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Abstract

Composite structures are increasing in prevalence throughout the aerospace, wind, defense,

and transportation industries, but the many advantages of these materials come with unique

challenges, particularly in inspecting and repairing these structures. Because composites of-

ten undergo sub-surface damage mechanisms which compromise the structure without a clear

visual indication, inspection of these components is critical to safely deploying composite re-

placements to traditionally metallic structures. Impact damage to composites presents one

of the most significant challenges because the area which is vulnerable to impact damage is

generally large and sometimes very difficult to access. This work seeks to further evolve iden-

tification technology by developing a system which can detect the impact load location and

magnitude in real time, while giving an assessment of the confidence in that estimate. Fur-

thermore, we identify ways by which impact damage could be more effectively identified by

leveraging impact load identification information to better characterize damage. The impact

load identification algorithm was applied to a commercial scale wind turbine blade, and results

show the capability to detect impact magnitude and location using a single accelerometer, re-

gardless of sensor location. A technique for better evaluating the uncertainty of the impact

estimates was developed by quantifying how well the impact force estimate meets the assump-

tions underlying the force estimation technique. This uncertainty quantification technique was

found to reduce the 95% confidence interval by more than a factor of two for impact force

estimates showing the least uncertainty, and widening the 95% confidence interval by a fac-

tor of two for the most uncertain force estimates, avoiding the possibility of understating the

uncertainty associated with these estimates. Linear vibration based damage detection tech-

niques were investigated in the context of structural stiffness reductions and impact damage.
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A method by which the sensitivity to damage could be increased for simple structures was

presented, and the challenges of applying that technique to a more complex structure were

identified. The structural dynamic changes in a weak adhesive bond were investigated, and

the results showed promise for identifying weak bonds that show little or no static reduction in

stiffness. To address these challenges in identifying highly localized impact damage, the possi-

bility of detecting damage through nonlinear dynamic characteristics was also identified, with

a proposed technique which would leverage impact location estimates to enable the detection

of impact damage. This nonlinear damage identification concept was evaluated on a composite

panel with a substructure disbond, and the results showed that the nonlinear dynamics at the

damage site could be observed without a baseline healthy reference. By further developing

impact load identification technology and combining load and damage estimation techniques

into an integrated solution, the challenges associated with impact detection in composite struc-

tures can be effectively solved, thereby reducing costs, improving safety, and enhancing the

operational readiness and availability of high value assets.
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1 Introduction

Composite materials are becoming more prevalent, particularly in high performance weight-critical

applications, because their specific strength and stiffness can exceed that of metals and engineers

can tailor composite material properties to specific applications in ways that would not be possi-

ble with isotropic materials. However, the numerous advantages of composite materials are not

without their downsides. One of the most important challenges to deploying composite aircraft is

monitoring the health of composite structure and identifying complex damage mechanisms which

are often without any clear visual indication. Impact damage is especially of concern because com-

posite laminates are susceptible to sub-surface impact damage, such as delamination, substructure

disbonds, or, in the case of sandwich composites, core-crushing.

1.1 Motivation for impact damage monitoring

Damaging impacts can occur throughout the lifecycle of the structure, and identifying the location

and severity of these impacts is critical to assessing structural health. When the composite structure

is accessible for inspection, an impact monitoring system has the potential to increase operational

readiness by identifying specific areas where damage is likely, and therefore limit the need for

wide-area inspections. When the structure is not accessible for inspection, an impact monitoring

system can be even more useful by providing information which can be used to estimate the damage

state and predict the remaining useful life of that component.

Impact Damage Monitoring for Aircraft

The lifecycle costs of aviation assets can exceed 98% of the total cost of the maintenance and

purchase prices of the asset. Military aircraft experience particularly high lifecycle costs, but as

commercial aircraft begin to adapt some of the composite technology used in military aircraft, the

associated costs of these aircraft are likely to increase if inspection and structural health moni-

toring technology fails to adapt to the new challenges of these technologies. One important way

that structural health monitoring technology could reduce operational costs of these aircraft is by

identifying impact loads on composite structures, and determining where impact damage may have

occurred.

Impact damage is one of the most prevalent sources of damage in composite aircraft, so the

knowledge of where potentially damaging impacts have occurred could significantly reduce the
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need for time-consuming wide-area inspections and the associated cost. For example, one study

estimated that a fully autonomous impact sensing system on a composite fighter jet could reduce

inspection time by as much as 50% [5]. A large scale Sandia lead SHM survey of aviation industry

stakeholders, including operators, manufacturers, regulators, and maintainers indicated that 64.4%

of those surveyed were interested in identifying impact events using SHM technology [46]. In

addition, the same study showed that more than 83% of respondents wanted to detect disbonds

and delaminations in aviation assets, which are sub-surface damage mechanisms that can originate

from impacts.

Impact Damage Monitoring for Wind Turbine Blades

On any structure, inspection for impact damage in composites is often very time consuming and

requires multiple inspection techniques to accurately identify the location and extent of these nu-

merous damage mechanisms [29]. Inspection of large wind turbine rotor blades, however, is partic-

ularly expensive and challenging, due to the size and inaccessibility of these blades. The inspection

burden could be significantly alleviated by identifying the location and magnitude of applied im-

pact loads, which makes wind turbine blades ideal applications for composite structural health

monitoring techniques.

Damaging impact loads are a concern for wind turbine blades both while in operation and dur-

ing transport [18, 58]. Some examples of impact loads in operation are hail, bird strikes, airborne

objects, or ice shedding from other blades. One study found that 7% of unforeseen malfunctions

in 1.5MW wind turbines operating in Germany were attributed to rotor blade problems, with an

average down time of four days per failure[27]. Unforeseen repairs on wind turbines are especially

costly, as these repairs are around 500% more expensive than regularly scheduled maintenance[2].

An impact load estimation technique such as the one presented here has the potential to provide

maintainers with the information they need to limit the progression of damage by way of prompt

repairs, schedule maintenance in advance, and track the loading history of blades to identify prob-

lematic trends.

1.2 Review of Existing Impact Identification Technology

Although impact force estimation has been widely studied, significant limitations remain, and other

techniques have not been shown to effectively estimate the location and magnitude of impact loads

to large structures of arbitrary geometry using very few sensors. Impact identification approaches
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differ in a number of aspects, including the type of sensor technology used, the algorithm used for

identifying the location of impact, and the underlying model used for inverse force estimation.

Impact Identification Algorithms

Impact identification algorithms are generally classified into two broad categories: 1) those based

on physical models of the structure, and 2) those based on black box computational methods, most

notably artificial neural networks. Artificial neural networks have been widely utilized in this area

because many model-based techniques can only effectively locate impacts to simple structures

where a tractable mathematical solution exists (e.g. beams or plates) [43, 11, 62, 26, 21]. Because

artificial neural network based techniques do not rely on a physical model of the system, this class

of techniques can locate impacts to complex geometry through the use of adequate training data,

sensor density, and careful selection of initial conditions [51, 26]. Although neural network based

approaches can be effective on arbitrary structures, as Sharif-Khodaei notes in his article relating

to artificial neural network based impact identification, a vast library of training data from impacts

of representative mass and velocities of interest would be required to effectively locate all impacts

of interest[51]. Considering that the impacts of interest are potentially damaging, collecting this

library of training data non destructively would not be possible. While finite-element simulations

can be used to train artificial neural networks with a wide variety of impacts, the applicability of

finite element based neural networks to physical systems has yet to be firmly established.

Model-based impact identification algorithms do not have the same drawbacks as neural net-

work based techniques, and a number of modern techniques have been developed which apply to

complex structures, such as stiffened composite panels, helicopter rotor blades, or filament-wound

canisters. These model based techniques appear to be more promising than artificial neural net-

work based techniques because they do not rely on training data from impacts with damaging

energy levels, provided that linearity of the system remains an adequate assumption for impacts of

interest.

Among model-based impact identification techniques, methods vary in the underlying model

used for inversion, the sensor technology employed, the inversion technique used, and the al-

gorithm for localizing impacts. The most fundamental differences between techniques are the

underlying physical model and the algorithm for localizing impacts.

The choice of model affects both the difficulty of adapting the technique to different structures

and the spatial resolution of impact location estimates. Some techniques, for instance the technique

presented by Seydel and Chang [48, 49], express the system dynamics as continuous functions of
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the impact location coordinates. By using iterative location identification procedures with con-

tinuous models, arbitrarily fine spatial resolution is theoretically possible. The downside to these

iterative techniques is that a reasonably accurate initial location estimate is needed to converge to

the correct impact location. To estimate the initial position, techniques based on wave arrival time

[48, 49] or sensor response amplitude at a grid of sensors [45, 44] can be used. While these ap-

proaches to estimate initial position for iteration are effective, they usually necessitate a spatially

dense grid of sensors. The requirement of an initial position estimate for these iterative techniques

is one of the main reasons that these techniques generally require a spatially dense grid of sensors.

An alternative to the iterative approach is to discretize the possible impact locations into a finite

set of possible impact locations, usually on an evenly spaced grid. While this discretization limits

the fidelity of the location estimate, the impact location can be estimated without iteration, thereby

eliminating the need for a reasonably accurate initial guess of the impact location. Without the need

for an initial condition for iteration, no grid of sensors is inherently required when this approach is

used. This single stage solution procedure has been shown to be effective in locating impacts with

few sensors. Stites, Yoder and Adams have shown this approach to be effective at locating impacts

to a filament wound rocket motor casing with a single sensor [54, 41, 53, 65], and the same group

also applied this type of technique to a helicopter main rotor blade with a single sensor [13]. Hu

and Fukunaga have presented a similar approach of discretizing the system and finding the best fit

point, using four piezoelectric sensors and models based on finite element modeling [31, 30, 22]

and related works have shown the same technique to be effective using experimentally determined

models [4, 8]. Because the present work uses a single sensor for impact identification, we use the

approach of localizing the impact to the nearest predefined grid point. Although other studies have

shown the ability to improve the accuracy of spatially discretized impact identification techniques

through interpolating frequency response function estimates [65, 13], this study will simply focus

on identifying impacts to the nearest trained grid location without any additional interpolation.

1.3 Uncertainty Quantification for Impact Identification

The first portion of this impact damage estimation is determining the location and magnitude of

any impact loading events that may have caused damage. The entropy-based impact identification

strategy that we have presented has been shown to effectively locate and quantify impact loads,

but little had been done to formally quantify the uncertainty in the force estimates. This study will

consider the effects of a number of potential factors such as accelerometer location, type of sensor

technology, number of channels of response data, and orientation of these sensors. Understanding

the uncertainty is critical to making meaningful decisions based on these estimates, so this work
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evaluates the magnitude of the uncertainty and also assesses a method to better determine the

uncertainty of a particular force estimate in real time.

One approach to quantifying the impact load uncertainty is to simply evaluate the error across

a large set of validation tests. Prior to the study described here, this approach has been the only one

that we have used to quantify the range of force estimation errors that can be expected. The new

approach that we develop here classifies the set of validation tests into ranges based on the entropy

of the impact force estimate. Because the impact identification algorithm assumes an impulsive

force, and the entropy of the force estimate is a way of evaluating the impulsivity of that estimate,

the measure of entropy is essentially a measure of how well the estimate fits the assumptions of

the algorithm. Therefore, the expected trend is that the better the estimate fits the assumptions, the

less uncertainty in that estimate. We will show how in a simple analytical example, the entropy of

impact force estimates increases with experimental error, and then we will validate this approach

by applying this impact identification technology to a retired commercial wind turbine blade.

1.4 Integrated Impact Load and Damage Identification Concept

Health monitoring of a structure can be broken down into two primary objectives: 1) identifying

the loading history of the structure, and 2) identifying (including tracking) the damage state of the

structure. In general, these two objectives are achieved with distinct load identification methods

and damage detection and/or inspection techniques. Combining these two capabilities by first

identifying impact loads and locations, and then leveraging that information to determine whether

the structure has sustained damage, holds the potential to increase the accuracy and expand the

applicability of damage detection techniques.

Most current SHM technology proposed for detecting damage or flaws in composite structures

require dense arrays of transducers to achieve the desired level of accuracy. The cost, weight, and

complexity of implementing a dense grid of transducers present significant barriers to implement-

ing systems of this type on a large scale for today’s large composite structures. The requisite sensor

density therefore practically limits many of these approaches to “hot spot” detection, that is, small

scale monitoring of areas where damage is likely to occur, or to safety critical areas which are dif-

ficult to otherwise monitor. While there is certainly substantial value in monitoring critical areas

of the structure, these types of approaches are poorly suited to impact damage detection, because

impacts can occur over a very wide area of the structure. In essence, most current SHM products

that detect damage are essentially nondestructive inspection (NDI) technologies installed on the

structure. This approach enables monitoring areas which could not otherwise be easily inspected
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and allows for timely information on the structural health, potentially increasing operational readi-

ness and reducing costs associated with downtime. However, these products neither acknowledge

operating loads that affect the health of a structure nor take advantage of their effectiveness in aid-

ing damage detection techniques. Although some SHM systems attempt to use fewer transducers

to detect damage in large areas, these technologies do not directly take into account the effects of

operational loading on in-situ damage detection algorithms.

This work will evaluate how utilizing impact location information, estimated through our im-

pact identification technique, can improve the ability to detect impact damage. To that end, this

report considers two classes of damage detection technologies: those based on linear vibration

characteristics, and those based on nonlinear vibration characteristics, with a focus on how knowl-

edge of the location and nature of potential damage might improve the accuracy and expand the

capability of these systems.
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2 Impact Identification Theory

2.1 Overview

The theory used to identify the location and magnitude of impact loads acting on a structure is de-

tailed in this chapter. The process involves several steps that are conducted prior to monitoring for

impacts as well as steps that are conducted to acquire and process data once an impact is detected.

The process is illustrated in Figure 1. First, modal impact testing is used to characterize the forced

response of the discretized underlying model of the structure. Several sets of impact force and

acceleration response data are averaged for each possible impact point to estimate the frequency

response function between that impact location and the response measurement locations/directions.

After estimating the frequency response functions, a set of assumptions along with the FRF model,

which is constructed from the training data, are used to solve an overdetermined inverse problem.

The pseudoinverse, used to solve the systems of equations of interest, is calculated in advance of

monitoring for impacts, and the results are saved into memory. When an impact is detected, the

impact response measurements are pre-processed and the response spectra due to a single impact

are passed to the force spectrum estimation algorithm. By combining the measured responses

and the pseudoinverse formed using the FRF model based on the training data, the impact force

is estimated assuming that it acted at each of the possible input measurement degrees of freedom.

Once these force estimates are calculated, the algorithm then determines which force estimate most

likely corresponds to the actual impact location. The estimated force for the selected location is

then further post-processed to refine the force estimate, and the process is completed.

2.2 Indirect Force Estimation Theory

Discretized Frequency Response Function Model

In order to explain the technical details of the indirect force identification methods that are used, a

discussion of the implicit underlying forced response model is given here with an emphasis on the

limitations associated with representing a continuous structure by a discretized model. A simple

example of a cantilevered beam will be used for illustration, as depicted in Figure 2. This beam

is a continuous structure which can be excited by a forcing function that varies with both time

and position along the beam. The response of the structure changes with position along the beam.
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              Algorithm
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Figure 1: The Impact Identification Process Is Illustrated Here, Showing The Necessary

Steps Before And During Impact Monitoring.
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Because there are infinitely many degrees of freedom, there are infinitely many modes of vibration.

f(t,x)

y(t,x)x

Figure 2: A Cantilevered Beam, As Illustrated Here, Is Used To Explain The Discretization

Process Of A Continuous Structure.

The model used in this work is a data-driven model determined solely from measurements,

rather than a first-principles model of the physics of the structure; therefore, the forced response

at infinitely many degrees of freedom cannot be captured using this empirical model. The data-

driven model of the structure is in a form where the response (or forcing function) can be estimated

based on measurements alone. The continuous representation of the structure must be discretized

both temporally and spatially in order to create this data-driven model, as illustrated in Figure 3.

Spatially, the model must be reduced to a finite number of measurement degrees of freedom. In

the case of the present example, six degrees of freedom are used, and at each location, a force

acts and the system responds at each point in time. The time histories are discretized temporally

by replacing the continuous time variable t with tn, where tn = nΔt , n = 0,1, . . . ,N and Δt = 1/ fs,

where fs is the sampling frequency.

This discrete form of the model must now also be limited in terms of the number of measure-

ments available. The measurement degrees of freedom are defined by the number of output sensor

channels that are available and the number of grid points that are impacted when modal impact

testing is conducted to gather the training data. The number of output measurement degrees of

freedom are represented by No, and the number of input measurement degrees of freedom are

called Ni. When monitoring for impacts, the selection of a large Ni does not add any hardware

cost; rather, it requires more points on the structure to be impacted during modal impact testing

in order to generate the training data. The addition of output degrees of freedom, No, however,

requires that additional sensors be placed on the structure leading to additional data acquisition

equipment. Therefore, No will be much less than Ni in this case. The example beam structure

in the final configuration that is representative of an impact identification configuration is shown
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Figure 3: This Discrete Representation Of The Example Cantilevered Beam Is In A Form

That Can Be Characterized By Measurements Alone.

Figure 4: The Example Beam Structure Is Shown In A Configuration Representative Of An

Impact Identification Setup.

in Figure 4. The key differences between the discretized model that will be used in the impact

identification technique and the original discretized model is that (a) the beam structure is limited

to No = 2 output measurement degrees of freedom, and (b) the acceleration response is measured

in the beam, as it will be in the actual test setup using accelerometers, rather than the displacement

response. Although the output measurement degrees of freedom are a subset of the input degrees

of freedom in this case, that is not generally the case when tri-axial accelerometers are used to

record the response. When tri-axial accelerometers are used, the forced degrees of freedom are

limited to the normal direction whereas some response degrees of freedom will be measured in

directions perpendicular to the normal direction.
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Sparse Sensing Impact Force Estimation Theory

The impact identification algorithm that is developed here indirectly estimates a localized applied

force by inverting a data training model that is constructed empirically. In order to apply this

method, a set of assumptions must be applied to formulate an overdetermined inverse problem

that is suitable for inversion with a pseudoinverse to solve for the best-fit estimate of the forcing

function. With no assumptions or constraints applied, the inverse problem is underdetermined with

an infinite number of solutions. This example presents the approach assuming No acceleration

response measurements are available.

The frequency band is limited to {0, fmax} and the number of frequency points is reduced to Nf ,

yielding a frequency resolution of Δ f . Ni discrete points are defined where a force can be applied.

This underdetermined system can be reduced to Nf systems of equations as follows:
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, (1)

for n = 0,1, . . . ,Nf .

Equation (1) represents a set of Nf system of equations, which are underdetermined for Ni >No,

that is, when there are more input degrees of freedom than there are output degrees of freedom. If

this system of equations was not underdetermined, it could be solved for the frequency spectrum of

forces that are applied at each discrete input point. For an impact at one location, all but one of these

force spectra should be close to zero. Therefore, rather than estimating Ni forces, Ni −1 of which

should be very small for the single impact situation being considered, a better estimate of the one

force of interest can be found by assuming there is only one force input point. This assumption that

a forcing function acts at a single point allows for a set of overdetermined system of equations to

be formulated, provided that more than one acceleration response signal is available. If it is known

(or assumed) that a force acts at degree of freedom k, the system of equations in (1) becomes:
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This overdetermined inverse problem in equation (2) is suitable for solving using least squares

methods to minimize the error in the estimates that are derived from each acceleration channel. In

this work, the linear least squares best fit of the force estimate is computed by way of the Moore-

Penrose pseudoinverse, which is a standard method for solving such problems [?]. Abbreviating

equation (2) as
h

A

i

=
h

Hk

ih

Fk

i

, the best fit estimate of the diagonal force matrix is given by
h

F̂k

i

=
h

Hk

i+ h

A

i

, where
h

Hk

i+
is the pseudoinverse of

h

Hk

i

. An important note concerning

this method of estimating the force spectrum is that while computing the pseudoinverse of large

matrices such as
h

Hk

i

is computationally expensive, the pseudoinverse of the matrix is entirely

independent from the observed response; therefore, the pseudoinverse can be computed in advance

of monitoring a structure for impacts, making it possible to estimate the force spectrum using a

matrix product, which is a relatively fast computational task.

While the form in equation (2) is the most compact representation of the inverse problem,

the actual form used in the algorithm’s implementation differs slightly and allows the estimated

force spectrum to be represented by a vector, rather than a large diagonal matrix. This approach

saves considerable amounts of memory when the algorithm is implemented. This modified form is

obtained by considering equation (1) at one spectral line assuming that only one force is non-zero,

as follows:
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Abbreviating equation (3) as
n

A(nΔ f )
o

=
n

Hk(nΔ f )
o

Fk(nΔ f ), the best fit estimate of the force at

the nth spectral line is written as:
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o+n
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o

. (4)

Combining all equations in the form of equation (4) for n = 0,1,2, . . . ,Nf into one equation yields

the form that is used in the actual implementation of this algorithm:
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2.3 Force Location Identification Theory

While the estimation of a force spectrum at a known input location using training data and response

measurements, as presented above, is a straightforward calculation, the problem of identifying the

location at which an unknown force acts is considerably more challenging. Several methods exist

in literature for force estimation method that are similar to the method presented here ([13, 41, ?]).

The fundamental difference between these similar impact identification methods and the technique

presented here is the algorithm for estimating the location of the unknown force. In addition to the

similarities in the method of estimating the input force spectrum, each of the algorithms considered

begins with the same first step: to calculate the estimated force spectra assuming that the force

acted at each of the possible input locations. After this step, Ni force spectra have been estimated,

all but one of which is a numerical solution to an inverse problem that does not correspond to the

actual physical event that occurred. The entropy-based impact location identification method is the

way that we determine which force estimate most likely corresponds to the actual impact location.
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Entropy-Based Location Identification

The method used for estimating the forcing function input location is the entropy-based algo-

rithm. This algorithm attempts to solve the problems associated with implementing past methods

on large, non-homogeneous structures. In addition, this method is much more easily transferred to

various structures than previous methods, because only a few parameters must be modified to suit

a particular structure.

While the previous related methods discussed above considered the force estimates in the fre-

quency domain, this method instead analyzes the time-histories of the force estimates, which are

generated by taking the inverse discrete Fourier transforms of the estimated force spectra. By

transforming the estimates into the time domain, one of the key weaknesses of previous methods,

the need to identify a specific frequency band of interest, is eliminated. The time domain represen-

tation of the signal combines all frequency components together; therefore, the entire bandwidth

of the measurement is considered at once. Realistic force histories are identified by characterizing

how well force time histories correspond to the assumption of an impulsive forcing function.

Entropy in information theory, as defined by Shannon [50], is the key quantity that will be used

as a discriminant between force histories that correspond to impact events and those that are the

numerical solution to a non-physical problem. While entropy in thermodynamic applications is

commonplace, its application in information theory to mechanical force estimation is new, so an

explanation of the meaning of and reasoning behind entropy is given here. This explanation is not

a rigorous proof, but rather enough to motivate and understand its application in this work. For a

rigorous development of entropy and its use in information theory, see [50].

To begin the explanation of entropy in information theory, information as a quantity must be

understood. Information is generally regarded as an abstract idea and is evaluated qualitatively;

however to serve a practical purpose in calculations, it must be quantified. In this sense, informa-

tion is quantified by the number of bits that are required to fully describe that information. For

example, consider a series of coin tosses. One coin toss can be directly represented by one bit, by

representing heads as a 1, and tails as a 0, for example. So for one coin toss, the outcome of one

trial, which has 2 possibilities, can be represented by one bit. Similarly, if there were three coin

tosses, there would be 23 = 8 possible outcomes, and three bits would fully describe the particular

sequence, so there would be three bits of information in three coin tosses. In a general sense, if

there are N possible outcomes of a set of trials, the amount of information given by those trials, I,

in bits, is:
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I = log2(N). (6)

Clearly, this definition matches the expectation from the coin toss example, as the number of

possibilities in n coin tosses is 2n, so the amount of information in n coin tosses is log22n = n bits.

Rather than considering the total amount of information in a set of data, the average amount of

information per element in that set, defined as H, could be considered:

H =
I

n
. (7)

This measure of information per sample is defined as entropy. In the case of the fair coin toss,

the entropy of that process would be 1 bit, which is consistent with expectations, because 1 bit is

used to represent each toss. Entropy in this sense is the means of identifying the force-time history

that best corresponds to an impulsive force. To explain the way that entropy is calculated in the

case of evaluating recreated force-time histories, a useful example is a set of n tosses of an unfair

coin, which has a probability p1 of heads and a probability p2 = 1− p1 of tails, where in general

p1 6= 0.5. Assuming a suitably large number of coin tosses, n, the number of occurrences of heads

will be given by m = p1n. While there were N = 2n possible outcomes of n tosses of a fair coin,

the number of possible outcomes of n tosses of this unfair coin is given by:

N =

�

n

m

�

=
n!

m!(n−m)!
. (8)

From the previous definition of information, the amount of information in this set of trials is given

by:

I = log2(N) = log2

�

n

m

�

= log2(
n!

m!(n−m)!
). (9)

Writing this expression for information in terms of the base e rather than 2 and re-arranging,

equation (9) can be written as:

I =
1

ln(2)
(ln(n!)− ln(m!)− ln((n−m)!)). (10)

Using Sterling’s approximation for the natural logarithm of a factorial, ln(n!) ≈ nln(n)− n for n

very large, equation (10) becomes:
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I =
1

ln(2)
(nln(n)−mln(m)− (n−m)ln(n−m)). (11)

After straightforward algebra, which is omitted for brevity, and returning to logarithms of the base

2, equation (11) is written as:

I =−mlog2(
m

n
)− (n−m)log2(

n−m

n
). (12)

Equation (12) is now written in terms of probabilities p1 and p2, giving the final expression for

information:

I =−np1log2(p1)−np2log2(p2). (13)

Finding the average information per toss gives the entropy of the process as follows:

H =−p1log2 p1 − p2log2 p2. (14)

Plotting the entropy as a function of probability heads, as in Figure 5, helps to explain how

entropy changes based on the characteristics of the underlying process. The entropy is maximized

when both events are equally likely, where the entropy is 1 bit, as expected from the previous

discussion of a fair coin toss. When there is less uncertainty in the outcome, that is, either heads

or tails is more likely to occur, the entropy is less. At the extremes, if the probability of heads

approached 100% or 0%, the entropy would be zero. This result makes sense because in either of

these cases, with a knowledge of the probability beforehand, no information is gained by each toss

of the coin. The outcome of every trial was already known.

Two important characteristics of entropy in general can be drawn from this simple example of

two possible outcomes. In all cases, the entropy is maximized when each of k possible outcomes

is equally likely, where entropy approaches a maximum value of Hmax = log2(k). Second, the

minimum entropy approaches zero as the probability of one possible outcome approaches 1.

While the simple example of two possible outcomes is a useful example, it is not sufficient

to characterize the force signals of interest. In more practical cases, there exists more than two

possible outcomes. The form of entropy in the case of two outcomes, as in equation (14), extends

to the case with k possible outcomes, each of which has a probability of pi, as follows:
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Figure 5: Entropy For A Set Of Unfair Coin Tosses As A Function Of The Probability Of

Heads.

H =
k

∑
i=1

−pilog2 pi. (15)

In this application, equation (15) is implemented to find the entropy of a recreated force signal

by dividing the signal into a set number of equally spaced bins, and then finding the number of

samples that fall into each bin. These frequencies of occurrence are divided by the total number

of samples to give probabilities that the signal falls into each bin range. The entropy is then

calculated according to equation (15). To illustrate the process, we consider two example signals,

each consisting of ten samples that range in value from 0 to 1. These signals are intended to be a

simple example of how a signal that consists of just one pulse has a lower entropy than one that is

more random. Five bins will be used to find the entropy of each of the signals, which are given in

Table 1. Table 2 shows the results at each step of the entropy process, as well as the final value. The

probability of the signal falling into each bin is calculated, and then the contribution to the entropy

total is listed for each bin. Finally, the values are summed to find the total entropy of each signal.

In this example, the simple pulse signal has an entropy of 0.47 bits, while the random signal has an

entropy of 2.32 bits. While this is a somewhat exaggerated example, it illustrates the trend that the

most ordered recreated force time histories which best match expectations of a simple pulse will

have the lowest entropy value.
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Table 1: Two Simple Example Signals, Used To Represent A Signal With A Single Pulse

And One That Is More Random.

Values

Signal 1 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

Signal 2 0.75 0.17 0.3 0.54 0.37 1.0 0.7 0.9 0.0 0.58

Table 2: The Entropy Calculation Process Is Demonstrated For Two Simple Example

Signals.

Signal 1 Signal 2

Bin Count pi −pilog2 pi Count pi −pilog2 pi

0.00-0.19 9 0.9 0.137 2 0.2 0.4644

0.20-0.39 0 0 0 2 0.2 0.4644

0.40-0.59 0 0 0 2 0.2 0.4644

0.60-0.79 0 0 0 2 0.2 0.4644

0.80-1.00 1 0.1 0.3322 2 0.2 0.4644

Total 10 1 0.469 10 1 2.322

2.4 Impact Identification Uncertainty Quantification

The original use of impact force estimate entropy was exclusively for identifying the most likely

impact location by comparing the entropy value with those of other impact force estimates originat-

ing from the same impact event. We have discovered that the entropy of the selected impact force

estimate can be further used to evaluate the quality of the impact force estimate, and therefore bet-

ter quantify the uncertainty of the impact force estimate. Because the entropy of the impact force

estimate is directly related to how impulsive that force estimate is, the entropy for highly accurate

force estimates tends to be lower than that of lower quality estimates. Therefore, by considering

the entropy of the final impact force estimate, the uncertainty associated with that estimate can be

evaluated in real time, giving an immediate indication of the confidence in that estimate.

To understand how the entropy of the impact force estimate is indicative of the uncertainty of

that estimate, it is worthwhile to consider the possible sources of force estimation error. There are

a number of potential sources of error in impact identification, ranging from those related to the

measurement setup to those violating the assumptions behind the impact identification approach.

The five most significant potential issues are as follows:

1. Inaccurate impact location estimate

2. FRF model error
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3. Response measurement error

4. Structural nonlinearities

5. Bandwidth of force estimate exceeds that of model

As explained in Section 2.2, the impact load estimation technique is based on deconvolution of a

response signal with the impulse response function of the structure relating the response to the force

at a particular location. Errors in either the impulse response used for inversion or the measured

response signal will cause errors in the force estimate. The impulse response can be incorrect for

a few reasons; the impulse response of the structure when the impact occurs may have changed

between when IRFs were estimated, or the estimation of the IRFs may have been incorrect as a

result of measurement or experimental error.

The impact identification algorithm assumes that the impact occurs at one of a predefined finite

set of potential impact locations. Depending on the density of the training data grid, this may

not be an adequate assumption, and the force magnitude estimation may have significant error if

the actual impact location is not coincident with a training data grid point. To examine how this

situation affects the impact force estimate and the entropy thereof, a simplified example will be

considered with one response measurement at point a and an impact force occurring at point b.

The impulse response of the structure between points a and b is known, and is abbreviated hab.

The response measurement is denoted xa, the impact force is denoted fb. In addition, there is

another grid point labeled c, which represents another grid point with training data established.

This measurement scenario is illustrated in Figure 6, and Figure 7 is a block diagram for this

example.

x
a

f
b

a

b

c

Figure 6: Diagram Of Example Impact Identification Scenario

fb xahab

Figure 7: Block Diagram For Single Input, Single Output Example System
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The response in this example is equal to the convolution of the impact force with the impulse

response function between points a and b, as shown in the following equation.

xa(t) = fb(t)∗hab(t) (16)

Taking the Fourier transform of (16), and noting that convolution in the time domain is equiv-

alent to multiplication in the frequency domain, (16) becomes:

Xa( jω) = Fb( jω)Hab( jω) (17)

where Hab( jω) is the frequency response function between points a and b, Xa( jω) is the response

spectrum, and Fb( jω) is the force spectrum.

Rearranging (17), the inverse force estimation problem can be solved by simple division:

Fb( jω) =
Xa( jω)

Hab( jω)
(18)

The estimated impact force in the time domain is then:

fb(t) = F
−1(

Xa( jω)

Hab( jω)
) (19)

Now we consider a scenario with an impact at point b and an output at point a, just as before,

but where the force is assumed (in error) to have occurred at point c. Following the same approach

as before, the force spectrum would be estimated as follows:

F̂c( jω) =
Xa( jω)

Hac( jω)
(20)

Likewise, the force time history would be estimated as:

f̂c(t) = F
−1(

Xa( jω)

Hac( jω)
) (21)

Clearly, if Hac( jω) 6= Hab( jω),then the estimated force, f̂c(t), is not the same as the actual

force, fb(t), so there is some error in this force estimate. To understand how the force estimate in
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this situation relates to the actual force input into the system, (17), can be rearranged as follows:

F̂c( jω) = (
Xa( jω)

Hab( jω)
)(

Hab( jω)

Hac( jω)
) (22)

Substituting (18) into (22) relates the estimated force spectrum to the true input force spectrum:

F̂c( jω) = Fb( jω)(
Hab( jω)

Hac( jω)
) (23)

The ratio of frequency response functions in (23) is equivalent to the transmissability between

points b and c, which is the ratio of the response spectra of those points, and is denoted Tbc( jω).

Using this notation gives the simple relationship between the estimated force and the true input

force:

F̂c( jω) = Fb( jω)Tbc( jω) (24)

Noting that multiplication in the frequency domain is equivalent to convolution in the time

domain, the estimated impact force time history can be related the true impact force time history

and the impulse response of the transmissibility, denoted tbc(t):

f̂c = fb(t)∗ tbc(t) (25)

The above equation shows that the estimated force time history is like the response to a dynamic

system characterized by the transmissibility impulse response rather than a conventional impulse

response function. If the transmissibility is unity for all frequencies (that is, if the frequency

response function of the system when the impact occurs is identical to the estimated frequency

response function from training data), then the inverse Fourier transform of that transmissibility

would simply be a dirac delta function, which would lead to the estimated force being identical to

the true force, as would be expected in a system with no errors. If, on the other hand, the transmis-

sibility is not unity for all frequencies, the impulse response of that transmissibility function will

contain oscillations, which will lead to a force estimate which contains oscillations that were never

present in the actual force. These oscillations will lead to a higher entropy value associated with

the force estimate.
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3 Experimental Impact Identification and Uncertainty

Quantification

3.1 Experimental Setup

This impact identification technique was tested on a commercial wind turbine blade. The tested

blade had been damaged in a lightning strike, and was delaminated at the tip with a portion of the

tip missing, but the portion which was tested was largely undamaged. The blade was fastened at

the root of the blade to a steel fixture, and supported towards the end of the blade with nylon straps.

Figures 8, 9, and 10 show the damaged blade tip, root boundary condition, and the second blade

support, respectively.

Figure 8: Tip Damage on Wind Turbine Blade

Figure 9: Steel Support At Blade Root
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Figure 10: Nylon Strap Supporting Blade Towards The Tip

Five tri-axial accelerometers were mounted to the blade to test the influence of sensor place-

ment on the accuracy of impact identification. The locations of these sensors are shown in Figure

11, along with the number assigned to each. Accelerometer 1 is a PCB 356T18, an ICP triax-

ial accelerometer with nominal sensitivity of 1000mV/g. Accelerometers 2-5 are Silicon Designs

2460-050 DC coupled peizoresistive triaxial accelerometers with nominal sensitivities of 80mV/g.

The relevant sensor information is summarized in Table 3.

Table 3: Accelerometers Used For Impact Identification Study

# Manufacturer Model Nominal Type DAQ

Sensitivity Coupling

1 PCB T356B18 1000mV/g Piezoelectric AC

2 Silicon Designs 2460-050 80mV/g Piezoresistive DC

3 Silicon Designs 2460-050 80mV/g Piezoresistive DC

4 Silicon Designs 2460-050 80mV/g Piezoresistive DC

5 Silicon Designs 2460-050 80mV/g Piezoresistive DC

A grid of 130 impact locations was marked on the section of the blade between the root and the

support. The vertical spacing between points was approximately 0.36m, and the horizontal spacing

was roughly 0.91m. The impact locations are shown in Figure 11 along with the sensor locations.

To create the frequency response function model of the blade, modal impact testing was carried

out using a 5.5kg modal sledge hammer, model PCB 086D50, with a soft rubber tip. The modal

impact hammer used is shown in Figure (12). Peak force amplitude for these impacts ranged

from 542.2lbf to 2469.3lbf, with a mean value of 1205.4lbf and a standard deviation of 371.5lbf.
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Figure 11: Illustration Of The Blade With Approximate Dimensions, Sensor Locations

(Enumerated In Red), And Impact Locations (Marked In Black)

The bandwidth of excitation, as measured by the first frequency where the amplitude of the force

spectrum drops to one tenth the maximum amplitude, ranged from 101.5Hz to 281.5Hz, with a

mean bandwidth of 174Hz, and a standard deviation of 31.5Hz. Testing was conducted with ten

impacts per point, sampled at 2560Hz for a duration of 2 seconds per impact. Frequency response

functions were estimated with the H1 estimator.

Figure 12: Modal Sledge Hammer Used For Impact Testing

To test impact identification accuracy, a validation data set was collected with two impacts per

point. The impact identification algorithm was applied to response data, and the estimated location

and impact magnitude were compared to the known values to evaluate performance.

3.2 Impact Identification Accuracy

In order to test the performance of the impact identification algorithm on the blade, the response

data from each validation impact was passed through the algorithm, and the estimated location

and maximum force level was recorded. Two key metrics were used to evaluate the accuracy of

the estimate: 1) the location identification accuracy, that is, how many of the validation impacts

were correctly located, and 2) the magnitude of the peak force error, that is, the absolute value of
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the difference between the estimated and measured peak force relative to the measured peak force

value.

To evaluate how sensor configurations affected the impact identification accuracy, the data from

each of the five accelerometers were used individually to perform these validation simulations.

Although the data for these sensors was collected simultaneously, only one sensor is used at a time

in these validation tests. Accuracy is evaluated when data from all three measurement directions

are used, when data from two of the three measurement directions are used, and when data from a

single measurement direction are used.

The results of the validation simulation using all three response channels per sensor are sum-

marized in Table 4. Regardless of the sensor location, 100% of impacts were located to the correct

grid point. The accuracy of the impact force magnitude estimates was also fairly consistent be-

tween sensor locations. The peak force identification error was biased towards underestimating the

peak magnitude of the impact force by an average of 0.68%. The fifth sensor, which was placed

the furthest towards the blade tip and closest to the trailing edge, performed the best of the tested

locations. The force estimates using the fifth sensor had a median error of 3.3%, with 75% of the

impact forces estimated within 5.6% of the true peak force value, and a maximum error of 21.2%.

The sensor with the lowest force accuracy was the fourth sensor, which was located closer to the

root of the blade and close to the leading edge of the blade. The force estimation error for the

fourth sensor had a median value of 4% and a maximum error of 35.8%.

Table 4: Impact Identification Performance Using Each Triaxial Accelerometer

Location Magnitude of Peak Force Identification Error

Sensor Identification Percentile
Max Max

Number Accuracy 25th 50th 75th

1 100% 1.74% 4.08% 6.39% 4.77% 27.91%

2 100% 1.71% 3.76% 6.38% 4.86% 30.74%

3 100% 1.79% 4.20% 6.61% 4.84% 25.58%

4 100% 1.99% 4.05% 6.83% 4.94% 35.80%

5 100% 1.60% 3.32% 5.57% 4.17% 21.17%

From these results, the force accuracy shows no significant dependence on the distance from

the sensor. Figure 13 is a scatter plot of the force error plotted against distance from the sensor,

showing the results of validation tests using each of the available sensors. This plot illustrates the

independence of the force accuracy on the distance from the sensor, even for very large distances.

Most of the largest force estimation errors that were observed were at locations relatively close to

the sensor, but this fact is probably in part due to the larger number of points that are an intermediate

distance from the sensor than those very distant. Other impact force identification techniques, such
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as the method presented in [49], have shown a linear increase in error with distance from the sensor,

so the fact that distance and accuracy are largely uncorrelated in this instance is significant.
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Figure 13: Force Estimation Error Vs. Distance From Sensors For All Combinations Of

Sensor And Impact Location

The same type of validation test was repeated with only two of the three response directions

used, with the response data in the axial direction ignored. Using this subset of the data produces

results very similar to those when all three response channels per sensor are used. The results

are detailed in Table 5. Most of the mean errors are marginally higher than when using all three

channels, but the median errors and maximum errors are mostly lower. Based on these results, a

bi-axial accelerometer could be used just as effectively as a tri-axial accelerometer, even on very

large structures. When using a single response channel, impact location performance was generally

acceptable, with accuracy greater than 95% for all tested sensor locations and directions. However,

the force estimation accuracy was significantly lower than the bi-axial and tri-axial test cases, and

these measurement configurations would likely be more sensitive to measurement errors, because

the inverse problem being solved is not overdetermined. Table 6 summarizes these results when

using a single measurement channel.

Table 5: Impact Identification Performance Omitting Data in the Axial Direction

Location Magnitude of Peak Force Identification Error

Sensor Identification Percentile
Mean Max

Number Accuracy 25th 50th 75th

1 100% 1.87% 3.91% 6.58% 4.81% 28.13%

2 100% 1.63% 3.76% 6.37% 4.84% 30.29%

3 100% 1.81% 4.24% 6.59% 4.89% 25.44%

4 100% 1.95% 3.97% 6.73% 4.92% 35.72%

5 100% 1.57% 3.26% 5.54% 4.19% 21.06%
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Table 6: Impact Identification Performance Using Individual Measurement Directions (X

:chordwise, Y:spanwise, Z:normal)

Location Magnitude of Peak Force Identification Error

Sensor & Identification Percentile
Mean Max

Direction Accuracy 25th 50th 75th

1

X 100% 1.94% 4.19% 6.88% 4.95% 25.75%

Y 100% 1.79% 3.94% 7.39% 5.11% 29.26%

Z 99.23% 2.47% 4.26% 7.37% 5.35% 30.39%

2

X 99.23% 1.76% 4.27% 7.49% 5.17% 30.87%

Y 97.69% 2.12% 4.59% 9.78% 7.32% 114.46%

Z 100% 1.67% 3.71% 6.51% 4.95% 29.92%

3

X 99.62% 1.67% 4.15% 6.78% 4.84% 26.18%

Y 95.77% 2.65% 6.77% 11.36% 11.06% 343.04%

Z 100% 2.05% 4.31% 6.87% 5.07% 26.06%

4

X 100% 1.66% 4.05% 7.02% 4.95% 34.02%

Y 99.23% 2.30% 4.64% 8.91% 6.62% 96.45%

Z 100% 1.87% 4.17% 6.63% 5.01% 37.84%

5

X 100% 1.85% 3.78% 6.68% 4.74% 26.35%

Y 97.31% 2.29% 4.73% 8.22% 6.44% 67.93%

Z 99.23% 1.51% 3.64% 6.31% 4.62% 43.46%

The validation simulation results show that entropy of the estimated force time histories is an

effective measure to discriminate between the force at the actual impact location and the other

erroneous force estimates. When using two or three response channels, every impact was correctly

located, so the entropy value corresponding to the impact location was always the least. To better

evaluate how effective the recreated force entropy is in discriminating between correct and incor-

rect locations, the recreated force entropy is compared between the actual impact locations and

the other incorrect impact locations. The results from all of the three channel validation response

simulations were considered, and histograms of the recreated force entropy values for correct and

incorrect locations are shown in Figure 14. For this comparison and the following entropy dis-

cussion, the signals were discretized to 200 amplitude values. Therefore, a purely random signal

would have log2(200)= 7.64 bits of entropy. This comparison of entropy value distributions shows

that the recreated force entropy is a very effective discriminator between the correct and incorrect

locations. There is very little overlap between the two distributions, the entropy of the incorrect

locations is tightly distributed, and the values of the correct location entropy are much lower than

those from the corresponding incorrect locations. When entropy values from one impact were

considered, the value corresponding to the correct location was always more than 1.5 times the

interquartile range of the other entropies, with some values more than 10 times the interquartile

range below the other entropy values. This measure indicates that for this set of data, not only is
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the entropy for the correct location always lowest, it is always a clear outlier of the distribution.
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Figure 14: Histograms Showing The Distribution Of Entropy Values For Force Estimates

Corresponding To Incorrect Locations (Top) And Correct Locations (Bottom)

3.3 Uncertainty Quantification

Entropy of the recreated force time histories effectively locates impacts because the value charac-

terizes how well the force estimate meets the assumption of an impulsive load. Therefore, noise

and error in the force estimate that alters the shape of the recreated force signal would generally

contribute to an increase in the entropy of the force estimate. To evaluate the extent that the en-

tropy of the recreated force time history is related to error in the force estimate, the force estimates

were split into seven categories according to entropy value. Boxplots of the magnitude of force

estimation error were plotted for each of these entropy ranges in Figure 15, along with a histogram

showing the frequency of estimates within each of these entropy ranges. Statistical measures cor-

responding to each of these entropy ranges are detailed in Table 7.

Both the average bias and variance of the force estimation error are monotonically increasing

with the entropy value of the estimated force. Both the mean error and standard deviation for the

force estimates with entropy greater than four are more than three times the corresponding values

for estimates with entropy less than 2.5. This result is important because with an understanding
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Figure 15: Relationship between impact force identification error and entropy of the force

estimate

of how the recreated force entropy and force error are related, the uncertainty in a force estimate

could be characterized based on the entropy value for that estimate. Uncertainties based on the

entropy value of the force estimate would be more accurate than uncertainty measures based only

on the errors of the validation data set as a whole.

Table 7: Peak Force Estimation Error Statistics Corresponding To Estimated Force Entropy

Entropy

Count

Magnitude of Peak Force Error (%)

Range Percentile
Mean

Standard

(bits) 25th 50th 75th Deviation

0 - 2.5 21 0.38 1.54 3.06 2.04 1.93

2.5 - 2.8 114 1.56 2.80 4.76 3.51 2.88

2.8 - 3.1 307 1.38 3.22 5.30 3.97 3.32

3.1 - 3.4 443 1.89 4.09 6.22 4.72 3.64

3.4 - 3.7 275 2.04 4.27 7.13 5.28 4.86

3.7 - 4 93 3.40 5.19 7.56 6.43 5.05

¿4 47 3.03 4.3 8.87 6.97 6.19

To further investigate the quantification of impact load uncertainty based on estimated force en-

tropy, empirical cumulative distributions of the magnitude of impact force estimation error were in-

vestigated. These distributions, shown in Figure 16, indicate the increasing uncertainty and higher

force estimation error for higher entropy forces. Another important feature of these distributions
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is that the distribution based on all force estimates is a poor indicator of the uncertainty of force

estimates with high or low entropy values. Categorizing force estimates based on recreated force

entropy better characterizes the uncertainty in that force estimate.

When considering all force estimates, 95% of validation tests showed a peak force estimation

error of less than 12.6%. In contrast, 95% of estimates with entropy of less than 2.5 bits were

accurate within 5.5%, while the same measure was 22% for force estimates with more than 4

bits of entropy. Therefore, the uncertainty for force estimates in the lowest entropy range was

significantly overstated by the distribution of all estimates, and the uncertainty for force estimates

with the highest entropy was significantly understated by the distribution of all estimates.
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Figure 16: Empirical Cumulative Distributions Of Peak Force Estimation Error For Force

Estimates Of Varying Entropy

3.4 Conclusions

The entropy-based impact identification technique presented here was very effective at accurately

locating impacts on a large, non-homogenous structure using data from only one sensor. Location

identification performance was 100% accurate for all tested sensor locations when using accelera-

tion data from two or three sensor directions, and on average 99.15% accurate when using a single

measurement direction.

The measure of recreated force entropy discriminates between force estimates from correct
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and incorrect locations very well, with the entropy at the correct location always being a statistical

outlier. The value of the minimum recreated force entropy was shown to be a good indication

of the uncertainty in the force estimate. Both the bias and variance of the force estimation error

monotonically increased with increasing entropy values.
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4 Linear Vibration-Based Techniques for Impact Damage

Assessment

4.1 Application to Weak Bond Lap Joint Test Specimen

Linear vibration based techniques for nondestructive testing and structural health monitoring iden-

tify changes in the structure related to the distribution and magnitude of the mass, stiffness, damp-

ing, and boundary conditions of a structure or test sample. Because these techniques do not rely

on the presence of a geometric irregularity or imperfection such as a disbond, delamination, or

void, they are promising for identifying damage mechanisms which do not present with these fea-

tures. Weak bonds in composite manufacturing are a significant problem that is still yet to be well

understood and identified. Separate work at Sandia National Labs has sought to replicate this phe-

nomenon in test articles which feature weak bonds like those of concern to manufacturers. These

weak bonds were implemented on metallic test articles featuring a lap joint in the middle of vary-

ing bond strength. Although weak bonds are not the primary area of interest for this work, these

test articles offered a good opportunity to evaluate how the vibration properties of the structure can

change with subtle damage mechanisms.

Table 8: Summary Of Weak Bond Test Specimen

% Full Bond Strength Description

1 100% Pristine

2 46% Baking powder 10% coverage with silk screen

3 26% Grease layer, 0.02mm thick, 100% coverage

4 10% Baking powder 100% coverage

To test how vibration-based structural health monitoring techniques might work on a sample

like these, four test specimen were tested and analyzed. The test samples considered are summa-

rized in Table 8.

Experimental setup

The experimental approach for testing these samples was to first identify the temporal properties of

the system, directly at the bond location, and then identify the spatial characteristics of the response

of the sample as a whole. To that end, two tests were performed on each sample: a shaker test and

a modal impact test.
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First, a 7lbf max force modal shaker was attached to the specimen at the bond location with

an impedance head measuring the input force and acceleration response. Figure 17 shows the

configuration for this test. The specimen was clamped to the table by way of steel supports, with a

layer of rubber between the test beam and the steel supports to avoid rattle problems. A temporary

mount was attached at the midpoint using Loctite 454 instant adhesive, and the impedance head

was fastened to the mount using a threaded stud. The selected forcing function for this test was a

sine sweep, with frequency increasing from 10Hz to 1500Hz over the span of two seconds. Data

was sampled over the duration of the sine sweep at a rate of 25000Hz. Twenty data sets per sample

were collected, and frequency response functions were estimated using the H1 FRF estimator,

which minimizes the effect of noise on the response measurements.

Figure 17: Experimental setup for driving point impedance measurement

After this test was complete, the impedance head was replaced with an accelerometer at the

same location, and two additional accelerometers were mounted at the edges of the specimen. All

accelerometers used for this test were 10mV/g ICP piezoelectric sensors manufactured by PCB

group. A grid of impact locations was marked as shown in Figure 18. A PCB modal impact

hammer, model 086C01, with a nylon tip, was used to impact the beam at each of these locations,

five times per grid point. The force and response was measured for each of these impacts, and

frequency response functions were estimated using the H1 FRF estimator.
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Figure 18: Experimental Configuration For Modal Impact Testing Weak Bond Specimen

Results

Driving point frequency response functions at the lap joint were compared for the four tested

specimen, and are shown in Figure 19. These frequency response functions show a number of

features which are revealing about the nature of the damage. The low frequency dynamics show

very little change between specimen, indicating that the static stiffness of the structure overall is

very similar despite the weak bonds. Two natural frequencies are present in the tested frequency

range; the first around 150Hz, and the second in the 750-850Hz range. The first natural frequency

changes very little between test specimen, but the second natural frequency changes substantially.

As the bond strength decreases, this mode decreases in frequency. This behavior is indicative of

a reduction in the dynamic stiffness of the specimen at that frequency, and it shows the structural

differences between these varying levels of bond strength. The frequency of this mode seems

to monotonically decrease with decreasing bond strength. The phase of the frequency response

functions around this resonance also indicate that the damping of the weak bond specimen is

higher than that of the pristine specimen, as indicated by the slope of the phase curve at the natural

frequency, which is inversely proportional to the damping of that mode. Separate work at Sandia

determined that this increase in damping was a stronger indicator of weak bonds than shifts in

natural frequencies. Another interesting observation is that the amplitude of the frequency response

function in the vicinity of this mode shows a strange shape for the 10% and 26% bond strength

specimen. This frequency response function shape would not be predicted by a linear model of the

structure with a single mode in that frequency range, so this uneven shape could be an indicator of

nonlinear dynamic behavior near this resonance.

To further understand the changes in the dynamics between these weak bond test specimen, a
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Figure 19: Driving Point FRFs At Bond Location For Several Levels Of Bond Strength

modal decomposition was carried out using the modal impact test data. The set of roving impact

hammer frequency response functions were transformed into discrete impulse response functions,

and a high order matrix polynomial auto regressive moving average model was fit to the data. The

technique used is called Polyreference Time Domain (PTD), because it incorporates data from

more than one reference sensor measurements to better estimate the properties of the system. Ap-

plying PTD gave modal frequency estimates and modal participation factors. These modal param-

eters were then used with a high order time domain mode shape estimator to estimate the mode

shape associated with each frequency. Model order was increased iteratively until modal parameter

estimates converged to stable values.

The mode shape estimates for the 46% bond strength specimen at the two modes seen in the

driving point impedance frequency response functions are shown in Figures 20 and 21. As ex-

pected, the first mode in the driving point FRFs (133Hz) was seen to be the first bending mode.

The adhesive imperfections at the lap joint had little effect on the stiffness for this mode, likely due

to the small curvature at the site of the lap joint for this mode, and the small change in static stiff-

ness caused by the adhesive contaminants. The mode which showed the most change was the third

bending mode, which was in the 700-900Hz range. For the 46% bond strength test specimen, that

mode was at 817Hz. The second bending mode was not observable in the driving point impedance

tests because the actuator was directly at the center of the beam, which is a node for the second

bending mode.
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Figure 20: Experimentally Identified Mode Shape Of The 46% Bond Strength Test

Specimen For The First Mode At 133Hz

Figure 21: Experimentally Identified Mode Shape Of The 46% Bond Strength Test

Specimen For The Third Mode At 817Hz

The implication of these results is that in this instance, the local reduction in stiffness at the

center of the beam results in a change in the global vibration properties of the system. With

adequate sensor placement (i.e. not at or near a node for the third bending mode), this change in

the frequency response of the structure could be sensed by remote sensors, which is promising. By

knowing the location of the structural change, remote measurements could be enhanced to more

prominently show the changes in this third bending mode. This finding supports the idea of using

the impact location estimate to enhance the sensitivity of damage detection techniques. In this

instance, if the potential damage area was known to be at the center of the beam, for instance, even

modes could be ignored, and modes where significant curvature across the joint were present could

be enhanced.

Although these results are promising, it is still important to keep in mind that there are a

number of simplifications present in this test which may not generalize to more complex structures,

including:

• The beam was a simple metallic beam with low damping, which is ideal for modal analysis

and sensing vibration changes.
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• The frequency response is modally sparse in the frequency range below 1kHz, so the indi-

vidual modes are easily distinguished. When there are a number of modes with frequencies

in the vicinity of interest, sensing the change becomes more difficult, particularly when the

damping for the mode of interest increases.

• The adhesive in this instance was the only material connecting the two parts of the beams, so

the stiffness of this adhesive played a major role in the overall stiffness of the structure. When

the adhesive is a less prominent structural feature, the changes in the frequency response may

be much more subtle. However, many modern construction techniques use bonded joints as

very prominent features, so this result is useful for many applications.

4.2 Increasing Sensitivity With Location-Based Filter

To examine the possibility of enhancing the sensitivity of remote measurements to damage at a

known location, a simple analytical model representing a structure before and after a damaging

event was created. Then, the idea was tested on a composite pressure vessel which was damaged

using a drop tower.

Theory and Simulated Example Application

A simple model of a cantilever beam was created using 15 Bernoulli-Euler elements. Two degrees

of freedom near the cantilever end of the beam were selected for the input and the output measure-

ments, and the 7th element from the cantilevered end was chosen as the simulated damage location.

The reason behind this configuration is that the damaged element is distant from the measured ele-

ments, is not at a known node location, and is not bounded by the input and output measurements.

The beam with indicated damage, response, and forcing locations is shown in Figure 22.

Mass and stiffness matrices were created for each element, and these mass and stiffness ma-

trices were assembled with boundary conditions taken into account to give the mass and stiffness

matrices for the system as a whole. Proportional damping was assumed, and frequency response

functions were generated using these mass, stiffness, and damping matrices, assuming that element

2 is the response measurement, element 3 is the forcing location, and element 7 is the one to be

damaged. Damage at this location was simulated by reducing the stiffness of that element by 25%,

while leaving all other stiffnesses the same. Frequency response functions were calculated before

and after the simulated damage was introduced.
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Figure 22: Diagram Of Cantilever Beam Model
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Figure 23: Difference In FRFs Before/After Damage Between The Actuator And Response

DOFs

Figure 23 shows the difference in frequency response functions between the second and third

element before and after simulated damage. A reduction in some natural frequencies is evident,

and the behavior around 200Hz is lower amplitude in the damaged case than the undamaged case.

To characterize the overall change in the frequency response functions before and after damage,

a damage index was calculated. Denoting the frequency response functions between degrees of
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freedom p and q as H∗
pq, the damage index was calculated as follows:

DI =
1000Hz

∑
f=0Hz

|H23( j2π f )−H∗
23( j2π f )|

|H23( j2π f )|
(26)

To enhance the sensitivity of this method to damage, the frequency response functions after

damage were then weighted by the transmissability between the second and seventh degrees of

freedom, as measured before the damage was introduced. Had the frequency response functions

stayed the same between the two data sets, the frequency response function weighted by the trans-

missability would be identical to the frequency response between the third and seventh degrees

of freedom before damage. Because the damage altered the dynamic response, however, the two

measures were significantly different. Figure 24 compares these two frequency response functions.

The same type of damage index as in (26) was then calculated as follows:

DI =
1000Hz

∑
f=0Hz

|H27( j2π f )−H∗
23( j2π f )∗T37( j2π f )|

|H27( j2π f )|
(27)

In the above equation, H∗
27( jω) was estimated by multiplying the updated frequency response

function between the second and third degrees of freedom, H∗
23( jω), by the transmissibility be-

tween the third and seventh degrees of freedom before damage, T37( jω). This multiplication in

the frequency domain is equivalent to a convolution in the time domain, and if this was a set of

experimental data, digital filter design techniques would have been used on the impulse response

of the transmissibility to reduce numerical issues that could come with implementing this multi-

plication directly.

The damage indices indicated that weighting by the transmissibility effectively increased the

sensitivity to damage. The first damage index indicated a 22.7% change over the range of interest

when comparing the FRFs between the sensor and actuator, while the damage index comparing the

transmissibility weighted FRFs indicated a 32.1% change. This shows that for this simple model, a

41% increase in the sensitivity to damage is possible by taking into account a known (or assumed)

location of damage.
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Figure 24: Comparison Of FRFs Before/After Using Synthesized FRFs Between The

Actuator And The Damage Degrees Of Freedom.

Application to composite pressure vessel

To test a more realistic structure, a composite pressure vessel was tested in an attempt to replicate

the results seen in the analytical example. To experimentally realize these measurements, modal

impact testing and sine sweep actuator testing were conducted before and after impacting the pres-

sure vessel with an 80ft-lbf energy level impact from a drop tower with a 0.5” steel hemispherical

tip. The drop tower test was able to create a very limited amount of visible damage, but this energy

level and boundary condition under the drop tower was known to create significant damage on

other identical pressure vessels in the past.

Figure 25 shows the pressure vessel which was tested, supported from above by a flexible

bungee cord, with a piezoelectric disc actuator mounted towards the bottom, and an accelerometer

mounted towards the top. The grid points which were impacted are also enumerated in the picture.

When the canister was drop tested, the actuators were removed and replaced with shock ac-

celerometers in order to protect the actuators. Figure 26 shows the pressure vessel under the drop

tower. The point to be impacted is directly between the two bungee cords, which hold the canister

firmly against a steel support.
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Figure 25: Composite Pressure Vessel Tested, With Accelerometer And Actuator Attached

Figure 26: Composite Pressure Vessel Under The Drop Tower To Create Damage

Figure 27 shows the estimated frequency response functions before and after damage with

transmissibility weighting (top) and without (bottom). As in the analytical example, small shifts

in the frequency response functions in the original measurements become distinct peaks when
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weighted by transmissibility. However, significant challenges are seen in this data set which were

not in the more simple analytical beam model. Depending on the frequency range over which the

damage index was calculated, the weighting could have either increased or decreased the sensitiv-

ity to damage. The frequency range which produced the most significant change in the frequency

response would not necessarily be the same for each possible damage location, so simply calcu-

lating a damage index over an ideal range would be somewhat misleading; the damage sensitivity

may be higher in this instance, but lower in another.
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Figure 27: Comparison Of FRF Amplitude Before And After Damage With And Without

Transmissibility Weighting.

In addition to the challenges in selecting an appropriate frequency range, when applying the

transmissability filter to enhance the changes in the frequency response functions before and af-

ter damage, problems occurred at the anti-resonances of the frequency response function between

the actuator and sensor. To investigate the cause and potential solutions to this problem, the fre-

quency response functions were expressed in several forms. The first is a polynomial form in the

Laplace domain, with the numerator of a frequency response function Hpq(s) denoted Bpq(s), and

the denominator of all frequency response functions of the system denoted as A(s). The relevant

degrees of freedom in this discussion are d - the potential damaged location, f - the forcing lo-

cation, and a - the accelerometer location. Frequency response functions with the ∗ superscript

are those measured after a potentially damaging impact, and those without the asterisk superscript

are measured before the potentially damaging impact. The approach is to estimate the frequency
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response between the potentially damaged location and the sensor location by forcing the function

by the actuator and using a ratio of transmissabilities measured beforehand:

H∗
ad ≈

Had

Ha f

H∗
a f

Expressing the transfer functions as the ratio of polynomials as discussed above, this becomes:

H∗
ad ≈

Bad(s)

Ba f (s)

B∗
a f (s)

A∗(s)

The resonances of the system are the roots of the denominator polynomial, A∗(s), and are

universal across all degrees of freedom, while the anti-resonances are local properties of the system

and are the roots of the numerator polynomial, Bpq(s). The anti-resonances between the forcing

and response degrees of freedom (the roots of Ba f (s)) are not of interest for damage detection,

but interfere with the results if Ba f 6= B∗
a f ; any root of Ba f (s) that is not completely canceled by

a root of B∗
a f (s) causes a situation where there is a division by a number very close to zero. This

near divide by zero problem causes a significant spike in the recreated frequency response function

between the damage and sensor location. While this change does result in a significant increase

in the difference before and after damage, the problem is that the spike is not necessarily a result

of the damage, and would be present even if the change in the system is completely unrelated to

damage (e.g. environmental changes, subtle boundary condition changes, etc.).

An example of this problem in experimental data is shown in Figure 28. The large spikes in

the recreated frequency response function (top) are a result of this division by zero problem. The

blue vertical lines in this figure are used to show how the anti-resonances of the directly estimated

frequency response functions (bottom) correspond to the large spikes in the recreated frequency

response functions.

4.3 Conclusions

The linear vibration based damage identification techniques presented here show that this approach

is capable of detecting structural abnormalities relative to a known healthy baseline, but the appli-

cation of these techniques can present significant challenges. The weak bond test specimen show

that flaws which do not decrease the static stiffness of the structure can be detected by reductions

in the dynamic stiffness and increase in damping, and that the spatial nature of the flaw determines
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Figure 28: Data Showing Anti-resonance Problem On Composite Pressure Vessel Before

And After Damage

which of the natural frequencies will change most significantly. The cantilever beam example

shows that the spatial dependence of the damage changes can be used to increase the sensitivity

to damage if the location of damage is known beforehand, but the composite pressure vessel ex-

ample shows that this approach presents numerical challenges which make the application of this

technique with a single sensor as a reference problematic.
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5 Non-Linear Vibration Based Damage Detection Techniques

Although linear vibration based techniques are capable of detecting changes in the structure related

to damage, there are significant limitations when solely considering changes in linear dynamics.

One of these limitations is that these linear vibration based techniques rely on a knowledge of

the baseline vibration characteristics of the structure, so calibration of the system with a known

healthy state is generally necessary. Another limitation is that while damage in composites usually

starts as a very localized flaw, the linear vibration characteristics of a structure are global properties

of the system, and may not substantially change if the damage is small and isolated. This global

characteristic of linear vibration properties is advantageous in some ways, because changes in

global stiffness or mass associated with damage or material degradation can be detected regardless

of location; however, if the location of potential damage was known, nonlinear vibration based

techniques could detect damage with a greater sensitivity and without a historical data set for

calibration. Because the impact identification technique presented here can locate the region of

interest for damage evaluation, nonlinear vibration based techniques are a promising possibility to

achieve the goal of an integrated load and damage characterization system.

5.1 Nonlinear damage characteristics in composites

Prior work, including some by colleagues at Purdue, has investigated the nonlinear dynamics in

damaged composite structures. For instance, Underwood showed that the response due to nonlinear

dynamics caused by impact damage to composite aircraft panels could be isolated to the area of

damage experimentally [56, 55, 7]. She further evaluated this idea using a model of a composite

beam where an isolated core crack or disbond was modeled as a stiffness and damping nonlinearity

at the location of damage, and showed that the trends observed in experiments could be explained

by this damage model. A disbond in the honeycomb panel was modeled by removing the constraint

between the core and the face sheet at the location of damage and allowing the face sheet to lose

contact with the core when moving away from the center. This model showed a localized nonlinear

response at the site of damage. By measuring the frequency response between a damage location

and forcing location at two different amplitudes, and then comparing the estimated frequency

responses at these two amplitudes, the nonlinearity was quantified.

Previous research has worked to quantify the nonlinear restoring forces in damaged composite

panels. Brush and Adams took the approach of damaging a small test specimen, and then mea-

suring the driving point impedance at the location of damage [10]. Restoring force diagrams were
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made through this approach, which indicated that the damage produced both a reduction in the

linear stiffness, and a nonlinear hardening stiffness when the face sheet was moving toward the

core. Figure 29 (reproduced from [10]), shows an example restoring force diagram from this work.

The higher linear stiffness of the undamaged panel is indicated by the fairly constant slope of the

undamaged force vs. deflection curve, which is larger than the linear component of the damaged

force vs. deflection curve. The nonlinear stiffness of the damaged test article is indicated by the

increasing slope of the force vs. deflection curve for positive displacement values. Changes in

damping between healthy and damaged states are also observed, but the most important trend to

note for this work is the change in stiffness characteristics.
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Figure 29: Comparison of restoring force curves for healthy and damaged composite

sandwich panels

In related research, Dittman, a colleague from Purdue, sought to investigate the nonlinear struc-

tural dynamics of a facesheet-core disbond in a honeycomb-core sandwich panel [19, 20]. By

exciting the structure and measuring the response at the site of damage using sub-harmonic, super-

harmonic, and resonant frequencies, and then comparing results to those from a single degree of

freedom analytical model, he was able to identify the nonlinear response form of the local dy-

namics at the damage site. The main strengths of this technique are in identifying the order of

nonlinearities in damaged structures and identifying the presence of nonlinearities using a single

frequency excitation. The most significant limitations of this technique are that the model only

directly applies to systems which can be modeled as having a single degree of freedom, and that

frequencies of the primary resonance must be determined before selecting the frequency of the

harmonic excitation. Another slight drawback to this approach is that it focuses on nonlinearities

which are expressed as a sum of polynomial functions of the displacement or velocity. Other non-

linear functions of the response could be approximated by a polynomial series and analyzed in the

same way, but a large number of terms might be required to adequately capture the behavior of the

system.
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5.2 Nonlinear system identification approach

One approach that addresses these limitations is a nonlinear system identification technique known

as Nonlinear Identification through Feedback of the Outputs (NIFO). This approach, developed by

Adams and Allemang, formulates the dynamics of a nonlinear system as an underlying linear

system with a nonlinear feedback loop [1]. This idea is represented in Figure 30.

Nonlinear 
Feedback

Linear System
+

-

X(ω)F(ω)

Figure 30: Nonlinear Feedback System Diagram

The advantage to this formulation is that the overall response can be considered as a multiple-

input system, with the inputs to the system being a combination of true forcing functions and

nonlinear functions of the outputs. Furthermore, the portion of the response due to the nonlinearity

is a function of the underlying linear frequency response function. In this form, the coefficient of

nonlinearity can be identified in a single step along with the frequency response of the underlying

system. Assuming that we have Ni measured inputs, No measured outputs, Navg data sets, and a

single nonlinearity, then equation (28) describes the response of the structure, where X(ω) is the

response, HL(ω) is the linear frequency response matrix, µ1 is the coefficient of nonlinearity, B1 is

a vector that describes the degree of freedom at which the nonlinear force is acting, F is a vector

of forcing functions, and Xn is the nonlinear displacement.

[X(ω)]Nox1 =
h

[HL(ω)] [HLω]µ1(ω){Bn1}
i

(Nox(Ni+1))

"

[F ]Nix1

Xn

#

((Ni+1)x1)

(28)

The above equation is the same form as a MIMO FRF relationship, where there are No output

measurements, and Ni + 1 input measurements, with the only difference being that one of these

inputs is a function of the system response, Xn. To simplify notation, the FRF matrix above can

be renamed as HNL = [[HL] [HL]µ1{Bn1}], and the rightmost vector {FNL} = [[F ], [Xn]]
T . Making

these substitutions, (28) becomes:

[X ]Nox1 =
h

HNL

i

(Nox(Ni+1))

h

FNL

i

((Ni+1)x1)
(29)
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Treating FNL as a standard forcing vector, and HNL as a standard FRF matrix, HNL can be

estimated using standard MIMO FRF estimation techniques. In this case, the H2 FRF estimator

that considers several data sets is used. Once the matrix [HNL] is estimated, the underlying linear

frequency response function matrix and the coefficient of nonlinearity can be found in a single

step. The first Ni columns of HNL are HL, and the last column is equal to the product HLµ1Bn1.

The strength of this technique is that it decouples the system’s linear and nonlinear response

characteristics provided that the location and form of the nonlinearity is well understood. In

essence, this approach uses spatial data to improve the system identification results. Among other

applications, Haroon and Adams have shown that this technique can be used to identify the non-

linear characteristics of vehicle suspension systems [28].

The nonlinear characteristics of composite damage, as summarized above, make this technique

well suited to quantifying damage effects. The spatial nature of this technique makes sense in the

context of this work because this nonlinear damage identification would be carried out after iden-

tifying the location of potentially damaging impacts, using the entropy-based impact identification

algorithm developed here. By using this impact location data, the difficulty in quantifying the co-

efficient of nonlinearity is substantially reduced. Furthermore, this approach helps to isolate the

nonlinear effects associated with one particular damage event.

5.3 Experimental setup

In order to test this idea of nonlinear system identification for composite damage evaluation, a

simple test was conducted with simulated damage on a 6”x36” fiberglass honeycomb sandwich

panel. A piezoelectric actuator was attached to a skewed mounting block through an impedance

head to excite the structure. The response was measured using triaxial accelerometers mounted

to the top and bottom face sheets at the edge of the panel, as shown in Figure 31. Two types of

forcing functions were tested: sine sweeps and band-limited white noise. For either excitation

signal, the panel was tested at several excitation amplitude levels. After the healthy response was

measured, core crack damage was simulated by cutting the core with a knife in between two of the

accelerometers. The size of the core cut was increased incrementally, and the panel was tested at

each step. The simulated damage at its maximum size is shown in Figure 32.

60



Figure 31: Test Setup Showing Actuator At The Upper Left Of The Image, And The Six

Accelerometers Which Were Used Along The Bottom Edge

Figure 32: Simulated Core-crack Damage For The Largest Crack Size

5.4 Results

Initial findings from this test show promise for this technique. For the purposes of this report we

will focus on one of the damage levels, with results from two of the forcing function amplitude

levels which we used.

A comparison of the frequency response of the damaged structure when forced at two ampli-

tude levels one initial check of the data that is useful for guiding the data analysis. If the panel

responds in a nonlinear way as observed by Underwood, the frequency response estimates of the

damaged structure will be somewhat different between the high and low forcing functions, and the

frequencies at which these differences occur will give some indications of the frequency ranges

where nonlinear response characteristics are present. Figure 33 shows this comparison of fre-

quency response functions when the structure is forced at two amplitude levels. On a perfectly

linear structure, these functions would be identical. However, there are differences in this case,

which indicates that the structure is responding in a nonlinear fashion. The changes between high
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and low amplitude FRFs are apparent at the anti-resonances at approximately 320, 400, and 700

Hz, near the peak in the 600-700Hz range, and, most significantly, between 750-900Hz.
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Figure 33: Comparison Of Frequency Response Function At Damage Location Using High

And Low Amplitude Forcing Functions

The forcing and response data for the damaged panel using the same amplitude levels shown in

Figure 33 were used in the NIFO algorithm to attempt to separate the linear and nonlinear response

at the site of damage. Although several assumed nonlinear functions were tested, we will focus

on one of these functions for this discussion. Recall from the discussion of the NIFO technique,

an assumed nonlinear displacement, xn, must be used in the estimation process. Building off of

Underwood and Brush’s work in characterizing similar damage mechanisms, we assumed that

the panel responded with a hardening spring when the core was under compression at the site of

damage, and a linear, low stiffness spring when the core was in tension. The assumed nonlinear

displacement which represented this behavior is given in equation (30), where xtop and xbottom are

the response above and below the simulated damage, and in the direction normal to the surface.

xn = 1/2∗ (xtop − xbottom)
2(1− sgn(xtop − xbottom)) (30)

The NIFO technique was applied to estimate the underlying linear frequency response function

and the coefficient of nonlinearity. Since only one level of damage was analyzed, there is little

context for the coefficient of nonlinearity, so the estimated linear frequency response function is

considered first. In Figure 34, the estimated linear frequency response function is compared to

the measured frequency response function (i.e. the estimated FRF assuming a completely linear

structure) at the location of damage. If the structure behaved linearly, or if the assumed nonlinear
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function did not match the actual nonlinearity in the structure, these two curves would be approx-

imately the same. In the frequency range below 300Hz, the two functions are nearly identical,

which is consistent with the observations from the high and low amplitude frequency response

function comparison. This showed that the structure behaved in a largely linear manner at that

frequency range. At the frequencies where the system behaved nonlinearly, these two functions

are very different. However, the estimated linear FRF also assumes a very unusual shape in some

frequency ranges where it differs from the linear FRF, particularly in the 600-700Hz range. The

differences in the 700-800Hz range seem more plausible. The source of this apparent error is

unclear at this point, but it may be attributable to either numerical error or an assumed nonlinear

function which does not match the actual behavior of the system.
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Figure 34: Comparison Of Measured Frequency Response Function And Estimated Linear

Frequency Response Function From NIFO

Approaches for improving NIFO estimates have been developed, and employing these ap-

proaches has the potential to improve results. Particularly of interest is the work of SM Spottswood,

who showed that the nonlinear characteristics of a beam-like structure could be better identified

with reduced order modeling [52]. His work used a modal decomposition of the structure, and he

was able to better estimate nonlinear parameters using this approach than when implementing the

NIFO approach directly. This approach holds promise for detecting localized changes, because

the assumed deflection shapes used in reduced order modeling could potentially separate the local

effects of the damage from the global vibration properties of the structure.
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5.5 Conclusions

Nonlinear damage identification techniques, as presented here, have the potential to overcome

many of the difficulties associated with linear vibration based damage identification techniques.

These techniques have the potential to identify damage despite changes in environmental condi-

tions or boundary conditions because the baseline frequency response function measurement does

not need to be compared directly. In particular, the nonlinear identification technique shown here,

based on a nonlinear frequency domain model, has the potential to quantify specific nonlinearities

by using spatial information. The use of spatial information is important for this application be-

cause the impact identification technique, which was presented in earlier chapters, can identify the

location of potential damage. This damage identification technique could be used alongside the

impact load identification technique to evaluate the presence and/or extent of damage associated

with a particular impact.

An experiment studying the effects of a crack in the core of a sandwich panel showed signifi-

cant nonlinear response at the location of damage, and the frequency ranges at which the highest

nonlinear contribution was found matched expectations from prior techniques. While future work

will be needed to apply these techniques in full, these results suggest that there is potential for

identifying nonlinear damage characterstics by utilizing the spatial information gained from im-

pact identification.
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6 Conclusions and Recommendations for Future Work

6.1 Impact Load Identification

The primary goal of this work was to address the challenges of structural health monitoring for

impact damage on large composite structures. To this end, we have presented a method for iden-

tifying impact forces and locations using as few as one sensor, even on a very large structure.

By studying how the impact force estimates are effected by the location of the sensor, we have

shown that this technique is insensitive to sensor location, and the projected uncertainty in impact

estimates using a particular sensor configuration can be evaluated before monitoring. To further

enhance this impact identification technique, we have developed an uncertainty quantification tech-

nique which evaluates the quality of impact force estimates in real time based on the entropy of

the recreated force estimates. With implementation issues such as sensor placement studied, and

methods for presenting the impact estimates along with credible confidence intervals established,

this impact identification technique has been significantly matured through this work. Future work

on this impact identification technique will address the final details needed to deploy this technol-

ogy on operational aircraft and other structures. The most significant of these details that must be

addressed for deployment are listed below:

1. Reduction and/or cancellation of steady state operational noise.

2. Compensation for boundary and loading conditions of the structure in operation.

3. Minimization of training data required.

Reduction of operational noise is an important consideration, particularly for lower amplitude

impacts, because excessive noise on response measurements can decrease the accuracy of force

estimates. Excessive noise can also degrade the force localization technique because very noisy

force estimates from the correct location are difficult to distinguish from force estimates from an

incorrect location. While this is a significant implementation challenge, however, it is somewhat

ameliorated by the uncertainty quantification technique which was developed in this work. Un-

reliable force magnitude and location estimates which are a result of excessive noise will have

significantly higher recreated force entropy, which we have shown is an indicator of uncertainty of

the impact.

Another implementation challenge is compensating for boundary and loading conditions which

do not match those of the structure during model training. These boundary condition changes can
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arise for a variety of reasons, but most commonly, the reason for the change in boundary conditions

is that the structure with operational boundary and loading conditions cannot be measured. For

instance, if this method were applied to operational rotor blades, (e.g. wind turbine, helicopter),

the structural dynamics during operation would be significantly different from those in the static

configuration.

An experiment studying the effects of a crack in the core of a sandwich panel showed signifi-

cant nonlinear response at the location of damage, and the frequency ranges at which the highest

nonlinear contribution was found matched expectations from prior techniques. While future work

will be needed to apply these techniques in full, these results suggest that there is potential for

identifying nonlinear damage characterstics by utilizing the spatial information gained from im-

pact identification. Because modal impact testing of the blades at operational speeds would not

be practical or even possible in most instances, the structure would need to be measured at rest,

and the frequency response functions which were measured on the static structure would need to

be compensated for the altered boundary conditions. Approaches for this compensation are being

developed in separate work by colleagues at Purdue and Vanderbilt University, but further work is

necessary to create a deployable solution for challenging applications such as rotor blades.

6.2 Impact Damage Identification

Utilizing an assumed location of damage was shown to enhance the ability of linear vibration

based techniques to detect structural changes related to damage. Tests on the lap splice specimen

showed how structural dynamic changes at a specific location affected some modes more so than

others, and that the modes at which the dynamics changed significantly were evident based on the

associated mode shapes. A simple analytical model of a beam with a localized stiffness reduction

showed how this idea could be used to enhance the sensitivity of remote measurements to damage

if the location of damage were known. Therefore, by combining the impact localization techniques

presented earlier, the sensitivity of remote measurements to damage could be potentially increased.

By weighting response measurements with a transmissability filter based on measurements of the

healthy structure, the modes which change substantially can be emphasized, and therefore the

effects of damage can be enhanced.

The application of this technique to a more complex geometry introduced some challenges to

the use of this location-based filter for weighting. Numerical issues at frequencies where anti-

resonances exist have the potential to indicate high levels of damage at a particular location even

if the relevant structural changes were elsewhere. Future work could examine how this problem

66



could be addressed through multiple response measurements and solving an overdetermined in-

verse problem for a transmissability filter which is less affected by numerical issues. Nevertheless,

this technique shows how even simple linear vibration-based techniques can be enhanced to detect

localized damage if the location of damage is estimated through impact identification.

By further investigating nonlinear damage identification techniques, many of the difficulties

associated with linear vibration based damage identification techniques can be overcome. The

need for a baseline healthy measurement is reduced or eliminated for most of these nonlinear

damage evaluation techniques, and therefore structural and boundary condition changes have less

of an effect. Furthermore, some of these nonlinear damage detection methods can provide an order

of magnitude increase in damage indicators, because the nonlinear response metrics can increase

as a function of the square, cube, or higher power of the nonlinear damage coefficient [19].

6.3 Integrated Impact Load and Damage Identification

The idea of combining the tasks of load and damage evaluation has great potential for multiple avi-

ation and civil health monitoring applications. Many other SHM techniques could be enhanced by

this knowledge of the impact location. For instance, changes in local stiffness or damping could be

evaluated directly through embedded sensitivity functions if the location of potential damage were

known. The idea of embedded sensitivity functions is that the sensitivity of a frequency response

function to changes in structural properties can be expressed in terms of frequency response func-

tion estimates directly, without an analytical model. One of the largest practical limitations of this

technique is that the location of damage must be known; it estimates the change in structural prop-

erties between specific degrees of freedom. By combining this impact identification technique with

embedded sensitivity functions, future work could identify the local change in structural stiffness

associated with a particular impact.

The strength of this integrated load and damage identification technique is that methods which

were previously not practical for global damage assessment on a large structure can be utilized on

a much larger scale. Some of these techniques are used for “hot spot” damage detection, where a

problematic area of the structure is identified and monitored closely, but by combining information

about impact locations with damage identification techniques in real time, many of these localized

approaches could be implemented over a broader area of the structure. By integrating impact load

and damage identification for structural health monitoring, it will be possible to obtain a real time

indication of the damage severity, and significantly aid the maintenance and lifecycle management

of large composite structures.
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