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Abstract

Fault-tolerance has been identified as a major challenge for future extreme-scale systems.
Current predictions suggest that, as systems grow in size, failures will occur more frequently.
Because increases in failure frequency reduce the performance and scalability of these sys-
tems, significant effort has been devoted to developing and refining resilience mechanisms
to mitigate the impact of failures. However, effective evaluation of these mechanisms has
been challenging. Current systems are smaller and have significantly different architectural
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features (e.g., interconnect, persistent storage) than we expect to see in next-generation sys-
tems. To overcome these challenges, we propose the use of simulation. Simulation has been
shown to be an effective tool for investigating performance characteristics of applications on
future systems. In this work, we: identify the set of system characteristics that are necessary
for accurate performance prediction of resilience mechanisms for HPC systems and appli-
cations; demonstrate how these system characteristics can be incorporated into an existing
large-scale simulator; and evaluate the predictive performance of our modified simulator.
We also describe how we were able to optimize the simulator for large temporal and spatial
scales–allowing the simulator to run 4x faster and use over 100x less memory.
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Introduction

Fault-tolerance has been identified as a major challenge for exascale-class systems. As
systems grow in scale and complexity, failures become increasingly likely; impacting per-
formance and scalability. Current predictions suggest that for next-generation systems the
mean time between failures could fall to hours, or even minutes [14]. As failure rates in-
crease, more time is spent preparing for and recovering from failures and less time is spent
doing (useful) application work. Given these dire predictions and the dynamics of fault-
tolerance techniques, significant effort has been and is being devoted to investigations aimed
at improving system resilience and related mechanisms.

Effective evaluation of fault-tolerance strategies on extreme-scale systems has been dif-
ficult for several reasons. Most significantly, researchers often need to study machines that
either: are larger than those that are currently available; or have hypothetical architectures
or configurations. As a result, existing systems are not sufficient to evaluate the perfor-
mance impact of fault tolerance techniques on next-generation extreme-scale systems. Tests
performed on these systems cannot accurately account for the impact of scale and may not
be able capture the impact of architectural features (e.g. interconnect technologies) whose
performance varies dramatically from current systems. Second, the largest and most ad-
vanced current machines generally are not accessible to most researchers. Third, analytic
techniques for predicting performance in future systems are lacking. While accurate models
for coordinated checkpointing exist [7,10], we lack analytical tools for predicting the perfor-
mance impact of many other fault tolerance mechanisms (for example, message-logging [19],
communication-induced checkpointing [2] and hierarchical checkpointing [27]).

The broader objective of this project is to study general fault-tolerance techniques and
their impacts on application performance. However, for the work presented in this paper,
we focused on checkpoint/restart. Checkpoint/restart (or rollback recovery) is the technique
most commonly used on today’s systems. During normal operation, checkpoint/restart pro-
tocols [12] periodically record the state and address space of all application processes to
stable storage devices. When a process fails, a new incarnation of the failed process is
recovered from the most recent checkpoint – therefore limiting lost work. For distributed
applications, coordinated checkpointing pauses all processes to record a globally consistent
snapshot of the application’s state. Uncoordinated checkpointing protocols avoid synchro-
nization overheads and I/O contention by allowing each process to checkpoint independently.
Uncoordinated checkpointing protocols also avoid rolling back non-failed processes. While
there have been a number of studies which show that the overheads of checkpoint/restart
could be prohibitively expensive for future extreme-scale systems [15,31,35], there has been
a great effort in the research community to optimize these rollback/recovery protocols to
ensure they remain viable [8, 11, 15,17,19,20,24,26,29].

Researchers have shown that simulation is an effective tool for investigating the per-
formance characteristics of applications on current and hypothetical future systems [15, 22,
30, 41]. In this paper, we focus on efficient simulation of the impact of coordinated and
uncoordinated checkpoint/restart protocols on application performance. Our approach is
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motivated by two observations: (1) simulation can be very computationally expensive, and
simulation efficiency is maximized by considering only the features of the computing en-
vironment that are relevant to the performance impact of checkpoint/restart; and (2) the
coarse-grained operation of checkpoint/restart (on the order of minutes to hours) allows us
to forego the overheads and complexities of cycle-accurate simulation. Based on these ob-
servations, we hypothesize that like operating system noise [16, 21], resilience mechanisms
(e.g., writing checkpoints, restarting after a failure or redoing lost work) can be modeled as
CPU detours. A CPU detour is a number of CPU cycles that are used for something other
than the application.

In this work, we provide a principled approach to simulating checkpoint/restart based
fault-tolerance for large-scale HPC systems in a failure-prone environment. Based on this
approach, we also present an efficient and accurate framework for simulating the perfor-
mance impact of coordinated and uncoordinated checkpoint/restart protocols for existing
and hypothetical extreme-scale systems and applications. Specific contributions of the work
include:

• A survey of system, application, and resilience characteristics required for accurate and
efficient simulation of extreme-scale workloads in a failure-prone environment;

• A prototype checkpoint/restart simulation framework, based on functional and performance-
oriented extensions to LogGOPSim [22] which decrease memory consumption by over
100x and runtime by 4x;

• A validation of our hypothesis that resilience overheads can be modeled as CPU de-
tours; and

• An evaluation of the predictive performance of our simulation approach showing an
error of less than 3% against analytic models for checkpointing both with and without
failures.

The organization of this paper is as follows: in the next section, we discuss the relevant
system, application, failure and resilience characteristics that must be considered by our
framework. Additionally, this section offers more background on checkpoint/restart proto-
cols and shows how they factor into our considerations. The LogGOPSim provides an overview
of the simulator that serves as the basis of our prototype. Followed by the LogGOPSim exten-
sion’s section, which describe the functional and performance-oriented extensions we made
to LogGOPSim to improve its ability to simulate coordinated and uncoordinated checkpoint
protocols at our desired time and space scales. Following that, we evaluate the impact of our
performance optimizations and validate the accuracy of the extended simulator for check-
point/restart. We then discuss related works, and finally, we conclude by summarizing the
impact of our current contributions and plans for future work.
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Considerations for Resilience at Scale

Toward the goal of efficient, large-scale simulations that allow us to evaluate resilience
techniques, we must identify the relevant hardware and software characteristics that im-
pact simulation performance. We now describe our principled approach to identifying these
characteristics: in turn, we consider system features, application behavior, fault-tolerance
mechanisms and then the impact of failures.

Hardware Characteristics

Our objective is to develop a simulation framework that will enable us to evaluate re-
silience techniques on current and future systems. The simulator must be able to accu-
rately and efficiently model the impact of faults and fault tolerance on application per-
formance given the: (a) temporal scale, (b) spatial scale and (c) architectural features of
next-generation extreme-scale systems.

Temporal Scale

Faults and fault tolerance mechanisms typically operate at large time-scales (for example,
minutes, hours or even weeks). As we stated in the introduction, projected mean-time-to-
interrupt (MTTI) on the first exascale machines are on the order of hours. Additionally,
many of the target applications are long running, and the behaviors of the applications as
well as the systems are expected to be dynamic. As a result, simulating resilience requires a
simulator that can model relatively long periods of application execution.

Spatial Scale

The largest current HPC systems are comprised of tens of thousands of nodes. If current
predictions hold, the first exascale system may be over an order of magnitude larger. Our
simulator must be capable of modeling the behavior of systems that are much larger than
any that are currently available.

Architectural Features

The first exascale system is not projected to appear until sometime after 2020 [37]. In the
intervening span of years, we expect to see advances in interconnect and persistent storage
technologies. Our simulator should also allow us to evaluate the impact of these advances
on resilience mechanisms.
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Application Characteristics

Our simulator must be capable of accounting for the performance aspects of the applica-
tions behavior. Prior research and experience has shown that it may be sufficient to do this
at the course granularity of the target application’s computation, specifically: its communi-
cation graph, a description of how processes communicate with each other; its computation
time, the time between communication events; and its dependencies, a partial ordering of all
communication and computation events. In the next section, we show how these character-
istics interplay with resilience mechanisms.

Impact of Checkpoint/Restart Mechanisms

In checkpoint/restart protocols [13], the application or system saves snapshots of appli-
cation state, checkpoints, to persistent storage. In coordinated checkpointing, all processes
checkpoint at the same time (in order to mark a consistent global state), and in the event
of a process failure, all processes must revert to their most recent checkpoint. While coordi-
nated checkpoint/restart is the predominant approach, it suffers several limitations including
increased overhead with system size and global process perturbations during checkpoint and
recovery phases. Uncoordinated checkpoint/restart protocols, in which processes can check-
point and recover independently, address these limitations – though they introduce new
ones. In addition to these coarse protocols, many optimizations have been proposed in-
cluding: diskless [32,33,36], hierarchical [27,28] communication-induced [3] and incremental
checkpointing [17, 18]. Despite the proliferation of resilience mechanisms, we lack effective
methods for evaluating the true costs of each of these approaches on exascale systems [40].

Given the large temporal and spatial scales of the simulated systems that we wish to
consider, effective simulation demands that we eliminate unnecessary detail. Existing work
on modeling and simulation of coordinated checkpointing provides us with a guidepost on
the required components and level of details [7, 10,34].

In a failure-free environment, we can accurately model the impact of coordinated check-
pointing by considering: the checkpoint time, amount of time that checkpointing activities
prevent the application from executing, the checkpoint interval, time between consecutive
checkpoints, and work time, the amount of time that the application would execute in the
absence of checkpointing activities. Checkpoint time may need further refinement poten-
tially including a process coordination phase, the checkpoint calculation phase during which
time the checkpoint data is computed, the checkpoint commit time to write the checkpoint
to stable storage and the resumption phase to continue normal application execution.

For approaches like uncoordinated checkpointing that lack explicit coordination, we also
need to consider the application characteristics like communication patterns described pre-
viously. Consider a simple uncoordinated checkpointing strategy where each process gen-
erates checkpoints strictly according to local policies. Communication dependencies may
cause checkpointing activities in one process may perturb the behavior and performance of
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other processes. For example, if the recipient of a message is currently busy generating a
checkpoint then reception of the message may be delayed until the checkpoint is complete.
Further, all actions that are dependent on the reception of the message will also be delayed.
Additionally, many asynchronous resilience techniques use message logging [13] to mitigate
recovery costs. Accounting for this activity also requires that we incorporate information
about communication patterns into our simulation.

Impact of Failures

Meaningful evaluation of resilience mechanisms necessarily includes the introduction of
failures. Initially, we consider only fail-stop failures. To accurately simulate the impact of
the occurrence of failures on application performance, at a minimum, we need to consider:
(a) failure characterization; (b) restart time; and (c) recovery description.

Failure Characterization

To evaluate the impact of faults in the context of a resilience mechanism, we require a
description of how failures occur in the simulated system. Although this could be expressed
in many ways, the most common and succinct description of failure occurrences is in the
form of a probability distribution.

Restart Time

When a failure occurs, some time elapses before any computation can be undertaken on
the failed node. To account for this fact, we need to know the time between the occurrence of
a failure and the moment when the failed node can resume computation. This includes time
to restart failed nodes and processes and to read checkpoints from persistent storage, but
does not include any time for recovery. For example, in the case of coordinated checkpointing,
the end of the restart interval coincides with the beginning of rework (i.e., redoing work lost
due to the failure).

Recovery Model

When the failed node has restarted and is able to resume computation, there is typically
some amount of work that needs to be redone before the system can again make meaningful
forward progress. For example, in coordinated checkpointing, all of the computation between
the last valid checkpoint and the occurrence of the failure needs to be redone. Typically, each
resilience mechanisms presents a different method for recovering from a failure. Therefore,
to accurately account for the cost of recovering from a failure, we need a model for each
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Required to Model Parameter Name Parameter Description

All
Checkpointing

coordination time time for processes to coordinate the
taking of a checkpoint

checkpoint computation time to compute a checkpoint
checkpoint commit time time to write a checkpoint to stable

storage
checkpoint interval time between consecutive checkpoints

work time time-to-solution without failures or re-
silience mechanisms

Uncoordinated
Checkpointing

communication graph details of inter-process communication
computation events failure-free computation pattern of the

application
dependencies partial ordering of communication and

computation events

Failure
Occurrences

failure characterization rate and distribution of failures
restart time time to read a checkpoint from stable

storage after a failure
recovery model a model of the time required before for-

ward progress can resume

Table 1. Summary of the parameters needed for accurate
simulation of HPC applications in a failure-prone system.

resilience mechanism that allows us to determine the amount of time that will elapse before
the application resumes forward progress.

LogGOPSim

In this section, we describe LogGOPSim [22, 38], the simulator we extend to meet the
requirements prescribed by the considerations in the previous section. We choose LogGOPSim
because it is shown to be accurate, freely available and fast enough to support large-scale
simulations while already capturing many of the application and hardware characteristics we
require (as we discuss). As described in Section , functionally, we simply needed to extend
it to account for checkpoint/restart and failure recovery.
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Simulating Application Characteristics

LogGOPSim is an application simulator based on the popular LogP model [9]. LogP and its
variants have a long history of accurately predicting the performance of large-scale parallel
applications and algorithms. The simulation framework consists of three major components:
a trace collector (liballprof), a schedule generator (SchedGen), and an optimized discrete-
event simulator (LogGOPSim).

The trace collector records the actual MPI communication of the target application. The
schedule generator uses the MPI traces to generate a schedule that captures the required
characteristics of control- and dataflow of the application while preserving the happens-
before relationship of events within the application. The discrete-event simulator reads the
generated schedule, performs a full LogGOPS simulation and reports the completion time
of each process.

This validated simulation framework was developed to simulate applications at scale, and
has the ability to extrapolate from traces collected on smaller scale systems. This allows
for the simulation of platforms larger than those currently in existence while keeping the
same communication characteristics (equivalent to weak-scaling an application). Although
the extrapolated trace may not precisely represent the communication pattern on the larger
system, the impact of this inaccuracy has been shown to be small [22] if extrapolation
factors are bounded. This framework has been used to evaluate the performance of collective
communications [23] and the impact of OS noise [21] on large-scale applications. A detailed
study of the simulation framework and its functionality is presented in [22].

Simulating Hardware Characteristics

Because LogGOPSim was initially developed to model application performance in large-
scale systems [21], it allows us to model systems with the characteristics described in the
preceding section. First, it provides the simulation scale necessary for evaluating checkpoint-
ing techniques. For a single collective operation, LogGOPSim can simulate up to 10,000,000
processes. For more general workloads, it is capable of simulating more than 64,000 processes.

Second, with some minor modifications, LogGOPSim is also capable of simulating the
necessary temporal scale. The initial implementation of LogGOPSim was intended for com-
paratively short simulations. As a result, the temporal scope of the simulations that can be
executed by the unmodified simulator is significantly limited by the size of the simulating
system’s memory. To achieve the temporal scale that we needed with reasonable quantities
of system memory, we made some simple modifications to LogGOPSim. These modifications
are discussed more fully in a subsequent section.

Third, LogGOPSim also allows us to model the impact of emerging interconnect technolo-
gies. Working within the LogGOPS model, we can simulate the impact of many changes in
network behavior on resilience techniques by modifying the model’s parameters. In addition,

14



as we discuss more fully below, our model of resilience mechanisms allows us to evaluate how
improvements to persistent storage systems (e.g., the widespread availability of local SSDs)
will affect the performance of resilience mechanisms.

Extending LogGOPSim for Large Scale Resilience Research

Simulating Failures and Resilience

The key insight that allows us to use LogGOPSim is that resilience mechanisms (e.g.,
writing checkpoints, restarting after a failure, redoing lost work) can be modeled as CPU
detours. A CPU detour is a number of CPU cycles that are used for something other than
the application, similar to OS noise [16,21]. One key difference between OS noise and these
resilience detours is that resilience “noise” events may need to be replayed synchronously
with the application communication/computation pattern rather than asynchronously as is
typical of OS noise.

We model resilience in LogGOPSim using a new library, libsolipsis, that generates
CPU detours based on a specified resilience mechanism and the application’s communication
pattern. Similar to liballprof, the library links to the application using the MPI profiling
interface, intercepting all MPI calls. The output of this library is a per-process detour file
that can be provided as input to LogGOPSim. The detour file contains the timestamp and
the duration of each of the resilience mechanism detours. The duration of detours, Tdetour,
that represent checkpoints are computed using the following expression.

Tdetour = Tcoord + Tckpt + Tcommit

where

Tcoord = time to coordinate the taking of a checkpoint

Tckpt = time to compute a checkpoint

Tcommit = time to commit the checkpoint to stable storage

We also generate detours to represent the impact of node failure and pessimistic message
logging. In the case of failure, the duration of the detour includes both the restart and
rework time on the failed node; libsolipsis computes the rework time by calculating the
amount of simulated time that has elapsed since the previous checkpoint. For pessimistic
message logging, libsolipsis calculates the time required to write the message to the log
given a bandwidth to stable storage.

For the purposes of this work, we focus on the libraries’ ability to emulate performance
of two popular resilience mechanisms: coordinated checkpointing and asynchronous check-
pointing with message logging [12].
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We focus on these on these two methods because coordinated checkpoint/restart is cur-
rently the most popular approach and asynchronous checkpointing has been proposed as a
low-overhead checkpoint option for future extreme-scale systems.

For asynchronous checkpointing with message logging, our library generates detour files
that contain the timestamp and the duration of the local checkpoints. Because no coordi-
nation is required, Tcoord = 0. Also, for simplicity, we currently assume that Tckpt = 0. For
pessimistic message logging [12], we modify the CPU overhead parameter (o in the LogGOPS
model) for send operations (os) to account for the log write to stable storage. The LogGOPSim
simulator uses a single detour file to simulate the local checkpoints in the system; to model
the asynchronous nature of these checkpoints, each node starts at a different location in the
file.

For coordinated checkpoint/restart, the library generates a detour file that contains the
timestamp and the duration of each checkpoint taken by the application. For this work, we
have assumed bulk-synchronous parallel (BSP) applications. Because applications of this
type are largely self-synchronizing, we set Tcoord = 0. And again, for simplicity, we are cur-
rently assuming that Tckpt = 0. When the simulation is run, we use the “--noise-cosched”
option of the LogGOPSim simulator. This option ensures that the detour file is co-scheduled
on all processors, thereby simulating coordinated checkpoint/restart. We also force each
process to start at the beginning of the detour file to ensure proper timing of checkpoints.

To simulate failure, the library generates failure times for each node from a random
distribution based on a per-node mean time between failure (MTBF). When a failure is
generated, the library adds a detour event that includes the the time required to restart
from the last checkpoint and the time required for rework (i.e., the time since the last
checkpoint). The LogGOPSim simulator will ensure that all communication in the trace file
that depends on the failed node will be delayed until the node has “recovered”.

Optimizing LogGOPSim for Scale

To simulate periods of execution long enough to be meaningful for fault tolerance (i.e.,
application wallclock times long enough that application failures are expected) while keeping
traces manageable, we extended LogGOPSim to support automatic execution trace extrapola-
tion. Because LogGOPSim was originally designed to simulate single collective operations and
short application traces it assumed a comparatively small input dataset. In our use cases,
the extent to which the existing LogGOPSim could scale up the length of simulated execution
and the number of simulated nodes was severely limited by the amount of available memory.

LogGOPSim, as originally published, requires a pre-processing step which performs the ex-
trapolation to generate communication data for all simulated nodes. The simulator binary
then attempts to map this file into virtual memory and use it directly as input data about
simulated events. The size of this file is proportional to both the length of the simulated
execution and the number of simulated nodes. As a result, simulating long running applica-
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tions or large-scale systems requires very large data sets. Additionally, when collecting data
at varying scales, a user would be required to re-run the entire toolchain from the trace data
to the simulator with different parameters.
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Figure 1. Comparison of the memory consumption re-
quired to simulate a system running one of three applications
using the original LogGOPSim simulator and our modified ver-
sion as a function of input trace length. Our windowing pro-
tocol decouples memory usage from trace length. As a result,
with a fixed memory budget, our modifications allows us to
simulate much longer periods of application execution than
was possible with the original simulator.

We re-wrote the input handling portion of LogGOPSim to include two critical changes.
First, the modified simulator performs extrapolation in main memory as needed, rather than
as a pre-processing step on disk. The traces generated from profiling an MPI application
are used directly as input, and are proportional in size to the original profiled node count,
rather than the extrapolated node count. Second, the simulator works on a small sliding
window of input data, rather than mapping it in all at once. The code loads and extrapolates
data from the traces at fine granularity, loading only a small portion of the trace file at a
time. Because of these changes, the simulator’s memory usage, shown in Figure 1, remains
constant independent of input trace size. In other words, the same amount of memory would
be required to simulate a minute, hour, day, week or month of application execution time!

In theory, an operating system should be able to perform this type of efficient memory
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allocation when using a system call such as mmap. However, on the Linux 2.6.32 systems that
we used, windowing the input data at the application level allowed for much greater scales
before the system started to thrash virtual memory.

Evaluating our LogGOPSim Extensions

Correctness of the Extensions

We have verified with a careful comparison of the sequences of simulation events generated
by each of the two simulators that our modified LogGOPSim produces exactly the same
sequence and timing of simulated events as the original validated LogGOPSim tools. Moreover,
the two simulators produce identical simulated runtimes.

Evaluating Performance Enhancements

In this section, we evaluate the performance impact of our modifications to LogGOPSim.
We consider two important metrics to evaluate our changes, maximum memory requirement
and simulation performance in events/second, and then finally examine overall wallclock
time for simulating the same problem

Memory Usage

With our changes, the amount of disk space needed is no longer proportional to the
node extrapolation factor, and the amount of RAM needed is no longer proportional to the
length of the trace data. This enables simulation of long executions of many nodes: for
the traces used here, memory usage decreased dramatically as shown in Figure 2. Memory
usage dropped by a factor of 20 for HPCCG, 60 for LAMMPS, and 900 for CTH, with the
magnitude of the drop related to an applications communication pattern and the greatest
distance between the initiation of a non-blocking operation and waiting for its completion.
This increase of available memory allowed us to simulate over 12 minutes of HPCCG at
256K nodes and over 7 minutes of LAMMPS at 256K nodes in a short amount of time, as
shown in Figures 2(a) and 2(b), respectively.

Simulation Performance

Figure 3 and Figure 4 show the increase in performance for our simulation framework.
We show this increase both in terms of event per second of the simulator (Figure 3) and the
wall clock time to perform the simulation (Figure 4). We see from these figures, a factor of
2.5 to 4X increase in performance from our modifications. We believe that the substantial
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Figure 2. Comparison of the memory consumption re-
quired to simulate a system running one of three applications
using the original LogGOPSim simulator and our modified ver-
sion. With a fixed memory budget, our modifications al-
lows us to simulate systems that are significantly larger than
could be simulated with the original simulator. The memory
consumption decrease varies by communication pattern and
varies from 20X for HPCCG to 900X for CTH.

performance benefits stem from the smaller cache footprint of our implementation. We note
that simulation performance decreases slightly as the number of simulated nodes increases.
We are working on characterizing this decrease. However, we conclude that the achieved
performance is sufficient for our purposes.

Validating Checkpoint Simulation With and Without Failures

In this section, we present the data we collected to validate our simulator. We use both
analytic models and small-scale testing to ensure that our simulator accurately models the
impact of resilience mechanisms in failure-free and failure-prone environments.
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Figure 3. Comparison of simulator performance, mea-
sured in events/second, when simulating a system running
one of three applications using the original LogGOPSim sim-
ulator and using our improved version. Due to the mem-
ory requirements of the original simulator, we were unable
to obtain results for simulations of large-scale systems using
the original simulator. The simulation performance increase
varies by application communication pattern and varies from
2.5X for LAMMPS and CTH to 4X for HPCCG.

Failure-Free Analytic Model of Coordinated Checkpointing

We begin with a simple analytic model for coordinated checkpointing. Equation 1 models
application performance in terms of its wall clock time-to-solution, Tw, in a failure-free
environment.

Tw = Ts +
Ts
τ
× δ (1)

where Tw is the wall clock time, Ts is the solve time of the application without any resilience
mechanism, τ is the checkpoint interval [10], and δ is the checkpoint commit time (time
to write one checkpoint). For coordinated checkpointing to shared stable storage, we can
express the checkpoint commit time as:

δ =
N ∗ ||cavg||

β
(2)

where N is the number of nodes, ||cavg|| is the average checkpoint size per node, and β is
the aggregate write bandwidth to stable storage.

In Figures 5(a) and 5(b), we compare the output of this model to the output of our
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Figure 4. Comparison of simulator runtime, measured in
seconds (lower is better), for the original LogGOPSim simu-
lating systems running three different applications using sim-
ulator and using our improved version. Due to the memory
requirements of the original simulator, we were unable to ob-
tain results for simulations using the original simulator for
large-scale systems. Similar to Figure 3, the simulation wall-
clock speedup varies by application; from 2.5X for LAMMPS
and CTH to 4X for HPCCG.

simulator. The times-to-solution for CTH predicted by the simulator are very accurate,
about 3% greater than the model’s predictions. More importantly, the simulator closely
matches scaling trends predicted by the model. Moreover, the simulated times-to-solution
for LAMMPS are within 1% of the analytic model. On the whole, these data suggest that
the simulator is accurately modeling how the impact of resilience mechanisms scales with
system size.

Small-scale testing

To further validate our simulator, we compared it against the results of small-scale tests
on real hardware. The simulator provides us with fine-grained control over the checkpoint
interval and duration. To mimic this degree of control on real hardware, we constructed an
MPI profiling library, libchkpt. This library, based on the the libhashckpt incremental
checkpointing library [17], also has the ability to take both full coordinated and uncoor-
dinated checkpointing techniques, in additional to its incremental coordinated techniques.
The full coordinated checkpointing functionality ensures all checkpoints are taken simulta-
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Figure 5. Validation of the simulator against the sim-
ple analytic model described in Equation 1 for coordinated
checkpointing to stable storage in a failure-free environment
for CTH and LAMMPS. The model and the simulator use
identical values for the Ts (for each application), τ , and δ.
The simulation error is less than 3% for CTH and less than
1% for LAMMPS across the tested node count range.

neously on each node, while the uncoordinated approach takes checkpoints independently.
While taking checkpoints, the CPU is taken from the application until the checkpoint commit
time has completed.

For our purposes here, we focus on validating the failure-free case. Figure 6 and Figure 7
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(b) Uncoordinated Checkpointing

Figure 6. Performance of LogGOPSim simulation against
a coordinated and uncoordinated checkpointing library for
CTH. The simulator and libchkpt use identical values for
Tw (failure free performance), τ (checkpoint interval), and δ
(checkpoint commit time). The simulation error in this figure
is less than 20%, with this differences attributed to platform
features not being simulated. For example, interference from
the OS is not being generated in this case to simplify analysis.
This OS interfere has been shown to greatly influence impact
CTH performance [16].
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(b) Uncoordinated Checkpointing

Figure 7. Performance of LogGOPSim simulation against
an coordinated and uncoordinated checkpointing library for
LAMMPS. The simulator and libchkpt use identical values
for Tw (failure free performance), τ (checkpoint interval), and
δ (checkpoint commit time). The simulation error in this
figure is shown to be less than 5% in the range tested.
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show the results of this validation. These figures compare the total wall clock time simulated
by LogGOPSim and measured with libchkpt running on our test platform. For reference,
each figure also includes the total wall clock time in the absence of any failures. Note
the performance of CTH in Figure 6 exhibits a distinct sawtooth pattern. This pattern is
an artifact of how CTH scales the computation as nodes counts increase. The simulator
accurately predicts this complex sawtooth pattern. We also see in this figure the simulators
error in prediction. We also note that the predictive performance of the simulator is less
accurate for CTH in comparison to LAMMPS, with the error in time to solution bounded by
20%. This is due to the simulator not accounting for OS noise on the node and limitations
of the network model used. In our testing, OS interference is not being generated to simplify
analysis, though the simulator allows for such accounting. This OS interfere has been shown
to greatly influence impact CTH performance [16]. Also, though the LogGOPSim simulator is
capable of sophisticated network models, in this work we use a simple network model which
does not account for network contention. As CTH does a fair amount of bulk data transfer,
network contention can be an issue.

Overall, these figures show that LogGOPSim closely tracks the results measured with
libchkpt. For all the configurations that we examined, the absolute wall clock time sim-
ulated by LogGOPSim is within 20% of the measured values. More importantly, LogGOPSim
closely mimics the trends we observe with libchkpt even as performance deviates from
performance on actual hardware.

Validating Simulations with Node Failures

Finally, we validate the performance of our simulator in an environment that includes
process failures. Analytic models for checkpoint/restart (CR) enable the prediction of exe-
cution times in the case of failures. For a serial computation, one can assume that the time
to execute an application using CR can be modeled by:

T = Tapp + Tc + Trework + Tr (3)

Here Tapp is the time of the application execution without any resiliency mechanisms,
Tc and Tr are the cumulative costs of all checkpoints and restarts, respectively, and Trework

is the cumulative cost of all work that was performed after the last checkpoint before each
failure. Let M, the Mean Time To Interrupt (MTTI), be the mean of a Poisson distributed
random variable that models component failures in a system and δ the time to perform a
checkpoint. Daly [10] showed that the serial application execution time can be estimated as

T (τ) = Tapp + (k − 1)δ + k

(
τ + δ

2
+R

)(
τ + δ

M

)
(4)
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for a recovery time R and a checkpoint interval τ (assuming Tapp = kτ, k ∈ N).

Assuming δ < 2M , this formula can be used to derive the optimal checkpointing interval,
τ̂ [10].

τ̂ =
√

2δM

[
1 +

1

3

√
δ

2M
+

1

9

(
δ

2M

)]
(5)

If we assume that all component failures are identical, then τ̂ is also the optimal check-
pointing interval for each node of a parallel computer. We next discuss how to model
coordinated and uncoordinated checkpoint protocols.

Coordinated CR can be modeled using an extended BSP model with additional check-
point supersteps that are performed after a communication superstep ends (when the network
is quiet). The synchronous nature of all supersteps (phases) allows us to model the runtime
of an application as T (τ̂) using Equation (4).

As described previously, our simulation is able to simulate scenarios that include failures
and failure recovery. As with failure-free simulations, we validated the simulator’s ability to
model the impact of failures by comparing against the same validated analytical model in
Equation 4.

Figure 8 plots the results for simulated and modeled ten hour executions of LAMMPS
using a ten minute node restart time, a one second checkpoint commit time and five year
node MTBF. We use the optimal checkpoint frequency, 68 seconds, computed using the
method in Equation 5. These results show that our simulator produces highly accurate
output compared to the predictions of the analytical model.

Related Work

Although fault tolerance for HPC has been a very active area of research, few tools ex-
ist that allow us to project behavior beyond small-scale systems. As we discussed above,
simulating fault tolerance techniques requires an appropriate level of detail about the com-
munication of the target application. Without an accurate representation of application
communication, we cannot accurately simulate some fault tolerance techniques (e.g., asyn-
chronous checkpointing). Too much detail unnecessarily reduces simulator performance. The
application simulators for fault tolerance that do exist tend to fall to either extreme; either
they are not communication-accurate or they simulate communication in much greater detail
than believed necessary.
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Figure 8. A comparison between efficiency of LAMMPS
predicted by the simulator and by a validated analytical
model (Equation 4) in the presence of failures. The simu-
lator data for each system size represents the range of values
produced over 16 runs of the simulator. This simulation mod-
els a 10.1 hour run of LAMMPS using a node restart time
of 10 minutes, a checkpoint commit time of 1 second, and
a node MTBF of 5 years. Checkpoints are taken every 68
seconds based on the optimal checkpoint interval described
in Equation 5.
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In [34], Riesen et al. present a simulator that can model the impact of node failure
on application performance in the context of traditional coordinated checkpoint/restart.
This simulator can also account for process replication. Tikotekar et al. take a similar
approach in [39]. They present a simulator that models coordinated checkpointing and can
also simulate fault prediction and process migration. While these tools have been shown to
be effective for their stated purposes, they are not communication-accurate. As a result, they
are unable to account for fault tolerance techniques whose performance may be influenced
by communication patterns.

At the other extreme is xSim [5]. xSim builds on the MPI profiling interface and interposes
itself between the application and the MPI library. As a result, the simulator is able to run
unmodified HPC applications. Scaling is achieved by oversubscribing the nodes of the system
used for validation. While this provides us with a tremendous amount of detail about the
performance of the application, it imposes a significant cost. Due to limits on the degree of
oversubscription, large-scale systems are required to simulate systems that approach extreme-
scale. Moreover, as the size of the simulated system grows and the degree of oversubscription
therefore increases, the time required to simulate the system grows dramatically. Lastly, this
oversubscription could place significant limits on the size of the problem that can be solved
as the memory for each simulated node must exist in the memory of one physical node.
In contrast, our approach allows us to simulate fault tolerance mechanisms for systems
comprised of tens or hundreds of thousands of nodes on very modest hardware (e.g., a single
node). In some cases, this simulation completes in less time than it would take to run the
application itself, but with the less detail of the computation.

Boteanu et al. present a fault tolerance extension to an existing simulator in [6]. However,
they target a datacenter environment where each job is a discrete unit that is assigned to a
single processing element. As a result, their simulator does not map well to HPC workloads.

Finally, SST/macro [1,25] is a coarse-grained, lightweight simulator designed to simulate
the performance of existing and future large-scale systems. By collecting traces of application
execution, SST/macro is able to simulate the application’s computation and computation
patterns at scales and on hardware that does not yet exist. However, SST/macro does
not currently account for the impact of CPU detours (OS jitter). As a result, because
the foundation of our approach is based on the observation that resilience can be modeled
as CPU detours, we concluded that SST/macro was not a suitable starting point for our
investigation.

Conclusion & Future Work

We presented in this work, a new and promising approach to simulation at scale of fault-
tolerance mechanisms based on the checkpoint/restart model. We identified a set of platform,
application, and resilience characteristics required for accurate and efficient simulation; de-
scribed a prototype framework based on extensions to a validated and freely-available appli-
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cation simulator implementing the LogP model; shown how resilience processing overheads
can be effectively modeled as CPU detours; and demonstrated empirically that our approach
accurately predicts, with an error of less than 3%, the impact of resilience mechanisms. Our
modifications to the LogGOPSim simulator greatly decreased its memory consumption by a
factor of 100 or greater and runtime by a factor of 4. This performance increase allows us to
evaluate potential resilience solutions at meaningful application and temporal scales, while
also enabling the modeling of future interconnection and storage technologies.

The design space for evaluating resilience methods in large-scale HPC applications is
young and still evolving. While our simulation framework has expanded that space in new
and useful ways, several areas for future work remain. Among these, we intend to extend the
framework to provide injection of additional failures types beyond fail-stop for large-scale
simulation; e.g. corruption of application memory or network traffic. We understand that
this may mean re-evaluating the granularity of our simulation to ensure proper and effective
simulation. We are also investigating mechanisms to integrate both coarse- and fine-grained
simulation for failures. This will, for example, allow us to use coarse-grained simulation
in areas where failures occur, and fine-grained simulation when failures or other interesting
events do occur. We also plan to address support for additional resilience mechanisms such as
hierarchical checkpointing, replication-based approaches, process migration and cloning, as
well as integration with ongoing standards efforts like the current fault tolerance proposal put
forth in the MPI forum [4]. Finally, we plan to further investigate performance limitations
of our current simulation framework, including analyzing the benefit of parallelization.
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