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Abstract

This project utilizes Graphics Processing Units (GPUs) to compute radiograph
simulations for arbitrary objects. The generation of radiographs, also known as
the forward projection imaging model, is computationally intensive and not widely
utilized. The goal of this research is to develop a massively parallel algorithm
that can compute forward projections for objects with a trillion voxels (3D pixels).
To achieve this end, the data are divided into blocks that can each fit into GPU
memory. The forward projected image is also divided into segments to allow for
future parallelization and to avoid needless computations.

1 Introduction

Radiography is the use of electromagnetic radiation other than visible light for imag-
ing. In this work, an object is probed with x-rays and the strength of the transmitted
x-rays is measured. We model the transmission of the x-rays with Lambert-Beer’s
law [1]. Given the material linear attenuation coeflicient u(e, ) as a function of
x-ray energy, &, and location, #, the transmitted x-ray amplitude, I(¢), is given by

Lambert-Beer’s Law of Attenuation

1
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where @ is the x-ray source location, b is the location of the appropriate detector
element, and Ip(e) is the initial x-ray amplitude at energy . Forward projection
is not often utilized for industrial sized Computed Tomography (CT) images as the
trillion voxel (teravoxel) images are too large to fit in device memory. The goal of
CT is to use multiple X-Ray images of an object from different angles to reconstruct
the 3 dimensional attenuation data of the object [1]. Forward projection is useful to
create an iterative algorithm because it allows the computer to compare the X-Ray
images that would be created by the reconstructed object with the actual X-Ray
images from the CT scanner.



1.1 GPU architecture

There are many differences between GPU and CPU architectures. GPUs generally
outperform CPUs on a strict FLOPS per cost or power basis. However, it is more
difficult to utilize the greater processing power in a GPU. GPUs generally operate
with a single instruction multiple data (SIMD) architecture while CPUs generally
operate as multiple SISD processors. GPUs have many more cores than CPUs but
each individual core is less powerful with less memory and a slower clock speed.
Thus, while GPUs are more effective at performing parallel computations on large
data sets, CPUs are generally more efficient at processing data which is highly
sequential or branching [2].

2 Methods

We attempt to evaluate the transmission for every path that starts at the radiation
point source and ends at a pixel on the detector plane, which is illustrated in figure 1.
The object we are imaging has an attenuation value at every position, but because
the computations are done on a finite computer, the attenuation is sampled at a
finite number of positions. However, evaluating the transmission integral requires
attenuation values at locations which are not exactly specified by the data. Thus,
we use trilinear interpolation to get these intermediate points as shown in figure 1.
GPUs have efficient hardware interpolation due to the usefulness of interpolation in
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Figure 1: Trilinear Interpolation

computer graphics. However, it is necessary to use texture memory to make use of
the hardware interpolation. Any portion of global memory can be declared to be
texture memory. One limitation is that a 3D texture cannot have more than 4096
elements in any dimension. Also, since it is global memory, it is limited by the GPU
memory which is a few gigabytes.



2.1 Partitioning the Data

There are many different ways to partition the data to fit into GPU memory. The
first method developed did not divide the memory into segments at all so the maxi-
mum size was approximately half a gigavoxel. The second method divided the data
into slices which are small on one dimension. The size of the data processed was
limited by the maximum texture size (4096° elements). This limited the volume size
to (212)% = 64 gigavoxels. The final method partitioned the data in all dimensions
allowing arbitrary sized volumes.

2.2 Computing the Integrals

After the data is partitioned, we must compute the attenuation integrals. Without
partitioning, we can evaluate the integrals in a single pass. However, with parti-
tioning we need to divide the integral computation over each segment and sum the
results. With the second method of partition, the integral limits are simple to com-
pute because all rays intersect the voxel slices at the y faces. When we divide over
all three dimensions, it is possible that the integration path will intersect any face of
a voxel volume. In this case, the limits of integration are computed for each path at
every voxel chunk. Another complication arises when the forward projection image
is partitioned as well. Each voxel chunk will affect a portion of the projected image.
A bounding box is computed for the region of influence for each voxel chunk. This
data format should prove to be more useful when the code is utilized as it makes
the incorporation of different viewing angles easier.

3 Evaluation of Computer

The algorithm was run on a computer with 16 gigabytes of RAM. The computer
uses 2 Xeon E5540 processors clocked at 2.53 GHz with 4 cores and 8 threads each.
The program only uses one core. The GPU was an nVidia GTX 690 which is a dual
GPU card. Each GPU had 2 gigabytes of RAM, 1536 CUDA cores, and a base clock
rate of 1006 megahertz.

4 Results

The program was able to generate simulated radiographs for volumes as large as
4 teravoxels. The program utilized 12-13 percent of the CPU processing power
which corresponds to one core being fully utilized. The chart in figure 3 shows the
computation time for voxel volumes from 5003 to 8000% voxels. Figure 2 depicts
a forward projection of a one gigavoxel data set depicting a 3 dimensional grid of
spheres. Each sphere attenuates the X-Rays and the dark regions between spheres
demonstrate attenuation when an X-Ray passes through multiple spheres. A basic
analysis of the computation time showed that the algorithm was able to compute
forward projections in a time that is proportional to the total number of voxels.
Performance was better when the volume was divided into 500% subvolumes than
2503 subvolumes.



Figure 2: 1 Gigavoxel Projection
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Figure 3: Computation Time

5 Other Accomplishments

I also performed several other tasks that were important to my supervisor and
organization while not strictly related to designing the forward projection algorithm.
I investigated the computational capacities of the Rasberry Pi, a credit card sized
computer. I experimented with the numerical stability of math on the device and
refreshed my C programming skills. I presented a poster on the forward projection
research at the Student Intern Symposium. I networked with other researchers at
Sandia and discussed future research topics. The most important skill I learned at
this internship was parallel programming in CUDA.
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