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Abstract
Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from
input parameters to model outputs. In recent years, there has been substantial development
of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling
studies in expensive computa- tional models. One approach, termed ”intrusive”, involving
reformulation of the governing equations, has been found to have superior computational
performance compared to non-intrusive sampling-based methods in relevant large-scale prob-
lems, particularly in the context of emerging architectures. However, the utility of intrusive
methods has been severely limited due to detrimental numerical instabilities associated with
strong nonlinear physics. Previous methods for stabilizing these constructions tend to add
unacceptably high computational costs, particularly in problems with many uncertain pa-
rameters. In order to address these challenges, we propose to adapt and improve numerical
continuation methods for the robust time integration of intrusive PC system dynamics. We
propose adaptive methods, starting with a small uncertainty for which the model has stable
behavior and gradually moving to larger uncertainty where the instabilities are rampant, in
a manner that provides a suitable solution.



2

1 Introduction
Typically, UQ methods can be separated in two categories, intrusive and non-intrusive.
While non-intrusive PC methods leave computational models unchanged, they are unfeasible
for large dimen- sional inputs due to the large number of required samples. Intrusive PC
approaches rely on re- formulating the model equations and their main advantage is that
the new model needs to be solved only once, thus providing the PC expansion on outputs of
interest.

The intrusive approach relies on Galerkin projection of the governing equations to arrive
at a new set of equations for the PC modes [8, 6]. The intrusive formulation requires
re-writing computational codes and introducing new numerical solution approaches. Time
integration algorithms need par- ticular attention since these intrusive systems can become
unstable in problems of practical interest.

Reagan et al [15] examined the development of non-negligible values for the probability
of negative state variables in an ODE model for chemical ignition, and the impact on the
stability of the numerical model. Stability and accuracy concerns with long time horizons,
were remediated by the use of multi- element local PC methods [11, 10, 16, 12]. However,
the resulting constructions require spatial refinement everywhere in the stochastic space
[12, 13], rather than only in the vicinity of non-linear solutions. As a result, this is an
ineffective resolution of the problem except in very low-dimensional contexts. The approach
proposed for this project is not limited by dimensionality and can be, in principle, applied
to global intrusive Galerkin PC in ODE systems.

2 Problem Description
We propose a new approach to stabilize of the Galerkin ODE system. For proof-of concept
we will use a two-equation ODE system corresponding to a simple chemical model that
exhibits explosively growing modes in an ignition configuration [4]

dx

dt
= −x (1 + y) ,

dy

dt
=

1

ε
(x− γy + βxy) (1)

xt=0 = x0, yt=0 = y0.

Here, variables x, y are the non-dimensional concentration for two chemical species, with
initial values x0 and y0, and β, γ, and ε are model parameters. We represent the uncertain
solution as PC expansions [8]

x(t, ξ) =
∑
i

xi(t)Ψi(ξ)

y(t, ξ) =
∑
i

yi(t)Ψi(ξ). (2)
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Substituting for x, y in Eqs. (1), and applying Galerkin projection, we get, for k = 0, . . . , P ,

ẋk = −xk −
∑
i

∑
j

xiyjCijk (3)

ẏk =
1

ε

(
xk − γyk +

∑
i

∑
j

xiyjβCijk

)
, (4)

where Cijk are deterministic coefficients that can be computed off-line:

Cijk ≡
〈ΨiΨjΨk〉
〈Ψ2

k〉

Additionally, if model parameters are uncertain, their functional form can be represented
through PCEs under certain conditions. For the tests presented in this resport we consider
parameter β to be uncertain, represented as a PC expansion as

β(ξ) =
∑
i

βiΨi(ξ). (5)

This PCE can be subsituted in Eq. (1) along with the expansions in Eq. (2) leading to a
Galerkin system with a larger number of nested sums

ẏk =
1

ε

(
xk − γyk +

∑
i

∑
j

∑
l

xiyjβlCijlk

)
, (6)

The expressions for the PC modes of x remain the same as in Eq. (3), and Cijlk are deter-
ministic coefficients that can be computed off-line:

Cij`k ≡
〈ΨiΨjΨ`Ψk〉
〈Ψ2

k〉
.

For large initial uncertainties in the species concentrations and model parameters, the
intrusive system exhibits unstable behavior. Standard time integration techniques fail to
converge as the system develops non-negligible probabilities for unphysical states. In order
to prevent this behavior we propose to develop time integration algorithms enhanced with
techniques adapted from the numerical continuation community [1, 9].

Specifically we propose to start with stable solutions over the entire time range, and
then use arclength continuation techniques [5] to provide the initial guess for the solution
in the regime where non-linear effects are dominant. In the next section we will discuss an
approach to augment the intrusive ODE approach with a constrain for the solution at long
time horizon. This constrain can potentially prevent the solution to diverge while in the
unstable regime.
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2.1 Numerical Approach

Let u = {x0, x1, . . . , xP−1, y0, y1, . . . , yP−1}. We compute a solution corresponding to initial
condition u0 for the Galerkin system (3) and (6).

u̇(s) = Tg(u(s)), t→ s =
t

T
(7)

where g is the vector constructed with the right hand sides (rhs) corresponding to each PCE
mode in Eqs. (3) and (6). The time coordinate is normalized by the time horizon, T over
which Eq. (7) is integrated.

The initial value problem (IVP) is discretized using a first-order backward differentiation
formula (BDF) [2]

ui − ui−1 = ∆ti T g(ui) (8)

Here ui = {x0,i, x1,i, . . . , xP−1,i, y0,i, y1,i, . . . , yP−1,i} is the solution at si. This system can be
integrated step by step starting from the IC u = u0. We rewrite Eq. (8) as

f(ui) = ui − ui−1 −∆ti T g(ui) = 0 (9)

and solve for ui via Newton iteration

umi = um−1
i − J−1

m−1f(um−1
i ) (10)

where Ji = ∂f(ui)/∂ui is a square Jacobian matrix with (2P )2 elements. Typically, 5-10
iterations are necessary to drive the norm of the residual ||J−1

m−1f(um−1
i )|| down to machine

precision.
We continue the derivation by constructing a system of equations simulaneously for all

time locations si. Let ũ = {u1,u2, . . . ,uN} be the vector holding all PC modes at all times,
s1 = ∆t1, s2 = s1 + ∆t2, . . ., sN = sN−1 + ∆tN = 1. The system of equations can be then
written as

F (ũ) = 0, (11)

where Fi = f(ui) is the sub-vector of equation corresponding to thr PC modes at si. The
Jacobian matrix ∂F/∂ũ is block-diagonal, with each block containing Jacobian matrices Ji.
It also contains sub-diagonal blocks corresponding to ∂f(ui)/∂ui−1.

Finally, we augment the system of equations 11 with a constrain at t = T .

||uN || − δ = 0 (12)

where δ is a small number. This constrain is based on the property of the ODE system
employed in this work that x, y → 0 as T →∞. This constrain is used to replace the set of
equations f(uN) = 0 in Eq. (11). Further, the solution at sN = 1 is constructed as

uN = uN−1 + ∆tN T g(uN−1) (13)

The new system (11)-(12) is now a boundary value problem (BVP) with unknowns u
and T .
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3 Results and Discussion
In this section we present results for the numerical continuation studies applied to several
model problems. First, we will tackle the Bratu problem [3], which is a classical problem
exhibiting bifurcations and for which the solution is well-known. We continue the numerical
experiments with the deterministic ODE system, followed by the intrusive ODE system
constructed by Galerkin projection.

3.1 Bratu Problem

The classical Bratu problem [3] is a elliptic partial differential equation which comes from
a simplification of the solid fuel ignition model in thermal combustion theory [7]. In a 1D
configuration, the equation is written as:

∂2u

∂x2
+ c exp(u) = 0, u(0) = u(1) = 0 (14)

Discretization We assume an equally spaced grid for x = 0 . . . 1, with grid space ∆. A
centered finite discretization of Eq. (14) is given by

ui−1 − 2ui + ui+1

∆2
+ c exp(ui) = 0, i = 2, 3, . . . , n− 1 (15)

with ∆ = 1/(n− 1) and u1 = un = 0. In matrix form:

Au+ c exp(u) = 0 (16)

where A is a tri-diagonal matrix with Ai,i−1 = Ai,i+1 = ∆−2, and Ai,i = −2∆−2. The
exponential term is a short notation for c exp(u) = {c exp(u1), . . . , c exp(un)}T .

Newton method Eq. (16) is cast as F (u) = 0 with Fi(u) being given by the left hand side
(lhs) of Eq. (15). The Newton solution approach is written as

u(k+1) = u(k) − J(u(k))−1F (u(k)) (17)

The Jacobian matrix is tridiagonal, and its entries are the same as for the matrix A described
above.

3.1.1 Arclength Continuation

Eq. (14) has a solution only for c ≤ 3.514. For c < 3.514 there are two solutions for each c,
one stable and one unstable. For c ≈ 3.514 the Bratu problem has only one solution.

In order to determine all solutions, we start from the stable branch and, then gradually
moving in the parameter space toward the unstable branch, using a pseudo-arclength con-
tinuation approach. In this framework, the system of equations (16) is augmented with a
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constraint, i.e.

Auj + cj exp(uj) = 0 (18)
||uj − uj−1|| −∆s = 0 (19)

Here, subscript j identifies the solution to the Bratu problem corresponding to cj. In the
finite difference discretization uj,i refers to the uj value at grid point i.

In this new formulation, both cj and the corresponding solution uj are unknowns and to
be determined based on the additional constraint that distance between solutions to Bratu
problem for successive constant values should be equal to an imposed threshold ∆s.

For the tests described here, the infinity norm was used for Eq. (19). For solutions to
Bratu problem, this is equivalent to

|uj,n/2 − uj−1,n/2| = ∆s

To simplify the derivations for the Jacobian matrix of the extended non-linear system, we
use the square of the above constraint:(

uj,n/2 − uj−1,n/2

)2
= ∆s2

The Jacobian matrix corresponding to Eqs. (18)-(19) is a (n + 1) × (n + 1) square matrix,
where n is the number of grid points discretizing the 1D [0, 1] range for the Bratu problem
solutions.

Ji,i−1 = Ji,i+1 = ∆−2, Ji,i = −2∆−2, Ji,n+1 = exp(uj,i), i = 1, 2, . . . , n

Jn+1,i = 2(uj,i − uj−1,i), i = 1, 2, . . . , n (20)

Algorithm 1 describes the numerical continuation methodology for the Bratu problem.
In this pseudo-code, the Jacobian is constructed according to Eq. (20) and F (ck−1

j , uk−1
j ) is

given by the lhs of Eqs. (18)-(19). For j = 2, the initial conditions are set as c12 = c1 + 10−3,
u12 = u1.

Algorithm 1: Numerical continuation algorithm for Bratu problem.
Input: c1, ∆s
Output: History of solutions for several c values

1 Solve Eq. (14) for u1 foreach j = 2, . . . , Nsol do
2 Set initial condition: c1j = 2cj−1 − cj−2, and u1j = 2uj−1 − uj−2

3 Iterate {ckj , ukj}T = {ck−1
j , uk−1

j }T − J−1F (ck−1
j , uk−1

j ) until convergence
4 end
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Figure 1: Lower and upper branch for solutions to Bratu problem for a range of feasible c
values. The arrows indicate the progression of the numerical continuation approach.
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Figure 2: Solutions to Bratu problem for several c values. The dashed profile correspond
to the turning point, c ≈ 3.514. Solution below this profile corresponds to the lower, stable
branch, while profiles larger than the dashed profile correspond to the upper, unstable branch.
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3.2 Numerical Continuation for a Two-Equation ODE

We first start to apply a numerical continuation approach for the two-species model by
tackling the deterministic ODE system in Eq. (1), augmented with the constrain in Eq. (12).
For the deterministic model, this constrain is written as√

x2N + y2N − δ = 0 (21)

For this series of tests, we start with the IVP solution corresponding to u0 = {x0, 0}, with
x0 = 1. We then gradually increase the magnitude of x0, while simulaneously imposing the
constrain above. For this series of tests, δ = 10−19, β = 1, and ε = 0.01.

Figures 3 and 4 show the (x, y) phase plots for family of solutions corresponding to
increasing values of x0, from 1 to 6. It is interesting to note that the time horizon T , shown
in Fig. 5 adjusts itself with changing boundary conditions for x.
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100
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1.1
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3.0
4.0
5.0
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Figure 3: Phase plot for the solution of Eqs. (1) and (21). The inset frame is a detail of the
lower left corner and extends 2× 10−4 in both x and y.

3.3 Numerical Continuation for the ODE corresponding to the PC
modes

Next we proceed to explore the solution for the intrusive formulation of the ODE system. For
this set of tests we employ the same setting for the model parameters as in [14]. Specifically,
we employ a log-normal distribution for β, log β ∼ N(−0.02, 0.22), leading to a mean and
standard deviation, µβ = 1 and σβ = 0.202, respectively.

We start with the solution for the IVP corresponding to log x0 ∼ N(−0.02, 0.22). For
this IVP we set the time horizon to T = 12. The results in Figs. 6 and 7 show the phase
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Figure 4: Same as Fig. 3, now showing the entire solution.

plot for the mean values of x and y and the time evolution of the first few modes in the 4-th
order PCEs of both x and y. We then employed the IVP solution at T = 12 to compute the
threshold value δ for the constrain in Eq. (12).

The IVP solution above together with the threshold value δ are then used to start the
numerical continuation approach for the uncertain ODE system. We find that, in its current
form, the system converges slowly, requiring a very large damping factor. While the damping
Newton update keeps the solution from going out-of-bounds, the convergence properties of
the system degrade significantly to the point the solution is now longer conrging.

4 Summary
In this report we investigate numerical algorithms aimed at providing robust solutions to
initial value problem ODEs that are unstable for certain model parameters. For this study
we employed a 2-equation ODE system that models an ignition process. We outline a
numerical continuation approach augmented with a solution constrain at long time horizons,
designed to prevent the solution from ’blowing-up’. We proceeded to test the numerical
continuation algorithm on a model elliptic problem, followed by the determinsitic version
of the ODE system. While these tests were successful, applying the same approach to
the uncertain ODE system proved to be more difficult. Currently, the implicit approach
requires significant damping, resulting in very poor convergence properties for the numerical
continuation approach. Future work will tackle this problem to identify the algorithmic
advances necessary to overcome the poor convergence properties.
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Figure 5: Final time T at which the ODE solution reaches ||uN || = δ.

5 Anticipated Impact
This work represents a preliminary study on numerical methodologies for intrusive ap-
proaches for uncertain ODE systems. We explored avenues aimed to make the solution
approaches robust to unstable regimes. Current results, while promising, suggest that more
algorithmic work is necessary to improve the convergence properties and remove some of the
limitations we currently encounter. With follow-up funding we plan to further investigate
the algorithms proposed in this report.

The successful development of new algorithms will enable pervasive intrusive UQ in a
number of computationally expensive applications at Sandia. Comprehensive studies for
NW and ASC programs such as maneuverability during reentry and structural mechanics
under thermal insult are not feasible with current algorithms due to high-dimensional input
spaces.
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Figure 6: Phase plot for the mean modes corresponding to Eqs. (3) and (6), for T = 12.
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