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Abstract 

 

Mechanical testing of porous materials generates physical data that contain contributions 

from more than one underlying physical phenomenon.  All that is measurable is the “ensemble” 

hardening modulus.  This thesis is concerned with the phenomenon of dilatation in triaxial 

compression of porous media, which has been modeled very accurately in the literature for 

monotonic loading using models that predict dilatation under triaxial compression (TXC) by 

presuming that dilatation causes the cap to move outwards.  These existing models, however, 

predict a counter-intuitive (and never validated) increase in hydrostatic compression strength.  

This work explores an alternative approach for modeling TXC dilatation based on allowing 

induced elastic anisotropy (which makes the material both less stiff and less strong in the lateral 

direction) with no increase in hydrostatic strength. 

Induced elastic anisotropy is introduced through the use of a distortion operator.  This 

operator is a fourth-order tensor consisting of a combination of the undeformed stiffness and 

deformed compliance and has the same eigenprojectors as the elastic compliance.  In the 

undeformed state, the distortion operator is equal to the fourth-order identity.  Through the use of 

the distortion operator, an evolved stress tensor is introduced.  When the evolved stress tensor is 

substituted into an isotropic yield function, a new anisotropic yield function results.  In the case 

of the von Mises isotropic yield function (which contains only deviatoric components), it is 
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shown that the distortion operator introduces a dilatational contribution without requiring an 

increase in hydrostatic strength. 

In the thesis, an introduction and literature review of the cap function is given.  A 

transversely isotropic compliance is presented, based on a linear combination of natural bases 

constructed about a transverse-symmetry axis.  Using a probabilistic distribution of cracks 

constructed for the case of transverse isotropy, a compliance expression is presented that 

demonstrated a decrease in lateral stiffness, but leaves axial stiffness unchanged.  A 

demonstration of how the distortion operator could be used in the elastic/plastic analysis of a von 

Mises surface loaded in TXC is also presented. 
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NOMENCLATURE 
 

Symbol Definition  
Units 

(SI units) 

a  Crack size m 

1a , 2a , 3a , 4a  Experimental constants from Kayenta model Units vary 

1
b


,
2

b


,
3

b


,
4

b


,
5

b


 Fourth-order transverse basis tensor about 
m  

1 

1
B


, 
2

B


, 
3

B


, 
4

B


, 
5

B


 Fourth-order transversely-isotropic base 

tensors 

1 

c  cosc   1 
o

c


 Fourth-order open fabric tensor 1 

C


 Fourth-order elastic tangent stiffness of the 

deformed material 

Pa 

m
C


 Fourth-order isotropic elastic tangent 

stiffness of the undeformed material 

Pa 

oE  Young’s modulus of the substrate material Pa 

F  Third moment of the number density 

function 

Number of 

cracks m 

oG  Shear modulus of the substrate material Pa 

1h , 2h , 3h , 4h , 5h  Components of the compliance matrix for a 

transversely isotropic material 

Pa
-1

 

1 2 3 4 5, , , ,c c c c ch h h h h  i
b


 basis coefficients, 

   
5

1 0

c

i j ij

j

h d



    


  

Pa
-1

 

h  Parameter used in definition of elastic-plastic 

coupling tensor Z


 

1 

ih   Tsai-Wu strength tensors of the second rank Pa
-1

 

ijh   Tsai-Wu strength tensors of the fourth rank Pa
-2

 

H  Ensemble hardening modulus Pa 

1I , 2I , 3I  Invariants of the stress tensor Pa 

I


 Second-order identity tensor 1 

I


 Fourth-order identity tensor 1 

1 1J I , 2J , 3J  Invariants of the deviatoric stress tensor Pa 



2J  Second invariant of the shifted stress tensor Pa 

k  Critical value from yield function Units vary 
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Symbol Definition  
Units 

(SI units) 

3
K   Constant Pa

-1
 

L


 Fourth-order distortion operator 1 

m  Axis of symmetry for a transversely 

isotropic material of unit length 

coinciding with the principal loading 

direction 

1 

M


 Second-order unit tensor in the direction 

of the yield surface gradient 

1 

n  Unit orientation for a crack 1 

N  Kayenta model internal state variable 1 

iN  Number of cracks of size “i” and 

orientation n  in the volume 

Number of 

cracks 

VN  Number of cracks per unit volume Number of 

cracks/m
3
 

N


 Unit normal to the yield surface 1 

o  Unit vector defined in the 1x - 2x  plane for 

a unit sphere 

1 

p  Joint probability density 1 

avep  Mean stress Pa 

ip  Fraction of the total cracks having size ia  1 

bathP  Compressive hydrostatic bath pressure Pa 
symdev

P



 Symmetric-deviatoric projector 1 

r  Radial coordinate m 

s  sins   1 

s


 Second-order deviatoric stress tensor Pa 

S


 Fourth-order compliance tensor of the 

deformed material 

Pa
-1

 

oS


 Fourth-order compliance tensor of the 

underlying substrate matrix material 

Pa
-1

 

t  Time s 

Endt  Time at which the TXC test ends s 

TXCt  Time at which TXC leg starts s 

Yt  Time at which the loading path intersects 

the yield surface 

s 

T


 Elastic-plastic tangent stiffness fourth-

order tensor 

Pa
-1
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Symbol Definition  
Units 

(SI units) 

X  Kayenta model variable Pa 

V  Representative volume m
3
 

z  Axial coordinate m 

Z


 Elastic-plastic second-order coupling 

tensor 

Pa 




 Back stress second-rank tensor Pa 

K



 Symmetric second-rank crack density 

tensor 

1 

i  Coefficients defined as 

     
0

, , ,o

j jh a q a da    


   

Pa
-1

 

3  Compliance enhancement factor 

(CEF) 3 3 3o      

Pa
-1

 

3  3d
dt


 

(Pa  s)
-1 

  Angle of inclination for Drucker-

Prager criterion 

Radians 




 Fourth-rank crack density tensor 1 

  Elastic constant arising from open and 

closed penny-shaped cracks 

Pa
-1

 

ij  Kronecker delta 1 




 Total strain second-order tensor 1 

e



 Elastic second-order strain tensor 1 

p



 Plastic second-order strain tensor 1 

A  Axial strain 1 

e

A  Elastic axial strain 1 

p

A  Plastic axial strain 1 

L  Lateral strain 1 

e

L  Elastic lateral strain 1 

p

L  Plastic lateral strain 1 




 Total strain rate second-order tensor s
-1

 

e



 Elastic strain rate second-order 

tensor 

s
-1

 

p



 Plastic strain rate second-order 

tensor 

s
-1
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Symbol Definition  
Units 

(SI units) 
  Internal state variable Units vary 

  Inclination angle 1 

  Lode angle 1 

  Kayenta model internal state 

variable 

Pa 

  Consistency parameter, magnitude of the 

plastic strain 

s
-1

 

o  Elastic properties of the substrate material Units vary 

   

o  Poisson’s ratio of the substrate material 1 




 Shifted stress second-order tensor Pa 

  Number of cracks per unit mass Number of 

cracks/kg 

1 , 2 , 3  Principal stresses Pa 




 Stress second-order tensor Pa 

*



 Evolved stress second-order tensor Pa 




 Stress rate second-order tensor Pa/s 

n  Normal component of the far-field 

traction 

Pa 

A  Axial stress Pa 

L  Lateral stress Pa 

r  Radial stress Pa 

z  Axial stress Pa 

*

A  Modified axial stress, 
*

A A   Pa 

*

L  Modified lateral stress, * 2L L   Pa 

  Signed equivalent shear stress Pa 
  Azimuth angle 1 

S


  Fourth-order change in compliance tensor Pa
-1

 

  Solid angle on the unit sphere 1 

  Solid angle surface 1 
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Function List 
 

Symbol Function 

 I
B


     
2

0

1
,

2
II

B B n d



   
  

   

 dev  Function that returns the deviatoric component 

 f  Yield function, can be either isotropic or anisotropic 

 of  
Yield function for the initial state of consideration (can be 

undamaged state) 

 cf  Kayenta cap function 

 ff  Kayenta fracture function 

 F  Yield function, specified to be isotropic 

 cF  Kayenta model-specific function 

 fF  Kayenta model-specific function 

 g  Yield function based on a critical strain 

 h  Tsai-Wu yield function, specified to be anisotropic 

 H  Heaviside function 

 iso  Function that returns the isotropic component 

 n  Number density-distribution function 

 p  Probability distribution function 

 q  Distribution function with a restricted inclination angle 

 p  Probability distribution function 

sgn    Signum operator 

 tr  Function returns the trace 

 j       
0

, , ,o

j jh a q a da    


   

 ij  Coefficient functions 

   Dirac delta function 

   Kayenta model-specific function 

   Crack size distribution function 

 Macauley brackets 
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1. INTRODUCTION OF THE KAYENTA CAP 
EVOLUTION MODEL 

 

Macroscale constitutive models typically have more than one internal state variable 

(ISV), (e.g., porosity and matrix strength of a porous metal), but macroscale testing 

involves all ISVs changing at once, making it literally impossible to infer ISV evolution 

laws from macroscale data.  All that is measurable is the “ensemble” hardening modulus. 

This leads to modeling uncertainty of what are appropriate ISVs and corresponding 

evolution laws, which is a major issue motivating mesoscale modeling.  This thesis is 

concerned with the phenomenon of dilatation in triaxial compression of porous media.  

Such dilatation has been modeled very accurately by Warren, Fossum, and Frew [1].  

This is also the cap model used in the Kayenta geomechanics code and will henceforth be 

referred to as the Kayenta model.  This cap evolution law assumes an isotropic yield 

model with a porosity-related ISV that evolves in a way that gives compaction followed 

by dilatation in triaxial compression (TXC), but it does so by unrealistically evolving the 

hydrostatic strength (determined from the evolving porosity ISV).  Specifically, to get 

such an excellent fit to TXC dilatation data, Kayenta predicts an increase in hydrostatic 

compressive strength when dilatation is occurring.  This work aims to explore an 

alternative model for TXC dilatation based on allowing induced elastic anisotropy with 

no increase in hydrostatic strength.   

By showing that two fundamentally different models are capable of describing limited 

(TXC) data, modeling uncertainty is exposed for any other loading mode following the 

TXC leg.  Ideally, this work will encourage mesoscale studies to help identify physics-

based ISVs and their evolution laws, especially under changes in loading direction.  

Overall, our motivation is that materials reach stress states in engineering applications 

that are not close to stress states in controlled calibration tests, meaning that the models 

are being used in unvalidated domains.  Additionally, actual lab testing will almost 

always induce more than one ISV to change at a time, making it impossible to identify 

individual terms in the definition of the ensemble hardening modulus.  This uncertainty 

can be investigated using in silico (virtual) testing where it is possible to suppress 

evolution of ISVs, and where the material state can be returned to the initial state to 

investigate material response to a realistic variety of loading directions. 

This thesis discusses the cap evolution law as written in Kayenta, reports on a literature 

review of the topic, and finally reports on an alternative approach that can be 

incorporated into the Kayenta model.  The intent of this approach is to introduce an 

alternative way to fit triaxial compression data without resulting in counterintuitive 

changes to the hydrostatic response. 

This work is divided into following sections: 

1. Section 0 presents a guide to the cap evolution model in Kayenta. 

2. Section 2 documents a literature review that discusses the following subtopics: 
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 Experimental evidence supporting the cap evolution law currently in Kayenta. 

 Examination of experimental data that researches the effect of nonmonotonic 

loading on the elastic limit. 

 Other research efforts that model the cap behavior. 

 Experimental evidence of inelastic induced anisotropy resulting from triaxial 

compression. 

3. Section 3 discusses an alternative approach for modifying an isotropic yield function. 

4. Section 4 demonstrates the use of a distortion operator in elastic/plastic analysis. 

5. Section 5 is the conclusion and summarizes the major points of the thesis. 

1.1 Notation 

Throughout this work, mathematical notation will follow the notational conventions set 

forth in the Kayenta manual [2].  A notation used in the Kayenta manual is to underline 

vectors and tensors.  Scalars, vectors, and tensors will be "underlined" according to their 

order.  So vectors will be written as 
~
x , second-order tensors as 


 , fourth-order tensors as 

E


, etc.  The following definitions for vector and tensor analysis are employed: 

 Definition of over bar: xx  . 

 Dot product between two vectors: u v  is 1 1 2 2 3 3k ku v u v u v u v   . 

 Vector-to-vector linear transformation; 
~ ~
u A v


   is jiji vAu  . 

 Dot product between a tensor and a tensor: C A B
 

   or kjikij BAC  . 

 Tensor-to-tensor linear transformation: :X E Y
  

  is klijklij YEX  . 

 Kronecker Delta: 1ij  if ji  ; or 0ij   if ji  . 

 Identity tensor: I


 is the tensor whose ij  components are ij . 

 Inner product between two tensors: :A B
 

 or ij ijA B . 

 Magnitude of a vector: v v  is 
3

2

1

k k k

k

v v v


  . 

 Magnitude of a tensor: :A A


 is 
3 3

2

1 1

ij ij ij

i j

A A A
 

  . 

 Trace of a tensor: tr A


 is 11 22 33kkA A A A   . 

 Deviatoric part of a tensor,  dev A


 is  
1

3
ij ij kk ijdev A A A   . 

Additionally, 

 Second-order tensors are symmetric; jiij   . 
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 The elastic stiffness tensor is major symmetric; klijijkl CC  . 

 Other fourth order tensors are minor-symmetric; ijlkjiklijkl CCC  . 

Other symbols and functions in this thesis are defined in Appendix A. 

1.2 Kayenta Yield Surface 

This subsection of the document gives a brief review of the Kayenta model, and how it 

pertains to this project.  Parts of this section may directly quote or paraphrase statements 

or use figures and/or equations from the Kayenta manual [2], which is a public-domain 

document.   

The Kayenta model prescribes that there exists a convex contiguous elastic domain of 

stress states for which any deformation would be constrained within the elastic limit.  The 

boundary of the elastic domain is called the yield surface.  The yield criterion can be 

expressed as an isotropic yield function,   0,, 321 f , in terms of the three principal 

stresses, i  (note: the yield function can be written in terms of other stress invariants).  

The isotropic assumption of Kayenta implies that the yield surface in six dimensions can 

be visualized in three dimensions (Haigh–Westergaard stress space).  Viewing the yield 

surface through different cross sections gives insight into the yield surface.  A very 

important line associated with the yield surface is the hydrostatic axis for which all three 

principal stresses are equal.  Any plane that contains the hydrostatic axis is called a 

meridional plane.  An octahedral plane is any plane perpendicular to the hydrostatic axis.  

Further defined is an octahedral profile, which is a cross section of the yield surface 

defined by an octahedral plane [2]. 

As previously mentioned, the yield criterion defines the elastic limits of a material under 

combined states of stress.  The yield function can additionally depend on internal state 

variables (ISV) that affect the material’s physical properties (e.g., porosity, density, etc.).  

The yield surface is not necessarily fixed in stress space, and its location will change by 

changing the internal state variables (e.g., hardening, plastic deformation, pore collapse, 

etc.).  In additional to a yield surface, a limit surface is often defined, which is the 

boundary of possible stress states achievable by any means (elastic or plastic).  Stress 

states outside of the limit surface are not achievable by any quasistatic process. 

In the nondamaging version of Kayenta, the limit surface is considered fixed, and it 

contains all attainable stress states.  By definition, the yield surface is contained within 

the limit surface.  The material can have an infinite number of yield surfaces but has only 

one limit surface.  One constraint on the limit surface is that it will always be an open 

convex set.  When damage is allowed, the limit surface can collapse, meaning that 

initially attainable stress states may not be attainable more than once. 
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1.3 Stress Invariants 

To ease the illustration of the yield and limit surfaces, new quantities are introduced.  The 

stress deviator, ijs , is the deviatoric part of the stress, defined as 

 
  

1

3
ij ij kk ijs tr     (1) 

Conceptually, the stress deviator is a tensor measure of shear stress.  Also introduced are 

the stress invariants, 1I , 2J , and 3J .  These quantities are the same no matter which 

orthonormal basis is used for the stress components. 

 
 1 1 2 3ijI tr         (2) 

 
   2 2 2 2

2 1 2 3

1 1

2 2
ijJ tr s s s s     (3) 

 
   3 3 3 3

3 1 2 3

1 1

3 3
ijJ tr s s s s     (4) 

Many descriptions of the limit surface make use of the stress invariants.  Some additional 

terms are defined as 

 

1

3 3

kk
ave

I
p


   (5) 

where avep  is the mean stress.  Sometimes the negative of this term is defined as the 

pressure, in which case it is marked as avep  where the over bar denotes a compressive 

stress.   

1.3.1 Important Kayenta Stress States 

These subsections contain details on important stress states that are used to parameterize 

Kayenta.  From these stress states, Kayenta interpolates from the known stress states to 

general stress states. 

1.3.2  Hydrostatic Loading 

For this loading case, a hydrostatic pressure, avep , is applied to the material.  Note that 

the over bar indicates a negative stress.  Expressed in tensor form, the hydrostatic loading 

is expressed as 
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ave

ij ave

ave

p

p

p



 
 


 
  

 (6) 

Kayenta uses data from hydrostatic loading to determine the bulk modulus, as well as the 

crush curve (also called consolidation curve) that governs the relationship between 

evolving porosity and applied pressure. 

1.3.3 Triaxial Loading 

The “triaxial” state, a term common to the geomechanics community, is very important to 

the material characterization of brittle materials.  Though termed triaxial, there are two 

equal principal stresses (lateral stresses) and one axial principal stress.  Expressed in 

matrix form, the stress components of this state are 

 

0 0

0 0

0 0

L

L

A







 
 
 
  

 (7) 

where A  is the axial stress, and L  is the lateral stress. 

The stress state is called triaxial compression (TXC) if the axial stress is more 

compressive than the lateral stress (i.e., recalling that stress is positive in tension, TXC 

corresponds to A L  ).  Triaxial compression testing is conducted with the axial stress 

being of greater compressive magnitude than the lateral stresses.  Triaxial extension 

(TXE) corresponds to A L   and is not associated with strain or deformation.  The 

geomechanics community uses the word “extension” to indicate that, for typical isotropic 

materials, this TXE produces a shape change that increases the ratio of cylinder height to 

diameter even though height and diameter are both decreasing.  Figure 1 illustrates this 

loading setup (taken from Kayenta Manual [2]).  Interestingly, 
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Figure 1. Illustration of triaxial compression (TXC) and triaxial extension (TXE). 
Strictly speaking, these terms refer exclusively to the stress state (not 
deformation). The ratio of cylinder height to cylinder diameter will typically 
decrease in TXC, but this ratio typically increases in TXE. 

triaxial extension testing does not necessarily mean the axial stress is tensile, instead it is 

specified that the axial stress is less compressive than the lateral stress.   

Using Equation (7), the deviatoric tensor for triaxial loading is expressed as 

 

1 0 0

0 1 0
3

0 0 2

A L 
 

  
 
  

 (8) 

The stress invariants are 

 1 2A LI    ,  
2

2

1

3
A LJ    ,  

3

3

2

27
A LJ     (9) 

The signed equivalent shear stress for triaxial loading is 

 
3

LA  

 

(10) 
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As shown in Figure 2, the material is initially compressed hydrostatically to a pressure of 
bathP  (

bathPI 31  ).  Then, the lateral stress is held constant (
bath

L P ) as the axial 

stress is compressed further. 

1.4 Lode Coordinates 

Lode coordinates provide an alternative way of viewing the yield surface.  Normally, the 

stress space is expressed in terms of the principal stresses ( 1 , 2 , 3 ).  The Lode 

coordinate system replaces the Cartesian coordinate system with cylindrical coordinates 

expressed as  , ,r z .  This is a reasonable choice because an isotropic yield function has 

120° rotational symmetry about the hydrostatic direction and reflective symmetry about 

the triaxial extension and triaxial compression axes when viewed down the hydrostatic 

direction (called an octahedral plane). An additional advantage of Lode coordinates 

system is that they may be expressed in terms of stress invariants. 

Illustrations of the Lode coordinate system are shown in Figure 3 (taken from Kayenta 

Manual [2]).  Figure 3(a) is a meridional yield profile, and Figure 3(b) is an octahedral 

yield profile.  The distorted view in the octahedral profile results because brittle materials 

are weaker in tension when compared to compression. 
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Figure 2. Diagram of a triaxial compression load path in   vs. 1I  space. Here, 
bathP  is the initial hydrostatic compressive stress, and it is then the lateral stress 

value (typically supplied by a fluid bath) after the triaxial phase begins. 

The descriptions of the individual components of the coordinate system are: 

 22Jr  ; The radial r  coordinate equals the magnitude of the stress 

deviator. 

 
2

3

2

3 3

2
3sin 










J

J
 ; The Lode angle   is the angular coordinate of the stress 

state as illustrated in Figure 3(b), and it varies monotonically as the middle 

eigenvalue transitions from the far left side of the three-dimensional Mohr’s 

circle to the far right side. Specifically, it is defined to be zero in shear, and 

can vary in value from -30° in triaxial extension to +30° in triaxial 

compression.  The bar is placed over the   symbol to ensure that   will be 

positive in triaxial compression and negative in triaxial extension.   
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(a) 

 

(b) 

Figure 3. Illustration of isotropic hardening of an isotropic yield surface; (a) 
meridional yield profile of the yield surface at a variety of porosities, (b) 
octahedral profile. 

 1 3z I ; The z -coordinate is the projection of the stress onto the 

hydrostatic axis, and the 3  term appears because the magnitude of the 

hydrostatic axis  111  is 3 .  The z -coordinate will normally be used as 

zz  , because most of the yield surface resides in the compressive domain. 

1.5 Kayenta Plasticity Theory 

The total strain rate, ij , is separated into an elastic and plastic component as p

ij

e

ijij     

where e

ij  is the elastic strain rate, p

ij  is the plastic strain rate, and where the 

superimposed dot denotes a rate. 

Focusing on only the elastic component of the total strain prior to the onset of inelastic 

loading, the stress rate, ij , can be written as 

 
e

ij ijkl ijC   (11) 

where ijklC  is the elastic tangent stiffness tensor.  In the case when ijklC  is isotropic, the 

fourth-order tensor is characterized by two material constants (e.g., shear modulus and 
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bulk modulus). A novel aspect of the work in this thesis will be to allow the elastic 

stiffness to evolve in response to inelastic loading, which will require a revision of 

Equation (11) to include the rate of stiffness. 

1.5.1  Elastic Yield Surface 

To begin each time step, Kayenta evaluates a tentative prediction of the updated state 

corresponding to an assumption that the loading is elastic.  If the resulting “trial elastic 

stress” [2] is within or on the yield surface, the actual stress is set equal to the trial elastic 

stress.  However, if the solution lies outside the yield surface then the assumption of 

elastic response is incorrect, and the time step is solved again using inelastic governing 

equations.  

The elastic limit used by Kayenta is a phenomenological fit of all mechanisms that lead 

to inelastic yielding.  As long as the stress is inside or on the yield surface, elasticity 

equations are used.  If the stress is outside the yield surface, then plasticity equations are 

used. 

The Kayenta yield function is 

 
       

2
2

2 1 1, , ,ij ij f cf J F I N F I            (12)  

where ij  is the backstress and is a stress tensor-valued ISV about which the yield surface 

is centered.  The following paragraph from page 32 of the Kayenta manual [2] describes 

the yield function shown in Equation (12): 

Briefly, the yield function f  is defined such that elastic states satisfy 0f .  The 

yield criterion corresponds to 0f .  The "building block" function fF  and   

are used to describe the elastic limit caused by the presence of microcracks, 

whereas the function cF  accounts for strength reduction by porosity.  The 

function fF  represents the ultimate limit on the amount of shear the material can 

support in the absence of pores (i.e., fF  represents the softening initiation limit 

threshold resulting exclusively from microcracks).  The material parameter N  

characterizes the maximum allowed translation of the yield surface when 

kinematic hardening is enabled, in which case 


2J  is the second invariant of the 

shifted stress tensor ijijij S   , where ij  is the backstress.  When kinematic 

hardening is disabled (i.e., when N  is specified to be zero), the backstress will be 

zero and therefore 


2J  would be simply the invariant of the stress deviator.  The 

function fF  describes the limit strength, whereas NFf   defines the yield 

threshold associated with cracks, which can evolve toward the limit surface via 

kinematic.  The function   , where 
  is the Lode angle of the shifted stress, 

is used to account for differences in material strength in triaxial extension and 
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triaxial compression.  By appearing as a multiple of 
2

fF N   , the function cF  

accommodates material weakening cause by porosity.  The function cF  depends 

on an internal state variable   whose value controls the hydrostatic elastic limit. 

The functions fF  and cF  describe the elastic limit caused by the presence of 

microcracks.  The other parameters of the yield surface are well demonstrated by 

examining an octahedral plane as shown in Figure 3(b).  The    function defines the 

shape of the octahedral profile.  Since this research aims to demonstrate that induced 

anisotropy can allow dilation in triaxial compression without unrealistic cap motion, it is 

assumed that   1  .  The size of the octahedral profile is controlled by the functions 

fF  and cF .   

1.5.2  Cap Function as a Combination of Porosity and Microcracks 

Kayenta defines its cap function according to two underlying mechanisms: 

porosity and microcracks.  Theoretical analyses typically focus on the effects of one of 

these mechanisms at a time; the Kayenta model combines basic features from both failure 

mechanisms into one model as shown in Figure 4 (taken from the Kayenta manual [2]).  

Figure 4(a) shows the shape of the meridional profile when only porosity is considered.  

Figure 4(b) shows a qualitative meridian that considers only the influence of microcracks 

without porosity.  Note that the compressive fracture strength increases monotonically as 

the pressure is increased in Figure 4(b).  This is because an increase in pressure causes 

additional friction at the crack faces, and less of the shear load has to be supported by the 

pore-free bulk material.  Figure 4(c) shows the combined qualitative effects from porosity 

and microcracks.  To obtain a combined model, Kayenta multiplies the individual 

porosity and microcrack profiles and scales the ordinate appropriately to match data.  

The shape of the combined effects (microcracks and porosity) are continuously 

differentiable, which makes it both well suited for reproducing observed data and 

numerically well based.  By multiplying the individual crack and porosity functions, 

Kayenta’s combined TXC profile is defined as 

 
   2 1 1f cJ f I f I   (13) 
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Figure 4. Qualitative meridional profile shapes: (a) porosity only, (b) microcracks 
only, and (c) combined porosity and microcracks. 

where ff  is the fracture function and cf  is the cap function.  Equation (13) is comparable 

to Equation (12) in that NFf ff   and cc Ff  .   

1.5.3 The Cap Function 

The cap function accounts for irreversible changes in volumetric strain resulting from 

compressive loading.  The irreversible volumetric changes can occur in a porous medium 

even if the matrix material is not compressible.  Kayenta provides a phenomenological fit 

of this event (plastic volume changes) and does not try to explicitly model the underlying 

physical mechanisms.  The cap function, cf , fits the volume changes by defining where 

the yield function intersects the 1I  axis in compression, as illustrated in Figure 5.  

The branch point   marks the boundary between the constant and elliptical portions of 

cf  as shown in Figure 5. 

 

 

Figure 5. Cap function that accounts for the presence of pores. 
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 
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  

   

(14) 

where   and X  are defined in Figure 5.  Both   and X  increase as pores are 

eliminated in response to pressure increases.  Within Kayenta,   is treated as an internal 

variable, and X  is calculated to preserve eccentricity of the ellipse and to match similar 

behavior predicted by idealized pore collapse models.  The cF  function defined in 

Equation (12) is defined in terms of cf  as 

 
2

cc fF   (15) 

1.5.4 Meridional Shear Limiter Function 

Following common terminology in the geomechanics community, the term “yield” is 

broadened to refer to any form of inelasticity, and the “yield surface” is the boundary of 

elastically attainable stress states. The term “limit stress” refers to the onset of softening, 

and the “limit surface” is the boundary of attainable states. Accordingly, the set of all 

possible yield surfaces must reside within the limit surface.  Reaching a state on the limit 

surface generally requires a hardening process that evolves the yield surface out to the 

limit surface, after which a softening process commences by allowing the limit surface to 

collapse. The fracture function, ff , is identical to the yield function if the material has 

microcracks and no porosity.  As in the cap function, the fracture function is a 

phenomenological fit of available experimental data.  The Kayenta manual describes 

some observed behavior of brittle materials, which are briefly summarized here: 

 For a given mean stress, inelasticity in triaxial extension occurs at a lower stress 

than in triaxial compression.  This gives rise to a third invariant dependence in the 

yield function.  Brittle materials are weak in tension.  The implication is that the 

meridional yield profile will include few if any tensile stress states. 

 If brittle fracture is the only failure mechanism, the material strength will increase 

monotonically with increasing pressure, which corresponds to an ever-expanding 

cone-like shape for the yield surface.  From Equation (12), the function 

  NIFf 1  defines how the shear stress limit varies with pressure for a 

nonporous, but microcracked material in its virgin state.  The meridional yield 

profile is  

 
    NIFIf ff  11  (16) 

 The user-specified shift parameter, N , helps define the zero pressure intercept on 

the 
2J  axis.  This is shown in Figure 6 (taken from the Kayenta Manual [2]).   
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Figure 6. Shear limit function, unshifted and shifted. 

The parameter N  sets the value to which the yield function is permitted to 

translate under kinematic hardening.  The function fF  is the limit envelope, 

beyond which stresses can never be reached quasistatically. 

1.5.5 Cap Curvature Branch Point 

The branch point in the yield function is of particular interest to this project.  As 

previously mentioned, the yield function is constructed by multiplying the yield function, 

ff , and the cap porosity function cf .  As illustrated in Figure 7 (taken from the Kayenta 

manual [2]), the branch point is defined by the   intercept on the 1I  axis.  For 1I  values 

larger than  , the yield function is influenced by the cap function.  The yield function is 

still dominated by shear cracking, resulting in plastic dilatation.  Between the peak and 

the hydrostatic limit point X , porosity dominates the material response, resulting in 

plastic volume compaction from pore collapse. 

Most two-surface models construct and evolve the yield function according to a ratio 

 A B , which is typically smaller than unity (see Figure 7).  Kayenta constructs and  

 1
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fF I

   1 1
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Figure 7. Yield function branch point.  The black-dashed line in the figure 

represents equivalent values of 1I . 
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evolves the yield function according to the ratio ba , which is typically larger than unity.  

Kayenta defines a user-specified constant known as the cap eccentricity equal to ba  that 

can be used to help define the hydrostatic limit point. 

The cap model currently used in Kayenta does an excellent job of fitting TXC data as 

shown in Figure 8.  The situation becomes more interesting when the yield profile has 

not yet reached the shear limit,  1IFf .  Consider the load profile, shown in Figure 9, 

 

Figure 8. Plot of TXC data along with mathematical fit generated by the Kayenta 
model [1].
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Figure 9. Loading profile for expansion of the yield surface with subsequent 
hardening resulting from dilatation. 

that starts with hydrostatic loading but does not exceed the peak of the yield profile. 

Additional loading then commences with the lateral stress being held constant, and the 

axial stress varying.  This results in dilatation and expansion of the yield surface until the 

shear limit is reached.  If the load profile is then changed so that the shear component of 

the stress is again zero, a new load profile can be introduced so that the compaction side 

of the yield profile is encountered.   

However, this is problematic.  By expanding the original yield surface, more pores are 

introduced by dilatation according to the Kayenta model.  Yet, the current evolution 

model in Kayenta then predicts additional hydrostatic loading becoming more difficult 

because of the addition of pores.  

This is highly counter intuitive as it is difficult to conceive how the addition of pores can 

effectively stiffen the material by making it more difficult to compact the material.  As 

discussed in Section 2, no experimental data exist (to our knowledge) to validate this 

hardening model. 

The remainder of this document deals with a literature review of triaxial compression and 

then concludes with an approach for altering the Kayenta cap model to predict dilatation 

in triaxial compression without causing a counterintuitive hydrostatic strengthening. 
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2. LITERATURE REVIEW 

This literature review focuses on determining if any experimental evidence to support the 

Kayenta cap model is available.  The following subtopics are discussed: 

 Experimental evidence supporting the cap evolution law currently in Kayenta. 

 Other modeling efforts that duplicate the cap model. 

 Experimental evidence of inelastically induced anisotropy resulting from triaxial 

compression, and modeling that incorporates anisotropy. 

 Mesoscale modeling that analyzes yield surfaces. 

2.1 Evidence Supporting the Kayenta Cap Evolution Law 

To provide experimental evidence supporting or contradicting the Kayenta cap evolution 

law, triaxial compression tests would have to be conducted so that dilatation is induced 

without causing sample failure.  By unloading from a partially dilatated state, an 

experiment could then probe for the location of the hydrostatic elastic limit (see Figure 

9) by hydrostatically loading until compaction is caused.  In the literature review, testing 

neither absolutely validated nor invalidated the Kayenta cap law, but many bodies of 

work exist that might address the issue of hardening under triaxial compression. 

Much effort has been devoted in recent years to conducting conventional triaxial 

compression tests.  A huge body of work in which a brittle material is tested under 

monotonic loading exists, and fit to a variety of phenomenological models (distinguished 

only by their predictions for noncalibration loading modes). Much of this material is not 

relevant to the problem presented in the previous section, but some mention will be made 

of more recent test efforts in the bibliography [3-11].  Another common nonmonotonic 

testing protocol reported in the literature is the triaxial cyclic test [12-14].  However, 

none of these tests appeared to yield useful information about the failure cap. 

Today's modern instrumentation certainly allows for more complicated (nonmonotonic) 

stress paths.  Kodaka et al. [15] describe a series of triaxial compression tests performed 

on diatomaceous mudstone using both a conventional triaxial test under drained 

conditions, and also a constant stress ratio test.  They showed that a cap-shaped yield 

locus is clearly obtained from the triaxial tests.  However, they did not try to expand the 

cap surface.  They used a newly developed technique called PTV (particle tracking 

velocimetry) to measure the strain localization.  After testing, they used X-ray CT 

scanning to observe that high-density regions corresponded to compaction bands. 

Many authors describe new testing machines that allow for testing on multiple axes, 

instead of the standard axisymmetric triaxial test [16, 17].  However, evolution of the 

hydrostatic failure cap caused by nonhydrostatic loading does not appear to have yet been 

investigated in the laboratory.  Wang and coworkers [18] developed a servo-controlled 
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true triaxial (cubical) apparatus for evaluating the mechanical response of asphalt 

concrete under multiaxial stress states.  The apparatus allows the testing of specimens 

along a wide range of stress paths and stress levels that are not achievable in a 

conventional uniaxial or cylindrical apparatus.  They are able to test along a series of 

multistage stress paths that included triaxial compression, triaxial extension, simple 

shear, conventional triaxial compression, conventional triaxial extension, and cyclic 

conventional triaxial extension.  The testing documented in this report did not include any 

testing to failure or yielding. 

Reddy et al. [19] report developing a triaxial testing apparatus that is different from 

conventional axisymmetric triaxial testing apparatuses.  Tests are performed on cemented 

sand along different stress paths, which included hydrostatic compression, conventional 

triaxial compression, and testing along different directions on octahedral planes.  

However, the testing did not map out yield surface of the cemented sand.  It instead 

focused on the stress-strain and volumetric responses. 

Other researchers have been rather active with regards to the topic of triaxial testing and 

materials modeling.  They report triaxial testing, which includes conventional triaxial 

tests, triaxial tension (extension) tests and combined compression-tension triaxial tests 

[20, 21].  Other researchers have measured anisotropy in soil subjected to general stress 

states [22].  One group of authors has measured the effect of initial mean effective stress 

on the behavior of otherwise unconfined column samples.  Tests are conducted using 

undrained (pores may contain trapped fluid) cyclic loading at several initial confining 

stresses but with the same stress ratios (proportional stress loading relative to the 

prestressed state).  The results indicate that the stress path is not affected by changing the 

initial effective mean stress if the shear stress ratios remain the same [23].   

Hattab and Hicher [24] conducted testing to characterize the dilatancy in clay in relation 

to the overconsolidation ratio (the highest stress experienced divided by the current 

stress).  This phenomenon is investigated along a large range of loading paths, with a 

strong emphasis placed on constant mean stress paths, given that it is possible to measure 

the volumetric strain created by the sole deviatoric stress.  They determined three 

different types of behavior for the specimen submitted to a deviatoric stress; no volume 

change, dilatancy, and contraction.  They conducted testing to the limit of the maximum 

strength envelope.  The experimental results are then compared to plastic flow theories.  

Finally, by measuring the plastic strain increment vectors along different stress paths in 

the (mean pressure vs. deviatoric stress) plane, they demonstrated that the uniqueness 

hypothesis of the plastic potential is not valid.  The results could be explained by using 

two plastic strain mechanisms: a deviatoric one and an isotropic one. 

Brannon and coworkers [25] attempted to run tests to experimentally validate the cap-

hardening model used in Kayenta.  Several loading profiles were undertaken, including 

one to match the loading profile shown in Figure 9.  Attempts to perform such 

experiments were inconclusive. 
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In summary, a significant body of work that deals with monotonic loading of triaxial 

specimens is available, but very few experimental investigations have dealt with 

nonmonotonic loading, thus making the hardening evolution law in Kayenta (and models 

like it) essentially unvalidated. 

 

2.1.1 Investigation of the Cap Evolution Model 

The yield surface model in Kayenta is similar to other widely used yield/plastic models.  

The issue of cap evolution is not unique to Kayenta.  To further explore the issue, a 

comparison of related models is presented in this section.  For a history of the cap model, 

the reader is referred to an article by Sandler [26].   

A number of authors have devised cap models based on two or more invariants.  For 

example, Tong and Tuan [27] developed a viscoplastic approach based on a two-invariant 

inviscid cap model.  

Most modern cap models are based on the work of Sandler et al. [28-30].  Their model 

uses two different and independent yielding functions; one proposed for the shear 

envelope and the other for compaction.  Their functions usually result in a continuous but 

nonsmooth yield surface.  The corner point at which the shear and compaction surfaces of 

nonsmooth cap models intersect is nondifferentiable.  Hence, the plastic flow direction at 

the corner point is not unique, which leads to a difficulty for numerical integrations [31].  

Several revisions to the Sandler model have been proposed.  Liu and coathors [31] 

devised two methods for converting the Sandler and Rubin surface to a smooth model.  

They give two model examples to demonstrate the good performance of the approach.  

Ayden et al. [32] formulated a three invariant failure model with a compression cap as 

seen in Figure 10.  It appears quite similar to the Kayenta model. As mentioned 

previously, the continuity of the yield/failure surface from dilatation to compaction is not 

included in all models.  Issen [33] described a two-yield surface constitutive model, 

which predicted both the compaction and shear bands.  The two yield surfaces account 
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Figure 10. Representation of dilatant shear band, simple shear band, and 
compactive shear band [32]. 

for effects from the different deformation mechanisms and incorporate the effects into the 

model through independent increments of strain [34].  Liu et al. [35], also adopted a 

nonsmooth two-yield surface (Figure 11) based on a double elliptic strength criterion. 

Khoei et al. [36] had some success developing a cap evolution model for cohesionless 

powders.  Their work is based on a three-invariant cap plasticity model with an isotropic 

hardening rule.  They presented a single-cap model with a continuous function that 

transitions from dilatancy to compaction.  A plot of the model is shown in Figure 12.  

They presented a model for single-cap plasticity, which is comparable to double-surface 

plasticity models. 

These failure surfaces and others have different approaches to the cap evolution law.  

However from the literature review of yield surfaces, no systematic study that 

investigated the effect of changing loading direction is found, especially changing from 

triaxial to hydrostatic stress conditions. 
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Figure 11. Double elliptic strength criterion by generalized shear and normal 
stress representation [35]. 

 

 

Figure 12. Yield surface of Khoei, A.R., et al. [36]. 

2.1.2 Inelastic Induced Anisotropy Resulting from TXC 

The goal of this section is to explore the idea that inelastically induced anisotropy might 

be a viable means of modeling dilation in triaxial compression and without causing the 

material to become stronger in hydrostatic compression.  A great number of anisotropic 

yield models exist and the following list details some of the approaches used by other 

researchers: 
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 Anisotropy is achieved through rotation of the yield surface around the origin 

of the stress space.  The model is capable of describing the effects of stress 

anisotropy and stress reorientation in clays. [37]. 

 The anisotropic yield surface is achieved by incorporating distorted ellipsoids 

into the bounding surface and the yield surface to describe the evolution of 

structure and anisotropy [38-41]. 

 Another method proposed by Dean [42] deals with "patterns."  This method 

assumes that soil fabric (arrangement, size, shape, and frequency of soil 

constituents, excluding pores) consists of elementary units called “patterns.”  

A model using these patterns is developed.  In addition to elastic and plastic 

components, a third strain-increment component is deduced which helps 

explain nonassociated flow.  The proposed method explains critical states, 

anisotropy, sensitivity, the Bauschinger effect, and swept-out memory.   

Other authors use a similar approach [43-45].  The generation of anisotropic models or at 

least anisotropic capable models have become popular during the last decade and a half 

[46-49]. 

An additional approach to modeling anisotropy is to change the compliance in a 

particular direction in response to matrix (pore free bulk material) damage [50-53].  

When brittle solids are subjected to compressive stress states, microcracks nucleate and 

grow as the stresses are increased.  The microcracks generally grow from preexisting 

flaws, pores, or other discontinuities within the solid.  The presence of microcavities and 

microcracks affects the effective or volume average elastic properties of the material.  

The formation and evolution of the microcrack damage cause a progressive loss of 

stiffness in the constitutive response of the material [54].   

Experimentally, it has been determined (for brittle materials such as stone or ceramic) 

that the application of shear stress will induce anisotropy [55, 56]; with the result of loss 

of stiffness coincident with the axis of the major principal stress, the shear modulus 

degrades in a plane aligned parallel to the major principal stress axis.  Essentially, under 

hydrostatic stress, the material can be described as being isotropic and the materials 

stiffness increases.  However, when the material is subjected to shearing, the material 

becomes anisotropic and softens.   

One publication reports loading [57] rock salt under triaxial compressive loading to 

establish the source mechanisms of microcracks.  The induced failure cracks resulted 

primarily from mode I fracture mechanisms.  These so-called extension fractures are well 

known from many triaxial compression tests [58, 59].  Fractures accumulate in zones of 

high shear stress, which form a cone of shear bands.  In this highly damaged zone, the 

ultimate failure occurs by sliding along the shear bands as shown in Figure 13. 

Similar observations were made by Sfer and coauthors [60] on triaxial compression tests 

of concrete.  At zero or low confinement, distributed microcracking and several 

macrocracks are present.  At high confinement, distributed cracking is not present (i.e., 
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cracks are not randomly oriented), and failure occurs with the propagation of a few 

macrocracks.  In general, the observed trends confirm and extend 
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Figure 13. Damage and fracture development during failure of the rock salt 
specimen [57]. 

results previously reported in the literature.  Optical microscopy shows extensive 

microcracking, especially in the aggregates, and pore collapse at high confinement.  

On subsequent loading paths, existing cracks will significantly change the failure 

mechanism.  This was observed by Lei and coworkers [61].  The authors tested two 

similar course-grained granite samples in triaxial compression.  The main difference 

between the two rocks is that one of the granite sets contained large preexisting cracks, 

while the other was almost crack free.  Using acoustic emission tomography, they 

demonstrated that preexisting cracks are the most dominant factor of all heterogeneities 

that govern the fault nucleation process.  They also established that failure predictability 

is dependent on the preexisting crack density and orientation. 

An interesting set of experiments is performed by Zhu et al. [62].  They performed 

triaxial extension tests (where both principal stresses are compressive, 0 A L    and 

0 A L   , not to be confused with triaxial tension where the axial stress is tensile) to 

investigate the influence of radial stress on porosity and permeability in three porous 

sandstones.  The effective mean stresses are sufficiently high such that the samples failed 

by cataclastic flow, with development of strain hardening and shear-enhanced 
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compaction.  They inferred from the triaxial compression and extension data that stress 

can induce anisotropic permeability.  Before the onset of shear-enhanced compaction, the 

reduction in permeability and in porosity is found to be primarily controlled by the 

effective mean stress, and stress-induced anisotropy is negligible.  The authors found 

with the onset of shear-enhanced compaction and development of cataclastic flow, 

coupling of the deviatoric and hydrostatic stresses induced considerable permeability and 

porosity reduction aligned along the principal stress directions.  Microstructural 

observations on the shear-compacted samples showed appreciable increase of grain 

crushing and pore collapse, which explains the overall decrease in permeability.  The 

damage from grain crushing is highly anisotropic, with the stress-induced microcracks 

preferentially aligned (i.e., perpendicular to minimum tensile stress direction) with the 

maximum compressive principal stress direction.  Because more microcrack conduits are 

available to focus the flow in this direction, the permeability is relatively enhanced along 

the maximum principal stress direction.  This line of research implies that failure in 

triaxial loading conditions can lead to anisotropic damage.  The important conclusion of 

this work is that pressure does not induce anisotropy.  It requires a combination of 

pressure and shear stress. 

From the publications review in this section, the following may be concluded: 

 Triaxial compression can induce anisotropy due to damage formation. 

 Cracks aligned or kinked into the direction of principal stress (i.e., crack 

perpendicular to the lowest principal stress direction (measured positive in 

tension) result from a combination of deviatoric and hydrostatic stresses. 

 Hydrostatic pressure does not cause anisotropy. 

 The presence of cracks, aligned along a principal direction, causes a reduction 

in compliance in the lateral directions.  This effectively induces transverse 

anisotropy in the material (meaning a material property is unchanged when 

the undeformed material is rotated about the principal direction). 

2.1.3 Mesoscale Modeling that Analyzes Yield Surfaces 

As detailed in the previous section, triaxial compression can induce transverse anisotropy 

in brittle materials.  Mesoscale modeling is one option that can be used to predict the 

yield/failure behavior of such materials.  For the case of triaxial compression, mesoscopic 

modeling has been used successfully to predict failure surfaces [63, 64].  This section will 

demonstrate that mesoscopic modeling can be used to successfully model transverse 

anisotropic behavior.  

Abelev et al. [65] developed an isotropic hardening model that is modified to include the 

effects of inherent cross anisotropy (having one axis of symmetry and is usually used 

when referencing granular materials).  Based on the experimental results of cross-

anisotropic sands in isotropic compression tests, the principal stress coordinate system is 

rotated such that the model operates isotropically within the rotated framework.  The 

same rotation technique is then employed on the plastic potential and yield surface.  

Verification of the cross-anisotropic model is presented using comparisons of predictions 
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with both experimental data and results from the hardening model.  They stated the 

model is shown to capture the overall trends of the observed behavior of cross-

anisotropic sand with reasonably good accuracy within the scatter of the test results. 

In their abstract, Zhu and Hu [66] report the development of a homogenization-based 

constitutive model for the description of anisotropic damage by mesocracking.  A 

Coulomb-type interfacial frictional sliding criterion at mesoscopic scale is used as the 

loading function, and a nonassociated flow rule is adopted in the determination of the 

evolution rate of friction-induced inelastic deformation.  They report that their model has 

the ability to account for contributions to microcracking such as: nonlinear stress-strain 

relations, damage induced anisotropic behavior, coupling between damage and friction on 

crack surfaces, sensitivity of mechanical responses to confining pressures, volumetric 

dilation as well as effects due to total or partial closure of microcracks, etc.  They also 

state that their model shows good prediction of experimental data (conventional triaxial 

compression tests on marble). 

Kowalczyk and Ostrowska-Maciejewska [67] used mesoscale modeling to describe the 

behavior of a transversely isotropic material.  They used an energy approach to describe 

the behavior of transverse isotropy.  A reduced compliance tensor is presented, which 

represented a limit condition of the Maxwell-Huber-Mises condition.  Similar work was 

conducted [68] in which the reduction in stiffness is described as a fourth-rank tensor in a 

Cartesian frame. 

One group [69] described the main mechanism of failure for brittle materials as 

nucleation and growth of microcracks.  They ascertained that a way to model anisotropic 

damage is to consider the influence of compliance/stiffness on the material.  They 

conducted a numerical study of a growing mixed-mode internal crack in a unit cell.  The 

model gives values for the elastic compliance tensor modified by damage as the crack 

grows.  It demonstrated the evolution of the anisotropic damage and the evolution of the 

type of material symmetries.  The evolution of the elasticity tensor showed that the 

damage associated with a growing elliptical crack changed the isotropic properties into 

orthotropic ones.  The crack growth rotated the principal loading axes to align with the 

local coordinates of the crack.   

Wimmer and Karr [70] used a fracture approach to model brittle, polycrystalline ice.  

Constitutive equations are based on the damage mechanics of elastic materials containing 

microcracks.  For homogeneous deformation modes, microcrack growth from 

inhomogeneous defects caused changes in the average elastic compliance of the material.  

A system of constitutive equations is developed based on a combination of stress or strain 

ratios.  Bifurcation approaches to nonlinear problems are used to determine the loss of 

uniqueness of particular equilibrium states.  Failure criteria in terms of bifurcations of the 

constitutive paths are established by examining the properties of the evolving tangent 

stiffness tensor.  The influence of lateral stresses is studied for biaxial stress states, and 

faulting is found to occur for moderate levels of lateral compressive stress and lateral 

tension. 
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Papanikolaou and Kappos [71] proposed a plasticity constitutive model that is based on 

the experimental data of 130 triaxial tests conducted on cylindrical specimens.  In the 

model, damage is quantified by the volumetric expansion that builds up by propagation of 

microcracks that progressively lead to failure.  Softening is modeled using a reduced 

compliance. 

It is reemphasized that the presence of cavities and cracks is known to have first-order 

effects on the macroscale, continuum properties of elastic materials [54, 72, 73].  

Changes in microstructure cause variation in the overall elastic compliance and stiffness, 

hence providing a source of nonlinearity to an otherwise linear elastic material.  Several 

papers have presented methods for constructing the compliance tensor based on the 

presence of voids of various shapes [52, 74-77].
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3. ALTERNATIVE APPROACH FOR EVOLVING A 
YIELD FUNCTION 

This section discusses an alternative mechanism that can be incorporated into Kayenta to 

avoid the undesired changes in the hydrostatic elastic limit cause by triaxial dilatation.  

The proposed method is to examine whether inelastically induced anisotropy will give 

realistic predictions of dilatation in triaxial compression without increasing the 

hydrostatic strength.  As shown previously, triaxial compression can lead to induced 

transverse isotropy because of development of axial cracking (i.e., formation of cracks 

whose normals are perpendicular to the primary loading direction).  The proposed 

method adopts a modified failure surface that starts as an isotropic surface, but, as 

anisotropy is induced, the surface evolves to accommodate the changes in material 

behavior.  A practical approach to add anisotropy is to use an anisotropically transformed 

stress in the isotropic yield model. 

3.1 Modifications to Yield Surfaces 

One of the earliest expressions for an isotropic yield criterion is the von Mises yield 

criterion [78].  It states that yielding begins when the octahedral shearing stress reaches a 

critical value, k , which can be expressed as   

 
      2:F dev dev k  
  
   (17) 

An illustration of other yield functions for isotropic and kinematic hardening (also a 

combination of both) is shown in Figure 14. 

To accommodate additional anisotropy, Tsai and Wu made use of an anisotropic tensor in 

their description of the yield function.  The Tsai-Wu failure model [79] was originally 

developed to describe composite materials, which have different strengths in tension and 

compression.  The Tsai-Wu failure model expressed in Mandel notation is  

 
  1 , 1,2,...6i i ij i jh h h i j   


       (18) 

where the 
ih   and ijh   are, respectively, second and fourth rank material property tensors.  

The equation parameters result from a fit of failure data, and are assumed without loss to 

be symmetric.  The Tsai-Wu theory is a well-known example of a more general class of 

anisotropic plasticity theories in which an isotropic yield function is called using an 

affinely transformed stress. 

In our case, the yield theory is written as 
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    1 2: , , ,...f F L    

  

 
  

  

 (19) 

where L


 is a fourth-order distortion operator that possesses the same eigenprojectors as 

the elastic compliance, 


 is the backstress, i  are internal state variables and may 

represent such things as porosity, and F  is an isotropic function. 

 

Figure 14. A meridional profile of an initial yield surface along with hardened 
yield surfaces. 

For our approach, the L


 tensor starts as the fourth-order identity in the initial state, but 

once deformed, L


 evolves to an anisotropic tensor.  An evolved stress term,  
*


 , is 

defined where  *
:L  

  

   (Note:  *
:L 

 

  if kinematic hardening is not present).  

A new anisotropic function,  f 


, is introduced 

 
 *

1 2, , , , ,...f L F    
  

 
 

 
 

 (20) 

where 

L  and 


  act as additional internal state variables.  As written, the yield surface is 

evolved by changes in 

L  and 


  even if F  does not change.   
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If an associative flow rule is assumed, the plastic part of the strain rate, p


 , can be 

expressed as  

 

 

,

,   where  sgn
p

f
M M

 


 











 
  
  
 

 (21) 

Here, “sgn” is the signum operator, making M , therefore, a unit tensor in the direction of 

the yield surface gradient, 
 f 










.  Accordingly, the scalar multiplier   (called the 

consistency parameter) is the magnitude of the plastic strain rate.  The direction cosines 

of the normal vector to the yield surface are proportional to components of the 

gradient
 f 










.  In our case, the gradient through the use of Equation (20) is 

 

     * **

* *
: :

f F F
L

  

  

  


  

  
 

  
 (22) 

where 
*

L  
  

   .  The gradient  f  
 

   has an isotropic part giving rise to 

dilatation even if *
 
 

   does not have an isotropic part. 

The evolution equations for 

L  must allow for dilatation in triaxial compression without 

expanding the yield surface in the case of hydrostatic compression.  If material failure is 

proposed to be governed by attainment of a critical strain, then (as derived in Appendix 

A) 

L  can be defined as  

:oL C S
    



 

where 

S  is the generally anisotropic compliance tensor of the deformed material and oC



 

is the isotropic elastic stiffness of the undeformed material.  As demonstrated in 

upcoming sections, if a transversely isotropic expression for the compliance is used, 

dilatation can result.  A shear stress component of large magnitude can open some 
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microcracks and cause a reduction of stiffness in the lateral directions.  For the case of 

hydrostatic loading, all of the cracks will close, resulting in no reduction in stiffness. 

3.2 Stress Tensor in Terms of Lode Coordinates for TXC 

Given that 


 and 


 are symmetric, the tensors can be interpreted as six-dimensional 

vectors (first order tensors), and since C


 is doubly symmetric, its component matrix may 

be written as a 6 6  Mandel matrix, which differs from more conventional Voigt 

representations by factors of 2  in the last three rows and columns.  For the case of 

TXC, the state of stress can be decomposed into two components; 

 

0 0 0 1 0 0
1

0 0 0 2 0 1 0 2
2

0 0 1 0 0 0

A LA L A LE E    
 

   
      
   
      

 (23) 

the subscript A  and L  correspond to the axial and lateral directions, respectively, and the 

two E


 tensors form an orthonormal basis for the set of all second-order tensors that are 

axisymmetric about the 3-direction.  In other words, axisymmetric stress can be viewed 

in a two-dimensional subspace of six-dimensional tensor space. 

The stress tensor can alternatively be written as a component in the direction of the 

hydrostat, z , and as a component perpendicular to the hydrostat, r , as 

 

1 0 0 1 0 0
1 1

0 1 0 0 1 0
3 6

0 0 1 0 0 2

z rz r z rE E    
 

   
   

    
   
      

 (24) 

The affine change in basis between the two coordinate systems shown by Equations (23) 

and (24) is given by 

 

1 21

3 2 1

z A

r L

E E

E E

 

 

    
     
        

 (25)  

Conceptually, the change in basis is shown in Figure 15. 
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Figure 15. Change of basis from Lode to TXC coordinates. 

 

3.3 Transverse Isotropic Compliance Matrix 

The compliance matrix for a transversely isotropic material can be written as [80] 

 

0 2 3

2 0 3

3 3 1

5

5

4

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

h h h

h h h

h h h

h

h

h

 
 
 
 
 
 
 
 
  

 (26) 

where 0 2 4 1122 12122h h h S S    , 1 3333h S , 2 1122h S , 3 1133h S , 4 12122h S , and 

5 31312h S . 

For a material having axisymmetry about a given orientation, n  [81], the 

macroscopic material properties must be unchanged upon any rigid rotation  

about n .  The compliance of such a material is also transversely isotropic with respect to 

n , and is expressible as a linear combination of a natural basis, iB


 (where i  ranges from 

1 to 5) 
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1 2 3 4 5
1 43 52

S h B h B h B h B h B
         

      (27) 

Here, the five parameters  1 5,...,h h  quantify the anisotropic compliance, and (if desired) 

a scalar measure of anisotropy can be evaluated using formulas developed by Fuller and 

Brannon [82].  The quantities 

 

1 5
, ...,B B

  

  
 
  

 are the five transversely-isotropic base 

tensors, which can be written out in full indicial notation as [80] 

 

1 i j k l

ijkl

n n n nB


 
 

 
 

 (28) 

 

2 ij kl i j kl ij k l i j k l

ijkl

n n n n n n n nB    


 
    

 
 

 (29) 

 

3
2i j kl ij k l i j k l

ijkl

n n n n n n n nB  


 
   

 
 

 

(30) 

 

   4

1 1

2 2
ik jl il jk il j k i jk l i jl k ik j l

ijkl

i j k l

B n n n n n n n n

n n n n

       


 
      

 
 



 (31) 

 

 5

1
2

2
ik j l il j k i jl k i jk l i j k l

ijkl

n n n n n n n n n n n nB    


 
     

 
 

 (32) 

Important insight is revealed by noting how each of the base tensors transform an 

arbitrary stress tensor, 


.  If a physical basis is set up with n  aligned in the 3-direction, 

0

0

1

 
 
 
 
 

, (the tensors for i
B


 for this case are shown in [80]) then 

1

33

0 0 0

: 0 0 0

0 0

B 


 

 
   

   
       
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11 22

11 222

0 0

: 0 0

0 0 0

B

 
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 

 
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    
       

 

33

333

11 22

0 0
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

 

 
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 
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   
       

 

11 12
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Inspection of the relations given above shows that 1
B


 extracts the part of 


 that acts in 

the direction of n , which makes that part of the compliance tensor account for axial 

strain response to axial stress.  The tensor 2
B


 yields the transverse trace 11 22   times 

the transverse identity, and this part of the compliance accounts for inplane isotropic 

strain response to an inplane isotropic stress stimulus.  The base tensor 
3

B


 maps the axial 

component 33  to the transverse 11 and 22  positions, and in addition, also maps the 

transverse trace 11 22   to the axial 33 position; thus, the 
3

B


 contribution to the 

compliance accounts for axial strain caused by lateral stress or lateral strain caused by 

axial stress (i.e., it accommodates a Poisson’s effect).  The base tensor 4
B


 extracts the 

transverse part of 


.  The tensor 
5

B


 projects 


 to its part that tends to shear the axis of 

symmetry [83]. 

3.4 Dienes Relation for a Damaged Material 

Dienes et al. [84], give an expression for the compliance change that results from an 

ensemble of microcracks of all sizes and orientations.  Their expression for 


 S , written 

only for open penny-shaped cracks, is 
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1

o
S A c
  

    (33) 

Here, the summation ranges over each crack size and crack orientation. The terms are 

defined as follows: 

 The term - 1

o
A c


  represents the contribution from the open cracks, with the 

individual terms defined as 

o    1 ,nA H F n t  . 

o    8 1 3 2o o oG      is an elastic constant that arises from analytical 

solutions for open penny-shaped cracks with oG  and o  being the shear 

modulus and Poisson’s ratio of the underlying substrate material, 

respectively. 

o  nH  1  for an open cracks, and   0nH    for a closed crack.  H  is 

the Heaviside function (equal to one for positive arguments and zero for 

negative arguments), 
n n n 


    and is the normal component of the 

remote (far-field) traction. 

o  ,F n t  is the third moment of the number density-distribution function, 

 , ,n a n t :     3

0
, , ,F n t n a n t a da



  , where a  is the crack size, n  is the 

unit normal to the penny-shaped crack, and t  is the time.  The expression 

 , ,n a n t  is the number density defining the distribution of crack radii and 

orientations, which evolve with time, t .  Specifically, if VN  is the number 

of cracks per unit volume and if ( , , )p a n t  is the joint probability density 

for crack size a  and crack orientation n , then    , , , ,Vn a n t N p a n t . 

o The open fabric tensor is defined as 

 
1

2

o

ijkl i k jl i l jk j l ik j k il o i j k lc n n n n n n n n n n n n        
 

o sin       is the solid angle on the unit sphere.  The cracks have 

symmetry such that a reversal of 180° leaves them unchanged.  Thus, half 

the unit sphere is sufficient to characterize crack orientation; consequently, 

the integration limits for orientation are 0 2    and 0 2   . 

3.5 Kachanov Relation for a Damaged Material 

Kachanov [85] describes the change in the tensor of elastic compliances due to the 

multiple circular cracks of arbitrary orientation distribution as 
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 
 

 
232 1 1

3 2 4 2

o K K K K o
ijkl ik jl il jk jl ik jk il ijkl

o o

S
E

 
        



  
        

 (34) 

where 

 31K

i i i

i

a n n
V




   is a symmetric second-rank crack density tensor.  The summation 

over i ranges over the cracks in the sample, where in  is the unit normal to the i -th 

crack, ia  is the radius of the i -th crack, and V  is the representative volume.  As 

discussed below, this tensor in Kachanov’s theory would be equivalent to 

 ,F n t nn   in Dienes’ theory. 

 31
i i i i i

i

a n n n n
V




   is a fourth-rank tensor, equivalent to  ,F n t nnnn   in 

Dienes’ notation. 

In addition to the Equations (33) and (34), other authors have given expressions for the 

compliance that account for differently shaped cracks, traction forces, etc. [52, 74-77]  

3.6 Comparison of Dienes and Kachanov Compliance 
Terms 

Working with the first term of the Dienes expression in Equation (33) gives 

 

 

 
   

 
1

8 1
, 2

3 2

i k jl i l jk j l ik j k ilo

ijkl n

o o
o i j k l

n n n n n n n n
S H F n t

G
n n n n



   





  
       

       

   (35) 

The multiplicative factor in front of the summation may be written in terms of oE  using 

 2 11 o

o oG E


 .  The multiplicative factor becomes 

 

 

 
 

216 18 1

3 2 3 2

oo

o o o oG E



 




 
. 

In Equation (35), the expression,   1nH    for an open crack and the compliance 

expression can be written as 

 

 
 

 
232 1 1 1

,
3 2 4 2

i k jl i l jko

ijkl o i j k l

j l ik j k ilo o

n n n n
S F n t n n n n

n n n nE


 


  

    
              

  (36) 
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Using     3

0
, , ,F n t n a n t a da



   
to be consistent with Dienes’ theory, 

 

 
 

 
2

3

0

1
32 1 4

, ,
3 2 1

2

i k jl i l jk

o j l ik j k il
ijkl

o o

o i j k l

n n n n

n n n n
S n a n t a da

E
n n n n

 

  








   
           
  
  
   

  (37) 

The Kachanov expression, Equation (34), can be written as 

 

 
 

2 332 1 1 1

3 2 4 2

i k jl i l jko

ijkl o i j k l

a j l ik j k ilo o

n n n na
S n n n n

n n n nE V

 


 

    
             

  (38) 

Equation (37) and Equation (38) are equivalent (assuming only open cracks) when 

   
3

3 3

0 0
, , , ,V

a

a
n a n t a da N p a n t a da

V

 

 

      
 

recalling that    , , , ,Vn a n t N p a n t . 

Dienes clearly defines a number of cracks per unit volume along with a continuous crack 

size distribution,  , ,p a n t , whereas Kachanov implies an equivalent term resulting from 

the summation over discrete crack sizes and orientations.  Thus, Kachanov’s theory is a 

special case of Dienes’ theory corresponding to the crack size distribution function being 

a sum of Dirac deltas 

 
 

1

, , ( ) ( )
VN V

i i

i

p a n t p n a a


   (39) 

where VN V  is the total number of cracks in the representative volume element and ( )ip n  

is the fraction of the total number of cracks having size ia .  Substituting this discrete 

distribution into Dienes’ expression gives 

 

3
3 3

0
1 1

( )
( ) ( )

V VN V N V

i
V i i i

i i a

N n a
N p n a a a da a

V V




   

        (40) 

where ( )iN n  is the total number of cracks of size “i” and orientation n  in the volume.  

The equivalence with Kachanov’s theory in the final step follows by noting that the 

summation over   accumulates contributions from all possible crack orientations. 
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3.7 Expected Form of the Transverse Isotropic Compliance 
Matrix  

For a material having a spatially uniform array of axisymmetric cracks all of a given 

orientation, n , [83] the imposed geometric symmetry demands that the macroscopic 

material properties be unchanged upon any rigid rotation about n .  The change in 

compliance of such a material is also transversely isotropic with respect to n , and 

therefore expressible as a linear combination of a natural basis, iB


 (where i  ranges from 

1 to 5) as 

 

         
5

1

, , , , , , , , ,o o o o

iio
i

S a n S a n S h a B n      
      

     (41) 

where a  is the radius of the crack,   is the number of cracks per unit mass, 
o

S


is the 

isotropic compliance of the underlying substrate matrix material, 
o  collectively stands 

for the elastic properties of the substrate material, the five parameters  1 5,...,h h  quantify 

the anisotropy, and the five transverse tensors {
1 5
, ...,B B

  

} form a basis for the set of all 

major- and minor-symmetric transversely isotropic fourth-order tensors. 

Certain terms in the expansion series from Equation (41) can be eliminated based on 

comparisons against compliance expressions from Dienes et al. [84] and Kachanov [85].  

In their expressions, Dienes and Kachanov set all values of  , ,o

ih a    equal to zero, 

except for 1i   and 5i  .   

3.8 Compliance Descriptions for a Damaged Material 

During triaxial loading, flaws may nucleate, or if flaws are present in an undeformed 

state, the shape and orientation of the flaws may change during deformation.  These flaws 

can appear as a number of different shapes, ranging from cracks to pores or even as 

irregular shapes as “potato chip” shaped flaws [86].  From a phenomenological 

perspective, cracks, pores, etc. can represent the same thing in the sense that they all can 

reduce the stiffness of a material.   

As shown in Figure 16, the cracks are randomly oriented prior to deformation.  As 

compression occurs, sliding of the crack faces will initiate at approximately 45° to the 

principal compression direction, along the plane of maximum shear stress.  With 

additional loading, the cracks develop into wing cracks in the direction of axial loading 

[87, 88].  Assuming that newly formed crack surfaces, appearing after the kinking 

process begins, are large in comparison to the initial crack surface area, a single unit 
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normal to the crack (perpendicular to the principal loading direction) approximates the 

particular crack orientation. 

 

Figure 16. Evolution of crack flaws: (a) undamaged material consisting of circular 
cracks, (b) as triaxial compression is applied to the material; cracks grow in the 
principal loading direction (Graham-Brady [86]).   

A unit normal may be regarded as a vector extending from the origin to a point on the 

unit sphere.  In the undeformed state, a uniformly random distribution of crack normals 

corresponds to a uniformly random distribution of points on the unit sphere.  Depending 

on the extent of deformation, the cracks will reorient; possibly starting at a 45° angle to 

the principal loading direction and then kinking to a 90° angle [87] to reorient the leading 

edge of the growing crack face to be perpendicular to the direction of the largest principal 

stress.   

When the cracks are more fully developed, the unit normals will evolve to be nearly 

perpendicular to the principal loading direction, thereby producing a clustering of points 

on the unit sphere in the vicinity of the equator.  An example of this is shown in Figure 

17, which depicts random distributions of points on a unit sphere for Figure 17(a).  Then 

as the cracks evolve, the point distribution becomes concentrated, perpendicular to the 

loading direction (see Figure 17(b)). 

 

 

 

(a) (b) 



 

55 

 

3.9 Transverse Isotropy Over an Axisymmetric Probabilistic 
Distribution 

In a body with many small circular cracks, each particular crack can be described with a 

radius of a , and a unit normal, n , to denote the crack’s orientation.  As illustrated in 

Figure 18, n  is the position vector on the unit sphere.  Written in terms of the base 

vectors, ie , the orientation vector can be written as 1 1 2 2 3 3n x e x e x e    where 

2 2 2

1 2 3 1x x x   . 

In Figure 18, the vector m  is taken as the principal loading direction.  As described 

previously, the overall compliance of the material depends on the 

 

(a) 

 

(b) 

Figure 17. Distribution of points on a unit sphere: (a) a uniformly random 
distribution of points; (b) a conceptual concentration of points caused by 
alignment of the unit normals in a direction perpendicular to the loading direction. 

 

Figure 18. Spherical coordinates. 
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orientation and size of the materials heterogeneities. 

The distribution of cracks in the material can be described by a probability distribution 

function that depends on both a  and  ,n    (  and   are the spherical coordinates 

depicted in Figure 18). 

The probability function will be written as   , ,p a n   , and is defined such that the 

probability of a randomly selected crack has the size and orientation parameters falling in 

ranges 1 2a a a  , 1 2    , and 1 2     is  

  
2 2 2

1 1 1

, , sin
a

a
p a n d d da

 

 
      

 

The function  ,n    is referenced to the axis of symmetry, m , through the spherical 

coordinates   and  .   

Cracks are “neutrally oriented” in the sense that a crack with orientation n  is equivalent 

to a crack with orientation n .  On this basis, the distribution function is defined such that 

     , , , ,p a n p a n     .   

In the virgin state, where the flaw orientations are presumed to be uniformly random in 

orientation, the initial density function is independent of crack orientation.  As an axial 

load is applied along the vector m , the flaws will kink to a new equivalent orientation in 

response to the load, thereby producing a new dependence of the distribution function on 

the crack orientation.  In particular, while any crack orientation is equally likely in the 

virgin state, additional crack growth beyond an approximate 45° angle makes vertical 

cracks increasingly likely.  The new distribution of cracks will have a bias towards 

vertical cracks. 

However, because of the symmetry of loading, no bias is introduced in the dependence of 

the distribution on the angle  .  As illustrated in Figure 19, given that a randomly 

selected crack has orientation angle  , a uniform probability for   is present.  In Figure 

19, the red funnel shows the full circumferential sweep for a unit normal with 

  constant, 0   to 2 . 



 

57 

 



 

Figure 19. Illustration of uniform distribution of unit normals for a fixed azimuthal 
angle  . 

The distribution function made by these reoriented flaws will be denoted as  ,q a   and 

is restricted for cracks that have a size between 1a  and 2a , and having an orientation 

vector forming an angle   between 1  and 2  measured from the symmetry axis m .  The 

fraction of inclusions that fall within these limits is defined by  
2 2

1 1

,
a

a
q a d da




   .  The 

function  ,q a   is related to   , ,p a n    through the integrand (assuming that the 

integrand holds for all integration limits) as 

 
    

2 2 2 2

1 1 1 1

2

0
, , , sin

a a

a a
q a d da p a n d d da

  

 
            (42) 

where,  n   for axisymmetric distributions is a function of  . 

Simplification of Equation (42), taking the value of   , ,p a n    to be independent of   

for an axisymmetric distribution, results in
 

 
    , 2 sin , ,q a p a n      (43) 

3.9.1 Compliance Expression Including Flaws 

For a body containing flaws with a random distribution of sizes and orientation, the 

increase in compliance is taken to be the sum of the increases for each possible crack size 

and orientation times the fraction of cracks of that specified size and orientation [83].  
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The size and orientation distribution function,   , ,p a n   , can be combined with the 

aligned compliance given by     , , 4p a n a     

 

         
5

1 0

, , , , , , , , ,o o

ii

i

S a n h a B n p a n dad       


   

    (44) 

where   is the solid angled defined to be a contiguous patch of area on the unit sphere, 

which includes the diametrically opposite area for neutrally-oriented inhomogeneities.  

Integrating Equation (44) over the unit sphere for all possible orientations of  ,n   , 

may give a result that is anisotropic, depending on the distribution of   , ,p a n   .  If 

the distribution function,   , ,p a n    is axisymmetric about some fixed direction m , 

then symmetry demands that the net result for the integrant in Equation (44) will be 

transversely isotropic about the direction, m [81]. 

3.9.2 Compliance Expression for an Axisymmetric Distribution 

The compliance expression given by Equation (44) can be written for axisymmetric 

distributions as a combination of  ,q a  , where Equation (43) is defined by combining 

the size and orientation function into an axisymmetric distribution about m , and the 

transversely isotropic tensors, 
i

B


, which are transversely isotropic about n .  In the case 

that the distribution is axisymmetric about, m , Equation (44) simplifies to 

 

       
5

1 0 0

, , , , , ,o o

i i
i

S a h a q a daB d



       


  

   (45) 

where 

 

    
2

0

1
,

2
i i

B B n d



   
  

   (46) 

The five integrals given of Equation (46) can be calculated in closed form as [81]  

 

      
2 5

10

1
,

2
ji jii

j

B B n d b



     
    

   (47) 

where the coefficient functions,  ji   are given in Table 3, and the jb


 tensors are the 

transverse basis about m .  Specifically, 
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Table 3:  The coefficient function,  ji   (Note that sins   and cosc  ) 
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 

 (48) 

 2 ij kl i j kl ij k l i j k l

ijkl

m m m m m m m mb    


 
    

 
 

 (49) 

 
3

2i j kl ij k l i j k l

ijkl

m m m m m m m mb  


 
   

 
 

 (50) 

 

 4

1 1

2 2

il j k i jk l

ik jl il jk

i jl k ik j l
ijkl

i j k l

m m m m
b

m m m m

m m m m

 
   

 

   
           



 (51) 

 5

1
2

2

ik j l il j k

i j k l

i jl k i jk l
ijkl

m m m m
b m m m m

m m m m

 

 

   
          

 (52) 

Substitution of Equation (47) into Equation (45) results in 
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       
5 5 5

1 1 10 0

, , , , , ,

j

c
i

o o c

j ji ii i

i j i

h

S a h a q a da d b h b





        


      

 
 
 

  
    

  
 
  

     (53)  

where    
5

1 0

c

i j ji

j

h d



    


 ,      
0

, , ,o

j jh a q a da    


  , and 

    , 2 sin ,q a p a n    . 

3.10 Reduced Compliance for a Transversely Isotropic Material 

Preexisting flaws can stably propagate via wing cracks towards the direction of maximum 

compressive stress [89].  When lateral compression is also present, the crack growth is 

usually stable and stops at some fixed length.  Secondary cracks can also appear and can 

significantly contribute to crack coalescence [90]. 

In a typical triaxial compression test, the material is initially hydrostatically compressed, 

then the lateral stress is held constant, and the axial stress is varied.  Loading continues 

until the material catastrophically fails or the test is terminated for other reasons (e.g., 

microstructural examination of the material).  Unless additional information is available, 

the loading trace indicates very little about the nature of crack growth from the initial 

flaw up to the point of failure.  For this discussion, it will be assumed that the primary 

contributor to crack propagation is the advancement of wing cracks parallel to the 

direction of maximum compressive stress (not an unreasonable assumption).  In this case, 

the compliance will be most greatly increased in directions perpendicular to the wing 

cracks (i.e., lateral directions).  If it is assumed that the only cracks of interest to the 

problem run parallel to the axis of symmetry, m , the unit normal for the vast majority of 

cracks has 90   .  In this case, Table 3 specializes to the result shown in Table 4. 

 

Table  

3.10.1 Reduced Compliance:  Dienes and Kachanov Relations 

As discussed previously, Dienes and Kachanov wrote the change in compliance as a 

combination of 
1

B


 and 5
B


.  In terms of these terms, Equation (45) then becomes 
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Table 4:  The coefficient function,  ji   (from Table  for 1s   and 1c  ) 

 
1

b


 
2

b


 
3

b


 
4

b


 5b


 

1
B


 0  1

8
 

0  0  1

4
 

2B


 1 1

8
 

1

2
 

0  1

4
 

3B


 0  3

4
 

1

2
 

0  1

2
  

4B


 1 1

8
 

0  1

2
 

1

4
 

5B


 0  1

4
  

0  1

2
 

1

2
 

 

     

   

1 1

0 0

5 5

0 0

, , , , , ,

, , ,

o o

o

S a h a q a da B d

h a q a da B d





      

   



 





 



 

 

 (54) 

Equation (54) can be written through the use of Equation (53) as 

           

         

1 11 12 13 14 1531 2 4 5

5 51 52 53 54 5531 2 4 5

, , ,oS a b b b b b

b b b b b

             

          

          

        

 
      

  

 
     

  

 (55) 

where the  ji   terms are defined in Table 3. 

Recalling that the current focus is on vertical cracks, using 90    reduces Equation (55) 

to  

 

  1 5 5 1 5

2 4 5
, ,

8 4 2 4 2

oS a b b b
    

 
      

   
        

   
 (56) 
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For the case of triaxial loading, the axial direction is aligned along the axis of symmetry 

and can be set parallel to the 3x  axis (i.e.,  3 0 0 1
T

m  ).  If the resulting change in 

compliance (Mandel basis) acts on a stress tensor of the form 

 0 0 0
T

L L A   

 , the result is 

 

1 5 1 5 1

1 5 1 5 1

1 5

1 5

5

2 2 0 0 0 0

2 2 0 0 0 0

0 0 0 0 0 0 01 1

0 0 0 2 4 0 0 0 08 4

0 0 0 0 2 4 0 0 0

0 0 0 0 0 4 0 0

L L

L L

A

      

      



 

 



      
      
     
     

     
     

     
     
      

 (57) 

Equation (57) indicates that the strain resulting from the change in compliance is applied 

in the transverse directions (i.e., parallel to the axis of symmetry).  This is a desirable 

trend for our work in that we want the intensifier L


 to increase in magnitude in the lateral 

directions for the case of triaxial loading.  However, the resulting lateral strains shown in 

Equation (57) only return a contribution from the lateral stresses.  In the case of axial 

loading along the m -axis, no stiffening results in the lateral directions.  To fit our needs, 

other combinations of 
i

b


 will be explored. 

3.10.2 Selection of Terms Based on Poisson’s Effects 

For the conditions that 90   ,  0 0 1
T

m  , and  0 0 0 0 0 ,
T

A 

  only 

iB


 

terms that involve 
3

b


 contribute to lateral increases in strain.  Inspection of  

 

Table  4 shows that only 
2

B


 and 
3

B


 have expansion terms involving 
3

b


.  Using 

Equation (54),  90ji     as defined in 

 

Table , and  0 0 0
T

L L A   

 , the resulting strains (written in terms of a 

Mandel Basis) involving the 
2

B


 and 
3

B


 terms are 
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  2 2 2 2
2 22

, , : 0 0 0
2 4 2 4

T

o A L A L
A LS a

       
      

 

 
     

 
 (58) 

 

  3 3 3 3
33

3 3
, , : 0 0 0

2 2 2 2

T

o A L A L
LS a

       
    

 

 
    

 
 (59) 

where the subscript on S


  denotes the corresponding value of B


. 

Comparing the strains, given by Equations (58) and (59), shows an enhancement in the 

lateral directions.  However, the strains associated with 
2

S


  (Equation (58)) have an 

enhancement in the axial direction that would not be expected.  Conceptually, we are 

describing a continuum with penny-shaped cracks whose normals are circumferentially 

distributed parallel to the axis of symmetry.  The presence of these cracks softens the 

material response parallel to the axis of symmetry (i.e., increases the lateral strain in 

response to an axial stress), but the axial response is expected to be unchanged.  This 

precludes the use of 
2

B


 as the axial strain is increased by 2 A   as shown in Equation 

(58).  This makes 3
B


 the most likely test candidate as the lateral response is enhanced, 

but the axial response is unchanged as shown in Equation (59).  It is realized that a more 

realistic model suitable for general loading would require terms such as 1B


 and/or 5B


 to 

account for compliance changes considered by Dienes and Kachanov.  Omitting these 

terms is justified.  The coefficient of 1B


 is zero in this context because the cracks are all 

in compression.  The action of 5B


 on the stress is zero because the axisymmetric stress 

state has no shear component in the plane of the cracks. 

3.11 Strain Based Failure Criterion for Transverse Isotropy 

A strain based failure function,  g 


, is defined such that failure occurs at a critical 

strain and is not dependent on crack sizes or orientations (i.e.,   0g 

 ).  The strain 

based failure function can be converted to a stress-based function  f 
  

using :C 
  

  

with the result of  



 

64 

 

 

  1
:f g C 



  

 
  

 
 

 (60) 

A stress-based function for the initial (possibly undeformed) state  F 


 can be written 

as 

 

  1
:

o
F g C 



  

 
  

 
 

 (61) 

Defining 
1

: :o oL C C C S


        

   and following the approach used in Appendix A, 

Equations (60) and (61) can be equated as 

 

  1
: : :of F L F C C  



      

  
       

   

 (62) 

In Section 3.10.2, the chosen expression for the compliance is 

 

1 1

3 3 33 3mS B C C B 
 

    

      (63) 

where 3 53 2

3 1 1

4 2 2
B b b b
      

   . 

Also,  

 

1 1

3 3o m oC C B
 

   

   (64) 

Solving Equation (64) for 
1

mC




 and substituting into Equation (63) yields 

 
1 1

3 3oC C B
 

   

    (65) 

where 3  is the compliance enhancement factor (CEF) defined as 3 3 3o     . 

Substituting Equation (65) into Equation (62) gives 
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  1

3 3 33 3
, : : : :o oof F C C B F C B      



          

    
          

    
    

 (66) 

As written in Equation (66),  f  is a function of 


 and 3  since only 


 and 3  

can evolve as oC


 and 
3

B


 do not evolve and are treated as implicit constants.  The rational 

for choosing of 
3

B


 as our basis is explained in Section 3.10.2, however, the ultimate 

selection of this particular basis is not critical.  It is more important to emphasize that the 

modified failure function depends on the current stress state and 3 . 

3.12 Use of the Distortion Operator Introduces Anisotropy 

The use of the distortion operator, L


, allows what is otherwise an isotropic function to 

have an anisotropic component.  The operator L


 starts as the fourth-order identity in the 

initial state, but once deformation starts, L


 becomes an anisotropic tensor.  Consider 

Equation (62), the function F  is an isotropic function for the undeformed state.  Through 

the use of L


, which has the same eigenprojectors as the elastic compliance, the stress 

tensor, 


, is distorted in such a manner that the resulting function f  is itself distorted. 

For example, the von Mises function is isotropic and when used with the evolved stress 

becomes 

       2:F dev dev k  
  
   (67) 

where  dev 


 is the deviatoric component of the second-order stress tensor and k  is a 

constant.  By itself, F 


   as defined by the von Mises function contains only deviatoric 

components, but through the use of the distortion operator, L


, an isotropic part is 

introduced.   

Consider the following applied to the von Mises function 

 

*

*
:

f F 

 


 

 


 
 (68) 
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where  *
2

F
dev 

 







 and 

*

1
:oC C L







   



 


 as shown by Equation (22).  The partial 

*

F







 returns only the deviatoric part of 


 (i.e., 

*
0

F
tr




 
  
 
 

).  As long as L I
  

 , L


 

will 

introduce an anisotropic component to f 


  .  Equation (68) can be rewritten as 

 

  * 1
2 : :o

f
dev C C





   






 (69) 

Introducing Equation (65) into Equation (69) yields 

 

   * *

3 3
2 4 :o

f
dev G dev B  

   



  


 (70) 

where oG  is the shear modulus of the undeformed matrix. 

The trace of Equation (70) becomes 

     * *

3 3

0

: 2 : 4 : :o

f f
tr I tr dev I G dev B I  

       
 

    
      
    
   

 (71) 

The deviatoric component of 
*




 for TXC loading is given by 

* *
*

1 0 0

0 1 0
3

0 0 2

A Ldev
 




 
     

  
  

.  Substitution of  *
dev 


, and 

3
B


 into Equation (71) 

gives 

 

* *

38
3

A L
o

f
tr G

 





  
   
 
 

 (72) 

Noting that in Equation (72), the term 
* *

3

A L 
 is compressive for TXC loading and has a 

negative value.  The net result of Equation (72) is that   0tr f 


    and shows that 

dilation results.  This result is extremely important in that dilatation has been introduced 
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through the use of the distortion operator, L


, and does not require an increase in 

hydrostatic strength. 
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4. DISTORTION OPERATOR IN ELASTIC/PLASTIC 
ANALYSIS 

The following sections deal with the use of the distortion operator L


 in the analysis of 

TXC data. 

4.1 Expressions for the Hydrostatic Leg and Shear Leg During 
TXC 

Traditional triaxial compression (TXC) consists of a hydrostatic leg followed by the 

triaxial compression leg, where the lateral stresses, L , are held constant and the axial 

stress, A , is varied.  For the hydrostatic leg, the stresses are equal, and the hydrostatic 

stress at the end of the hydrostatic leg, 
H




, can be written as bath

H
P I


  where bathP  is 

the bath pressure and is taken as positive in compression.  The triaxial compression 

portion of the test allows the stresses to be written as 

 
 bath

ATXC
mm P I mm 


    (73) 

During the triaxial compression leg, the elastic strain can be written using Equations (65) 

and (73) as  

 

 

 

1 1

3 33 3

: :

: :

e bath

o oA

bath

A

C mm P C I mm

B mm P B I mm

 

  

 

   

   

   
     

   
   

   
      

   
   

 (74) 

where 
1

oC




 is the compliance of the undeformed material.  It is assumed that linear 

elasticity applies for the undeformed material and setting setting  0 0 1
T

m  , the term 

1
:oC mm





in Equation (74) is evaluated as 

 

 1 1
: o

o

o o

C mm mm I mm
E E





    (75) 
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The term  1
:oC I mm





  can be written as 

 

   1 2 1
: o o

o

o o

C I mm mm I mm
E E

 

 


      (76) 

The term 
3

:B mm


 becomes  

 

 3

1
:

2
B mm I mm
 

   (77) 

The term  3
:B I mm

 

  results in 

 

   3

3
:

2
B I mm mm I mm
  

     (78) 

Inserting Equations (75)-(78) into Equation (74) gives 

 

 

   

3

3
3

2

1 3

2 2

e bath bathA o

o o

bath o batho A
A

o o

mm P P
E E

I mm P P
E E

 
 

  
 





 
    

 

 
       

 

 (79) 

The axial elastic strain, 
e

A , is the coefficient of mm , and the lateral elastic strain, 
e

L , is 

the coefficient of I mm

 .  Specifically, 

 
3

2e bath oA
A

o o

P
E E


 

 
    

 
 (80) 

 

 
3

3

13

2 2

oe batho
L A

o o

P
E E

 
  

  
       

   
 (81) 

4.2 Approximate Expressions for a Brittle Material Tested by 
TXC 

During the first leg of a typical TXC test, the loading is purely hydrostatic in nature.  At a 

set pressure, the loading then changes with the axial load increasing, while the lateral 
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stresses are held constant.  As the load increases, the Kayenta model hardens the yield 

surface as illustrated in Figure 20(a).  The loading path is shown as the blue line.  The 

dashed red lines represent evolving yield surfaces according to Kayenta’s hardening 

model, and the black arrows are the normals to the yield surfaces.   

As the shear loading increases, the material will reach a limit surface.  This surface can 

be approximated by an affine yield function as shown in Figure 20(b).  Using such an 

approximation, the angle of inclination of the line,  , can be correlated to the surface 

normal, N


. 

For this analysis, the loading path will correspond to the following times: 

Hydrostatic, 0 TXCt t   

Triaxial compression 
TXC Y

Y End

t t t

t t t

 


 
 

where TXCt  is the time at which the TXC leg starts, Yt  is the time at which the yield/limit 

surface is reached, and Endt  represents the time at which the test ends.  At Yt t , the TXC 

leg reaches the affine limit surface (red line) at  2 YJ t  as shown in Figure 20(c).  In 

addition, a von Mises surface (blue line) is set to correspond to the shear value  2 YJ t .  

The motivation for setting these surfaces coincident is discussed in a subsequent section.  

Normals to the von Mises and affine limit surfaces are designated by the dashed blue line 

and red line, respectively.  Since the von Mises function is isotropic, the von Mises and 

affine limit surfaces in 2J - 1I  space can be represented by conical and cylindrical 

surfaces, respectively.  These surfaces are shown in Figure 20(d).   

4.3 Consideration of Forms for a Modified Compliance 

This thesis seeks an alternative means of predicting the qualitative features seen in TXC 

experiments (especially dilatation) by introducing anisotropic degradation of elastic 
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2
J

1
I

 

 

(a) (c) 

 

 

(b) (d) 

Figure 20. Load paths and yield/limit surfaces in 2J - 1I  space: (a) evolving 

yield surface, (b) affine approximation of limit surface, (c) affine and von Mises 
limit surface and loading path for TXC, (d) von Mises and affine limit surface. 

stiffness as a way to avoid the unrealistic prediction of increased hydrostatic yield 

strength with dilation that is intrinsic in the Kayenta formulation.  For this purpose, the 

stress is taken as a linear function of the elastic strain, :
e

C 
  

  where the reduction in 

stress from softening is achieved by reducing the elastic compliance tensor.  Because a 

TXC experiment is run in stress control, it is more convenient to write 

 

1 1

3 3
: :

e

oC C B   
 

     

 
    

 
 

 (82) 

During the hydrostatic leg of the experiment, it is assumed that the pore-free bulk 

material properties remain isotropic, and the development of oriented cracks does not 

occur until later in the shear leg.  Under these assumptions, 3  is zero until the 
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development of cracks.  Then, 3  increases in an undetermined manner (the exact form 

of 3  is not established here) until the end of the test ( Endt t ). 

Determination of the evolution law for 3  would require laboratory testing or 

mesoscale modeling beyond the scope of this thesis.  In this text, the aim is limited to 

merely demonstrating that a monotonic increase in 3  at time Yt  is capable of causing 

an apparent dilatation.  For this purpose, it is sufficient to consider a linear function of the 

following form 

 
 

33 Yt K t t      (83) 

where 
3

K   is a constant and 
0,

,

Y

Y

Y Y

t t
t t

t t t t


  

 
 is the Macaulay bracket. 

Since the derivative of the Macaulay brackets is the Heaviside function, the time 

derivative of Equation (83) is 

 
 

3

3
3 Y

d
K H t t

dt



 


      (84) 

4.4 Rate-Independent Plasticity Relations 

Assuming that 3  is of the form shown by Equation (83), the rate-independent 

plasticity relations are derived in this section.  Following Brannon [91], especially with 

regard to the treatment of elastic-plastic coupling (Z-tensor below), the following 

governing relations can be defined 

 Strain rate decomposition: 
e p

  
  
   (85) 

 Nonlinear coupled elasticity: :
e

C Z  
  

   (86) 

 Flow rule: 
p

M 


  (87) 

 Consistency: :N H 
 

  (88) 

where the superimposed dot denotes a rate, and  

 


 is the total strain rate. 
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 e



 is the elastic part of the strain rate. 

 p



 is the plastic part of the strain rate. 

 


 is the rate of stress. 

 C


 is the elastic tangent stiffness tensor. 

 Z


 is the elastic-plastic coupling tensor. 

   is the consistency parameter. 

 M


 is the unit tensor in the direction of plastic strain. 

 N


 is the unit normal to the yield surface. 

 H  is the ensemble hardening modulus. 

Unless clearly defined otherwise, associativity will be assumed (i.e., M N
 
 ). 

For this analysis, certain quantities are presumed known:  , C


, 3 , 3 , 
3

B


, oC


, and 

N M


  (found in a subsequent subsection). 

The unknown quantities are 


, e



, p



,  , h  (constant determined from 

3 h   ), Z


, and H .  The unknown quantities are determined in the following 

subsections. 

4.4.1 Determination of Plasticity Parameters 

In a triaxial compression test, the stress rate is known, and the strain rate is unknown.  As 

a result, Equations (85)-(88) will be combined and cast in the form of the strain rate.  

Equation (88) can be rearranged to give the consistency parameter 

 

:N

H


    (89) 

Once   is known, an evolution law of the following form can be cast 

 

3
3 h h


 




     (90) 

and h  can be determined. 

Solving Equation (86) for 
e




 and substituting   gives the elastic strain rate 
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1 1
:

: :e
N

C C Z
H


 

   

    

 
   

 
 

 (91) 

Substitution of Equation (89) into Equation (87) results in the plastic strain rate 

 

:
p

N
M

H


  



 
  

 
 

 (92) 

From Equations (85), (91), and (92), the total strain rate becomes 

 

1
:T 



 



 

(93) 

where 1 1 1
:

Z N M N
T C C

H H

     

    

    is the elastic-plastic tangent compliance tensor. 

4.4.2 Triaxial Compression Expressions for Strain Rates 

In Equation (91), the elastic strain rate is given in tensorial form.  In the case of TXC, the 

axial and lateral strain rates can be found from Equations (80) and (81). 

The axial strain rate is found using 

 2BathA o
A

o o

P
E E

 


 
   

 
 and A BathP   At time, Yt t  

Using Equation (84) results in 

 

     
3

1 2 1 BathA
A o Y Y

o

H t t P K H t t
E




         (94) 

Solving for the lateral strain rate and using Equation (83) and(84) gives 

 

     

 

3

3

1 2 1

2

3

2 2

Yo o Y

L A

o

Bath

A
Y

K t tH t t

E

P
K H t t





 
 







    
  

 

 
   
 

 (95) 
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4.4.3 Determination of the Elastic-Plastic Coupling Tensor 

Assuming some compliance of the form given by Equation (65), an evolving elastic 

stiffness tensor can be written as a function of 3 .  The stress is  3 :
e

C  
  

  .  If 

the stress is written as an increment, the resulting stress rate becomes 

 

 

 3

3 3

3

: :
e e

d C

C
d



    




   

 
 

    


 
 

 (96) 

The derivative,  3 3d C d 


  , in Equation (96) can be found using 
1

:C C I


   

 , the 

differential product rule, and the compliance given by Equation (65) with the result of 

 3

3

: :

d C

C B C
d 



  

 


 

(97) 

Equation (96) becomes 

  3 33
: : : :

e e
C C B C    

       

 
     

 
 

 (98) 

Noting that degradation of the elastic compliance occurs only during inelastic loading, 

the rate of 3  is presumed to be structured such that 3  evolves in proportion to the 

plastic strain.  In other words, consistent with classical plasticity formulations, it is 

assumed that a state-dependent material function, h , exists such that 3 h    where   

is a consistency parameter.  Substitution of 3  into Equation (98) yields 

 

 3 :
e

C Z   
  

  

 

(99) 

where 
3

: : :
e

Z C B C h
    

 
  
 
 

 and is defined as the elastic-plastic coupling tensor.   

4.4.4 Determination of the Ensemble Hardening Modulus 

The ensemble hardening modulus, H , is defined as 
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3

f
h

H

f






 
 

 





 (100) 

The ensemble hardening modulus accounts for the total effect of all internal state 

variables changing at the same time, and results in movement of the yield surface.  The 

parameter H  accounts for the consistency condition, which ensures that the stress state 

remains on the yield surface during inelastic loading [91]. 

As described in Section 4.2, the limit surface is described by a von Mises function, which 

is set coincident to an affine limit surface.  The function used in Equation (100) is given 

by   :f F L 
 

 
   

 

.  The denominator in Equation (100), f 


  , is given by Equation 

(70), h  in the numerator is defined by Equation (90).  The partial 3f    can be found 

from the chain law * *

3 3:f F   
 

        and through the use of 

  :f F L 
 

 
   

 

.  The term  *
2F dev 

 
    as initially discussed in Equation (68)

.  The partial 
*

3 


   is determined as 

 

*

3

3

: :
o

C B



  





 (101) 

Substituting Equations (70) and (101) into Equation (100) and using 
*

:L 
 

  yields 

 

   3

3 3

2 : : :

2 : 4 : :

o
dev C B h

H

dev L G dev L B

 

  

  

     

  
   

  
  

   
       

   

 (102) 

4.5 Quantification of the Degree of Dilatation 

As discussed in Section 3.12, the von Mises yield criterion is defined purely in terms of 

the deviatoric part of the stress.  When the stress is written in terms of the distortion 

operator, 
*

:L 
 

 , a dilatational component is introduced.  The angle   as shown in 
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Figure 21 (assuming associativity), quantifies that degree of dilatation, which is zero 

prior the introduction of *



.  The vector  N 


 (blue arrow) represents the normal to the 

von Mises limit surface (blue line) and is defined by Equation (70).  As 3  in Equation 

(70) increases, so does the dilatational contribution.  This change is represented by the 

vector  *
N 


 (red arrow). 

Recall from Equation (19) that the anisotropic yield function f  is given by a von Mises 

yield function F  applied to an anisotropically transformed stress; namely 

  :f F L 
 

 
   

 

.  Accordingly, the angle of inclination,  , can be determined from the 

isotropic and deviatoric parts of 
f







 (as shown in Figure 21), which may be found using 

the chain rule.  Then in “isomorphic” stress space (which is the projection of the stress 

tensor onto the hyperplane spanned by the stress deviator and the identity, as sketched in 

Figure 21),  tan   can be defined as 

 

f
iso



 
 
   




von Mises limit surface

dev
f


 
 
   




N  
  *N  

  2
2J

1
3I



 

Figure 21. The angle   is a measure of the degree of dilatation as determined 

from a von Mises limit surface (which is purely deviatoric). 



 

79 

 

 

 tan

f
iso

f
dev










 
 
 
 


 
 
 
 

 (103) 

The term  tan   is determined in Appendix C with the result of 

 

 

 
3

3 2 tan1

4 2 tanoG






 
   

  

 (104) 

A plot of the CEF 3  versus  0
2




  
 

is shown in Figure 22 (assuming 

65 10 psioG   ).  It can be seen from the figure, that as   approaches 
2


, 3  starts to 
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Figure 22. A plot of 3  versus  . 

increase nonlinearly.  On a qualitative basis,   represents a measure of dilatation, and 

3  varies in proportion to the number-density function  ,F n t , defined in Section 3.4. 

Therefore, Figure 22 demonstrates that dilatation in triaxial compression (i.e., nonzero 

 ) can indeed be predicted as a result of lateral strains induced from axial stress in 

triaxial compression (which is the stress-strain coupling implied by a nonzero value of 

3 ) 

 

.
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5. SUMMARY AND CONCLUSIONS 

This thesis studied a cap evolution law based on the work of Warren et al. [1] (referenced 

in this work as the Kayenta Model) and is motivated by the phenomenon of porous media 

dilatation in triaxial compression (TXC).  During typical TXC loading, the material is 

initially hydrostatically compressed with the possible result of compaction.  Then, the 

lateral stresses are held constant as the axial stress is increased, leading to dilatation.  The 

Kayenta model assumes an isotropic yield model with porosity as an internal state 

variable.  During TXC, the Kayenta cap evolution law is capable of modeling compaction 

followed by dilatation, but it does so by counter-intuitively increasing the hydrostatic 

compressive strength when dilatation is occurring, which is behavior that has never been 

validated (or invalidated) in the laboratory.  The work conducted in this thesis presents an 

alternative approach to modeling TXC dilatation. 

Within the thesis text, a review of the Kayenta cap function is presented.  The cap 

function models the presence of porosity and microcracks as two separate functions, 

which are combined into a single entity.  Dilatation is controlled by a fracture function 

that is a phenomenological fit of experimental data and is identical to a limit function as 

if the material has microcracks but no porosity.  Compaction is described by a cap 

function that accounts for the presence of pores and assumes no change in volume until a 

branch point is reached.  A yield function is constructed by multiplying the fracture and 

cap functions together. 

A literature review is conducted on the following topics: 

 Experimental evidence supporting the Kayenta cap evolution law - No evidence is 

found to either support or invalidate the model’s cap behavior.  Testing is 

exclusively focused on initially hydrostatically loading the specimens and then 

loading the material in triaxial compression.  Very little documentation exists of 

loading cases where the load profile is successfully varied beyond the typical 

TXC loading pattern (with the exception of cyclic loading).  Attempts to perform 

such experiments were inconclusive. 

 Other yield models that include a cap – Several other modeling efforts contained 

a cap in their description.  Many consisted of two different yielding functions; one 

for the shear envelope and the other for compaction.  For a significant number of 

these models, the cap function is nonsmooth, which can lead to integration 

difficulties. 

 Experimental evidence of inelastically induced anisotropy resulting from triaxial 

compression, and incorporation of anisotropy into constitutive models – 

Substantial experimental evidence documenting TXC induced anisotropy exists.  

A wide variety of theoretical approaches to incorporating anisotropy is reported; 

including rotation of the yield surface around the origin in stress space, distorted 

ellipsoids incorporated into the yield surface, reduction of compliance in a 

particular direction, etc. 

 Mesoscale modeling that analyzes yield surfaces – Several publications report the 

use of mesoscopic model to predict failure surface.  Many of these publications 
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incorporated transversely anisotropic behavior into their models by reducing the 

compliance in the lateral directions.   

To suppress unrealistic strengthening, an anisotropically transformed stress is 

used in an isotropic yield model.  The stress is transformed through the use of an 

anisotropic distortion operator.  This operator has the same eigenvalues as the elastic 

compliance and is constructed as a combination of the undeformed stiffness and the 

deformed compliance.  The operator starts as the fourth-order identity in the initial state, 

but once deformation initiates; it evolves to a symmetric anisotropic tensor.  The 

transformed stress is then sent to an isotropic yield function with the result of a new 

anisotropic function. 

A transversely isotropic compliance is presented, based on a linear combination of 

natural bases constructed about an isotropic axis.  Five basis terms are included in the 

compliance expression.  The resulting construct is compared to the compliance 

expressions of Dienes et al. and Kachanov.  The Dienes and Kachanov compliance 

expressions resulted from an ensemble of microcracks of all sizes and orientations. It is 

determined that the Kachanov expression is a special case of Dienes’ theory.  In their 

compliance formulations, they include two terms that correspond to two bases from the 

transversely isotropic compliance. 

During TXC loading, cracks kink to become effectively aligned in the direction of axial 

loading.  An axisymmetric probabilistic distribution of cracks is constructed for the case 

of transverse isotropy.  A transversely isotropic compliance is formulated from a crack 

distribution that assumed that the only cracks of interest ran parallel to the axis of 

symmetry.  The selected compliance is also based on terms that decreased the lateral 

stiffness, but left the axial stiffness unchanged.  Based off of the presented compliance, it 

is demonstrated the distortion operator introduces anisotropy to an isotropic function, but 

does not require an increase in hydrostatic strength. 

In the final section, a demonstration of how the distortion operator could be used in the 

elastic/plastic analysis of a von Mises surface loaded in TXC is presented.  Specifically, 

the following quantities are calculated from the previously presented compliance: 

 Elastic strains. 

 Plastic strain. 

 Modified compliance. 

 Consistency parameter. 

 Evolution law. 

 Elastic-plastic coupling tensor. 

 Ensemble hardening modulus. 

In addition, a quantification of the degree of dilatation for a nominal von Mises surface 

distorted through the use of the distortion operator is presented. 

The novel contributions of this work are 
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 An examination of the compliance expressions of Dienes et al. [84] and Kachanov 

[85] is performed.  In their equations, Dienes clearly defines a number of cracks 

per unit volume along with a continuous crack size distribution, whereas 

Kachanov implies an equivalent term resulting from the summation over discrete 

crack sizes and orientations.  Thus, Kachanov’s theory is a special case of Dienes’ 

theory.  Both of these researchers, however, include compliance enhancement 

terms that accommodate additional strains only normal and/or tangential to the 

crack face.  Neither researcher included compliance enhancement that allows an 

axial stress to induce additional lateral strain (beyond an ordinary Poisson effect).  

Recognition that only one of the five transverse basis tensors allows lateral strain 

enhancements in response to axial stress is a unique contribution of this research. 

 A compliance expression for the special case of a damaged material with 

transverse isotropy was derived.  In the undeformed state, the flaw orientations 

are presumed to be uniformly random in orientation.  As the material is deformed 

by an increase in axial stress, the cracks will grow and rapidly kink to be parallel 

to the axial-load direction.  However, because of the symmetry of loading, no bias 

is introduced in the dependence of the distribution on the meridian angle.  Our 

compliance expression was reduced in form to focusing only on enhancement of 

the lateral strains (in addition to Poisson’s effects) through selection of a specific 

transverse basis tensor that was capable of producing a lateral strain enhancement 

from an axial stress. 

 It was shown to be possible for an isotropic function of stress to be used to 

construct an anisotropic function by simply applying the isotropic function to an 

anisotropically transformed stress argument.  In particular, the stress sent to the 

isotropic function is given by an anisotropic distortion operator acting on the 

actual stress tensor.  The distortion operator is a fourth-order tensor that starts in 

the undeformed state as the fourth-order identity, but once deformation 

commences, the operator becomes an anisotropic tensor.  It was demonstrated 

that, for the von Mises function (which is purely deviatoric), the use of the 

distortion operator allowed for the introduction of dilatation without requiring an 

increase in hydrostatic strength.  In addition, for the specific case of transverse 

isotropy, the distortion operator was used to derive the rate-independent plasticity 

equations. 

5.1 Proposed Future Work 

A number of areas worth investigating that are not specifically covered in this work are: 

1. This thesis presented an alternative way of describing TXC data without 

predicting an increase in hydrostatic compressive strength when dilatation is 

occurring.  This introduces the opportunity for mesoscale studies to help identify 

physics-based ISVs and their evolution laws, especially under changes in loading 

direction. 
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The 3
B


 basis is chosen to describe the compliance enhancement.  In reality, a 

complete formulation for the compliance would include basis terms such as 1B


 

and/or 5B


 following the lead of Dienes and Kachanov.  Future work could include 

these terms in compliance expressions. 

2. In the description of the compliance, it is assumed that all cracks are aligned 

along the axial direction. This assumption is justified for this thesis’s limited 

scope of triaxial compression, since angled cracks can be assumed to immediately 

kink into the assumed orientation.  A more realistic approach, applicable to 

arbitrary loading modes, would have the orientation of normals to the cracks 

determined through mesoscale modeling or experimental data.   

3. A simple von Mises limit surface is analyzed through the use of the distortion 

operator, L


.  In this work, a qualitatively reasonable expression for the distortion 

tensor was to require it to describe a critical strain failure model.  Accordingly the 

distortion tensor was formed as the product of the intact stiffness times the 

damaged compliance.  Mesoscale analysis would be appropriate to validate or 

invalidate the existence of a critical strain failure criterion.  Furthermore, if the 

failure surface is assumed to evolve from an isotropic to anisotropic form in a 

continuous manner (i.e., without forming yield surface vertices), then the 

approach taken in this thesis can be seen to be a first-order accurate description of 

the damage evolution process.  A more thorough approach would be to use a 

higher-order model to describe the yield/limit surface.  Furthermore, laboratory 

experiments and/or mesoscale modeling should be conducted to validate or 

invalidate the neglect of yield surface vertices. 
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APPENDIX A:  FORM AND SYMMETRY OF THE DISTORTION 
OPERATOR 

 

 

A failure function,  h 


, can be written in terms of the strain deviator,  dev 


, 

as 

 
      2:h dev dev k  
  
   (A.1) 

Equation (A.1) can be written in terms of a projector 
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2

2: 0
sd

h P k 
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    (A.2) 

where 
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P


 is the “symdev” operator  
1 1

2 3
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im jn in jm ij mnP      


   .  Equation (B.2) 

can be written as a stress failure criterion 
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 (A.3) 

where 


 is the stress tensor, and S


 is the fourth-order compliance tensor.  In this case, S


 

represents the compliance of the damaged material.  The goal is to relate S


 to the 
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compliance of the undamaged material, 
o

S


.  A failure criterion based on the compliance 

of the undamaged material can be written as 

 

 
2

2, : : 0
sd

oo o
f f S P S k  

     

 
    

 
 

 (A.4) 

It is necessary to relate ,f S
 

 
 
 
 

 to  of 


, and this is done through the use of a fourth-

order tensor, L


 as  

 

, :of S f L 
  

   
     

  

 (A.5) 

Substituting Equations (A.3) and (A.4) into Equation (A.5) yields 

 

: : :
sd sd

oP S P S L
      

  (A.6) 

Equation (A.6) suggests that 

 

1

: : :oo oS S L L S S C S



            

 
    

 
 

 (A.7) 

where 
o

C


 is the stiffness tensor of the undeformed material. 
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The distortion operator is shown below to be symmetric.  From Equation (19), an 

anisotropic yield function can be written in the form (with backstress and other internal 

state variables assumed to be present implicitly) 

 
  : : :

T T
f L L  

    

  (A.8) 

Based on the definition of positive definite as 

 

: : 0 0   
  

    (A.9) 

where 


 is an arbitrary second order tensor.  If the 


 tensor appears in a theory only 

quadratic forms, such as above, then it may be assumed to be symmetric without loss 

(i.e., if it is not symmetric, the value of the quadratic form is unchanged if 


 is replaced 

by its symmetric part). Thus, although the L


 tensor in Equation (A.7) is not symmetric, it 

may be replaced by its symmetric part because its definition in this research appears as a  

quadratic form in the definition of the anisotropic yield function.

 

 

 



 

98 



 

99 

 

APPENDIX B:  EVALUATION OF 


 

In deviatoric versus isotropic space,  tan   (as defined in Figure 21) can be defined as 

  tan

f
iso

f
dev










 
 
 
 


 
 
 
   

(B.1) 

The numerator in Equation (B.1) is  

 

* *

3

1 1

3 3

8

33

A L
o

f f f
iso tr I tr

G

  

 




  

       
      
       
     

 
    

 

 (B.2) 

where the last step used the value of  tr f 


  , previously defined in Equation (72). For 

triaxial compression, both stress components are compressive and the axial stress is more 

compressive than the lateral stress. Since this work adopts the sign convention that stress is 

positive in compression, triaxial compression therefore corresponds to 
* * 0A L   , which is the 

source of the negative in the above equation so that the final result is positive. 

 

The magnitude of the denominator in Equation (B.1) is found from 

 

:
f f f

dev dev dev
  
  

       
     
       
     

 (B.3) 
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The partial  f 


   is given by Equation (70) and when inserted into Equation (B.3) yields 

 

    

   

   

1
2

* *

* *

3 3

* *2 2

3 3 3

4 :

16 : :

16 : : :

o

o

dev dev

f
dev G dev dev dev B

G dev dev B dev dev B

 

  


  

 

  


   

 
 
 
 

     
       

        
 

     
           

      

 (B.4) 

For TXC loading in the 3-direction,  *
dev 


 is 

 

 
* *

*

1 0 0

0 1 0
3

0 0 2

A Ldev
 




 
   

 
  

 (B.5) 

From Equation (C.4), the term    * *
:dev dev 

 
 is found through the use of Equation (B.5) as 

 
     

2* * * *2
:

3
A Ldev dev   

 
   (B.6) 

From Equation (C.4),  *

3
:dev dev B
 

 
 
 
 

 is calculated as 

 

 
* *

*

3

1 1 1
: 0 0 0

3 6 6 3

T

A Ldev dev B
 


 

    
        

 (B.7) 
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From Equations (C.5) and (C.7),    * *

3
: :dev dev dev B 

  

 
 
 
 

 is found as 

 

     
2

* *
* *

3
: : 1

3

A Ldev dev dev B
 

 
  

   
        

 (B.8) 

The term    * *

3 3
: : :dev dev B dev dev B 
   

    
    

    
    

 from Equation (C.7) is 

 

   
 

2
* *

* *

3 3
: : :

54

A L
dev dev B dev dev B

 
 

   

     
     

    
    

 (B.9) 

Substitution of Equations (B.6), (B.8), and (B.9) into Equation (B.4) gives 

 

     

  

1
22 2 2

2 2 * * * * * *

3 3

* *

3

8 16 8

27 9 3

2 6
3

9

o A L o A L A L

o A L

f
dev G G

G

       


  



                
 

   

 (B.10) 

Initially, 3 0   and therefore  3 3 0oG    .  Recall that, for triaxial compression, 

 * * 0A L   .  Therefore, initially,  

 

  * *

3

2 6
3

9
o A L

f
dev G   




 
     
 
 

 (B.11) 

Inserting Equations (B.2) and (B.11) into Equation (B.1), and simplifying yields 
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 

 
3

3tan1

2 2 tanoG






 
   

  

 (B.12) 

This result is valid as long as 3 3oG   .  A plot of the above function is provided in Figure 22, 

which shows that over the range of   values of interest, 3oG 

 

 is indeed smaller than 3. 
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