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Abstract

This report summarizes the results of a NEAMS project focused on the use of uncertainty and
sensitivity analysis methods within the NEK-5000 and Dakota software framework for assessing
failure probabilities as part of probabilistic risk assessment. NEK-5000 is a software tool under
development at Argonne National Laboratory to perform computational fluid dynamics calcula-
tions for applications such as thermohydraulics of nuclear reactor cores. Dakota is a software tool
developed at Sandia National Laboratories containing optimization, sensitivity analysis, and un-
certainty quantification algorithms. The goal of this work is to demonstrate the use of uncertainty
quantification methods in Dakota with NEK-5000.
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Chapter 1

Introduction

Nuclear reactor simulation and modeling is complex. A wide range of physical phenomena must
be considered, and each of these must be accurately modeled. Uncertainties in these models must
be assessed in any analysis because they can have a significant effect on the conclusions and how
they are used by decision makers. If the uncertainties of a model’s inputs can be characterized, for
example by probability distributions, then the uncertainties can be propagated through the model
to estimate uncertainties on the model’s outputs.

This report is structured as an analyst might proceed through a probability of failure analysis.
The engineering problem involves the heat transfer from hot fuel rods to liquid sodium in a nuclear
reactor. The analyst is asked to determine the probability that the liquid sodium exceeds a threshold
temperature; beyond this temperature the sodium can no longer absorb heat and the fuel rods are no
longer cooled. While the details of the heat transfer problem are greatly simplified in this example,
it is sufficient to demonstrate the steps in the analysis and how Dakota and NEK-5000 might be
used to address a practical problem in nuclear reactor analysis.

1.1 The NEK-5000 SAHEX Model and Dakota

The simplified 6-pin hexagonal assembly (SAHEX) is used as our demonstration problem [9]. The
geometry consists of six fuel rods around a steel control rod, all in a steel hexagonal “can”. The
fuel rods are also clad with steel. The can is open at the top and bottom, and represents a section
of a much longer assembly. Liquid sodium absorbs heat from the hot fuel rods as it flows down
through the can. Figure 1.1 shows the spatial relationship between the fuel rods, control rod, and
the can.

In a real reactor, the fuel rods may deform because of thermal stresses and turbulent flow, and
each fuel rod may generate a different amount of heat for a variety of reasons. Across arrays of
hexagonal assemblies, the thermal and fluid flow conditions can vary significantly. Simulations to
model these various phenomena often involve several different physics codes operating in combi-
nation: for example in [9], NEK-5000 models the the fluid flow and heat transfer, Diablo models
the stress field and deformation of the fuel rods, and PROTEUS models the the nuclear reactions
and heat generation within the fuel rods themselves.
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Figure 1.1. SAHEX model geometry with cutaway showing fuel
rods, control rod, and can.
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In this report we consider a simplified version of the problem. The fuel rods are assumed to
be rigid and the heat generation rate is assumed to be constant but uncertain. Only the fluid flow
and heat transfer are simulated. The flow velocity entering the top of the can is constant, and
no-slip conditions are applied at the rod and can surfaces. Flow is assumed to be laminar and
incompressible. The fluid temperature at the inlet is 600K and the can boundaries are adiabatic.

We use NEK-5000 [5] to compute approximate, steady-state solutions to this problem. NEK-
5000 solves the incompressible Navier-Stokes equations describing fluid flow, in conjunction with
the energy equation to describe heat transfer in the fluid as well as solids. The computational
domain is discretized by the spectral element method, and several time advancement methods are
available for transient or steady-state solutions. NEK-5000 is designed to run on massively parallel
supercomputers and has demonstrated excellent scaling on the largest computing platforms in the
world.

Dakota [1] is a software tool that includes methods for parameter studies, sensitivity analysis,
uncertainty quantification, and optimization. While each of these has its own set of challenges and
solution algorithms, they share a common structure: all involve a number of function evaluations,
and each function evaluation provides a response vector corresponding to a specific input parameter
vector. For an optimization problem, the input parameters are the design variables and the response
vector is the objective function. For an uncertainty quantification problem, the input parameters
have characterized uncertainties and the uncertainties of the responses are computed.

Dakota was designed to handle a function evaluation that involves the approximate solution
of a system of partial differential equations as implemented in a massively parallel, multiphysics
simulation code, such as NEK-5000. It has a file-based, script-driven interface to the simulation
code (each simulation corresponding to a function evaluation) to provide maximum flexibility to
the user. For driving NEK-5000 as the simulation code, the function evaluation includes pre-
processing the NEK-5000 input file to set the input parameter values that Dakota specifies, and
postprocessing the simulation results to extract the response quantities to return to Dakota.

For the studies in this report, each SAHEX simulation took about 15 minutes running on 128
cores (16 nodes at 8 cores/node.) In this case, the function evaluation also included submission
to the queue system of massively parallel computing platform. It is also possible to run Dakota
as a parallel job, and let Dakota manage the execution of each simulation on the nodes the queue
system provides, although this can be complicated depending on the platform and queue system.

1.2 Input Random Variables and Response Quantities

For this study our hypothetical analyst has been asked to investigate the temperature of the liquid
sodium. If the sodium gets too hot, above 660.0K, it will undergo a phase change and will no
longer carry heat away from the fuel rods. The analyst is asked to calculate the probability that
the sodium will remain below this temperature, while accounting for uncertainties in other aspects
of the SAHEX model. The maximum sodium temperature in the flow field, TNa,max, can be easily
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determined from the NEK-5000 solution.

Six inputs were considered to be uncertain. Four are associated with the material properties
of liquid sodium: the density (ρNa), the dynamic viscosity coefficient (µNa), the heat capacity
per unit volume (expressed as (ρCp)Na), and the thermal conductivity (kNa). The volumetric heat
generation rate of the fuel (qvol) and the fluid inflow velocity (vz) complete the set. Table 1.1 lists
these inputs, nominal values, and the distributions used to characterize their uncertainties.

Parameter Nominal Value Probability Distribution

ρNa 0.85 g/cm3 Normal, σ = 0.03
µNa 0.26 g/(cm · s) Normal, σ = 0.03
(ρCp)Na 1.08110 J/(cm3 ·K) Normal, σ = 0.05
kNa 0.7 W/(cm ·K) Normal, σ = 0.04
qvol 100.0 W/cm3 Lognormal, σ = 15.0
vz 65.3896 cm/s Uniform, [45.3896,85.3896]

Table 1.1. Uncertain input parameters and their characterization.

The nominal values listed in Tab. 1.1 are estimates but may not be representative of liquid
sodium; in particular the viscosity coefficient appears to be quite high. The probability distri-
butions for the sodium parameters were chosen arbitrarily, with the goal of providing detectable
uncertainties in the flow field temperatures. The heat generation rate and flow velocity were chosen
with the expectation that they would have a strong effect on the temperatures. The distribution of
qvol was intended to produce high temperatures but infrequently. The velocity distribution was cho-
sen to represent, perhaps, a variety of different locations in a large array, and through its bounds,
to have a strong influence on the temperature. No specific reactor designs informed these choices.
Finally, the choice of 660K as the threshold temperature was made after an initial parameter study,
and has no significance for true sodium.

1.3 Sensitivity Analysis and Uncertainty Quantification Approach

Three classes of methods were used for the SAHEX analysis. Sampling methods are the most
common, and many methods for sample design have been proposed to achieve a variety of objec-
tives. Sampling methods are robust but often require a large number of function evaluations to
achieve accurate results. Stochastic expansion methods build a high-order polynomial model of
the response, and can be more efficient than sampling methods if the response functions have a
high degree of regularity (are smooth in many derivatives). In contrast to sampling and stochastic
expansion methods, reliability methods do not seek a high fidelity model of the entire response
surface; instead they rely on strong assumptions about the response behavior, or focus on just a
small region or a point of the response surface.
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Sensitivity analysis (SA) and uncertainty quantification (UQ) are closely related. In uncertainty
quantification, input uncertainties are propagated through the computational model to determine
the uncertainty of the responses. When inputs are modeled with probability distributions, the goal
of an uncertainty quantification study is to obtain a probability distribution of the responses. In
a sensitivity analysis, the input variables that affect the response the most are identified. It is not
necessary to have distribution information on inputs to perform sensitivity analysis: the goal is to
identify the most significant inputs and usually only bounds on the inputs are specified.

It is often convenient to do both UQ and SA studies, even when only one is the main objective.
Sensitivity analysis is most often used in the exploratory stage of an analysis, to consider a large
number of uncertain input variables and identify the most important ones as a precursor to a more
accurate uncertainty quantification analysis with a smaller number of inputs. For the SAHEX
model, sampling methods and stochastic expansions were used for both sensitivity analysis and
uncertainty propagation. Reliability methods were used for uncertainty quantification.

1.3.1 Sampling Methods

In a sampling method, each input random variable is characterized by a probability distribution.
A sample point is taken from the input distributions (one value per variable) and the function is
evaluated from this sample point, producing a response. This process is repeated a number of times
(say, N times) to build up a discrete representation of the distribution of response values.

Random sampling (while still respecting the distributions of each input variable) requires a
large number of sample points to accurately determine the output distribution. In particular, resolv-
ing the tails of the output distribution takes a very large number of points. Nevertheless, random
sampling is easy to implement, easy to understand, and produces unbiased estimates of descriptive
statistics.

Latin Hypercube Sampling (LHS) is a stratified sampling. [8, 7] Each input distribution is
divided into N strata (or bins) of equal probability, and each sample point gets a value from a unique
bin for each variable. In this way, the entirety of each input distribution is sampled uniformly and
the clustering of sample points observed in random sampling is avoided. As a consequence, LHS
requires fewer sample points to achieve the same accuracy as random sampling, and for some
problems the convergence rate (reduction of error as N increases) is higher. Another advantage is
that for correlated input variables, LHS can generate a sample design that satisfies the specified
correlation structure.

1.3.2 Polynomial Chaos Expansions

Stochastic expansion methods approximate the outputs of the uncertain system through series ex-
pansions of standard random variables. [11, 2] Polynomial Chaos Expansions are a particular class
of stochastic expansions that model the response by an orthogonal polynomial basis of the input
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random variables. [4] Function evaluations are used to determine the coefficients of these poly-
nomials. Once the coefficients of the polynomials are determined, the polynomial model can be
analyzed or sampled for much less cost than the simulation code.

In polynomial chaos expansions (PCE), the polynomials are usually chosen according to the
Weiner-Askey scheme that provides an orthogonal basis with respect to the probability density
function for the input random variables. The expansion is based on Hermite polynomials which
are functions of the Gaussian random variables. The goal of a PCE analysis is to determine the
unknown coefficients of the Hermite polynomials in the series expansion. Usually, these coef-
ficients can be calculated from a limited number of model simulations. There are a variety of
approaches for generating the sample points, but typically tensor product grids or sparse grids are
used. Structured sampling schemes typically result in more accurate estimates of the coefficients
of the polynomials than random sampling does, but this depends on the order of the polynomials
needed to resolve the uncertainty in the response functions. Two PCE studies were carried out for
this report. The first used a 2-level sparse grid design, and the second used a 3-level sparse grid
with “dimension preference.” Dimension preference allows the user to increase the polynomial
accuracy for some variables and reduce it for others.

An important distinguishing feature of the PCE methodology is that the solution is expressed as
a random process, not merely as statistics as is the case in many nondeterministic methodologies.
PCE can be most efficient when there is some additional information from the physics of the
problem about what type of approximating polynomials are most appropriate. One advantage of
stochastic expansion methods is that the moments of the expansion (e.g., mean or variance of the
response) can be written analytically, along with analytic formulations of the derivatives of these
moments with respect to the uncertain variables.

1.3.3 Reliability Methods

Reliability methods are probabilistic algorithms for quantifying the effect of uncertainties on re-
sponse metrics of interest. They compute approximate response function distribution statistics
based on the specified probability distributions for input random variables. These response statis-
tics include mean, standard deviation, and cumulative or complementary cumulative distribution
function (CDF/CCDF) response level, and probability/reliability level pairings. Reliability meth-
ods are often more efficient at computing statistics in the tails of the response distributions (events
with low probability) than sampling-based approaches, because the number of samples required to
resolve a low probability can be prohibitive. Consequently these methods are often used to assess
the probability of failure of a system when confronted with an uncertain environment.

The Mean Value method [6] and the family of most probable point (MPP) search methods are
local reliability methods; they are gradient-based and employ local approximations or incorporate
a local optimization method. They require few function evaluations, but are only effective when
the limit state function is smooth and does not have multiple MPPs. The efficient global reliability
analysis (EGRA) method [3] is designed to address these drawbacks by first building a Gaussian
process model from a small number of samples, then adaptively adding function evaluations to
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pinpoint the limit state. That is, EGRA uses function evaluations to accurately determine a specific
point of the response CDF, while the objective of the sampling and PCE methods is to represent
the entire response distribution.
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Chapter 2

Sensitivity Analysis Results

For this report, sensitivity analysis and uncertainty quantification were performed on the same
set of data for the sampling and uncertainty quantification studies. Three LHS studies were per-
formed, with 60, 300, and 600 samples, and correlation coefficients were examined. Correlation
coefficients measure the degree to which the response is linearly related to each input. Two PCE
studies were performed, and Sobol’ sensitivity indices were calculated. Sobol’ sensitivity indices
estimate how much of the output uncertainty can be attributed to each input. Sobol’ sensitivity
indices can also be computed for LHS designs, but require significantly more function evaluations
to do so.

2.1 Scatter Plots

First consider scatter plots of the response QOI, TNa,max. Figure 2.1 shows scatter plots of TNa,max
vs. each of the uncertain input variables. Each scatter plot shows the results of all the simulations
in the LHS60 study. There is one point from each NEK-5000 simulation. Scatter plots give a
visual indication of the relationship between the response quantity and the uncertain input. For
example, there appears to be a broadly linear relationship between TNa,max and the heat generation
rate, qvol , and also between TNa,max and vz. There does not seem to be a strong relationship with
any of the other inputs. Figures 2.2 and 2.3 show scatter plots for the LHS300 and LHS600
studies, respectively. While many more points are shown, the basic relationships between inputs
and outputs are the same as for the LHS60 study.

Scatter plots provide a qualitative view of the sampling results, but can be misleading for a
number of reasons. Too few or too many samples can make a scatter plot difficult to read. For a
large number of uncertain inputs, each scatter plot shows the influence of all the inputs, but in a
way that they cannot be distinguished. Interactions between inputs are also hard to detect.

2.2 Correlation Coefficients

The Pearson correlation coefficient is a statistical measure of the degree to which the relationship
between an input variable and a response quantity is linear. Dakota computes Pearson correlation
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Figure 2.1. Scatter plots of TNa,max vs. uncertain input variables
for LHS60.
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Figure 2.2. Scatter plots of TNa,max vs. uncertain input variables
for LHS300.
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Figure 2.3. Scatter plots of TNa,max vs. uncertain input variables
for LHS600.
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coefficients (also called simple correlation coefficients) for sampling studies. Table 2.1 presents
the simple correlation coefficients for TNa,max with respect to each input. Correlation coefficients
range from -1 to 1, with a value of 1 meaning the samples can be perfectly fit by a line with
positive slope, i.e., the value of the response increases exactly linearly as the value of the input
increases. A value of -1 indicates an inverse relationship, or negative slope. As the correlation
tends towards zero, the strength of the linear relationship decreases. For a response and a set of
uncertain input variables, the set of correlation coefficients provide a form of sensitivity analysis,
with low values indicating insensitivity and values above 0.5 or below -0.5 indicating significant
sensitivity. The results in Tab. 2.1 indicate a strong positive correlation between TNa,max and qvol
and a strong negative correlation with vz, while relationships with inputs are much weaker. The
results are consistent across the three sample sizes.

TNa,max

Input Variable LHS60 LHS300 LHS600

ρNa -0.0150409 0.0221388 0.0247335
µNa -0.0311482 -0.0413672 -0.0249558
(ρCp)Na -0.0895889 -0.100121 -0.112835
kNa -0.134971 -0.210983 -0.196727
qvol 0.717346 0.679238 0.683053
vz -0.704351 -0.687004 -0.691781

Table 2.1. Simple correlation coefficients from sampling studies
for TNa,max.

Partial correlation coefficients for the sampling studies are shown in Tab. 2.2. Partial correla-
tion coefficients consider the relationships between an input and an output with the effect of the
other input random variables removed. As a result, the partial correlation coefficient for a given
input expresses the linearity of the relationship with the response that has the effect of the other
inputs removed. As shown in Tab. 2.2, the uncertain variables ρCp)Na, kNa, qvol , and vz each have
very strong partial correlations with the response TNa,max. The Pearson correlation coefficients are
calculated between an input and an output but the effects of all the other inputs, which are var-
ied simultaneously in each sample, are not filtered out; these effects are filtered out in the partial
correlation coefficients.

For the SAHEX model, the correlation coefficients provide insight to the analyst about the
relative importance of each input variable, and that the inputs are essentially independent. How-
ever, in general, one should interpret correlation coefficients with caution. Correlation coefficients
are known to be sensitive to outliers, and to the ranges of the inputs. A strong, but not linear
relationship may be obvious in a scatter plot, while the correlation coefficient may be near zero.
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TNa,max

Input Variable LHS60 LHS300 LHS600

ρNa 0.214469 0.252528 0.211722
µNa -0.540591 -0.651517 -0.623418
(ρCp)Na -0.926689 -0.917832 -0.916610
kNa -0.976045 -0.979460 -0.977381
qvol 0.998216 0.997874 0.997868
vz -0.998100 -0.997967 -0.997917

Table 2.2. Partial correlation coefficients from sampling studies
for TNa,max.

2.3 Sobol’ Sensitivity Indices

The Sobol’ sensitivity indices are computed from the decomposition of the variance of the re-
sponse. [10] This decomposition attributes the variance to each input variable and their interac-
tions. The first-order sensitivity index Si for each uncertain input i is the fraction of the variance
of the response that can be attributed to that input alone; the Si are also called the “main effects”
sensitivity indices. The total sensitivity index Ti is the fraction of the variance of the response that
can be attributed to that input and all its interactions.

Variation-based sensitivity analysis is a form of global sensitivity analysis; the sensitivity co-
efficients do not represent partial derivatives of the response with respect to the input variables,
but the effects of each of the inputs integrated over the input hypercube. Since polynomial chaos
expansions construct a polynomial representation of the response over the input hypercube, it is
inexpensive to compute the Sobol’ sensitivity indices; in fact, they can be computed analytically
from the coefficients of the interpolating polynomials. The sensitivity indices can also be estimated
by sampling methods, but require significantly more function evaluations; for a sample N, the cost
is (d +2)N function evaluations, where d is the number of input variables.

The main effects indices for the two polynomial chaos expansion studies are shown in Tab. 2.3.
The heat generation rate and inflow velocity are clearly identified as the most important, with the
sodium thermal conductivity (kNa) a distant third. Table 2.4 presents the total sensitivity indices,
and the results are essentially identical to the main effects indices. Since the difference between
the main effects and the total indices is the inclusion of interactions between inputs, the conclusion
is that there are no significant input interactions for the SAHEX model.
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TNa,max

Input Variable PCE SG2 PCE SG3-DP

ρNa 0.000131 0.000120
µNa 0.001377 0.001543
(ρCp)Na 0.010558 0.010506
kNa 0.043282 0.043340
qvol 0.463005 0.462860
vz 0.480864 0.480992

Table 2.3. Sobol’ main effects sensitivity indices from polyno-
mial chaos expansion studies for TNa,max.

TNa,max

Input Variable PCE SG2 PCE SG3-DP

ρNa 0.000144 0.000120
µNa 0.001502 0.001543
(ρCp)Na 0.010595 0.010543
kNa 0.04.3467 0.043525
qvol 0.463605 0.463448
vz 0.481470 0.481460

Table 2.4. Sobol’ total effects sensitivity indices from polynomial
chaos expansion studies for TNa,max.
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2.4 Summary

From the sampling and polynomial chaos studies of the SAHEX model, we have computed simple
and partial correlation coefficients and Sobol’ sensitivity indices. The most important inputs are
qvol and vz, as indicated by both the simple correlation coefficients and the sensitivity indices. The
negligible differences between the main effects and total sensitivity indices demonstrates that the
interactions between the inputs are not important, and this can also be inferred from the simple and
partial correlation coefficients. We have computed correlation coefficients from sampling methods
and sensitivity indices from polynomial chaos expansions. However, it is possible to perform both
analyses from both classes of methods.
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Chapter 3

Uncertainty Quantification Results

In this section the focus is on the uncertainty of the response. Histograms and distribution functions
show the overall shape and bounds of the response. The probability of failure provides information
about a specific part of the response distribution.

3.1 Moments

The moments of the response distribution are statistical measures of the distribution’s shape. The
first and second moments are the familiar mean and standard deviation, and these are presented for
each method in Tab. 3.1. For the SAHEX problem, all the methods exhibit very similar results. The
LHS60 study might be less accurate due to the small sample size, and the Mean Value reliability
method because of the strong assumptions it makes. The X-Taylor-Mean and EGRA reliability
methods do not report the moments.

TNa,max

Method Function Evaluations Mean Value Standard Deviation

LHS 60 60 647.6426K 5.811488K
LHS 300 300 647.5600K 5.560594K
LHS 600 600 647.5618K 5.614899K
PCE SG2 117 647.5506K 5.590595K
PCE SG3-DP 102 647.5572K 5.585691K
Reliability MV 13 647.2665K 5.513859K
Reliability XTM 14 – –
Reliability EGRA 78 – –

Table 3.1. Moments of the maximum sodium temperature as
computed by different methods.

Table 3.1 also reports the number of function evaluations each method used, which is a good
representation of their computational cost. The mean value method and MPP class of methods
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require the fewest. The EGRA method starts with a small LHS sample before applying a global
optimization approach, both of which increase the cost. The polynomial chaos methods are more
expensive than the reliability methods, but characterize the entire response distribution are proba-
bly more accurate. Latin Hypercube Sampling is similar to the PCE methods in the data it provides,
and while less efficient than PCE methods, it may be affordable at low resolution when PCE meth-
ods are not.

3.2 Cumulative Distribution Function

The cumulative distribution function (CDF) expresses the probability that the response will be less
than a particular value. This type of information is particularly useful for decision makers and
regulators. For example, a design or regulatory threshold might be expressed as “ the temperature
will remain below X with 99% certainty.” The CDF shows the certainty as a function of the
temperature.

If the response obeys a known distribution function, the CDF can be easily calculated. More
often, the response distribution is described only by a set of sample values, and the distribution
and CDF must be estimated or modeled. The most common way to estimate a distribution is to
plot the histogram of the sample data. The overall range of response values {Yn} is divided up into
non-overlapping “bins,” which usually have the same width, ∆Y . The histogram is the number of
response values in each bin. When each bin value is replaced by the bin value plus the cumulative
sum of the bins to the left, then divided by the total number of sample points, the resulting values
approximate the cumulative distribution function. Figure 3.1 plots the approximate CDF for each
method. For all the methods, the histogram was computed with a bin width of 1K. For the LHS
studies, the CDFs are comparable for the different sample sizes, although the LHS60 CDF is less
smooth than the larger samples. The PCE studies give essentially identical results, and are most
similar to the LHS600 CDF. Recall that for the PCE studies, NEK-5000 provides the function
evaluations from which the coefficients of the polynomial expansion are determined. To compute
the CDFs, Dakota used a 10,000 point sample of the expansion to compute the CDF. The large
sample size results in much smoother histograms and CDFs, compared to the LHS studies.

3.3 Probability of Failure

The “probability of failure” refers to the context in which a system or component “fails” if a critical
value is exceeded, but below which it operates as designed; the probability of failure (POF) is the
probability that the critical value is exceeded. In our hypothetical scenario, the analyst is asked to
determine the probability that the temperature of the liquid sodium remains below a temperature of
660.0K throughout the flowfield; from a computational perspective this is the same as a probability
of failure estimate.

The POF can be graphically determined by reading the probability corresponding to the critical
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Figure 3.1. Approximate CDFs for each method.
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response value off of the CDF. However, approximate CDFs may not be sufficiently accurate for
small sample sizes and may be sensitive to the choice of bins. Finally, the most often desired POF
is in the tail of the distribution, e.g., 1%, 0.1%, or 99%, 99.9%, etc., which is the most difficult
part to obtain accurately for sampling methods. Instead, different approaches to get more accurate
probability of failure estimates are used.

For sampling methods, a surrogate model can be constructed from the sample points. The sur-
rogate model can be evaluated very inexpensively, so the surrogate can be sampled with a large
sample size, and focused on the most interesting part of the distribution, to reduce the sampling er-
ror. Nevertheless, many function evaluations are required to build an accurate surrogate. Stochastic
expansion methods can be viewed as a class of surrogate models, where the interpolating polyno-
mial is the surrogate. Finally, as mentioned in the introduction, reliability methods can be very
efficient at computing the POF because the either make strong assumptions about the response (lo-
cal reliability methods) or adaptively choose sample points to accurately resolve a point or small
region of the respond distribution (EGRA).

Dakota can numerically estimate the probabilities corresponding to particular response values,
or response values corresponding to particular probabilities, as the user requests. Table 3.2 presents
the probability that TNA,max will remain below 660.0K, as computed by the different methods. For
the LHS studies, no surrogate models were used; the POF is estimated from an approximate CDF
computed by Dakota. For the PCE methods, a 10,000 point sample of the orthogonal polynomial
was used to construct the approximate CDF.

Method Function Evaluations P(TNa,max < 660.0K)

LHS 60 60 0.983333
LHS 300 300 0.990000
LHS 600 600 0.981667
PCE SG2 117 0.985000
PCE SG3-DP 102 0.985000
Reliability MV 13 0.989538
Reliability XTM 14 0.984160†

Reliability EGRA 78 0.982953

Table 3.2. Probability that TNa,max is less than 660.0K as com-
puted by different methods. † The response level for the Reliability
XTM method is 660.8024K

For the SAHEX model, all of the methods gave similar results. The Mean Value and X Taylor
Mean reliability methods perform well for a small number of function evaluations because to
response is a simple function of the input variables. As shown by the sensitivity analysis earlier,
TNa,max is strongly dependent on qvol and vz, there are no significant interactions between the inputs,
and with respect to all the inputs except the least important, the response is linear.
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Chapter 4

Concluding Remarks

In this report, several methods for uncertainty quantification and sensitivity analysis were applied
to the SAHEX model. The purpose was to demonstrate the combined use of Dakota and NEK-
5000 for a simplified but practical scenario. Latin Hypercube Sampling and Polynomial Chaos
expansion methods analyze the whole response space, and are used for both sensitivity analysis
and uncertainty quantification. Correlation coefficients and Sobol’ sensitivity indices showed that
for the SAHEX model, the maximum temperature of the liquid sodium, TNa,max, was a simple
function of the uncertain inputs. There were no significant interactions among the inputs and
TNa,max was a linear function of most of them; the heat generation rate, qvol , and the flow velocity,
vz, were the most important inputs. In addition to the LHS and PCE studies, several reliability
methods were used to answer a probability of failure question, namely, to compute the probability
that TNa,max < 660.0K. All the methods performed comparably for this simple model.

Dakota provides great flexibility to the user in the development of an interface to their sim-
ulation code. The uncertain inputs for this report were all specified in the NEK-5000 .rea input
file, and the response was extracted from the NEK-5000 text output file using common UNIX
commands. However, more significant changes to the SAHEX model, including manipulation of
the mesh, extensive analysis of the flowfield with another software package, or even requiring re-
compilation of NEK-5000 for each function evaluation, could be accommodated by an analyst’s
changes to the Dakota-NEK5000 interface. Each function evaluation was a 128-core NEK-5000
simulation, executed on an institutional-scale HPC through a fair-share queue system. Dakota dy-
namically managed multiple, concurrent NEK-5000 simulations through this queue system with
minimal user intervention.
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