
SANDIA REPORT
SAND2014-1533
Unlimited Release
Printed January 2014

Dynamic Analysis Methods for Detecting
Anomalies in Asynchronously Interacting
Systems

Akshat Kumar, Benjamin Matschke, John Solis

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2014-1533
Unlimited Release

Printed January 2014

Dynamic Analysis Methods for Detecting
Anomalies in Asynchronously Interacting

Systems

Akshat Kumar Benjamin Matschke
John Solis

Sandia National Laboratories Max Planck Institute for Mathematics
Livermore, CA, USA Bonn, Germany
akskuma@sandia.gov matschke@mpim-bonn.mpg.de
jhsolis@sandia.gov

Abstract

Detecting modifications to digital system designs, whether malicious or benign, is
problematic due to the complexity of the systems being analyzed. Moreover, static
analysis techniques and tools can only be used during the initial design and implemen-
tation phases to verify safety and liveness properties. It is computationally intractable
to guarantee that any previously verified properties still hold after a system, or even a
single component, has been produced by a third-party manufacturer.

In this paper we explore new approaches for creating a robust system design by
investigating highly-structured computational models that simplify verification and
analysis. Our approach avoids the need to fully reconstruct the implemented system
by incorporating a small verification component that dynamically detects for deviations
from the design specification at run-time.

The first approach encodes information extracted from the original system design
algebraically into a verification component. During run-time this component randomly
queries the implementation for trace information and verifies that no design-level prop-
erties have been violated. If any deviation is detected then a pre-specified fail-safe or
notification behavior is triggered.

Our second approach utilizes a partitioning methodology to view liveness and safety
properties as a distributed decision task and the implementation as a proposed protocol
that solves this task. Thus the problem of verifying safety and liveness properties is

3

translated to that of verifying that the implementation solves the associated decision
task. We develop upon results from distributed systems and algebraic topology to con-
struct a learning mechanism for verifying safety and liveness properties from samples
of run-time executions.

4

Acknowledgments

This work was supported by both the Integrated Codes element of the Advanced Simu-
lation and Computing program, and the Laboratory Directed Research and Development
(LDRD) program at Sandia National Laboratories. National Laboratories is a multiprogram
laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Mar-
tin Corporation, for the United States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

5

6

Contents
1 Introduction and Motivation . 9
2 Preliminaries . 11

2.1 Asynchronous Transition Systems . 11
2.2 Morphisms of Asynchronous Transition Systems . 12
2.3 𝒜 Category . 12

3 From ATS to Monoidal Structures . 13
3.1 Structure for a Monoid Action . 13
3.2 Monoid Actions and the associated Category . 13

4 Algebraic Data on an ATS . 15
4.1 Simplicial Sets . 15
4.2 Homology . 16

5 Dynamic Homology Analysis . 19
5.1 The General Setup . 19
5.2 Testing Samples on the Space Against Test Homology Groups 20

6 Detecting Liveness and Safety Failures from Sampled Behaviours 21
6.1 Obstructions to Wait-Free Solvability . 22

7 Conclusion . 27
References . 28

7

8

1 Introduction and Motivation

Digital systems and distributed algorithms are quintessential compositions of asynchronously
interacting components that communicate information to jointly perform desired computa-
tions over short runs. However, even if the components are themselves well-behaved —
satisfying some local specifications — their individual computations or even the properties
of their interacting communications (timing delays, etc.) may invalidate the joint compu-
tation by breaching safety properties. Worse yet, joint computations may not terminate if
liveness properties are breached (i.e., by entering a non-halting execution path).

These issues may be avoided if the system design or specification is validated at early
stages of development due to the availability of complete (theoretical) knowledge. However,
if the implementation is carried out by an unverified third party, such as, a software compiler
or a hardware manufacturer, then the lack of analogous knowledge of the system’s imple-
mentation means that problems can still arise during run-time. In other words, there is still
a concern about the final system’s verifiability with respect to the original design.

Untrusted system implementations, particularly of manufactured integrated circuits, can
be inspected using side-channel analysis [1, 5] and statistical logic testing techniques [3, 25]
to detect for the presence of (malicious) modifications to system components. In general,
these approaches are probabilistic by nature and cannot guarantee that all modifications
are detected. Instead, a partitioning methodology that divides the original system into dis-
tinct components that jointly perform operations while keeping their individual inputs and
computations private seems amenable to deterministic verifications. For example, a sys-
tem based on cryptographically secure multi-party computation (MPC) primitives [4] could
ensure that computations are performed correctly – even in the presence of malicious com-
ponents. Unfortunately, MPC solutions are only suitable for specific classes of functions and
cannot always be implemented efficiently, e.g., in hardware requiring register shift opera-
tions. However, we can borrow the core idea – multiple components performing operations
over private states and information – to design a system that is robust to modifications in
the implementation.

In this paper we explore new approaches for creating a robust system design that avoids
complexity issues of earlier techniques by investigating highly-structured computational
models that simplify verification and analysis. Our approach avoids the need to fully re-
construct the implemented system by incorporating a small verification component that
dynamically detects for deviations from the design specification at run-time.

The first approach encodes information from the original system design into an algebraic
structure derived from modeled trace information that can be embedded within a verification
component. During run-time this component randomly queries the implementation for trace
information and verifies that no design-level properties have been violated. If any deviation
is detected then a pre-specified fail-safe or notification behavior can be triggered.

Our second approach utilizes the partitioning methodology to view the safety and liveness

9

properties of a system as a distributed decision task and the implementation as a proposed
protocol that solves this task. Thus the problem of verifying safety and liveness properties
is translated to that of verifying that the implementation solves the associated decision
task. This approach is particularly promising because the latter problem has received much
attention from both the distributed systems and mathematical communities [9, 19]. We
develop upon these results to construct a learning mechanism for verifying safety and liveness
properties from samples of run-time executions.

10

2 Preliminaries

We now review some preliminary concepts from distributed systems and provide formal
descriptions of the models referenced in subsequent sections. We also describe how these
models, for a given level of abstraction, accurately model the types of digital systems and
distributed algorithms that we are interested verifying.

2.1 Asynchronous Transition Systems

Traditional models of computation, such as Turing Machines, are universal in the class
of sequential systems, but lack the structure necessary to facilitate reasoning about the
properties of complex distributed and asynchronous systems. Instead we must work with
alternative computation models that capture the notion of asynchronicity between individual
components of a larger system. Although several models have been proposed [21], we focus
on the Asynchronous Transition System (ATS) [24] model; a generic but highly structured
model to analyze interacting concurrent systems. In practice, these models are used to study
the behavior of everything from computer networks to inter-connected hardware modules in
integrated circuits.

We begin by formally introducing the concept of an asynchronous transition system and
the notion of morphisms between two such systems. This will allow us to construct a cat-
egory to abstract away much of the complexity so that we can reason about its high-level
behavior. In particular, this structure allows the manifestation of notions of bisimulations
among asynchronous systems [17, 21]. Deviations across specific implementations will mani-
fest themselves in different ways at this higher level of abstraction. Initially, our only concern
is detecting that a deviation exists. If a deviation exists then the entire system is discarded
or replaced with a new implementation.

Definition 1. An asynchronous transition system (ATS) is a tuple (S, s0,E, I,Tran) where:

• S is the set of states;
• s0 ∈ S is an initial state;
• E is the set of transition labels (alphabet);
• I ∈ E×E is the independency relation among transitions, with the properties:

– irreflexivity: given any a ∈ E, (a,a) ∉ I and
– symmetric: if (a,b) ∈ I then also (b,a) ∈ I

and we denote the relationship (a,b) ∈ I by a ≅ b;
• Tran ⊆ S×E×S is the relation of labelled transitions among states, wherein we denote

(s,e, s′) ∈ Tran by s
e→ s′.

Moreover, the following conditions must be satisfied by these components:

Movement condition: The “0” transition is unique and given any e ∈ E, there exist
s, s′ ∈ S such that s

e→ s′.

11

Well-definedness: The relation Tran is a partial map Tran ∶ S×E ⇀ E, in that

s
e→ s′, s e→ s″ ⇒ s′ = s″.

Independencies are commutative transitions: Given any (a,b) ∈ I, if s, s1, s2 ∈ S are
taken such that s

a→ s1
b→ s2, then there exists s′1 ∈ S such that s

b→ s′1
a→ s2.

Remark 1. If ∘ denotes function composition, then the last condition can also be written as
a ≅ b ⇒ a ∘b = b ∘a, though care should be taken to ensure that the domain and co-domains
of a and b allow for valid function composition.

2.2 Morphisms of Asynchronous Transition Systems

Morphisms describe how to construct a mapping between two different transition systems.
Intuitively, we want to construct a mapping between each of the objects of an ATS tuple
and provide appropriate conditions to couple the different maps in a natural way:

Definition 2. A morphism of asynchronous transition systems is a mapping (𝜎 ∶ S → S′,𝜂 ∶
E ⇀ E′) ∶ (S, s0,E, I,Tran) → (S′, s′0,E′, I′,Tran′) such that 𝜎 is based, viz., (s0 ↦ s′0) and the
following conditions are sufficed:

{
s

a→ t ⇒ 𝜎(s)
𝜂(a)
→ 𝜎(t) if a ∈ Dom(𝜂)

𝜎(s) = 𝜎(t) otherwise
∀e1,e2 ∈ Dom(𝜂),e1 ≅

I
e2 ⇒ 𝜂(e1) ≅

I′
𝜂(e2)

Note that in our definition of a morphism it is not necessary for 𝜂 to be defined everywhere
on E — partially defined maps are also acceptable. The notation ≅

I
refers to independence

relations defined according to I.

2.3 𝒜 Category

We can now use the previous definitions to construct the category 𝒜 of ATS’s in a straight-
forward manner: Obj(𝒜) is the collection of asynchronous transition systems (S, s0,E, I,Tran)
and for any two systems S and S′,

Hom(S,S′) ≔ {(𝜎 ∶ S → S′,𝜂 ∶ E ⇀ E′)}

is the collection of ATS morphisms among them.

12

3 From ATS to Monoidal Structures

Our current definition of an ATS includes a lot of information about the structure of the
underlying system. However, it can still be difficult to reason about properties, e.g., liveness
and safety, when using this model. To help analyze for properties of interest, we translate our
problem from an asynchronous transition system into a more algebraic, monoidal structure.

3.1 Structure for a Monoid Action

An augmented ATS structure adds a terminal element ∗ to the state space of a given ATS,
allowing us to translate ATS structures into monoid actions, by ensuring that all transitions
are maps (and not just partial maps). Let S∗ ≜ S⊔ {∗} and for a given event e ∈ E, define
(by a slight abuse of notation) e ∶ S∗ → S∗ by

∗ ↦ ∗

s ↦
{

s′ if s e→ s′ (s,e, s′) ∈ Tran
∗ otherwise

.

We can thus collect these maps to get a map over E, in the natural way:
∼
S ∶ S∗ ×E → S∗

(s,e) ↦ e(s).

Note that for every e1,e2 ∈ E, e1 ∘ e2 ∶ S∗ → S∗. This can be extended by induction to
any finitely many e1, ...,en ∈ E. Also note that e1 ≅

I
e1 ⇒ e1 ∘ e2 = e2 ∘ e1, whence all of the

independence relations are preserved in the augmented object.

3.2 Monoid Actions and the associated Category

Given an ATS with transition alphabet E and independency relations I, let E∗ be the free
monoid on E and I∗ the transitive completion of I. Then, E∗/I∗ is a partially commutative free
monoid on E where the identity element is the empty word 𝜀. This motivates the following
introduction of the notion of a monoid action of a given monoid on a given set:
Definition 3. A (right-) monoid action of a monoid M on a set X is a map · ∶ X×M → X
satisfying:

s · t =
{

s if t = 𝜀
(s ·a) ·b if t = ab

We will denote a set X equipped with a monoid action of M by a tuple, (M,X). In particular,
for the monoid ℳ = E∗/I∗ we will define the action · ∶ S∗ × ℳ → S∗ on S∗ by

s · (e1...en) = (e1 ∘ ⋯ ∘ en)(s).

13

Definition 4. Let X∗,X′
∗ be two pointed sets equipped with monoid structures (M,X∗) and

(M′,X′
∗), respectively. Then,

(𝜂 ∶ M → M′,𝜎 ∶ X∗ → X′
∗) ∶ (M,X∗) → (M′,X′

∗)

is a morphism among monoid actions if for all a,b ∈ M,

𝜂(a ⋅
M
b) = 𝜂(a) ⋅

M′
𝜂(b)

and for all x ∈ X,𝜇 ∈ M,

𝜎 ∶
{

∗ ↦ ∗
x ⋅
M

𝜇 ↦ 𝜎(x) ⋅
M′

𝜂(𝜇)

Basically, a morphism between monoid actions preserves the actions: monoid actions of M
on X∗ and M′ on X′

∗, respectively. In particular, it is easy to see that any ATS-morphism
(𝜂 ∶ E ⇀ E′,𝜎 ∶ S → S′) ∶ (S, s0,E, I,Tran) → (S′, s′0,E′, I′,Tran′) naturally induces a monoid
morphism (𝜂∗ ∶ E∗ → E′∗,𝜎 ∶ S∗ → S′

∗) ∶ (ℳ,S∗) → (ℳ′,S′
∗).

We can also now define a categorical structure, Cat(M,X), associated with the structure
(M,X), by taking Obj(M,X) = X and Hom(s → t) ≔ {𝜔 ∈ M ∣ s · 𝜔 = t}. In fact, this structure
is also a two-category, meaning that the objects themselves are categories and morphisms
are functors between categories, since every monoid itself is a pointed category. Indeed,
Cat(M,X) is a natural generalization of this idea.

14

4 Algebraic Data on an ATS

4.1 Simplicial Sets

Let Ord denote the category of finite ordered sets with monotonic maps as morphisms, i.e.,
maps n→m, where n≔ {0, ...,n}. To each S∈Obj(Ord) there naturally corresponds a simplex
Δ(S). This leads us to consider two types of functors on Ord:

1. The covariant functors Δ ∶ Ord → Top mapping into the category of topological spaces
with continuous functions as morphisms, which preserve the orders in morphisms:

n
Δ→ An,m Δ→ Am ⇒ (n → m)

Δ
↦ (An → Am)

and map each S ∈ Obj(Ord) to a simplex with vertices in S.
2. The contravariant functors ℱ ∶ Ord → Set mapping in an order-reversing fashion into

the category of sets, i.e.,

n
ℱ→ An,m ℱ→ Am ⇒ (n → m)

ℱ
↦ (Am → An).

Thus, ℱ induces boundary maps An → An−1 → ⋯ → A1 → A0 and we can realize a trian-
gulated geometric structure associated with S in the following way:

Definition 5. Let 𝒪 ∶= Obj(Ord). Then, we define |Δ(ℱ)| ∶= (⨆
S∈𝒪

Δ(S)×ℱ(S))/ ∼, where for

𝜃 ∈ HomOrd(S,T), x ∈ S, and a ∈ T, we make the relation (x,ℱ(𝜃)(a)) ∼ (Δ(𝜃)(x),a).

Now, note that each ordered set S is in itself a category as well, in the sense that we
can regard each element of S to be an object and the ordering of elements to be the unique
morphisms. So, given any other category ℂ, each functor S → ℂ gives an ordering among
objects in ℂ through morphisms among those objects, giving rise to chains of morphisms in
ℂ. Then, taking any other T ∈ Obj(Ord), since each functor 𝜃 ∶ S → T is just a monotonic
map in Hom(S,T), 𝜃 gives rise to maps among morphism chains in ℂ corresponding to S and
T. This motivates the following:

Definition 6. Let ℂ be a small category, meaning that Obj(ℂ) and Hom(ℂ) are both sets,
and let hom(ℂ′,ℂ) denote the space of functors ℂ′ → ℂ. The nerve of ℂ is the functor
𝒩 (ℂ) ∶ Ord → Set given by:

𝒩 (ℂ)(S) = hom(S,ℂ)
𝒩 (ℂ)(S → T) = {hom(T,ℂ) → hom(S,ℂ)}.

Combining the structures in definitions 6 and 5, we have that

|Δ(𝒩 (ℂ))| = (⨆
S∈Obj(Ord)

Δ(S) × 𝒩 (ℂ)(S))/ ∼ .

This process turns our chains into a simplicial complex structure.

15

4.2 Homology

The image of n under 𝒩 (ℂ) encodes a sequence of n composable maps c0
𝛼1→ c1

𝛼2→ ⋯
𝛼n→ cn

for n > 0 and the set of all objects c0 ∈ Obj(ℂ) for n = 0. By this and the basic properties of
morphisms in categories, we can define the following operators:

Definition 7. The face operators dni ∶ 𝒩 ℂ(n) → 𝒩 ℂ(n−1), with 0 ≤ i ≤ n, are defined as
follows:

when 0 < i < n:

c0
𝛼0→ c1

𝛼1→ ⋯
𝛼i−2→ ci−1

𝛼i−1→ ci
𝛼i→ ci+1

𝛼i+1→ ⋯
𝛼n−1→ cn

↧

c0
𝛼0→ c1

𝛼1→ ⋯
𝛼i−2→ ci−1

𝛼i−1∘𝛼i→ ci+1
𝛼i+1→ ⋯

𝛼n−1→ cn

when i = 0:

dn0(c0 → c1 → ⋯ → cn)
= c1 → ⋯ → cn

when i = n:

dnn(c0 → c1 → ⋯ → cn)
= c0 → ⋯ → cn−1.

That is, an (i,n)-face operator removes the ith object from every n-chain. Dually, we
have:

Definition 8. The degeneracy operators 𝕊n
i ∶ 𝒩 (ℂ)(n) → 𝒩 (ℂ)(n+1), with 0 ≤ i ≤ n, are

given by

c0
𝛼0→ c1

𝛼1→ ...
𝛼i−2→ ci−1

𝛼i−1→ ci
𝛼i→ ci+1

𝛼i+1→ ...
𝛼n−1→ cn

↧

c0
𝛼0→ c1

𝛼1→ ⋯
𝛼i−2→ ci−1

𝛼i−1→ ci
id→ ci

𝛼i→ ci+1
𝛼i+1→ ⋯

𝛼n−1→ cn,

where id is the identity map.

These operators provide the categorical interpretation of the associated natural face and
degenracy maps on the complex Δ(𝒩 (ℂ)). Indeed, it is an easy exercise to verify that the
usual simplicial identities are satisfied by these maps.

16

Now, given any abelian group G and any n ≥ 0, we can take formal G-linear combinations
of chains in 𝒩 (ℂ)(n), forming the chain group Cn(|Δ(𝒩 (ℂ))|;G), which we will denote
simply by Cn for succinctness (context permitting). The face maps above naturally give rise
to boundary homomorphisms 𝜕n ∶ Cn → Cn−1, such that 𝜕n+1 ∘𝜕n = 0, and as usual, we define
the homology groups Hn ≔ ker𝜕n/ im𝜕n+1.

If we take ℂ = Cat(ℳ,S∗), with respect to some ATS, then the homology groups encode
information about the concurrency/asynchronicity properties of the system. We call the
largest n ≥ 0 such that Hn ≠ {0} the homological dimension of the ATS. It was shown in [13]
that the homological dimension n of an ATS is bounded above by the number of pairwise
independencies in the system. Moreover, through the construction of an adjoint functor
between the categories of higher-dimensional automata and asynchronous transition systems
[7, 15], we can associate an asynchronous process calculus with algebraic operations on the
homology groups, as in [8, 18]. The lack of isomorphicity among homology groups also forms
an obstruction to bisimulation equivalence, in the sense of [17], among ATSs [16].

17

18

5 Dynamic Homology Analysis

5.1 The General Setup

Let M(Σ, I) be the quotient of the free monoid Σ∗ on a non-empty finite set Σ, by the closure
of the irreflexive and symmetric binary relation I ⊆ Σ×Σ; in other words, M(Σ, I) is given by
the monoid presentation,

M(Σ, I) = ⟨Σ ∣ab = ba,∀(a,b) ∈ I⟩.
The elements of M(Σ, I) are called traces and M(Σ, I) itself is called a trace monoid with
alphabet Σ (consisting of letters) and independence relation I. Given a non-unit trace 𝜔, the
unique sequence (a1,…,ak) of letters such that a1⋯ak = 𝜔 is called the decomposition of 𝜔,
and we denote by 𝜀 the unit element. Now, for a finite set S, which we will call the set of
states, we have the following strengthening of the notion of a strong partial monoid action
(i.e., in the sense of [12]) of M(Σ, I) on S by a well-definedness condition on the traces:

Definition 9. Let Par(S) be the set of all partial functions on S with non-empty domains
of definition and 𝜄 ∶ S → S the identity map. Then, a partial monoid action of M(Σ, I) on S,
well-defined on M(Σ, I), is a function · ∶ M(Σ, I) → Par(S), for which we denote the application
of 𝜔 ↦ 𝜔· by 𝜔 · s ≔ (𝜔·)(s) whenever s ∈ dom(𝜔·), and that satisfies the conditions:

𝜀· = 𝜄; (PA1)
s ∈ dom(𝜔·)⟹[s ∈ dom(𝜇𝜔·) ⟺ 𝜔 · s ∈ dom(𝜇·), in which case, 𝜇𝜔 · s = 𝜇 · (𝜔 · s)]. (PA2)

We use the notation M(Σ, I) ·S to denote a partial monoid action well-defined on M(Σ, I).

On adjoining a singleton {∗} to S, we see that the partial monoid action extends to a
monoid action by setting 𝜔 · s = ∗ whenever s ∉ dom(𝜔·), for each 𝜔 ∈ M(Σ, I) and s ∈ S⊔ {∗}.
We shall set S∗ ≔ S⊔ {∗} for brevity and continue to denote the monoid action in the same
way as the partial monoid action. Associated with this monoid action (and so to the partial
monoid action) are the categories 𝒦(M(Σ, I) ·S∗) and 𝒦(M(Σ, I) ·S), which in unambiguous
situations we may simply denote by 𝒦∗ and 𝒦, respectively, where 𝒦∗ is defined by

Ob(𝒦∗) = S∗;
Hom𝒦∗(s, s′) = {𝜔 ∈ M(Σ, I) ∣𝜔 · s = s′}, (∀)s, s′ ∈ S∗

and 𝒦 is given by removing the terminal ∗ from Ob(𝒦∗) and all morphisms targeting it,
from Hom𝒦∗ . Henceforth, we shall consider only the unaugmented category 𝒦. Thus, we
also naturally have a topological structure associated with M(Σ, I)·S and its monoid extension,
given by the classifying space of 𝒦 [22]. In the following, we will require that the classifying
space is always connected, which is equivalent to the condition that the finite graph which
represents the partial maps Σ· = {𝛼· ∈ Par(S) ∣𝛼 ∈ Σ} be connected.

Since the classifying space of 𝒦(M(Σ, I) ·S) has a natural simplicial set decomposition, we
can use the usual face maps to generate a simplicial chain complex and thus compute its

19

homology groups. However, in general, the chain complex need not be finite nor have all
chain groups be finitely generated. Thus, we instead rely on the semicubical construction
of the chain complex, which is detailed in [13, 14] along with a proof in [14] that it will
always yield a finite chain complex with finitely generated chain groups while preserving the
homology. Finally, we will assume throughout that the base ring for the chain complexes is
ℤ and we will denote the nth homology group for 𝒦(M(Σ, I) ·S) by Hn(M(Σ, I) ·S) (or simply
Hn, when the context is clear).

5.2 Testing Samples on the Space Against Test Homology Groups

Now, suppose we are given the set of states T and alphabet Ω of a sample space 𝒦(M(Ω, IΩ) ·T),
where the independence relation IΩ and action M(Ω, IΩ) ·T are unknown. On this space, we
are able to take samples of the action on T, which we call trace samples, that give us the
transitions between points in S and the sequence of letters from Ω that compose the action.
Given also a test space 𝒦(M(Σ, I) · S), about which we have full information, we can decide
whether or not it has the same asynchronicity properties as the sample space by monitoring
the birth and death effects on the homologies of trace samples from the sample space and
comparing these relative homologies with those of the test space. However, we would like
to optimize and algorithmize this process through a procedure of answering the following
questions:

1. Does there exist a means of translating sequences of trace samples from the sample
space into combinations of actions in the nth homology group of the test space?

2. If yes, then do there exist some computations involving these combinations of actions
over the group, which can determine whether or not the nth homology groups of the
sample space and test space are isomorphic?

3. If yes, then is it sufficient to take just one sequence of trace samples to determine the
(lack of) isomorphicity (at each sample step)?

The first two questions seem to be answerable in the positive by extending the methods
of [2] and related work. The final question, however, requires the construction of an ideal
sampling methodology.

20

6 Detecting Liveness and Safety Failures from
Sampled Behaviours

Given a system composed of N > 1 communicating components, we can choose a class of
asynchronous automata, such as Lynch-Tuttle’s I/O automata [20], to provide a formal
model for the system. Moreover, we can model the knowledge from the design about the
components’ initial states and the system’s possible safe final states for some interval of time
during which work is performed, as a distributed decision task. Such models are commonly
adopted for reasoning about finite computations and protocols in multiprocessor systems
and distributed algorithms, alike. In our case, we can take some critical states or sets of
inputs for the system, where safety is of utmost concern. We assume validity of the design,
from which it follows that the associated decision task is known (and required) to be solvable
in some class of liveness concerns. Further, we assume that the only a priori data available
about the implementation are the N components and a means of initializing the system to the
given initial component states, but that during run-time it is possible to attain the full state
of the system at any point in time. Since such state snapshots are available, we can assume,
without any loss of generality, that communications among the components are governed by
the atomic snapshot model (see [19] for the generality of this memory model), purely for the
purposes of analysis.

Since our considerations include timing concerns of events occuring from the interacting
components, such as communications and real-time executions over shared resources, we
face the problem of lacking a universal model for such concurrent computations, analogous
to that of the Turing machine (or its suitable restrictions) for sequential systems. This kind
of divergence in universality is further exacerbated when liveness properties are taken into
account: Fischer, Lynch and Patterson [6] have shown a Turing-computable task that is
not asynchronously solvable in the presence of even one failing component. Accordingly,
we must rely on a modeling hierarchy that exhibits the classes of liveness properties that
we are concerned about. In the sequel, we will focus on the consistent global progression
of asynchronous compositions with varying liveness concerns, starting with the strongest
assumptions — the wait-free case: possible failure of all but one component — and by
means of simulated reductions [10], extend our results to weaker assumptions as well.

Thus, the problem of verifying a given implementation of an asynchronous composition
of interacting systems over given work segments with safety and liveness concerns coming
from a valid specification, can be recast as that of checking whether the automata model
representing the implementation solves the associated decision task. This reformulation
is further elaborated upon in § 6.1. Focusing firstly on the case where liveness falls in
wait-freedom, we rely on the seminal work of Herlihy and Shavit [11], which characterizes
solubility of wait-free decision tasks by a combinatorial-topological condition. Working with
this operational model and topological setup, we will construct a topological obstruction
theory to characterize the detectability of failures in solving a given wait-free decision task
from samples of executions. This, along with combinatorial arguments, informs us about
viable classes of samples needed to develop a mechanism for attaining useful samples in

21

practice.

6.1 Obstructions to Wait-Free Solvability

Reformulation into a Distributed Decision Task Problem

Throughout, we will follow the setup of [11], in which a distributed system of communi-
cating parties is modeled by a simplified I/O automaton, which effectively preserves just
the communications data among components over a read-write memory model (particularly,
atomic snapshot memory). Following the language of that paper, we call such an automaton
a protocol. Further, a tuple ⟨ℐ ,𝒪,Δ⟩ is called a decision task, if the input complex ℐ and the
output complex 𝒪 are the simplicial complexes representing the collection of input and out-
put vectors, respectively, and Δ ⊆ ℐ × 𝒪 is a multivalued mapping ℐ → 𝒪 that preserves the
number of participating processes (equivalently, it preserves simplicial dimensions), called
the task specification. Then, a protocol is said to solve a decision task ⟨ℐ ,𝒪,Δ⟩ if every
process halts after finitely many steps and the collection of final outputs (if any) respects
the relation Δ.

Let 𝒫 be a system composed of N > 1 communicating components accomplishing some
finite computations together, and let its safety requirements, determined from the design
(i.e., via model-checking or simulation), be given in the form of a (finite) collection of initial
states ℐ for the components and corresponding (finitely many) possible safe final states 𝒪
for the given work segments. It is, of course, implicitly assumed that each state vector in ℐ
and in 𝒪 belongs to some global state for 𝒫 . The safety specifications clearly form a task
specification Δ the sense of [11], so that ⟨ℐ ,𝒪,Δ⟩ is a decision task. We wish to formally
equate the problem of verifying 𝒫 according to specifications with checking if an associated
protocol solves this distributed decision task over shared read/write memory. To this end,
we provide each component P of 𝒫 with a harness, which writes each state evolution of P to
shared memory and reads from memory the states of all other harness components, passing
along to P any outputs designated for it by other components and absorbing any outgoing
communications from P otherwise (this is possible since message passing is determined by
a local state evolution in each component). Since communications among components are
unaltered and any delays or failures in components are mimicked by the harnesses, the
functionality and safety properties of the original asynchronous network are left unaltered.
Therefore, it is straightforward to view this harness model as a protocol in the above sense,
whence we have the intended reformulation of the original verification problem. In practical
terms, the harnessed setup simply models the tracing of observable states of 𝒫 , i.e. through
a debugging apparatus. Of course, whenever the final states are determined completely by
component outputs, we need not go to the additional setup as it suffices to simply view all
communications as read/write operations over an atomic snapshot memory object, as per
[11].

22

Setup for Obstruction Theory

Given a decision task ⟨ℐ ,𝒪,Δ⟩ and a simplex S in a subdivision of ℐ , the carrier of S in
ℐ , denoted by K(S,ℐ), is the minimal simplex in ℐ containing S. With this, the celebrated
Asynchronous Computability Theorem (ACT) of Herlihy and Shavit [11] states:

Theorem 1 (ACT). A decision task ⟨ℐ ,𝒪,Δ⟩ has a wait-free protocol using read-write
memory if and only if there exists a chromatic subdivision 𝜎(ℐ) of ℐ and a color-preserving
simplicial map

𝜇 ∶ 𝜎(ℐ) → 𝒪

such that for each simplex S in 𝜎(ℐ), 𝜇(S) ∈ Δ(K(S,ℐ)).

The protocol complex 𝒫(𝒞) corresponding to a protocol 𝒫 and input subcomplex 𝒞 for
a given I/O pair ⟨ℐ ,𝒪⟩ is the subcomplex formed from the collection of possible outputs for
executions from 𝒫 initiated with inputs from 𝒞 . It is easily seen that a protocol 𝒫 wait-free
solves a decision task ⟨ℐ ,𝒪,Δ⟩ if and only if there exists a color-preserving simplicial map

𝛿 ∶ 𝒫(ℐ) → 𝒪,

called the decision map, with the property that 𝛿(𝒫(S)) ⊆ Δ(S) for every simplex S in ℐ .
Moreover, if there is a color-preserving simplicial map 𝜑 ∶ 𝜎(ℐ) → 𝒫(ℐ) that maps every
simplex S ∈ 𝜎(ℐ) into 𝒫(K(S,ℐ)), called the span, then 𝜇 = 𝛿 ∘ 𝜑 clearly satisfies ACT above.

Let Δ∗ be the pure full-dimensional polyhedral subcomplex of ℐ ×𝒪 that has a facet (S,T)
for every facet S of ℐ for which T is in Δ(S). Indeed, the purity and full-dimensionality of
Δ∗ are immediate from the fact that these properties hold for ℐ and 𝒪 and that Δ preserves
simplicial dimensions. Since Δ∗ is only a geometric reformulation of Δ and holds the same
information, we will from now on use them interchangeably. Now, given 𝛿 ∶ 𝒫(ℐ) → 𝒪 , we
define 𝛿∗ ∶ 𝒫(ℐ) → Δ by the property that for every simplex S in ℐ , 𝛿∗(𝒫(S)) ⊆ (S,Δ(S)).
Similarly we can lift 𝜇 to 𝜇∗ ∶ 𝜎(ℐ) → Δ. Now, let 𝜋ℐ ∶ Δ → ℐ and 𝜋𝒪 ∶ Δ → 𝒪 be the
canonical projections onto ℐ and 𝒪 , repsectively, and K𝒫 ∶ 𝒫(ℐ) → ℐ be the color-preserving
simplicial carrier map with respect to 𝒫 , which sends 𝒫(S) to S for every simplex S of ℐ .
Then, the content of [11] and the above remarks show that the wait-free solvability of a
decision task ⟨ℐ ,𝒪,Δ⟩ by a protocol 𝒫 is equivalent to the existence of a color-preserving
simplicial 𝛿 ∶ 𝒫(ℐ) → 𝒪 that induces the commutative diagram (3) below, which in turn is
equivalent to the existence and commutativity of the portion of (3) with solid arrows (where
𝜇, 𝜑, and the carrier maps are taken to be simplicial and color-preserving).

23

..

.. ..𝒫(ℐ) . .

. ..ℐ . .

..𝜎(ℐ) . ..Δ .

.𝒪

.

𝛿∗

.

K𝒫

.
𝛿

.

𝜑

.

𝜇∗

.
K

.

𝜇

.
𝜋ℐ
.

𝜋𝒪

(3)

In particular, we see that 𝒫 wait-free solves the decision task if and only if there exists
a subdivision 𝜎(ℐ) and map 𝜇∗ ∶ 𝜎(ℐ) → Δ, such that 𝜋ℐ ∘ 𝜇∗ = K is the carrier map and
𝜇 ≔ 𝜋𝒪 ∘ 𝜇∗ is simplicial and color-preserving. Now, if 𝜋ℐ is a fibration, then such a 𝜇∗ is a
(cross-)section of 𝜋ℐ . Moreover, if 𝜇n is a partially defined section of 𝜋ℐ on the k− skeleton of
𝜎(ℐ), then there exists an extension of 𝜇n to a 𝜎(ℐ) if and only if the associated obstruction
cocycle is trivial in the cochain group Cn+1(ℐ ,𝜋n(F)), where 𝜋n(F) is the n-homotopy group
on the fiber F of 𝜋ℐ . Thus, we are able to ascertain the existence of errors in a given protocol
whenever an n-cycle 𝛼 appears in a sample of executions, such that 𝛼 is not null-homotopic.

The fibration condition on 𝜋ℐ is really a topological condition on the task specification Δ
and by an appropriate choise of cochain complexes, we can construct an obstruction theory
that works for arbitrary specifications Δ, up to the basic requirements in [11]. As such, if A
is a subspace of ℐ given by samples of executions in the protocol complex, then under our
assumptions, we have the following possibilities:

1. Any section over A is extendible to ℐ , meaning that there are no issues in any possible
continuation of the protocol;

2. No section over A extends to ℐ , meaning that there is some flaw in every continuation
of the protocol;

3. Some sections over A extend to ℐ and some do not, which is the most interesting case
in terms of samples.

In the case of possibility (2), we can further analyze subprotocols over A by a restriction
of the appropriate maps, and for (3) we would like to characterize the minimal such A.
Furthermore, we would like to relativize the theory such that when given a subspace B and a
section s|B over it (i.e., the part of the protocol that we have already sampled), we would like
to characterize the minimal subspaces A containing B such that some extensions of s|B to A
have an extension to I. These expansions would allow us to better understand and optimize
the modes of sampling to predictively ascertain faulty paths in the system.

Finally, we note that obstruction classes and cohomology groups are particularly amenable
to algorithmic computations and by recent developments in Homotopy Type Theory [23]
(HoTT), we see clear paths to formally verifiable fault certificates (i.e., in semi-automated

24

proof systems such as Coq or Agda) for interacting systems through the embedding of our
obstruction theory in HoTT via Postnikov truncations.

25

26

7 Conclusion

In this paper we investigated new dynamic analysis methods for detecting modifications
to asynchronous transition systems based on highly-structured computational models. Our
approaches avoid exhaustive testing and the need to fully reconstruct the implemented sys-
tem by incorporating a small trusted component into the post-manufactured system that
dynamically queries the implementation.

The first approach encodes the generators of the homology groups extracted from the
original system design into the trusted component. During run-time, the trusted component
queries the specific implementation to extract a single trace sample and verifies that the
returned trace can be computed by the reference generators. If any deviation from the
original reference homology is detected, then a pre-specified fail-safe or notification behavior
is triggered.

The second approach determines the existence of liveness and safety failures occurring in
joint finite computations among a number of interacting components by analyzing samples
of run-time executions using models of the system’s asynchronous behaviours derived from
its design-level information.

For both approaches we have outlined a basic sampling and testing algorithm and discuss
how this information can be used to verify that the implementation meets the original spec-
ification. However, many open questions, particularly with regards to improving efficiency,
still remain before this theory can be applied to practical systems.

27

References

[1] Dakshi Agrawal, Selcuk Baktir, Deniz Karakoyunlu, Pankaj Rohatgi, and Berk Sunar.
Trojan detection using ic fingerprinting. In Security and Privacy, 2007. SP’07. IEEE
Symposium on, pages 296–310. IEEE, 2007.

[2] Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K Dey, and Yusu Wang. Annotat-
ing simplices with a homology basis and its applications. In Algorithm Theory–SWAT
2012, pages 189–200. Springer, 2012.

[3] Rajat Subhra Chakraborty, Francis Wolff, Somnath Paul, Christos Papachristou, and
Swarup Bhunia. Mero: A statistical approach for hardware trojan detection. In Cryp-
tographic Hardware and Embedded Systems-CHES 2009, pages 396–410. Springer, 2009.

[4] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty computation, an
introduction. Lecture Notes, University of Aarhus, Department for Computer Science,
2002.

[5] Hidde De Jong. Modeling and simulation of genetic regulatory systems: a literature
review. Journal of computational biology, 9(1):67–103, 2002.

[6] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[7] ERIC GOUBAULT. Geometry and concurrency: a user’s guide. Mathematical Struc-
tures in Computer Science, 10:411–425, 8 2000.

[8] Eric Goubault and Thomas P Jensen. Homology of higher dimensional automata. In
CONCUR’92, pages 254–268. Springer, 1992.

[9] M. Herlihy, P. Jayanti, S. Kutten, and DISC. Distributed Computing: ... International
Symposium ; Proceedings. Toledo, Spain, October 4-6, 2000. Number v. 14 in Lecture
notes in computer science. Springer, 2000.

[10] Maurice Herlihy and Sergio Rajsbaum. Simulations and reductions for colorless tasks.
In Proceedings of the 2012 ACM symposium on Principles of distributed computing,
pages 253–260. ACM, 2012.

[11] Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computabil-
ity. Journal of the ACM (JACM), 46(6):858–923, 1999.

[12] Christopher Hollings. Partial actions of monoids. Semigroup Forum, 75(2):293–316,
2007.

[13] A. A. Husainov. The Cubical Homology of Trace Monoids. ArXiv e-prints, October
2011.

[14] A. A. Husainov. The Homology Groups of a Partial Trace Monoid Action. ArXiv
e-prints, November 2011.

28

[15] Ahmet A Husainov. Cubical sets and trace monoid actions. The Scientific World
Journal, 2013, 2013.

[16] Ahmet A Husainov. Homology and bisimulation of asynchronous transition systems
and petri nets. arXiv preprint arXiv:1307.5377, 2013.

[17] André Joyal, M Nielson, and Glynn Winskel. Bisimulation and open maps. In Logic in
Computer Science, 1993. LICS’93., Proceedings of Eighth Annual IEEE Symposium on,
pages 418–427. IEEE, 1993.

[18] AA Khusainov, VE Lopatkin, and IA Treshchev. Studying a mathematical model of
parallel computation by algebraic topology methods. Journal of Applied and Industrial
Mathematics, 3(3):353–363, 2009.

[19] N.A. Lynch. Distributed Algorithms. The Morgan Kaufmann Series in Data Management
Systems. Elsevier Science, 1996.

[20] Nancy Lynch and Mark Tuttle. An Introduction to Input/Output automata. Technical
Memo MIT/LCS/TM-373, Massachusetts Institute of Technology, November 1988.

[21] Mogens Nielsen and Glynn Winskel. Petri nets and bisimulation. Theoretical Computer
Science, 153(1):211–244, 1996.

[22] Graeme Segal. Classifying spaces and spectral sequences. Publications Mathématiques
de l’Institut des Hautes Études Scientifiques, 34(1):105–112, 1968.

[23] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

[24] Glynn Winskel and Mogens Nielsen. Models for concurrency. DAIMI Report Series,
22(463), 1993.

[25] Francis Wolff, Chris Papachristou, Swarup Bhunia, and Rajat Subhra Chakraborty.
Towards trojan-free trusted ics: Problem analysis and detection scheme. In Design,
Automation and Test in Europe, 2008. DATE’08, pages 1362–1365. IEEE, 2008.

29

http://homotopytypetheory.org/book

DISTRIBUTION:

1 MS 9158 John H. Solis, 8961
1 MS 9158 Akshat Kumar, 8961
1 MS 9158 Keith Vanderveen, 8961
1 MS 9152 Robert Clay, 8953
1 MS 0899 Technical Library, 9536 (electronic copy)
1 MS 0359 D. Chavez, LDRD Office, 1911

30

v1.36

	Introduction and Motivation
	Preliminaries
	Asynchronous Transition Systems
	Morphisms of Asynchronous Transition Systems
	 A Category

	From ATS to Monoidal Structures
	Structure for a Monoid Action
	Monoid Actions and the associated Category

	Algebraic Data on an ATS
	Simplicial Sets
	Homology

	Dynamic Homology Analysis
	The General Setup
	Testing Samples on the Space Against Test Homology Groups

	Detecting Liveness and Safety Failures from Sampled Behaviours
	Obstructions to Wait-Free Solvability

	Conclusion
	References

