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Abstract

While collection capabilities have yielded an ever-increasing volume of aerial imagery, analytic
techniques for identifying patterns in and extracting relevant information from this data have
seriously lagged. The vast majority of imagery is never examined, due to a combination of the
limited bandwidth of human analysts and limitations of existing analysis tools. In this report,
we describe an alternative, novel approach to both encoding and analyzing aerial imagery,
using the concept of a geospatial semantic graph. The advantages of our approach are two-
fold. First, intuitive templates can be easily specified in terms of the domain language in
which an analyst converses. These templates can be used to automatically and efficiently
search large graph databases, for specific patterns of interest. Second, unsupervised machine
learning techniques can be applied to automatically identify patterns in the graph databases,
exposing recurring motifs in imagery. We illustrate our approach using real-world data for
Anne Arundel County, Maryland, and compare the performance of our approach to that of an
expert human analyst.

4



Acknowledgments

We would like to acknowledge Dr. David LaGraffe and Dr. Alex Slepoy, with the DOE/NNSA
Office of Nonproliferation Research and Development (NA-22), for their support of this project.
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Cor-
poration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

5



This page intentionally left blank.



Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Encoding Imagery via Semantic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Pattern-Matching in Semantic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Performance Relative to a Pixed-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Unsupervised Learning for Pattern Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Conclusions and Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figures
1 An illustrative example of land use categories in imagery from Jefferson County,

West Virginia, extracted via a rule set executed by eCognition software. . . . . . . . . . 10
2 An example of a geospatial semantic graph. Nodes in the graph represent atomic

features in imagery, while edges represent geospatial relationships between these
atomic features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 A sub-graph template specifying characteristics that define a typical suburban tract
house. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Our initial sub-graph template specifying high schools in the United States. . . . . . . 16
5 The twelve public high schools in Anne Arundel County, Maryland. . . . . . . . . . . . . 17
6 Topologically simple example of a positively identified high school in Anne Arun-

del County. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Topologically complex example of a positively identified high school in Anne

Arundel County. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8 The set of tiles used to run the sub-graph matching on the entire Anne Arundel

County data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9 A “false” positive identified by sub-graph template matching; the object is a private

high school in Anne Arundel County. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10 A confirmed false positive identified by sub-graph template matching in Anne

Arundel County. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11 Result of k-means clustering on a vector encoding of a geospatial semantic graph

corresponding to a portion of Jefferson County, West Virginia. . . . . . . . . . . . . . . . . 24

7



This page intentionally left blank.



Introduction

Collection platforms ranging from UAVs to satellites are able to obtain a vast quantity, on a
daily basis, of aerial imagery. Unfortunately, progress in analytic capabilities for investigating
this data have lagged those of the collection systems, such that analysts are unable to process the
vast majority of collected data, and automated methods are unable to currently identify patterns
of interest with sufficient accuracy [3]. This is a well-known problem within the intelligence
community, and persists beyond the vast investment (quantified in terms of billions of dollars) in
algorithms for feature detection, conducted over the past 40 years.

We argue that one key cause of the current state of analytic tools for imagery analysis lies in
the overwhelming focus of those tools on pixel-based analysis, e.g., as embodied in commercial
analysis tools such as ENVI (http://www.exelisvis.com/). While critical for identifying low-
level features, including buildings, trees, roads, and vehicles, they do not inherently provide a
linkage with the higher-level relationships and context in which analysts conduct their functions.
In this report, we introduce a specific technology – the geospatial semantic graph – for capturing
the content of images in terms of high-level concepts and relationships. Key advantages of this
encoding scheme include:

1. Compression: Due to their level of abstraction, geospatial semantic graphs can facilitate
significant reduction in the volume of data that must be stored.

2. Template-Based Search: The geospatial semantic graph formalism enables specification of
intuitive search templates, which can be used to efficiently query large geographic regions
for patterns of interest.

3. Unsupervised Pattern Extraction: Unsupervised machine learning techniques can be lever-
aged to automatically identify recurring motifs in imagery.

The purpose of this report is to document, at a high level, the key concepts and algorithms
underlying our approach to analyzing imagery with geospatial semantic graphs. Specifics of par-
ticular components of the significant computational pipeline that underpins the research are de-
ferred, in order to allow for focus on communication of the concepts and potential utility of the
architecture.

The remainder of this report is organized as follows. We detail our approach to encoding
imagery via semantic graphs in Section . The outcome of this process is a database of imagery,
which can be exploited in two manners. The first, the use of search templates, is described in
Section . The second, the use of unsupervised machine learning techniques, is preliminary, with
description deferred to Section . Building on these technologies, we perform a case study on real-
world imagery from Anne Arundel County, Maryland, in Section . Our results are contrasted with
those obtained by a human expert analyst in Section . We conclude with a summary of our results
in Section .
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Figure 1. An illustrative example of land use categories in im-
agery from Jefferson County, West Virginia, extracted via a rule
set executed by eCognition software.

Encoding Imagery via Semantic Graphs

The intent of geospatial semantic graph technology is to build upon the significant existing
body of research on algorithms for pixel analysis and identification of low-level objects in im-
ages. Specifically, we assume that input data has been classified – on a per-pixel basis – into one
of any number of “land use” categories, e.g., bare soil, paved road, or building. Note that land
use categories are very simplistic; we are interested in classifications to identify the concept of
a “building”, as opposed to the more detailed description of, e.g., an “aircraft hanger”. This ap-
proach leverages and critically relies upon the significant existing research in pixel analysis and
feature recognition, embodied in widely used commercial tools such as ENVI and eCognition
(http://www.ecognition.com/).

An illustrative example of land use classification of imagery is provided in Figure 1. In the left
portion of the figure, we show the color codings for each of a number of land use classifications.
In the right portion of the figure, we show a small chip associated with a suburban area in Jefferson
County, West Virginia, whose pixels are classified according to the land use categories indicated
previously. This particular analysis, and the case study analysis described subsequently in Section ,
were performed using the eCognition software package executing a detailed classification rule set
developed by one of our collaborators, Jarlath O’Neil Dunne. Mr. O’Neil Dunne is the Dirctor of
the UVM Spatial Analysis Laboratory at the University of Vermont.

Given an image with pixels encoded according to land use categories, the first step in our
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Figure 2. An example of a geospatial semantic graph. Nodes in
the graph represent atomic features in imagery, while edges repre-
sent geospatial relationships between these atomic features.

computational pipeline is to transfer the pixel-based representation into a set of disjoint (non-
overlapping) polygons. Each polygon corresponds to a contiguous region of pixels representing
the same land use category. The purpose of this initial transformation is to identify atomic features
in the imagery, and their extent. For example, a group of pixels classified as “building” is mapped
into a single polygon labeled as “building”, with geographic extent and associated descriptions.
There is no restriction on the nature of the resulting polygons, in that they may – and are likely
to be – non-convex, irregular, and possess “holes”. The details of this translation process are
significant, and are not described here for purposes of brevity. In summary, the extracted polygons
represent low-level, atomic features present in an image.

The objective of our proposed approach is to capture both low-level features in imagery and
key relationships between them, to facilitate higher-order reasoning and analysis. To accomplish
this goal, we leverage the notion of a geospatial semantic graph – borrowing key concepts from
the field of Artificial Intelligence, where fundamental ideas underlying a semantic graph were first
developed. A semantic graph (also called an attributed relational graph [1]) is a graph structure in
which vertices (i.e., nodes) represent concepts, and edges represent relationships between concepts.
A geospatial semantic graph is simply a semantic graph in which the concepts and associated
relationships are associated specifically with geospatial data. An example of a geospatial semantic
graph is provided in Figure 2. The purpose of a geospatial semantic graph associated with an image
is to capture the key features and their geospatial relationships in a concise manner.

Each polygon extracted from land-use-classified pixels corresponds to a node in a geospatial
semantic graph. To compute the edges in a geospatial semantic graph, we leverage the CGAL
(Computational Geometry Algorithms Library – https://www.cgal.org/). The CGAL is a
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widely used, freely available library originally intended to support storage and query of polygons
associated with VLSI / microprocessor designs. We leverage the library to compute relationships
between the polygons, which in turn define the edges in a geospatial semantic graph. For example,
geospatial operations such as “contains” (e.g., a fence surrounding a building) and “nearest-to”
(e.g., the nearest road to a building) correspond to operations over a set of polygons. The CGAL
facilitates efficient computation of such operations, providing – in conjunction with the polygon
extraction procedure introduced above – the final component necessary to translate pixel-based,
land-use-classified representations of images into their geospatial semantic graph analog.

It is important to note that in contrast to standard graphs and many semantic graph represen-
tations, the nodes and edges in geospatial semantic graphs are attributed. In other words, they
are tagged with auxiliary information concerning the atomic features and their relationships. For
example, nodes representing buildings may be tagged with their square footage, and edges repre-
senting “nearest-to” relationships may be tagged with the distance between (the centroid of) the
objects.

We have been intentionally vague concerning the specific types of nodes and edges represented
in a given geospatial semantic graph. The specific types of nodes and edges ultimately depend
on the nature of the analysis that is of concern. For example, military analysts proceed using a
different language and different concepts (together, loosely an “ontology” or domain of discourse)
than municipal analysts. Ultimately, it is likely that the computational pipeline described in this
section will need to be specialized to the specific analyst community that it is intended to support.
We discuss a specific categorization below when discussing our case study, in Section .

Finally, we briefly comment on the issue of linking the geospatial semantic graphs associated
with distinct adjacent or overlapping images. In general, we assume that imagery is overlapping,
such that shared common features can be identified between adjacent images. This allows for
compaction of multiple geospatial semantic graphs into a single large geospatial semantic graph,
if desired, and avoids issues relating to search templates crossing multiple images.

12



Figure 3. A sub-graph template specifying characteristics that
define a typical suburban tract house.

Pattern-Matching in Semantic Graphs

Given a geospatial semantic graph encoding of a set of images, the next obvious question is:
How can we efficiently search this graph for patterns of interest? By “patterns of interest”, we are
referring to patterns ranging from facilities with very specific and differentiating characteristics
(of which only a few may be exist) to broad, common motifs routinely found in imagery, e.g.,
a suburban house. A straightforward method to specify patterns of interest – at a high level of
abstraction – is via the use of sub-graph templates: small geospatial semantic graphs coupled with
constraints on node and edge attributes.

In Figure 3, we show an example of a sub-graph template specifying key defining character-
istics of a suburban tract house. The nodes and edges represent key characteristics that must be
present in any match, coupled with constraints on attributes, which serve to further refine the match
criteria. As the example illustrates, such sub-graphs are generally simple to specify and intuitive
in nature. We defer the question of whether such templates can be used to identify features in
large-scale scale data to our case study in Section .

Given a sub-graph template, the next question is how to identify corresponding matches in
a geospatial semantic graph. The answer to this question comes in the form of algorithms for
solving the sub-graph isomorphism[2], which is a formal description of the problem of locating all
instances of a sub-graph that is embedded in a larger graph.

Algorithms for solving the sub-graph isomorphism problem fall into two categories: exact and
inexact. Exact methods yield optimal matches, but are generally computationally intractable; for-
mally, sub-graph isomorphism is NP-hard. Inexact methods may miss matches, but are more com-
putationally efficient. In our computational pipeline, we use the approximate matching algorithms
for sub-graph isomorphism implemented in Sandia’s MTGL (Multi-Threaded Graph Library) soft-
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ware package https://software.sandia.gov/trac/mtgl[5]. Note that the MTGL algorithms
are used to find candidate matches, which are subsequently filtered, as they are not capable of
dealing with constraints on node and edge attributes.

While sub-graph isomorphism is theoretically difficult, the computational challenges in geospa-
tial semantic graph contexts are not significant. First, the presence of edge and node attributes can
yield large reductions in the cost of search. Second, because geospatial relationships between
objects do not span significant distances (e.g., there is unlikely to be an edge between buildings
separated by miles), geospatial semantic graphs are approximately planar; the imposition of such
constrained relationships between nodes can yield significant reductions in search cost. In partic-
ular, this property allows geospatial semantic graphs to be tiled or partitioned in an overlapping
manner (to deal with truncation effects), such that the individual partitions can be searched inde-
pendently and in parallel.

In the framework described above, we assume that analysts are interested in obtaining exact
matches to templates. In practice, this is not the case, principally because analysts are often unsure
of precise template characteristics, such that inexact matches are useful when initially developing
templates. Extension of our framework to include inexact matches is beyond the scope of this
report, but is an avenue of research under active investigation.

Ultimately, we envision two primary use cases for template matching in the context of geospa-
tial semantic graph analysis. The first involves identification of well-known motifs in imagery,
e.g., houses and neighborhoods. As indicated in our case study below, a very large proportion of
primitive objects can be categorized into one of a handful of sub-graph templates. Objects that
are not captured in common templates are, almost by definition, of interest to analysts. The sec-
ond involves the ability to quickly answer “what-if” questions, in which analysts use sub-graph
templates to quickly determine whether a hypothesized pattern exists in a particular set of images.
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Case Study

We now demonstrate our approach to analyzing imagery via geospatial semantic graphs, using
a conceptually easy task: that of automatically locating high schools in the US. As we will show,
high schools are conceptually simple to describe in a geospatial semantic graph context, but not
a pixel-based context. We use 6-inch resolution multispectral and LIDAR data for Anne Arundel
County, Maryland. This data was generated by an aerial survey, and is part of a larger set containing
all counties in the Baltimore-DC corridor. Anne Arundel County is approximately 50 miles by
60 miles, yielding roughly ten billion pixels at the given resolution. The data was processed and
tagged with land use classifications using a rule set for the eCognition software package, developed
by our collaborator at the University of Vermont.

We begin by asking the natural question: What features make a facility a high school? In other
words, what is a high school in terms of atomic geospatial features and relationships between those
features. A first attempt at such a description would yield, at least in much of the US, three core
features: a football field, campus buildings, and a parking lot. Expanding on each of these features,
we observe the following:

1. Football Field: Is of type “Grass/Shrub”, with a bounded area and specific dimensions.

2. Campus Buildings: Is of type “Building”, has a specific range of square footage, is within
100 meters of a parking lot, and is within 300 meters of a football field.

3. Parking Lots: Is of type “Other/Paved”, with a bounded area.

While simplistic, this set of attributes captures – at a conceptual level – the key characteristics of a
US high school, at least in the greater DC metropolitan area. Generation of this textual description
does not require expert imagery analysts, and can be (and was) accomplished quickly in an informal
group discussion session.

Given such a description of a specific facility or type of facility of interest, the next step in the
process of geospatial semantic graph-based imagery analysis is to convert the description into a
sub-graph template. In this case, the translation process is straightforward, with the result shown
in Figure 4. The sub-graph template captures, in a graphical manner, the primitive objects in the
template, their attributes, and their inter-relationships.

There are twelve public high schools in Anne Arundel County. Each of these high schools
is shown in Figure 5. They are displayed independently in roughly a 2000 meter by 2000 meter
“chip”, with pixels colored by their land use classification. The primary feature to note among
the high schools is that they are topologically quite distinct: the number and mix of parking lots
and buildings is disparate, there is a large range of building and parking lot sizes, there is no com-
monality in terms of surrounding features, and the orientation of the key features (the buildings,
parking lots, and football field) is heterogeneous. Automatic identification of high schools in this
context is therefore remarkably challenging, despite the conceptual simplicity of the problem.

15



Figure 4. Our initial sub-graph template specifying high schools
in the United States.

Our high school sub-graph template was developed prior to viewing any of the data associated
with Anne Arundel County. Then, given the real data, we performed two iterations of modifications
on the template, which were restricted to minor changes to the range of attributes specified by
feature constraints (e.g., parking lot area). Following this initial tuning process, we executed sub-
graph isomorphism – using our refined high school sub-graph template – on each of the image
chips shown in Figure 5. The purpose of this test is to verify that we can find the matches when
focus is restricted; if this is not possible, then there is no hope when we expand the analysis to
effectively unrestricted search domains. The net result yielded successful identification of 11 of
the 12 high schools, with no false positives (which are admittedly unlikely given the size of the test
images). The failed case was in retrospect due to incorrectly classified pixels at the interface of the
high school’s football field and surrounding track. This failure is an instance of the “garbage in,
garbage out” analysis principle, and highlights the need for accurate upstream analysis in order to
correctly identify primitive object features.

Overall, the results are extremely encouraging and indicate that a simple sub-graph template
can be used to both represent and identify topologically diverse facilities, with high accuracy.
An example of a topologically simple high school is shown in Figure 6. Here, we see a single
building, a compact parking lot, and the requisite football field. In this case, the alignment with
the sub-graph template is straightforward. In contrast, a significantly more topologically complex
example is shown in Figure 7. In this case, the high school is co-located with a middle school (a
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Figure 5. The twelve public high schools in Anne Arundel
County, Maryland.

not uncommon occurence), such that there are numerous buildings and parking lots in the same
vicinity. Yet, despite the presence of such “noise”, the matching process accurately identifies the
high school. Further, this example actually shows two possible matches – both the middle and high
school are independently identified as possible matches with the football field.

In our next test, we broke up all of Anne Arundel into large tiles that covered all of the county,
as shown in Figure 8. This was necessary as the data structures could not hold (due to implementa-
tion details) the entire county data set. We then executed sub-graph matching on each of the tiles,
using the high school template. As expected, we again found all (following correction of the land
use classification data associated with the one high school that we initially failed to identify) of
the 12 public high schools. However, we additionally found two false positives. The first is shown
in Figure 9. Upon investigation, one might naturally ask: Why isn’t this a high school? Further
analysis confirmed the facility is actually a high school – just not a public high school. Rather, it
is a private high school, which was not found in our initial search of Anne Arundel registrations.

The second false positive is shown in Figure 10. In this case, cursory analysis confirms that
the facility is likely not a high school, but rather a facility in an industrial park. While not shown
in the graphic, the upper portion of the excavation zone was a grass field in the original source
data on which the land use classification process was executed (the image shown is from Google
Earth). Fortuitously, the dimensions of this field correspond to those of a football field. Coupled

17



Figure 6. Topologically simple example of a positively identified
high school in Anne Arundel County.

with building and parking lot areas consistent with the template, a positive match was therefore
reported. This result demonstrates that our approach, while maintaing high overall accuracy, is
not infallable. Rather, our false positive rate is sufficiently low as to not overwhelm analysts with
irrelevant matches.

Overall, this case study serves as an illustrative example of the potential power of the sub-graph
template approach to automatic analysis of geospatial semantic graphs associated with imagery.
We have also used the approach to identify golf courses and houses associated with higher-income
neighborhoods in Anne Arundel. However, we have not explored the full power nor the limitations
of our approach. In particular, a key question that remains to be answered is the limit on the
complexity of specific facilities that can be identified, specifically due to limited numbers of land
use categories.
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Figure 7. Topologically complex example of a positively identi-
fied high school in Anne Arundel County.
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Figure 8. The set of tiles used to run the sub-graph matching on
the entire Anne Arundel County data set.
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Figure 9. A “false” positive identified by sub-graph template
matching; the object is a private high school in Anne Arundel
County.
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Figure 10. A confirmed false positive identified by sub-graph
template matching in Anne Arundel County.
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Performance Relative to a Pixed-Based Approach

To compare the performance of our approach relative to the best available pixel-based analysis
methods, we again engaged our expert collaborator at the University of Vermont, Jarlath O’Neil-
Dunne. Besides supplying us with the initial land use classification data, he is an expert in the
use of traditional geospatial imaging software and is well known in the community for his web
tutorials using eCognition software.

Mr. O’Neil-Dunne attempted the same larger goal as we described in Section : finding all of the
public high schools in Anne Arundel County, Maryland. In his experiments, Mr. O’Neil-Dunne
used land use classification data and all of the tools that were available to him in the eCognition
software suite. After two weeks of intensive effort, he achieved manage a 75% identification with
significantly more false positives than we obtained. Additionally, running and refining the search
was considerably more difficult than it was when using the geospatial semantic graph approach.
It is also important to point out that this simple search template pushed the eCognition software
to its limits as far as the complexity of describing the problem; a more sophisticated template
would probably not have been possible to analyze using the tools available in eCognition and other
state-of-the-art image analysis tools.
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Figure 11. Result of k-means clustering on a vector encoding of a
geospatial semantic graph corresponding to a portion of Jefferson
County, West Virginia.

Unsupervised Learning for Pattern Identification

Although less developed than our sub-graph template approach to imagery analysis, unsuper-
vised learning techniques can also be leveraged to automatically identify recurring patterns in
geospatial semantic graphs. In particular, machine learning algorithms such as clustering can be
used to identify recurring motifs in large geospatial semantic graph databases. While we have not
developed this avenue of research to the extent that we have for sub-graph template matching, we
have executed a proof-of-concept demonstration, which we will now describe.

We consider an example in which we are given a particular geospatial semantic graph. The first
challenge is to transform this graph into an input representation appropriate for a typical machine
learning algorithm. Generally, machine learning algorithms operate on real-valued vectors of input
data. To convert a geospatial semantic graph into a set of vectors, we focus on the vertices in the
graph. For each vertex, we create a vector describing its type and attributes (e.g., building area),
in addition to attributes of key edge relationships (e.g., distance to the nearest road, distance to
the nearest non-adjacent grass area). Given this set of vectors, we can then leverage a machine
learning algorithm to identify patterns in the geospatial semantic graph.
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An illustrative result is shown in Figure 11. This graphic shows the results of k-means cluster-
ing [4] applied to a vector encoding of a portion of Jefferson County, West Virginia. We directed
the k-means algorithm to partition the data into two clusters; the corresponding categories are de-
noted by blue and green pins in the graphic, respectively. The results indicate that the k-means
algorithm is able to accurately differentiate between the residential buildings in the image and
those associated with the race track facility.

While very preliminary, the result is suggestive of the power of automated machine learning
algorithms to identify patterns in images encoded as geospatial semantic graphs, using both k-
means and more advanced clustering and classification algorithms.
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Conclusions and Future Research Directions

The purpose of this report is to both document a novel approach to encoding and searching
imagery via geospatial semantic graphs, and to demonstrate the potential of the approach on a case
study, using real-world data. Our case study – finding high schools in the US – strongly demon-
strates the potential power of our approach. In particular, we could find all of the target facilities
using an easy-to-describe sub-graph template, and found only one significant false positive. In
contrast, the performance obtained by an expert human analyst using pixel-oriented anlaysis is
significantly worse, with more misses and false positives, and requires significantly more time to
conduct.

While we have demonstrated the potential power of our novel approach to analyzing geospa-
tial semantic graphs, a number of significant research challenges must be addressed before the
paradigm can be implemented in real-world analysis environments. These include representation
and specification of temporal changes in imagery (to support change detection and patterns-of-
life analysis), partial sub-graph template matching (to provide for less rigorous match criteria),
and semi-supervised learning of sub-graph templates (contracting the time required by analysts to
create search templates).
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