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Abstract

Temperature histories on the surface of a body that has been subjected to a rapid, high-
energy surface deposition process can be difficult to determine, especially if it is impossible
to directly observe the surface or attach a temperature sensor to it. In this report, we
explore two methods for estimating the temperature history of the surface through the use
of a sensor embedded within the body very near to the surface. First, the maximum sensor
temperature is directly correlated with the peak surface temperature. However, it is observed
that the sensor data is both delayed in time and greatly attenuated in magnitude, making this
approach unfeasible. Secondly, we propose an algorithm that involves fitting the solution to
a one-dimensional instantaneous energy solution problem to both the sensor data and to the
results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate
the surface temperature ± ∼ 20◦C.
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Chapter 1

Introduction

Temperature histories on the surface of a body are useful in many design efforts. However,
in many situations, it is difficult to directly measure the heated surface of a solid. This may
be because the geometry makes the heated surface inaccessible, or it may not be possible
to directly attach a sensor on the surface. Even if conditions allow placement of a sensor
directly on the surface, it is often difficult to achieve a high level of accuracy from these
devices.

One possible solution is to embed a sensor in the solid itself. An embedded sensor
could circumvent many of the issues identified with direct surface measurements. Ideally,
one would embed such a sensor as close to the surface as possible in order to obtain the
strongest signal. However, in materials with high thermal conductivities, such as metals,
the temperature signal can be strongly attenuated, reducing the sensitivity of the technique.
Nonetheless, these techniques have been used in applications such as grinding [4, 9, 13–15],
where both thermocouples and optical fibers were used. Models have also been created to
understand the behavior of these sensors [11, 12].

In order to obtain an estimate of the surface temperature from an embedded temper-
ature sensor, an inverse heat conduction problem must be solved. In general, this inverse
problem can be significantly more difficult than solving a direct heat conduction problem [1].
Inherent challenges in solving this inverse problem, especially for rapid heating processes,
has been theoretically studied in great detail by Lambrakos and coworkers [5–7], who found
the problem to be intractable for very rapid processes into diffusive materials such as metals.
However, it might be possible to improve the accuracy of surface temperature estimations if
some characteristics of the surface flux are known.

In the case of rapid, high energy surface deposition, the temperature field attenuates very
quickly as the heat diffuses into the body. The temperatures very close to the surface can be
orders of magnitude lower than those on the surface. In the inverse sense, the sensitivity of
surface temperatures to peak temperatures within the body is very high, making the scheme
sensitive to measurement errors. This requires that a robust method be created in order to
minimize this sensitivity to measurement error from the embedded sensor.

With this work, we propose an inverse modeling technique for deducing the surface
temperature history of a body that relies on some basic knowledge of the heat source and
utilizes basic one-dimensional models of rapid heat deposition processes. A forward model
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is used to provide computer experimental data to test this new technique (§2). This report
is organized as follows: First, the physical system of interest is described in §2.1. A forward
computational heat transfer model is presented in §2.2. In §2.3, the forward computational
model was used to run different simulation cases to explore the sensitivity of the change in
surface temperature to the maximum temperature of the transient response at a prescribed
depth. This study draws conclusions on the requirements of an embedded sensor. Using the
results of §2.3, a new inverse-model technique is proposed in §3, and this technique is tested
in §3.2. Finally, in §4, we draw conclusion on the applicability of this method and propose
future work to further test these ideas.

10



Chapter 2

A model of the temperature history of
an embedded probe

2.1 Physical setup

The physical system explored in this study is an infinitely-long copper bar (z-direction),
60 mm wide (x-direction), and 30 mm thick (y-direction). A rapid, transient energy depo-
sition process occurs on the top y = 0 surface of the bar. It affects a 30 mm wide strip,
centered at x = 0, and runs down the z axis in the +z direction. This energy deposition
process moves with a constant velocity. The entire bar is insulated so that no heat exits the
bar.

The properties of this energy deposition process were chosen to produce an idealized
temperature profile on the surface, which is shown in Figure 2.1. This temperature profile
is characterized by two distinct peaks. The highest temperature in the profile is denoted in
Figure 2.1 as Tp, and we will refer to it as the primary surface temperature peak. The earlier,
lower peak, Ts will be referred to as the secondary peak. After the passage of the energy
deposition, which ends at the time where Tp occurs, tp, the exponential decay in temperature
is due to the heat diffusing into the bar. No further energy is injected into the system after
tp.

2.2 Forward computational model

In order to model the temperature throughout the bar described in §2.1, a computational
heat transfer model was developed. This model solves the transient energy diffusion equation

ρCp
∂T

∂t
= k∇2T, (2.1)

where ρ is the density, Cp is the heat capacity, T is the temperature, and k is the thermal
conductivity. The thermophysical properties of the copper bar were held constant throughout
the simulation. The values used were ρ = 8933 kg/m3, k = 401W/m·K, and Cp = 385 J/kg·K.

The interest in this model is to determine the temperature profile at some sensor location
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Figure 2.1: Idealized tempreature profile for a single point on the surface due to the energy
deposition. The location of Ts in time may be shifted to account for the fact that the energy
deposition is moving across the surface of the bar.

embedded closely (within 1 mm) beneath the surface. Because of these length scales of
interest and for computational expediency, the entire length of the bar was not modeled. A
sensitivity study of the geometry showed that accurate answers were obtained with a bar
length of only 30 mm. Additionally, because the physical system (geometry and boundary
conditions) are symmetric along the x = 0 plane, the geometry was modeled with symmetry
boundary conditions along the x = 0 plane. The resulting geometry is a 30 mm cube, shown
in Figure 2.2.

To achieve the desired surface temperature profile, the rapid, high energy deposition was
modeled as a surface heat flux. This heat flux is applied to half of the top surface of the
cube, making a 30 by 15 mm strip. The onset of heat flux starts at z = 0 mm and moves
with a velocity Vz = 2000m/s. The flux profile has a limited duration and a unique shape
which is large in magnitude during the initial contact and quickly decays to a lower flux
level. The flux is parameterized as a piecewise function taking the form,

q(t, z) =


0 for t < τz

A for τz ≤ t < τz + 0.05∆τ

(A−D)e−B(t−τz) +D for τz + 0.05∆τ ≤ t ≤ τz + ∆τ

0 for t > τz + ∆τ

, (2.2)

where A is the primary flux level (W/m2), D the secondary flux level (W/m2), and B is the
flux decay (s−1). τz represents the time in seconds associated with the onset of the heat flux
boundary condition at a z-location and can be determined from the velocity and z-position
by τz = z/Vz. ∆τ is the flux passage time and its value is determined by ∆τ = 45mm/Vz.
At a given z-location in time on the surface of the block, the applied heat flux takes on a
profile depicted in Figure 2.3. All other surfaces have adiabatic boundary conditions.

Figure 2.2 shows the temperature distribution for a sample simulation nearly halfway
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Figure 2.2: Temperature distribution as the heat flux moves across top surface of the cube.
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Figure 2.3: Heat flux condition at a particular z-location on the surface.
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through the energy deposition process. The orange region represents the part of the surface
where the energy has been deposited, causing the temperature to rise. The temperatures
achieved in Figure 2.2 are nearly identical to the idealized temperature profile of Figure 2.1.

A hexahedral mesh of the geometry was created using Cubit [2], with mesh density highly
biased towards the top surface and near the center of the geometry, in order to accurately
capture the temperatures near the sensor. This model was implemented in the Galerkin-
Finite Element Model code Sierra/Aria [10]. The temperature field was represented by
tri-linear (Q1) elements, and a first-order time integration scheme was used, with adaptive
time step adjustment.

A mesh and time refinement study were done to minimize errors due to spatial and
temporal discretization. The spatial domain along the depth of the bar was continually
refined until the deviation in the primary peak temperature on the surface was less than
0.1◦C. An adaptive time step scheme was used and the Predictor-Corrector tolerance was
refined until the deviations in the peak temperature value were less than 0.1◦C.

The purpose of this model is to calculate the temperature distribution throughout the
entire bar. The simulation output is probed along the centerline of the deposition (x = 0) in
the center of the z computational domain. We are interested in an embedded probe that is
placed either 0.5 mm or 1.0 mm from the heated surface. The temperature profiles at both
of these locations are extracted and used in §2.3 to study the sensitivity of an embedded
probe to changes in the surface temperature.

2.3 Embedded sensor sensitivity study

To explore the effects of surface temperatures on the temperature profiles at a given probe
depth, a series of cases were organized. Initially, a baseline case was run in order to plan
how the subsequent cases would deviate from this norm. The resulting surface temperature
profile for this baseline case is shown in Figure 2.4a. The surface temperature history shows
two distinct peaks: the secondary lower peak Ts and the primary higher peak Tp. These
temperatures are shown as Case 1 in Table 2.1, and qualitatively correspond with the desired
behavior shown in Figure 2.1.

Temperature measurements are taken at sensor locations at two desired depths, 0.5 mm
and 1.0 mm. The behavior at the 1.0 mm sensor depth is shown in Figure 2.4b. Whereas
the surface temperature exhibits two distinct peaks, the probe temperature shows a single
maximum. This maximum temperature, denoted by T 0.5

max for the 0.5 mm depth and T 1.0
maxfor

the 1.0 mm depth, is used to quantify the temperature field at the sensor location, as shown
in Table 2.1. For this baseline case, Figure 2.4 and Table 2.1 show that T 1.0

maxis attenuated
in magnitude by approximately 20 times compared to Ts and Tp. The time at T 1.0

maxis also
delayed by two orders of magnitude. This preliminary data suggests that directly using
T 1.0
maxto deduce the surface temperature may be problematic.
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(a) Temperature profile on the surface.
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(b) Temperature profile at a 1.0 mm
depth.

Figure 2.4: Temperature histories on the x symmetry plane, midway along the cube side.

Case Ts ∆Ts Tp ∆Tp δ T 0.5
max ∆T 0.5

max T 1.0
max ∆T 1.0

max

(◦C) (◦C) (◦C) (◦C) (◦C) (◦C) (◦C) (◦C) (◦C)
1 842.28 - 904.23 - 61.95 75.74 - 52.87 -
2 862.97 20.69 904.69 0.46 41.72 76.30 0.55 53.15 0.28
3 809.50 -32.78 904.10 -0.13 94.60 75.04 -0.70 52.53 -0.35
4 840.83 -1.45 928.02 23.79 87.19 76.55 0.81 53.28 0.41
5 862.90 20.62 929.39 25.16 66.49 76.97 1.23 53.49 0.62
6 821.44 -20.84 924.40 20.17 102.96 75.98 0.23 52.99 0.12
7 842.27 -0.01 884.40 -19.83 42.13 75.16 -0.58 52.58 -0.29
8 855.76 13.48 884.57 -19.66 28.81 75.51 -0.23 52.76 -0.11
9 818.58 -23.70 883.06 -21.17 64.48 74.54 -1.21 52.26 -0.61

Table 2.1: Peak temperatures at the surface and probe locations for each case in the sensi-
tivity study of §2.3.
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The cases displayed in Table 2.1 were constructed to study the sensitivity of the probe
temperature, Tmax, to changes in the characteristic peaks of the surface temperature. To
distinguish the effects of changes from either peak, they were varied separate from each
other. Cases were defined as the combinations of separately raising and lowering the peaks by
approximately 20◦C from the baseline, resulting in nine different cases including the baseline.
This allowed an observation of how the temperature response at the sensor locations changed
with respect to the known surface temperature change.

The results of the simulations of each of these cases is found in Table 2.1, where the
surface and sensor temperature are tabulated. Additionally, the difference between the two
surface peak temperatures, or spread, δ = Tp−Ts, is an important parameter in quantifying
the nature of the surface temperature. ∆Ts and ∆Tp represent a deviation of the peak tem-
peratures from the baseline case. Similarly, ∆T 0.5

max and ∆T 1.0
max correspond to the deviations

from the maximum values of the baseline. These values were used to compute the signal
sensitivity defined as the ratio of the change in the probe temperature to the change in
secondary peak temperature, S = ∆Tmax/∆Ts.

Case 2 can be taken as a representative case for analysis. For case 2, the probe sensi-
tivity to surface temperature, S, at the 0.5 mm and 1.0 mm locations are 2.7% and 1.3%
respectively, which means that a very small change in Tmax corresponds to a large change Tp.
This shows that an embedded sensor, even one as close to the surface as 0.5 mm, is largely
insensitive to changes in the surface temperature.

Initially, we desired to use the embedded sensor maximum temperature as a direct corre-
lation to the peak surface temperature. The results from this sensitivity study give insight
to the instrumentation that would be required to do this. To resolve 20◦C on the surface,
the sensor would have to be accurate to less than 1◦C. Even if a sensor could meet the
speed and accuracy requirements, the sensitivities are such that inherent noise in the sensor
signal would cause erroneous temperature estimations. This leads to the conclusion that a
more robust estimation technique is required in order to resolve the surface temperatures to
reasonable accuracy with the addition of noise in the sensor signal.

16



Chapter 3

A robust temperature estimation
algorithm using embedded sensor data

In this chapter, we hope to improve on the näıve methodology of §2.3, where we attempted
to use the maximum sensor temperature to directly deduce surface temperatures. In §3.1
we propose a new algorithm based on simple one-dimensional energy deposition models to
regress the temperature sensor data. The algorithm is tested in §3.2.

3.1 Temperature estimation algorithm

In this section, we propose a new algorithm to use the temperature history taken from
the embedded sensor and, in combination with simple one-dimensional energy deposition
models, estimate the corresponding peak temperature on the surface. The first step of this
algorithm is to extract the full temperature history (T (t)) from the sensor. For the purposes
of this document, the forward simulations of §2.2 will be used as “computer experiments”
to generate the sensor temperature history. These computer experiments are also useful
as we also directly know the surface temperature from them, and algorithm can be tested
by comparing against the computer experiments. These computer experiments from the
forward model will be referred to as the “data” throughout the remainder of this chapter.
In an actual deployment of this algorithm, the experimental sensor data would be used.

As shown by Figure 2.4, the time scale associated with the sensor location is two orders of
magnitude greater than the flux passage time. At these slower time scales seen at the sensor
location, the surface flux closely resembles a uniform, instantaneous pulse along the entire
surface. Making this assumption suggests that the temperature response in the bar appears
one-dimensional. This suggests that the solution to a one-dimensional energy deposition
problem can be used to approximate the temperature throughout the bar. This problem was
solved by [8], with an analytic form

T (y, t) =
E√

ρcpkπ(t− γ)
e

(
−y2

4α(t−γ)

)
, (3.1)

where E is the total energy deposition per unit area (J/m2), ρ is density (kg/m3), cp is specific
heat (J/kgK), α is thermal diffusivity (m2/s), k is thermal conductivity (W/mK), t is time, γ is
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a time offset, and y is the depth (m). This analytic solution is used to fit unknowns E and
γ to the computer experiment data. The time offset γ is added to the equation to allow the
curve to be shifted either forward or backward in time, enabling it to capture the transient
nature of the energy deposition process.

The temperature data at the sensor location is then fit to (3.1) using a Fortran code
which implemented a non-linear Newton curve fit routine. Prior to the curve fit, random
Gaussian noise of varying levels is added to the data to simulate the noise expected in the
sensor signal. This fit yields regressed values for the total energy deposition Eexp and time
offset γexp. The time offset γexp was found to be very sensitive to the addition of noise to
the data and was discarded after the curve fit.

Because (3.1) is the solution for an instantaneous energy deposition, the initial surface
temperature is ill-defined (T (0, γ) = ∞). Therefore, (3.1) is not directly suitable for deter-
mining the surface temperature. However, because the energy deposition process still closely
resembles a one-dimensional process, a hybrid model was developed. This model uses a one-
dimensional control-volume finite element method (CVFEM) code to model the temperature
throughout the bar, subject to a surface heat flux. The parameterized heat flux (2.2) was
modified slightly. The secondary flux level was set to a fraction of the primary flux level
D = χA. This new parameter χ is what governs the spread δ between peaks and was set to
the value corresponding to the baseline case χ = 0.27273. The resulting modified boundary
condition takes the form,

q(t, z) =


0 if t < τz

A if τz ≤ t < τz + 0.05∆τ

A
(
(1− χ)e−B(t−τz) + χ

)
if τz + 0.05∆τ ≤ t ≤ τz + ∆τ

0 if t > τz + ∆τ

. (3.2)

The CVFEM code is run and data extracted at the same depth as the experimental data.
The CVFEM data is then curve fit using the same procedure described previously, which
yields the total energy deposition for the simulation Esim.

The CVFEM code runs inside of an optimization routine used to ensure Esim = Eexp.
This is accomplished by adjusting the heat flux level A of the CVFEM code based on the
difference between Esim and Eexp. With each new value of A, the CVFEM code is re-run,
and this procedure is repeated until the difference of Esim and Eexp is less than 10−6. Using
the final solution of the CVFEM simulation, the temperature history at the surface (T (0, t))
is extracted and, in this case, compared to the forward model data.

To summarize, the proposed procedure for this surface temperature estimation technique
can be captured by the following algorithm:

1: Acquire temperature history from embedded sensor
2: Curve fit experimental sensor data to get total energy deposition level, Eexp
3: while |Eexp − Esim| > 10−6 do
4: Run the CVFEM code and extract simulation temperature history for sensor
5: Curve fit simulation sensor data to get total energy deposition level, Esim

18
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Figure 3.1: Data from the forward simulation and estimated surface temperatures from the
proposed algorithm including Gaussian noise up levels of a standard deviation of 5◦C. Data
was taken from a sensor embedded at 1 mm depth.

6: end while
7: Extract peak surface temperature Tp from last CVFEM simulation

3.2 Temperature estimation results

The algorithm proposed in §3.1 is now tested with the simulation cases used in the sensitivity
study of §2.3. For each case, multiple data sets were created by applying different levels of
Gaussian noise to the signal. The procedure described in §3.1 is applied to each data set for
every case. Because the experimental data comes from the three-dimensional simulations, the
actual surface temperatures are known. This allows a comparison of how well the developed
algorithm estimated the maximum surface temperature. Some of the cases in the sensitivity
study were redundant, in that they have the same shape or characteristic as another case
and have been omitted from the results.

The estimated surface temperatures from the algorithm for the varying degrees of Gaus-
sian noise are presented alongside the data in Figure 3.1. One of the major things to note
from these results is that the algorithm is relatively insensitive to noise. The estimations
for all noise levels, including that of no noise added, are contained within a narrow band of
temperatures for a given case. All cases were run using the value for χ that corresponded
with that of the baseline case.

For the first, baseline, case, the algorithm predicted a maximum temperature that is
within 4◦C of the data. For the remainder of the cases, the algorithm either over- or under-
predicted the data. These errors can be attributed to the constant value of χ that was used
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Figure 3.2: Temperature profiles representing the bounding conditions.

in all cases, which lead to a nearly constant spread δ. However, Table 2.1 shows that the
spread in cases 2-9 are not equal to the spread in case 1, for which χ was developed. Without
knowing δ apriori, it will be difficult to exactly predict the surface temperature. However,
this correlation of over- and under-predictions leads to an idea of how to estimate a range
where the actual data would lie within.

The value of χ used to produce the previous results was chosen to match the value that
corresponded with the baseline case. However, the actual value of χ which matches the
experimental data will not be known. Reasonable estimates for its bounds are given by two
cases. First, the lower bound is given by the case where there is no additional temperature
rise after Ts as shown in Figure 3.2a. Second, there is some finite, bounded addition of
heat after the initial temperature rise. In this study, it was assumed that the maximum
temperature difference from peak to peak was 120◦C. Figure 3.2b shows the upper bound
with the 120◦C temperature rise. The lower bound used is χ = 0.250 and the upper bound
used is χ = 0.320, and were chosen with physical understanding of the process.

Each of the cases in Figure 3.1 were re-run using the values of χ corresponding to the
lower and upper bounds in order to create a confidence interval for the surface temperature
estimation algorithm, and the results of these simulations are shown in Figure 3.3. Only
the results for the maximum value of signal noise, 5.0◦C, are presented. These results show
that these estimates for the lower and upper bounds of χ create simulations that successfully
bound the data from all of the cases run. These data suggest that if the lower and upper
bounds of Figure 3.2 are reasonable, then the algorithm can be used to estimate the peak
surface temperature ± ∼ 20◦C.
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Figure 3.3: Estimated bounds on surface temperatures for a sensor depth of 1 mm with
Gaussian noise of 5◦C.
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Chapter 4

Conclusions

In this report we have investigated two algorithms for estimating the surface temperature
history of a copper bar that has been subjected to a unique, transient, high-energy sur-
face deposition process. A temperature sensor embedded within the bar will be used to
gather internal temperature histories, which will then be regressed to estimate the surface
temperature.

The initial, näıve approach is to directly correlate the maximum sensor temperature with
the peak surface temperature. Due to the rate of deposition and the highly diffusive nature of
copper, transient temperatures underneath the surface are both delayed in time and greatly
attenuated in magnitude. Thus, correlating the maximum temperature from an embedded
sensor to the peak surface temperature is not viable. The sensor would have to be accurate
to less than 1◦C to obtain surface data ±20◦C. If noise is present in the sensor signal, even
a highly accurate sensor would lead to spurious estimations.

The second approach is an algorithm which involves fitting the solution to a one-dimensional
instantaneous energy solution problem to both the sensor data and to the results of a one-
dimensional CVFEM code. This algorithm was shown to be insensitive to Gaussian noise. If
the shape of the energy deposition profile is known, then the surface temperature can be pre-
dicted very accurately (∼ 2◦C). For reasonable bounds on the acceptable values of the shape
of the energy deposition function, we have shown that the maximum surface temperature
can be estimated to within ± ∼ 20◦C for all of the cases that were tested.

The analytical model and CVFEM code both assume the probe point is responding to the
heat flux applied at a point directly above it on the surface. In reality (and in the forward
model) the probe point is responding to all points on the surface applied at all times. There is
information convolved in the time-temperature trace in Figure 2.4b that could be extracted
with a better analytical model. One candidate would be the canonical case of a rectangular
patch heat source propagating over the surface of a semi-infinite wall [3, Section 10.7, Case
IX].

Work still needs to be done to experimentally prove this technique. The proposed in-
strumentation for the embedded sensor is a infrared (IR) detector coupled with fiber optics.
The IR detector provides the required sensitivity and speed necessary to record the exper-
imental data. The fiber optic cable can be inserted in a hole drilled from the bottom of
the bar. Another important benefit from using IR fiber optics to sense the temperatures is
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that it is of low thermal mass. A smaller scale experiment using a lower power laser heat
source can be done to calibrate and verify the sensor and proposed temperature estimation
technique. After the successful demonstration of this experiment, the instrumentation can
then be applied to the full physical system.
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