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Abstract

This report presents analytic transmission line models for calculating the shielding effectiveness of two

common calibration standard cables. The two cables have different canonical aperture types, which produce

the same low frequency coupling but different responses at resonance. The dominant damping mechanism

is produced by the current probe loads at the ends of the cables, which are characterized through adaptor

measurements. The model predictions for the cables are compared with experimental measurements and

good agreement between the results is demonstrated. This setup constitutes a nice repeatable geometry

that nevertheless exhibits some of the challenges involved in modeling non-radio frequency geometries.
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Figure 1. The cable tester arrangement used to measure the shielding effectiveness of the calibration tubes.

Electromagnetic Coupling Into Two Standard Calibration Shields
On The Sandia Cable Tester

1 INTRODUCTION

We frequently use a cable tester to measure the shielding effectiveness of multiconductor cables. There

are many types of measurement setups for characterizing cable shields [1]. The setup we use is show in

Figures 1 (with a blank calibration shield or tube in place of the cable) and 2. The cable above a ground

plane arrangement not only mimics actual cable routing, but allows cables of various cross sectional shapes

(like flat cables) to be used, including some with branches. Usually the cable pins are tied together in a

transition connector at each of the two ends and optically coupled current probes in the tester are used to

measure interior and exterior currents. Two calibration standard shields (or tubes), one containing circular

holes [2], [3] and the other narrow slots, are used to checkout the tester. This report presents a simple

analysis of the setup and a comparison of the predicted and measured results for these calibration tubes.

Both the low frequency and resonant limits are examined. The resonance depends on the penetration of

the shield construct as well as the current probe terminations, which are interrogated through adaptors.

Understanding the performance of the tester with these tubes is important in order to properly interpret

its response with actual cables. In addition, this setup constitutes an instructive arrangement since issues

arising in the modeling are similar to those arising with actual cables [4] but in a more controlled and

repeatable geometry.

2 TRANSMISSION LINE SOURCES

Latham [5] considers field leakage through apertures in an arbitrary cable shield, which we use here.

The transfer impedance  and transfer admittance  sources are shown in Figure 3 [6].

2.1 Equivalent Voltage Source

Using time dependence −, the equivalent transmission-line voltage source due to a shield aperture

9
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Figure 3. Transfer impedance  and transfer admittance  sources for cable.
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 can be rewritten as [5]

 = −0
Z


0
0




 (1)

where the interior magnetic scalar potential 0 is defined as that generated by a current 0 flowing in the

 direction on the center conductor while a  directed return current −0 flows along the interior of the
shield without an aperture (aperture shorted) and the corresponding magnetic field is 0 = −∇0. The
magnetostatic potential  corresponds to the difference field  = −∇ between the aperture open and

closed cases, the unit normal  points into the illuminated region from the aperture (away from the coaxial

region), and of course since −0 vanishes in the aperture, − is equal to the normal magnetic
field in the aperture for the open case. The voltage source polarity has a positive reference on the positive

 side of the aperture. Letting  be a coordinate on the aperture surface and expanding the potential in the

center of the aperture  =  as

0
0
≈ 0

0
()−0 () ·

− 
0

 (2)

the term independent of  vanishes and (1) can be rewritten as

 = −0
1

2


· (3)

where the normalized field at the aperture from the coaxial current is



= 0 ()  (−0) =

−1
2

 (4)

and the final equality is for a circular coaxial arrangement, with inner radius of the shield conductor  and

azimuthal unit vector . The magnetic dipole moment of the aperture [6] is defined as

 = −2
Z


(− ) (5)

This dipole moment generates the fields on the shadow side of the aperture and includes the ground plane

image (so the ground plane is removed when finding the fields from this dipole moment). The normal field

in the aperture is approximated by the normal field in the same aperture placed on an infinite ground

plane, using the aperture polarizability  (which only has components in the plane of the aperture) and

the short circuit external field at the center of the aperture  () [6],

 = −2 · () (6)

The short circuit magnetic field drive of the apertures is obtained by taking into account the variation of

the electric current density on the exterior of the cable test fixture. To determine this parameter, a cylinder

of outer radius  = +∆ (where ∆ represents the thickness of the conductor metal) carrying total current

 at a height  above a ground plane is considered and replaced by a filament at the image height

 =
p
2 − 2 (7)

The short circuit exterior magnetic field for this filament, and its image carrying current − at a location
 below the ground plane, gives the normalized exterior field at the aperture



=  (−) =

−1
2



+  sin
 (8)

where  is the azimuth angle about the cylindrical conductor ( = 2 corresponds to the top of the
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conductor,  = −2 corresponds to the bottom of the conductor, and  = 0  correspond to the sides of

the conductor). Note that the integration of the magnetic field around the cylinder must yield the shield

current and thus

1

2

Z 

−



+  sin
 = 1

Thus for a large number of apertures around the tube, approaching a continuous distribution in the

azimuth, there is no correction due to the asymmetric distribution of current density; a correction only

results because of the limited number of apertures. The equivalent voltage source can then be rewritten as

 = −0 ·  ·  () = −
0

(2) (2)



+  sin
(9)

where  is the angle about the cylinder axis corresponding to the center of each particular aperture.

Each calibration tube is made up of four apertures around the circumference, with 11 sets of apertures

spaced  = 2 in. apart along a cylinder. Summing over the four hole positions around the circumference

(positioned at  = −2 0 2 ) gives

 = −0



4 (10)

where the final factor results from the asymmetry of the current density

4 =
2 − 22


Note that the transfer inductance per unit length is

 = 0



4

where

 =  =   = − 
2.2 Equivalent Current Source

Similarly the equivalent transmission-line current source due to a shield aperture  can be rewritten as

[5]

 = 00

Z


1

0

0


 (11)

the electric scalar potential 0 corresponds to the field 0 = −∇0 when the shield is complete (the
aperture is shorted) and a charge per unit length 0 exists on the center conductor with a charge −0 on
the interior of the shield (note that we set 0 = 0 on the shield and 0 = 00 on the center conductor,

where 0 is the interior capacitance per unit length of the transmission line). The potential  corresponds

to the difference field  = −∇ between the aperture open and closed cases. The equivalent current source
direction is from the shield to the center conductor (current is injected into the center conductor). Using

duality

12



0

0

0


=
³
 × 



´
·  (12)

where  is the axial unit vector. If we approximate   at the center of the aperture we can bring it outside

the integral and write

 =  (00)
1

2

h
 × 


()

i
· 


(13)

where the electric dipole moment is [6]



= −20

Z


 (14)

As in the magnetostatic analysis in the previous section, this dipole moment generates the fields on the

shadow side of the aperture and includes the ground plane image (so the ground plane is removed when

finding the fields from this dipole moment). Again the potential in the aperture is approximated by the

potential in the same aperture placed on an infinite ground plane. In this case, the electric dipole moment

can be written in terms of the polarizability  and the short circuit external field at the center of the

aperture  ()



= 20 · () (15)

and the tensor polarizability  only has a component normal to the plane.

The variation of the electric charge density on the exterior of the test fixture gives the short circuit

electric field drive of the apertures

0 =  × 


(16)

where  is the exterior charge per unit length on the shield and the equivalent current source can then be

written as

 =  (00)
h
 × 


()

i
·  ·

h
 × 


()

i
=  (00)



42



+  sin
(17)

Relating the charge per unit length to the exterior voltage, and for a traveling wave to the current,

 =  =  =  (18)

where  is the capacitance per unit length of the exterior with respect to the ground plane,  is the voltage

of the exterior with respect to the ground plane, and  =
p
 is the characteristic impedance between

the exterior conductor and the ground plane. The characteristic impedance is written in terms of the per

unit length inductance and capacitance of the exterior region ( and , respectively, where
√
 = 1

and  is the velocity of light). Note that the continuity equation yields




=  (19)

and for a forward propagating wave (matched exterior transmission line)  =  where  = 
√
.

Summing over the 4 holes around the circumference gives
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Figure 4. Cylindrical shield with periodic set of four circumferential circular apertures.

 =  (00)



4 =  (00)




4 (20)

where the final equality holds for a traveling wave exterior current. Note that the transfer capacitance per

unit length is

 = − (00) 


4

where

 =  =  = −

2.3 Polarizabilities

The polarizabilities for both tubes are now given.

2.3.1 Circular Aperture Tube

Figure 4 shows the tube with circular holes. For radius  in a zero thickness planar screen the

polarizabilities are [6]

0 =
4

3
3 (21)

0 =
2

3
3 (22)

where in the planar equivalent (of the cylindrical system)  =  = ,  = .The shield in this

case has a wall thickness of ∆ ≈ 0116 in., with a circular hole diameter of 2 ≈ 0486 in.. Thus, for this
case, a wall-thickness correction is applied by recognizing from [7] and [8] that with ∆ ≈ 0477, the error
in using the ∆→∞ asymptotic formula versus the numerical solution is limited to approximately 1% in

the magnetic polarizability and 2% in the electric polarizability. Therefore we have

 ≈ 0 0838 
−011(∆) ≈ 109102× 10−7 m3 (23)

where 011 = 1841 is the first root of 
0
1 () = 0, and
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Figure 5. Cylindrical shield with a periodic set of four circumferential rectangular-slot apertures.

 ≈ 0 0825
−01(∆) ≈ 0410283× 10−7 m3 (24)

[8] where 01 = 2405 is the first root of 0 () = 0.

2.3.2 Slot Aperture Tube

Figure 5 shows the slotted calibration shield. The dominant length directed magnetic polarizability for

a narrow slot of length  and width  with    is given by [9]

 =  ∼ 3
12Ω

(25)

where the parameter Ω is

Ω = 2 [ln (2)− 73] (26)

and the much smaller electric (as well as the other component of the magnetic) polarizability is

 ∼ 2 ∼  ≈ 00023929× 10−7 m3 (27)

where the equivalent radius is given by

 = 4 (28)

The dimensions here are  ≈ 009 in.,  ≈ 06 in, and ∆ ≈ 0116 in. For the case where the thickness
is much smaller than the slot length ∆  , the wall thickness is accounted for in this case by simply

rewriting the equivalent radius as [9]

 ≈ 

4
−∆(2) (29)

or for ∆  

 ∼ 2


−∆(2)  ∆  1 (30)

This second asymptotic form is quite accurate for ∆ ≥ 025. The thickness results in an even smaller
equivalent radius and thus makes the electric polarizability negligible.

The axial polarizability for a slot with unrestricted wall thickness is given in [10] as
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 ≈
164

¡
3

¢h
Ω0 sinh

³
∆
2

´
+ (2) cosh

³
∆
2

´i h
Ω0 cosh

³
∆
2

´
+ (2) sinh

³
∆
2

´i (31)

≈ 107751× 10−7 m3
where

Ω0 = 2 [ln (8)− 73] (32)

3 SHIELDING EFFECTIVENESS

We now give the shielding effectiveness defined as the ratio of interior to exterior currents on the tubes.

3.1 LOW FREQUENCY SOLUTION

The exterior characteristic impedance for a cylinder of radius  at a height  above a ground plane is

 =
0
2
Arccosh () (33)

where 0 =
p
00 ≈ 120 ohms is the impedance of free space. Assuming  = 50 ohms and  = 09375

in., the height is found to be  ≈ 12823 in. Thus, for this case, the factor in (10) and (20) which accounts
for nonuniformity of the exterior current density due to the proximity of the ground plane

4 ≈ 1074
is found to be close to unity [2]. The internal inductance of the coaxial region of length  ≈ 26 in. (formed
by the calibration tube and an inner conductor of radius  ≈ 0125 in.) is approximately

 = 0 = 
0
2
ln () ≈ 02487H (34)

(the small correction resulting from the apertures has been ignored). The low frequency interior current at

the ends of the transmission line (with short circuit loads) is thus given by

 =   = 


0
(35)

where the shielding effectiveness of the calibration tube is then

 ∼ 110

2
4 (36)

Here the factor of 11 arises from the eleven sets of holes along the tube axis. Evaluating this for the cable

parameters given above, the low-frequency shielding effectiveness for the circular-hole calibration standard

is

 ≈ 000133 (−575 dB) (37)
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which by design is nearly the same value for the slotted calibration standard.

At each end of the tester there are 50 ohm current measurement systems with 10 to 1 transformers.

Thus one half ohm loads are present

 =  = 50 ohm10
2 = 05 ohm

We expect the frequency for which these compete with the inductive reactance to be down around

 = 2
or 320 kHz.

3.2 General Solution

The general solution is now found for an exterior traveling wave current

 = 0


Near the first resonance the end current probe loads represent the dominant loss mechanism in the line. In

this section the axial spacing between sets of holes  is assumed to be small compared to the wavelength so

we can take the sources to be continuously distributed over a distance of

 = 11 = 22 in

with a spacing of 2 in from each of the two loads (the last aperture is actually 3 in from each load). The

distributed voltage and current source strengths over the driven region ||  2 are

 = 0
 (38)

 = 0
 (39)

where  is given by (10), and  is given by (20) and 0 and 0 are constant amplitudes. The

transmission line equations for the interior are




= 0 +  (40)




= 0 +  (41)

These equations are used for ||  2 but can also be applied outside the source region by taking the

drives  and  to vanish for 2  ||  2. Eliminating the voltage from the transmission line

equations gives

µ
2

2
+ 2

¶
 =




+ 0 = 

  ||  2 (42)

Here 
√
00 = 0 =  (since dielectric materials around the conductors are not being considered) is the

wavenumber for the interior region and
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 =  (0 + 00) = 20 [() + (00) ( 0)] = (00) 0 ( − )
2

2
4 (43)

It is convenient to break the right hand side of (42) into even and odd parts since the geometry is symmetric

along its length (in  with the origin taken at the center of the line). Thus, the interior transmission line

current can be written as

 =  + 
where

 =  cos  +
1

2
 sin  (44)

 =  sin  − 

2
 cos  (45)

and  and  are arbitrary coefficients. The load  =  −  terminates the line at  = ±2
but can be transformed to ±2 as 0, where [11]

± (±2)
 (±2) = 0 = 0

"
 cos


2
(− )− 0 sin


2
(− )

0 cos

2
(− )−  sin


2
(− )

#
≈  − 0 (− ) 2 (46)

and

0 =
p
00 =

0
2
ln () ≈ 113 ohms

is the characteristic impedance of the coaxial region; the final approximation follows because (− ) 2 ≈ 2
in. is short compared to the wavelength and because 0  1. The boundary condition (46) can be

written as




(±2)−  (±2) = ±00 (±2) (47)

or




(2)− 0

0
 (2) = 0 sin (2) (48)

and




(2)− 0

0
 (2) = 0 cos (2) (49)

Substituting (44) and (45) into these boundary conditions, the arbitrary coefficients  and  are

found from

− sin (2) +
1

2
 {sin (2) + (2) cos (2)}
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Figure 6. Calculated shielding effectiveness for both slotted and circular hole calibration tubes with 05

ohm and 17 ohm loads.

−0 0
∙
 cos (2) +

1

2
 (2) sin (2)

¸
= 0 sin (2) (50)

 cos (2)− 

2
 {cos (2)− (2) sin (2)}

−00
∙
 sin (2)− 

2
 (2) cos (2)

¸
= 0 cos (2) (51)

The total interior current  at each end of the transmission line is hence given by

 (±2) =  (±2)
∙
cos



2
(− ) +  (00) sin



2
(− )

¸
(52)

Figure 6 shows the slotted as well as the circular calibration tube response for two assumed real loads.

The 05 ohm value is the low frequency limit discussed above; the 17 ohm value was used because it fits

the peak height in the experiment. Notice that the change in load value only has an impact on the peak

height and the very low frequency region. This is the expected effect from the preceding inductive solution,

where the small load value did not come into the solution, except at the very low frequencies. We also see

that the calibration tube with circular holes has reduced penetration compared to the slotted tube. This is

also expected from the cancellation of the magnetic and electric polarizability contributions near resonance

as discussed in the next subsection.

3.3 First Resonance

Due to the complicated nature of the preceding exact expressions for the current it is useful to find a

simpler form near the frequency of the first resonance. Near the first resonance the interior current takes

the form
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 ∼ 1 sin  ≈ 1 sin
³


´
= 1 cos




( − 2) (53)

where the final approximate equality holds because of the low impedance of the loads   0 at

 = ±2. Taking the current to be expanded in a set of orthogonal modes

 =

∞X
=0

 cos



( − 2) (54)

such that  (±2)→ 0, then the amplitude can be found by the use of the orthogonality relation

Z 2

−2
cos




( − 2) cos

0

( − 2)  = 0 (55)

where  = 1 for  = 0 and  = 2 for  ≥ 1. Thus from (42) (extended to ±2 by the inclusion of delta
and unit step functions)

µ
2

2
+ 2

¶
 =




+ 0

= 
 [ ( + 2)−  ( − 2)]+

0
 [ ( + 2)−  ( − 2)]  3 ||  2 (56)

the modal coefficients are found using





∙
2 −

³


´2¸
 = 

Z 2

−2
cos




( − 2) 

+0

h
cos



2
(+ ) 

−2 − cos 
2
(− ) 

2
i

(57)

The first resonant mode thus has amplitude given by



2

∙
2 −

³


´2¸
1 = 2

Z 2

0

sin
³


´
sin ()  − 02 sin

µ


2

¶
cos (2) (58)

where, by introducing the quality factor for the first mode 1, this becomes



2

"
2 −

³


´2µ
1− 

21

¶2#
1 ≈ 2

Z 2

0

sin2
³


´
 − 02 sin

µ


2

¶
cos

µ


2

¶

= 2

∙
1− 


sin
³



´¸
− 0 sin

µ




¶
(59)

or "
2 −

³


´2µ
1− 

21

¶2#
1 ≈ −− +

1


sin () (60)

Here
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± = (00) 0
 ± 

2
4 (61)

where 0 is again the characteristic impedance of the coaxial region and the quality factor 1 can be

evaluated by means of

1 =



(62)

where the average power loss (resulting from the end loads alone) is

 =
1

2
 | (−2)|2 + 1

2
 | (2)|2 ≈  |1|2 (63)

and the energy stored is

 =
1

2
0

Z 2

−2
| ()|2  ≈ 0 |1|2

Z 2

0

sin2
³


´
 =



4
0 |1|2 (64)

If it were desired to add the power lost on the rod, due to conductor surface resistance  =
p
 (2), it

is

 =
1

2



2

Z 2

−2
| ()|2  = 

2
|1|2

Z 2

0

sin2
³


´
 =



2



4
|1|2

Furthermore, if it is desired to capture the frequency shift resulting from the load reactance  we can

write the complex power as

 =
1

2
 | (−2)|2 + 1

2
 | (2)|2 ≈  |1|2

Using this to define a complex value of 1 through 1

1 =  ( ) = 11 −  (04) we see that

this defines a new shifted form

"
2 −

³


´2µ
1− 

21
− 

02

¶2#
1 ≈ −− +

1


sin () (65)

Noting that  =  corresponds to a resonant frequency of 227MHz, we can put this initial value for 0 into

the new  perturbation term and recompute the resonance condition as  ≈ () [1− (002)];

for a value  ≈ 15 ohms we find the corresponding resonance to be 208 MHz.

The first resonant quality factor (assuming 05 ohm loads) is

1 ≈ 0

4

≈ 1773 (66)

and for 17 ohm loads

1 ≈ 522
The peak value of the current is

1 ≈ 1

µ




¶2 ∙
−−+

1


sin ()

¸
≈ 1

µ




¶2 £
−−+ (1− )

¤
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= 01 (00)


©
− 1


sin ()

ª− 
©
+

1

sin ()

ª
2

4

≈ 01 (00)
 (2− 1)− 

2
4 (67)

For the 05 ohm load with circular holes the shielding effectiveness at the first resonance becomes

10 ≈ −211 dB (68)

whereas for the 17 ohm load with circular holes

10 ≈ −317 dB
For the slotted tube with 05 ohm loads

10 ≈ −144 dB (69)

and with 17 ohm loads

10 ≈ −250 dB
Figure 6 in the preceding subsection is consistent with these peak values. The fact that the slotted tube

has a considerably larger response even though the magnetic polarizabilities of the two tubes are nearly the

same results from the cancellation of the magnetic and electric drives near resonance in the circular hole

case (as can be seen in the preceding formula), whereas for the slotted tube the electric drive is near zero.

This interesting change in response is an analog of other types of cancellation that occur in actual braided

cables.

3.3.1 Discrete Aperture Placement At Resonance

To be certain that the error introduced by the approximate continuous distribution of sources, versus

the actual discrete set, is not large (an axial equivalent to the preceding finite set used in the azimuth), this

section will use the sum of the actual discrete aperture locations to predict the shielding effectiveness. The

transmission line equations for a single set of four apertures at  = 0 are




= 0 +  ( − 0) (70)

and




= 0 +  ( − 0) (71)

Eliminating  gives µ
2

2
+ 2

¶
 =




{ ( − 0)}+ 0 ( − 0) (72)

where taking  to be representable as the set of modes (54) over  from  = −5 to +5 (with 0 = ) and

using the orthogonality relation in (55),
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´2¸
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5X
=−5


h
0

³


´
sin




(− 2) + 00 cos




(− 2)

i
(73)

Inserting the finite quality factor for the first mode  = 1 thus gives



2

"
2 −

³


´2µ
1− 

21

¶2#
1

≈ −
5X

=−5

h
0

³


´
cos () cos () + 00 sin () sin ()

i
(74)

Replacing  by the resonant value  on the right hand side, and using identities 2 sin2  = 1 − cos (2)
and 2 cos2  = 1 + cos (2), gives "

2 −
³


´2µ
1− 

21

¶2#
1

≈ −


5X
=−5

[(00 + 0)− (00 − 0) cos (2)]

= 11



− − 




+

"
1 +

5X
=1

³
2 + −2

´#
(75)

Using the geometrical series formula
P

=1 
 = 

¡
1− 

¢
 (1− ) this can be written as

"
2 −

³


´2µ
1− 

21

¶2#
1

≈ 11



− − 




+

sin (11)

sin ()
= −− +

sin ()

() sin ()
(76)

where 11 has been taken as  in the final expression. At resonance, this becomes

1 ≈ 01 (00)


n
− sin()

() sin()

o
− 

n
+

sin()

() sin()

o
2

4 (77)

and because sin () ≈  this result is expected to nearly agree with the previous continuous

approximation (67). In fact for  ≈ 26 in. and  ≈ 2 in (sin () and  differ by less than 1%) and

a quality factor of 1773 (calculated in the previous section), (77) yields 10 ≈ −209 dB and is in
agreement with (68), and for the slotted tube 10 ≈ −144 dB in agreement with (69).

3.4 MODEL COMPARISONS AND EXPERIMENTAL RESULTS

In this section shielding effectiveness calculations for the two standard calibration tubes are compared

to the measured results obtained using the cable tester arrangement shown in Fig. 1. Because we need

more information about the load values associated with the current probes at the ends of the tester, the

first subsection discusses some work done to improve our understanding of these loads as a function of

frequency, particularly in the vicinity of the resonance of the device. The comparisons are then done using

assumed loads that are consistent with this load characterization.
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Figure 7. A comparison of the two calibration tube responses with loads of  = 17− 15 ohms.

3.5 Loads And Adaptors

The current probes at the ends of the cable tester represent  → 05 ohm loads at low frequencies, as

stated above. Near the resonance of the tester (with the calibration tubes) at  ≈ 208 MHz it was found
that the loads exhibit increasing losses as well as reactive effects; an assumed load value  ≈ 17 − 15

produced approximately the correct quality factor as well as resonant position. Results near the resonance

with this fit for both the slotted and circular hole calibration tubes are shown in Figure 7.

To get a better understanding of these load values several experiments were performed. An original

adaptor from a type N connector to the current probe, shown in Figures 8 and 9, was used to connect the

current probe to the network analyzer and perform reflection measurements as shown in Figure 11. These

yielded a range of values depending on which current probe was examined,  ≈ 3− 53 ohms to 37− 547

ohms. It was realized that the large capacitance to ground associated with this original adaptor design was

responsible for the difference in value being measured versus the values used to fit the cable tester model to

the response data.

The adaptor was redesigned as shown in Figures 8 and 10 to reduce this capacitance. The new

measurements of the current probe loads were  ≈ 158− 316 ohms to 151− 320 ohms. The real part is

now in the ballpark of what was required in the fit. We see that the reactive part has also been reduced but

it is difficult to measure this accurately. It is interesting that, even for the moderate frequencies ( ≈ 200
MHz) being considered in this experiment, it is a challenge to obtain accurate values for these nonstandard

loads. This represents an analog of what we face in characterizing the high frequency behavior of audio

frequency components at the ends of multconductor cables.

These new adaptors are also used for testing more standard cables in the cable tester as shown in

Figure 12, where dielectric weights are used to secure the cable to the ground plane and paper shims are

used to provide a known and constant spacing (referred to as  in the preceding analysis) between the cable

and the ground plane.

3.5.1 Calibration Tube Shielding Effectiveness

The experimental shielding effectiveness of the circular-hole calibration tube is shown in Figure 13. The
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Figure 8. Drawing of original and redesigned adaptors.

Figure 9. Original current probe to cable adaptors.

Figure 10. Redesigned current probe to cable adaptors.
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Figure 11. The measurement system used to sample the interior transmission line current in the cable

tester setup.

Figure 12. The cable tester setup with adaptor for measuring the shielding effectiveness of a flexible coaxial

cable.
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Figure 13. Experimental shielding effectiveness from the circular hole calibration tube. The experimental

quality factor is noted on the graph.

experimental quality factor is also noted on the graph. Figure 14 shows the predicted shielding effectiveness

from (52) for both the low frequency load values and the fit to the resonant behavior of the current probes.

The 05 ohm load values mimic the low frequency behavior, but the loads exhibit more loss at the higher

frequencies.

Figure 15 shows a comparison of experimental results and predicted results for the slotted calibration

tube. The experimental results are the black curves and the model results are the grey curves from (52).

4 SUMMARY

In this report two standard calibration cables were examined from both an analytic model and

experimental point of view. The analytic model is based on a transmission-line approach and is used to

evaluate the current induced on the inner conductor of the cable (relative to the exterior current driven on

the outer shield of the cable) due to penetrations of the electromagnetic fields through the shield apertures.

The transmission line representation for the cable contains distributed voltage and current sources used

to model the leakage of magnetic and electric fields through the shield apertures (for this report, periodic

circular holes or rectangular slots), as well as distributed inductance and capacitance parameters which

capture the energy storage (and distributed resistance to represent absorption, if applicable) associated

with the physical characteristics of the cable. The source terms in the transmission line model are given in

terms of the magnetic and electric dipole moments induced in the shield apertures and are a function of the

shield geometry.

A general solution for the shielding effectiveness of the calibration standards are provided and, for

convenience, approximate formulas in the limiting cases of low frequency and at resonance are also given.

These have been shown to yield good agreement with the more rigorous shielding effectiveness derivation

and hence can be used to quickly assess (or perhaps bound) the shielding performance of the cable.

To complement and compare with the analytic formulation, shielding effectiveness measurements using

a cable tester setup were also performed. Two types of calibration tubes were constructed, one having

circular hole penetrations and the other having narrow slot penetrations. The slotted calibration tube was

designed to exhibit the same low frequency magnetic penetration but no significant electric penetration.

In comparing the analytic and experimental results, it became clear that the characterization of the load

impedance on the interior conductor is important in accurately modeling the shielding effectiveness both

at very low frequencies (where the end loads eventually dominate over the inductance of the coaxial tube)

and at resonance (where the real part largely determines the peak level and the reactive part influences the

27



0 50 100 150 200 250
f (MHz)

-60

-50

-40

-30

-20

S
E

 (
dB

)

Load Side (1.7 - i 15 ohm loads)
Drive Side (1.7 - i 15 ohm loads)
Load Side (0.5 ohm loads)
Drive Side (0.5 ohm loads)

Figure 14. Predicted results for the circular hole calibration tube for two load values associated with the
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shown.
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resonant position). Accurate determination of these current probe load values near the tube resonance posed

a challenge, despite the moderate frequency of operation considered. The slotted tube has considerably

larger resonant penetration than the circular tube due to cancellation of the magnetic and electric parts in

the circular hole apertures.

The analysis of the calibration tube setup was done to improve our understanding the performance

of the tester in order to properly interpret its response with actual shielded multiconductor cables. In

addition, this setup forms an instructive arrangement since issues, such as cancellation of components of the

penetration as well as end load component characterizations (in this case the current probes), arising in the

modeling are similar to those arising with actual cables, but in a more controlled and repeatable geometry.
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