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Abstract

In recent years, DFT-MD has been shown to be a useful computational tool for exploring
the properties of WDM. These calculations achieve excellent agreement with shock com-
pression experiments, which probe the thermodynamic parameters of the Hugoniot state.
New X-ray Thomson Scattering diagnostics promise to deliver independent measurements
of electronic density and temperature, as well as structural information in shocked systems.
However, they require the development of new levels of theory for computing the associated
observables within a DFT framework. The experimentally observable x-ray scattering cross
section is related to the electronic density-density response function, which is obtainable
using TDDFT - a formally exact extension of conventional DFT that describes electron dy-
namics and excited states. In order to develop a capability for modeling XRTS data and,
more generally, to establish a predictive capability for first principles simulations of matter
in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in
an existing PAW code for DFT-MD calculations. The purpose of this report is to record
implementation details and benchmarks as the project advances from software development
to delivering novel scientific results. Results range from tests that establish the accuracy,
efficiency, and scalability of our implementation, to calculations that are verified against ac-
cepted results in the literature. Aside from the primary XRTS goal, we identify other more
general areas where this new capability will be useful, including stopping power calculations
and electron-ion equilibration.
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Chapter 1

First Principles Simulations of
Coupled Electron-Ion Dynamics in
Warm Dense Matter

This report begins with a discussion of the scientific addressed by the methods developed
here. In particular, we give a brief overview of experimental X-Ray Thomson Scattering
(XRTS) techniques for the characterization of warm dense matter (WDM), and the need for
a first principles theoretical description using Time-Dependent Density Functional Theory
(TDDFT). A brief discussion is provided of the primary output of the new computational
tool, and connections are made to the observables that we seek to characterize. Emphasis is
placed on the importance of capturing the elevated temperatures that typify WDM, as well
as additional approximations that accompany coupled ion dynamics. Finally, the layout of
the report is summarized.

X-Ray Thomson Scattering and Coupled Electron-Ion

Dynamics

The last decade has seen a surge of combined computational and diagnostic advances in
the WDM regime 1 of the phase diagrams of many materials [1, 2, 3, 4, 5]. This is important
because this region is critical to the modeling and understanding of planetary formation
[6] and inertial confinement fusion [7]. The connection between materials properties and
modeling is through tabulated equation of state (EOS) and constitutive property models
that have hitherto been constructed to connect ambient data and plasma physics models
with little information in the WDM region.

One of the important scientific needs in WDM is the ability to routinely measure temper-
atures of shocked materials. A rapidly advancing technology is the use of high intensity x-ray
sources to measure the temperature, density, and structure of WDM. Recent advances in
XRTS enable its use in measuring structural properties, densities, and temperatures through

1WDM regime is loosely defined as solid density matter at temperatures in the eV range and pressures
in the MBar range, although the precise definition of this term remains the subject of debate.
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features in measured x-ray scattering data [8]. This technique can be used to test EOS models
by providing a measure of bulk temperature and density. Figure 1.1 presents an idealization
of XRTS data. The asymmetry of the Compton scattering peaks around the central elastic
feature is directly related to the electron temperature. XRTS is coming on-line as a diag-
nostic tool at several shock compression facilities such as LCLS, Omega, DESY, Tsinghua,
and Sandia’s Z-machine.

The x-ray radiation can be detected at various scattering angles providing information
about the electronic and ionic structure of WDM on a time scale commensurate with shock
experiments. The back-scattered x-rays resulting from inelastic Compton scattering provide
information about the temperature and charge state of the plasma. The forward x-rays
are scattered by long-range collective charge density oscillations or plasmons [9]. The mea-
surement of the forward scattered plasmon asymmetry provides a direct measurement of the
temperature of visibly opaque plasmas [10]. While the theory and modeling efforts for the for-
mer are well established, the latter collective response remains a challenge [9, 11, 12, 13, 14].
The x-ray scattering response is directly related to the dynamic structure factor (DSF) of
materials. This can be related to the imaginary part of the dielectric function through the
fluctuation dissipation theorem, and consequently, provides a direct route to temperature
diagnostics in the collective limit through measurement of the plasmon response.
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Figure 1.1. An idealization of XRTS data illustrating the
characteristic 3 peak structure.

The principle of detailed balance governing the plasmon scattering asymmetry is very
general, the in-depth understanding of XRTS data from first principles remains elusive.
Results in the non-collective (high-k, Compton limit, short-ranged) are well understood, but
the collective limit (low-k, plasmons, long-ranged) is not as well understood. This is because
the most accurate models used so far (Chihara) are semi-empirical [15]. In these models,
the x-ray response is decomposed into physically intuitive contributions, each treated with
varying levels of approximation, that are summed to give a total result. Often, the basic
physics described by one element overlaps with other terms. For example, the use of DFT-
Molecular Dynamics (MD) based structure factors degrades the accuracy of the summed
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results when it is used to replace a simpler model structure factor. A more direct approach
would be to calculate the full dynamic structure factor from an explicit simulation of electron
and nuclear dynamics. In so far as DFT-MD does not explicitly treat electronic dynamics,
a new simulation tool that includes these is needed. Beyond XRTS, such a tool would also
be capable of modeling electron-ion energy transfer and would be of great significance to the
lab mission.

The spectrally-resolved differential XRTS cross section is directly related to the electronic
dynamic structure factor, See(k, ω), through

d2σ

dΩdω
= σT

2

√
Ef
Ei
See(k, ω). (1.1)

Here, σT = 8π
3

(
e2

4πε0mc2

)2

is the Thomson scattering cross section, and Ei and Ef are the

energies of the incident and scattered photons. The dynamic structure factor is then related
to the system response function, χee(k, ω), using the Fluctuation-Dissipation Theorem:

See(k, ω) =
~
πne

=χee(k, ω)

1− exp(−βe~ω)
. (1.2)

Here, ne is the number density of electrons and βe is the inverse thermal energy of the
electrons. This relationship provides us with a means of using XRTS data to access a
quantity of relevance to many-body theory that can be computed within TDDFT.

The DSF is from the direct space-time Fourier transform of the density operator corre-
lation function:

See(k, ω) =
1

2π

∫
drdt exp(iωt− ik · r) 1

N
〈
∫
dr′n̂(r + r′, t)n̂(r′, 0)〉. (1.3)

Since there is no obvious way to define the density operator as a functional of the density,
we need to relate the correlation function to a physical TD response of the system. Such a
response can be obtained by following the real-time dynamics of the system after an impulsive
potential is applied. The DSF can be found over a large range of k by decomposing the
exciting field into a set of fixed perturbations of the form υpert(r, t) = I0δ(t) e

ik·r [16] with
I0 an arbitrarily small perturbation and k a wave-vector commensurate with the super cell.
The scale of k is determined by the reciprocal lattice spacing of the super-cell, and a larger
super-cell allows us to simulate ever smaller k’s. For each k, we can find the response of the
system by integrating the equations of motion and recording the density response. The DSF
is related to the Fourier transform from time to frequency domain of the density response,

See(k, ω) = − 1

πI0

∆n(k, ω). (1.4)

While this implementation does not require the use of the vector potential it will not directly
provide information about the k→ 0 limit. There exist schemes, that we will discuss later,
that allow the calculation of ε−1(0, ω) granting us access to this limit.
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In this report, we detail our efforts to develop a tool to model WDM by applying the
machinery of TDDFT to extended systems. In TDDFT, the electron wave-functions are
allowed to freely evolve in time and to simultaneously affect the ionic dynamics. X-rays
can be modeled as classical fields perturbing a super-cell of atoms and nuclei in real time.
Material properties can be extracted through the analysis of time-evolving quantities such as
the TD dipole moment. This modeling approach introduces several theoretical and numerical
challenges, several of which we have overcome and will describe in this report. In what
follows, we aim to:

1. Demonstrate the computational advances achieved in implementing a real-time electron
dynamics capability in a Projector Augmented Wave (PAW) code for extended systems.

2. Give some indication that our implementation is numerically sound, efficient, and
scalable.

3. Validate this tool by comparing to results for cold systems that have been presented
in the scientific literature.

4. Discuss our strategy for extending TDDFT to nonzero temperatures and compressed
densities.

Having established the validity of our implementation in this report, we will discuss the
subsequent scientific challenges that will arise as the focus of this project shifts from pro-
gramming to fundamental science. Immediate extensions of the capability developed herein
will be be to compare x-ray responses computed via TDDFT with Kubo-Greenwood results
from the literature. Soon after, fully coupled WDM electron-ion dynamics will be explored,
and some indication will be given as to how this capability is being implemented and tested.

Time-Dependent Density Functional Theory at Elevated

Temperatures

TDDFT is a computational framework to simulate dynamics of a quantum many-body
system by considering an auxiliary non-interacting system in an effective local potential. The
advantage of such a paradigm is that the memory required to store the state of the auxiliary
system and the computational processing time required to time evolve it is significantly less
than for a generic many-body wave-function or even a Green’s function. The trade off is
that now the equation of motion for the non-interacting system is highly non-linear and the
effective potential must be approximated. The fundamentals of the theory are established
by the Runge-Gross theorem [17] and subsequently formalized by Baerends and others who
showed that given a density that is time evolved for a given internal interaction type, there
exists at most one local multiplicative potential that would give the time evolution of that
density according to a Schrödinger-like equation of motion [17]. This formalism has been
generalized to TD ensembles [18, 19].

TDDFT provides a convenient framework to describe the many particle interacting elec-
tron dynamics. In the KS orbital picture, we evolve a set of KS orbitals under the action of
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the time-dependent Kohn-Sham equations:

i
d

dt
|ψn(t)〉 = HKS(t)|ψn(t)〉 (1.5)

Here, |ψn(t)〉 is the nth KS orbital and HKS is the KS Hamiltonian, HKS = −∇2

2
+ vext(r) +

vH(r) + vXC [n(r, t),Ψ(0),Φ(0)](r). The density is obtained via n(r, t) =
∑

n fn|ψn(r, t)|2.
The first term on the right describes the kinetic energy, the next is the nuclear Coulomb
potential plus external perturbations, followed by the classical Hartree potential, and finally
the exchange-correlation potential. In addition to the time-varying many-electron density,
the potential in TDDFT depends on the initial many-body state and the choice of initial
KS representation. The last term is typically approximated in TDDFT and subsumes the
many-body effects not included in the former terms and depends on the time-dependent
density, the initial many-body wave-function, and the initial KS representation of the initial
state. Most practical functionals include only the dependence on the time-varying density.

The primary focus of this report is the implementation of TDDFT time evolution into
an existing PAW electronic structure code, VASP 5.3.3 [20, 21, 22]. There are three major
theoretical challenges in simulating extended systems within TDDFT. First, a computational
engine must be constructed to time-evolve the TDKS equations (Equation 1.5). Second, a
physically reasonable initial state must be chosen that will deliver relevant physics under
the TDKS evolution. Since the KS orbitals do not in general represent physical quantities,
the initial state must be presented as a physical initial charge distribution and mapped back
unto the KS orbitals. Third is time-dependent potential energy surface hopping.

The initial state is chosen as a weighted set of KS orbitals reproducing the ensemble
density of the desired hot thermalized electrons. We point out that we are using fractional
weights to model a density that is derived from an ensemble of solutions. Mermin DFT
reproduces the results of a grand canonical solution through the use of a fractionally weighted
orbital set that provides the density of electrons at elevated temperature. TDDFT on the
other hand, time evolves an initial density to a final one. The functional that would be
required to time-evolve a warm electron density to another non-equilibrium density is a
different functional than would be used for a typical optical response simulation of a ground
state density through initial state dependence. However, as a first approximation we use
adiabatic semi-local ground-state zero temperature approximations to the KS potential. It
has been suggested that non adiabatic electron-electron effects are less important at higher
densities and for lower Z scattered particles [23], and so are less likely to contribute in WDM.
As an initial state approximation, we will start our TDDFT simulations with a weighted set
of orthogonal orbitals that reproduce a Mermin finite temperature DFT density. Here, the
orbital occupations are allowed to range from 0 to 1. The choice of partial occupancies is
theoretically sound within the original Runge-Gross formulation, and is naturally compatible
with the Mermin elevated temperature potential. The approximation and development of
improved models for the effective local potential and in particular, the exchange-correlation
contribution, is an active area of research. For the rest of this report, we will restrict ourselves
to adiabatic local and semi-local functionals.

The second approximation beyond just the use of TDDFT is the way in which nuclear
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motion is coupled to the electronic motion. The nuclei are moved according to Hellman-
Feynman forces in the potential energy surface created by the time-evolved electrons. The
resulting dynamics, Ehrenfest dynamics, do not describe non-adiabatic effects where multiple
potential energy surfaces have similar energy affecting the dynamics through non-Ehrenfest
impulses on the nuclei caused by potential energy surface hops by the electrons. At elevated
temperatures, we expect many potential energy surfaces to come into play, and in future
work, we will develop schemes to handle many surface hops through dynamically changing
the occupation of the KS orbitals.

Several challenges are that the positions of the level crossings are not necessarily well-
reproduced by KS eigenvalues or DFT total energies as excited state surfaces are not guar-
anteed to exist. Additionally, the state we are propagating represents an ensemble of states
that should reproduce a density that would result from an ensemble of solutions. There is
no fundamental relationship between the spectrum of this system and the physical system.

The range of capabilities of the methods described here includes the conditions most
important to the dynamic interaction of x-rays and WDM. It is important to recognize
the length scales of these processes and to compare these to the potential capabilities of
our computer simulation. The interaction time between electrons and the duration of our
perturbing x-ray pulse is on the order of femtoseconds (10−15 sec). The time step of electronic
propagation is on the order of attoseconds (10−18 sec). Nuclear motion is on the order of
picoseconds (10−12). The plasma time scale is about 200 fs and represents the time scale
beyond which we expect linear response features to appear. The size of the super-cells is on
the order of 10 Å on a side. The wavelength of typical x-ray pulses are between 0.1 and 10
Å. Typical super cells contain on the order of hundreds of atoms allowing the treatment of
many crystal structures of interest and locally disordered systems.

Contents of this Report

The remainder of this report will be concerned with details of extending an existing PAW
code to model real-time TDDFT with coupled-ion motion. The VASP code was chosen
because of our extensive experience with it and its well-tested PAW library. The following
is a chapter-by-chapter outline of the specific contents:

• Details of the PAW method as applied to the TDKS problem (Chapter 2).
• Benchmarks for the evolution of a stationary KS ground state (Chapter 3).
• Calculation of the optical response of finite and extended systems (Chapter 4).
• Application of electron-ion dynamics to stopping power calculation (Chapter 5).

With the exception of Chapter 2, each chapter will be concerned with the development
of a particular capability in our real-time TDDFT implementation. These chapters will first
present a mathematical statement of the type of calculation being enabled, and then follow
up with implementation details and validating results.
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Chapter 2

TDDFT in the PAW Formalism

In this chapter, we introduce details and notations germane to our integration of real-time
TDDFT into an existing electronic structure package. In particular, we focus on the PAW
method that is used to efficiently treat the all-electron (AE) problem in extended systems,
and its extension to real-time TDDFT.

PAW Method

Overview of PAW for Standard DFT

The PAW method was first developed by Blöchl [24] as a generalization of pseudopotential
methods. It is closely related to the ultrasoft pseudopotential method of Vanderbilt [22, 25,
26], though it retains an explicit connection to the AE problem. Simply put, it is an especially
efficient means of performing electronic structure calculations using a plane wave basis. In
discussing the details of this method, we utilize a notation similar to the ones used in [22]
and [24] - namely, we will refer to AE and pseudized (PS) objects, with the latter being
indicated by the presence of a tilde (∼).

The crux of the PAW method is the assertion that the AE and PS orbitals can be related
via a simple linear transformation:

|ψn〉 = T |ψ̃n〉 = |ψ̃n〉+
∑
I

∑
j

(
|φIj〉 − |φ̃Ij〉

)
〈p̃Ij |ψ̃n〉 (2.1)

Here the summation index I taken over each ion in the system, and j is taken over a set
of reference states localized to the Ith ion. Here, |φIj〉 and |φ̃Ij〉 are called the AE and PS

partial waves, |p̃Ij〉 are called the projectors, and the coefficients of |ψ̃n〉 in a plane wave
basis will become our variational quantities. The partial waves are defined such that the
AE and PS quantities only differ inside of a compact spherical region about each ion called
the augmentation region. In other words, T reduces to the identity outside of augmentation
regions. Further, the projectors are defined such that they are dual to the PS partial waves,
〈p̃Ij1|φ̃

I
j2
〉 = δj1j2 . The actual construction of these quantities is largely irrelevant to our

implementation of real-time TDDFT, and further details can be found in [22]. Of greater

17



relevance is the manner in which the PAW method modifies the structure of the equations
common to the KS formulation of DFT and TDDFT.

The stationary KS problem takes the form of a standard eigenvalue problem at each SCF
step - find pairs εn ∈ R and |ψn〉 ∈ L2 such that:

HKS|ψn〉 = εn|ψn〉 (2.2a)

〈ψm|ψn〉 = δmn (2.2b)

This form is the solution of a variational problem, wherein one finds the stationary points
of a total energy functional with respect to variations in the coefficients of |ψn〉, subject to
the constraint that the solutions be normalized with respect to the L2 norm. Orthogonality
is ensured by the Hermiticity of HKS. In the PAW method, the problem is slightly more
complex because the variational degrees of freedom are taken as the PS coefficients, rather
than the AE coefficients of relevance to Equation 2.2. Solutions to the PAW variational
problem satisfy:

H̃KS|ψ̃n〉 = εnS|ψ̃n〉 (2.3a)

〈ψ̃m|S|ψ̃n〉 = δmn (2.3b)

H̃KS = T †HKST and S = T †T (2.3c)

Rather than a standard eigenvalue problem, we are now met with a generalized eigenvalue
problem - find pairs εn ∈ R and |ψ̃n〉 ∈ L2 that are no longer orthonormal in the L2 norm,
but a weighted L2 norm defined in terms of the PAW overlap operator, S.

One of the primary functions of any PAW code is the solution of Equation 2.3 for a
fixed H̃KS and S. In a conventional DFT calculation this eigenproblem is solved for many
different KS Hamiltonians, until a self-consistent solution is achieved, at which point the
results can be post-processed. Our implementation of real-time TDDFT will take advantage
of this functionality in the following respects:

• Initial conditions for our time evolution will be taken from a conventional fully-converged
Mermin DFT calculation.
• Solution of the TDKS equations will require the efficient application of both H̃KS and
S to PS kets. The subroutines that perform these operations will be a starting point
towards this end.

With this in mind, the form of the TDKS problem will still change considerably. Instead
of solving a generalized eigenvalue problem, we will be concerned with time evolving a
nonlinear PDE whose initial conditions are drawn from a conventional DFT calculation. In
the next section, a proper statement of this problem is given.
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PAW for the TDKS Equations

Recalling the form of the TDKS equations in Equation 1.5, we are interested in resolving
|ψn(t)〉 that satisfies the following for t ≥ 0:

i
d

dt
|ψn(t)〉 = HKS|ψn(t)〉 (2.4a)

|ψn(t = 0)〉 = |ψ0
n〉 (2.4b)

As with the standard KS equations, when using the PAW method, this form of the problem
requires modification, as we are instead interested in working with PS quantities. To arrive
at the PAW form of the problem, we simply state that the TD AE and PS orbitals have the
same relationship as in a conventional calculation, and then multiply both sides by T † for
convenience. This yields the following:

T †i d
dt
T |ψ̃n(t)〉 = H̃KS|ψ̃n(t)〉 (2.5)

In the presence of ionic motion, the T̂ operator will pick up a time-dependence, and we must
be careful to include this in the dynamics. Applying the product rule for differentiation on
the LHS, we can arrive at an alternative form of the problem:

iS ∂
∂t
|ψ̃n〉 =

[
H̃KS + P

]
|ψ̃n(t)〉 (2.6a)

P = −iT †dT
dt

(2.6b)

In the limit that the ionic degrees of freedom are immobile, P will vanish, yielding a form of
the problem that is at least superficially simpler than Equation 2.5. Chapters 3 and 4 will
discuss the solution of Equation 2.6 in the immobile ion limit, for different initial conditions
and using different forms of H̃KS. In Chapter 5, this restriction will be lifted in the context
of stopping power calculations in which ionic motion is essential.

Overview of Implementation

In the following subsections, details are provided that describe our implementation of
real-time TDDFT. First, an outline of the necessary inputs is provided. Then, the issue of
numerical time integration is briefly discussed. Finally, some of the details associated with
achieving scalability on distributed memory parallel platforms are discussed.

Outline of a TDDFT Calculation

A real-time TDDFT calculation consists of the following three steps:
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1. A preliminary standard DFT calculation that provides a set of KS orbitals for the
initial conditions.

2. Propagation of the initial state via the TDKS equations, and the recording of observ-
ables.

3. Post-processing of observables to extract physically meaningful information.

Step 1 is accomplished using the established capability of the PAW code to calculate the
KS orbitals and weights within the Mermin DFT formalism. This information is written
to disk, from which it can be read on subsequent runs. Step 2 is where the majority of
our extensions become relevant. The data written in the previous step is read in, and our
code constructs physically interesting initial conditions for the TDKS equations. Then,
the TDKS equations are numerically integrated, the details of which will be discussed in the
next subsection and in Chapter 3. At each time step of the numerical integration, observable
quantities are recorded to disk in anticipation of Step 3. Step 3 involves stand-alone scripts
and software. For example, in Chapter 4 the optical response of molecular systems will be
discussed. Here, the dipole moment of the molecule is stored at each time step, and Step 3
consists of extracting information from the Fourier spectrum of this information.

Among these steps, the most demanding is Step 2. The propagation of the TDKS equa-
tions consists of a step-by-step numerical integration, wherein each time step requires the
repeated iteration of the following sequence of computations:

1. Construction of the local potential - terms in H̃KS that act locally on each KS orbital.
2. Construction of the PAW operators - terms in H̃KS and S, that act non-locally on each

KS orbital.
3. Solution of a discrete form of the TDKS equations for a single time step.
4. Calculation of the charge density from the updated TDKS orbitals.

Implementing this sequence constitutes the primary technical challenge of this work. How-
ever, much of the functionality required can be re-purposed from the extant PAW code,
which performs the same steps in seeking a self-consistent solution, albeit with a different
way of updating the orbitals in Step 3. With this in mind, we will focus primarily on the
numerical integration of the TDKS equations in terms of both the integration scheme itself,
and implementation details such as exploiting parallelism. The remaining two subsections
discuss these challenges.

Time Integration of the TDKS Equations

Numerical integration of the TDKS equations is a difficult problem, given their inherent
nonlinearity. To this end, it is useful to consider the properties of ‘good’ time integrators, as
well as the formal issues that must be addressed in satisfying them. The particular properties
of interest are:

• Unitarity: That the KS orbitals remain orthonormal throughout the time integration
is desirable, as it is a property of the exact solution that can be satisfied in a numerically
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exact manner. Physically, this is related to the conservation of charge.
• Systematically improvable error: By decreasing the size of the discrete time step,

‘better’ results are achieved at a particular rate. We are careful to note that this is
only with respect to numerical error in the time propagation, and not error in the
functional which still exists even with a numerically exact time integration.
• Long-term stability: As the end goal is to resolve dynamics on the scale of 100s of

fs to a ps, while the electronic time step is on the order of 1 as, having some indication
that the chosen integrator is stable is important.

These properties have been listed in order of increasing difficulty in rigorously satisfying
them. The construction of unitary time integrators is relatively straightforward, and a num-
ber of exemplary methods exist in the literature [27, 28, 29, 30], perhaps the simplest of
which is the Crank-Nicolson (or implicit midpoint) method. That unitarity can be guaran-
teed in spite of the nonlinearity of the TDKS equations is a consequence of the Hermiticity
of the TDKS Hamiltonian.

Even so, error estimates for the TDKS equations are more difficult to construct, as the
Hamiltonian is an unbounded operator. To this end, in spite of the fact that convergence
rates are frequently cited in the literature [30, 31], there are not many rigorous estimates,
though some exist[32]. Even so, these estimates are essentially useful for linear problems in
quantum dynamics, so within TDDFT they are only valid for isolated cases like stationary
states in which the nonlinearity is effectively removed, as will be discussed in Chapter 3. As
a rigorous notion of the stability of the TDKS equations is an open problem, benchmarking
against these isolated cases is an acceptable limitation, and is among the only rigorous means
of testing a TDDFT implementation.

Stability is perhaps the most difficult condition to satisfy, as a consequence of nonlinearity.
Even in the analytic case, stability is an open problem taken in the following sense: given a
density in a neighborhood of the ‘correct’ density, at what rate does the difference between
the nearby and ‘correct’ densities increase, if at all? To this end, it is most difficult to find
a numerical integrator that is stable, as it is unknown whether or not one can exist. Again,
we will start by considering isolated cases like stationary states as a first indication of the
correctness of our implementation.

While investigation into other integration schemes is ongoing, so far we have found a great
deal of success using the Crank-Nicolson method. This framework requires the solution of
the following linear system in updating the KS orbitals from time t to time t+ ∆t:[

S +
i∆t

2
H̃KS(t)

]
|ψ̃n(t+ ∆t)〉 =

[
S − i∆t

2
H̃KS(t)

]
|ψ̃n(t)〉 (2.7)

This particular flavor of the Crank-Nicolson method is typically cited as being first order
accurate [31], unless H̃KS is a constant in time. To achieve a higher order of accuracy,
a predictor-corrector framework is needed. This is achieved in practice using a three-step
process:

1. The orbitals at t+ ∆t are estimated using H̃KS at time t.
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2. An estimate of H̃KS at time t+ ∆t is constructed using the ‘predicted’ orbitals.
3. A ‘corrected’ H̃KS is built from the average of the two Hamiltonians, and used to

update the initial orbitals from time t to t+ ∆t.

While both flavors of Crank-Nicolson have been implemented, there is little practical differ-
ence between the two for the stationary ion problems that we have studied so far. However,
we anticipate that the predictor-corrector extension may prove to be significantly more ro-
bust when the ions are allowed to move in a more general setting than discussed in Chapter
5.

One implementation concern that arises in using the Crank-Nicolson method is that it is
an implicit integrator, and requires the solution of a linear system of equations at each time
step. While explicit integrators have been studied, their adoption is somewhat recent [33],
and they do not guarantee unitary evolution. In principle, this may be a significant limitation
as the unitarity of the exact time propagator guarantees charge conservation. Consequently,
we deem the required linear algebra an acceptable cost to accrue.

Given the structure of the PAW Hamiltonian, and the regularity of the plane wave basis,
we can achieve an efficient solution of the Crank-Nicolson update equations using an iterative
solver. The particular solver that we have implemented is the conjugate gradient squared
(CGS) method, first introduced in [34] for the solution of sparse non-symmetric systems.
The computational cost of this solver, at each time step, scales as O(NitNbN

α
pw logβ Npw).

The various factors in this cost are defined as:

• Nit: the number of iterations required to achieve a desired residual.
• Nb: the number of KS orbitals being considered in the calculation.
• Nα

pw logβ(Npw): the cost of performing a matrix-vector product between the the oper-
ator on the left hand side of Equation 2.7 and a trial ket. Here, Npw is the size of the
plane wave basis in which the ket is given, and α and β are parameters that depend
upon the manner in which the product is effected.

It is evident that explicitly forming the LHS operator in Equation 2.7 and applying the
matrix-vector product directly will yield α = 2 and β = 0, the cost of a dense matrix-vector
multiplication. However, a judicious use of FFTs can lead to a cost complexity with α = 1
and β = 1. Considering each term of the KS Hamiltonian, FFTs are used as follows:

• Kinetic energy: This term is diagonal in the basis of plane waves, and does not
require the use of an FFT.
• Local potential: An FFT maps the plane wave coefficients onto a real-space grid, on

which the local potential term is diagonal. It is applied, and an IFFT is used to get
the coefficients of the product in the plane wave basis.
• Nonlocal potential: In principle, these terms can be computed in either the plane

wave or real-space basis. In either case, the compactness of the augmentation region
keeps the operation sparse.

In terms of the number of electrons (Ne) in the system, Npw and Nb scale linearly,
while Nit is empirically insensitive to system size. Consequently, the cost of a TDDFT
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evolution scales as O(N2
e log(Ne)), in contrast to the dominant O(N3

e ) cost of a conventional
DFT calculation, in which orthogonalization is the dominant cost. Of course, the TDDFT
evolution begins from an orthogonalized set of orbitals, so this cost is still implicit in some
capacity. Benchmarks for the performance of this integrator will be presented in the Results
Section of Chapter 3.

Parallelism

Three flavors of hierarchical parallelism are available in VASP 5.3.3. Data and work can
be distributed over both orbitals and plane wave coefficients, and work can be distributed over
independent points in the Brillouin Zone for extended systems. In practice, because WDM
systems require a large number of orbitals to be included due to the significant smearing of
the Fermi-Dirac distribution, and as these systems will have a low degree of long-range order,
parallelism over orbitals should be weighted most heavily. This is further compounded by the
fact that, unlike in conventional DFT-MD, there is no orthogonalization of the KS orbitals
at each step. With this in mind, because the update of the KS orbitals is the dominant cost
in each time step, and because it can be achieved independent of all other bands, this makes
parallelism in TDDFT somewhat easier to achieve than in conventional DFT. Benchmarks
for the parallel scalability of our implementation are also available in the Results Section of
Chapters 3 and 5.
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Chapter 3

Propagation of Stationary States

In this chapter, we evaluate the performance of our implementation of real-time TDDFT
with an exactly solvable problem - the time propagation of stationary KS wavefunctions. In
spite of the apparent simplicity of this problem, it provides invaluable information concerning
not only the numerical stability and accuracy of our code, but its efficiency and scalability
as well. We begin by giving the details of the precise tests being performed, and proceed
to discuss the actual time integrator used to propagate the stationary KS solution. The
chapter concludes with a broad array of results that characterize the performance of our
implementation.

Problem Statement

We consider the TDKS equations in the immobile ion limit with initial conditions drawn
from a Mermin DFT calculation:

iS ∂
∂t
|ψ̃n(t)〉 = H̃KS|ψ̃n(t)〉 (3.1a)

|ψ̃n(t = 0)〉 = |ψ̃0
n〉, where H̃KS|ψ̃0

n〉 = εnS|ψ̃0
n〉 (3.1b)

Electron temperature has been included in the KS orbitals weights, fn, that are used to build
the density and kinetic energy. To this end, our initial density is given as:

n(r, t = 0) =
∑
n

fn|ψ̃0
n(r)|2 (3.2)

Here, fn ∈ [0, 1] are the KS orbital occupancies drawn from a Fermi-Dirac distribution. In
the absence of any TD perturbations in H̃KS or any mechanism through which the orbital
occupancies are modified, the system will remain in the stationary state defined by the initial
DFT calculation, and the solution of the above problem analytically is trivial:

|ψ̃n(t)〉 = e−iεnt|ψ̃0
n〉 (3.3)

We will use this analytic solution to verify and benchmark our real-time TDDFT implemen-
tation before attempting to do any production science.
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Given the disarmingly simple nature of this test case, it is important to consider the
difficulties that can arise when solving the TDKS equations. So long as the KS orbitals follow
the exact evolution prescribed by Equation 3.3, the KS density will be constant and the KS
potential will remain unchanged. In practice, however, at each time step the TDKS orbitals
will be updated and integration error may cause the density and potential to deviate from
a constant. As the machinery for constructing the density and potential from the updated
KS orbitals is quite involved, there is room for additional error to creep in through these
processes, as well. First and foremost, this test serves as a simple means of establishing the
stability of our implementation against these types of errors.

Beyond issues concerning verification of our implementation, it is interesting to comment
on the occupancies (fn) in Equation 3.2. Numerically these quantities are held fixed to their
initial values throughout the entire calculation, and this will be the case for all calculations
in subsequent chapters of this report. Coupled with the unitary evolution of the KS orbitals,
this guarantees that the sum rule relating the charge density to the number of electrons
is satisfied at each time step. It will be of interest in future extensions of our framework
to explore models in which the occupancies are allowed to change as a function of time,
particularly as a mechanism for non-adiabatic electron-ion coupling.

Results

In all subsequent results, the initial states were achieved from a conventional DFT calcu-
lation converged to 10−8 eV in the self-consistency cycle of the total energy. In practice, we
have found that the convergence of the initial state gives some limit on the energy conserva-
tion that can be reasonably expected in the subsequent time evolution. In other words, if we
want to conserve energy within 10−3 eV, the initial state must be converged to at least that
accuracy. Further, all results are achieved using the standard Crank-Nicolson time integra-
tor. For stationary states, there is little benefit to using the predictor-corrector framework,
and any timing results can be extrapolated by approximately doubling them.

Accuracy Benchmarks

In the first result, we demonstrate that our implementation accurately reproduces the
time evolution described in Equation 3.3. The system under consideration consists of 16 Be
atoms each with 2 valence electrons, and integrated with a time step of 2.5 as and using a
plane wave cutoff of 300 eV. The initial condition is taken to be the Mermin state at 5000K,
requiring 40 KS orbitals. In Figure 3.1, we illustrate the error in representative coefficients
of the slowest and fastest KS orbitals relative to their analytic evolution. We note that the
global error grows in time, and that this essentially amounts to a phase error. In other
words, the amplitude of the orbital oscillation is constant thanks to the unitarity of the
integrator, so the error comes about as a spurious accumulation of phase. We anticipate
that this accumulation of global error will be largely irrelevant in practice, as the phase of
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the KS orbitals is less important in adiabatic TDDFT than the density, which experiences no
such growth in error. It is possible, however, that there may be some quantities of interest in
TDDFT that are sensitive to phase information, and for these quantities this accumulation
of error is controllable by decreasing the time step.

Our next result substantiates our claim that the accumulation of phase error over long
times is irrelevant to quantities derived from the density, namely the Hartree energy - a
simple physically relevant quantity that is known exactly as a density functional. We consider
this contribution to the system’s energy rather than the total energy because of difficulties
in rigorously defining the latter in TDDFT. In Figure 3.2, we have computed the time-
dependent Hartree energy of the system described above. For the purposes of the eventual
application to electron-ion dynamics, in which the system must be evolved for 100s-1000s
of femtoseconds, using a time step on the scale of attoseconds, it is important to guarantee
that the long time stability of TDDFT quantities is achievable within our implementation.
To this end, we see that the Hartree energy varies at the level of µeV in the stationary
state propagation, even for an initial state drawn from a high temperature Mermin DFT
calculation.

It is important to emphasize that even though the stationary state problem is analytically
trivial, the numerical method that we have used to arrive at these results is not. Here, we
have re-computed the KS Hamiltonian and all associated operators at each time step from
the numerically integrated orbitals, so these results confirm that there is not some hidden
accumulation of error in the construction of the various potentials and densities of relevance
that destabilizes our integrator.

Solver Benchmarks

In Figure 3.3, we consider the computational time required per time step in our CGS
solver, as a function of the accuracy desired. Desired accuracy is given in terms of the number
of digits to which the CGS residual is zero with respect to the L2 norm. These results are
drawn from a calculation on the same Be system considered above, but with a 400 eV cutoff
and 96 KS orbitals. The average time per step for the entire time integration was recorded,
with error bars indicating that there is a very small variation in this quantity from step to
step. In so far as the time per step scales directly with the number of iterations in the CGS
algorithm, this gives some indication of how well conditioned the Crank-Nicolson system is.
Here, it is evident that machine precision can be achieved if desired, and that the rate of
convergence is empirically observed to be exponential.

To give some indication of how these results scale with the size of the plane wave basis,
the scaling of the number of iterations per CGS solve at a fixed accuracy with the plane
wave cutoff is presented in Figure 3.4. For these results, we consider calculations with
increasingly larger number of KS orbitals as well, to include the effects of solving update
equations for higher orbitals in our statistics. These results give us some empirical confidence
that increasing the size of our basis set will not have a pathologically adverse effect on the
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conditioning of the Crank-Nicolson update equations.

Scalability Benchmarks

In Figure 3.5, strong scaling is illustrated for a WDM system consisting of 30 Xe atoms
each with 8 valence electrons, a cutoff of 750 eV and 1024 orbitals at a single k-point,
integrated with a time step of 2 as and an accuracy of 8 digits in the CGS solver. The initial
condition is taken from the Mermin ground state at 20000K. By strong scaling, we mean
that the problem remains fixed while the number of cores on which it is solved is increased.
Here, the time per step is recorded and the type of parallelism is constrained to be over
orbitals only. We find that there is only negligible deviation from ideal scaling up to 512
cores, illustrating that our implementation can take good advantage of high performance
computing resources.

Having achieved good scaling only taking advantage of parallelism over orbitals, it is
interesting to see if a further improvement in performance can be achieved by exploiting
hybrid parallelism over both plane wave coefficients and orbitals. In Figure 3.6, we vary
the number of orbitals per core from 2 (no parallelism over plane waves) to 128, and record
the time per step decomposed into contributions from the various underlying stages. From
this decomposition, we learn that the dominant cost per time step is the solution of the
Crank-Nicolson update equations. Among the other stages of the calculation, there is little
variation in the time required with the distribution of work. The evaluation of the PAW
operators (augmentation charges and single-center terms) and the calculation of the local
potential are essentially insensitive to the work distribution, with the calculation of the
charge density showing some weak dependence that is most pronounced for 8 orbitals per
core. Beyond the details of the decomposition, it is also evident that the time per step
can be reduced significantly by taking advantage of parallelism over orbitals and plane wave
coefficients. In the best cases for 16 and 32 orbitals per core, there is a 3-fold reduction in the
time per step relative to using parallelism over orbitals alone. One final remark concerning
this data is that it highlights that the problem is ‘more parallel’ with respect to bands
than plane wave coefficients. In moving to parallelism over plane wave coefficients alone,
performance degrades much more significantly, and even for 128 orbitals per core (far from
the pure coefficient parallelism, i.e., 1024), the timing is more than 10x that of the optimal
distribution.
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accumulated phase error (bottom). System: 16 Be atoms at
5000K.
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Chapter 4

Calculation of Optical Response

In this chapter, the application of our real-time TDDFT implementation to the calcu-
lation of optical response is presented. We begin by considering an approach developed by
Yabana and Bertsch [35], for finite systems, in which the ground state KS wavefunction is
perturbed, and the subsequent evolution of the system’s dipole moment is related to its dipole
optical response. We begin by providing a brief overview of the underlying theory, details
germane to its implementation, and results that demonstrate agreement with established
data from the literature. It is pertinent to note that while we are computing the response
of finite systems, in practice the calculation is done within a periodic supercell which is
large enough that there is negligible charge density near the boundary of the computational
domain. While there will remain a spurious interaction between images, the leading order
contribution will be due to a dipole-dipole interaction that dies off rapidly with supercell
size. Details pertinent to ongoing efforts in extending these methods to optical response in
extended systems are given in Appendix A.2. These tests are important because they show
that we can capture dynamics beyond the stationary state.

Problem Statement

We consider the evolution of the KS state under the action of Equation 2.4 in the limit of
immobile ions, and adding an external perturbing electric field, E(t), to the KS Hamiltonian.
The field is spatially homogeneous and is applied instantaneously. It is given as:

E(t) = A0δ(t) (4.1)

For t < 0 the system will be described by a set of orbitals with occupations, fn, set within
the Mermin DFT formalism such that 0 ≤ fn ≤ 1. The effect of the perturbing field
will be to phase shift each orbital while leaving its occupation invariant. This scenario is
mathematically codified below, with Equation 4.2a describing the initial conditions for 2.4
in terms of the unperturbed orbitals described by Equation 4.2b:

T |ψ̃n(t = 0+)〉 = eiA0 ·̂rT |ψ̃0
n〉 (4.2a)

H̃KS [t < 0] |ψ̃0
n〉 = εnS|ψ̃0

n〉 (4.2b)
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As the field acts instantaneously at t = 0, and it leaves the density (and equivalently, the
KS potential) invariant, it is of interest to consider what will cause nontrivial dynamics for
t > 0. Simply put, it is the jump in the KS kinetic energy at t = 0, induced by the position-
dependent phase-shift applied to the stationary orbitals. Formally, this causes no problems
within the TDDFT framework, as the TDDFT potential is uniquely determined by not only
the density, but the initial state of the system. For weak fields, this jump in the initial
kinetic energy of the system manifests in terms of a redistribution of the KS configurations
from the t < 0 stationary determinant to a linear combination of this and dipole-excited
configurations. The subsequent time evolution of the density will allow us to compute the
relative intensities and energies associated with transitions between these configurations.

With the goal of extracting this information in mind, we consider the analytic evolution
of the system for small A0. We start by writing down the single Slater determinant AE
many-body wavefunction, |Ψ(t)〉, immediately following the perturbation:

|Ψ(t = 0+)〉 ≈

(
1 + iA0 ·

∑
j

r̂j

)
|Ψ(t = 0−)〉+O(|A0|2) (4.3)

Here we have Taylor expanded the exponential resulting from the impulsive action of the
field, and the sum on j is over all electrons. We can easily recognize that this is the system’s
dipole operator:

|Ψ(t = 0+)〉 ≈ (1 + iA0 · µ̂) |Ψ(t = 0−)〉+O(|A0|2) (4.4)

We can now see what was stated in the previous paragraph - that the t = 0+ state becomes a
linear combination of the initial many-body determinant and dipole-allowed excitations from
that state. Labeling the t < 0 many-body state |g〉, and these excitations |e〉, the dynamics
for t > 0 can be written as:

|Ψ(t)〉 = cg|g〉+
∑
e

cee
−iεet|e〉 (4.5a)

cg = 1 + iA0 · 〈g|µ|g〉 (4.5b)

ce = iA0 · 〈e|µ|g〉 (4.5c)

Here, εe are the unknown transition energies, and the coefficients are related to the intensity
of the associated transitions. However, as we are working within the framework of DFT and
we have no direct knowledge of the excited configurations, we need to find a way to get these
quantities from the TD density. Retaining only terms that are linear in A0, the TD density
given by the TDKS state in Equation 4.5a is written as:

n(r, t) = n0(r) +
∑
e

(
cee
−iεet〈g|n̂(r)|e〉+ c.c.

)
+O(|A0|2) (4.6)

From which it is clear that we can write the TD dipole moment as:

µ(t) =

∫
dr n(r, t) r (4.7a)

µ(t) = µ(0)− 2A0 · 〈e|µ|g〉 sin(εet)〈g|µ|e〉+O(|A0|2) (4.7b)
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Given this form of the TD dipole moment we can extract the locations of dipole-transitions
and their associated strengths.

In practice, the TDKS equations are solved subject to the initial conditions in Equation
4.2a, and the TD dipole moment is computed at each time step for Tsim units of time.
Fitting to the form given in Equation 4.7b is then easiest in the energy domain, wherein the
following relationship holds:

S(ε) · uA0 ∼ lim
A0→0

1

|A0|

Tsim∫
0

dt sin(εt)w(t) (µ(t)− µ(0)) (4.8)

Here, S(ε) is the dipole polarizability tensor associated with the system, uA0 is a unit vector
along A0, and w(t) is some windowing function that renders the integrand 0 for t ≥ Tsim.
The windowing function is necessary to facilitate spectral analysis of the necessarily time-
limited sampled data. A convenient choice is a Gaussian window, w(t) = exp(−γt2), where
γ = (~/Eb)2 and Eb can be interpreted as an artificial broadening energy.

Results

We present the optical response of two small molecules that have been previously char-
acterized in the literature using this same technique. This set of tests has been previously
applied to a plane wave pseudopotential implementation of TDDFT [31], as well as real-space
implementations [36, 37]. In all cases where it is applicable, the parameters from [31] have
been utilized, given the similarities between ultrasoft pseudopotentials and PAWs.

The first molecule under consideration is a sodium dimer, with bond length 3.00Å. Its
dipole response averaged over perturbing fields along the dimer axis and two orthogonal
vectors transverse to the axis will give the response that would be observed in a gas-phase
experiment. These results are given in Figure 4.1. Using the same setup as earlier calculations
[31], the dimer was placed at the center of a 12.00Å × 10.00Å × 10.00Å box, and a plane
wave cutoff of 300 eV was used for the basis set. The time step was chosen to be 2 as,
the system was perturbed by a field of magnitude 0.01Å−1, and evolved for 20 fs in each
numerical experiment. Given µ(t) for each orientation of the perturbing field, Equation 4.8
is evaluated using a Gaussian window with a width of approximately 0.1 eV. Comparing
to spectra available in [36, 31], these results are in good agreement with other numerical
calculations, as well as experimental spectra. It is worth noting for later comparison, that
the peak just above 2 eV is only excited by a field perturbing along the dimer axis, whereas
the peak just below 3 eV is only excited by fields perturbing transverse to it. The weak
feature around 4 eV is excited by all 3 perturbing fields, though there is a small shift in
energy between the transverse and longitudinal perturbation.

The next molecule under consideration is benzene, with C-C bond length of 1.39Å, and
C-H bond length of 1.10Å. Again, the dipole response is averaged over three orthogonal
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Figure 4.1. Dipole absorption spectrum of a sodium dimer.
Inset: molecular structure and the ground state charge den-
sity.

perturbing fields to give the gas-phase spectra. Results are given in Figure 4.2. The molecule
was placed at the center of a 12.94Å× 10.00Å× 7.00Å box, with the plane of the molecule
orthogonal to the short axis, and a plane wave cutoff of 250 eV. A time step of 2.5 as
was set, the perturbing field strength was set to 0.01Å−1, and the system was evolved for
11.85 fs. A Gaussian window was again used in extracting the spectrum, but with a larger
width (approximately 0.25 eV). Again, good agreement is found between numerical results
in [37, 31], which compare favorably with experiment.

Our final result is a brief analysis of the optical response of the sodium dimer at finite tem-
perature with fixed nuclei presented in Figure 4.3. Here, we compute the spectrum assuming
that the electrons of the cold molecule are instantaneously heated to a nonzero temperature.
This is intended to be a crude model of the conditions in a laser shock experiment. In prac-
tice, this amounts to generating the initial KS wavefunction in Equation 4.2 from a Mermin
DFT calculation carried out at a specified temperature, from a molecular geometry with the
ions held at the cold bond length (3.00Å). We note that while this has been our practice
in the previous calculations, the temperatures have been sufficiently low that the orbital
occupancies have been indistinguishable from a zero temperature calculation. Results for
electron temperatures of 300K, 3000K, 6000K, and 10000K are presented in 4.3. Here the
same geometry, cutoff, and time integration have been used as in the previous sodium dimer
result. It is worth noting that the number of bands is increased at high temperature (from
4 at 300 K to 13 at 10000 K) to accommodate the occupation of high-lying KS orbitals. In
these results we have only computed the spectrum for a perturbing field along the dimer
axis, to highlight the effect that nonzero temperatures have on the optical spectrum. The
300 K spectrum retains the same structure that it had in Figure 4.1, with the feature just
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Figure 4.2. Dipole absorption spectrum of benzene. Inset:
molecular structure and the ground state charge density.

above 2 eV only being visible due to our restriction of the polarization. As the electronic
temperature is elevated, new peaks appear in the dipole spectrum as transitions out of both
higher and lower orbitals are now possible.
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Chapter 5

Electron-Ion Dynamics and Stopping
Power

In this chapter, we relax the previous restriction that the ions remain immobile. To this
end Ehrenfest-TDDFT is considered. This is an additional model beyond TDDFT. Two
results are demonstrated - one in which a computational advantage of this framework over
DFT-MD is made apparent, and another in which Ehrenfest forces are used to compute the
stopping power of a proton in a cold solid.

Ehrenfest-TDDFT

In Ehrenfest-TDDFT, ionic forces are computed using the instantaneous real-time elec-
tronic state determined by the evolution of the TDKS equations. This stands in contrast
to DFT-MD calculations wherein the electrons remain in the ground state computed using
conventional DFT, and the ionic forces are determined by these states alone. Consequently,
ionic forces in DFT-MD have no knowledge of non-equilibrium electron dynamics. However,
the form of the forces in both frameworks is quite similar, and minimal modifications are
needed to arrive at reasonable forces given the existing PAW code on which our framework
is built.

Within the PAW formalism, the force acting on the Ith ion is given as:

FI = −dE
PAW
el

dRI

= −∂E
PAW
el

∂RI

+
∑
n

fnεn〈ψ̃n|
dS
dRI

|ψ̃n〉 (5.1)

This specific form will work for both DFT-MD and Ehrenfest-TDDFT, with the only signif-
icant difference being the electronic state that is being fed into Equation 5.1. In DFT-MD,
|ψ̃n〉 is determined from the solution of Equation 2.3 for a given set of ionic positions. In
Ehrenfest-TDDFT, |ψ̃n〉 is computed from the solution of Equation 2.5.

While this similarity is convenient for preliminary verification it is useful to note that
the authors of [38] have indicated that these are not the proper energy conserving forces for
Ehrenfest-TDDFT. Instead, these are referred to as ‘incomplete basis set corrected’ (IBSC)
forces, which provide reasonable energy conservation only for short periods of time (< 10
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fs). The more rigorous ‘energy conserving’ (EC) forces discussed in [38] can be rewritten as
a correction to the IBSC forces as follows:

FEC
I = FI +

∑
n

fn〈ψ̃n|
dT †

dRI

T S−1H̃KS + h.c.− εn
dS
dRI

|ψ̃n〉 (5.2)

However, as the results in this chapter are taken over short times they are somewhat insen-
sitive to this correction, so the following results are computed using forces computed within
Equation 5.1.

The first result in this chapter illustrates an advantageous feature of Ehrenfest-TDDFT
over DFT-MD. As the electronic state in Ehrenfest-TDDFT is determined via the numerical
integration of the TDKS equations, rather than a full self-consistent conventional DFT cal-
culation, the computational cost of the two schemes is quite different. In particular, Figure
5.1 demonstrates that the parallel scalability of Ehrenfest-TDDFT is superior to DFT-MD.
Here, the same system as used in the scalability results in Figure 3.5 is utilized (30 Xe
atoms, 240 electrons). The parallel speed up associated with the time per step of Ehrenfest-
TDDFT and DFT-MD is compared for equal time steps and accuracy (2 as and 8 digits). As
is evident, near-perfect scaling is achieved using Ehrenfest-TDDFT up to 512 cores, while it
saturates beyond 32 cores using DFT-MD. This is essentially a factor of the orthogonaliza-
tion required at each step in a DFT-MD calculation. As different parallelization strategies
are optimal for applying the KS Hamiltonian and orthogonalization, the implementation
that we use employs data redistribution to balance the respective bottlenecks of both. As
we only require a parallelization strategy for applying the KS Hamiltonian (by way of solv-
ing the Crank-Nicolson update equations), we escape having to perform this redistribution.
This performance is independent of whether or not the predictor-corrector version of the
Crank-Nicolson integrator is applied.

While the crossover in speed up occurs at 32 cores, it is worth noting that the crossover
in actual time per step occurs at 128 cores. On 8 cores, the DFT-MD time step is actually
2.9 times faster in terms of time per step. It is worth noting that comparing these times
is somewhat limited practically, as DFT-MD can employ a much longer time step than
Ehrenfest-TDDFT (100s of as instead of 1s of as). However, this is still artificially favorable
to DFT-MD because the electronic state changes very little between steps. This represents
a best case scenario with a very good initial guess for the SCF cycle in the conventional
DFT calculation, and a more realistic DFT-MD step will typically require more iterations
to achieve self-consistency.

Stopping Power

In the following, we consider the calculation of stopping power using Ehrenfest-TDDFT
forces. These calculations proceed as follows:

• An initial state is prepared in which the electronic ground state of some projectile ion
embedded in a crystalline supercell is computed.
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• An Ehrenfest-TDDFT calculation is evolved from this state, in which the projectile
ion is dragged through the supercell at a fixed velocity.
• Forces acting on the projectile ion are evaluated at each time step, permitting the

calculation of the work done by the system on the projectile.

This procedure is validated using results from [39], wherein Ehrenfest-TDDFT calculations
of the stopping power of a proton in Al within the SIESTA code were compared to the
SRIM/TRIM database [40].

Here, we considered a supercell of 64 Al atoms on a face-centered cubic lattice with
lattice constant 4.05Å. The projectile H atom was set along a trajectory along the 〈100〉
direction. The initial state was computed at a 500 eV cutoff on a 2×4×4 mesh of k-points
in the first Brillouin Zone using the local density approximation (LDA) to the exchange-
correlation functional. This same cutoff and set of k-points were used in the Ehrenfest-
TDDFT calculation, as well as an adiabatic LDA functional. As in [39], both channeling
and off-channeling trajectories are considered, with geometries illustrated in Figure 5.2.
Further, calculations were performed in which both the non-projectile ions were kept fixed,
and allowed to move subject to Ehrenfest forces. No significant difference was found between
these two scenarios, and data from the former are presented. This is due to the high velocity
of the projectile ion, wherein 1-10 fs is required for the traversal of the unit cell. While
the ion can significantly redistribute the very light electrons in this short period of time, it
cannot similarly affect the much heavier ions.
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Figure 5.2. View along the 〈100〉 direction for channeling
(left) and off-channeling (right) trajectories. Blue spheres
represent Al atoms, while the pink sphere indicates the pro-
ton.

The results of our calculations are presented in Figure 5.3. A trend similar to that
observed in [39] is evident, wherein the stopping power is reproduced well below the peak
velocity (1.5 a.u.), but is underestimated above this velocity. These previous authors indicate
that this may be a deficiency of their pseudopotential - in other words, they are missing core
excitations brought about by only having 3 valence electrons. Preliminary results comparing
both 3 and 11 electron PAWs for Al indicate that this is likely not the case, and the results are
essentially insensitive to the number of valence electrons. We postulate that this discrepancy
may then be due to missing non-adiabatic effects and/or finite size effects.

Still, there is some discrepancy between our result and [39] as the authors predict sig-
nificantly different stopping powers for channeling and off-channeling trajectories. While
this is not observed in our calculations our result is consistent with our physical intuition.
As Al is a good metal, we expect the electronic charge density to be relatively uniform
throughout. Only off-channeling trajectories that pass very close to knock-on will give sig-
nificantly different results for stopping power. Directly investigating the charge density seen
by the channeling and off-channeling protons, we find a negligible difference between the
two trajectories. Because the charge densities are nearly the same, and we are using an
adiabatic local exchange-correlation functional, the electronic contribution to the stopping
is virtually identical for the two trajectories. The only remaining discrepancy between the
trajectories is due to the ionic contribution to the stopping, which should be small at these
velocities. In Figure 5.4, the stopping force acting on the proton in exemplary channeling
and off-channeling trajectories at the same velocity are compared. While the off-channeling
proton experiences a more dramatic variation in the force that it experiences, the average
force is nearly the same as for a channeling proton.
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Chapter 6

Conclusion

Summary

In this report, progress towards a capability for first principles calculations of warm dense
systems using Ehrenfest-TDDFT was presented. Our results indicate that our implementa-
tion is numerically sound in terms of accuracy, efficiency, and scalability. Further we have
reproduced results from the literature concerning optical response and stopping power, indi-
cating that our implementation is currently on track to producing novel production scientific
results. In what follows, we will outline progress to be made in the coming months.

Future Work

The calculation of optical response in bulk WDM systems is of primary interest. In con-
trast to the ordered systems studied in [41], the response of WDM will require averaging over
the results of many calculations started from independent ionic configurations drawn from ei-
ther DFT-MD or Ehrenfest-TDDFT at the appropriate temperature. Even so, we anticipate
improvements relative to the state-of-the-art Kubo-Greenwood calculations which are based
upon linear response theory. These calculations rely upon the DFT-MD framework and
require a number of virtual states that scales directly with temperature to achieve conver-
gence. To this end, the orthogonalization bottleneck discussed briefly in Chapter 5 becomes
increasingly restrictive at higher temperatures. Investigations are currently under way to
place bounds on the parameter space over which optical response calculations using TDDFT
become favorable relative to the Kubo-Greenwood framework. Even beyond improving upon
Kubo-Greenwood calculations, we will pursue collaborations with other DFT-MD capabili-
ties at Sandia to find other applications facilitated by this new capability. We anticipate that
our framework will be useful to applications ranging from surface science and soft matter
physics, to battery technology and quantum information.

The next item of interest is the calculation of the XRTS DSF discussed in Chapter 1 for
a number of relevant systems, such as Be. Here, we are interested in the direct evaluation
of Equation 1.3 within Ehrenfest-TDDFT. This is a relatively straightforward task, though
there are a number of practical issues for which intuition will have to be developed. Among
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them are the manner in which the ensemble average in Equation 1.3 is taken and details
concerning the importance of using the AE charge relative to the PS charge. Questions
concerning ensemble averaging have led us to deeper problems within the TDDFT formalism,
particularly what it means to be doing TDDFT in the canonical ensemble. At present,
we capture thermal effects by propagating from a Mermin density, which is representative
of the density of the thermal equilibrium state. Throughout the time evolution of this
density, the KS orbital occupancies are fixed to those of the initial Mermin state. At this
point, it is not clear how good of an approximation this is. In so far as the adiabatic
local/semilocal functionals that we are currently employing have no means of distinguishing
between an ensemble averaged density from the canonical ensemble, and a density from
the microcanonical ensemble, there is no doubt some new form of ‘self-interaction error’
introduced. We are looking to the base of knowledge being developed germane to finite
temperature functionals for some means of quantifying how this type of error scales with
temperature.

These questions lead naturally to the final issue that we seek to address, and that is
improvements of the electron-ion dynamics beyond Ehrenfest-TDDFT. We are particularly
interested in capturing non-adiabatic effects necessary to electron-ion thermalization. To
this end, we are investigating frameworks wherein the KS orbital occupancies are no longer
constrained to remain fixed throughout the time evolution. The Landau-Zener formalism
currently seems like the most promising avenue, wherein we have a continuous time model
from which we will develop an equation of motion for the orbital occupancies. Consistent
with changes in the occupancies, non-adiabatic forces will be applied to the ions, allowing
for the electron subsystem to confer some of its energy directly to the ionic subsystem. One
can then imagine calculations in which, starting from a strongly non-equilibrium electronic
state, the rate at which the electrons and ions equilibrate with themselves and each other
are accessible. These types of calculations have tremendous importance to informing higher
level models used in developing ICF technology.
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Appendix A

A.1 Matrix Elements

In this Section, details are given concerning the evaluation of the operators in the Crank-
Nicolson update equations and their modification in the presence of ionic motion. In so far
as our implementation makes use of an iterative solution of the associated equations, only
the effect of these operators on some PS orbital |ψ̃n〉 need be considered, as the individual
matrix elements of the operators are never evaluated and stored.

A.1.1 Crank-Nicolson Update Operator

We begin by considering the steps needed for the solution of Equation 2.7 for every |ψ̃n〉
at each time step. These consist of:

1. Computing the RHS from a matrix-vector product of
[
S − i∆t

2
H̃KS(t)

]
and |ψ̃n(t)〉.

2. Given the RHS product and some initial guess (typically |ψ̃n(t)〉) solve for |ψ̃n(t+∆t)〉
from products of

[
S + i∆t

2
H̃KS(t)

]
and a sequence of iterate PS kets.

As these two operators differ by a sign in the second term, a single routine for evaluating

products with
[
S ± i∆t

2
H̃KS(t)

]
was implemented. The evaluation of a matrix-vector product

between this operator and |ψ̃n(t)〉 proceeds along the following stages:

1. For each ion (I) and its set of projectors (j), compute the coefficients 〈p̃Ij |ψ̃n(t)〉
2. Effect the contribution from the local potential in H̃KS using a real-space representation

of |ψ̃n(t)〉.
3. Effect the contribution from the non-local potential in H̃KS and the non-local portion

of S using the inner products computed in Step 1.
4. Effect the contribution of the kinetic energy term in H̃KS and the identity term in S

using a reciprocal-space representation of |ψ̃n(t)〉.
5. Add all terms together with the appropriate weights.
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A.1.2 Adding Ionic Motion

Unlike the operators in the previous section, P is a purely non-local operator. For
convenience, we recall its definition from Equation 2.6 and the definition of the T operator
from Equation 2.1:

P = −iT †dT
dt

(A.1a)

T = 1 +
∑
I

∑
j

(
|φIj〉 − |φ̃Ij〉

)
〈p̃Ij | (A.1b)

Here, the time-dependence of the T operator is implicit in the dependence of the partial
waves and projectors on the ionic positions, RI which are functions of time. Applying the
chain rule, we render P in terms of derivatives with respect to these positions:

P = −i
∑
I

ṘI · DI (A.2a)

P = −i
∑
I

ṘI ·
∑
j1,j2

(
|p̃Ij1〉Q

I
j1j2

∂〈p̃Ij2|
∂RI

+ |p̃Ij1〉

[
〈φIj1|

∂φIj2
∂RI

〉 − 〈φ̃Ij1|
∂φ̃Ij2
∂RI

〉

]
〈p̃Ij2|

)
(A.2b)

Here, we have introduced QI
j1j2

, the details of which are discussed in [22]. We consider the
calculation of the projector derivative/first term and the partial wave derivative/second term
separately.

The RI-dependence of the projector is very simple in the plane wave basis:

|p̃Ij〉 =
∑
G

p̃Ij (G)eiG·RI |G〉 (A.3)

To this end, the first term in parentheses in Equation A.2b can be rendered as:

−
∑
I

∑
G

ṘI ·G|G〉

(∑
j1j2

p̃Ij1(G)QI
j1j2

p̃Ij2(G)

)
〈G| (A.4)

The partial wave derivative is slightly more difficult to consider. In real-space, the AE
partial wave terms have the following form:

φIj1(r) = gIj1(|r−RI |)Yj1(θI , φI) (A.5)

That is, a product of a radial function centered about the Ith ion and a spherical harmonic in
terms of angular coordinates defined about the Ith ion. The PS partial wave takes the same
form. Because these functions only depend upon r−RI = r̃I , we can make the identification
∂

∂RI
→ − ∂

∂r̃I
. Using this, we can write the AE integral in the partial wave derivative term

as:

〈φIj1|
∂φIj2
∂RI

〉 = −
∫
r̃2
I sin(θ)drIdθdφ g

I
j1

(r̃I)Yj1(θI , φI)
∂

∂r̃I
gIj2(r̃I)Yj2(θI , φI) (A.6)

These integrals can then be computed by quadrature.
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A.1.3 Applying an Impulsive Field

We consider the evaluation of initial conditions for optical response calculations described
in Equation 4.2. It is evident that resolving the initial conditions requires the solution of
a linear system of equations. Other authors have previously noted that dropping all forms
of the T operator from the above Equation allow the initial conditions to be determined by
simply applying the phase factor to the ground state KS wavefunctions [31]. In so far as this
initial step is relatively inexpensive, and it guarantees that the initial kets are normalized in
the S-weighted norm, we have implemented the proper solution of Equation A.7.

Implementation is simpler if we first apply T † to both sides of Equation 4.2a.

S|ψ̃n(t = 0+)〉 = T †eiA0 ·̂rT |ψ̃0
n〉 (A.7)

The same CGS solver used for the Crank-Nicolson update will be applied with S on the
LHS, rather than the matrices described in Appendix A.1.1. The remaining problem then
becomes the evaluation of the RHS ket. Following the usual prescription for constructing
the PAW form of a local operator, the operator producing the RHS can be rendered as:

T †eiA0 ·̂rT = eiA0 ·̂r +
∑
I

∑
j1,j2

|p̃Ij1〉
[
〈φIj1|e

iA0 ·̂r|φIj2〉 − 〈φ̃
I
j1
|eiA0 ·̂r|φ̃Ij2〉

]
〈p̃Ij2| (A.8)

The first term can be applied trivially after transforming the target ket into real-space,
and the remaining non-local term can be applied easily in reciprocal-space, assuming knowl-
edge of the matrix elements enclosed in square brackets. These matrix elements take the
form:

Q̃I
j1,j2

(A0) =

∫
dr gIj1(r̃I)Yj1(θI , φI)g

I
j2

(r̃I)Yj2(θI , φI)e
iA0 ·̂r (A.9)

Here, the expansion of the phase factor in terms of atom-centered spherical harmonics yields
the following factorized form of the matrix elements:

Q̃I
j1,j2

(A0) = eiA0·RI

∞∑
L

4π(i)L
(∫

dr̃I r̃
2
Ig

I
j1

(r̃I)g
I
j2

(r̃I)jL(A0r̃I)

)
×

L∑
M=−L

YL,M(θA0 , φA0)

∫
dθIdφI sin(θI)YL,M(θI , φI)Yj1(θI , φI)Yj2(θI , φI) (A.10)

The integral of the product of three spherical harmonics is a well-known quantity [42] which
naturally truncates the infinite sum in L, and the finite set of radial integrals are performed
numerically.

A.2 Calculation of Bulk Optical Response

In contrast to the finite systems approach in Chapter 4, when considering extended
systems the effect of long-range polarization must be taken into account when computing
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the optical response. Bertsch, et. al. [41] were the first to present the necessary modification
to real-time TDDFT to capture this physics. Here, we provide a brief overview of their
approach and details germane to its implementation.

We will consider the evolution of the KS state under the action of Equation 2.4 in the limit
of immobile ions and adding an external time-dependent electric field to the KS Hamiltonian,
as in Chapter 4. To this end, we will consider the same initial conditions as in Equation 4.2.
However, rather than considering the system’s dipole moment, we will instead look at the
TD surface charge that is induced by the initial perturbation, the dynamics of which will
yield information concerning the bulk dielectric function. This surface charge will simply
appear as an induced contribution in the total vector potential, A(t), which will remain
uniform over the entire system. With this in mind, the following extensions must be made:

• As the vector potential is no longer a constant, it must be included in the TDKS
Hamiltonian.
• Separate classical equations of motion must be evolved for the total vector potential

in conjunction with the TDKS equations.
• The TD electric field arising from the total vector potential must be retained to com-

pute the system dielectric function.

Inclusion of the vector potential into H̃KS is relatively simple. The kinetic energy term
must be modified in the usual way, p → p − A(t), and a gauge transformation must be
applied to the nonlocal contribution to the potential to preserve gauge invariance of H̃KS.
Calculation of the modified terms is straight forward in the basis of plane waves, in which
the p ·A(t) and |A(t)|2 terms are diagonal.

The equations of motion for A(t) take the form of a 2nd order ODE:

(
d2

dt2
+ ω2

p

)
A(t) = jKS(t) + jPAW (t) = jRHS(t) (A.11)

Here, ω2
p is the plasmon frequency associated with the non-frozen electrons, jKS(t) is the

current density at the system boundary, and jPAW (t) arises from the gauging of the nonlocal
part of the potential. The numerical integration of this ODE with the TDKS equations is
achieved using a Verlet integrator for A(t) outside of the Crank-Nicolson integrator estab-
lished in Chapter 2. Integration proceeds as follows:

1. Update E(t) = −dA
dt

: E(t+ ∆t
2

) = E(t) + ∆t
2

(A(t)− jRHS(t)).
2. Update the KS orbitals using the full Crank-Nicolson integrator from time t to t+ ∆t,

using A(t) in H̃KS.
3. Update A(t): A(t+ ∆t) = A(t) + ∆tE(t+ ∆t

2
).

4. Update E(t+ ∆t
2

): E(t+ ∆t) = E(t+ ∆t
2

) + ∆t
2

(A(t+ ∆t)− jRHS(t))

Similar to the dipole response in Chapter 4, the Fourier spectrum of E(t) is the observable
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quantity of interest. Here, we find that the system dielectric function can be computed from:

1

εαβ(ω)
= 1− 1

Aβ(0)

Tsim∫
0

dt eiωtw(t)Eβ(t) (A.12)

As before, w(t) is a windowing function that ensures that the integrand goes smoothly to 0
for t ≥ Tsim. Here A(0) and E(t) have been written in component form to emphasize that
this method is capable of resolving even anisotropic dielectric functions, albeit, requiring 3
independent calculations.
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