cavity and assumes the eigenfunction
is even along the orbit. Thus we find

) ) 267rs/2
g =" ;
0 Adln (Ay) cosh (ws/2) Re* [e=im/4T (1/2 +is/2)]
or
2
=10 : (481)
VAdIn (Ay) (1+e ™) Re [e="/4T (1/2 + is/2)]
5.3.1 Focal Region Contribution To Normalization
The focal region can be included in the energy theorem integration. The solution in region 3 is
1 -~
u = Coco——— Re [W (5’ 27,075') + e P (5/ 2’7,0,8/)}
&7 " -
1 , . .
——Re [eﬂ“/QW (C 2,0, —s') + €T/t Poyy (§ 27,0, —s’)} 482
A + + (482)
2 -~
= C’ocog Re [W+ (7',0,8") + e PoW (7,0, 3’)}
2 , . .
£ Re [67W/2W+ (1,0,—8") + ™2 W (1,0, —s’)] (483)
.
C
= 0'(/}0 (7/7'9,) ¢O (7—75)

€o
Expanding as we leave the focal region using the asymptotic form

Gir?/d (_Z,T2/2)is/2 _ i /Atsm/Atis In(7/v2) T — 00

. W, (t,m,s) ~
gives

1
Vel

u ~ 2Coe” ™ * cos (B} /2) co Re [e_”/2W+ (C 2,0, —8/> + €™/ 2ei Py (C 2,0, —s’)}
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5,\1/,7 cos [£%7/2+ s In (€'/7) — @)/2] , Region 3 — 1

u ~ 2Che™* ™4 cos (Dy/2) CO# Re [W+ (5/ 27,0, s’) + oW (5’ 27,0, s’)}

C\l/’_)/ cos [¢*v/2 — s'In (/) — m/2 — ®9/2] , Region 3 — 2

The idea behind a correction is to integrate the exact form minus the two asymptotic limits (one on each
side of the focal point) in the energy theorem.

ou oL ,
o C’ocof\/_ [za—we 0W+(§ 27,0,5)

V Re [e7™/2W, (Cy/27,0,=s') + /2 W (€1/29,0,~5')]

+Coco§f [ (€V21.0.5) + W (€270,

1 9% im/2 i®o 1y * /
C\/_ [ —¢im/2 <I>VV (C 7,0,—5)} (484)

or

ou

Y C()C() 2, Re |:7,a

ow

2u WS (0.5

1 . , )
- Re [e_”T/QWJr (1,0,—5") + e”/Qez%Wi (7,0, —s’)}
C 2 R W / / z@éw* / /
+ 060; e|: +(T,O,S)+€ —|—(7_70a5):|
1 8@0 i i *
- Re {z%e 12e oW (7,0, s')} (485)

Now taking the normal derivatives

2 /
07u ~ C’()C()L/§ Re |: 8(I>
w T 0

“I)“W* (',0,s )]
\/75 Re He”/QWJ’r (1,0, —8") + ™2 oW (1,0, —s’)} — % {e*i”/2W+ (1,0,—8") + ™2 W (7,0, —s/)}}

2 B
JrCocog Re [W+ (7',0,8") + e PoWr (7,0, s')}
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2 e [i2 e w2 (r0,) - 2w (r.0.-) (450
N cé Re [i%ei¢éwi (7',0, s’)] 2 o (7,5
0y, () ot (7,9
% ~ 000? Re {i%ei% {Wf (7,0,5") — %Wi (T/:Ovsl)H

2 3 1 .
-I-Cocog Re [{Wi (7',0,5") + G@OW:Z/ (7,0, 8/)} - {W+ (r,0,5') + ev%wi (7,0, s/)}:|
\/§ a(I)O T i *
T Re |:Zm€ /26 <1>0W+ (T, 0, —SI>:| (487)

Co 0* ’o
~ CO ¢O <T7S) awaT/wO (T 78 )

V2 D0 in/2 idgyyre 9
+CQT Re [Z%E / € OW+ (T,O,S/):| %w(] (T/,S/)
Letting 7 — 0 in the first expression times 7 gives
0%u e~in/4 0%
(Tar&u)T_}o oo (7', ") 2 Re {F(l/Q—is/Q)} Ow

and

u(r=0)= %wo (7', 8") o (0,s) = Co Re [e’rs/Qe*”/‘lF (1/2 + is/Q)] o (77, 8)
0

02 Re? [e7"™/4T (1/2 4 is/2 0P
(uT Y ) ~ 202em5/2 [ 1/ > /2)] P2 (7, s) ==
Itow ) __, T (1/2 —is/2)| Ow
Letting 7/ — 0 in the second expression times 7’ gives

02u eiw/4 P!

/ G et V)

(T awm)wﬁo Cotpo (7, 5) 2Re [F(l/? - is’/2)] B
and

216



u(t' =0)= 5—31/10 (0,8) 9y (1,8) = CoRe [6“5//26”/41" (1/2 + is’/?)} g (7, 8)

0P(
v (7,5) 5

<UT’_8ZU ) ez 2R [T (1/2 + i /2)]
0w ) ., 0 0 (1/2 —is'/2)?

The normalization condition is

k2 /2 92y Co 2y , .
i 27rd/0 umTcosgdf—i—de/o umT sinh (d¢

/2 92y Co 92y
— 2 _ ! ! 2 /o h
7rd/0 uawaTTblnfdf + 7rd/0 Usog | Sin ¢d¢

d 2 L 2
0%u O T

However, in 2D we found it simpler to examine this correction at the peak s = 0. Let us follow the
same procedure here. The region 3 solution becomes

—P, =®y) — —7/2ass —0 489
0

% Re [W+ (g’ 2%0,0) + el 2 (g’ 27,0,0)]
V2

s Re |72 W (/27,0,0) + W1 (¢/27,0,0)

u = C()C()

C
= 2 (71,00 %y (7,0) (490)
where the Whittaker function takes the form

Wy (7,0,0) = %T w2 HEY (72 /4) (491)

Thus the scalar solution in Region 3 is

u=CocozJo (€%7/2) Jo (C*7/2) (492)
where

o (77,0) = CO\/gjo (7"/4)
Yo (1,0) = co\/gjo (72/4)
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¢ (0) = vV—m—— (493)
Co(0) = (-1)" /2y (494)

kpy(d+do)=(n+1/4)n
and

62U 2 2/ 12 8@0
<u7 87_&”)7*0 ~cgmJs (7% /4) rn

72 /4 =k, (d+ 5 — 2)

9*u 0P
/ 272 (274 220
<u7 87”8(»)7,%0 yeomJg (72 /4) 3

2 —
/4 =k, (z—d— o)
Note that this function has a change in sign at 7 = 7/ = 0 due to the outer phase derivative (the function
itself should be continuous). Expanding for large arguments gives

82’11, 2 4 2 2 (’)(I)o
(UT%)THO ~ 7607T/2 cos (7" /4 — 7r/4) £

0%u 4 0o
/ 2 2 (274 v=o
(UT 87_/8(”)#%0 ¥eh Y5 cos” (77 /4 — m/4) o

Averaging over the rapidly varying trigonometric functions for high frequencies gives

wr 82U CQi 8@0
0Tow ) __ T2 B

0%u ) 5 4 0P
7/'—0

/
ur ~ —YCE—
Ot 0w 072 A

To be consistent with the original treatment, where we did not employ the focal shift for continuity, we use

2 /4 =1"7/4 =k, (|z — d|)
in the asymptotic forms. The correction we are after uses the difference of the exact form and these
asymptotic forms

0%u 0P
! o« g 2 2 g v=o
A<u7' 87'/8(*))7#4) sgn (z —d — do) yegmJy (kp (|12 — d — d¢])) 0
1 0P
_ 2. - Y%
+sgn (z d)rycokp(|z—d|) o
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to give (R — o0)

d 2 d+6 2 R 2
0“u 0 0“u 0“u
N. =0)~2 A —_— dz+2 A —_— dz+2 A 7 d
3(s=0) ~2m /,R <“awaTT)HO ahem /d <“awaTT)HO S /Mo (“awaT'T>T,HO :

~27r'yc2% ! {WJg(kp(zchoD)i] dz
Ow J g kp (|2 — df)

1

3R sy (12 = d = ) + =g | 2

8(1) d+d¢
+2mycl 8_w0 / [
d

+or 2%/R w2 (ky (|2 — d — 80]) + ——— | d2
TOBw Jyusy | 0N T (e —d)

8(1) d+d¢
NQWQVC(%@_;/R [J2 (K, (| — d — 8))] dz

+272 2 0% ! —J2(k —d—94 d
165 . [ e (12— d = &ol))] a2
0

L2m 2 0% Bdy
kp’ycoaw _rZ—d

2 28‘1’0 +oo 2
~ 27 ’ycoa—w [JO (kp(|d—|-5o—z\))] dz
-R

+272 20%0 ! —Jg (k —d—94 d
vy [ [ (e = d=do))] d=

L2m 20% [ de
kp’ycoaw _rZ—d

aq) R+d+d0 R—d—¥g
~ 2772’)/0(2)8—0 (/ —/ Jg (kyu) du
w 0 0

2200 [
kp’y Yow ) p o4 u

) 8@0 R+d+6¢

~ 21y —— JZ (kyu) du
0 dw R—d—s, 0 P
21 ,0% R—d
2220
5 8 n‘—R—d‘
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0D
~ 27727033702 (d+60) J2 (ky (R +d))

2T 28@0 R—d
T, M Tr—q| Y

The Region 3 correction thus vanishes as the overall interval of integration becomes large compared to the
focal region R >> d. The principal value definition is therefore OK. Note that the above integration of the
Bessel function assumes that k,dp — 0, but the order of the result is valid even if this is not true.

5.4 Scalar Stadium Projections

The projections of the high frequency rotationally symmetric stadium cavity field and of the
axisymmetric random plane wave field are now discussed.

5.4.1 Trigonometric Scar Projection

The trigonometric projection of the high frequency scar solution in the stadium is now discussed. The
projection kernel in this case is motivated by the s = 0 limit of the scar solution

d ¢
V= 2/ 1 (0,0, z) cos (kp2) dz + 2/ 4 (0,0, z) cos (k,z — 7/2) dz (495)
d

The cylindrical form of the sglution connected by
r = dsinh ( cos ¢ = dsinh (sin ¢’
z = dcosh(sin¢ = dcosh( cos¢’
0< (<

—m/2<&<Tm/2,0<p<2T
in Region 1 is

wO (Oa 3)

=3 fim (£22) - (222))

o (0,8) = co Re [e_i”/4e”s/2F (1/2+ is/?)}

up (0,0, 2) = 2¢~°7/2 cos [kpz + po (2)]

2
~ U /AdIn (AL) (1 + e ™) Re [e~im/AT (1/2 + is/2)]

Co
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where

s=2(k—ky)/In (%)

kpl =mp
The cylindrical form of the solution in Region 2 is

2 /
up (0,0, 2) = W% (0, ") cos [kpz + po (2) — /2]

== {erom (72) - (229))

¥ (0,8') = coe ™% Re [e_i”/‘lf (1/2+ is/Q)}
where

Then the trigonometric projection is

Vo/ {4(:0 Re [e_i”/‘lF (1/2+ 15/2)]} =

d ¢
dz dz

S [kpz + S (k —+*”/2/ S [kpz — /2 + $ (kpz — 7/2) —e—
/0 cos [kpz + po (2)] cos (kpz) N e ; cos [kpz — /2 + po (2)] cos (kpz — 7/ )\/22/0372_1
where

s {+d z+d
po(2) = B {(z/f)ln <m) —In P d'}
and the normalization is
2

co Re [e—iw/q‘ (1/2+ 18/2)} = JAm A e

Retaining only the leading terms by averaging over the rapidly varying cosines gives

4
Vo {U\/Adln A —l—e—”)} -

/Od cos [po ()] \/%W + e m8/2 /; cos [po (2)] \/%
po(z)zg{(z/@m ﬁfj_m zfj’}
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Thus we finally have

where

and

For s = 0 we have

Note that for Ay — 1

222

1 ; 0/ AL
l/o cos {po (2d)} \/% + e T8/2 /1 cos {po (2d)} \/%]

—In z+1
z—1

po (2d) = g {% (zd/0)In (Ay)

dft =

(z/d«+-x/z57857:_1)

_ A+

(A -1

4(d/6)

Ay —1)

VAL -1

(VA + 1)
Y4

(VA +1)’

A, 1)

14

(A1/4+1)2 _

VAL +1

(+d\?
N

B

0/d

hl A+

4(d/0)
In (Ay)

4(d/0)
In (Ay)

4 (A —1)

=

()]

AV 1
AV 1

dz
Vz2 -1

[7/2 4 arccosh (£/cl)]2

{7‘(/2 +1n (£/d+ \/W/clTl)r

M) (VAL + 1)

3 7T/2+1n{

(VAL +1

(A -1

) (a1 H

(496)

(497)

(498)

(499)

(500)

(501)



G (0) ~ {77/2 +n < A+8_ 1)]2 (502)

5.4.2 Focal Region Contribution To Trigonometric Scar Projection

It is instructive to examine the rough size of the correction to the trigonometric projection would arise
from the focal region. The solution in region 3 is

u = C’oco§ 7 [W+ (5/ 27,0,5') + ei%W_’f_ (f' 27,0,3’)]

V Re [ 2y, (C 27,0, —s’) + e/ 2 Poyr (C 27,0, —s')}

2 &
_ COCOT—\//_ Re [W+ (7,0,8') + e 6W? (7,0, s')}
2 . . )
4 Re [e_”r/2W+ (1,0, —5") + ™2 P W (1,0, —s’)]

= Sy ()0 72)

Expanding as we leave the focal region using the asymptotic form

Wy (1,m,s) ~ ei72/4 (7”2/2)@'5/2 _ eiq—2/4+s7r/4+isln('r/\/§) T — 00
gives

w ~ 2Coe” ™4 cos (B} /2) co Re [ T2y, (C 27,0, fs') + e 2Py ({ 2,0, fs/)}

C\/_

flxl/’V cos [5/27/2 +s'In (¢'/7) — ©4/2] , Region 3 — 1

u ~ 2Coe™* ™4 cos (®o/2) CO§ 7 [W+ (E’ 2,0, s') + ei%Wi (5' 27,0, s')]

(\1/7)/ cos [¢*y/2 — s'In (C\/7) — 7/2 — ®/2] , Region 3 — 2

The idea behind a correction is to integrate the exact form minus the two asymptotic limits (one on each
side of the focal point) in the projection. Letting 7 — 0 in the first expression times 7 gives

ulr = 0) = Ly (7,5) 6y 0.5) = CoRe [e7/267 75T (1 /24 i5/2)] ()

Letting 7/ — 0 in the second expression times 7’ gives
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u(r'=0) = %7/’0 (0,8") ¢ (1,8) = CoRe e 2eim /AT (1/2+ is//Q)} Yo (7, 8)
0

However, in 2D [2] we found it simpler to examine this correction at the peak s = 0. Let us follow the
same procedure here. The region 3 solution becomes

P =Py — —7/2as s —0

u = Coco% Re [W+ (5/ 27,0,0) + ei’r/ZWjﬁ (5’ 27,070>]
% Re [e*””m (g 27,0,0) W (c 27,0,0)]

C
= C_Owo (T,a O) (GN (Tv 0)
0

1 4
Wy (1,0,0) = ET\/W/QeZ”/4H(§1) (72/4)
Thus

w=CocogJo (€%7/2) Jo (*7/2)
by (7,0) = o @ Jo (7/4)

Yo (1,0) = CO\/gJO (7%/4)

2

w(0)=v mAdIn (Ay)

’

Co(0) = (-1)" /2y

kp(d+d0) =(n+1/4)n
Here we employ the focal shift dg for continuity of the kernel function and therefore take

72 /4 =k, (d+ 5 — 2)
72 /4 =k, (2 —d — &)

or
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' 21k

w=v(=D" T )

Jo (1%/4) Jo (7% /4)

Expanding for large arguments gives

o (-1)" Alei cos (r2/4 = /4) Jo (T/4) , 7' = o0
+
n k 4 2 12
~ VD gy R s (A /) R (/4) L 7 oo
JF

Thus we can write the correction to the scar trigonometric projection for s = 0 as

' 21k

AV, =20 (<) | rm— D

d
[/0 {Jo(kp(d+6o—z))— — (C;/E(;O_Z)cos(kp(d+60—z)—7r/4)}cos(k:pz)dz

N /d+50 {JO by (-4 60— 7)) — V2 cos (ky (d + o — 2) — 77/4)} cos (kpz —7/2) dz
d

mky (d 4+ 00 — 2)

V2

¢
+/d+60 {Jo (kp(z—d—00)) — o P cos (kp (z —d — o) — 77/4)} cos (kpz — m/2) dz]

Extending these limits to infinity

AV, = 20 (~1)" 7A11217Ei+)
d
[/ {Jo (kp (d+ 60— 2)) — — (c;/—féo—z) cos (kp (d+5oz)7r/4)}cos(kpz)dz
d+8o V2
—l—/d {Jo (kp(d+ 00— 2)) — =y cos(kp(d+(5o—z)—77/4)}cos(k;pz—7r/2)dz
* V2
+/d+50 {Jo (kp(z —d—00)) — a0y cos (kp (z —d — o) — 7r/4)} cos (kpz —m/2) dz]

and changing variables
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' 27k
AV, =2v(-1) ”—Aln o)

[/OOO {JO (kpz) — % cos (kpz — 7r/4)} cos (kp (—z+d + o)) dz

d+6o
+/d {Jo (kp (d+ 00— 2)) — — (c;/—f e cos (kp (d+ 8o — 2) — 7r/4)} {cos (kpz — w/2) — cos (kpz)} dz

+/OOO {JO (kpz) — % cos (kpz — 7r/4)} cos (kp (z +d+do) —7/2) dz]

or

Aln (Ay)

l/ooo {Jo (u) — \/\irzucos(u—ﬂ/ll)}cos(—u—i—k:p (d+ o)) du

kS0
—l—/o {Jo (u) — \/\{TZUCOS(U_WM)} {cos (u — ky, (d+ do) + 7/2) — cos (u— k, (d+ o)) } du

+/OOO {Jo (u) — % cos (u — 7r/4)} cos (u+ky (d+ dp) —7/2) dU]

4 n 21k
A =5 D Iy

lcos (kp (d+00) —/4) /000 {JO (u) — \/\% cos (u — 7r/4)} cos (u —m/4) du

or

kpéo
—sin (7w/4) /0 {J() (u) — \/\{rzu cos (u — 7r/4)} sin (u — kp (d + do) + m/4) du]
Noting that [20]

/OC Jo (u) cos (Bu — 7/4) du = cos (7/4) /OO Jo (w) cos (Bu) du + sin (7/4) /OC Jo (u) sin (Bu) du
0 0 0
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_ cos(m/4) 5<1

i

and

\/Q/—W/Ooocos(u—w/4)cos(ﬁu—7r/4) j%:%/Ooocos{(l—B)u}%—l—%/omcos{(l—i—ﬁ)u}%

2R eon (n/4) | g + Sy | = e (VT + V)
Combining gives
/000 {Jg (u) — \/\irzu cos (u — 71'/4)} cos (u —7/4) du = /£—>1 Coj_(i/;;) {1 - % ( 1+8+ 11— ,6)}
= —cos(n/4)/2

Thus we can write the correction as

AV, =

[—cos (kp (d+ do) — w/4) cos (m/4) /2

kpdo
_sin(w/4)/0 {JO (u) — \/gcos (u—w/4)}sin(u) du]

21k

4 n'+n
1) Ahl (A+)

:k—p’]_)(—

[~ (=1)" cos (m/4) /2

ko
_sin(w/él)/o {Jo (u) — \/\{Tzucos (u—w/él)}sin(u) du]

Using the expansion

n+m
Jo (u) sin ( —UZ 22maqp | m_|_1 |Z 2n+
1 1 2\
—UZ [Z Bl T 0 @n 21| )

yields
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kpé 0 n
0 . 1 2 (=" 1
/0 Jo (u) sin (u) du = 5 (kpdo) g p— 1 (K 50 lz_: 22mm| (m+1)! (2n —2m +1)!

n=0
where the series in brackets for each of the first few n’s is

1 1
=1 = O
n;)?mm! m+ 1) @2n—2m+1)l "

.o
“o\371) T "

S O S S O W W U
—\7 1)~ 6ap12 7 "
so that

kp50 1

. 7 11 143
Jo () sin (u) du = = (k,60)° [1 - (kpdo)” +

4
2 960( »0o) 258048( 4

0
and similarly

kpdo \/5 ' kpdo du
/0 {mcos(u—w/@}sm \/l/w/ [sin (2u) + 1 — cos ( 2u]7
/742 /k0 - " Fpoo [ g2ntl 2n+1/2 22n w2 1/2
m P 0+;0(_ ) /0 [(2n+1)!“ (2n)!
221 (— )n n (kpdo) 1/2
=V 50/”{1+Z (kyo)’ [(271—1—3/2)[2271—1—1) (2n +1/2) }
Then with
k)p <60> /7T ~ 1/2
kp(do)
sin (7/4) /0 Jo (u) sin (u) du = 0.496
sin(7r/4)j(f)kp<§°> {:}%%(KB(Uﬂ/4)}sﬁn(u)du¢x(l565
we find
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1)1’7,/ +n 21k

AV~ Aln (Ay)

v(—

4
kp

[— (—1)"0.35355 + 0.069)
Note that the original value for s = 0 is

Vp ~ %v\/%{j” [g + arccosh (E/d)}
%v% [g +1n (z/d+ (¢/d)? — 1)]

4 kd2 |« AV 41
~N—=V——— -+ In |
VE /Aln(Ay) |2 AVt 1

iu kd/2 F 1n<\/£+d+\/£d>}
2 Vitd—Vi-d

VE /Aln(A])

and therefore

AV, )V, =0 | mhd/ (ffﬁd) _of
x oy (AL 2/kpd
z o AVt

+

Using

kpl = mp
with £ = 0.11176 m, d = 0.0336969 m, and

p1=8<p<22=p

we see that this is less than a 20% error term for p = 8 and less than a 11% error for p = 22.

5.4.3 Random Plane Wave Trigonometric Projection

The projection is again taken as

L

T _ cos (kpz) , |2] <d
VW—/Z“T (0,0,2) [ cos (ky o] —7/2) , |2l > d |

(503)

In this case let us take the random plane wave to be symmetrized along the orbit (we will take only the

even part of the random plane wave below)

d ¢
VpTr = 2/0 ur (0,0, 2) cos (kpz) dz + 2/(1 ur (0,0, 2) cos (kpz — 7/2) dz
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where the axisymmetric component of the random plane wave is

N
ur (p,0,2) = ngnoo VA4k/ (mAN)Re Zaon (kpsin 0) '@ Fikzcosb; (504)
j=1

Thus (the factor of 2 is introduced here to include the negative half of the integration interval)
N d
V=2 A}gn@ VAak/ (T AN) Z a; /0 cos (o + kzcos0;) cos (kpz) dz
j=1

N Y4
+2 Nlim \VA4k/ (T AN) Z aj / cos (a; + kz cos0;) cos (kpz — m/2) dz

Taking the variance and averaging over the random amplitudes a; with <ajaj/)aj = 0;j/

Ak
(Vi?) =4 lim

N
a; N—oo TAN 4

d pd
Z l/o /o cos (kpz) cos (kpz') cos (aj + kz cos0;) cos (aj + kz' cosb;) dzdz'
j=1

d e
+2 / / cos (kpz) cos (kpz' — m/2) cos (aj + kz cos 6;) cos (a; + k2’ cos8;) dzdz’
o Ja

¢ e
+/ / cos (kpz — m/2) cos (kpz' — 7/2) cos (avj + kz cos8;) cos (aj + k2’ cosB;) dzdz'
d Jd

Averaging over the random phases using

1 1 2m
(cos (aj + kzcos b)) cos (aj + kz' cos b)), / [cos (k (z — 2") cos 0) + cos (2a; + k (2 + 2) cos )] da;

P22 J,

1 1 1
= 5 cos (k(z—2")cost) = 5 cos (kz cos 0) cos (kz' cos ) + 3 sin (kz cos 0) sin (kz’ cos 0)
and taking only the even part (the odd part will vanish if the integration is carried out over both halves of
the stadium) gives

pr >a1'70‘j N—ooo TAN 7
]:

N d d
4
< T2 =2 lim Ak g [/ cos (kpz) cos (kz cos 0) dz/ cos (kp2") cos (kz' cos0) dz’
- 0 0

d ¢
+2 / cos (kpz) cos (kz cos 0) dz / cos (kpz' — 7/2) cos (k2' cos ) dz’'
0 d

£

¢
—l—/ cos (kpz — m/2) cos (kz cos 6) dz/
d

cos (kpz' — 7/2) cos (kz' cos6) dz’}
d

or
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N
k
T2 P
<VpT >aj7aj N 21\/151100 TAN z:l
i=
d d
l/ {cos ((kp, — kcos0) z) + cos ((kp + kcos0) z)} dz/ {cos ((kp — kcos0) 2") + cos ((k, + kcos0) 2') } d2’
0 0
d ¢
—|—2/ {cos ((kp — kcosf) z) + cos ((kp + k cos 6) z)}dz/ {sin ((k, — kcos0) 2") + sin ((k, + kcos ) 2') } dz’
0 d

¢ ¢
+/ {sin ((k, — kcos ) z) + sin ((k, + k cos 0) z)}dz/ {sin ((kp — k cos0) 2") + sin ((k, + kcos ) ')} d2’
d d

or

(Vr2) =2 lim i i
Pr laj,o4 N—oo TAN =

sin ((kp — kcos@)d) = cos((ky —kcosf)d) cos((ky —kcosf)l)
(kp — kcos9) (kp — kcos0) (kp — kcos9)

sin ((kp + kcos0)d)  cos((ky +kcosf)d) cos((ky +kcost)l) 2
(kp + kcos0) (kp + kcos9) (kp + kcos0)
Now averaging over the angle 6 gives

sin ((kp, — kcos0) d) 4 cos ((kp —kcos@)d)  cos((k, —kcosb)?)
(kp — kcos9) (kp — kcos9) (kp — kcos9)

sin ((kp + kcos0)d) | cos((kp +kcosf)d) cos((ky +kcost)l) 2
(kp + kcos0) (kp + kcos0) (kp + Kk cos6)
Now when £ — k, the first terms peak for # — 0 and the second terms peak for § — 7 with

cosf) = —cos (6 —7) and sinf = —sin (¢ — 7). Thus we find (and 6 = (/\/kl/2)

sin 0d6

(V27), =

2k 1 /°° [sin (kp = k+k0%/2)d  cos (ky — k+k0°/2)d  cos (k, — k+k62/2)€red0
0

TA2 kp — k + k07 /2 kp — k + k0% /2 kp — k + k0% /2
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+2/<: 1/7r
TA2 J_

sin(k —k+k(O—7) /2) cos(k —k+k(0—7) /2) cos(k —k+k(0—7) /2) o
bk kO—n7/2 | ky—ktk@-_n)7 )2 ky k1 k(6—7) /2 (r=9)
2k [ sin (k, — k+k0%/2)d  cos (ky, — k+k0%/2)d  cos (k, — k + k6 /2) ¢ 29d9
~ A Jo ky — k + k07 /2 ky—k+K02/2  ky—k+ k672
O sin ((k, )€+C)d/€+cos(( )€+C)d/f cos ((k, )K—&-C) cd¢
o) S TRy e by — B £+ by —F) £+

Now letting

A=2(k—k,)L
and
(LV,?), =L*G()) /A
gives
v =5
sin (\4—(2)d/t  cos(Ma—C?)dje cos(Ad—c?)]’
l Y VS R Ve ] cde
A [sin (A/4 — ¢*) d/t — cos (\/4 — ¢*) d/L + cos (/\/4—(2)}2
sy o
_l/oo [sin (A/4 —&)d/t — cos (N4 —&)d/l+ cos (N4 — 5)] de
T Jo (A/4—¢)?
1 °°  [sin (&d/€) + cos (&£d/L) — Cosf]2
B /,\/4 52 d
Note that

G (00) = 1 /OO [sin ({d/€) 4 cos ({d/€) — cos €] 2

T 52
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1 /‘X’ [1+ cos? € + sin (26d/0) — 2sin (£d/€) cos € — 2 cos (€d /) cos €] g

52

2 /oo [$cos(26) —1+1—cos((1+d/0)§)+1—cos((1—d/t)¢)] e
0

™ §2
=1+d/l+1-d/t—2/2=1
Integration by parts gives

GO\ = 7% [—sin (3d/€) + coiﬁid/ﬁ) — cos (A/4)]

2 /oo [sin (€d/0) + cos (£d/C) — cos&] [(d/L) cos (£d/E) — (d/0) sin (£d/€) + sin €] de
/4

Jr; 3
1 [—sin (3d/€) + cos (3d/€) — cos ()\/4)}2
7T A4

+g /°° [(d/€) cos (26d/€) + sin & {sin (£d/0) + cos (£d/€)} + (d/€) cos & {sin (£d/{) — cos (€d/€)} — § sin (2€)] it
—)/4

™ 3

or

GO +% [—sin (3d/¢) —‘rCOS}\;Ed/g) — cos (A/4)] _ % /O;/4

N [% {sin((1 =d/€)&) +sin((1+d/0)&)} + % (d/0){sin((1+d/0)¢) —sin ((1 —d/E) &)} — %Sin (25)}
3

7 /—
+_
)\/4

[% {cos((1 —d/£)&) —cos((1+d/E) &)} — % (d/0){cos (1 —d/l) &)+ cos((1+d/E) &)} + (d/L) cos (2§d/€)]
3

dg

dg

or

1 [—sin (§d/¢) + cos (3d/() — cos()\/4)]2 _

G()\)+; v

1

% + = (L= d/0)Si (1= /) A/4) + (1 +d/D) Si((1+d/0) A/4) = Si (3/2)]
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+

SR

[(A+d/0)Ci(—(1+d/O)N4)—(1—d/)Ci(—(1—d/e)N/4) —2(d/¢) Ci(—(d/l) A/2)]

= % + % [(1—d/e)Si((1—d/€) A/4) + (1+d/0)Si (1 + d/€) \/4) — Si(A/2)]

L 11 d/0) Cin (14 d/0) \/4) = (1 = d/6) Cin (1 — d/€) \/4) — 2 (d/¢) Cin ((d/¢) \/2)]

_;[

+% [(1+d/0)In(1+d/f) — (1 —d/e)In (1 —d/e) —2(d/f)In(2(d/L))] (505)
Note that
G (0) = % + % [(1+d/0)In(1+d/f) — (1—d/¢)In (1 —d/l) —2(d/6)In (2 (d/C))] (506)
G (—o0) =0 (507)
G(c0) =1 (508)

Thus taking into account the even symmetry along the orbit

Gy (\) = 2G (\) (509)

A comparison of the trigonometric projections for the cavity scar field and axisymmetric random plane
wave field are given in Figure 33. Notice that in the stadium there is a large enhancement in the cavity
scar field relative to the random plane wave field near s, = 0, where the cavity modal frequency aligns with
the scar frequency k& — k,. There is in addition the axisymmetric enhancement due to the symmetry of the
field (LV?) / (LV2) = O (kV/A) >> 1 (analogous to the factor of two increase in the 2D even geometry).

5.4.4 Elliptic System Scar Projection

The elliptic projection operator is now discussed. The high frequency scar constructions in prolate
spheroidal coordinates
r = dsinh ¢ cos ¢ = dsinh (sin ¢’

2z =dcosh(siné = dcosh(cos¢’
0< (<

—m/2<E<T/2,0< <2
are given to motivate the projection. The solution in Region 1 is
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Figure 33. Comparison of trigonometric projections of the rotationally symmetric stadium cavity field and
the axisymmetric random plane wave field.
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Up = 265/”/2%2’,8) cos (kdcos{' — sa) L =7/2-¢
sin

1o (0,8) = ¢ Re [67”/46“5/2F (1/2+ is/?)}

2
~ U /AdIn (A (1t e ™) Re [e- /AT (1/2 1 i5/2)]

Co

where

3 . o
Yo (1,8) = 604 Re [67”/2W+ (1,0,8) + e”/Qe@OW_T_ (7,0, 5)}

13 d 7r/2 d /
J:/O coff = arcsinh (tan &) :// singfl = —1In {tan (¢'/2)}

T=/2¢
Wi (7,0,8) = Wig/20 (—”2/2)

kpl = 7p
The solution in Region 2 is

__2% r ‘s
up—Sinhng(T,s)cos(kdcoshC s’ —m/2)

¥ (0,8') = coe™™/2 Re [e7/4T (1/2 + is/Q)}
where

o (7', 8") = Co? Re [W+ (7,0, —s) + efi%Wj‘_ (7,0, fs)]
T = /2¢
g =xr/2-¢

2s'c(, = 2s'In [tanh (¢ /2)] = (k — kp) L
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,_ [ A
o :/OO ShC = In [tanh (¢/2)]

The projection is taken as

/2 27
~ lim = / ! / coslhpz £ 20 ), (¢ o €) b, dphede

(0 ¢d cos &
0 1 [ cos[kpz — m/2+ po (2)]
€’~0 ¢ d/ / sinh ¢ u (¢, @, &) hpdphedC

d
- 2/0 cos [k + po (2)] u (0,0, €) hg%dz

¢
d
—|—2/ cos [kpz — /2 + po (2)] u (¢,0,7/2) hgd—idz (510)

d
or (note that this limit definition of the integration around the scar produces a definition without the extra
amplitude divergence factors in the kernel of the projection operator)

d
V, = 2/ cos [kpz +po (2)] u (0,0, 2) dz
0

¢
—|—2/d cos [kpz — /2 + po (2)] u (0,0, 2) dz (511)

where the metric coefficients are

he = he = dy/sinh? ¢ + cos2 &

hy, = dsinh ( cos € = dsinh (sin&’

dz . .
d_C = dsinh (sin§
dz
d_f = dcosh(cos¢&
and for ( — 0
dg
heg, =1
and for £ — /2
dg
—= =1
hcdz -

where
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t+d
{—d

m(o) =5 {G/om

The cylindrical form of the solution in Region 1 is

-

zJ_FZ‘} (512)

up (0,0, 2) = QefsW/QM cos [kpz + po (#)]

N e

= o (222) - (222))

¥, (0,5) = coe™/? Re [e‘”“F (1/2+ is/2)}

2
~ U /AdIn (AL) (1 + e ™) Re [e~i/AT (1/2 + is/2)]

Co

where

s=2(k—ky)l/In (ﬁf—j)

kpl = Tp
The cylindrical form of the solution in Region 2 is

2

NI

=2 {iom (£ (2]

¥ (0,8') = coe”™/% Re [eii’r/‘lf (1/2+ is/Q)}

up (0,0,2) = Yo (0, 8") cos [kpz + po (2) — 7/2]

where

!
s = —S

We now include the exponential ratio for s # 0 between region 1 to region 2 in redefining the elliptic
projection operator. As in the 2D case [2] we take the operator to have the proper exponential weights
relative to the scar solution, but we remove the growing weight as s — £o0o

d
exp (ml|s| /) V, = 26”/4/ cos [kpz + po (2)]u (0,0, 2) dz
0

¢
+26_”/4/ cos [kpz — /24 po (2)]u (0,0, 2) dz (513)
d
Then the elliptic projection is

238



exp (m|s| /4) V,/ {400 Re [67”/411 (1/2+ 13/2)]} =

dz

J1- 2/

dz

J2]E -1

d 0
/4 [ cos? k2 + po (2) sttt [ eos? k2 = /240 ()
0 d

where

mis) =5 {Gom(755) -

co Re [67”/41" (1/2+ is/?)} =v

)
2
VAdIn (A) (1 +e ™)

Averaging over the rapidly varying cosines gives

4
exp (7 /4V/{ JAdn (A ) (1t e m)}w

d 14
dz _ _ dz
657r/4 e s7r/4e Ts/2

0o 1—22/d? d /22/d? -1

Thus we finally have

(LV?) =L*G1(s) /A (514)
where

exp (m|s| /2) G1 (s) = o (A+8)(((i/j—)e—”) [65”/47r/2 + e~*™/*e¢7™%/2arccosh (é/d)}2

o SOy y et (g + /ETE )]

In(Ay)(14e7™s)

B 4 (A —1)
~ cosh (7s/2)In (Ay) (\/K+ 1)

SW/27T/2+6 ms/2 ] {(\/E"‘l) (A1/4+1> }] (515)

Ay — 1)

where

d/g:M

(VAs+1)°
e ()

Scar Projection With Amplitude Divergence Factors If we attempt to include the amplitude
divergence factors in the scar projection then
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4 cos [kpz + po (2)]

exp (|s| /4) V,,. = 2e°™/4 ————24(0,0,2) dz
p(rls| [4)V, R 0.0.)
‘
_ kpz — /2 + po (2)]
+2e S“/4/ c0s [y 1 (0,0,2)dz 516
d 22[d? -1 ( ) (516)

The solution in Region 1 is

up (0,0,2) = ZefsW/QM cos [kypz + po (2]

)}

m() =5 {erom (FH4) - m (552

1o (0,8) = coRe [e_i”/4e”s/2F (1/2+ is/2)}

2
~ U /AdIn A, (11 e ™) Re [e—im/AT (1/2 + is/2)]

Co

where

s=2(k—ky)¢/In (ﬁf—j)

kpl = Tp
The solution in Region 2 is

\/%1% (0,8") cos [kyz + po (2) — 7/2]

wi == {erom(7) -n (2]}

¥ (0,8') = coe”™/% Re [efi“/‘lf (1/2 + is/Q)}

U’P (05 0; Z) =

where

Thus

d
e dz
exp (7 |s| /4) Vpr = de™ /4% (0, s)/ cos? [kpz + po (2)] T2
0 —2%/d
¢
i d
+4e™5 /(0,5 / cos? [kpz + po (2) — /2] _ (517)

d 22/d? —1

This appears to be divergent without considering the transition of the solution to Region 3 at the focal
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point (which would then become a major contribution to the projection rather than a small correction, and
represent a poor choice of the projection operator)! Alternatively the projection could be interpreted as a
principal value if we introduced a minus sign into the projection operator definition between the two regions.
The corresponding integration in the energy theorem was evaluated as a principal value limit because it
included the change in sign of the outer phase derivative factor which multiplied the normal derivative of
the solution on the orbit between the two regions. Such new definitions of the projection might be worth
future consideration, but in this section we will not include the amplitude divergence factors in the kernel.

5.4.5 Random Plane Wave Elliptic System Projection

Here we again take the projection to be
d
exp (7 |s| /4) Vi = 2e57/4 / cos [kpz + po (2)] ur (0,0, 2) dz
0

4
+2¢7m/4 / cos [kyz — /2 + po ()] ur (0,0, 2) d2 (518)
d

)= {erom (5) -m |2

with the axisymmetric random plane wave representation

N
ur (p,0,2) = ]\}Enw VA4k/ (rAN)Re Z a;Jo (kpsin @) '@ tikzcost; (519)
j=1

Then
N d
Vor = 2]\}im V4k/ (mAN) Za]— {e(lss)”/4/ cos [kpz + po ()] cos (oj + kz cos b)) dz

¢
e (sl+s)m/4 / cos [kpz — /2 4+ po (2)] cos (oj + kzcos b)) dz}
d

and averaging over the amplitudes a;

N

Ak d
2 . —(|s|—s)m/4
<‘/P7">aj = 41\}% —N ;21 {e (Isl=s)m/ /0 cos [kpz + po (2)] cos (oj + kzcos b)) dz

2
¢
+67(‘S|+S)”/4/ cos [kpz — /2 + po (2)] cos (aj + kz cosb;) dz}
d

Next averaging over the phases o, using

1 1 27
(cos (avj + kzcosB;) cos (o + kz' cos b)), = 35 / [cos (k (z — 2") cosB;) + cos (20 + k (z + 2") cos 0;)] da;
’ 0
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1 1 1
= 5 cos (k(z—2")cosb,;) = 5 cos (kzcosb;) cos (kz' cos ;) + 3 sin (kz cos 0;) sin (kz' cos 0;)

and taking only the even part (the odd part will vanish if the integration is carried out over both halves of
the stadium) gives

N

d
{e(5|5)7"/4 / cos [k;pz + po (Z)} cos (kz coSs QJ) dz
0

2
¢
+e(lsl+s)m/4 / cos [kpz — /2 + po (2)] cos (kz cos b)) dz}
d

lim

N d
= 7rA Z [ _(‘sl_s)”/‘l/ {cos ((kp — kcos0;) z + po (2)) + cos ((kp + kcosO;) z + po (2)) } dz

. 2
+€—(\s|+s)n/4/d {cos ((kp — kcosbj) z — /24 po (2)) + cos ((kp + kcos ;) z — /2 + po (z))}dz]

Now averaging over the angle §; gives

2 _%1/”
<VP>T_WA2 o

[e(sls)”/‘l /d {cos ((k, — kcosb;) z+po (2)) + cos ((k, + kcosb;) z+po (2))} dz
0

2
¢

+e_(‘3|+s)”/4/ {cos ((kp —kcosb;)z—m/2+ po () + cos ((kp + kcosb;) z — /24 po (2))} dz| sinb;db,
d

Now when k — k, the first terms peak for 6; — 0 and the second terms peak for §; — 7 with

cosf; = —cos(0; — ) and sinf; = —sin (6; — 7). Thus we find (and §; = (/\/k(/2)

d
W 2k:1/ [_m_s)m/ cos ((kp — k + k02/2) 2+ po () dz
T TA2 0

2
0
+e_(|s‘+s)7"/4/d cos ((k‘p —k+ k&?/2) z— 7T/2 + po (Z)) dZ] ejdej

_'_ji; 1 / [ —(Isl=s)7/4 /Odcos ((kp —k+ k(9 —71')2 /2> Z+po (Z)> dz

242



Ly T (R ey WAE) dzrm—ej)daj

0o d
2 [e_<s|-s>w/4 / cos ((kp — ki + k02/2) 2 + po (2)) d=
TA 0 0

2
¢
+e—(|s\+s)7r/4/d cos ((kp — k +k635/2) 2 — /2 + po (2)) dz] 6;d0;

4

e d
~ m : [e(lss)ﬂ/4/0 COS(((k’pfk')quga) Z/€+p0 (Z)) dx

, 2
+€*(\S|+S)ﬂ/4/ cos (((kp — k) L+ C?) 2/t — w/2 + po (2)) dz] ¢d¢
d

Now setting

A=2(k—ky) L
(LV2) =L*G()) /A (520)
gives
2 [ aama [V 2
G(\) = ;/0 [e (Isl=s)m/ /0 cos((—)\/4+C )Z-HUO (Zg)) dz

1

2
+e—<|s|+s>w/4/ cos ((=A/4+ ¢?) z/(—ﬂ/2+p0(z€))dz] ¢d¢
dje

s 1+d/¢ z4d/t
== -1
Po (=) Q{Zln<1—d/€) " z—d/é‘}
s=X/In(A)
To account for the evenness along the orbit this is doubled
2 o d/[
Gs(\)=2G(\) == / e_(‘sl_s)”/‘l/ cos (£z + po (20)) dz

T J-)/4 0

2
1

fe—(sl+s)m/4 / sin (€2 + po (zé))dz] dg
d/e

For purposes of numerical integration
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Figure 34. Comparison of elliptic projections of the rotationally symmetric stadium cavity field and the
axisymmetric random plane wave field.

0o d/e
Gs(\)=2G(\) = 2 / [e_(ls_“‘)”M/ {cos (£2) cos (po (2£)) — sin (£z) sin (po (2€)) } dz
T J-)/4 0
L 2
+e(Isl+s)m/4 {cos (£2) sin (po (2€)) + sin (£z) cos (po (20))} dz| d€ (521)

/e

The comparison of the elliptic projections in the stadium cavity is shown in Figure 34.

6 VECTOR TREATMENT OF AXISYMMETRIC STADIUM

We now consider the electromagnetic vector problem in the axisymmetric stadium cavity.

6.1 Modal Solution In Region One: Between Foci

The parabolic equation in quasirectangular coordinates for the Hertz potential component Il or I,
(or W) resulting from the vector wave equation is the same as that arising from the three dimensional
scalar Helmholtz equation. Hence we can transform the parabolic equation for the Hertz potential from the
quasirectangular system back to prolate spheroidal coordinates.

Because the solution must be even in ¢ we can write in Region 1
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Moy = O [W (¢, 0,) €75 + W (ip, =€) e8] €] < &

1
cosé

=C

[V (7,0,0) 7™M 4 U (7,0, —g) e~ 70 ¢]

oo ¥m(T:8) (7siné — s0) { cos (mep) }

cosé sin (mgo)
= 20%}8) cos ('ycosfl — so) { z?r?((zzg)) } L =m/2-¢

where in the even stadium case

kpl =prm
For matching purposes (with Region 2) it is convenient to take

2 . . )
Y (T,8) = cmg Re [672W/2W+ (tr,m,s)+ eZ”/QeZq)OW_t (r,m, s)]

3
o= /0 @ _ arcsinh (tan§)

cosé&
=In(tan{ +sec§) =1n {tan% €3 —1—77/2)} = —In {tan (¢'/2)}
=2

W+ (T7 m, 5) = Wis/27m/2 (717‘2/2)

For the case where the mode is odd along the orbit

ep = C [W (Cp, ) €75 =W (G, =€) o] €] < &

1
cosé

=C

[V (7,0,0) 78 — W (7,0, —g) e~ *0¢]

= o ¥m (T8 G sing — s0) { cos (m:p) }

cos f sin (mcp)

U (7.5)

)
in¢

cos (my)

=2C sin(’ycosﬁ'—sa){ sin (mg) },5’:77/2—5

where in the odd stadium case
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kl=(p—-1/2)m
6.1.1 Behavior Of Zero Mode Near Orbit For Stadium Solutions

The Region 1 behavior of the zero mode m =0

2 - . .
Yy = CO% Re [e_”T/ZWJr (1,0,8) + e”/2ez%Wj (7,0, s)}

is now discussed near 7 — 0. Again using

1/2 1

W, (r,0,5) ~ — (—it2/2) T(1/2—is/2)

[In (—i7?/2) (1 — s7%/4)
+ (1/2 —is/2) — 24 (1) + (s7°/4) {— (1/2 — is/2) +2¢ (1) + 2} + O (" In7)]

W (7,0,8) ~ iT% (—ir?/2)"

I (—ir?/2) + {v (1/2 —is/2) =20 (1)} +2+ O (°In7)] , 7—0, m=0
and taking

0 . . .
T—C(;f_o = coV2Re {e_”/z W + '™/ 2eio Wf} —
to vanish as 7 — 0 gives the reflection phase

oo _ TP WL=IWL)  T(1/24is/2)
e = — o = — -
eim/2 (W — 1w,) I'(1/2-1is/2)

+0(r)

We also have

¥y (0,8) = coRe [e™/2e /AT (1/2 4+ 4s/2)| , 7 — 0
0

which is again —¢ inside the real part times the preceding bowtie result. In general
Yo (1,8) ~ coRe [e*”/‘ll" (1/2+ 15/2)] ems/? (1—572/4) + O (" In7)

T(%wo (1,8) ~ —coRe [e‘”“F (1/2+ is/2)} ems/? (s72/2) + O (t*InT) ~ — (s7%/2) ¢,

121% (7,8) ~ —coRe [67”/4F (1/2+ ZS/Q)} ems/? (s/2)+ O (7'4 lnT) ~ —%1%

70T

10 0 ; .
g (Tawo) ~ —coRe [6717#41—‘ (1/2+ 13/2)] ™25+ 0 (7?InT) ~ —sthy + O (7% In7)
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In addition

*

g 00 g, in/2 ;1
T ondr (,5) ~ covV2Re {z%e e (VVJr — ;W+> }

and

Y,
OwoTr

e~im/4 0P
0~ 20me ) 5

6.2 Modal Description In Region Two: Outside Foci

We first modify the quasirectangular coordinate system to the region outside the foci.

6.2.1 Quasirectangular Coordinates Outside Foci

It will be useful in the vector problem to introduce a quasirectangular system of coordinates (v', 7/, ()

v =¢ cosgp (523)
n =¢ sing (524)
where
E=%m/2-¢
¢ = /U2 12 (525)
cosp =" /\/ V2 +n? (526)
singp =1n'/y/v'? +n? (527)

We can write

sin/v2 + 172,

2 = dsinh ¢ cos € cos p = Fdsinh (sin ¢’ cos p = Fdsinh ¢ v (528)

sin \/m

y = dsinh  cos £ sin ¢ = +dsinh  sin &’ sin ¢ = +dsinh ¢ — n' (529)
v+ n
z = dcosh (sin& = £dcosh ¢ cos ¢’ = +d cosh ( cos /v'2 + 12 (530)

Thus the position vector
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r = e, +ye, + z¢, (531)
can be used to define the unit vectors [10]

|Or/0V'| e, = Or/Ov" =

+d SinhC U/Q 12 /2 77/2 4 [ay12 /2
\/UIQ + 17/2 \/UIQ + 7]/2 cos YUt T + V2 77/2 S/ U+ 1) Ex
+d sinh 1 1 .
NozE €2 NOEESZ cos /v 412 — o2 12 sin /0’2 + 92| v'n'e,
v n (3 n
+d cosh
v n
|0r/on'| e,y = Or/On' =
j:d Sinhg 1 /a2 /2 1 : YD) 12 /.1
\/fU/2 + 77/2 \/UIZ + 77/2 oS i n U/2 + le S v+ n v e,
+dsinh ¢ n'? ] — ~ U2 _ _ ~
VU2 a2 [ o a2 COSVEENTT R TtV T &
+d cosh .
TR Wﬂi” sin /o' + 1'%, (533)
We can write that
Cu  Cyr = Ey Gy =1 (534)
and the cross term is

or Or v'n'd?

W on’ Y +77/2

UIZ + 77/2

ih2 2 12 12 sin” v 402 2 Fain2 12 12
sinh” ¢ | cos” /v'? + 0?2 — —————-—— | 4+ cosh” {sin” \/v'? + 17

' d? 02 2 2
_ 1;)21 = lSinhQC (1 _sin U\IQ/:J_ n;; n 4 sin? /02 + 2

(535)
Alternatively we can begin in the prolate spheroidal system with metric coefficients

he = he = d\/ sinh? ¢ 4 cos? € = d\/ sinh? ¢ 4 sin? ¢’ = dy/sinh® ¢ + sin® \/v"2 + 1’2
hy = dsinh( cos€ = +dsinh(sing’ = £dsinh  sin /02 + /2
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and differential position vector [10]

dr = hedteq + hydge,, + hedCe, (536)
tan = n' /v’ (537)
¢ =2 +n?
o

Therefore

or
‘% Co = o = Megurte T hegte T gt = hegice T e it
UI 77I
= e et bt e (538)
or 1 72
— | = 2 2,42 — .

1 d
-7 \/ hZ sin® @ + h2¢" cos? o = 7 \/ sinh® ¢ sin® ¢’ sin? ¢ + (sinh® ¢ + sin? ¢') €% cos? (539)
As a check, if we transform the metric coefficients and the prolate spheroidal unit vectors in this expression
to the Cartesian system by means of the results in the preceding subsection we end up with the same unit
vector as the preceding expression. Nevertheless these prolate spheroidal expressions are somewhat simpler.
Thus the other direction becomes

or or o€ o aC o€ o
‘a—n, Cy = 8_77/ = hga—n,gg + hgoa—n,gw + hga—n,QC = hga—n,gg + h4p8—n,2¢,
! !
S Ty " — (540)

=" f\/mgf P2 4 g2

’67‘

1 L2
—| = 2 2,02
o'l o2+ 72 \/hvJ 02 + 12 TR = Gy

1 d
— g \/h?a cos? ¢ + h§§/2 sin? ¢ = ? \/sinh2 Csin® € cos? o + (sinh2 ¢ 4 sin? f') 5/2 sin? o (541)
Taking the dot product gives

o
o’

or

or or Or v’y
o’

€y " E

h2
o 2 %
=" ! o’ T2 + 77/2 € 2 _|_77/2
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sinh? ¢ sin? \/v"2 + 7’2
= /gvln/

v'n’ 2 [ w2 22l
= ———=d* [ sinh“ ( +sin“ ¢’ — RN

,U/2 + ,'7/2
or

UIT’/£/2 (hg o hi/g@)
€y T Eyr =
¢ g \/hana 4 hgv’2§'2\/hiv’2 + hgn&f’?

o'y’ (,U12 _|_77/2) (hg . hi/ga)

\/h?on/Q + hgv’Q (U’2 + n/Q)\/ha'U/Q + hgn/Q (UIQ + 77/2)

¢? (hg — hi/{a) cos psin ¢

\/h?(, sin? ¢ + hg{a cos? go\/ha cos? ¢ 4 hZe'? sin? ¢

¢ (sinh? ¢ + sin® ¢’ — sinh® ¢ sin® ¢’ /€”%) cos psin
\/sinh2 Csin® € sin? o + (Sinh2 ¢ + sin? ¢) £ cos? a,o\/sinh2 Csin? € cos? o + (sinh2 ¢ + sin? ¢ e sin? ¢

Voo G €y * Ep = d? (sinh2 ¢ +sin? ¢’ — sinh? ¢ sin? §’/§/2) cos @ sin ¢ (542)
where the metric coefficients are [10]

Jdr Ox Jy Oy 0z 0z

= L 9T 9Y 9Y | OZ 9% 543

g ov' ov' - ov' v O OV (543)
Or dx Oy Oy Oz 0z

Iy — —— — _— _— 44

Jorn = Gy on’ + o' oy o' oy (544)

00 0r Oy Oy | 0z 0z -

o'y’ = a_n/ on' ooy on oy
Of course in the system (v', 7/, () it is immediately clear from these representations and the orthogonality

of the prolate spheroidal system that

(546)

6.2.2 Near The Axis (Orbit)

Note that we expect ¢ to have small values on the orbit. Orthogonality approximately holds in the
coordinate system (v',7/,() if he ~ ’hw/{’. Note that to have he = dy/sinh®¢ +sin?¢’ ~ ’hw/g” =

(d/f’) sinh  sin ¢ we must have ¢’ << 1, consistent with our expected value & — 0 on the orbit.)

Thus if orthogonality approximately holds, then we can write [10]
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dr = hedCe; + hpdpe, + hedSee = hydv'e, 4 hydn'e, + hedCe,

1 1 /2
/ 2 2 n 2,2 _ ~
¢? KU V"2 +n? \/hi v +n? +hev? = Vguor & he

1 7 1 v'?
2 2 _ 2 — ~
5/2 ha,UIQ + hg'f’/Qé- - /,U/2 + ,’7/2 \/hi ’UI2 + 77/2 + hfnl2 = VY = h/n,

g,U/,n/ ~ O
The coordinate relations in this limit &% = /2 + 7/ — 0 (with 0 < ¢ < c0) become

sin /02 + n/2

NogEse

in/v'2 + 72

y = +dsinh  sin ¢’ sin g = idsinh{s
/2 + ,'7/2

r = +dsinh (sin &’ ~ d¢’ sinh ¢

2 = Fdsinh (sin ¢ cos p = fdsinh ¢ v’ ~ £dv’ sinh ¢

n' ~ =dn’sinh ¢

2z = Fdcosh ( cos ¢ = £dcosh ( cos \/v'2 + /2 ~ Fd cosh (

(547)

(548)

(549)

(550)

(551)

(552)

(553)

(554)

Notice that for the positive side or top sign of & = +7/2 — ¢’ the positive coordinate v’ points in the

direction of positive z. The metric coefficients become

hyr ~ dsinh ¢ ~ hyy
where

he = he = dy/sinh? ¢ +sin? ¢ ~ dy/sinh® ¢ 4 ¢ ~ dsinh ¢

hy = Edsinh (sin & ~ £d¢'sinh ¢
Thus in this approximate limit we can regard them as all equal (except hy,)

Byt ~ by ~ he = he ~ h = dy/sinh® ¢ 4+ ¢ ~ dsinh ¢

Note also that

—hef'V
€., € = 39 ~ —COS

Eoyr " Eg
VhEn? + hiv2e?

(555)

(556)

(557)

(558)

(559)
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—hyn'

Cy €y = ~ Fsing (560)
/hin/Q + hg’U/Qf/Q
—he&'n'
ey e = S ~ —sing (561)
/haUIZ + hgn&g’?
hov'
€y €y = ~ tcosp (562)
/ha,u/Q + hgn’Qf/Q
Cyr ™~ —Ee COSP F €, Sinp (563)
€,y ~ —gesinp e, cosp (564)
—€¢ ~ €, COSP + e, SN (565)
+e, ~ —e, sing + ¢,/ cosp (566)
Cross Products From the preceding results the cross products of the prolate spheroidal unit vectors
are
€ X Ec =€y
€ X €y = E¢
Ep X € =€
and the cross products of the quasirectangular unit vectors near the axis are
ey X &y ~ Fe; (567)
QC X Q”U/ ~ :l:gn/ (568)
ey X €~ Fe, (569)

6.2.3 Transformation of Scalar Parabolic Equation to Quasirectangular System

The parabolic equation in the scalar three-dimensional axisymmetric case is (for region 2)
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1 9 COS&@W 1 02w
cos? & Op?

4427 sinh Caa—v;/ + (i2fy cosh ¢ 4+ ~? cos? 5) W =0

or approximately

L2 (2, Lo
gog \"og ) &7 o

+427 sinh gaa—‘zf + (i2ycosh ¢ +v2¢*) W =0 (570)

can be transformed from the prolate spheroidal system to this quasirectangular system using

W LOW

e W oy OW AW
o "> v o’

o o ov " oy

¢ +¢

oW _owos  owoy _ _ow , ow
dy o' dp Oy Do au ! on’

é—/i (5,8W) 9 <8W’Ul+ aWn/) v + i <8WUI+ aWﬂ/) n/

ag \>ag ) " ov \ov o o \ ou’ o
PwW ,,  OW , *;Pw ., ., oW , OPW ,
~ o0z + o +28n’8v’nv + 877’77 + 877/277
PW 0 (oW, oW N 9w oW
0p? o' vl on' Y on' v ! on' v)e
PwW ,, W , oew ., ., oW , 9PW
Yoo T 5‘77’77 _2877’5'U’Un o’ * 5‘7]’2U
and
, 0 ([, 0W Pw PwW  9PW 2y o (OPWOPW
gagl § agl + 8@2 Ov'2 + 877/2 (U +1 )_5 ov'2 + 877’2
to give

el + alll +12 sinhga—W
Ov'2 0,,7/2 vy 8C

+ [i2ycosh ¢ + 72 (v +7*) | W =0 (571)
where W is now a function of v/, r/, and ¢. This is the same leading order parabolic equation as we find in
the vector case below.

Note that we will later need
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W OW W, W, oW

— !«
5 85/ a’UlU + 87]/77 - a’U’g COSSDJ'_ 877/5 Sln(ﬂ

ow ow , oW , ow , . ow
—_—~ = N+ —=—v =- & sinp + & cosyp
de ov’ an’ ov’ on’

or

,OW ,OW ow .

& 50 ~ & o cosap—%smap

§,GT/V ¢ ow P ow
a7 o sin Er cos

6.2.4 Hertz Potentials

The electromagnetic field is a vector field satisfying in source free homogeneous regions

V x H=—iweE

VX E=1iwuH
V-H=0
V-E=0

and the boundary conditions on the walls (in our case these hold on the end mirrors ¢ = ()

Ec=FE,=H;=0
or in the quasi-rectangular system

Ey,=Ey=H:=0 (572)
We use the electric Hertz potential II, (we can alternatively use the magnetic Hertz potential II, ), with
the fields given by

E=VxVxI, (573)

H = —iweV x 11,
where the Hertz vector satisfies the vector wave equation

~VxVxI,+V(V-I,)+ k10, = (V*+k*) I, =0 (574)
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k* = w?ue
and the electric field is thus given by either (262) or, using (263), by

E =V (V . He) + kQHe (575)
At high frequencies we can make one of the following sets of approximations [5]

M., = (576)
ey =0 =TIl (577)
or
M, =& (578)
M,y =0 = T, (579)

We cannot satisfy (263) exactly with this approximate choice, so instead we require that the potential II.,,
(or in the second case I, ) satisfies the equation resulting from equating E,, (or in the second case E,)
from (573) and (575). Thus the equation for the potential is [5]

-V XV x [ e,)+ VIV (e, )} +E ewe,)] e, =0 (580)
or

[-V XV x (eye,) +V{V - (Heye, )} +E (Heye, )] e, =0 (581)
6.2.5 Approximate Orthogonality And Fields

When we assume approximate orthogonality the equations simplify (as given in Vaynshteyn [5]). We
can derive the following equations by using the orthogonal curvilinear coordinate results for gradient,
divergence and curl [10], using the same metric coefficient h for all three coordinates

he = he = dy/sinh® ¢ + cos2 € = d\/ sinh? ¢ + sin? ¢’

hy = dsinh ¢ cos§ = +dsinh (sin¢’

¢ = tn/2—¢
he = he = h ~ dsinh ¢ ~ hy ~ hy (582)
hy ~ £d¢ sinh ¢ ~ £hE' ~ thy/v"? 4 72 (583)
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Thus the equation for the potential, assuming approximate orthogonality and equal metric coefficients
(for the case where I, = ®), is

19 19
{0 e e~ ey (1) | -
+1V ii(h2H )|t ew +E e =0 (584)
h3 81/ ev ! ev

or

g (190 g (10
a_é- {Ea_g (hHev’)} + 8_77/ {Ea_’ﬂ/ (hHev')}

o1 0 ,, 2,2
thes {ﬁ% (h Hw,)] + E*h* 1o = 0 (585)

Note that the first and second terms are from (—V x V x IL) - e,, and the third term results from
(VV-1I,) - e,,. The fields are

o1 0
2 _ 2 212
h Ev/ = h% [ﬁ% (h Hevl):| +k h Hev’ (586)
o1 0
2 _ 217,
h’E, =h o7 [ 350 (R°1Le, )] (587)
21 0
27 217,
W E: = h8< {hg 50 (h°Ie., )} (588)
and
h*H; = iwe i(hH ) (589)
¢ — Oan, ev’
2 0
h*H, = —iweg—= (e, ) (590)

a¢
Alternatively the potential Il.,, = ® satisfies

o (19 0 10
o {58_4“ (hHen’)} t 50 {E@ (hHen’)}

o1 0
+h [ﬁﬁ_n’ (hQHen/)] + KRy =0 (591)
The fields are
o1 0
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a1 0
W2 E,y = h—— [_8_711 (hQHen,)] + k2h2,,, (593)

877’ 3
o1 9
27 2
h EC = ha—g [ﬁﬁ_’r]/ (h He'r]’):| (594)
and

2 . 9
h HC = —ZWEO% (h/]'_‘[e"l,) (595)
h*H, = iwaog (hII,,/) (596)

v 8< en

6.2.6 Asymptotic Solution Of Quasirectangular Equations

We seek a high frequency region 2 solution of the form

Hev’ =0=W (Ulv 77/7 g) ei’YCOShC + w (U/a 77,) _g) e_i’YCOShC ) |§| > gO (597)
and insert this into

0o [10 o [10

g (e 0%} i (g 0}
o [1 0
W {ﬁ% <h2H€v/)] + thQHev/ =0

or

92 10h\ 8 d (10h o (10
— My + (== ) =y + ey — [ == | + — ¢ === (hIL.,
2 ev+<ha<> % R | o <h8<>+8n’{han’(h ev)}

o1 9 9 9,9
+h_6v’ {—h3 v (h Hev/)] + k*h*Te =0 (598)
then W satisfies

9?2 10h\ 0
z 9~ sinh it R
aC2VV—|— <z ~vsinh ¢ + hBC) a<VV

a1 d ,, o (10
the {FW (h W)] * 3y {56_77' (hW)}

o 10h
212 1 i cosh ¢ — ~2 sinh? Y s a ) \nac -
+ {kz h* + iy cosh ¢ — " sinh” ( + <mmhg+ 3C> (haC)] el

or
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or

+ 726/2 + iy cosh ¢ + (ivsinth— (’)) (1 8h) + i (1 8h)

10 0 o 0
Ea—g (hﬁ_CW) —l—zQ’ysmh(a—CW

10 0 10 0
390 (M35 ) + 130 (h5 )

+ [k2h2 — 4% sinh? ¢ + 4y cosh ¢ + (i'ysinh( + 0 ) <

a¢

10 0] - 0

10 0 10 0
o (’WW> T oy (’%W)

oc ) \nac)  on \hoy

We now neglect the first term 921W/9¢? and let (except in the kA2 term)

giving

Now take

where we want

Using this along with the transformation
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h ~ dsinh

o ow  9*W  9*W
(12 sinh ¢ + coth () a—C + Nl + W

+ [v* (v"* +7'?) 4+ 92y cosh ¢ — csch?¢] W =0
W = f (C) v ('U/anla 0/)

f_ i2ycosh( — csch?¢

f 127y sinh ¢ + coth ¢

1
1/f =sinh ¢ + — coth ¢
127y

0 [(10h 0 2 Oh
MY (E%) T haw (h—%)] W=0

(599)

(600)

(601)



o = /C ,dC = In [tanh (¢/2)] (602)

_ oo Sinh ¢
gives
; coth ¢ 8_\11 v 9
sinh¢ ) 9o’ = Ov'2  On'?
n [,YQ (U/Q +77/2)] T =0
Note that

o [T
oo sinh ¢ o Sinh ¢

oy = In[tanh (¢o/2)]

sinh (¢ — im) — e " sinh ¢ (603)
We could also have dropped the terms coth ¢ and csch?( terms compared to the 7 sinh ¢ and the 7 cosh ¢
term (these terms could be accounted for by higher order terms in the asymptotic series just like the
9?W/d¢? term and the higher order terms dh/dv’ and dh/d') to obtain directly

. OW W OPW
ZQ’ySlnhCa—C + D02 + W

+ [v? (v +7*) + i2ycosh (] W =0 (604)
which is the same as the preceding scalar case. For this leading term approach we would take

1
— \II !/ !/ /
W snth (’U 377 ,O' ) (605)
and obtain the same equation for ¥. Scaling the independent variables by letting

T = /27 (606)

T; = /2y (607)

gives

OV 920 92T 1

/2 12 _
B0 "o T g tq (T T V=0

Separating the variables

U (T2, 7y, 0) = Vg (T2) 1y (1) Ve (0)
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gives

i O, 1%, | 1 0%y | p

— — 4 — 41=0
(7:5)+ (g +2m)+ (5, grp T/

Each parenthetical term is independent of the variables associated with the others and therefore each equals

a constant. We take the first term as s

o, ,
o’ —is",
or
P, =e (608)

Then we can write

62

aff; + (sl +72/4) ¢, =0

82'(/}17 / 2

0772 + (Sb+7y/4)¢b =0
Yy

s+ s, =5 (609)

(7, 7y,07) = €750y (0,75 €Ty (sh,) = T g (56, ) U (5, 7)

This is a form of the equation of the parabolic cylinder functions

82w 7_/2
25 (o)
The solution that is outgoing in 7 is [1]
Uy (s,7) = e "6F/2/4y (—is,Te*i”/‘l) (611)

where U (a, z) is the standard solution [11]. Following [1] the total transverse solution is taken as the
incident plus reflected form

P (s',7") =cRe [U+ (s',7') + ei%Ui (s, T/)} (612)
where the constant ¢ is used for normalization. The transverse boundary condition in 7’ is a reflection with
a random phase D, (kz) which was introduced by Antonsen to match to the chaotic region of the cavity;
it describes the phase relation between a wave leaving the vicinity of the unstable periodic orbit and one
returning [1] with the variation of the pth component along the orbit. Figure 9 schematically illustrates
a wave bouncing back and forth between mirrors in the region of the scarred orbit; it leaves the vicinity
of the orbit and eventually returns from the outer chaotic region with transverse reflection phase @ (kQ)
(For purposes of simplification this figure does not include the vertical evenness of the cavity, which
confines the wave leaving and the wave reflected to either the upper half or lower half of the cavity.) Thus

Vo =, (84, 7,) and 1y, = 9y, (s}, 7)) are elliptic cylinder functions like in the two-dimensional case [6], [1].
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On the mirror we have
1 0
[—,—, (hQHev/)} + k*h ey

1
0= hQEn/ = 6_']7/ |:h_ 8’1)/ (hQHeu’):|

and

0=h"H; = moa% (hIley)
which are satisfied if
ey (C = CO) =0 (613)

6.2.7 Asymptotic Solution Of Parabolic Equation In Prolate Spheroidal System

The parabolic equation in quasirectangular coordinates for the Hertz potential component Il or IL,
(or W) resulting from the vector wave equation is the same as that arising from the three dimensional
scalar Helmholtz equation. Hence we can transform the parabolic equation for the Hertz potential from the
quasirectangular system back to prolate spheroidal coordinates. In the second region outside the foci we
assume that 0 < ¢ < (, and that cos? ¢ << 1. The potential in the even case is then

Mew = 2 [W (¢, €) €N 1 W (¢ —im, 0,£) e TN ] ] > &

- [‘Ifm (', 0") eiveoshein/2 L g (T',fcr/)e*”‘foshCHvr/?] { cos (mgp) }

sinh ¢ sin (mep)
-2 ,, (7', 8") cos (ycosh ¢ — s'0’ — 7/2) cos (mep) (614)
b s ¢ s (me)
where
2 N
U (7',8') = Cmg Re [W+ (7',m, ") + " PoW (7', m, s/)] (615)

W+ (T/, m, 8/) = Wisl/Q,m/Q (—Z.TIQ/Q)
= 2¢
¢ =tn/2-¢

25’0, = 2s'In [tanh (¢ /2)] = (k — kp) L (616)
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o = /C d = In [tanh (¢/2)] (617)
oo Sinh ¢
The mirror condition Il.,, = 0 gives

cos (ycosh ¢y — s'a(, — 7/2) = cos (kyl — 7/2) =0
or

kpl = mp (618)

In the odd case the potential is

Hev’ = e_iﬂ-/2 [W (Cv ®s g) ei’YCOShC -W (C - iﬂ-v ®s 6) e_i’YCOSh C] ) |§| > 50

1
~ sinh(¢

[\Ilm (7/,0") e eoshe=in/2 _ g (7! —g') etV Cosh C+iﬂ/2} { cos (mp) }
sin (me)

2 1t 3
= sinlllCd}m (7', 8") sin (ycosh ¢ — s'0’ — 7/2) { z?;((:zg)) }

The mirror condition Il = 0 gives

sin (ycosh ¢, — s'o() — 7/2) = sin (k¢ — 7/2) =0

or
hyt =7 (p—1/2)
Behavior Of Zero Mode Near Orbit For Stadium Solutions The Region 2 behavior of the zero
mode
o (7',8") = cog Re |W, (7,0,s") + o0 Wi (7,0, S')]
Wi (7,0,8") = Wiy 20 (fiT’Q/Q)
= Ve
¢ =tn/2-¢
Now taking
7/ Oz;ﬁ? = covV2Re {Wﬁr + e W_ﬁ'] — g
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which when taken to vanish as 7/ — 0 gives

w (Wi SW)  TQpRtiss)
W wy  Tap—we O

The value as 7/ — 0 is

1, (0,8") = co Re [6”5//26”/4F (1/2+ is’/Q)} , 7' =0 (619)
and in general

o (77,8") ~ co Re [e”“F (1/2 + is'/Q)} ems' /2 (1—s'77%/4) + O (7 In7’)

aa/z/J (1',8") ~ —coRe [ AT (1/2 4 is /2)] ms'/2 (s'72/2) + O (7" In7") ~ — (s'7"2/2) g

10

oo (7', 8') ~ —eo Re [/ (1/2+is'/2)] €™ /2 (//2) + O (" n7') ~ = T4hg

190 0 in . s
gk (r’%wo) ~ —co Re [e /4F(1/2+zs'/2)} /2 s+ 0 (r?In7') ~ ="ty + O (" In7’)

In addition

9% 0% )
/ 0 M// _ _M/'
T wor ('.s') ~ coV2Re {Z D ( +) ]

~ 0P, T (1/2 +1is'/2) , 1 -
”“COVEP“’[aw T2 —asjz)
and

0,
OwoT’
6.2.8 Approach Of Focal Point

ei'/r/4 o’
~ 2 -0
(0,5") ~ 2¢o Re [ } 0

T(1/2—is'/2)

We first take the limits of the outer two regions as the focal region is approached. However to allow
flexibility in phase matching through the focus, we will allow the focal region to shift by a small amount in
the Region 1 and Region 2 solutions by adding a horizontal x shift of d, where § << d is a geometrically
small shift relative to the Region 3 solution. (This can also be viewed as distorting the coordinate with
d — d + ¢, which corresponds to a slight reduction of the elliptic cylinder radius of curvature on axis, since
d={¢\/1 — R/{. Because the elliptic cylinder has increasing radii of curvature off axis, such a reduction on
axis, might actually represent the stadium mirrors better at a finite wavelength.) Therefore

d—d+6 (620)
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v — v+ ko (621)
where § << d is a geometrically small shift. Thus in Region 1 we find

I, ~ 2Ccmﬁ Re [e‘i”/2W+ (\/%C, m,s) + ei”/2ei%Wj (\/ﬂg‘,m, s)}

£ cos [7 (1 _ 5/2/2) + kS +sln (51/2)} { cos (myp) } L& =0

sin (mep)
In Region 2 we find

ey ~ 26mﬁ Re [W+ (\/ﬂgl,m, 3’) + ei%Wj (\/ﬂg',m,s')}

¢ teos [y (1+¢%/2) + k6 — s'In(¢/2) — m/4] { cos (m) } ,¢—0

sin (me)
where

s'In[tanh (y/2)] = (k — kp) ¢

kpl =mp

Let us restrict attention to the m = 0 azimuthal mode (keep in mind here that the quasirectangular
unit vectors are still present since we only have the v and v’ components of the potential).

Thus in Region 1 we find

I, ~ 2Cco \/174 Re [e—iWW+ (\/ﬁgo,s) + e/ 2eio Ty (\/ﬂg,o, 5)}

€ eos [y (1-€%/2) + ko +sIn(€/2)] € —0
In Region 2 we find

M, ~ 2coﬁ Re [W+ (\/ﬂgﬂ 0, s’) ey (\/ﬁg’, 0, 5')]

¢ leos [y (1+¢%/2) + k3 —s'In(¢/2) —7/4] , (=0

Small Shift In Focal Position We can also view this shift as a change in the original coordinate

system (r, z) or (¢, §) or (g,g/)

r = dsinh ( cos & = dsinh siné’ ~ d¢¢’
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2z =dcosh(siné = dcoshcos& ~d (1 + C2/2 — 5/2/2)
to the focal coordinate system (r/,2) or (Z,g) with

2—0=27 = dcoshZcosE/ ~d (1 +Z2/2 *32/2)

/ . > . -~ o~
r=71 =dsinh(sin§ ~ d(&
Thus the small shift § enters as an additive correction as in the preceding section.

6.2.9 Focal Region Three

In region 1, but near the focus &, — 0, we approximate the metric coefficients

d
N— E\/Sinh2 ¢sin® ¢ sin® ¢ + (sinh® ¢ + sin®¢') ¢* cos? ¢
~dy/ €% + (P cos?p ~ hy
d .12 Y 9 .12 2 2 2
mzz sinh” { sin“ £ cos <p+(smh ¢ + sin S)C sin”

~ d\/§'2 + ?sin? g ~ hay

Voo g€, - €, = d? (Sinh2 ¢ 4 sin? ¢’ — sinh? ¢ sin? 5’/{2) cos @ sin

~ d%¢? cos psin @
We see that for ¢, — 0, but & >> ( that e, -¢, = O (¢*/€"%) — 0. However for £ = O (¢) the dot product
is not small, and the coordinates are not orthogonal. Similarly, in region 2, but near the focus ¢,& — 0, we
approximate the metric coefficients

N g\/smh2 ¢ sin? ¢’ sin? ¢ + (sinh2 ¢ + sin® f') €% cos?p

~d\/ P+ E7 cos? o ~ Ry

d
N g \/Sinh2 ¢sin? € cos? ¢ + (sinh2 ¢ + sin? 5/) ¢?sin? ¢

~d\[ ¢+ €% sin? o ~ Ry

265



[Gorv G/ €ar * €y = d? (sinh2 ¢ +sin? ¢ — sinh? ¢ sin? 5//5/2) cos @ sin

~ d*€" cos psin ¢
We see that for ¢, — 0, but ¢ >> ¢ that e, ey =0 (5’2/§2) — 0. However for { = O (5') the dot
product is not small, and the coordinates are not orthogonal.

We anticipate that if ¢ = O (£) there may be issues with the accuracy of the approximate solutions
in the quasi-rectangular coordinate system. One way to deal with this would be to use a different vector
approach, like spherical coordinates with Debeye potentials (or spherical vector wave functions) near one
focal point

E=VxVx(y,)+iwpV x (r¢,) = =V x (£ X V) +iwpgV X (29),,,)

H=VXVX(ry,,)+ivegV x (ry,) = =V X (r x Vb)) +iweoV x (r1),)
with

(V2 + k) =0
Another approach would be to transition to Cartesian unit vectors as the focal point is approached

L., (Region 1) ~ I, ~ I,  (Region 2) (622)
and use

Ee = Hegcgg;
with the scalar Helmholtz equation solved in spheroidal coordinates

(V> + k) e, =0
in the focal region 3.

However, for the moment, we try restricting ourselves so that we have simplified the geometry near
one focus by taking ¢,&" << 1, but still maintain & >> ¢ on the region 1 side of the focal region, or
alternatively, ¢ >> ¢’ on the region 2 side of the focal region. Such an approach should allow us to connect
the region 1 and region 2 solutions, but may be of questionable accuracy at the focal point; however on the
axis with ¢ = 0 in region 1 and ¢ = 0 in region 2, which is the path of greatest interest, it may remain valid
all the way to the focal point given the above considerations on orthogonality. Thus we will simply make
the replacement u — Il.,, or u — Il.,, depending on which side we are on, with u being the solution of

L ﬁ cosia—u + L —|——1 @
cos & O o€ cos?{  sinh?¢ /) 0p?

au
¢

1

+ sinh ¢

g (sinh ¢

c )—1—72 (coshQC—sin2§)u:O

or
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L g cosf@ + 1 +—1 @
cos & ¢ o€ cos?¢  sinh?¢ /) 9p?

or

! i sin§’%>+ L +—1 @
sin ¢’ o€’ o€’ sin?¢’  sinh?¢ ) 9¢?

+sin1h % 5% (smh ¢ C) (sinh2 ¢ + sin® 5/) u=20

as & =71/2 — £ (we are assuming that ¢* << 1 and that £ << 1)

10 (0u) (1 1\0u
7o (5(%) (5’2 <2>a«p2

10 ou P
22 (Cac)wL’y (@4 €% u=0 (623)
or taking
M ~u = (66){ Gl ) (624)
10 (., 0um €2 _m2/e?
7o (5 o ) + (7% /€7) um
19 (9tm 2
e () + <)
Separating variables

110 ,0Zm 212 2 /612
e ($50) e ]

110 OR, 9,9 2, 2|
M AR
Taking the separation constant to be 2vg we find

L (5’ 8277) + (=299 + 776" = m?/€%) Zn =

267



13 aRm 2.2 2 2 -
cac <<8—<>+(279+7C —m?/¢*) Ry, =0

Thus we find Whittaker equations in both directions. Letting

&2y =1

in the first and

(Voy=7

10 , 07 m 1 ,, m?

- _ _ ——_\z =
' o’ <T or’ > + < 9+ e T2 m =0
10 OR., 1, m? B
FE(TW)+<9+ZT - Tz)Rm—O

2
Um, = X Zm = Cocmg Re [Wy (7',m,—g) + BW} (7',m, —g)]

in the second, gives

2
4 Re [W-‘r (T7mag) + BW—t (Tama g)]

= Cotm gz Re [W, (€v/27,m. —g) + BW: (€1/27,m, )]

1 Re [eﬂ'”/QVV-|r (C\/2—vm79) + em/QBW-T- (C\/Q_,m,g)}

VAl ,
For purposes of matching we take g = s = —s’ and B = €'®° and B’ = ¢'®o
1 D! *
O, ~u= C’ocmm Re [W+ (5’\/2 ,m,s') + e PoWs (5’\/2 ,m, s’)]
1 —im i 3 * CO8 (mgo)
_— /2 _ /2 i® o
CﬁRe [e W, (g,/z m, 5/) + i/ 2ei®opyx (g\/z m, s)}{ in (o) } (626)

Expanding as we leave the focal region using the asymptotic form

W+ (T,m78) N 6”2/4 (_iTQ/Q)is/Q _ ei7—2/4+57r/4+is 1n<‘r/\/§) , T — 00
gives

Iy ~ u ~ 2Coe® ™/* cos (¥} /2) cmﬁ Re [e‘i”/QV[Q (C\/2_, m, —s/) + e 2eitopyy (C\/Q_Jn, —s’)}
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cos (my)
sin (mep)

cos [£/2fy/2 +6'ln (§Iﬁ) — @6/2} { } , Region 3 — 1

1
&V
I ~ u~ 2Coe " ™/* cos (B /2) cmﬁ Re {WJF (ﬁ'\/ﬂ,m, s') + ei%Wi (5’\/2_,171, s/)}

cos (my)

1 2 !
N cos [(*7/2 — s'In((\A) — /2 — @0 /2] { sin (mep)

These must match to the limiting forms of the outer solutions from the preceding sections

} , Region 3 — 2

cos (my)
sin (my)

e, ~u = QC’M cos [ycos¢ + sln {tan (¢'/2) }] {

m
sin &

},f/—ﬂ'/2§

2 . . .
Vo (7-7 5) = cmg Re {G_ZW/QWJF (7_7 m, S) + em/Qeszoth (7_7 m, S)]

or

ey ~u ~ QCécm% Re [efiﬂ/QVVJr (C\/2_,m,s) + el 2oy (C\/Q_, m, 5)]

cos [y (1 —¢2/2) + ké + sln (5’/2)]{ cos (mep) } L& =0

sin (my)
in Region 1, and to

2

m¢m (1',s") cos [ycosh ¢ — s'In{tanh (¢/2)} — 7/2 — &, /2] { cos (mep) }

Her ~u= sin (my)

P, (1',8") = cmi,i Re [W+ (7/,m,s") + oW (7, m, S/)]
T

or

ey ~u~ %cm# Re [W+ (5'\/2_, m, s’) + ei%Wj (f/ﬁ,m,s'ﬂ

cos [7(1+C2/2)+k5—s’ln(</2)—7r/2—<1>1/2]{ cps(mgp) } ,(—0

sin (mep)
in Region 2, where

§'In [tanh ((y/2)] = (k — kp) ¢

kl —m/2—01/2=m(p—1/2)
The functional behaviors are identical, but the phases only match if

§'In(2\7)—®,/2=—-y—ké+nn (627)
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—s'In(2y7) —7/2—=D/2 =7+ kd—7/2—P1/2+n'7 (628)
and the amplitudes match if

—_

Coe® ™/ cos (B} /2) ﬁ =C(-1)" (629)

—_

Coe "™/ cos (D /2) vl (—1)™ (630)

6.2.10 Evenness Conditions On Scar

Because we want the normal derivative to vanish as the scarred orbit is approached

lim {Re [WJ’r (r',m,s") + ei%Wf (t,m, 3')} — % Re {WJr (r',m,s") + eiq’f)Wj (', m, s')] } -0

7/ —0

T7—0

, o 1 . o
lim {Re [efl’r/QWj_ (t,m,s)+ eZ”/QeZq)OW_t/ (r,m, s)} - Re [67”/2W+ (t,m,s) + 6”/26@0W_t (r,m, s)} } —0

where the first is the Region 2 form and the second is the Region 1 form. If we write the real part as one
half the sum of the function and its conjugate, we see that these conditions imply

®, i (W (7/,m,s") — %W+ (7',m,s")]
= — l1im *
/=0 [VV’+ (t',m,s") — %WJr (r',m, s’)]

ei

and

A W' (r,m,s) — W, (1,m, s
ez<1>o = lim [ ,+( ) 17' +( )]*
=0 [W—l— (Ta m, 8) - ;WJr (7—7 m, 8)}
Using the properties of the Whittaker functions and s = —s’ we can evaluate these. The properties of the

functions we desire are

9 o\1/2—m/2 (m —1)!
W, (1,m,s) ~ (—it?/2) F(1/2+m/27i5/2)’7-—>0’m7é0
~ — (77:’7'2/2)1/2 m [ln (*ZT2/2)

d +{’¢J(1/2—i8/2)—2¢(1)}],T—)(),m:()

/ . . 92 —1/2—m/2 (l/2—m/2) (m—l)'
W+(T,m,s)~—zr(—w /2) AR tm2 72 T—0,m#0
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Figure 35. Sketch of reflection phase meaning in stadium geometry with interior foci.

—-1/2 1
L(1/2—1is/2)

and thus (this also works for m = 0)

Nz‘T% (—ir?/2) I (—im?/2) + {¥ (1/2 —is/2) —2¢ ()} +2] , 7—0, m=0

et®o — t9/1"11'(m—1)/21—‘ (1/2 + m/2 + ZS/Z)
I (1/2+m/2—is/2)

and
oi®0 — _gin(m=1)/2 I'(1/2+m/2+is'/2)
L(1/24m/2—is'/2)
or
o i%h _ 7efi7r(m71)/21—\ (1/2+m/2+is/2) _ _iPo—ilm=1)r _ (_1ym ci%o
I'(1/24m/2—1is/2)
Thus
Py = —Py + mm (631)
The single remaining condition then determines s’ = —s given a value of the reflection phase ®;. Note

that this choice of reflection phase conjugate implies that the incoming wave from the outer region travels
toward the scarred orbit in one region, but on the other side of the focus travels away from the scarred orbit
as illustrated in Figure 35. This construction of the transverse dependence has thus allowed a consistent
solution between the two regions to be found.

6.2.11 Summary Of Conditions

The summary of conditions is now given. The first is the vanishing of the normal derivative as the orbit
is approached
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pito _ gim(m-1)/2L (1/2+m/2 +is/2)
L (1/2+m/2—is/2)

£i%% — _eiﬂ’(mfl)/QF (1/2+m/2 +is'/2)

. T(1/2+m/2—is'/2)

!/
&) = —Dy +mm
determines s’ given ®( or vice-versa

e—i®0 _ iF (1/2+m/2+is'/2) o—imm/2
I'(1/24+m/2—1is'/2)
From the mirror boundary condition we have

®1/2 =kl —7p
where k, and s’ are related by

s'In[tanh (y/2)] = (k — kp) ¢
This can also be written in terms of the stability exponents as

s =s=2(k— )é/ln(ﬁ_’_j):2(k—kp)L/ln(A+)
where
1 {+d 1 A 1 1 1
0 =Inftanh ((o/2)] = —5 In (zir—d> =—5h (/\f 1 1) =—5ln(Ay) =7 (Ay)
and

A -1
djt =
)
and where A2 = Ay, Ay A_ =1=A,A_and (A 4+ 1) /2 = (£ £ d) /R. The phase matching conditions can

be written as

@1/27@6/27@0/2:(@1/27’”’”{‘/2:7T(TL+TL/)

kd = —y — ' In(2y/7) + ®5/2 + nm = —y — ' In (2\/7) — Po/2 + n7 + mm/2

or

& /2=m(n+n")+mnr/2
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kd = —y —s'In(2\/7) — ®o/2 4+ nw + mn /2
and the amplitude conditions give the coefficients as

C = (_1)n/fn+m es'm/2

Co = (—1)" €™/ Fsec (Do/2)
It appears like the phase ®1/2 adds something for odd values of m since it must be a multiple of 7/2 and
sign changes in the Region 2 solution due to this phase are accompanied by sign changes in C' and in the
Region 1 solution (which thus can be absorbed into the amplitude coefficients). Furthermore the factor
sec (Po/2) only enters because we failed to set the problem up with symmetrical factors exp (£®(/2) in the
combinations of Whittaker functions.

6.2.12 Final Set Of Conditions For Axisymmetric Mode

Thus for the axisymmetric mode m = 0 if we set ®; to zero we have the evenness condition across the
scar orbit to determine the allowed values of the separation constant s’ in terms of the chaotic phase @

i _ z% = cosh (ws'/2) %rZ (1/2 +is'/2) (632)

We have the mirror conditions which connect the separation constant values and the resonant frequencies k

kpl = mp (633)
s'In [tanh (y/2)] = (k — kp) ¢ (634)

We also have the focal point shift §
ké = —y —s'In(2/7) — Po/2 + n7 (635)

and the amplitude constants (here we note that if n and n’ are both even or odd C' is one, but if they have
opposite parities, then C' = —1 which cancels the phase shift ®;/2 then an odd multiple of 7)

C = e /2 (636)

Co = (=1)" ™% fysec (90 /2) (637)

To get a feel for the connection with ® for small s’ we can expand as

iwo _ D(/24105'/2) 1+ (s'/2)9 (1/2) + (is'/2)" [2 (1/2) + 4 (1/2)] /2

e =1 ~

U(1/2—is'/2) 1 (is'/2) 9 (1/2) + (is'/2)° [¢* (1/2) + ¢ (1/2)] /2
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1 (i'/2) (7 +2In2) + (is'/2)° {(7’ +2In2) + 71'2/2} /2

T T G5/2) (7 + 21n2) + (i/2)° {(7' +2In2)% + 7T2/2} /2

~ i {1 —is' (7 +2In2) — s (7'—&-21112)2/2}

where 1 (z) is the digamma function [11] and v’ &~ 0.5772 is Euler’s constant. Thus we have

Py — —m/2as s — 0 (638)
6.2.13 Focal Shift In Axisymmetric Calculations

In the calculations of the focal point shift we use

kpl = mp (639)
§ =2(k,—k)¢/In (ﬁj—b (640)

and the focal point shift §
k(d+6)=—s'In (2\/1?) —(@o/2+7/4) + (n+1/4) 7 (641)

The transcendental equation for s’ can be written as

— T (is'/2+1/2)
i(Po+m/2) — 642
¢ T (—is'/2+1/2) (642)
giving

k(d+6) = —s'In (zx/ﬁ) FargT (1/2 +is'/2) + (n+ 1/4) 7 (643)
Noting that

= 0= ) 00) + 010 =y ]0)~ 3 (@76 m (5

gives

ké = -5 {ln (2@) - % (d/0)1In (%)} +argl (1/2+is'/2) + {(n+1/4) —p(d/0)} =

or ignoring terms of order (k — k) 0

kpd ~ —s' {1n (2@) - % (d/0)In (%)} +argl (1/2+is'/2) + {(n+1/4) —p(d/0)}

or
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kp (d+0) ~ —5' {m (2\/1@71) - % (k —kp) /kp — % (d/¢)In (%)} +argD (1/24is'/2) + (n+1/4) 7

or

(d+5)/€~i{s’{%(d/f)ln(ij—;l)ntls’l <ﬁ+j>/ (2\/_)}+argr‘ (1/2 4 s /2)

+(n+1/4)/p

Dropping the quadratic term in 1/ kg

1 1
(d+0)/t ~ P, [s' {5 (d/0)1n (ﬁ i d) In (2\/ )} +argl (1/2 +is /2)} (n+1/4)/p
P
Expansion For Small Separation If the value of s’ — 0 we can expand the gamma function as
T (1/2+is'/2) ~ /@ [L+1p(1/2)is' /2 — p* (1/2) s /8 — ¢’ (1/2) s /8]

~ /T [1 — (v +2In2)is' /2 — {(’y' —|—21n2)2 +7r2/2} 8/2/8}
and

argl' (1/2+i5'/2) ~ — (¥ +2In2)s' /2, & —
and

B(d+6) = [ (4VED) +7//2] + (n+1/4) 7

or

(d+6)/€~é[s’{%(d/€)ln(§+d> In (4y/Fyd) — 7/2” (n+1/4) /p

6.2.14 Average Focal Shift

The normalized shift function, without corrections (s’ = 0) is

kp(d+do) = (n+1/4)7
and using

kpl =pm
is
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(d+d0) /t=(n+1/4)/p
This can be written as

kydo/m=n—n,>0
where

ne=pd/l —1/4
and the inequality displaces the focus to the right of the geometrical focal point (as we found in the 2D
problem). Now for for large values of p (with d/¢ < 1) and n, we assume that n — n. is between 0 and 1
(we might take it to be uniformly distributed) and examine the average

kp (60) /7~ 1/2
For example with the frequency range

209.71 m™ ' < k < 628.7m !
with ¢ = 0.11176 m, d = 0.0336969 m we find that

p1=8<p<22=p
Then we find

1 P2dp  1/2
dg) /€ = / — = In = 0.0361286
(do) / el % m-m (p2/p1)
and

de = d+ (8) ~ d + (69) ~ 0.0377346 m

6.3 Vector Normalization Condition For Stadium Cavity

The method used for normalization of the eigenfunction components by Antonsen [1] is now put into
the framework of the electromagnetic energy theorem [13]

8 (we) ) 8.

V'(%Xﬂ T X%)—Z[ R R R %

Integrating over the cavity volume and using the divergence theorem (and inserting the electrical properties
of free space)

ji(a_w xH" +FE" x 8w>'ﬂd5—z/‘/(ﬂoﬂ H" L -E")dV /v<6w J +E 8w)dv

where the unit vector n in the divergence theorem points out of the cavity region.
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6.3.1 Source Free Form Of Theorem

The source free form is thus

w
Using n x £ = 0 on the cavity walls, the surface integral on the cavity boundary vanishes

% a—Exﬂ*—i—E*xa—ﬂ -QdS:i/(uoﬂ-ﬂ*—i—EoE-E*)dV
S ow A%

OE . . OH B OE . . oH -

However a part of the closed surface Sseqr is taken to surround the scarred orbit ¢ = y/v2 + 71?2 — 0

E H
/ <8__Xﬂ*+ﬁ*xa__)'ﬂds_i/(Noﬂ'ﬂ*Jﬁ?OE'ﬂ*)dV
Sevwr \Ow ow %

(o [ V(e 2 s
s, Js@, /) \Ow dw

where the unit normal here n points into the scarred region. We take the fields to be [17], [18]
E=VxVxI, =V(V-IL)+ kI,

H = —iweV x II,
6.3.2 Region One

For the first polarization state [5]
Mo, =@

M,y = e =0
Note that as ( = /v? +n? — 0 the fields become E, # 0, E, =0, Ec =0, H. =0, H, # 0 at v =7 =0,
where

a1 d 82 82
2m _ 3 9 | L O 9 272 s 272 _ o 272
h2B, = h= [hwv(hnw)]whnw (th)mv (27873+kh>ﬂev
a1 0 8? 2
’E, = h— | == (h?TI ~ ——TI,, = 2y———TI
WEy = hg [h?’ a0 e“)] mov =~ T or,or,
a1 9 92 8?
2 _p 2 | =Y (12 ~— = \/2y—
WEe = Iy {hs a0 He“)] fean v = V2 g, e
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) ) )
h?LQ::iwaogg(hIQU)»viwaohégILw::iuwox/thé;;Iku

0 0 0
h%@:—wwaumwywmmmﬁnw:—w@@%mv
Thus in the boundary integral with (note that the inward unit normal is oppositely directed from the
prolate spheroidal unit vector) n = —e. and

hCCU
€, € = 5 ~ COS
\/ hEN? + hiv¢
_ h¢Cn .
€, €= ~ sin @

h2v? 4 h2n2¢?

g X ey~ g

e, X e ~e,
we note that £ x H* captures F,e, X Hg‘g£ = —EUHggn, Ee, % H;Qn = EUH;gg, Engn X Hg‘g5 = E,,Hg;v
and E§§§ X H;Q77 = —EgH:;QU. But at the center I, =0, ¢y = 0, H; = 0 and only EUH;;gg survives, but is
orthogonal to n = - Thus the w derivative is responsible for a contribution

812 * 85% % 8Ek « 85& * v
<a—w x H > e = —a—angv e~ —8—an Cos p = —a—anﬁ

* OH * *aEQ . *an Ui
(E X a—w> “Ee = —Eua—wén e~ —Ey Ow s @ = _Eva_w\/ﬁ—Tn?
Noting that E¢ is odd in 7, = /27v = {/27( cos ¢ and that H¢ is odd in 7y = /291 = \/27(sinp and it
appears that these will contribute. The w derivatives may not have even or odd behavior anyway. Thus

OE . .  OH OE: U OH¢ n
= H 4+ B x =) .n~ | =g E!
(&ux_ e X@w) “ (&u n /1)2_‘_7727L Y ow \fu2 2

1 2y 1 9, oI, 0?1l 2y 02 9\ o
~ IWWEYT [ﬁ 8w8§6T1 af Te + awaTy Ty oz " k H

h1/7’%+75

Transforming back to prolate spheroidal coordinates

oL ‘ « OH
(%Xﬂ +E X aw) n
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~ fwe L1 oI, OIL, cos p + Pl sin ia—Q + k%) I
% | B2 dwdcan ae P T Bwan PP\ 2 02 ev
Noting the identities

8_W 6—VVCOS — ———sin
v T ac “PP T tap MY
62—W 82—I/Vcos2 —4—18—”/sin2 18W281n cos  + 16W2sm cos  + 162I/Vsm2
v "o T A T YT Cacap PO T @ g IR @y Y
o~ ac Cap ¥

and for the axisymmetric case m =0

ow oW
50 ac cos ¢
_5'2W i + la—W sin?
N R o
ow oW
an ~ Tac ¥

and

oW ow [T, oW
——cospdp ~ —— cos” pdp = T——
0 0’[) 8( 0

¢
/27T8_W82 d oW IV cos® psin? pdp + = <8W>/ sin® pd
o 8778U2 Ry~ 8(8§ v dad ¢\ o¢ 0 v
10W 02w ow 9
~-ZZ 14 cos 2¢) (1 — cos 2¢) dip + 1 — cos2p)?d
19C o ( cos 2¢) ( cos 2¢) dp 4((8() /0 ( cos2p)” dy
2
N%%—VZ%TVZ (l—cos 2cp)d<p—|———( ) 1—20082§0+00822(p)d<p
0
T OW [ O*W 18W) TdW 10 (BW )
~—— 43— | =—-"—F== (= +2W
48<<ag cac ) 1 ac cac\Sac

/QWa—Wsin d a—VV/%sin2 d —ﬂa—W
o on TR Jy NPTy

or
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2
/ (a—EXEJrE*xa—ﬂ)-ndw
0 Ow Ow

e T i 0Ty oItz 0Ty lia_Q T § lg T+ k%) I
O | 2 0wdEdC 0 | wdl \Ah2acc T Ah2CaC ev
Therefore we find (noting that he ~ h ~ dcos§ and hy, ~ hQ)

SS(];H,’)"

“(OE . . OH

, S [1 %M, O1F, M (11 8> 3119 L\ ..
”m‘)”/_£1< [ﬁ 0w0E0C 96 owdC (Zﬁa_e tamcac Tk )Hev] hdt

. &1 83Hev BH:U 82Hev 110 aHZ’U * 27 277*
Nzwgo’]'r/gl |:C8w8§8C 85 +C80J8< {Zza_c (C ac +2Hev) +k h Hev}:| df/h

T /51 [ 0P, O,  0%M,, { 1190 ( OIT*,,
+ 7 2 — | T——

ey T owotar o€ dwor \“Taror " or

pi + 2H:U> + ~?% cos? {TIZUH d¢/ cosé
—&

. om [5[ 9°T,, OIT, Py, )
Nzwgog/_gl [T&u@faT o —i—w‘awaTHeU (v cos 5—5)] d¢/ cos¢

In the stadium cavity we will take

¢, = Arcsin (1 — AJd) ~ = — \/2A/d
where A/d — 0. Now from the function
2C ,
v = cosgwo (7,8) cos (ysiné — so)

= 2C, (1, s) cosh o cos (y tanh o — so)
C =e*7/2
1 (0,5) = o Re [e‘i“/‘*r (1/2 + is/g)] 75/2
% e—im/4 } ddy

" awor (08) ~ 20 Re{r 12 —is/2) | 0w
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O,
€3

J [cos(ysin& —so)| 0o O [cos(ysing — so)
o€ cos & =20%(7,9) O¢ Oo cos&

=2CY, (7, s)

= 2C, (1, s) cosh aai {cosh o cos (ytanho — so)}
o

where we have used
sinho = tan
o1 =1In(tan&; +secé;) ~ In/2d/A
cosho =secé
tanho = sin &

do = sec&d¢
we find

/ B—Exﬁ*JrE*xa—ﬁ -ndS
s\ Ow Ow

~ iwaoczzél {7’ O (0, S)} ()

d OwoTr

o1
/ {{sinh o cosh o cos (ytanh o — so) — sin (v tanh o — so) (y — s cosh® o) }2

—0o1

4+ cos? (ytanh o — s0) (v—s cosh? )] do
Averaging over the rapidly varying sinusoids for v large gives

SS(];H,’)"

; 2T 8*q
twegC d2 {Tawaf (0, 5)} 1 (0, 8)

o1
/ [{sinh2 ocosh? o + (7 — scosh? 0)2}

—01

+7 (v — scosh® o) ] do
For the time being we retain only the leading order v? terms
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s\ Ow Ow

~ SWEOCQE {T ity (0, 3)} P (0,5) 701

d | Owor
6.3.3 Region Two

The surface integral in region 2 uses h¢ = he = h ~ dsinh ¢ ~ h,s ~ h,y, where for the first polarization
state [5]

Hev’ =&

My = Tlee = 0
Note that as & = \/v”2 + 72 — 0 the fields become E, # 0, E,y = 0, Ec = 0, Hc = 0, H,y # 0 at
v/ =1n' =0, where

h?E —h—a Lo h210 k2R3 & E2h2 ) 1., = ( 2 il E2h? ) 11
RPN N ( ev/) + N\ 9u2 + ' = \“Tor2 + v’
1 o 92 2
h2E, = — — (WPMly) | ~ ——T.p = 2y——T1,,
n on’' [h3 o’ ( )] on o’ 75‘7';37';

e =nl |1 (h*TLe.) - v-2_n
TR oo VT T acar e T Y oo,

and

. 0 ) 0 . 0
hQHC = zwaoa—n/ (hlleyr) ~ ZW€oha—n/Heu' = zweoh\/Q*ya—T;JHw/

. 0 ) 0
hQHn/ = fzwsoa—g (hIley) ~ *ZWtha—CHeu’

Thus in the boundary integral with (note that the inward unit normal is oppositely directed from the
prolate spheroidal unit vector on the negative side of the stadium but in the same direction on the positive
side) n = +e, and

—he&'!
Ey e = L v ~ —cosp
/hana + hgv’2§'2
—he&'n'
€ €€ ~ —sin g

LT 2,02 2,12 ¢12
\ hov"? + hin'¢
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Q,xgn,wj:gg

U
€c X &y ~ Eeyy

Cy X g~ Eey,
we note that E x H* captures E, e, X H*ec = FEyHie,, Eve, x Hye, = £E,H e,
Eye, x Hf lec = tE, Hcev, and EC@C X H w = FEcH, e, . But at the center E,y =0, E; =0, Hc =0
and only iEU/H €c survives, but is orthogonal ton = igg. Thus the w derivative is responsible for a

contribution

/

OF OF, 8 OF,
<—_ xﬂ*>.§§::|:—<H;,gv,-e€ CH*,cosga +——C Y

w ow ow Ow " 2 T2
H H H H, !
Ow 8 8 8(JJ /02 + 77/2

Noting that E¢ is odd in 7/, = /290’ = /27¢' cos ¢ and that H, is odd in Ty =291 = /2 7¢ sin o and it
appears that these will contrlbute The w derivatives may not have even or odd behavior anyway. Thus

O )il OE. v oH,  of
H* E* _ ~ H*/ E*/
<8w * Xaw)ﬂ <8w Vs e R g2

l \Y 27 i 83He'u’ 3HZU, 7'/ 82Hevl 7—/ 2_")/ 82 n k2 H*
h [r2 4 2 h? wdCor, ¢ T dwdrl Y \ h? T2 ev’
Vi y

Transforming back to prolate spheroidal coordinates

~ iw&‘o

OE o oo OH

1[1 8., oI, +82H€U/ . 1 92 AR
~ TWE e COS Sin - ’
% | B2 dwdcav—ac P T way NP\ 2 9o ev
Noting the identities

ow oW 1 0W

W ~ 8—5,COS<,O— g%SIHQp

ew W, 1w ., 1 &PW 1 oW 162W.2
9072 ~ 66/2 COS Q0+?a§, Sin @—gag/a 2SII’IQOCOSQD+£/2 8 QSIHQDCOSQO—Fé_,Q 8 sm- @
ow oW | 1 oW
a—nlNa—é_/SIHQD‘i’ ?%COSQD

and for the axisymmetric case m =0
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30 a—g,coscp
*rPw  oPw ow .,
oz~ e” Co8 4,0—&-5,8—5,3111 0]
ow 9 sin
87’]/ aé-/ SO
and
/27T awcos d QW/27TCOS2 d —wa—W
, o pap aé-l A pap = aé-l
2“5‘_W_32W sin ¢d 8_W_82W 27r(:052 sin? ¢d +l a 2/2W81n4 d
TG T A T
1OW 92W (2 11 (oW [* 2
~ I 1 20) (1 — cos2p) dp + -~ ( 2 1 - cos2¢)2d
1o¢ 85/2 0 (14 cos2¢) ( cos 2¢) dip + i¢ (651) ,/0 ( cos 2¢)" dp
1OW 2W [ 11 (oW\* [+
Nza—glw i (1fcos22<p)d<p+1g (8_5/) /0 (1 —2cos2p + cos® 2¢p) dyp
T OW [ O*W 1 0W TOW 1 0 [, 0W
~N——— | —m + 357 | =~ —— 2W
w9 (oem +9e9e) ~Taree (5 )
/27r 8Wsin d aW/QWSiHQ d —ﬂa—W
, o pap o€ J, pap = o’
or

2T aE ; . 8ﬂ
/0 (@Xﬂ + X%)'ﬂd@

el 1 Oy O, 0%y (11 07 n 3

~ 17 —_ | — _ —

YO | h20wacoe T oC | owoe \4h2og? | A1h2E ¢
Now taking the lower limit in region 2 to be

Cy = Arccosh (1 4+ A/d) = \/2A/d

¢ =dcosh(,
where A/d — 0, then we write the contribution from region 2 as (noting that h¢ ~ h and hy, ~ h¢')

s@ \ Ow ow
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So (OE OH
=2 —=xH +E x—=—=)-
/2 (&u XH +FE X &u) nhedChode

© (1 &M 01, ey (11 82 3119
~ 9 Il = ev ev ev - -7 - - 2 * ,
wWweQT /2 5 |:h2 8w8(8§' BC + 8&)8&4 (4 h2 86/2 + 4 h2 §I 8§I +k >Hev :| hdg

So 831'[ , OIT* 821_[ ’ 11 0 oIr*
~ 7 9 / cv ev’ ! ev - v / ev’ 21_[* / thQH* /
een /CQ {é OwdCoE" ¢ +¢ Owoe’ {4§’ o¢’ (§ o€ +2le, > + ev H d¢/h

Co
~ iw€0§2/
2

Pl O, Pl [ 11 0 (0
/ ev ev / ev Iy — / ev’ * 2 12 * :
{T dwdor o || owdr { 1T o (T o T M > sy H d¢/sinh¢

s /<o [ , O, OITF,, 0%,y
¢

. = * : 2 ! .
iweo T 900CoT  aC + T R I}, (ysinh® ¢ s)] d¢/ sinh ¢

where we used

1 | , ,
;%1% (7") ~ —co Re [6”/41“ (1/2+ is'/2)] e /2 (s'/2)+ O (7’4 lnT') ~ —%wo

1 ) ’
;% <T'%@/10) ~ —coRe [6”/4F (1/2 + is’/Q)} e™ /28 + 0 (7% In7") ~ =5y + O (7 In7’)

to evaluate the final terms in the brackets. Now from the function

ey g (7', 8") cos (ycosh ¢ — s'a’ — 7/2)

= sinh(

= —2sinh o’vp, (77, 8") cos (—ycotho’ — s'0’ — 7/2) = 2sinh o'4, (7', s") sin (y coth o’ + s'0")

¥ (0,8) = coRe [e™/4T (1/2 +is'/2)| e™'/2
0

82,¢ eiﬂ/4 o’

/ 0 N~ 0

™ g (0 8) & 2o Re { T(1/2—i5/2) } o

Ol , O [cos(ycosh( —s'o" —m/2)
ac ol 5 [ sinh ¢

B ;00 9 [cos(ycosh( —s'o" —m/2)
=2 (7', 5) ¢ o’ [ sinh ¢
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0
= 29, (7', 8') sinh U'? [sinh o’ cos (y cotho’ 4 s'0" + 7/2)]
o

7]
= —2¢, (7', s') sinh 0’? [sinh o’ sin (y coth o’ 4 §'0”)]
o

= —2 (7', 8') [sinh o’ cosh o’ sin (ycoth o’ + s'c") — (v — s sinh® ¢”) cos (y coth o’ + s'0”)]
we find

s@ \ w Ow

™ /"6 { , 0310, Ol Oy

~weo g2 [T geacar o T Gwar e

(vesch®o’ — 3’)] do’

/
2

/
2

oo 0% %
~ zw5038 {T/ 8w87(3’ (0, s/)} g (0,5 /U
[{Sinh o' cosho’sin (ycotho’ + s'’) — (v — &' sinh” ¢’) cos (y coth o’ + s'a')}2

+ (v — &' sinh? o) sin? (y coth o' + s'0”)] do”

where we have used
2 -
Py (77, 8) = COT—\/,— Re {WJF (7/,0,8") + e PoWx (’7'/,0,8/)]
W+ (T/, 07 S/) = WiSI/Q’O (—Z.TIQ/Q)
= 2¢
¢ =tnj2—¢

25’0, = 2s'In [tanh (¢ /2)] = (k — kp) L

¢
o' = /OO siii( = In[tanh (¢/2)] = —In[coth { + csch(] = —In {cothg +4/coth? ¢ — 1} = —Arccosh (coth ()

cosho’ = % [tanh (¢/2) + coth ({/2)] = L {COShC_ L COSh<+1} = coth(

T2 sinh ¢ + sinh ¢
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. 1 1 [cosh(—1 cosh(+1
ho' = = [tanh (¢/2) — coth (¢/2)] = 5 - - e
sinho’ = 5 [tanh (¢/2) — coth (¢/2)] 2 | sinhc sinh ¢ cachd
tanh o’ = —sech(
cotho’ = —cosh ¢

oy =1In[tanh ((5/2)] ~ —In/2d/A

— h () —1 1 l+d 1
! = In [tanh )] = | €252 0) — 2 2 (BT (A
oo = In[tanh (¢,/2)] n{ sinh (Co) 5\ 74 n(Ay)
Averaging over the sinusoids gives

E H
/<> (g——xﬂ*+ﬂ*xg——)-ﬂds
SS(ZJH,’)" w w

. z ’ 821/’0 / 1
ch60d4{7' Db (0,5") p 1y (0,8")

% 2 2 2 1?2 2
/ {cosh o'sinh® o’ + (v — s'sinh® ¢’)” + 7 (v — &' sinh a')} do’
oy
Keeping only the O (72) terms gives

E H
/<> (g—_xﬂ*+ﬂ*xg——)-ﬂds
SS(ZJH,’)" w w

oo 0y
e 2877 {7 200 0.5 0 (0.8) (0~ )
6.3.4 Combining Two Regions

The preceding two contributions

5@, \Ow Ow

T 0%
~ s 5 {8 059 10 0.5) (0~ )

oh ~—1In\/2d/A
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—i/ (8—Exﬂ*+ﬂ*xa—ﬂ>-ﬂd5
s, Ow

ow

82
~ 8w5002§72 {T&jgs- (0, 5)} 1o (0,8) 01

01 Nh’l\/2d/A

will now be combined. Noting that

0%y Re? [e7/4T (1/2 45" /2)] . /o 0P,
/ 0 / N — 9.2 ws' /2970
{T DwOT! (0,s )} (N (0,5") 2¢5 0 (1/2 — iS'/2)|2 € Ow
o2 Re? [e7/4T (1/2 — is'/2)] o200 Re? [e7"/4T (1/2 + is/2)] o s/20%0
0 T (1/2 +1is'/2)[? Ow 0 ID(1/2 —is/2)| Ow
0%, o oRe? [e7/T (1/2 4 is/2)] rs20%0
{TawaT (075)}¢0 (0’8> _260 ‘F(1/2—7,S/2>|2 € m

C = 65/71'/2 — 6757!'/2

we find that the o1 and o terms cancel

/(uoﬂ-ﬂ*+eoﬁ~ﬂ*)d‘/=
Vv

Sscar ow ow

T 0%

Re? [e~"™/AT (1/2 4 is/2
~—8w503722c3 e [e 1/ +;S/ ) 67W5/2@O’6
d T (1/2—is/2)| Ow
or
[ Gtz a7 ok B v =
14
Re? [e™/4T (1/2 +is' /2 d
Tl N “82/ M w2 (d_g) In(As) 2
T (1/2 —is'/2)| dk
Using

I'(2)T(1—2)=mncsc(nz)
this becomes
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/(uoﬁ~ﬂ*+€oﬁ-ﬁ*)d‘/:
1%

_ o (dD
~ cok'dS Re? [e”/‘*F (1/2 +is’ /2)] cosh (s’ /2) ™' /2 (%) In(Ay) 2

) / d
~ gokidd Re? [em/‘*r (1/2 + is’/z)} (1 +em ) <%> In(Ay) 2 (644)

The mirror condition Il.,, = 0 gives

kpl = mp (645)

The outer region reflection phase we take [1] to be (again this results from a modal spacing that arises
from a single azimuthal parity in the vector case, since the two parities are degenerate) (this also is for the
average even eigenvalue spacing along the orbit)

dk? A
where A is the cross sectional area of the axisymmetric cavity and where v is the Gaussian random variable
with unit variance and density

-1
d(I)O ) _ iU2 (646)

If we choose

/ (o - H* 4+ eo - E) dV = 2¢g
1%
then

_ vV3
Ck2/Ad(1+ e ) In (ML) |Re [e7/AT (1/2 +is' /2)] |

Co (647)

6.4 Summary of Results

A summary of the results for the axisymmetric mode m = 0 are (note that this mode is a vector mode,
with electric field on axis ¢ = y/v? + n? — 0 polarized in the e, direction).

6.4.1 Elliptic System (Prolate Spheroidal Coordinates)

First we Summarize the results in the prolate spheroidal System.

Even Case The even case along the orbit is
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2C

v = cosgwo (1,8)cos (ysiné — so)

= 2C, (1, 8) cosh o cos (y tanh o — s0)

5 . o
Py = cog Re [67”/2W+ (1,0,8) + eZq)OeW/QWi (7,0, 5)}
W+ (T, 0, S) = Wis/Q,O (—272/2)

T= 2

3
o= /0 de = arcsinh (tan &)

cosé

=In(tan +sec§) = In {tan% (& +7r/2)} = —1In {tan (¢'/2)}

where

aozéln <d+£) = l1n(A+)

the two exact stability exponents [12] can be written as

d+ 0\t
r=(75)

The separation constant s is

s=(k—kp)l/og=2(k—ky,)L/In(A})
Note that

1o (0,8) = coRe [e‘”“l" (1/2+ 18/2)] ems/?
and near the orbit

Yo (T,8) ~ coRe [67”/4F (1/2 + 25/2)] ems/? (1—s7%/4)+ 0 (74 InT)

821/)0 e—im/4 L
T awar () = 20 Re{r (1/2 — is/2) } O

C = es’ﬂ'/?
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1 g (177, 8") cos (ycosh ¢ — s'o’ — 7/2)

T sinh(

= —2sinh o'v, (7', 8") cos (—y coth o’ — 8’0’ — 7/2) = 2sinh o'+, (7', s") sin (y coth o’ + s'0")

where
2 )
o (77,8") = cog Re {WJF (77,0,5") 4 €'®o Wi (7,0, s')]
o) =~
W+ (Tl, 07 S/) = WiSI/Q’O (—Z.TIQ/?)

= /2¢

¢ =tmj2-¢
¢ = dcosh(,
z — Fdcosh ¢

o (0,5') = o Re [e"”/‘*r (1/2 + is'/2)] ems'/2

0%
/ 0
4 OwoTt’

i /4 od’
N o~ € 0
(0, ') % 2¢o Re {P (1/2—1is'/2) } O

2s'c(, = 2s'In [tanh (¢ /2)] = (k — kp) L

¢
o :/ blZflC = In [tanh (¢/2)]

o0
The mirror condition Il.,, = 0 gives

cos (ycosh ¢y — s'a(, — /2) = cos (kpl — 7/2) =0
or

kpl = 7p

The outer region reflection phase we take [1] to be

291



-1
d% T _ 4 5
dk? A

where A is the cross sectional area of the axisymmetric cavity and where v is the Gaussian random variable
with unit variance and density

1 2
fw)= eV /2
W) =—=
The normalization constant cg is connected to the volume energy by means of

[ Gtz a7 ok B v =
1%

| N [ dP
~ gokidd Re? [em/‘*r (1/2 + is’/z)} (1 +em ) (#) In(Ay) 2

If we choose

/ (ol H* + 0B - E7)dV = 22
1%
then

V2
k2\/Ad(1+ e™")In (Ay) |Re [ei™/4T (1/2 + is'/2)]|

Co =

Note that the scalar form of the normalization was similar

/AT (1/2 4 is, /2

/ lul> dV ~ 4ddr (ﬁ’g) |[1i(1/2( / ﬂ/L;)S'g/ )] ¢/ 1n (M) 2
— s

The fields near the axis are 3

2
E, ~ (1 g +k2)nevz(276 +k2)1'[

h2 v h? 072
2% 2, )
N<dCOSQ§ @a 2+k> o ~ KT,
H 77:(.4.760 0 77:(.4.750 0
n "~

h 6_§ ew ™ dcos§6_§
where

h=d\/cos? €+ (* =dy/cos2 £ + 02 +n2 ~ dcosé
Te = /270 = /27 cos
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Ty =/29m = /2(sing

T=/T3+T7i=/29C

Odd Case In the odd case for the stadium we have

kl—s,o0=(p—1/2)m=kyl,p=1,2,3,...

ey (1,€) =

cosgwo (1, 8)sin (ysiné — so)

6.4.2 Cylindrical Form

If we transform back to Cylindrical coordinates on axis, then we rewrite the potential

T, (0,€) = ety (0,5) os (ysin€ — 50)

tanho =sin¢

z — dsiné

o = Arctanh (z/d) = %ln (d+ z)

d—z
as
. 201/’0 (Oa Sp)
Hev (0, Z) = W COS [k’pz +p0 (Z)]
1 d+z
po(2) = (k—kp)z — §spln 1
and

2

e (¢,7/2) = m@bo (0,5") cos (ycosh ¢ — s'0’ — m/2)

= —2sinh 0’1 (0, s') cos (—y cotho’ — s'0’ — 7/2) = 2sinh o'ty (77, ') sin (y coth o’ + §'a”")

2

Ny

e (0,2) = 1o (0, ") cos [y 2] + po (|2]) — 7/2]
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In the odd case for the stadium

QC% (Oa Sp)

V1= 22/d?

kl —spo0=(p—1/2)m=kyl,p=1,2,3,...

I, (0,2) = sin [kpz + po (2)]

2

I, (0,2) = Wwo (0,5")sin [k |2] + po (|z]) — 7/2] sgn (2)

6.5 Vector Scar Projection

We now discuss the projections of the vector scar solution along the orbit of the stadium cavity.

6.5.1 Trigonometric Projection

The trigonometric projection of the solution in the stadium is now discussed.

d ¢
Vo = 2/ E, (0,0,2) cos (kyz) dz + 2/ E. (0,0, z)cos (kpz —m/2)dz (648)
0 d
Note that at the shifted focal point z = d + dg
kp(d+60) = (n+1/4)7 (649)

or

(d+d0) /l=(n+1/4)/p
we have continuity of the kernel

cos (kpz) = cos (kpz — m/2) (650)
The fields are

2 2
h2EU = hi |:i8£ (h2Hev):| + k2h2HeU ~ (8_ + k2h2> I, = (27 0 2 + k2h2> IL.,
v x

ov | h3 ov? or
~ k*h?11,,
0 1 0 0? 02
2 2 212 212 212
h°E, = pv {ﬁ% (h Hev/)} + kR ~ <6u'2 + k%h >sz = <2y87/m2 + k*h )Hevl
~ k2R3,
and thus
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d £
V, ~ 2k? / I, (0, 2) cos (kypz) dz + 2k? / . (0,2) cos (kyz — 7/2) dz
0 d
20, (0, s,,) 2k /d cos [kpz + po (2)] cos (kpz) 4=
R T Oy

0
#2000 (0.5) 2K [ coslly =+ 90 (2) = /2 cos k= = 7/2) #

d
~ 20 (0, ) k? /0 {cos (po (2)) + cos [2kpz + po (2)]} \/#W

‘ z
+21) (0, s’) k2 /d {cos (po (2)) — cos [Qkpz +po (2)]} \/#

Averaging over the rapidly varying terms gives

dz

d
V,, ~ 2C4h, (0, 5) /8/0 cos [po (2)] Siioe

+21 (0, 8') k2 /;cos [po (Z)]\/%
po(z)_g{(z/ﬁ)ln ﬁjj'm zfj‘}

Cifo (0, 5) = co Re {e‘”“F (1/2 + is/2)}

¥ (0,8") = co Re [e”/‘*r (1/2 + is’/2)] ems' /2

, ' /2
2¢o Re |e'™/4 is' =
k?co R [ I (1/2+ /2)} N RN

{+d
s=2(k—kp)€/1n<€_d) =—5

kpl =mp
Then

v,/ {2k2co Re [e”/‘*r (1/2 + is’ /2)} }

dz

N/O cos [po (Z)}\/Tw

(651)
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+ems'/? /:cos [po (Z)}\/%
po (2) = 2{(2,/5)111 §+Z'ln zfj‘}

Thus we finally have

(LV;) = L*Gi(s) /A

where

N Ad/e
L+ e ) (Ay)

o (2d) = g {% (2d/0)In (Ay) — In zf 1'} (652)
(A —1)

djf = "+ _ 653

/ (VAs + 1) (655)
0+d\?

For s = 0 we have

_(2d/0) / Lk
ln (A4) \/1—22 1 Vz22—1
= 1512?/(?) [7/2 + arccosh (£/d)]?

B (221/6)) {ﬂ/z +In (e/d + \/W/T)}

For £ =0.11176 m, R = 0.10160 m, and d = ¢1/1 — R/{ ~ 0.0336969 m, with A, = 3.472

G (0) ~ 5.73076 (655)
This can also be written as
_ 2 ey [ VR 2]
G10) = N /241 { T (A +1) (656)
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Note that for Ay — 1

G (0) ~ % [ﬂ/? +in (A+8_ 1)} : (657)

The odd trigonometric projection would be taken as

d ¢
V= 2/ E, (0,0, 2)sin (kyz) dz + 2/ E, (0,0, z)sin (k,z —7/2)dz (658)
0 d
and noting that

byl =7 (p—1/2)
continuity at z = d + dg

sin (k, (d + 60)) = sin (kp (d + 00) — 7/2)
requires

kp(d+d0) =(n+3/4)n
Shifted Focus If we redefine the trigonometric projection to have the integral boundary at d.

de ¢
Vp = 2/ E, (0,0, 2) cos (kpz) dz + 2/ E (0,0,z2)cos (kpz — m/2) dz (659)
O de
the shifted focal location

de = d+ (5) ~ d + (60) ~ 0.0377346 m (660)
with £ = 0.11176 m, d = 0.0336969 m we find that

G1 (0) = (de/2) [x/2+ . (0/d, + /ETE 1) /In (ﬁf—i )

~ 5.29473 (661)
which is not too different from the preceding value.

6.5.2 Elliptic System Projection

How should the field projection in the prolate system be defined in the stadium? We could define it
through the limit process we used previously (note that the quasirectangular unit vector e,, is part of this
projection operator)

1 (™2 1 [* cos(ysiné — so)
V. = lim — — E, (¢, p,€) hodphed
p glg(l)gd/_ﬂ/QZw/o cos¢ (C0:8) hodipheds
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2 (% 1 (2" cos(ycosh( —s'o’ —7/2) ,
i v EU’ » ¥y h
[ [ )

/2 27
/ L / cos (YSINE = 59) pory (¢, &) hodipheds

= lim —
(lg(l) Cd J_z/2 27 cos¢
/CO 1 /27r sin fycosths’cr’)kQH (C §’)h diohed¢ (662)
i g Sinh ¢ v \5 &) e @Plie

or instead using the cylindrical form

/2 27 kZ
/ 27r/ cosllp 0 (Bl Ey (€, ¢, €) hpdphedg

cos

So 1 [ cosk »2 — )2+ po (2)]
'5/_)0 g d / / sinh C EU/ (C? @ f) h<pd<ph<d§

d
d
= 2/0 cos [kpz + po (2)] Eb (0,0,€) hgd—idz

¢
+2 [ coslkpz — /2 +po (2)] Ev (¢,0,7/2) hC%dz

d
or (hence the limit definitions of the integrals around the scar eliminate the extra divergence factors in the

(663)

projection operator kernel)

d
Vp = 2/ cos [kpz + po (2)] Ey (0,0, 2) dz
0
¢
+2/ cos [kpz — /2 + po (2)] Ew (0,0, 2) dz (664)
d

where the metric coefficients are
he = he = dy/sinh? ¢ + cos2 ¢
he = dsinh ( cos{ = dsinh (sin ¢
z=dcosh(sin¢&

dz

_dC =dsinh (siné
dz

— 1h 3
T = dcosh(cos¢&
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and for ( — 0

dg
and for £ — 7/2
d¢
where
{+d z+d
-1
m(s) =3 { rom| 5] -m |22}

(665)

Note again that a scar projection, consistlng of a kernel from the scar solution, and a simple line integral
along the orbit will result in a divergence at the focus (a principle value definition would require the
introduction of a minus sign in the region 2 term), unless we introduce the region 3 form of the solution.

The solution in Region 1 is

w() (05 8)
N

o= {irom(E4) (22}

o (0,8) = o Re [67”/46“5/2F (1/2+ is/?)}

I, (0,0, 2) = 2e~57/2 cos [kpz + po (2)]

The normalization constant ¢q is connected to the volume energy by means of
/ (il H* + 20E - E*)dV =
%

~ eok?d4 Re? [em/‘*r (1/2 + is’/z)} (1 + e”') <—> In (A)c2

If we choose

/ (o - H* +e0E - E*)dV = 2¢q
v
then

vV/2
k2 /Ad(L+ =) In (Ay) |Re [e/AT (1/2 + is'/2)]|

Co —

where

s=2(k— )e/m(fj)

(666)
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kpl = 7p
The solution in Region 2 is

2 !
Wwo (0,5") cos [kpz + po (z) — /2]

we =5 {erom (79) -n (329))

¥y (0,8") = co Re [e“’/%”/‘*r (1/2 + z‘s’/z)} 70 (667)

Hev’ (0,072) =

= coRe [e—”/%—”/‘*r (1/2+ z’s/z)] =0
where

/
§ =-s
We now consider the exponential ratios for s # 0 from region 1 to region 2 in redefining the elliptic system
projection operator. As in the 2D case [2] we take the operator to have the proper exponential weights
relative to the scar solution, but we remove the weights for s — 400

d
exp (7 |s| /4) V,, = 2¢°™/4 / cos [kpz + po (2)] By (0,0, 2) dz
0
¢
+2e75m/4 / cos [kpz — /24 po (2)] Ev (0,0, 2) dz
d
d
~ 2657T/4/ cos [kpz + po (2)] K*Ie, (0,0, 2) dz
0

£
+2e5 /4 / cos [kyz = /2 + po (2)] KTleur (0,0, 2) d2 (668)
d

Then the elliptic system projection is

exp (w[s| /4) Vy/ { 4hco Re [~ /4T (1/2 +is/2)| } =

d ¢
e”/4/ cos? [kpz + po (2)] _ 4z + 67”/467“/2/ cos? [kpz — /2 + po (2)] dz
d

; V1- 28 VR
mier=5 {m () - 2}
V2

2coRe |e=im/4 s =0
ek [ r/2+ /2)} VAdIn (A4) (1 + e 7s)
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Averaging over the rapidly varying cosines gives

exp (m|s| /4) V,/ {v 2v2 } ~

VAL (A (L+e ™)

¢
e5T/4 /dL_'_e_sn—/ZLe—ﬂ's/Q/ dz
0o \/1-22/d® RN

Thus we finally have

(LV?) =L*G1(s) /A (669)
where
exp (m|s| /2) G1 (s) = o (A+4)((Ci/i)e“) [es”/477/2 + e~/ 4e7 3/ 2arccosh (Z/d)} ’

—_ 4(d/€) sT/4 _sn/4 —7s/2 2
A (L [ 2 e e i ((d o+ ETE )| (670)

a0 = (Ay —1) :\/Hfl
(VA +1)° VA1

(+d\*
A = -
= ()

i s G

- M (A1/4—|—1>

(A1)
For s = 0 we have

2(d/0) / i gy ] 2
~In(Ay) m Y-
= ;((d/(?) [7/2 + arccosh (¢/d)]?
_ li(&/f)) [w/z +In (E/d + \/m)} ?
- N (&A/\%;ll))z T/2+ {% (A +1) H 2 (671)
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Note that for Ay — 1

2

G (0) ~ % [ﬂ/? +ln (A+ — (672)
Notice that the only difference between the 3D scalar projections and these 3D vector projections is that u
is replaced by k2II.,. Because the vector normalization condition for k2cj is equal to one half the scalar
condition for ¢y (due to the change in modal spacing in the vector case), the statistics of the projection
will be similar. The actual potential is made up of a sum of different values of p, but because the pth
components are asymptotically orthogonal at high frequencies, if the eigenfunction is made up of a sum

ey (0,2) ~ > Tewy (0, 2) (673)
P
this projection will pick out the p term of the sum.

6.6 Vector Random Plane Projection

The random plane wave projections are now discussed in the 3D vector formulation for the stadium.
The vector random plane wave representation was constructed in the previous bowtie sections but the
projection operator in the stadium is different.

6.6.1 Vector Trigonometric Projection m=1

Taking the limit ¢, p — 0 of the m = 1 part of the random plane wave representation we find that
Em T (p=0,p=0)¢,=

N
Jim v/2/ (VN) > a; {cos g, sin; +sing,; cos; cos @; } cos (kzcos b + a;)

j=1
The part that is even in z is

B (5= 0,0 = 0) - ¢, =

N
Jim V2/(VN) Z a; {cos p,;sing; +sing,; cosf; cos p; } cos a; cos (kz cos 0;)

j=1
The trigonometric projection in the stadium is taken as

cos (kpz —m/2)dz =

d ¢
qu; = 2/) Egmzl) “e, Co8 (kpz)dz + 2/ E§,’”:1) e,

d

N—o0

N
lim +/2/(VN) Z a; {cos Pp; Sinp; +sin g, ; cos 0 cos gpj} COS (v
j=1
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d ¢
2 {/ cos (kz cos 0;) cos (kpz) dz + / cos (kz cos8;) cos (kpz — m/2) dz}
0 d
1 N
=3 J\;Enoo 2/ (VN) Zaj {cos,;sing; +sing,; cos; cos p; } 2 cos
j=1
d
{/ [cos (kzcosB; — kpz) + cos (kz cosb; + kpz)] dz
0
¢
+/ [—sin (kzcosf; — kpz) + sin (kzcos b + kpz)] dz}
d

N—o0

N
= lim /2/(VN) Zaj {cos ¥ Sinp; +sinp,,; cos ; cos goj} oS
j=1

sin (kd cos0; — kpd) n sin (kd cos 0; + kpd)
kcosO; —ky kcosO; + ky

| oos (klcosBj — kyl) — cos (kdcos0j — kyd)  cos (klcosO; + kypl) — cos (kdcos0; + kyd)
kcosO; — ky kcosf; + ky

N
= J\;Enoo v2/(VN) Zaj {cosp,;sing; +sing,; cosf; cos p; } cosa;

j=1

sin (kdcos 0; — k,d) — cos (kd cos 0; — kyd) + cos (klcos0; — kpl)
kcosO; —ky

+sin (kdcosO; + kpd) + cos (kdcos8; + k,d) — cos (kl cos 0 + kpl)
kcosO; + ky

N—oo

N
= lim /2/(VN) Zaj {cosp,;sing; +sing,; cosf; cos p; } cosa;
=1

sin (kcos8; — kp) d — cos (kd cos 0 — kpd) + cos (k€ cos0; — kL)
kcosf; —ky

Jrsin (kcos®; + k) d + cos (kdcos8; + kpd) — cos (k€ cos 6 + kpl)
kcosf; + ky,
Now if we form the square and average over a; we eliminate the cross terms. Averaging over «;, and then
¢;, followed by ¢,,;, gives
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N
<Vp1;2>aj7¢j,¢m Nﬁoo Z_: 1+Cos 9

sin (kcos0; — k) d — cos (kdcos 0 — kpd) + cos (kl cos 0; — k,0)
kcost; —k,

Jrsin (kcos 8 + kp) d + cos (kd cos 0; + kpd) — cos (k€ cos 0 + kyl) ) °
kcos0; + ky
Now averaging over §;

1 ™
T2\ _ /7,12 . 9
<‘/1-0T - <va7“ >aj!‘Pj"ij50j - W ) (1 + cos QJ)

sin (kd cos 0; — kyd) — cos (kd cos 0; — kyd) + cos (kl cos0; — kyl)

kcosf; — kp

+sin (kdcos0; + kpd) + cos (kd cos 0; + kpd) — cos (k€ cos8; + kpl) 2

& cos 9j n kp Sin 97d9J

or letting u; = cos

1

<V;;2>:W/_1 (1+u3) du;

sin (kdu; — kpd) — cos (kdu; — kypd) 4 cos (klu; — kpl) n sin (kdu; + kpd) + cos (kdu; + kypd) — cos (klu; + kpl) 2

k’U,j — k?p k’U,j + ]ﬂp
We note that when £ — k,, the first term peaks for #; — 0 and the second term peaks for §; — = with
cosf = —cos (0 — ) and sinf = —sin (§ — 7). Thus we can approximately separate the two terms as

1 ™
(VF2) ~ W/o (14 cos®6;)

{sin (kdcosf; — kypd) — cos (kdcos8; — kpd) + cos (klcosB; — k

01
hoost, — T, } sin6;d0

s

1
+W (14 cos® (m — 0))

l:SiIl (kdcos (m — ;) — kyd) — cos (kd cos (m — 0;) — kpd) + cos (k€ cos (m — 0;) — kpg)r sin (r — 6,) 9
™ —0;)db;

kcos(m—0;) —k,

~ L[ 29
~ W, (1 + cos QJ)
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sin (kd cos 0; — kpd) — cos (kd cos 0; — kpd) + cos (k€ cos8; — kyl) 2 in0.d0
kcosO; — ky °
Thus letting 6; = ¢/+/k{/2 gives (note that 1+ cos?§; ~ 2)

(V12 < /oo [sin (kp =k +k07/2)d  cos (ky —k+k03/2)d  cos (ky — k+ k63/2) ¢
0

2
0;d0;
kp — k + k03 /2 kp — k + k05 /2 kp — k+ k032 ] o

¢ [ [Sin ((ky — k) £+ ) dfe  cos((ky — k) L+ D)/t cos((ky—R) L+ D] e

s (kp — k) £+ (2 * (kp — k) 0+ C° (kp — k) 0+ C°

If we renormalize by

Pmax
[ (g ) v~z [T =35
Vv

we have

) = /°° lsin (k=) 4 )/t cos by =)+ ) dft_ cos((hy =R+

A (kp — k) €+ (kp — k) €+ ¢ (kp — k) €+ ¢
Now letting

A=2(k—-ky)L
and

(LV?) = LG (V) /A

gives

=2 [

sin (\4—(2)d/l  cos(Aa—C?)dje cos(Ad—¢2)]’
[ NI aa—@ T aag cac

or

¢d¢

™

eoy= /00 [sin (A/4 — ¢?) d/€ — cos (\/4 — ¢?) d/f€ + cos (\/4 — ¢*)]?
0 (4=’

= dg

i/oo [sin (A\/4 —&)d/l — cos (N4 — §)d/f+cos()\/4 3K
2m Jo (A/4—¢)*
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1 [ [sin(&d/0) + cos (Ed/C) — cos €]’
- = d

27 /A/4 ¢ :
Note that

°° [sin cos — cosé]?
Gl = - [ Y o) o]

1 [ [1+cos?& 4 sin (26d/0) — 2sin (§d/{) cos & — 2cos (Ed /() cos €] at
=5/ =

1 /°° [$cos(28) — 1 +1—cos((1+d/0)&)+1—cos((1—d/l)¢)]
0

— 52 dé‘

™

=(1+d/{+1-d/t—2/2)/2=1/2
Integration by parts gives

GO = 7% [—sin (§d/0) + coi\ﬁzd/é) — cos (A/4)]

+l /OO [sin (£d/€) + cos (£d/€) — cos&] [(d/€) cos (£d/C) — (d/€) sin (€d/€) + sin ] de
—)/4

™ §

1 [—sin(§d/€) + cos (3d/€) — cos ()\/4)]2
2m A4

gy /7
+_
)\/4

[(d/€) cos (26d/€) + sin & {sin (£d/0) + cos (d/€)} + (d/{) cos & {sin (£d/¢) — cos (§d/0)} — § sin (2€)]
3

dg

or

G\ + % [ sin (%d/() + Coiﬁzd/@ —cos (V/4)] _

1 /OC [% {sin((1 —d/€) &) +sin (1 +d/0) &)} + 3 (d/0) {sin (1 4+ d/¢) &) —sin ((1 — d/€) £)} — 4 sin (26)] "
“)/4

a §

7 /— 4
)‘/
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[% {cos (1 —d/€)&) —cos((1+d/E) &)} — % (d/€){cos (1 —d/e)&) +cos ((1+d/E)&)} + (d/L) cos (2§d/f)] it
13

or

GO+ % [— sin (%d/ﬂ) + coiﬁid/f) — cos (/\/4)] _

+ % [(1—d/e)Si((1—d/e)N/4)+ (14 d/e)Si((1+d/t)A/4) —Si(\/2)]

I

+i [(A+d/6)Ci(—(14+d/e)N/4)— (1 —d/)Ci(—(1—d/e)N/4) —2(d/¢) Ci(— (d/l) A/2)]

2
= i - % [(1—d/€)Si((1—d/e)N/4) + (1 +d/€)Si((1+d/f) \/4) — Si(\/2)]
7% [(1+d/0) Cin (1 + d/€) \/4) — (1 — d/0) Cin ((1 — d/€) \/4) — 2 (d/¢) Cin ((d/0) \/2)]
+% [(14d/0)In(1+d/f) — (1 —d/f)In (1 —df) —2(d/)In (2 (d/L))] (674)
Note that

G (0) = i + % [(1+d/0)In(1+d/f) — (1 —d/¢)In (1 —d/e) —2(d/f)n (2 (d/1))] (675)
G (—0) =0 (676)
G (c0) =1/2 (677)

Thus taking into account the even symmetry along the orbit

Gy (\) = 2G (\) (678)

A comparison of the trigonometric projections for the cavity scar field and axisymmetric random plane
wave field are given in Figure 36. Notice that in the stadium there is a large enhancement in the cavity scar
field relative to the random plane wave field near s, = 0, where the cavity modal frequency aligns with the
scar frequency k — k,. There is in addition the axisymmetric enhancement due to the symmetry of the field
(LV2) [ (LV2) = O (kV/A) >> 1 (analogous to the factor of two increase in the 2D even geometry [2]).

Shifted Focus The comparison when the trigonometric projection is defined using the shifted focal
point d,
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6 -
— Scar Theory Projection
Y N e Random Plane Wave
g " A, =3.472
o(l)
—~ 3
K2
O] 21
T T T ‘ ‘
4 0 4 8 12
s=A/log(A,)

Figure 36. Comparison of trigonometric projections of the rotationally symmetric stadium vector cavity
field and the axisymmetric random plane wave field.
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Scar Theory Projection
------- Random Plane Wave

G]_(Sp) ’ Gs(k)

S, = Allog(A,)

Figure 37. Comparison of trigonometric projections of the rotationally symmetric stadium vector cavity
field and the axisymmetric random plane wave field when the trigonometric projection operator is redefined
using the shifted focal position d.

de ’
V= 2/ Em=Y -e, cos (kyz) dz + 2/ Em=b ~e,cos (kpz — 7/2) dz (679)
0 de
is shown in Figure 37.

6.6.2 Random Plane Wave Elliptic System Projection

Again taking the even z part of the m = 1 plane wave component

E=N (p=0,0=0) - ¢, =

N
lim /2/(VN) Z a; {cos p,;sing; +sing,; cos; cos p; } cos a; cos (kz cos 0;)
t+d

N—o0
)= {0 (1) -5

and defining the elliptic system projection as we did in the scar section, we find

Jj=1

exp (m [s| /4) Vr
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d ¢
= 265”/4/ Em=1) “e,cos[kyz +po (2)] dz + 26_5”/4/ Em=1 e, cos[kyz — /2 +po (2)]dz =
0 d

N
lim +/2/(VN) Zaj {cos p,;sing; +sing,; cos; cos p; } cosa;

N—o0

d ¢
2 {6”/4 / cos (kzcos ;) cos [kpz + po (2)] dz + e~*™/4 / cos (kz cos8;) cos [kpz — /2 + po (2)] dz}
0 d

N
1 . . .
=5 ]\}Ertlx: v2/(VN) E laj {cosappj sin p; + sin p,,; cos 0; Cosgpj} 2cos o
i=

d
{65“/4/ [cos (kz cosB; — kpz — po (2)) + cos (kzcosb; + kpz + po (2))] dz
0

¢
Lemsm/4 / [—sin (kzcosO; — kpz — po (2)) + sin (kzcos 0 + kpz + po (2))] dz}
d

Then we have

N
exp (ms| /2) <V13T>aj = I\}gnoo {2/ (VN)} Z {cos p,; sing; + sinp,; cos 0 cos <pj}2 cos®
j=1

d
{GMM/ [cos (kz cos 0 — kpz — po (2)) + cos (kz cos 0 + kpz + po (2))] dz
0

2
y)
+e’”/4/ [—sin (kzcos0; — kpz —po (2)) + sin (kz cos 0 + kpz + po (2))] dz}
d

Averaging over «;, v;, and ¢, gives
N
exp (7 |[s \/2)< pr> =— hm {1/( )}Z{l—i—cosQHj}
j=1

Aj,5,P5,Ppj

d
{65”/4/ [cos (kzcos O — kpz — po (2)) + cos (kzcos O + kypz + po (2))] dz
0

2
¢
+€75ﬂ/4/ [ sin (kz cos0; — kpz — po (2)) + sin (kz cos 6 + kpz + po (2))] dz}
d

Finally averaging over 6; gives
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1 T
exp (7 ]s| /2) <V172T>aj,aj,¢>j,¢>pj = W/o {1 + cos? 0;}

d
{GMM/ [cos (kz cos 0 — kpz — po (2)) + cos (kz cos 0 + kpz + po (2))] dz
0

2
¢

+675ﬂ/4/ [—sin (kzcosbj — kpz — po (2)) + sin (kz cos 0 + kpz + po (2))] dz p sin0;d0;
d

Now for large k ~ k, we expect that the 0; integration leads to a peaked value of the first terms of the
integration for §; — 0 and for the second terms of the integration for 6; — 7. Thus taking £ — k, with
the first term peaks for #; — 0 and the second term peaks for ; — 7 and using cosf; = —cos (#; — 7) and
sinf; = —sin (0; — )

1 T
exp (’]T |8| /2) <V1'72r>aj’aj’tpj7tppj ~ W/O {1 + COS2 ej}
d
{65”/4/ [cos (kzcosb; — kpz — po (2))] dz
0
) 2
+@*5“/4/ [—sin (kzcosf; — kpz — po (2))] dz} sin 0;d0;
d
+L /Tr {1+ cos®0;}
8V J, !
d
feot [ ao(ctsconto=) by et
0
) 2
—|—e_”/4/ sin (—kz cos (m — 0;) + kpz + po (2)) dz} sin (m — 60;) db;
d
) 1 T 2
X0 (5131 /2 (V2 )y, 0y, ~ 7, (100520}
d
{35”/4/ cos (kzcosb; — kpz — po (2)) dz
0

2
4
—67571—/4/ siH(k)ZCOSGj_kpZ_pO (z))dz} Sinedej
d

Letting 0; = ¢//k¢/2 gives (note that 1 + cos? ; ~ 2)

1 o0

€xXp (ﬂ- |5| /2) <‘/1?27’>aj,aj,tpj#’p]‘ - MV 0
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{6”/4/0 cos [(A/4 — CQ) 2/l —po(2)] dz

0 2
—e—s”/‘l/ sin [(A/4 — ¢%) 2/€ — po (2)] dz} ¢d¢
d

where

po(z) = g {(z/é) In <§1L_;l> I

A=2(k—k)L

z+d
z—d
Renormalizing by

_ _ 2ﬂ' Pmax 7TA
E(M=D . g(m=1 AV ~ — L(p)dp = =
_/V <_T =T >aj,o¢j,<ppj,<pj kV 0 (p) P 2kV

gives
2 [ee]
emmwm%WMWZ%%
d
{esm / cos [(\/4 = (%) 2/t = po (2)] d2
0
) 2
—e*“/‘*/d sin [(A/4 = ¢?) 2/0 = po (2)] dz} qdg
Now taking
(LVo) = LGN /A
gives

exp (x5 260 =~ [

d
{68“/4/0 cos [(A/4 — ¢?) 2/t —po (2)] dz

) 2
—e /4 /d sin [(A/4 — ¢?) 2/€ — po (2)] dz} ¢d¢
Taking ¢* — \/4 = £ gives
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1 o0
CN =5 /_M

/e
{e—(8|—s)7r/4/ cos [€2 + po (20)] dz
0

2
1
+€7(5+|5|)7T/4/ sin [é'z +p0 (zﬁ)] dZ} d§
d/e

po (20) = g {zln (ﬁ—j) —1In

Then because of symmetry along the orbit we define

=l

GS(A):QG(A):l/m

T J-)/4

/e
{e—(é’l—s)”/‘l/ cos [z + po (20)] d=z
0

2
1
+e—(s+|s|)7r/4 / sin [Ez + po (z()] dz} d€
/e

where

s=AIn(A})
For purposes of numerical integration

0o d/e
Gs(\)=2G(\) = 1 / [6_“5_8)”/4/0 {cos (£z) cos (po (2£)) — sin (£z) sin (po (2£))} d=

T J-)/4

2
1
e (Islro)m/a {cos (&z) sin (po (2£)) + sin (£z) cos (po (20))}dz | dE (680)
dje
This is exactly half of the scalar case. The comparison of the elliptic system projections in the stadium
cavity between the scar construction and the random plane wave is shown in Figure 38.

6.7 Numerical Comparison For Stadium
The trigonometric projection from the numerical solution is (the normalization originally used here is
too large by ) shown in the following Figure 39. The additional peaks in this figure are thought to result

from the lack of orthogonality associated with the trigonometric projection operator in the stadium cavity.

Figure 40 has the proper normalization value. This is to be compared to the theoretical result in Figure
37. We do not double this result because we used only the even modes in the histogram construction (unlike
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Scar Theory Elliptic Projection
Random Plane Wave
A, =3.472
<
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©
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-4 0 4 8 12
s=A/InA,

Figure 38.

Comparison of elliptic projections of the rotationally symmetric stadium cavity field and the
axisymmetric random plane wave field for the vector case.

Asymmetric Stadium

kO= 821 values 209.71-628.7
kp= 100 values 28.11-2811.0
12 r n 80 bins I
1 Numerical fl
ho Analytical Scar
A 8l I .
N
a -
= n -
o L
— H
=
)
V; 4
ok
5-4-3-2-1012 34546 78 9101112131415
SP

Figure 39. Raw numerical histogram data for the trigonometric projection in the stadium cavity.
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Figure 40. The first peak of the numerical histogram of the trigonometric projection with corrected nor-
malization in the stadium cavity.

the bowtie case).

The modal density for the modes that are even along the orbit are (the modes that are odd along the
orbit are expected to have the same density) are expected to be

O~ A/ (8m)
N ~ (ky — k1) (k2 + k1) A/ (8)
k1 ~ 209.586 m~ ', ko ~ 628.759 m~!
A=7R?>+2({ - R)2R ~ 0.0365583 m>
V= gﬂ'RB +2 (¢ — R) 7 R? ~ 0.00505205 m?

£~ 0.11176 m

R =~ 0.10160 m
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N =~ 511
The numerical solution for the quarter stadium containing only the odd modes along the orbit (since a
perfect electric conductor was used at the symmetry plane) had 478 modes, which is reasonably close to the
expected number.

6.8 Point Statistics For Stadium

Finally, the most direct observable in the cavity is the field as a function of location. Thus we intend to
examine the field point statistics near the focal point in region 3 where. In region 3 we can write the Hertz
potential as

2 e
Moy ~u = Cocog Re [W+ (7,0, 8") + e"PoW3 (7,0, s’)]

where
L2 e, 10, T 10,
= S—;z/;[) (1", 8") Yy (1, 5) (681)
and
vV2

Co

" k2/Ad(L+ ™) In(Ay) |Re [e/AT (1/2 + is' /2)]|
' =s=2(k—ky)¢/In (%) —92(k— k) L/In(A,)
§'In [tanh (Co/2)] = (k — ky) £

Kl = mp

Co = (—1)" €™/ Fsec (Do/2)

2 . . ,
(N (7-, 3) = cog Re [e—m/QVVJr (7_’07 S) + €ZW/261(D0W1 (7.70’ S)}

Wi (7,0,8) = Wig 20 (*”2/2)

— T (—ir2)2) U (1/2 - isf2,1, i /2)
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=29

Yo (0,8) = coRe [6”3/26_”/41" (1/2+ 15/2)] , T—0

10 i ' . s
— 5% (7.5) ~ —coRe (=740 (1/2 4+ is/2)| /2 (5/2) + O (' In7) ~ s
19 4 —im/4 ; Ts/2 2 2
~ 9 TET% ~ —coRe [e F(1/2+zs/2)]e s+0(7*In7) ~ —sthy + O (7 InT)
o (7',8') = CO? Re [W+ (7',0,5") + e ®0W (17,0, s')]
W_|_ (T’, 0, S/) = Wis’/Q,O (—iTIQ/Q)
T =29
¢ ==n/2-¢
¥ (0,8) = coRe [e™2e7/AT (1/2 48/ 2)| |, 7 =0
19 wd im/4 P o! ws' )2 (ot 14 ’ s’
pﬁwo(T,s)w—coRe [e r'(1/2+is /2)}6 (s'/2)+ 0O (7 lnT)~—§¢0
1o

T or’

The random phase is

Lipy L (1/2418/2) , T 9 .
e @ —Zm—CObh(WS/?);F (1/2+28/2)

Ni[l —is' (7 +2In2) — s ('y'—|—21n2)2/2] , 8 =0

The focal point shift can be written as

kb = —y—s'In(2\7) — ®o/2 4+ nw

On axis we therefore have

I, ~ CoRe |e™*/2e™""/4T (1/2 + is/Q)} Py (7', 8") , between foci

<T’%w0> ~ —co Re [e”/‘lf (1/2 + is'/Z)} ™ 2¢ + O (% In7") ~ =5y + O (7?In7’)
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~ Co Re [6“5'/26”/4F (1/2 + is’/?)] ¥y (7,5) , outside foci
where the field is

2 2
hQE,U = haa |:ii (h/QHev):| 4 thQHeU ~ <% + k2h2) Heu _ (27 8
v

272
v | h3 du 8T%+kh)nev

0?2 %11, 1011, .
~ (w + I<:2h2> II., ~ 8C2 cos? ©+ Z ac sin? w+ k2h?11,,

1 011 1011
~ =12 ev 2 Dy — ev . 2 2 QH
d[’y 52 cos” ¢ + g 5, sin® @ + v° (h/d)" ey
v =kd
T=v27C
hgzhg:d\/sinhQC—&—cosQf:d\/coshQC—sin2§:d\/cosh2§—0032§/Nh

he ~ h ~ dcos&, Region 1

h¢ = he = h ~ dsinh ¢, Region 2
Thus for large v, keeping only the leading term, the transverse field on axis is

E, ~ k1L,
~ k*Cy Re {e”s/Qe’i’r/ﬁ‘ (1/2 + is/Q)} o (77,8") , between foci

~ k?CyRe [e”,/Qei”/‘lF (1/2 + is'/Q)} ¥y (1,5) , outside foci
and thus the mean square field is

(AE7) ~
~ Aye® /% Re? [6”5/2671“”/41—‘ (1/2 + 15/2)] sec? (®g/2) (k*g (7',8')) , between foci
~ Ave® /2 Re? [6”5//2ei”/4f (1/2+ is'/Q)} sec? (®0/2) (k' (1,8)) , outside foci

cos ®g = 2cos? (®g/2) — 1
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[0(1/2+1is'/2) + T (1/2 — is'/2)] [T (1/2 +is'/2) — T (1/2 — is'/2)]
oT (1/2 —is'/2) T (1/2 + is' /2)

=1

:2Re[F(1/2—is’/2)]I@[F(1!2—is//2)] (682)
T (1/2 —is'/2)]

2|0 (1/2 —is' /2)?
2Re (T (1/2 —is’/2)] Im [ (1/2 — is’/2)] + [T (1/2 — is’/2)|?

sec? (®g/2) =

_ 2|0 (1/2 —is'/2)? _ 2|0 (1/2 —is' /2)]?
{Re[[(1/2 —is'/2)] +Im[[ (1/2 —is'/2)]}°  2Re® [e~im/4D (1/2 — is'/2)]

_ ID(1/2 +is/2)]° __ rape+is/p
Re? [e=im/4T (1/2+1is/2)]  Re® [e"/4T (1/2 + is'/2)]
so that
(AE7) ~
~ Aye™/? |0 (1/2 +is/2)” (k*¢3 (7',8")) , between foci
~ Aye®™ 2|0 (1/2 +is' /2)[° (k*g (1,8)) , outside foci
(Kich) = =
077 Ad (14 ') In (A1) Re? [ei™/AT (1/2 + is' /2)]
or
(AE7) ~
Ts/2 ; 2 .,
~ 2ke™ /2|1 (;/2‘—&- i5/2)] : 12 Re? [W+ (7',0,8") + e PoWz (7,0, s’)} , between foci
(14 e ™) In (A4 )Re® [em/4T (1/2 4 is'/2)] T/
2ke™ /2 |0 (1/2 +is' /2)|° 2 : s
~ : ke | (2/ + i5'/2)| - = Re? [e_l”/2W+ (1,0,8) + (3277/2(3“1)()1/[/4*r (1,0, s)} , outside foci
(14+e ™) In(Ay)Re® [e/4T (1/2 +is'/2)| T

(VE;) (3nA) [ (2kV) = (AE}) (3m) / (2k) ~

3me ™' /2|0 (1/2 + is' /2)[° 2 5
~ - kS | 2( / +is/2) . — Ré? {W+ (7',0,8") + e"PoW7 (7,0, s')] , between foci
(1+e™')In(Ay)Re? [e7/4T (1/2 + is' /2)] 7
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3me /2|0 (1/2 +is/2)|? 2 L. o
~ : = Re? |e7™2W (7,0,5) + €/ 2e*W (7,0, )| , outside foci
T e m AR AT (i 72 R €7 (0,8 €72 W (7,0,9)] , outside foct

T 2re™s/2 e /2

= = =T (1/2 '/2 2
COSh(?TS/Q) ems 4+ 1 ems’ 11 | (/ +23/ )l

0 (1/2 +is/2)|° =

and
(VE]) (3n4) / (2kV) = (AET) (37) / (2k) ~

62 l
(14 em")?In (A1) Re? [en/4T (1/2 +is/2)] T

~

Re? [W+ (7',0,8") + %0 Wi (7,0, s')} , between foci

672 2 . , )
~ a TR 277[ AT (12 4 i5/2) - Re? [e"’T/QWJr (1,0,8) + e”/Qez%Wi (T,O,s)} , outside foci
+e™)" In(Ay)Re” |e™*™ + 18 T

oi®o _ iF (1/2+1is'/2)
I (1/2—1s'/2)
Note that at the point z = d, or 7/ — 0 (with 7 = 0), or 7 — 0 (with 7/ = 0), we find

(VEY) (37A) / (2kV) = (AE7) (37) / (2k)

6m2e™ .
~ — , between foci
(I+em) In(Ay)

67T267r5

~ 5 , outside foci (683)
(1+e™) In(Ay)
In the special case of s = 0 the field on axis reduces to
E, ~ k1L,
~ (—1)"l AL — (kp (d+dp — 2)) , between foci
Adln (A+)

~ (—1)"/ N AL — (kp (z —d —dp)) , outside foci
Adln (Ay)
where we have used

o (77,0) = CO\/gjo (7’2/4)
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Yo (1,0) = CO\/gJO (r%/4)

k%co (0) = v————e (684)

kp(d+d0) = (n+1/4)7
72 /4 =k, (d+ 5 — 2)

724 =k, (2 —d — &)

Thus we find
<AE2>N—k7T JZ (kyp (d+ 69 — 2)) , between foci
v In(Ay) 03" ’
. J3 (ky (2 —d — &) , outside foci
ln(A+)0 p (Z 0)) , outside foc

and at z = d + dg

km
In (A4 )

(AET) ~

6.8.1 Shifted Focus

The normalized shift function, without corrections (s’ = 0) is

kp(d+00) = (n+1/4)7

kpl = pm
or
(d+0d0) /= (n+1/4)/p
Noting
kpbo/m =n—n.>0
where
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ne =pd/l —1/4
For large values of p (with d/¢ < 1) and n

kp (do) /m~1/2
With the frequency range

209.71 m~ ' < k< 628.7m™ !
and £ =0.11176 m, d = 0.0336969 m we find that

p1=8<p<22=p
as well as

1 P2 dp 1/2

6o) /= / — = In = 0.0361286
(9o} / P2—DP1Jp, 20 P2—D1 (p2/P1)

and thus

de = d+ (8) ~ d + (80) ~ 0.0377346 m

2
Ay = (ij—j) ~ 3.47198

0+d.\?
AS = ~ 4.07840

In(Ay)/In (Ai) ~ (0.885481
6.8.2 Random Plane Wave Field Statistics

From the random plane wave results with volume normalization for the entire modal field (all m’s) we
had that

B 3 O [Pmax A
Em=1 . E<m—1>> AV ~ == 0(p)dp = ——
/V <_T = G, Ppi P kV 0 (p> P 2V

To make the volume integral for only the m = 1 mode equal to unity, we must divide the field square by

this result. Having done this, the on-axis random plane wave result is then

- 2KV
(VEG=2(p=0)) = == (685)
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Electric Field Point Statistics At And Near Focal Point

— Fixed Point z = 0.04
= Focusz=d

127

10

<VEX(r = 0,2)>3nA/(2kV)

Figure 41. Focal region field square statistic from scar theory. The grey curve is the evaluation of the scar
point statistic at z = d. The black curve shows the field square statistic at a fixed point z = 0.04 m on the
scar orbit in the focal region.

6.8.3 Focal Point Comparisons

The preceding focal point result can be written as

k 2k 2/2
ey SR T 2RV S/

Aln(Ay) 3mAIn(Ay)
For the preceding value A} ~ 3.472 we see that with z =d

32 /2

In (A4)
is the enhancement over the m = 1 random plane wave result. The result (683) is shown as the grey curve
in Figure 41. Note also that at z = d,

~ 11.8937

3m2/2

in (A7)
is the enhancement over the m = 1 random plane wave result. The result (683) with d replaced by the
average focal point d. is shown as the grey curve in Figure 42.

6.8.4 Fixed Point Field

~ 10.5317

To evaluate the field squared statistic at a fixed point z we use the general region 3 expression for m =0

(VE]) (3nA) / (2kV) = (AE]) (3m) / (2k) ~
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Electric Field Point Statistics At And Near Focal Point
Shifted Focal Point Scaling

Fixed Point z = 0.04
- Focus z = de

10

0,2)>3nA/(2KV)

<VEA(r

Figure 42. Focal region field square statistic from scar theory. The grey curve is the evaluation of the scar
point statistic at z = d.. The black curve shows the field square statistic at a fixed point z = 0.04 m on the
scar orbit in the focal region. In this case the value of In (A4 ) has been replaced by In (Ai) in the theory
for both results.

Axisymmetric Half Stadium Point Value at x=0.0 m, z=0.04 m
L2=0.11176 m, Lx/2=0.1016 m, A=0.036558 m?, V=0.005052 m?, focus=0.0377346 m

k0= 479 values 210.716 - 628.292
kp= 100 values 42.165 - 2825.07
25 bins

C— Numerical
w— Analytical

V<EZ?>(3nA)/(2k,V)

Figure 43. Focal region field square statistic from scar theory. The black curve shows the field square
statistic at a fixed point z = 0.04 m on the scar orbit in the focal region. The histogram is the numerical
simulation data at this same location.
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62 l
(1+em')’In (A4) Re? [e™/4T (1/2 +is'/2)] T2

~

Re® [Wy (7/,0,8') + e "®°Wi (7,0,5')] , between foci

62
" (1t ™) In (Ay) Re? [e=/AT (1/2 + is/2)]

where the outward going solution is given in terms of the Whittaker function as

2 . . )
— Re? [e_”T/ZWJr (1,0,8) + ™2 PW (1,0, s)} , outside foci
p

W, (7,0, 8) = Wiga0 (—i77/2)
the random reflection phase is

e—i(®o+m/2) _ I'(is'/2+1/2)
I'(—is'/24+1/2)
the relation between the arguments and the coordinate are

/4 =k, (z—d—0)

/4 =k, (d+6 — z)
the separation constants are

§'=—s=4(k,—k){/In(A})
with stability exponent

(+d\*
A+=<m>

and the focal point shift § is

k(d+0) = —s'In (2\/kd) FargD (1/2 +4s'/2) + (n+ 1/d) 7 (686)
and in the even case the axial scar wavenumber is

kyl = pm

(d+06) /0~ é [s’ {% (d/0)In (%) I (4\/@) - 7’/2H +(n+1/4) /p

For the choice near the average focal point d. ~ 0.0377346 m (with £ = 0.11176 m, d = 0.0336969 m ) of

z = 0.04 m we find the solid black result shown in Figures, 41 and 43. The solid back curve in Figure 42
has used In (A%) in place of In (A4).

6.8.5 Comparison Of Single Mode Solution

A comparison between the scar results and the numerical simulation for

325



kl=(p—-1/2)m (687)
with p = 8 is now given. Because this is an odd case along the orbit we first review the solution for the odd
parity. With the parameters £ = 0.11176 m, , R ~ 0.10160 m, d = ¢1/1 — R/{ ~ 0.0336969 m we note that

(+d\*
Ay = (222~ 347108 (688)
(—d
ky=(p—1/2) 7/l ~210.826 m ™! (689)
k~211.512 m™! (690)

and therefore
—s'=s=2(k—kp)L/In(A})

~ 0.246375 (691)

Relation Of Function Choice To Prior Even Case In the sections above for the even case of the
stadium we had taken the functions to be defined by

2 P
I, ~u= @1/1,% (', 8" ), (1,8) = C’ocmg Re {W+ (r',m,s") + el%Wi (r',m, s')}

V2
i
In the odd case below we are instead using the definitions

—im/2 im)2 i®o1rr* cos (my)
Re |e Wy (1,m,s) +e™ W] (1,m, 5)] { sin (mep)

2 ) .y
ey ~u = CC—Oﬂfm (7', "), (1,8) = Cocmg Re [671‘”/2 {W+ (r',m,s") — elq’OWi (7', m, s’)H

V2 —in)2 [ —in/2 in/2 i®o1yr* cos (mey)
TRe {e {e Wy (1,m,s) —e™ " WT (T,m,S)H { sin (mp) }

which can also be rewritten as

C 2 , . -
Mey ~u= C_me (T/, S/) wm (T’ S) = _CUCmT_\/,— Re |:e_”r/2W+ (Tlv m, 8/) + 6177/26z11>0Wi (7/7 m, S/):|

V2 iPorr* cos (mep)

— Re (W, (1,m,s) 4+ €W (1,m, )] { sin (m) }

Hence we have in effect flipped the definitions of v,, (7, s') and 9, (7, s) from the previous even case and
introduced a minus sign in ¢, (7, s).
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Matching Of Solutions Across Focal Region In region 3 we take

(W (/B m. o) - M (¢ VB m. ) |

I, ~u = Cocp

1
mRe[

el e () e () {02 ) o

Expanding as we leave the focal region using the asymptotic form

W+ (7_, m, S) ~ eir2/4 (7,6-7_2/2)1'3/2 _ ei7—2/4+s7r/4+is 1n(7’/x/§) , T — 00
gives

g e {0 () - 40 (¢ )

~ 2ce /47005(@6/2)sm [7'2/4+s'1n(7'/\/§>—<1>6/2}

M,y ~ 2Coe* ™4 cos (®4/2) em C\1/7 Re [e*”m {e*”/QWQ_ (g\/Q_, m, fs’) — ei’r/2ei¢°W_t (C\/Q_,m, fs’) H

cos (my)
sin (my)

sin [¢77/2 + ' In (£ /7) — ©,/2] { } , Region 3 — 1 (693)

1
VGl

% Re {eﬂ'w/z {efm/QW+ (C\/Q_a m, S) _ eiﬂ/Qeiéowj; (C\/Q_,m,s) H

~ 2cme”/4g cos (Pp/2) sin [72/4 +sln (7‘/\/5) —®/2 — 71/2}

.. ~ 2Coe* ™/ cos (B /2) cm# Re [e*”/Q {W+ (5'\/2_,m, s’) - ei%Wji (E’\/2_, m, 3’) H

1
vl

These must match to the limiting forms of the outer solutions from the preceding sections. In region 1
we take

cos (my)
sin (mep)

sin [¢%y/2 — s’ In (Cy/7) — 7/2 — ®o/2] { } , Region 3 — 2 (694)

Moy = Ce ™2 [W((,0,6) €75 =W (¢, 0, =€) e8] | €] < &

—C —im/2 ] iysing _ ] _ —iysin &
et meo)e (T, —0)e ]
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= 2C’wm (r,5) sin (ysiné — so) {
cos

cos (my)
sin (m)

——

= 2Cwm (T’,8> sin (ycos¢' — s0) { cos (m¢p) } JE =7n/2-¢

sin & sin (m)

Y (T

~ 204’;}15’,5) sin [’Y cosé + sln {tan (5’/2)}] { z?r? g:;:g } L —mj2—¢
with

Vo (7,8) = Cmg Re {e—m/z {6_”/2W+ (t,m,s) — ei”/2ei%Wj (r,m, S)H
or

1 1 ) . ) )
~ —im/2 —im/2 o am /2 i i
1., 20—5, Cm_Cﬁ Re {e {e Wy (1,m,s) —e™ =" "W} (1,m, S)H

sin [y (1= €7/2) + k6 + s1n (g'/z)]{ cos (myp) } €0

sin (m)
In region 2 we take

M, = efiw7i<1>1/2 [W (Ca@ag) ei’ycoshg . ei<l>1W (C . iﬂ-;@vg) efi'ycoshq , ‘§| > §0

_ 1 —im/2 11\ iycosh (—im/2—i®y /2 /o 1\ ,—ivycosh(+in/2+4iP /2 CcOs (mgp)
= Simhc© [‘I/m (r',0")e U, (r',—0')e } )
_ 2 ¥, (1',8")sin (ycosh¢ — 5’0’ — 7/2 — ®1/2) cos (my)
sinh ¢ 7 ! ! sin (mep)
or
Il = 2 P, (7', 8")sin [ycosh ¢ — s'In{tanh (¢/2)} — 7/2 — &1 /2] cos (my)
ev sinh¢ ™™ ’ Y L > (mso)
with
2
o (7,) = e L2 Re =572 (W (¢, ) = %W (.}
or

—~ Re {e*”/Q {W+ (r',m,s") — ei%Wi (', m, s/)H

sin [7(1+C2/2)+k5—3’1n(§/2)—7r/2—<1)1/2]{ cos (myp) } , (=0

sin (my)
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The region 1 and 3 solutions yield

’ 1 X ) ) .
~ s'm/4 / —im/2 —imw/2 I\ w2 iy o
II., ~ 2Cpe cos (95/2) e, N Re [e {e Wy (r,m,—s") —e™ =W} (1,m,—s )}]
1 e / / / { cos (myp) } :
3 2451 —P;/2 . , R 3—-1 695
gz €%9/2 i (6'v3) ~ /2] { () | Reeion (695)

1 1 . , ) .
~ —im/2 —im/2 A /2 i®o
I, 205, Cm N Re {e {e Wi (r,m,s) —e™ e W] (1,m, S)H

sin [y (1 - €2/2) + k& + sln (€/2)] { cos (mip) } L€ =0 (696)

sin (me)
which match if (we negate one of the sinusoid arguments to match the phases, which introduces an extra
minus sign in the amplitudes)

—s'In(2y/7) + /2=~ +ké +nr (697)

(1) Coe® ™/ cos (@) /2) % e (698)

The region 2 and 3 solutions yield

/ 1 , .
ey ~ 2Coe™ ™/ cos (®/2) cmw Re [e—lﬂ/Q {W+ (7', m,s') — ez(DOWJt (r',m, 8/)}]
g

1
N sin [¢%y/2 — s’ In (Cy/7) — 7/2 — ®o/2] { Z?j((;n%g; } , Region 3 — 2 (699)
., ~ zc L Re [67”/2 {W+ (r',m,s") — POV (r',m s/)H
> C 5/\/’_}/ 9 9 + ’ ’
. cos (m
sin [y (14 C2/2) + k6 — ' In (C/2) — 7/2 — ®1/2] { o ((m;f)) } 50 (700)
which match if
—s'In(2y7) —®o/2=~+ké — D1 /2+n'r (701)
Coe="/ cos (By/2) = = (—1)" (702)
Vai
Symmetry Conditions On Orbit Region 1 gives

1 . . o
lim — Re {67”/2 {(f“T/QT/I/'_'|r (1,m, s) — ™/ 2 POW (7,m, s)}

T—0 T
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__67“1—/2 {67”‘—/2W+ (T,m, S) _ 6277/262<I>0WJ”; (’r,m, 8)}:| =0
T

lim {(1 + e i%0) {W; (1,m,s) — %W+ (t,m, s)} + (14 €™®) {W;’ (t,m,s) — %W; (T, m, S)H =0

T—0

Region 2 gives

T'—=0 T

1 . - 1 -
lim — Re [6”/2 {VV_’F (r',m,s') — ' PoW (7', m, s’)} - ;67”/2 {W+ (r',m,s') — e PoWr (7', m, s’)}} =0

-y 1 .y 1
lim {(1 + e_’(bo) {Wi (',m,s") — =Wy (7',m, s')} - (1 + e’%) {Wf (7',m,s") — =Wi (7',m, s')H =0
T T

7'—0

Thus

In the even case we had

1
ei‘i)o — _ (W'/i‘ B TW+)
(W}, — 2Wy)”
and thus to leading order we expect the form of the reflection phase in this odd case to be

¢ T(1/2 +m/2 — is/2)

and from the second equation

eiq>6 -~ 7€m(1+m)/21—‘(1/2+m/2—18/2) 4}677;@6 N 76727T(1+m)/2].—‘(1/2+m/2+13/2>
I'(1/24+m/2+is/2) I'(1/24+m/2—is/2)

meaning that

Py = —P( + mm + 527
where j is an integer. For m even (including m = 0) we can take

oy = — ), (704)

Final Match Conditions If we subtract the two phase match equations from each other
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D /2=(n"—n)7
and the second equation then yields

—s'In(2y/7) — ®0/2 =7+ ké +nr (705)
Taking the ratio of the two amplitude equations gives

(—n)" 2 — o (706)
and the second equation yields

Co = ¥ ™/* /A sec (Bp/2) (—1)" (707)
Let us choose n = n/ and ®; = 0. For the particular example below we will take n’ =n = 3 odd and

d+ 6 ~0.04391542 m (708)
Simplification On Axis For m=0 The electric fields near the axis are approximately taken as
E, ~ E, ~ kI, (709)
E, ~ By ~ kTl (710)
Putting m = 0 we find
2 . .
., =C Yo (T,8)sin (ysin& — so)

cosé
N (7-7 5) = cog Re {6—27/2 {e—wr/QVVJr (7_’ 0, S) . ezw/Qezéoth (7.7 0, S)}]

T'(1/2+1s/2)

~ —cog Re |:W+ (’7‘, 0, S) + ’me—t (T7 0, 5):|

and for region 2

2

I W% (7', 8)sin (ycosh ¢ — s'0’ — 7/2)

2 . L
o (77,8") = COT—\//_ Re [e_”/Q {W+ (7',0,8") — "W (7,0, s')H

= Co? Re {Z {W+ (T/’ 0, 5/) + Z%Wi (7/707 S/)H

Finally for region 3
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M, ~ —Cocog Re {_i {W+ (r,0,5) + i%”’i (T’,o,s’)H

? Re [W+ (7,0,5) + i%m (T,o,s)] (711)

and the phase is

wo L L(1/2+is/2)  eAT (12 4i0s/2) _ f <L)2
T(1/2—is/2) e /AT (1/2—is/2) [ \|fl

or

gito/2 _ f e/ (1/2 + is/2)

Ifl |em/AT (1/2 + is/2)|

Re(f)  Rel[e™/"T (1/2+is/2)]
Ifl Je/AT (1/2 + is/2)]

cos (®g/2) =

efsw/élﬁ ’eiﬂ‘/41" (1/2 + 18/2)‘

Co = —e*' /4 T sec (By/2) = — Re [¢/7/T (1/2 + is/2)]

Now going to the axis 7 — 0 gives

2

I, =C
cosé&

¥ (0, 8)sin (ysiné — so)

671’71'/4

—im/4
e
= —cpRe {F

W {i7r—7rcot7r(1/2+i8/2)}]

= —¢coRe {e”/‘lem/QF (1/2+ is/Q)}

in region 1, and for 7/ — 0
2

)] = —— Y gi *h _ ¢4 _ 2
ev Smhcwo(o,s)sln('yc% (—s'o —7/2)

efiﬂ/4

—im/4
=coRe [_iF c

W{iﬂ—ﬂ(ﬁﬁr(l/?ﬂ-% /2)}:|

=cpRe [67iﬂ/46ﬂ5,/2r (1/2+ is'/Q)} =coRe [6”74677‘-8/21—\ (1/2+ is/?)} =—e "y (0,9)
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in region 2.

For 7 = (27, — 0

e, ~ Cotby (0, 8) g Re [—i {W+ (7',0,8") + z%Wi (7,0, s’)}]

V2

,7-/

T'(1/2+1:s"/2
Im {W+ (T',O,s’)+i—(/ t+is'/ )W_T_ (T/,O,S/):|

~ Cotpy (0, 5) T(1/2—is'/2)

/A =k,(d+6—2),0<z<d+d
with the shift § determined from

i L (1/24is/2)

© T2 —is)2)

sln (zx/ﬁ) —®y/2 =k (d+0)
For 7' = /27¢, ¢ =+n/2 - ¢ — 0

T(1/2+1is/2)

ZmWi (7'7 O, S)

2

Hev’ ~ ¢0 (07 S) C'Oeiﬂps£ Re |:W+ (T’ 07 S) +
T

2 h=k,(z—d—0) , 2>d+0

Cylindrical Form Of Region 1 And 2 For the region 1 solution 7 = (y/2v, ( — 0

2 . 1 d+z
Hev = Cmﬂ}o (O,S) sSin |:k'Z — 85 In <d— z>:|

— _,—Ts/2 2

e \/Twwo (0, s) sin [kpz + po (2)]

|

and

po (2) Zg{(z/f)ln <ﬁ+_§) _ln‘jJrz

where we used

z=dsiné

cos€ =+/1—22/d?

tanh o =siné

(712)

(713)

(714)
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1 d+z
= Arctanh (z/d) = =1
o rctanh (z/d) 2n<d—z>
For the region 2 solution 7/ = /27¢', ¢ = +7/2 — ¢ — 0

2

V21

Hev’ =

¥y (0, s") sin {kz + % In (j j Z) —sgn (z) 7r/2]

\/;1% (0,8 sin [kpz + po (2) — sgn (2) 7/2]

2/d2 — 1

= —;wo (0,s) e™™sin [kpz + po (2) — sgn (z) 7/2]

N
2

= e e coslhyz a0 (2)] (715)

where we used
z = *+dcosh(

sinh{ = +/22/d? — 1

o' = In[tanh (¢/2)] = —% In (i J: j)

Single Scar Mode Comparison Figure 44 shows a comparison of the axisymmetric numerical
simulation (solid black curve), the region 1 (714) and region 2 (715) solutions (light grey curves), and the
region 3 solution (dark grey curves) given by (712) and (713). The single normalization constant ¢y (the
factor in 1 (0, s)) to match the region 2 (grey curve) to the numerical simulation at the point noted on the
graph. This normalization is done because we only know the statistics of the scar amplitude construction,
and not the actual amplitude for this particular realization of the Gaussian random variable v; but we only
match the single constant cy. The agreement with the simulation looks quite good, including the in the
focal region.

7 ELECTROMAGNETIC AXISYMMETRIC CAVITY
SIMULATIONS

The numerical simulations to support the theory of axisymmetric cavity scars were performed using a
modified version of the body-of-revolution (BOR) radar cross-section code CICERQ, which was originally
written by McDonnell Douglas Research Laboratories [21]. This section describes the modifications made
to CICERQO, the tests we ran to verify that the new code was working correctly, the statistics obtained for
a BOR cavity with a cross-section in the shape of a bowtie and finishes with some conclusions.
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Figure 44. Modal spatial distribution of the transverse electric field along the orbit in the stadium for a
particular scar p = 8 with k, = (p — 1/2) /¢ at wavenumber k ~ 211.512 m~! with half length ¢ = 0.11176
m, and radius of curvature R = 0.10160 m, d =~ 0.0336969 m, and d 4+ 6 =~ 0.04391542 m. The numerical
axisymmetric simulation is shown as the solid black curve. The results shown by the light grey curve are
a combination of the region 1 (]z| < d) and region 2 (|z| < d) solutions. The dark grey curves are the
results from the region 3 focal solution (the two forms are match at the point |z| = d+J. The normalization
constant ¢g is chosen to match the analytic construction, in particular the region 2 solution (grey curve), to
the numerical simulation (black curve) at the point noted on the graph.
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cicero_ev.f

Enatrix_module} {file_module] [cicero_ev_su%
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vector module ]
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Figure 45. Code diagram for CICERO _EV

7.1 CICERO Modifications for Eigenvalue Calculation

CICERO is a frequency-domain method of moments (MOM) code that for each frequency of interest
fills an impedance matrix and right hand side and solves for electric and magnetic surface currents. From
knowledge of the currents, secondary quantities such as radar cross section are calculated. Our first
task was to suppress filling the right hand side and instead calculate the eigenvalues and corresponding
eigenvectors of the impedance matrix for a given frequency.

To find the cavity modes numerically, we will sweep over a range of frequencies at a very close frequency
spacing, monitoring the ratio of the largest eigenvalue to smallest eigenvalue. At the frequencies where this
ratio peaks, the cavity is resonant and this is a frequency where we will calculate the electric field throughout
the cavity. CICERO automatically calculates secondary quantities for each frequency, but in this case
calculating the nearfield is computationally expensive. We therefore have a logical (calculate nf) set in
the code prior to compilation that we can use to suppress the electric field calculation during the frequency
sweep and enable it when we have a list of resonant frequencies.

The diagram of the resulting code CICERO _EV is shown in Figure 45. The code is written in
a combination of Fortran90 and Fortran77. The main code is in cicero _ev.f which calls the original
CICERO subroutines found in CICERO_EV _sub. The module dimmod.f is an old Fortran77
trick to provide proper dimensions to arrays based on the problem being solved through use of an
INCLUDE statement. CICERO EV obtains the eigenvalues and eigenvectors of the impedance matrix
by calling the subroutine get elgenvectors which is in the matrix module. Inside matrix module,
get eigenvectors in turn calls the LAPACK subroutine zgeev.

The subroutines to calculate the near fields are in near field module, which uses the

vector module for vector operations like dot and cross products The near field module contains
subroutines based on another of our method of moments codes, Eiger [23]. In the near_ﬁeld_module
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we read in the point locations where the electric field is to be calculated in a *.jfg file with a call to the
subroutine read field elements from CICERO EV. We then calculate the electric field at each of
the points using nearﬁeld fill and write the electric fields and the point locations to files for processing
(write_near field) and viewing in I-deas (write nf ideas).

One input file to CICERO _EV is cicero_ freq.lst, which contains the number of frequencies in the
first line and a list of frequencies (in Hz) in the subsequent lines. The second input file to CICERO _EV
is input. This is a modification of the CICERO input deck. The first line contains two integers:

line 1: mode ngauss

The quantity mode indicates the ¢ mode that we are interested in. This is designated n in the next
section. The ¢ mode is in the form e/™®. The quantity ngauss is the number of gaussian points for the ¢
integration. The second line contains a single integer:

line 2: nreg

The quantity nreg is the number of regions in the problem. Metal is by default set to be region 0 and is
not counted as a region. For all of our cavity problems nreg is set to 1 to designate the region inside the
cavity. The third line contains four reals, which define the region’s material characteristics:

line 3: epsr, epsi, mur, mui

where epsr and epsi are the real and imaginary parts of relative permittivity and mur and mui are the
real and imaginary parts of relative permeability. CICERO _EV uses the e™7“! time convention. The
fourth line contains a single integer, which is the number of shells associated with the region.

line 4: numshl

Shells are not handled by CICERO _EV so the fourth line should be zero. The fifth line contains a single
integer:

line 5: npi
where npi is the number of points defining a boundary. This must be an odd number. CICERO _EV
only can solve simple cavities at present (cavities completely filled by one region) so a single boundary can
define the cavity. The sixth line contains three integers:

line 6: nir ner nsh

The quantlty nir is the interior region id for this boundary (the outward normal of the boundary is defined
as n = ng Xt , where t is the unit vector defined by the increasing node id direction along the boundary),
ner is the exterior region id for this boundary, and nsh is the shell id for this boundary (always set to
zero). In CICERO __EV we only have one region (plus the 0 metal region) and since we enforce an EFIE,
the direction of the normal in the eigenvalue problem is not important. It must be consistent, however, and
this is why the direction set by increasing node ids must follow a consistent pattern as seen by the example
shown in Figure 46. The next npi entries consist of the r value of the points that define the boundary.
These are grouped in lines of four reals apiece, with the last line having enough entries to make up the npi
total entries. This is followed by npi entries of the z value of the points that define the boundary, in the
same format as the r entries. The last line of input is 0 to terminate the reading of the boundaries.

If the logical compute nf = .TRUE. in CICERO _EV, the user must input the base name of the
files that will contain the electric field. This base file name with different extensions for each frequency
(*.nfld00, *.nfld01, etc...) is generated and filled for use by the statistical processing code. The base file
name with the *.unv extension is generated and filled for viewing the F field in I-deas.

The outputs to CICERO _EV are cic.out, which contains an echo of the input quantities,
current.out, which contains the eigenvector associated with the smallest eigenvalue for the frequencies
contained in cicero freq.lst, and condition number.out, which contains the condition number of the
impedance matrix (largebt eigenvalue/smallest elgenvalue) for the frequencies of interest.
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7.2 CICERO Modifications for Electric Nearfield Calculation

7.2.1 Direct Derivation of E* (r)

In this section we discuss details of the calculation of the electric near fields at an observation point (7).
The scattered E field in terms of vector (A) and scalar (¢) potentials is

E(r) = —jwd(r)—Vé(r)

—jkR 1 —jkR
= —jwu//j(?’)Zﬂ_R da’—Vg//p(7’)e da’

4R

The current on bodies of revolution are represented by basis functions oriented in two directions: ¢ and 5
where
t =Tsinfcos¢ + ysinbsin¢ + Zcos 6

¢ = —Tsing + ycosp
Also, R is the distance between two points: an observation point (p7 ¢’z) and a source point (p’ B2 )

R= \/(p’ =)+ (2 =2)" +20p (1= cos (¢ — ¢))

The current continuity equation is

19)
voT= afe)
The time-harmonic form of the continuity equation (assuming a e*/“* time convention) is:
V- T = jwp
SO
N
v-J
p=——
Jjw
Therefore, the scattered field in terms of the electric current J is
_ R e—JkR o—JikR
E°(r)=—j J (7! da V— V T (7 da’
(1) = =g [ T (7) o + Ep—
The electric current has two components
N ~
J(?/) — AlJt(l(b/)“Fd)Jd;(l(b/)
_ Z At T piny Z A2, Tk ) pind!

where A!, is the coefficient of the ' directed basis, Aﬁk is the coefficient of the 5/ directed basis, Ty (s')
is a triangle basis function along the curve that generates the body of revolution, and p(s’) is the radius
of the body. In the ?jg direction the basis is a Fourier mode (ej"¢). The negative sign in in front of the
second series comes from definition.
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For a particular Fourier mode (n)

1 9 ’ Y 1
(S/)@ [p(s)']t’ (Sa(b)] +

1
= ) [ ZA
_ Z A e+yn¢ 3

e+3n¢

Ty () jn
= — DA -y A T (8’
p(s) L w2 )
Looking at just the vector potential term for the n‘® Fourier mode, Z component

—jkR
jwA, = EE.(fjw,u)/,7(7”)e

VT (7

hS)

!
47TR da

,e—JkR

da’

_ Tk' eting' ‘ ¢ Tk' eting
= —]wu/ ZA J 4Rda+]wusx ¢ZA J

] ) Tk/ (S/) 27 —JjkR
—]wuZAflk /A/ sin 0’ ) /0 cos ¢'eTIne’ ﬁp(s')qu/ds’

Ty (s) 2 ) +jng’ € TR ’ I3l
jwuZA / ) /0 sing'e R p(s")deo'ds

—]kR

47

jwp { Yk Ak [ay s 0T (s ) 27 cos ¢’ [cos (ng') + jsin (ng')] Coemdg'ds’
R e dgds'

X At Say T (51) J5 " sin 6 [cos (ng) + jsin (ng)] ¢

4R

}

R is even in ¢’ about the observation angle ¢, the other quantities under the integration over ¢ are even
or odd about ¢’ = 0. This way of thinking complicates the elimination of certain terms because we are
looking at components along z,y, and z rather than components along ¢ and ¢. Let’s specialize our
observation plane to ¢ = 0, then R is even around ¢’ = 0 just like the other quantities. Some of the terms
being integrated are odd around ¢’ = 0 and don’t contribute to the integral while the even terms can be

integrated over half the support and multiplied by 2.

A, = jwp { S AL fA% sin 0’ Ty (s fo cos ¢’ cos (ng') < ﬂkR ¢ d¢'ds } (716)
v 2 +i> A‘ﬁk fA% Ty (s') [y sin ¢’ sin (ng’) € Jdegb ds'
Next look at the vector potential term, i component
—jwAy = 7 (—jwp) / T 67:: dd’
= —jwu/ ZA Tkl etin®' R da +jw,u/s v gAbIZAikac/éf)/)eﬂwl eé;;da'

) ) k/ (8/) 2m ) " jk
= —jWM;A;k/A, sin 6’ () /0 sin ¢/ e+’ & R ——p(s')d¢'ds’

2m —3
+.7wuZA / b (/)> / cos ¢/etind' = JkRp(s’) de'ds’
0 T
__jwn >k nka, bm@Tk/( o) QWbm(b/ [cos (n¢") + jsin (ng’ )] . e —de¢'ds
4 Zk o fA; Ty (s fo cos ¢’ [cos (ng') + jsin (n¢')] & e 16 ds’

—ij

}
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Using the same arguments as above we obtain

oA, g | T A Ja, sin 0Ty (') J sin@'sin (ng/) “p—dg'ds’ (717)
JW ey 27 —Zk o fA, Ty (s') [y cos ¢’ cos (ng') & Jde(ﬁd !
Next look at the vector potential term, z component.
—jkR
Cjwd, = 2 (—jw)/ T (7)) i
g’ 7TR
. Tk/ / i T (8) e IR
= — A +Jn¢ d / +jne = dd
jw,u/ Z R a+]wuszq§kn p(s’)e P R
] Tr 2 e JkR
- RS e (‘S)/O I () dd'ds
k.n k

- L ZAt / cos 0 Tjy (s') /2” [cos (ng') + jsin (ng)] ﬂdqf)’ds’
47T & nk A/ 0 R

k

. ™ —jkR
— _%;A’;k /A/ cos ' Ty (s')/o cos (ng") < 7 d¢'ds’'

k

For each case we will do the integration over the support of the triangle by summing 4 pulse contributions
multiplied by the support of the pulse. With this approximation, we obtain the following equations for the
contribution of the vector potential to the scattered E field.

oA, = jop | YL AL, Zq 1sm ququ/Atqk o cos ¢’ cos (ng') & d¢ ds'
_ = —— JkR

21 +j Zk qu 1 Torr Aty fo sin ¢’ sin (nqS) e —d¢
jwp ) J S AL Z _ 1 8in 04, To Aty fo sin ¢’ sin (ng{) ) : e ——de¢'ds
o -3 A¢k Zq L Tarr Atgr, [ cos ¢ cos (ng' ) e dgb ds’

—]kR

—jwA, = —

—jwA, = ]wu ZA & Zcoseqkqu/Atqk/ cos (ngb') ¢ (718)
0

For the scalar potential contribution to the E field we will first calculate the scalar potential
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! VT (T 2
¢ = Gz /. (") R da
1 27 +Jn¢ . T, (8/) 4 Jn e~ JkR
- _ I n|e - N dd'ds'
jws/// l kT H ko (s) k() 47TRp<S) ¢ ds
_ 1 ALy [, 2 ff” eI S dg ds’
T e 27 L n Sl kR
Jwe *Zk nkjan’ p(s f etind' e Srdd'ds'
BT 2m .. e ik
_ L el T eos <n¢’) + jsin (nd)] g ds’
- : Tk(s .. —JjkR
e | fzk Ain S I3 feos <n¢’> +sin (nd)] £z de s’
2 [ T, u
= ﬁ ZA;,CZ 4 Atqk/ cos(nqﬁ d(b ZA kjnz Atqk/ cos(nqﬁ)— d¢’
8qu g , e IkR 1 é qu 4 , e IkR ’
= o Z ok Z Atqk/ cos (n¢ ) 7 — En;Ank q; quAtqk/O cos (n¢ ) Td¢
The gradient is given by
0P ~1 0<I> 8<I>
Vo = 5'_ + (b 8¢>
In the code we implemented the p and z derlvatlveb as ﬁmte dlfferences
Vo, - D(p+ds/2,z) —P(p—ds/2,z)
ds
s
and the ¢ derivative analytically ‘
v, _ n2(0.2)
which map to the scalar potential contribution to E (7).
. +j 0 0qu i ’ e JIkR ’
-V, o R Z k Z Atqk cos (ng') Td(b (719)
1 qk /
— o Z 2 Z Atqk / cos (n¢') = —R d¢>
. —J 9Ty ™ e~ JkR
v, = | wew 2 A qu : 381%% Jocos (nd) 7k1§l¢ (720)
Pp _E”Zk nk Zq 1 pq: Atgy fo Cos (n(b ) e_d(b
8qu 4 ’ e IkR ’
= w527rp ZA kz Atqk/ Cos (n¢)Td¢
qk
- A -
]UJ€27TPP§ nkz tqk/ cos (mb) 7 d(b
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. 4
+j 0 o 0T gk T N eTIRR
-V.® Ek Al q§:1 WAtqk ; cos (ng') 7 do (721)

we2m 5

10 o = Tk ™ e
q /
+o.;527rn5 Ek AV E p—Atqk/O cos (ng')

q=1 Fak

7.2.2 Alternative Derivation of E° (r)

An alternative method of obtaining the Es field is to start with the expressions for the impedance
matrix of a cavity with PEC walls in terms of the operator L (), which is given in [21]. We will change
the Galerkin testing procedure to point matching at (pp, 0, zp) and get expressions for the x,y, and z

N
components of E°. Using this method gives us a way of checking the direct derivation given above.

We will start with the L (-) operator and compare the results using this procedure to the E* field that
we derived directly.

— l=/—
E* (pys0.2) = ==L (7a)
where [21] ‘
Ll = jwuT,T,(sinv, sin v G ey + cos vy, cos vyGp) — stTquG"
t . n ;
LY = —wpsinv TGy, — FpprTan
t : n o5
Lk‘;’ = —wpusinv,TpT,Ge — ?ququGn
LY = — T, TyGon — ———T, T, G
Kl ptq jwepypy P
and where )
™ efij
Gy, = Atq/ cos ng do
0

—jkR

Gep = Atq/ COS N cos ¢e do
0

—jkR

Gen = Atq/ sin ngsin ¢ do
0

In the above expressions, p represents the observation segment (pp,(), zp) and ¢ represents the source
segment, v, is the same as @ and At, results from approximating the integration over s’ of the source
segment as an evaluation of the integrand at the center of the segment and multiplying by the segment
support (Atg).

For the Z component of E* we set v, = m/2, and we get contributions from L' and L.

5 .
Lt = jcuuTé5 sinvyGep, — J 2 (Tth)

we Oz \7 1
P n 3
Ly = —wpT{Gn — o (T2G,)
q
s 1 . t . ) ] 8 Ht n 8 &
E} = —5— |jwpTysin VGen —wpTy Gy o (Tan) wep, Oz (TSGn) (722)
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The contributions to E from the vector potential are

. 1. .
—jwA, = 5 [jw,uth sinvoGepn — w,quGsn}

—jkR —jkR

= _Jen {Tt sin vy At, / COoS N oS ¢ do + jT¢Atq / sin ng sin ¢ dqﬁ]
2 q 0 q 0

This is identical to what was derived directly in Equation 716. The contributions to E? that arise from
the scalar potential

v - L {_iﬁ(mn)_ n E(T;ﬁcn)]

we dx \" 1 wep, Ox

j 0 . g e IkE n 0 Tf /7T eIk
= T, A — | —+A
we2rm Oz ( ! / cosne R do )+ we2r Oz \ p, ta 0 cosne R a¢

Again this is identical to what was derived in Equation 719.

For the Z component of E* we set v, = 0, and we again have contributions from L' and L.

L = jwpuT, T, cos v G, — g9 (Tan>

0 3 we 0z
Li(f = _qu& (T,Gn)
E: = f% {jw,uT; cos v G, — é% (T;Gn) — w:pq % (TfGn)]
The contributions to E7 that arise from the vector potential are
—jwpA, = 72i [jwpT) cos v,Gh,]
= j;)ll [Tt cos vy At, /OTr cos N e d¢]

This is identical to what was derived in Equatlon 718.
) ] Wit ™ e~ JkR
—jwA, = — Z Al Z 08 0 Tyrr At g / cos (ng') quS’

The contributions to EJ that arise from the scalar potential are

V.0 = —%[ 49 (72G.) - — 2(TfGn)}

we Oz wep, 0z

L [ e_JkR 0o (T2 / eibR
= lwe?ﬂ'az (T At / cos ng do w62ﬂ'82’ th A cos ng 7 do

This is identical to what was derived in Equation 721. For the 3 component, we again have contributions
from L?* and L?¢.

. n .
Lilt = —wpsin l/ngGsn — ?T;Gn

Pp
2
) n
Lﬁ? = —]w,quGcn — ,—TfGn
Jwepyp, ,
1 . . n . n
E; = —— | —wpsin VngGsn — jquchn — ; - qd’Gn
27 wep,, JWEPLPy
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The contributions to Ej that arise from the vector potential are

, 1 . ,
—jwA, = ~or [fwusm VqT;Gm fjw,quGm]
: m —jkR ™ —jkR
_% ['sinquthtq/O sinn¢sin¢€ d(b—qu’Atq/O cosn¢cos¢€ 7 d¢

This is identical to what was derived in Equation 717. The contributions to Ej that arise from the scalar
potential are

1 . 2
I e T e N
2 | wep, JWeEPLP,
no . ™ o—ikR n2 T® ™ e—JkR
= TEAt d ——th/ d
weanp, 0 q/o cos N ¢+jOJ627T/)p o, N ), cos N = @

This is identical to what was derived in Equation 720.

N
The above equations for £* are implemented in near field module in the subroutine lop nf.

7.3 CICERO Modifications for Magnetic Nearfield Calculation

7.3.1 Direct Derivation of H* (r)

— —
The scattered H field in terms of vector potential A is

ﬁs(r) = iVXA('I",'I"/)
— 1 7 (=1 e_ij /
= —Vx/g/uJ( )47era
— = = eiij /7/ 7 = eiij /
- /S/[VXJ(T)} e~ [T (7 X Vo da

= = e IhR ’
= —_— d
/S/J(T)XVZLWR a

where R is the distance between the observation point 7 = (p, ¢, z) and a source point 7/ = (p’, ¢, z’)

R = |7-7 (723)
= \/(p’ —p)’+ (2 =22 +20p (1= cos (¢ — ¢))

The gradient term can be expanded as follows

¢IkR 1 (7 —7") 9 e IMR

4R 4t R OR R
1 (7 = 7) —jRke VR _ ¢=ikR
T 4 R R?
= fﬁ(?f?’)%efﬂm

where
(7" —=7") =2 (pcosg — p' cos ¢') + 7 (psing — p'sing’) + 2 (2 — 2')
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The electric current on the wall of the cavity has two components t and a
T (T = TJ(s¢) +0 Iy (s,6)
P Te(s') o /T/ o
— ﬁz t 1k +jng’ Z ¢ 2K ) +ing
= A J A
SICI -¢

where in Cartesian coordinates
t =7 sinfcos ¢ + ysinfsin g + zcos
and R
¢ = —Tsing + ycosp
’ / -~/
Al is the coefficient of the ' directed basis, Afik is the coefficient of the ¢ directed basis, Ty (') is a
triangle basis function along the curve that generates the body of revolution, and p (s’) is the radius of the

~/ . ’
body. In the ¢ direction the basis is a Fourier mode e/"® . The negative sign in the second series comes
from the definition in the original CICERO code.

—
Looking at just the n'" Fourier mode, the Z component of H is
e—JikR

H = 7| T (7)) xVi—dd
L iR ¢
_ Ht/ +H¢/
’ Tk' 7‘7kR /Tk/ eiij
— At +jn¢ / Aqb +jn¢ /
/ E T- da + E gb x V R da

Let us, for convenience, look at the two terms of the above equation separately. First for the % component
term we obtain

! 2m
HY = ZAZk/ P [T e [ (70— 7] SR M (o) g
Al 0

p R

Performing the cross product in Cartesian coordinates

~ ~ ~

T 7y z
Ux (7 —=7")=| sin# cos¢’ sin @’ sin ¢’ cos
(pcosg —p'cos¢’) (psing —p'sing’) (z—2')
U x (7 =7 = Z[sinf'sing’ (z—2') —cost (psing — p'sing’)] (724)

+7 [cos @' (pcosd — p' cos¢’) —sin b’ cos ¢’ (z — 2')]
42 [sin@’ cos ¢’ (psing — p'sin¢’) — sin ' sin ¢’ (pcos ¢ — p’ cos ¢')]
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’ 1 ’ T ’ / 27T
H. = - Z Al / ;(S)) / [cosng’ + jsinng’] [sin@'sin¢’ (z — 2') — cos#’ (psing — p’sin¢’)]
7 / 0

1 +]kR kR

R3 p(s')dg'ds'
= Z Al / Ty (') 0277 {[sin @’ cosng'sin¢’ (z — 2') — cos 0’ cosng’ (psing — p’sin¢’)]
+ [sin#'jsinng’sin ¢’ (z — 2’) — cos 0 j sinng’ (psing — p'sin¢')] } Hi’%#e_jkp”d(b/ds'
= = Z At / Ty (') 027 {sin6’ (z — 2’) cosng’ sin ¢/

—psin ¢ cos @ cosng’ + p’ cos ' sin ¢’ cosng’ + jsind' (z — 2') sinng’ sin ¢’
1+ ykR

—jpsin ¢ cos @’ sinng’ + jcos @ p’ sin ¢’ sinng’ } e IFRAY ds'

R is even in ¢ about the observation angle ¢; the other quantities being integrated over ¢’ are even
or odd about ¢’ = 0. This way of thinking complicates the elimination of certain terms because we are
looking at components along x,y, and z rather than components along ¢ and ¢. Let’s specialize our
observation plane to ¢ = 0, then R is even around ¢’ = 0 just like the other quantities. Some of the terms
being integrated are odd around ¢’ = 0 and don’t contribute to the integral while the even terms can be
integrated over half the support and multiplied by 2.

H! =5 ZA / Ty () /0 j [sin®’ (z — 2’) sinng’sin ¢’ + cos ' (p’ sin ¢’ sinng’)] %e‘jk}?‘dqﬁ'ds'

™ 1 . )
HY =5 ZA / T (s') [sin @’ (z — 2') + p cos ¢’ /0 sin ¢’ sin nﬁ%meﬂk]%dgb'ds' (725)

For the (b component term we obtain

, Ty T o—ikR
¢ _ [ k? +]n¢ . - = /
H! +/ZA [m¢><(r T)]Xvéleda
Performing the cross product
¢ x (7 —=7")=| —sing’ cos ¢’ 0
(pcosg —p'cos¢’) (psing —p'sing’) (z—2')
o x (T T = Fcos¢ (z—7) (726)
+ysing’ (z — 2')
+Z [—sin¢’ (psing — p’sing’) — cos ¢’ (pcos ¢ — p cos ¢')]
, 1 , m . 1+ jkR _.
H? = I ZAik /A/ oy (s')/o [cosng' + jsinng'] [cos ¢’ (z — 2')] —j3€ IRRAG ds'
k k
1 ¢ o / ;o /o n1+JkR g,
= = Xk:Ank /A;, Ty (s") (2 — z’)/o [cos ¢’ cosng’ + j cos ¢’ sinng’| —5s© IR qe! ds'
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Invoking even and odd symmetry and setting the observation point at ¢ = 0 to eliminate terms we obtain

T 1 . .
= ——ZA / Ty (8') (2 — z')/ cos ¢’ cosngb/%weﬂklzdgb/ds’ (727)
0

-
The z component of H is

. R _ e—ikR
= —z-/S,J(?’)xV47TR da’
_ H;/ + H;z)/
r T (8/ —JkR , Tk’ N e JkR
_ At +jne’ o d A¢ +jing’ ’
/Zk: ) “/Z 20 X Vg da
Again doing the calculation term-by-term, for the ¢ component term we obtain
’ 1 ’ T (S/) 2 i /,\ 1 +]k’R _
o= g Sl [ [ e (7 ) e g (o) o
k k

L~ v [ Tu(s) [* ,
- +E;A”k /A;C o6 {[cosn¢’ + jsinng']
[sin@’ cos ¢’ (psing — p'sing’) —sin @' sin¢’ (pcos ¢ — p’ cos ¢')]
1+ jkR _
7533 iR ) (5 d¢’} ds’
1 2
= - Z Afbk/ Ty (s") {psin¢sin @’ cos ¢’ cosng’ — p'sin @' sin ¢’ cos ¢’ cosng’
A 0

—pcos ¢sin @ sin ¢’ cosng’ + p’ sin @’ cos ¢’ sin ¢’ cos ng’
+jpsin ¢sin @’ sinng’ cos ¢’ — jp’ sin @’ sin ng’ cos ¢’ sin ¢’
14 ] kR

—jpcos ¢psin @ sinng’ sin ¢’ + jp' sin @’ sin ng’ sin ¢’ cos ¢’ } e PR ds'

Invoking even and odd symmetry and setting the observation point at ¢ = 0 to eliminate terms we obtain

Z A / Ty () / [0/ sin 6 sinng’ cos ¢’ sin ¢’ 4 psin 6’ sin ng’ sin ¢’
0

1+ kR _,
—p'sin 6’ sinng’ sin ¢’ cos ¢’ %e‘ﬂde(b'ds'
’ 1 / 4 1 k .
H! = _2]_77 ZAflk /A’ Ty (8') psin 9'/0 sin ¢’ sin nqﬁ'%Reﬂdeqﬁ'dS’ (728)

k K
~/
For the ¢ component term we obtain

’T/ A —JkR
e —/ZM k +J”¢z-¢’xve da/

AT R
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/ 2
Hf/ _ _i ZA;(,;]C Tk;/ (8 ) / ejn¢ |:,Z\ (b/ % (? _ 7}/):| 1+]kR —]kR (SI) dd)/dsl
k 0

TR
- 1 § AY / Ty (') /27r [cosng' + jsinng'|
47T nk A/ k 0

k k
[— sin ¢’ (pbmqﬁ p sin ¢ ) —cos ¢’ (p cos ¢ — p cos (b/)}
1+ jkR _
]%j?) Jde¢ld /
1 , 2
= —— ZA%/ Ty (s') {—psin¢cosng’sin ¢’ + p’ cosng’ sin ¢’ sin ¢’

—pcos ¢ cosng’ cos ¢’ + p' cosng’ cos ¢’ cos ¢’ — jp sin ¢ sinng’ sin ¢’ + jp’ sinng’ sin ¢’ sin ¢’
kR .
—jpcos psinng’ cos ¢’ + jp' sinng’ cos ¢’ cos ¢’ } L+ ] e IR ds’

Invoking even and odd symmetry and setting the observation p01nt at ¢ = 0 to eliminate terms we obtain

Z A? / Ty (s") / [0/ cosng’sin® ¢’ — pcosng’ cos ¢’ + p’ cosng’ cos® ¢']
0

1 —|—Rj3kRe_ijd¢,dS,
i 1+9 . g 1 kR
H¢ = —|— ZA / Ty () {p/o cos ¢’ cos n¢/—+Rj3kRe”de¢/ — p’/o cos n¢/—+R‘73 e IR | ds'
(729)

The ¥ component of His

R _ o—JikR
H, = —y-/s/J(?')XVZlWRda'
= HY+H?
’ Tk’ e kR /Tk/ / e JkR
_ t Jrn(Z) ¢ +n¢> /
_ /ZA g7 x v da+/ZA ]y¢xv4ﬂ_Rda
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Again doing the calculation term-by-term, for the v component term we obtain

, 1 ' T (8" 2™ . . —spq 1+ 5ER
iy = +EZA%/ AT [ B 7 e M o gt

27
= ZA / Ty (s )/O [cosng' + jsinng'] [cosf (pcosp — p’ cos¢’) —sinb cos ¢’ (z — 2')]

1+ ]kR
R3
27
= Z A" / Ty () / {cosng [cos®’ (pcosg — p' cos¢') —sinb cos ¢’ (z — 2')]
0

1+ jkR
R3

e IRRAY ds'

+jsinng’ [cos0’ (pcos ¢ — p' cos¢') —sinf cos ¢’ (z — 2')] } e IRy ds'

2m
= +47r Z A / Ty (') ; {p cos ¢ cos B’ cosng’ — p’ cos b’ cosng’ cos ¢’
—sin 9' (2 — 2") cos ¢’ cosnd’ + jpcos ¢ cos ) sinng’
1+jER
3
Invoking even and odd symmetry and setting the observation point at ¢ = 0 to eliminate terms we obtain

’ 1 ’ 4
H = +o- E Aﬁlk/ Ty (s’)/ {pcost cosng’ — p’ cos 0’ cosng’ cos ¢’ —sin 6’ (z — 2') cos ¢’ cosng'}
u A 0
k k

—jp' cost sinng’ cos ¢’ — jsinf’ (z — 2') cos ¢’ sinng’} e PR ds’'

1+ jkR

= e IRRAY ds’

H;/ = - ZAZ;C/ Ty () {[Sinel (z—2")+p cost] / cos ¢’ cosngb'%e*jkl%dgb' (730)
: 0

k Al
4 1+ jk .
—pcos@'/ coanb'%Re_Jdeqbl]
0

-~/
For the ¢ component we obtain
’ Ty e JkR
¢ _ ¢ k +Jn¢> !
Hy—/E:A o] ¢XV47TRa

L+ jkR
—+R73 e IR s

, 1 2m
HY =—— Z A%, /A Ty (s) / [(z = 2')sin¢’ cosng’ + j (z — 2’) sin ¢’ sinng']
k I 0
Invoking even and odd symmetry and setting the observation point at ¢ = 0 to eliminate terms we obtain

i ZA / el ){(z_z/)/o sin ! sinf el as (731)

Alternative Derivation of H* (r) Since this procedure proved successful for E°, we do the same
thing with K (-) for H®.

K (7) (732)
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where [21]
Kii = —jno {sinvysinvg (2, — z4) + Py sin vy, cosvy — p, cosvysinvg } TpyTy Hyy,
K;flt =y {[sinvy (zp — 2g) + p, cosvg| Hen — p, cosvgHy, } T,T,
K,tj = —no {[—sinvy (2, — 2¢) + p, cosvp| Hen — p, cos vy} T,T,
K;fl(b = 310 (2p — 2) TpTy Hon

and where ) N
H, = Atq/o cos n¢%eﬂ‘m
" 1+ jkR) _.
ch = Atq/ COS¢COS nqﬁ%efﬂd%
0
" 1+ jkR) _,
Hg, = Atq/ sin ¢ sin nqﬁ(—I_R—é)efij

0
Note the division by 7, in Equation 732. This arises because both impedance matrix and right hand side
are multiplied by 7, in order for the magnetic field integral equation to be similar in scale to the electric
field integral equation [21]

To look at the ¥ component we set v, = 7/2.
K,flt = —jn, {Sin ve(zp — 2¢) + Py COS l/q} T;Hsn
Kl = no{[(zp = 2)1} T Hen
. 1
H: = 2]_77 {sm vy (2p — 2q) + p, cos I/q} T(;Hsn 5 (zp — 24) Tchn

The terms in this expression are identical to a combination of Equations 725 and 727.

To look at the Z component we set v, =0

K,jf = jnop, sin VqT;Hsn
Ki =g {eptlen = pyHn} Ty
s __ J . t o}
H = —%pp slnquqHsn + o {ppch — Pan} Tq

The terms in this expression are identical to a combination of Equations 728 and 729.

To look at the 7 component we have contributions from K®* and K¢?.
K,‘flt =1 { [Sin v (zp — 2¢) + Pq €OS l/q} Hep — p), cos l/an} T;
K8 = 1o (op — 7) T3 Hon |
H; = f% {[Sinyq (2p — 24) + p, cO8 I/q] Hep — py, cos l/an} th — 2J_7r (zp — 24) Tj’Hsn
The terms in this expression are identical to a combination of Equations 730 and 731.

The above equations for He are implemented in the near field module in the subroutine kop nf.
In the near field module the variable field scatt is filled in the subroutine nfield fill which sets
the observation point 45 and z.s and calls get nearfield which returns all the field components. In

N
get nearfield calls are made in sequence to lop _nf, which calculates the components contributing to E*
and to assemble nf, which multiplies the components by the eigenvector, to kop nf which calculates

—
the components contributing to H* and again to assemble nf. The field is written in a standardized
format for plotting by write near field.
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Figure 46. BOR geometry

7.4 Running CICERO EV

In this section we describe the steps needed to run CICERO _EV and get out a set of files containing
the electric fields in a cross section of the BOR so that we can get statistics on them. These steps are
complicated in part because we have to generate an input deck for CICERO. Although we have software
that does this from a mesh generated by PATRAN, we don’t have software for a mesh generated by
I-deas, so we have to kluge an input deck together.

Step 1. Use I-deas to generate a boundary of the BOR in the xz plane as shown in Figure 46. Other
than the exception discussed in Step 3, I-deas orders the element and node ids on a boundary so that they
increase monotonically as we progress along the boundary. This feature is a requirement for the CICERO
input deck. Also, the number of points on the boundary must be odd.

Step 2. Convert the I-deas *.unv file to a *.jfg file using i2j [23].

Step 3. I-deas first writes out the end node ids of a boundary and then writes out the intervening ids.
We use a text editor to edit the *.jfg file and put the nodes in the order needed by CICERQO. Using the
nodes on the two boundaries shown in Figure 47 as an example , we change the node order in the *.jfg file
from column 1 to the order shown in column 2.

original order | modified order
id1 id1
id2 id3
id3 id4
id4 id2
id5 id5

We also change very small numbers (z =107'7) to (z = 0.0). Use the display of nodes in I-deas to help
with editing the *.jfg file.

Step 4. Run convert jfg.f which converts node data given in the input.jfg file to a format needed
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Figure 47. I-deas node numbering scheme
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by the CICERO EV input deck input. The formatted file is in input.pnts.

Step 5. Edit input by creating the first six lines in accordance with the description in Section 7.1
above and then inserting input.pnts.

Step 6. To run a frequency sweep to find the cavity resonances by the behavior of the condition number.
Modify CICERO _EV.f by setting calculate nf = .FALSE. Run generate frequency Ist.f, which
outputs the file cicero freq.lst. Run CICERO EV with input and cicero freq.lst to obtain the
output file condition number.out.

Step 7. Run the code general wg.f which takes the file condition number.out and outputs the
file frequency.lst, which gives the frequencies where a peak in the condition number occurs.

Step 8. Use I-deas to generate a visualization grid. Output the grid as a *.unv file. Convert the grid
to a *.jfg file using i2j. Modify cicero ev.f by setting calculate nf=.TRUE. Edit frequency.lst
to have the correct format (frequency.lst groups the frequencies in groups of twenties) and copy to
cicero_freq.lst. Run CICERO EV again to get individual files containing the electric field on the grid
for each frequency in cicero freq.lst. These files are labeled with a base name given by the user and an
extension *.nfld??. Where 77 designates a number long enough to accommodate all the frequencies in
cicero_ freq.lst.

Step 9. Change the names of the electric field files using scripts. For example, with a base name of
axbt so that the near field files generated are: axbt.nfld00, axbt.nfld01, ... axbt.nfld99 , we change
the file names to ones that have the frequency in the base name and an extension of *.nfld0. The previous
example gets changed to axbt 1.4GHz.nfld0, axbt 1.5GHz.nfld0,...axbt 2.0GHz.nfld0. Make a
list of the base name of all *.nfl0 files that we are going to get statistics on in nearfield.lst.

Step 10. Run abt mO.f Inputs are all the *.nfldO files and the nearfield.lst from Step
9 and the file kp.lst, which contains a list of the resonant wavenumbers for a bouncing ball mode.
The codes bowtie kp even.f and bowtie kp odd.f generate kp.lst. Output of abt mO.f is
bin_stat mO0.txt, which provides data for a histogram plot and ef scatter mO0.txt, which is the
un-binned histogram data.

7.5 Analytical Problem

In this section we will analytically solve for the modal E and H fields inside a PEC cylindrical cavity
having a radius p = a and length z = d. We will also calculate the wall current J and a quantity related
to the wall charge: V - 7 analytically. The numerical calculations using CICERO _EV for a cylindrical
cavity will be compared to these analytic solutions to give us confidence that the numerical calculations are
correct.

7.5.1 TM Modes

For modes TM to z we have the magnetic potential [24]
A =
For the cylindrical cavity ¥ must have the form

pT™M — g (M) e’ cos (%rz)
a

npq

where n =0,1,2,..;p=1,2,3,..;and ¢ = 0,1, 2, ...; J, is the Bessel function of the first kind, order n.
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is the p'h

and the H fields are

In cylindrical coordinates

On the bottom of the cylinder (z = 0,

1
p

On the side of the cylinder (p = a,n = —p)
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zero of J,. There is a degeneracy for n # 0. The E fields due to this potential are
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The resonant frequencies of the TM,,,, modes are
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7.5.2 TE Modes

For modes TE to z we have the electric potential [24]

355



For the cylindrical cavity ¥ must have the form
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7.6 Verification of n=0 Modes

If we numerically solve for the modes in PEC cylindrical cavity where the radius a = 1 m, and the
length d = 1 m using CICERO _EV and compare to the analytic solution from the preceding section, we
obtain the following results for the resonant frequencies when n = 0.

CICERO EV (MHz) | Analytic (MHz) | Mode

1154 114.75 TMoro
190.6 188.78 TMop11
238.7 236.43 TEo11

266.4 263.38 TMogo
306.8 303.04 TMo21
326.1 321.00 T™Mors

CICERO _EV is a method-of-moments (MOM) code which has two parts. We first solve for the
current on the wall of the cavity; then in a separate step we solve for the electric field throughout the
interior of the cavity due to the wall currents. This naturally divides the verification procedure into two
parts: 1) verification of the current calculation and 2) after demonstrating that the current is correct,
verifying the field calculation.

7.6.1 TMOlO Mode

This is an n = 0 mode that CICERO _EV finds at 115.4 MHz (114.75 MHz analytically). We will
first do a comparison of the wall current calculated numerically and analytically. For this mode, only J;
exists on the wall of the cavity. This is compared in Figure 48 which plots J; along the boundary s from
p=0,2=—-0btop=1,z= —2}.5 top=1,2=0.5,t0 p=0, 2= 0.5. This boundary description will be
used for all subsequent plots of J (s) in this report. Since we are dealing with comparisons of eigenvectors,
which can differ from each other by a complex constant, we scaled all analytical quantities (J, F and H)
associated with this mode by the factor (—0.2672,0.0). This factor was obtained by requiring the analytic
and numerical current to match at s = 1.5 m. The comparison of current is good except for deviations
adjacent to the axis, which comes from representing J/p as a triangular basis function in CICERO _EV,
and at the corners (s =1 and s = 2 m), which we believe is due to discretization.

Equations 733-735 show that for this mode £, = E4 = 0 and
B, = —jwpdo (zo1p)
Figure 49 shows the I, component of the field as calculated by CICERO _EV. The field is small
throughout the space except at the ends of the cylinder on the axis where there is a hot spot that doesn’t

obey the boundary condition and is asymmetrical in z. This is obviously an error possibly caused by the
afore-mentioned basis representation at the axis.

Figure 50 shows proper behavior for the F, field component except near the axis ends where, again
there is an un-physical hot spot — not as obvious as with F, because it is being masked by the correct
on-axis maximum of F,. Figure 51 is a more detailed comparison of E, (p) at z = 0 as calculated by
CICERO _EV to the scaled analytic result. The agreement is good even as the observation point
approaches the boundary.
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Figure 48. TMg;¢p mode current on boundary.

F= 1.15400000E408 HZ EXCT:

URKNOWN 3DOF VECTOR - 3 MIN: 1.76E-02 MAX: 3.81E+01

r

FRAME OF REF:

PART

Scat E

Figure 49. TMy1p mode E,

Only J; is non-zero

VALUE OPTION:ACTUAL
SHELL SURFACE: TOP
810401

3

430401

+04D+01

. 66D+011]

« 280401

900401

520401

+ 140401

. 630+004

TED-0

359



360

VALUE OPTION:ACTUAL
SHELL SURFACE: TOP

-. 295010
.. #.87040
-. e
.. v
.. Y
.. l-mu
.. o
6. SE0+01)
4, 14001
1. 32001l
Figure 50. TMg;p mode F,
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Figure 52. TMyp19 mode Hy

The only component of H field in the cavity for this mode is Hy which is plotted unscaled in Figure 52.
Again, the form looks good except for a slight non-uniformity in z. Figure 53 compares Hy (p) at z =0
calculated by CICERO _EV to the scaled analytic result. The agreement is good until about one-half a
cell away from the boundary (the boundary elements in this problem are 0.1 m long), then H, calculated
by CICERO _EV deviates from the analytic results and doesn’t match the wall current calculated by

CICERO_EV (ﬁ x H = 7) This behavior indicates that this discrepancy is due to the singularity
contribution from the wall element that is being approached. This singularity, which is contained in the

K (-) operator for calculating the current, but is also specific to test locations on the wall, was ignored in
calculating H. To avoid this problem we have to maintain a one-half wall cell distance between the wall
and the near field location when obtain the cavity statistics. This occurs automatically if the elements
forming the near-field grid locations near the wall are the same size as the wall elements. This is the case
in Figure 52.
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TMO010 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=115.4 MHz, z=0.0 m, phi=0 degrees
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Figure 53. Comparison of Hy (p) at z = 0.0 m, ¢ = 0°
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TEO11 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0m, f=238.7 MHz
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Figure 54. TEp1; mode current on boundary. Only J, is non-zero

7.6.2 TE011 Mode

This is an n = 0 mode that CICERO _EV finds at 238.7 MHz (236.43 MHz analytically). Figure 54
shows a comparison of Jy (s) which is the only component of the current for this mode. The comparison

is good except for the axis and corners. For this mode we scaled the analytical quantities by the complex
factor (0.0,147.45) .

Equations 736 - 738 shows that TEy;; mode has E, = E, = 0 and
Ey = x,,J5 (2),,p) sin (72)
E, is plotted unscaled in Figure 55. The form of the field looks good as discussed in [25] and better than
the above TM results. Figure 56 shows the comparison of Ey (p) at z = 0.0 m. There are no discrepancies

for the tangential E field as it approaches the wall because the singular behavior is included in the I3 )
operator and thus in the tangential F field calculation.

363



VALUE OPTION:ACTUAL
SHELL SURFACE: TOP

3.150+02,
2.84D+072
2.530+03
2. 220402
1. 910403
1.60040,
1.29040.
9. 81040:
6. 72040
3.62040:
5

Figure 55. TEg1; mode Ey
TEO11 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.7 MHz, z=0.0 m, phi=0 degrees
0
-100 [ — Ey Cicero_ev |
= Analytic Ey scaled by j147.45

E

2 -200

o

-300 \_/
0.0 0.2 0.4 0.6 0.8 1.0

p(m)

Figure 56. Comparison of Ey4 (p) at z = 0.0 m, ¢ = 0°
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Figure 57. TEgi; mode H,

Figure 57 shows the unscaled H, over the cavity cross-section. Figure 58 shows H, (z) at p = 0.5 m.
The comparison is good except for near the wall for the reasons given previously.
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TEO11 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.7 MHz, p =0.5 m, phi=0 degrees
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Figure 58. Comparison of H, (z) at p = 0.5 m, ¢ = 0°
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Figure 59. TE(;; mode H,

Figure 59 shows the unscaled H, field over the cavity cross-section and Figure 60 shows H, (p) at
z=0.0 m.
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TEO11 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.7 MHz, z=0.0 m, phi=0 degrees

15
| | |
= Hz Cicero_ev
= Analytic Hz scaled by j147.45
1.0
0.5 N
£
<
N
T
°° \\
-0.5
-1.0
0.0 0.2 0.4 0.6 0.8 1.0

p (m)

Figure 60. Comparison of H, (p) at z = 0.0 m, ¢ = 0°
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Figure 61. TMgyo mode F,

7.6.3 TMOQO Mode

The TMg2g mode has E, = E4 = 0 and

E. = —jwpdo (wo2p)
This is the behavior shown by the CICERO _EV results in Figure 61 with the same problems near the
ends of the axis discussed previously.

7.7 Verification of n=1 Modes

If we numerically solve for the modes in PEC cylindrical cavity where a = 1 m, and d = 1 m using
CICERO_EV and compare to the analytic solution from the preceding section, we obtain the following
results for the resonant frequencies when n = 1.

CICERO EV (MHz) | Analytic (MHz) | Mode

175.9 173.7 TEi11
184.0 182.5 TMi10
238.1 236.4 TMi11

The resonant frequencies predicted by CICERO _EV have correspondence with the analytical modes
as indicated in the table. We decided to use the TEq1; and TM;;1; modes as our n = 1 test cases.

7.7.1 TE111 Mode

For the TE 11 case, in order to understand the connection between current and field results, we
examined in detail why FE, of this mode was small compared to the other components. We knew that E,
due to the vector potential from currents on the top and bottom of the cavity had to be identically zero
because both J; and Jy4 on these two surfaces didn’t have a z component. We checked the code and E. (A)
was indeed zero. Therefore, E, (¢) from the top and bottom surfaces also had to be zero. This meant that
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TE111 Mode Analytic vs. Cicero_ev
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Figure 62. Comparison of analytical and numerical wall current for TE;1;

¢ had to be constant with respect to z variation, which could only happen if the charge on top and bottom
of the cavity was zero and this would happen only if J; and Jg were in related in very specific ratios.
We used the analytical calculation of the wall current and wall charge discussed above to understand the
behavior of the current and charge on the walls and compare them to the values given by CICERO _EV.

The analytical expressions for the TE modes indicate that at each point along the bottom and top of
the cylinder, the charge due to J, and Jy must cancel each other out. This gives the clue that the two
components must be 90° out of phase with each other, i.e. if J, is real and negative, then Jy is purely
imaginary and has a negative imaginary part. The two components must be in the correct ratio with
respect to each other for this charge cancellation to occur. Since the charge has a sinusoidal variation along
the side of the cylinder, there will be a z component of the field from the scalar potential which must be
cancelled by the z component of the vector potential.

A complicating factor is that, as discussed previously, if an eigenvector is a solution to an eigenvalue
problem, then a complex constant times the eigenvector is also a solution to the eigenvalue problem. If we
find the complex constant that relate the analytical and numerical solution of one component of the current,
then all quantities, such as charge and electric field should be related by the same complex constant. For
the TE11; case of interest, we multiply the analytical solution by the factor (—;208.64). A comparison of
the numerical versus analytical current density is shown in Figure 62. This shows that CICERO _EV
is calculating the current density correctly. There are slight discrepancies near the junctions between the
bottom and the side surfaces (1 on the abscissa) and between the top and side surfaces (2 on the abscissa).

Figure 63 compares the numerical versus the analytic V - 7 which is related to charge density. Here the
numerical results oscillate around the analytical results, particularly on the top and bottom surface where
the charge density is analytically zero. This oscillation is to be expected, since the current density is being
differentiated and numerically we should expect the field from the charge to be small, but not identically zero.

In Figures 64-67 we compare various components (p and ¢) of the analytical F field to the same
components from CICERO _EV at various cuts in the ¢ = 0° plane. The cuts are at z = 0.5 m (midway
between the end planes of the cylinder) and at p = 0.5 (half-way to the outer radius). Most of the results
show good agreement except for E, along the z = 0.5 m cut near p = a in Figure 64. Initially we thought
this was due to the fact that we were approaching a junction between two elements on the outer surface, but
when we moved the end point down to where it intersected the outer surface in the center of the element,
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TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz
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Figure 63. Comparison of analytical and numerical V - 7 for TE111
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TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz, z=0.5 m, phi=0 degrees
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Figure 64. Comparison of E, (p) at z =0.5 m, ¢ = 0°

the anomalous results remained. This bears further examination. Again because of the way we obtain our
near fields when building cavity statistics this is not a problem.

For the TE{1; modes the color plots of F,, E4, and E, shown in Figures 68 - 70 show good behavior of
the results. Analytically E, should be identically zero, which is not the case in Figure 70. If we look at
the scale on the right side, however, the highest value of this component is the same order of magnitude as
the lowest value of the other two components. This finite value of E, is due to numerical error and should
improve with a finer grid.
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TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz, z =0.5 m, phi=0 degrees
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Figure 65. Comparison of Ey4 (p) at z=0.5m, ¢ = 0°

TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz, rho=0.5 m, phi=0 degrees
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Figure 66. Comparison of E, () at p =0.5 m, ¢ = 0°
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TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz, rho=0.5 m, phi=0 degrees
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Figure 67. Comparison of E4 (z) at p=0.5m, ¢ = 0°
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Figure 68. Correct E, for TE;;; mode
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Figure 69. Correct Ey for TE;1; mode
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Figure 70. Correct E, for TE;1; mode
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Figure 71. TE;;; mode H,

Next we will compare the H field to analytical results. Figures 71 through 76 shows H,, Hs and H,
over the cross-section of the cavity and comparisons with analytical results for various cuts across the
cavity.
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TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz, p =0.25 m, phi=0 degrees
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Figure 72.  Comparison of H, (z) at p = 0.25 m, ¢ = 0°
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Figure 73. TE;1; mode Hy
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TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz, p =0.25 m, phi=0 degrees
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Figure 74. Comparison of Hy (2) at p = 0.25 m, ¢ = 0°
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Figure 75. TE;;; mode H,
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Hz (A/m)

TE111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=175.9 MHz, z=0.0 m, phi=0 degrees
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Figure 76. Comparison of H, (p) at z = 0.0 m, ¢ = 0°
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TM111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.1 MHz
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Figure 77. Comparison of analytical and numerical wall current for TM1;

7.7.2 TM111 Mode

In this section we will compare the TM7;; mode at the resonant frequency of 238.1 MHz. Figure
77 shows good agreement between the analytical and numerical current density. There is error near the
junctions between the side and the top and between the side and bottom and it is more error than we
saw for the TE11; mode. In this case we have to scale the analytical results by the factor (—0.2425,0.0) .

Figure 78 shows comparison between analytical and numerical calculation of V - 7. For this case there
is a significant deviation between analytical and numerical results near the axis of the cylinder. More

disturbingly, there is a sign error between the two results — the scaling factor is (+0.2425,0.0). We will
have to examine this further.

Figures 79 - 83 show comparisons between analytical and numerical results of E,, E4 and E, in the
¢ = 0° plane for cuts along p and z (the same as we did for the TE;1; modes). Comparisons for E, along p
at z = 0.5 m are not plotted because both numerical and analytical calculations show E, = 0. The results
show the same trend as the TE;;; results. E, shows a sharp, anomalous discontinuity near p = a in Figure
79. E, exhibits the same behavior near its endpoints in Figure 83. FE, shows a consistent sign error and
E, (z) shows excessive error and non-conformance to the boundary condition (it should go to zero at the
boundary) in Figure 81. The results overall are worse than the TE;1; results.
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TM111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.1 MHz
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Figure 78. Comparison of analytical and numerical V - 7 for TM11

TM111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.1 MHz, z=0.5 m, phi=0 degrees
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Figure 79. Comparison of E, (p) at z = 0.5 m, ¢ = 0°
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TM111 Mode Analytic vs. Cicero_ev

a=1.0 m, d=1.0 m, f=238.1 MHz, z=0.5 m, phi=0 degrees
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Figure 80. Comparison of Ey4 (p) at z=0.5m, ¢ = 0°

TM111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.1 MHz, rho=0.5 m, phi=0 degrees
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Figure 81. Comparison of E, (z) at p =0.5 m, ¢ = 0°
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TM111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.1 MHz, rho=0.5 m, phi=0 degrees
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Figure 82. Comparison of E4 (z) at p=0.5m, ¢ = 0°

TM111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.1 MHz, rho=0.5 m, phi=0 degrees
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Figure 83. Comparison of E, (z) at p = 0.5 m, ¢ = 0"
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VALUE OPTION:ACTUAL |
SHELL SURFACE: TOP|
1.200402,

Figure 84. E, for TMy;1; mode

Figures 84 - 86 show color plots of the TM;1; mode. Overall the results look reasonable. The jumps
in field near the boundary seen above are not seen in the color plots. The boundary condition for F, and
Ey4 near the axis don’t seem to be correct. This will have to be checked out in the future.
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Figure 85. FE4 for TM11; mode
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Figure 86. FE, for TM;1; mode
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Figure 87. TMj1; mode H,

Figures 87 through 90 shows H,, Hy and H, over the cross-section of the cavity and comparisons with
analytical results for various cuts across the cavity.
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TM111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.1 MHz, p =0.25 m, phi=0 degrees
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Figure 88. Comparison of H, (z) at p = 0.25 m, ¢ = 0°
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Figure 89. TMj1; mode Hy
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TM111 Mode Analytic vs. Cicero_ev
a=1.0 m, d=1.0 m, f=238.1 MHz, p =0.25 m, phi=0 degrees
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Figure 90. Comparison of Hy (2) at p = 0.25 m, ¢ = 0°
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Figure 91. Quarter bowtie geometry

7.8 Statistical Results

The previous section demonstrated that CICERO _EV can find modes and predict £ and H fields in
a cross-section of the cavity for n = 0 and n = 1. In this section we will discuss obtaining statistics for
the axisymmetric bowtie cavity. Figure 91 shows a quarter bowtie cross section that is revolved around
the z axis to form a cavity. The body of revolution (BOR) has curved ends with a radius of curvature of
R,. The distance from end to end along the center line is L,. The sides of the BOR are also curved with
a radius of curvature of R,. The radius of the BOR at point midway between its two ends is L, /2. The
cross section being considered was taken to be at ¢ = 0, so instead of p we used z.

The particular geometry solved was where L, = L, = 2.0 m, R, = 10 m and R, = 1.5 m. We set
n = 0 in input and swept over the range 1 GHz to 3 GHz. We found 472 modes, both TE and TM. We
decided to concentrate only on the statistics of E., which is non-zero only for the TM modes. Of the 472
total modes only 166 were TM modes, the remaining 306 were TE modes. In obtaining the statistics we
actually looped over all modes and skipped the results that had E, = 0 over the entire cross section. A
typical mode structure plotting E, for the TM mode at 1.0164 GHz is shown in Figure 92. Originally we
solved a complete cavity rather than the half cavity but found that there was a degeneracy for each mode
that caused the field to be asymmetrical in the z direction. Adding the PEC plane through the center of
the cavity at z = 0, removed the degeneracy and enforced symmetry.

Let I = L,/2 and d be the focus location
d=1\/1+R./l (739)

Then the scar frequency separation factor (s) is

_ (kO — kp) L,
s = —1n [%] (740)

where kg = 27 f,/c(f is one of the 106 resonant frequencies calculated by CICERO _EV and c is the
speed of light) and k, = p2n/L,;p=1,2,3,4....

389



Figure 92. TM mode at 1.1064 GHz
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Figure 93. Histogram of quarter bowtie BOR

For each value of ky we first normalize each value of E, contained in the *.nfld0 file by the quantity

/ / E. (z,2) E* (3, 2) dudz

where the integral is taken over the area of the quarter-bowtie cross section. At resonance the fields should
be all real to within a complex constant. We find the phase of the largest E, field within the cavity and
divide each value of E, by this phase to remove the complex constant and make the fields real. For every
value of ko we loop over all values of k,, calculate s for each combination and calculate the quantity

L./2

Vo= / E. (0,z) cos (kpz)dz
0

by integrating numerically, where EZ (0,z2) is the E, field along the z axis of the BOR normalized as
described above. The quantity L,V is calculated and added to one of 100 bins between the values of

s = [—15,25]. At the end of accounting for all kg, k, combinations the values of each bin are divided by the
number of entries contributing to each bin. The result is shown in Figure 93.

Next we will discuss obtaining statistics for the axisymmetric bowtie cavity for the n = 1 mode. The
particular geometry solved was where L, = L, = 2.0 m, R, = 10 m and R, = 1.5 m. The boundary
elements and the elements used to get locations to calculate the near field both had edge lengths of around
1 cm. We set n =1 in the file input and swept over the range 1 GHz to 3 GHz monitoring the condition
number of the impedance matrix. The condition number as a function of frequency is shown in Figure
94. FEach peak of the condition number is a frequency where a mode of this cavity occurs. Counting the
peaks,we found 874 modes over this frequency range, that could be TE or TM. For each of these modal
frequencies we solve for E and H at a series of points that span the cross-section of the bowtie. The fields
for each modal frequency are stored in a separate *.nfldO file. A typical mode structure plotting E, for
the mode at 1.0164 GHz is shown in Figure 95.

Where d and s, were defined above in Equations 739 and 740 and where ko = 27 f,/c (f, is one of
the 874 resonant frequencies given at the peaks in Figure 94 and c is the speed of light) and k, = pr/L,
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Figure 94. Condition number of the impedance matrix vs. frequency in the axisymmetric bowtie cavity for
n=1.

Figure 95. E, at 1.3134 GHz
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Figure 96. Histogram of < LmVp2 > as a function of separation parameter s,

;p=1,2,3,4....100. To obtain the statistics we loop over all the different combinations of ky and k.

For each value of ko we first normalize each value of E, (0,z) (along the Z axis) by the quantity

// «E (z,2)- E* (z,2) dxdz

where the integral is taken over the area of the bowtie cross-section. At resonance, all the field components
should be real to within a complex constant. We find the phase of the largest E, field within the cavity
and divide each value of E, (0, z) by this phase to make the quantity real. Then for each kg, we loop over
all values of k,, calculate s, for each combination and calculate the quantity

L,

/DEZ (0,2) cos (kpz +po)dz  if pis odd
Vo=1q L.
/DEZ (0, 2) sin (kpz + po) dz if p is even
0

by integrating numerically, where Ex((), z) is the E, field along the z axis of the BOR normalized as
described above,

1 d+z
Po = (ko — kp)Z - §Spln |:_d— Z:|
and )
52772
bofi2]
The quantity L.V;? is calculated and added to one of 100 bins between the values of s, = [—15,25]

depending on the calculated value of s,. After accounting for all kg, k, combinations, the values of each
bin are divided by the number of entries contributing to each bin. The result is shown in Figure 96.
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7.9 Numerical Conclusions

In this section we have discussed how we modified CICERO to obtain CICERO EV. This allows
us to find modes and calculate the fields inside a PEC axisymmetric cavity. We have carefully checked
the results from CICERO _EV with analytical results on a circular cylinder for n = 0 and n = 1 and
have found good agreement. We believe that the code will work for all values of n. We used the code to
calculate field statistics in an axisymmetric bowtie cavity. These statistics are compared to the vector scar
theory in [28].

During the course of obtaining the bowtie cavity statistics, we found that the scaled fields inside the
cavity were not entirely real and this could indicate a modal degeneracy. This could be due to formulating
the fields in terms of e/™? rather than a combination of sin (n¢) and cos(ng). A second problem is the
problem seen at the wall-axis junction for the TM010 mode discussed in [25]. This could be solved by
using a finer grid. Finally, we could try to add the singular terms to the H field calculation so that it will
give accurate results next to the cavity wall. This is the subject of future work.

8 CONCLUSIONS

This report explores the construction of high frequency electromagnetic scar enhancements along
periodic orbits in axisymmetric convex (bowtie-like geometry) and concave (stadium-like geometry) walled
cavities. In particular the method that Vaynshteyn [5] introduced to treat high frequency electromagnetic
stable orbits is adapted to the unstable scar case. A random phase reflection is introduced, as Antonsen did
in the two-dimensional bowtie cavity [1], to simply represent the outer chaotic region of the cavity.

The acoustic scalar problem is treated first. Next, emphasis is given to the vector nature of the
electromagnetic problem; in particular, the quasi-rectangular coordinate system introduced by Vaynshteyn
[5] is explored and the vector modal representation is constructed. The critical normalization condition
introduced by Antonsen [1] is examined through the use of a source free electromagnetic energy theorem
where the boundary of the scarred orbit connects the scar amplitude to the total energy in the cavity.
Several approaches to this normalization are discussed, and the approach where the quasirectangular
Hertz potential components are transformed to the prolate spheroidal system seems to be successful. The
distribution plots are constructed for the axisymmetric scar along the center line of the cavity. We also
consider the contribution from the magnetic Hertz potential (or alternatively the orthogonal polarization of
the electric Hertz potential) to the polarization of the field.

The random plane wave construction is also carried out for the scalar and vector cases. The first
azimuthal mode of the field is extracted and renormalized over the cavity volume; comparisons to this
result confirms the proper asymptotic limits of the scar theory. We also discuss the enhancement of this
first azimuthal mode on the central axis of the cavity due to the axisymmetric symmetry of the problem.

Comparisons of the theoretical scar distribution with the axisymmetric numerical simulations are
discussed for the first azimuthal mode in both convex and concave walled cavities. These comparisons
include both Fourier projections along the scarred orbit, as well as field point statistics along the scar orbit
and near the interior foci (in the concave case). Finally, a comparison is made for a single realization of
the scar mode in the concave walled stadium cavity, which confirms that the theoretical scar construction
captures the focal region features of the high frequency electromagnetic solution.
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