
													

“Milestone	#4875:	Evaluate	Application	Performance	on	Advanced	Architectures”,	
Richard	Barrett	(SNL),	David	Daniel	(LANL),	Todd	Gamblin	(LLNL),	Mike	Glass	
(SNL),	Rob	Hoekstra	(SNL),	Louis	Howell	(LLNL),	Christoph	Junghans	(LANL)	Al	
McPherson	(LANL),	and	Rob	Neely	(LLNL)

This	milestone	was	the	2nd in	a	series	of	Tri-Lab	Co-Design	L2	milestones	supporting	
‘Co-Design’	efforts	in	the	ASC	program.		It	is	a	crucial	step	towards	evaluating	the	
effectiveness	of	proxy	applications	in	exploring	code	performance	on	next	
generation	architectures.	All	three	labs	evaluated	the	performance	of	2	proxy	
applications	on	modern	architectures	and/or	testbeds	for	pre-production	hardware.	
The	results	are	captured	in	this	document	as	well	as	annotated	presentations	from	
all	3	laboratories.

Some	general	outcomes	and	observations

 Effectively	organizing	code	is	the	necessary	first	step	in	achieving	effective	
use	of	any	computing	capability.

 Good	scaling	of	MPI+OpenMP	requires	limiting	the	number	of	OpenMP
threads	for	each	MPI	rank.	However,	this	induces	an	increasing	memory	cost,	
both	from	MPI	and	(potentially)	from	the	application.

 Some	applications	could	be	limited	by	integer	instruction	rates	rather	than	
floating	point.

 Abstractions	can	aid	in	performance	portability.

 Feedback	loop	to	compiler	team	critical	for	performance.

 This	work	has	demonstrated	the	power	of	collaboration	across	labs,	vendors,	
universities,	and	others.

 Proxy	applications	are	valuable	for	these	activities	but	we	must	never	
mistake	them	for	the	real	thing!

LLNL	work	focused	on	three	proxy	apps:	UMT2013,	MCB,	and	AMG2013. UMT	is	an	
implementation	of	deterministic	multigroup	radiation	transport,	and	can	be	taken	
as	a	representative	of	the	wider	class	of	codes	that	do	their	work	while	stepping	
through	zones	of	an	unstructured	mesh. MCB	is	a	Monte	Carlo	radiation	transport	

SAND2014-17812R



code. MCB	loops	over	particles	that	move	independently	but	interact	with	material	
quantities	stored	on	a	mesh. Both	of	these	codes	are	computation-intensive	but	
they	use	machine	resources	in	significantly	different	ways. Both	are	derived	from	
algorithms	used	in	important	production	codes. The	results	for	UMT	and	MCB	are	
the	primary	material	we	submit	for	formal	completion	of	the	milestone. The	third	
proxy	app,	AMG,	solves	an	algebraic	multigrid	test	problem	using	the	hypre linear	
solver	library,	which	is	heavily	used	in	applications	at	LLNL	and	elsewhere. AMG	is	
more	communication-intensive	than	UMT	and	MCB,	and	it	also	provides	a	useful	
confirmation	that	certain	machine	characteristics	observed	with	UMT	and	MCB	are	
actually	of	broader	interest	and	are	not	unique	to	those	particular	algorithms.

All	three	of	these	proxy	apps	are	implemented	using	MPI+OpenMP. We	tested	them	
primarily	on	Vulcan,	a	BG/Q	machine,	part	of	the	Sequoia	procurement,	and	on	Cab,	
a	Linux	cluster	based	on	Intel	Sandy	Bridge	processors	and	part	of	the	TLCC2	
procurement. All	three	apps	scale	very	well	to	large	numbers	of	MPI	tasks,	though	
scaling	was	better	on	BG/Q	than	on	the	TLCC2	machine	for	reasons	we	discuss. All	
three	perform	well	with	small	numbers	of	OpenMP	threads	but	less	well	as	the	
number	of	threads	becomes	large. We	examine	the	tradeoffs	between	MPI	and	
OpenMP	performance	in	some	detail.

Large	amounts	of	detailed	performance	data	can	be	obtained	using	the	various	
hardware	counters	on	BG/Q. Using	this	counter	data	we	found,	for	example,	that	all	
three	proxy	apps	use	integer	instructions	more	heavily	than	floating	point	
instructions. For	UMT	the	int-to-float	ratio	varied	between	1	and	3	depending	on	
specific	parameters	of	the	test	problem,	while	MCB	and	AMG	used	over	90%	integer	
instructions. The	integer	instruction	issue	rate	is	one	of	the	most	important	
constraints	on	performance	for	all	three	proxy	apps. Other	counter	information	
showed	that	UMT	and	one	phase	of	AMG	were	drawing	over	half	the	available	
memory	bandwidth	on	each	BG/Q	node. So	these	apps	are	not	bandwidth	limited	
on	BG/Q	but	could	easily	become	bandwidth	limited	on	a	machine	with	slightly	
different	performance	characteristics.

Finally,	we	show	exploratory	results	from	two	other	sets	of	tests. We	show	
performance	of	UMT	using	the	DI-MMAP	package	to	access	NVRAM	on	an	Ivy	Bridge	
cluster,	and	we	show	tests	of	all	three	proxy	apps	using	the	MSR	library	to	run	on	a	
Sandy	Bridge	cluster	at	reduced	power.

The	context	for	LANL work	is	the	challenge	we	face	moving	our	workloads	on	to	
future	architectures,	and	specifically	for	us	the	imminence	of	the	Trinity	ATS	system	
– particularly	Trinity	phase	2	with	its	self-hosted	Intel	Knights	Landing	(KNL)	
processors.	

SNAP	models	a	discrete	ordinates	particle	transport	code,	and	is	designed	as	a	proxy	
for	the	LANL	production	code	PARTISN.	PENNANT	is	proxy	application	for	the	
explicit	general	unstructured	staggered-grid	hydrodynamics	code	FLAG,	but	focuses	



on	the	basic	hydrodynamic	operations	and	data	structures	without	associated	
complications	from	multi-material	treatments,	strength,	damage,	etc.

For	both	proxies	we	made	single-node	strong-scaling	studies	on	a	variety	of	
platforms	using	a	TLCC2	Sandy	Bridge	node	as	a	baseline.		For	both SNAP	and	
PENNANT	our	primary	interest	has	been	Intel	Knights	Corner	(KNC)	performance,	
but	for	PENNANT	we	also	collected	data	on	BlueGene/Q	nodes	and	two	generations	
of	NVIDA	GPU's.

Sandia	work	focused	on	miniFE	and	miniAero,	and	was	supplemented	by	a	few	
others.	MiniFE,	an	implicit	finite	element	solver, has 20	implementations	involving	
10	programming	mechanisms,	including	Kokkos.	Experiences	have	been
incorporated	into	the	Charon	electronic	simulation	code	and	Trilinos	packages.	
Memory	bandwidth	bound,	different	core	counts	did	not	meaningfully	result	in	
different	performance,	though	memory	usage	was	significantly	altered.	
Architecture-specific	data	organization,	such	as	an	ELL-pack	sparse	matrix	storage	
format,	can	improve	performance.	

MiniAero,	a	new	miniapp	designed	for	exploring	aerodynamics, was	designed	and	
developed	to	use	Kokkos. An	atomics-based	implementation	was	configured,	in	
comparison	with	a	“gather-sum”	strategy.	The	latter	performed	best,	but	at	a	cost	of	
a	memory increase.	Performance	results	are	inline	with	our	understanding	of	the	
different	architectures.	This	work	is	informing	the	development	of	an	exascale-
capable	aerodynamics	application.

MiniGhost	was	configured	to	demonstrate	the	value	of	an	integrated	MPI +	X	tasking	
model.	Over-decomposing	the	domain	exposed	more	parallelism,	enabling	
communication	overlap	with	little	intrusion	into	existing	coding	styles. MiniMD	
work	resulted in	tech	transfer	to	the	LAMMPS	molecular	dynamics	package.	
MiniAMR	was	developed	to	illustrate the	complexities	and	impact	of	different	
programming	strategies	for mesh	refinement.	The	developing	MiniContact,	a	solid	
mechanics	miniapp based	on	Kokkos,	is	our	most	ambitious	miniapp	in	terms	of	the	
complexity	of	the	computation.	An	alternative	to	the	traditional	global	search	
algorithm	is	showing	promise	as	a	viable	alternative,	especially	on	new	
architectures.

Sandia National Laboratories is a multi-program laboratory managed 
and operated by Sandia Corporation, a wholly owned subsidiary of 
Lockheed Martin Corporation, for the U.S. Department of Energy?s 
National Nuclear Security Administration under contract DE-AC04-
94AL85000.


