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Abstract

We consider the class of integrated network design and scheduling problems. These prob-
lems focus on selecting and scheduling operations that will change the characteristics of a
network, while being specifically concerned with the performance of the network over time.
Motivating applications of INDS problems include infrastructure restoration after extreme
events and building humanitarian distribution supply chains. While similar models have
been proposed, no one has performed an extensive review of INDS problems from their com-
plexity, network and scheduling characteristics, information, and solution methods.
We examine INDS problems under a parallel identical machine scheduling environment where
the performance of the network is evaluated by solving classic network optimization prob-
lems. We classify that all considered INDS problems as NP -Hard and propose a novel
heuristic dispatching rule algorithm that selects and schedules sets of arcs based on their
interactions in the network.
We present computational analysis based on realistic data sets representing the infrastruc-
tures of coastal New Hanover County, North Carolina, lower Manhattan, New York, and
a realistic artificial community CLARC County. These tests demonstrate the importance
of a dispatching rule to arrive at near-optimal solutions during real-time decision making
activities.
We extend INDS problems to incorporate release dates which represent the earliest an op-
eration can be performed and flexible release dates through the introduction of specialized
machine(s) that can perform work to move the release date earlier in time. An online opti-
mization setting is explored where the release date of a component is not known.
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Chapter 1

Introduction

Integrated network design and scheduling (INDS) problems are a new class of problems
that model the selection and scheduling of operations that will change the characteristics of
a network. These operations could correspond to enhancing existing network components or
installing new components. The integration of these two sets of decisions, network design
and scheduling, allows our models to capture how the operations improve the performance
of the network over time during their implementation.

Traditional network design problems look at selecting the desired characteristics (e.g.,
which components to install) of a network. A network design is evaluated by looking at
the end performance of the network, i.e., how the network operates after the design is com-
pleted, without considering the intermediate network performance as the design is being
implemented. INDS problems specifically consider the intermediate network performance
by incorporating the scheduling decisions required to implement the selected design. These
INDS scheduling decisions are related to traditional scheduling problems that seek to allo-
cate resources over time to process a set of tasks.

INDS problems focus on the allocation of machines1 to process the set of tasks required
to achieve a selected network design. The focus of this dissertation will be on INDS prob-
lems in a parallel identical machine environment, with some extensions and specific machine
characteristics. A solution to these problems involves three main decisions: selecting which
components to process to change the network, assigning the selected components to a ma-
chine, and sequencing the assigned tasks on each machine. We consider INDS problems with
objectives that focus on the cumulative (intermediate) performance of the network over time
or that focus on how quickly a desired level of network performance can be achieved.

There are a number of real-life situations that motivate the need for models that integrate
network design and scheduling problems. We present applications in restoring a disrupted
network, upgrading an existing network, and building a new network.

Our first application arises after an extreme event, such as a hurricane, that has caused
large-scale damage to an infrastructure network. Infrastructure managers must make a
restoration plan to repair damaged components and re-establish distribution of the services
provided by the network. Customers of the infrastructure network evaluate the success of
a restoration plan by how quickly their services are restored. Therefore, the repair of dam-
aged components must be scheduled to create an operational network and ensure a quick

1Please note that while we use the term ‘machine’, in many applications, work groups, work crews, or
other resources take the role of the machines. However, for consistency with the scheduling literature, we
will use the term machine when examining the mathematics of the INDS problem.
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restoration of services to many customers. The infrastructure will be providing services as
it is implementing its restoration plan and, therefore, infrastructure managers will be con-
cerned with the level of satisfied demand in the network over time. An INDS model can
help formulate a restoration plan that allocates infrastructure work crews to process selected
repairs in the infrastructure network.

There are many external factors to consider when devising a restoration plan, many of
which were experienced after Hurricane Sandy in late October 2012. For example, infras-
tructures are interdependent in that one infrastructure depends on the services provided
by another infrastructure for normal operation and restoration activities. For example, a
flooded subway tunnel needs to be pumped free of water which requires power or the use
a generator which requires fuel. The transportation network is needed for power crews to
move from one restoration task to another. If flooding or debris is present on the roadway,
the power managers must consider if a restoration task is accessible and safe to perform.
After an extreme event like Hurricane Sandy, different restoration tasks must be completed
by different infrastructure systems. For example, debris from a roadway should be removed
by license debris contractors. Therefore, if debris is blocking access to a power restoration
task, the power company must wait or coordinate with the debris removal crews to gain
access to their task. We extend INDS problems to consider many of these external factors
by incorporating new network and scheduling characteristics.

Another application area is the implementation of network upgrades in order to improve
services provided by the network. One example of this is constructing a new smart grid design
for the power infrastructure. Researchers have looked into how to transform the electrical
power grid into a smart grid (see Farhangi [25], Momoh [56], Mahmood et al. [51], DeBlasio
and Tom [18]), many of which include installations of solar (see Mulder et al. [58]), wind (see
Glinkowski et al. [27]), and other environmentally friendly and sustainable technologies (see
Clastres [14], Moslehi and Kumar [57], and Liserre et al. [48]). For large projects like these,
resources (e.g., budget) often only allow a number of upgrades to take place during a certain
time period (e.g., annually). It is, therefore, important to determine which upgrades will be
completed in each phase of the project, which can be modeled with an INDS problem. Note
that, in this application area, it is likely that all upgrades (tasks) in the problem will be
processed (i.e., the end design is fixed); however, INDS problems can help model the order
of the tasks in order to optimize the intermediate network performance. Another example
of an application of upgrading a network is when a supply chain chooses to enhance existing
components in their network, such as improving a machine or expanding inventory capacity
at a facility.

Our third application of INDS problems involves creating and building a new network,
which is often needed during humanitarian logistics activities. After an extreme event, many
people do not have access to essential items such as water, food, and shelter. In remedy of
this situation, humanitarian organizations set up locations to distribute these essential items
and to act as shelters. These sites should be located in order to provide the greatest benefit
to the affected community. There are limited resources available to set up these locations,
therefore, we must allocate the resources over time to a selected subset of the potential dis-
tribution and shelter sites. It is clear that the partially completed network will need to be
operational and goods will be distributed even when all work is not fully completed on the
selected logistics network.

10



The objective of an INDS problem is based on two factors: (i) how the performance of the
network is evaluated and (ii) how we evaluate the scheduling decisions. The performance of
the network is often dictated by the application of the INDS problem. For example, the type
of infrastructure system being restored will dictate the most applicable mathematical model
to apply to determine the performance of the network. A power network might care about
maximizing flow at each time period of a restoration plan, which is equivalent to maximizing
met demand. An emergency network might care about the shortest path between residents
and a hospital. We will consider network performance metrics based on four classic network
flow problems (see Ahuja et al. [2]). In terms of evaluating the scheduling decisions, we
are interested in determining the cumulative performance of the network over time, which
means our objective will include the network performance in each period. Alternatively, we
are also interested in determining the minimum amount of time required to achieve some set
performance value (e.g., all demand is met).

INDS problems are also impacted by the scheduling characteristics associated with the
tasks and the machines. During Hurricane Sandy, and after many extreme events, some
restoration tasks are not available for immediate processing directly after the event has
passed. Often times flooding needs to subside or be pumped out of areas before it is safe for
work crews to enter the area surrounding restoration tasks, or debris needs to be removed
from roadways to allow access to the restoration tasks. We utilize release dates associated
with INDS tasks to represent the earliest point in time a task can begin to be processed.
This could, for example, signify the point in time when debris has been removed from a
roadway providing access to a set of power restoration tasks. For the application of infras-
tructure restoration, and many of the other applications that INDS problems can model,
the release date time for a particular task is unknown at the start of the decision making
process. For example, the power company many not know when a roadway will be clear of
debris, allowing access to power restoration tasks, until they receive communication from
the county that the debris has been removed. We use an online optimization environment
to model this lack of complete information with regards to release dates for INDS problems.

If a vital restoration task for the power company has an unknown release date, or release
date far into the future they will want to take actions to move this release date earlier in time.
We introduce the novel concept of flexible release dates, which allows a set of specialized
machines to perform processing (associated with a specific task) to move the release date
earlier in time, specifically to the completion time of the specialized machines. For example,
the power company could hire licensed work crews to remove the debris blocking the roadway
that obstruct the access to a set of power restoration tasks. The new release date for the set
of power restoration tasks would then be the completion time of the hired debris removal
work crews. We analyze this further by considering the benefits of multi-function machines
that perform processing to move the release dates earlier in time (e.g. remove debris) and
traditional processing to make components operational in the network.

For our examination of INDS problems, we will first discuss relevant literature in Chap-
ter 2. Work examining both network design and scheduling decisions, separately will be
presented in addition to an overview of the limited articles that discuss network design and
scheduling decisions jointly. Within these discussions, we outline how this work is different
and novel. Furthermore, we present specific literature concerning real life applications that
can be modeled using an INDS problem. In Chapter 3 we formally introduce and define
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INDS problems in a parallel machine environment. The contributions of this work to the
study of INDS problems include: (i) the examination of 12 INDS problems with different net-
work performance metrics and scheduling objectives (which can model many of the previous
objectives considered in related work), (ii) introduction of release dates and flexible release
dates, and (iii) and online optimization framework. In Chapter 4 we classify each of the 12
INDS problems as at least NP -Hard. We then propose exact and heuristic solution meth-
ods through integer programming formulations and dispatching rule algorithms. We then
computationally test the solution methods in Chapter 5 on realistic data sets representing
the power, waste water, and emergency supply chain infrastructures of coastal New Hanover
County, North Carolina, power and telecommunication networks of lower Manhattan, New
York, and the power network of a realistic artificial community CLARC County. These tests
demonstrate the importance of a dispatching rule to arrive at near-optimal solutions during
real-time decision making activities. We conclude with Chapter 6.

The main contribution of this work is an extensive analysis of the new class of INDS
problems from their complexity, network and scheduling characteristics, level of information
known, to solution methods.

12



Chapter 2

Literature Review

In this chapter, we discuss previous work relevant to integrated network design and
scheduling problems. First, literature will be cited that looks at the integration of these two
sets of decisions. Then, we go more in depth into specifics of scheduling which provide the
ground work for ideas associated with the proposed dispatching rules, flexible release date
concepts, and extensions. This includes citations about specific solution methods that help
frame the proposed dispatching rule. Online optimization is then explored in the context of
traditional network design and scheduling problems. Lastly, relevant literature based on the
applications of Integrated Network Design and Scheduling (INDS) problems is presented.

Network Design and Scheduling Problems looking at the integration of network design
and scheduling decisions have not been widely examined, despite their important applica-
tions. Network design problems have been well studied and look to find the best placement
of nodes and arcs in a network to balance design costs with the performance of the end net-
work. Many network design applications have also been explored. The nodes of a network
could model facility locations (see Daskin [17] and Drezner [19]) or the arcs could model
the evacuation routes of a city (see Kalafatas and Peeta [43] and Baumann and Skutella
[7]). Scheduling problems have also been independently studied (see Pinedo [65]). We will
explore literature examining network design and/or scheduling decisions that are relevant to
the applications of INDS problems.

Lee et al. [47] use an interdependent layered network to aid in the restoration of many
infrastructures after an extreme event. This interdependent layered network models inter-
dependency between infrastructures. The model selects arcs that are a priority to install
into the network. A data set representing lower Manhattan after a disruption to the area
surrounding the Brooklyn Battery Tunnel is created by Lee et al. [47] and used for testing.
While Lee et al. [47] presents a network design restoration plan, this plan only incorporates
the selection decisions of arcs to install back into the network. A schedule for how to effi-
ciently assign the arcs to work groups at specific times is not developed.

Lee et al. [47] does not address the scheduling decisions but Gong [28] does develop a
model to find the best schedule of arcs for restoration after an extreme event. Logic-based
Benders decomposition is used where a constrained programming subproblem feeds into a
master problem by adding additional constraints. Gong assumes that all arcs in the problem
need to be installed. This is true for the long term restoration efforts but initially short term
efforts need to be analyzed. Often a network has redundancy and if two redundant paths are
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damaged it is not in our best interest to repair them both before repairing another damaged
path that could restore more demand. Further, only looking at the scheduling decisions
does not capture how the arcs interact with each other. Therefore, selection decisions are
necessary for truly accomplishing the objective of maximizing cumulative satisfied demand.
Further, Gong [28] does not consider interdependencies by factoring in how different infras-
tructure networks interact with one another.

These two models are combined by Cavadaroglu et al. [10] into a mixed integer pro-
gramming formulation. Both network design with selection and scheduling decisions are
addressed. The objective function minimizes the cumulative sum of flow costs and unmet
demand costs. When the model is tested on the Manhattan data set developed by Lee et
al. [47], the run time is very long and in the study had not been run to optimality. Fur-
ther pre-processing was done to reduce the amount of arcs that are available for selection.
The formulation of Lee et al. [47] was used to determine the 100 best arcs that should be
installed. The selection decisions for this model were then limited to these 100 arcs. A
heuristic method is also presented, but is specialized for networks with a large connected
subsection fully damaged.

The works of Guha et al. [31], Averbakh [5], and Averbakh and Pereira [6] consider
INDS problems that are focused on the recovery times of the nodes in the network, which
is defined as the first time a (demand) node is connected to a ‘source’ (or supply) node.
These works do not consider the capacity constraints within a network, which is important
when capturing the network performance in certain applications. Further, INDS problems
considered in this dissertation can capture the number of recovered nodes in the network at
any point in time, so the objectives can model recovery time-based objectives. Xu et al. [75]
look at restoring a power network after an earthquake by scheduling inspection, assessment,
and repair operations. This work, again, focuses on the recovery time of each demand node
and proposes a genetic algorithm for this problem.

There has further been research that have looked at INDS problems that is interested in
the cumulative performance of the network over time. Ang [4] provides an integer program-
ming formulation of a model to restore power, where the focus is minimizing the total cost
of power shed over time. Matisziw et al. [53] provides an integer programming formulation
of an INDS problem whose network performance is measured as the connectivity between
pairs of nodes. Stilp et al. [71] examine debris removal in a transportation infrastructure and
how it can reduce long-term effects of an extreme event. Concurrent to this work, Elgindy
et al. [22] has considered an INDS problem where we can install one new arc in every time
period and is focused on minimizing the total of the length of the shortest path over all time
periods. Therefore, this problem is a special case of problems considered in this dissertation.
Elgindy et al. [22] provides a NP -Hard proof of this problem and approximation algorithms.

Note that other work has examined network design problems that schedule routes and
services on the design (see Lederer and Nambimadom [46], Cranic [16], Lai and Lo [45],
Agarwal and Ergun [1], and Guihaire and Hao [32]). These problems are fundamentally
different than INDS problems since INDS problems look at utilizing machines to schedule
the processing of components to make a selected network design operational.
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Scheduling and Solution Approaches Pinedo [65] provides a thorough review of
scheduling problems. Heuristics, dispatching rules, and algorithms are presented to achieve
near optimal solutions for NP -Hard scheduling problems, and optimal solutions for polyno-
mial solvable problems. Two common scheduling heuristics that are modified for use in the
INDS dispatching rule framework are the WSPT rule and LPT rule.

The Weighted Shortest Processing Time (WSPT) rule was originally introduced by Smith
in 1956 [69]. This rule was proven to be optimal for the problem of minimizing total weighted
completion time for a single machine, or 1||

∑
wjCj, when using the classification notation

by Graham et al. [30], where Cj is the completion time of job j and wj is the weight or
priority. According to the rule, the next job scheduled has the greatest ratio of wj to pj,
where pj is the processing time of job j.

The Longest Processing Time (LPT) first rule (see Graham [29]) can be applied to
Pm||Cmax, minimizing maximum completion time, Cmax, on m parallel machines. As the
name states, the job with the longest processing time is scheduled first on the next available
machine. This rule is not exact but provides a solution that is guaranteed to be less than or
equal to 4

3
− 1

3m
times the optimal solution.

We extend INDS problems to include release dates (see Pinedo [65]) and flexible release
dates. The use of another machine to move earlier the release date of a job, as is done for
flexible release, has not been widely studied. Dubois et al. [20] discuss flexible release dates
but in the context that the release date constraint is not strict but instead a soft constraint.
Instead of modeling that a machine cannot start job j until its release date rj, a ‘fuzzy’ or
soft release date constraint is used that allows an early start time in exchange for a penalty.
This constraint allows for a range or threshold of possible start times and factors in a value
measuring how satisfied one is for the start time of a specific job. This definition of a flex-
ible release date differs from our flexible release dates. We model the use of an external
specialized machine to move forward a release date to a specific point in time and not a
soft constraint for the release date. In addition, we allow the possibility for multi-function
machines that can process tasks and shift release dates.

Online Optimization We consider INDS problems in an online optimization environ-
ment. Online optimization problems have incomplete information at the start, but informa-
tion is incrementally revealed. Therefore, it is imperative for decision makers to arrive at
decisions based on incomplete information and adapt to new information. Online algorithms
have been studied by Sleator and Tarjan [68], who also introduced the notion of comparing
an online algorithm performance to the offline performance. The offline to online comparison
was then formalized as the online competitive ratio by Karlin et al. [44]. For information
about the study of online algorithms, competitive ratios, and their many applications please
see the following books of Borodin and El-Yaniv [9] and Fiat and Woeginger [26].

An example of an online scheduling problem could involve incomplete information about
the set of jobs that need to be processed and how long the processing on machines will take
(see Pinedo [65]). Hall et al. [36] examine the single machine scheduling problem seeking to
minimize total weighted completion time with precedence constraints in an online setting.
Hoogeveen and Vestjens [37] examine single machine online problems where the number of
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jobs is not known. Stougie and Vestjens [72] examine randomized algorithms for a variety
of online scheduling problems. The online single machine total weighted completion time
scheduling problem is considered by Anderson and Potts [3]. Megow and Schulz [54] examine
the online average completion time scheduling problem. Chou et al. [13] consider parallel
machine scheduling problems with release dates in an online setting. A variety of solution
approaches and permutations of single and parallel machine scheduling problems seeking to
minimize the total weighted completion time are examined by Correa and Wagner [15].

An introductory tutorial about online optimization problems can be found by Jaillet and
Wagner [42]. In the tutorial and more extensively in Jalliet and Wagner [39], they examine
the online Traveling Salesman Problem (TSP) and Traveling Repairman Problem (TRP),
where cities pop up throughout the horizon of the problem. They further extend this prob-
lem by giving release dates to cities, stating that each city must be visited at or after the
defined release date. By making assumptions on specifics surrounding the data in the TSP
and TRP, they are able to arrive at competitive ratios for proposed online algorithms. Jaillet
and Wagner [40] also consider online problems involving resource allocation, and machine
scheduling [41]. Jaillet and Stafford [38] examine the online searching problem, where a
searcher seeks to find an exit by taking one of m disjoint branches. They examine the value
of gathering information prior to the search and its impact on their online algorithms. We
perform a similar analysis by quantifying the value of advanced information and its impact
on the solution quality.

Applications A main application of INDS problems is infrastructure restoration after an
extreme event. When modeling this application, we should take into account the interdepen-
dency of infrastructure systems on each other. The analysis of civil infrastructure systems
is complex since they are interdependent (see O’Rourke [64]); disruptions in one can spread
to others causing cascading failures (see Wallace et al. [74], Mendonca and Wallace [55], and
Chang et al. [12]).

Rinaldi et al. [66] note that managers of infrastructure systems have become inclined to
consider these interdependencies; however, the managers of a particular infrastructure will
have little knowledge of the structure and operations of the other systems. We can expect
that the managers of an individual infrastructure will understand the direct connections of it
with other infrastructures and, therefore, can weigh the services provided to certain connec-
tions more heavily (e.g., a hospital has a higher priority weight than a residential household).

Ellis et al. [23] discuss how an attack on the internet is a vulnerable target, based on ac-
cessibility from many countries, and has large scale impact on other critical infrastructures
such as emergency services. Little [49] calls for examining the indirect effects which are
first-order and then second-order interdependent effects of damage. Rinaldi et al. [66] goes
into types of interdependencies including physical, cyber, geographical and logical. These 4
types are used in other literature models.

Geographical proximity is used to model interdependency between the power and water
networks by Dueñas-Osorio et al. [21]. A cyber classification is used based on information
technology by Haimes and Jiang [35]. O’Rourke [64] explains that interdependency is based
on physical proximity and operational interaction which coincides with physical and logical.
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Other models are created to further analyze the details of interdependency (see Haimes et
al. [34], [33]). These classifications are useful when determining the interdependency of the
data set used for realistic testing scenarios.

A resilient network is a network that can return to working order quickly after disruption.
Network vulnerability displays how susceptible particular components of the network are to
disruption. Through the use of an INDS problem a quick restoration plan can be achieved
thereby increasing the resiliency and decreasing the vulnerability.

Many have examined specific ways to measure the resiliency of a graph. A global and
local connectivity parameter, vertex degree distribution, and redundancy ratio is a tech-
nique used by Dueñas-Osorio et al. [21]. From empirical tests it was concluded that as the
percentage of arcs that are damaged in the network increases, there is a very fast decay of
satisfied demand in both the power and water infrastructures. Another observation was that
a graph is more resilient when arcs are randomly removed than with a targeted disruption
representative of a deliberate attack.

O’Rourke [64] emphasizes the idea of resiliency through a people approach. He promotes
resiliency through public awareness developed through education, strong leadership and di-
rection, planning, and resource allocation when creating a proper network. Chang [11] gives
a concrete definition of a resilient network and the challenges in achieving this type of net-
work. She defines resiliency with 3 criteria: ‘lower probability of failure, less-severe negative
consequences when failure occurs, and faster recovery from failure.’ Through the implemen-
tation of INDS problems we can enable the network to recover faster, thereby increasing
the resiliency measure of the network. Another definition provided by Tierney and Bruneau
[73] uses the R4 framework: robustness, redundancy, resourcefulness, and rapidity as the
parameters for measurement. Again, INDS problems specifically address the rapidity and
resourcefulness measures of resiliency.

One way of modeling the vulnerability of a network, or a particular component of a net-
work, is by measuring connectivity. Haimes and Jiang [35] present a model based off the
Leontief input-output model measuring economic interconnectedness. Simulation techniques
are also used to measure connectivity through the use of many experimental scenarios by
Matisziw et al. [52]. Upper and lower bounds on flow between origins and destinations are
also established through an integer programming formulation by Murray et al. [59]. Both
connectivity and bounds on flow allow for knowledge on how the removal of a particular arc
will impact the total performance of the network.

Haimes et al. [34] use an inoperability input-output model (IIM) to assess effects between
connected and hierarchical systems. Case studies performed by Haimes et al. [33] then use
this IIM model to identify the top most vulnerable infrastructure systems. A further com-
ponent ranking is provided by Nagurney and Qiang [60] that identifies the components that
have the greatest impact when damaged in the network. Another assessment of vulnerability
provided by Bienstock and Verma [8] answers the question if k components can be damaged
or removed without causing failure.

Another main application of INDS problems is humanitarian logistics. We will present
case studies using INDS problem to decide where to appropriately locate distribution sites
for essential goods to the affected population after an extreme event. Sonmez and Lim [70]
examine a similar problem, focusing on facility location and relocation for these distribution
sites based on changing demand. Their work differs from INDS problems because set up,
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take down, and movement time is not factored into their model. Further, they do not man-
age the decisions surrounding resources needed to perform these relocation duties.

A good overview of how optimization can help disaster supply chains is provided by
Ergun et al. [24]. The problem of debris removal after a disaster is used as an illustrative
example addressing a timeline and specific tasks. With the use of INDS problems, we can
model different aspects of humanitarian logistical activities. We can determine the creation
of a disaster supply chain by deciding on the location and allocation of goods to the affected
community from distribution centers after a disaster. Further, we can model debris removal
by determining which transportation network components (e.g. roads) are most vital and
scheduling resources to remove the debris to make the transportation functional.

After an extreme event, such as Hurricane Sandy in October 2012, it is apparent that the
operations of one infrastructure depend on the services provided by another infrastructure.
The idea of these operational interdependencies is addressed by Rinaldi et al. [66] , Little
[49], and Wallace et al. [74]. These operational interdependencies are extended further to
the notion of restoration interdependencies by Sharkey et al. [67]. Restoration interdepen-
dencies occur when the restoration task of one infrastructure is impacted by the restoration
tasks associated with another infrastructure. For example, a flooded subway tunnel after
Hurricane Sandy needs to be pumped free of water which is a restoration task in the subway
infrastructure system requiring power. If power is out for the subway tunnel, then this is an
example of a restoration interdependency, as the subway restoration task is impact by when
the power restoration task is complete.

We use INDS problems with release dates and flexible release dates to capture some
level of restoration interdependencies. For the example of the restoration interdependency
between the subway and power network, if power was absolutely necessary to pump out
the subway tunnel (no generators or other options are available) the release date associated
with the pumping restoration task would be the time that the power is restored. Knowing
this exact point in time is often desirable, but unrealistic. We use online INDS problems
to model this lack of complete information. We can model the situation when the subway
has alternative options to the power restoration, such as acquiring generators as an INDS
problem with flexible release dates. The release date associated with the restoration task
of pumping out the tunnel can be moved earlier in time, specifically to the time when a
generator is brought to the tunnel and hooked up.
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Chapter 3

Problem Statement

The purpose of this section is to provide a formal problem definition of INDS problems.
This includes specifying the network characteristics, network performance metrics, objective
functions, and scheduling environment associated with INDS problems.

Let Gt = (N,At, A
′
t) represent the network at time t, where N represents the set of

nodes, At represents the set of operational arcs at time t, and A′t represents the set of non-
operational arcs at time t. The performance of the network, denoted by P (Gt), is directly
impacted by the set of operational arcs, At. The set of arcs At ∪ A′t remains constant over
time. An arc (i, j) ∈ A′t can become operational and transition to At̄, for some t̄ > t once it
has been processed by a machine. The initial operational network is made up of nodes, N ,
operational, A0, and non-operational, A′0, arcs at time 0.

The set of nodes is not indexed by t because we assume all processing in the network oc-
curs on the arcs. This is without loss of generality since the potential to install a node in the
network can be modeled as installing an arc using standard network expansion techniques
(e.g., split the node into two nodes and an arc). Within the set of nodes N , we may have
(depending on the network performance metric) a subset of supply nodes S and demand
nodes D. Each supply node i ∈ S has an associated supply level, si, and each demand node
i ∈ D has an associated demand level di. Define a priority, ωi for each demand node i ∈ D.

Each arc has a set of associated parameters. Arc (i, j) ∈ A′0 has an associated (constant)
processing time pij > 0, representing the length of time it needs to be assigned to a machine
to become operational. Every arc (i, j) ∈ A0 ∪ A′0 has an associated capacity uij and cost
cij. Define parameter rij to be the release date for each arc (i, j) ∈ A′0. Mimicking the
release date definition from scheduling literature (see Pinedo [65]), the release date of an arc
(i, j) ∈ A′0 represents the earliest that any machine can begin processing (i, j).

Machines must be allocated to a non-operational arc for it to become operational. We
assume m parallel identical machines in a non-preemptive environment, commonly denoted
Pm. Parallel identical machines means that all machines can complete arc (i, j) ∈ A′0 in
pij time periods. The non-preemptive environment signifies that once a machine starts to
work on arc (i, j) ∈ A′0 it must continue to work on arc (i, j) for pij consecutive time periods
to complete arc (i, j). In a traditional scheduling environment, jobs tend to arrive at ma-
chines. However, for INDS problems a machine might need to relocate to a specific portion
of the network to process its next task. Our models do not specifically consider this rout-
ing/relocation time since our motivating applications often have that this time is on a much
smaller scale than the processing times associated with the arcs and is, therefore, negligible.

Starting from INDS problems with release dates, we broaden the definition to allow for
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flexible release dates. The main idea behind a flexible release date is that some arc with
a set release date rij has the opportunity to be processed on a specialized machine for p̄ij
time periods to move the release date earlier in time. Define machines ` = 1, . . . , L as the
specialized parallel identical machines. Each arc (i, j) ∈ A′0 now has a specialized processing
time p̄ij, which represents the amount of time needed for processing on some specialized
machine to move up the release date. If an arc (i, j) is processed on a specialized machine,
its new release date becomes the completion time of this arc on the specialized machine. If
each arc was required to be processed first by a specialized machine and then a traditional
machine, we would be in a flexible flow shop environment, FF2. Because the processing on
the specialized machine is optional, as we can choose to instead wait for the release date,
we denote the machine environment as Opt− F2, and the incorporation of flexible releases
dates by flex− rij.

For INDS problems with flexible release dates, two types of disjoint machines are consid-
ered: m machines that process arcs to become operational in the network and L machines
that process arcs to move release dates earlier in time. These are disjoint sets because the m
machines can only process arcs to become operational and cannot process arcs to move release
dates earlier. The converse is true for the L specialized machines. We relax this assumption
by considering INDS problems with multi-function machines. Denote µ = 1, . . . ,Mu as par-
allel identical multi-function machines that can perform two tasks for a non-operational arc
within the network: processing to make the arc operational in the network and processing
to move the release date of the arc earlier in time.

We consider two objectives: the Cumulative and the Threshold objectives. The Cumula-
tive objective examines a set time horizon T and optimizes the cumulative weighted network
performance over time,

∑T
t=1wtP (Gt), where wt is a weight associated with each time pe-

riod. The term ‘optimize’ can mean either minimize or maximize depending on the specific
network performance. The Threshold objective considers a desired performance value P and
minimizes the time needed to reach or exceed this performance value, i.e. min T̄ such that
P (GT̄ ) ≥ P for maximization problems (P (GT̄ ) ≤ P for minimization problems).

The performance of the network P (Gt) at each time period is influenced by the set of
operational components at time t. Hence, as more components become operational the per-
formance of the network will improve. The manner in which we evaluate the performance
will be based on four core network flow problems (see Ahuja et al. [2]). The performance
metrics are as follows:

1. Maximum flow (MF ): maximize the flow from a supply node to a demand node.
This includes, through standard network expansion techniques, problems with multiple
supply nodes and/or demand nodes.

2. Prioritized Maximum flow (PMF ): maximize the prioritized or weighted flow from a
supply node to demand nodes, which can be modeled as a network with a single supply
and single demand node through standard network expansion techniques.

3. Minimum cost flow (MCF ): minimize the cost of flow that satisfies demand at a set
of demand nodes from a set of supply nodes.

4. Shortest path
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• Single source, single destination (SP ): minimize the shortest path from a single
source to a single destination.

• Sum of shortest paths to multiple destinations (
∑
SP ): minimize the sum of

shortest paths from a single source to multiple destinations.

• Maximum path of shortest paths to multiple destinations (min maxSP ): minimize
the maximum length of a shortest path from a source to one of a set of multiple
destinations.

5. Minimum spanning tree (MST ): minimize the cost of a tree that spans all nodes.

These performance metrics in combination with 2 objective functions and other extensions
results in 16 total problems considered. For ease of notation we utilize Graham’s triplet
notation for scheduling problems (see Graham [30]) and present the problems in α | β
| γ format where α represents the machine environment, β represents special processing
characteristics (including network performance metrics) or constraints, and γ represents the
objective function. We consider the following problems:

• Pm|MF |Cumulative

• Pm|PMF |Cumulative

• Pm|MF, rij|Cumulative

• Opt−FF2|MF, flex− rij|Cumulative

• MFM−Pm|MF, flex−rij|Cumulative

• Pm|MF |Threshold

• Pm|MCF |Cumulative

• Pm|MCF |Threshold

• Pm|SP |Cumulative

• Pm|SP |Threshold

• Pm|
∑
SP |Cumulative

• Pm|
∑
SP |Threshold

• Pm|min maxSP |Cumulative

• Pm|min maxSP |Threshold

• Pm|MST |Cumulative

• Pm|MST |Threshold

Online Optimization Environment We focus our attention on the maximum flow
performance metric with Cumulative objective function for the INDS problems with release
dates, flexible release dates, and multi-function machines. We further explore this problem
class by examining it under two different information and optimization settings: offline and
online. The ‘offline’ version of INDS problems is when all information, including the time
when arcs will be released, is known. For example, let arc (i, j) ∈ A′0 have a release date of
rij. It is known that arc (i, j) will be released at rij at time 0 and through the entire time
horizon of the problem, allowing decision makers to plan for the release of an arc ahead of
time. The ‘online’ version of INDS problems is when release date information is known only
as it occurs. Specifically, let arc (i, j) ∈ A′0 have release date rij. The earliest time that it
is known that (i, j) is released is at time rij. This forces decision makers to make decisions
without complete information and adapt to the arrival of new information as it is learned.
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Chapter 4

Complexity Results and Solution
Methods

In this Chapter, we first present a summary of the complexity results of the considered
INDS problems. We then discuss exact and heuristic solution methods to solve the problems.

Complexity Results

We now examine the complexity of these INDS problems, discussing that they are all at
least NP -Hard. Table 4.1 provides an overview of the complexity results, showing whether
each problem is ordinarily or strongly NP -Hard along with a potential hardness of approx-
imation classification. Note, by showing the problems without release dates and flexible
release are NP -Hard, we can further conclude that the problems with these extensions are
also NP -Hard. For the full theoretical analysis, including proofs demonstrating these com-
plexity results, please see Nurre and Sharkey [63].

Table 4.1: Summary of the NP -Hard results for the twelve INDS problems considered.

Problem NP -Hard
Ordinarily Strongly Strongly

No Approximation within ln |N |
Pm|MF |Cumulative X
Pm|MF |Threshold X
Pm|MCF |Cumulative X
Pm|MCF |Threshold X
Pm|SP |Cumulative Elgindy et al. [22]
Pm|SP |Threshold X
Pm|

∑
SP |Cumulative Elgindy et al. [22]

Pm|
∑
SP |Threshold X

Pm|min maxSP |Cumulative Elgindy et al. [22]
Pm|min maxSP |Threshold X
Pm|MST |Cumulative X
Pm|MST |Threshold X
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Dispatching Rules

Due to the hardness of the problems, even for a single machine, we focus on both heuristic
and exact solution methods. The first we discuss is a heuristic dispatching rule algorithm
framework. We discuss the framework idea, for a full set of details please see Nurre and
Sharkey [63].
Dispatching rules are a common heuristic approach for scheduling problems (see Pinedo [65])
that selects the next task to be processed by an available machine by examining the charac-
teristics of the set of unprocessed tasks. These rules can be applied in real-time and often
provide near-optimal solutions to scheduling problems. Therefore, the focus of this section is
on a framework for creating dispatching rules for INDS problems that can be easily adapted
for different performance metrics and problem extensions.
The success of a dispatching rule for a scheduling problem often relies on its ability to ap-
proximate the impact of completing a task on the objective of the problem. Dispatching
rules that focus on scheduling the next task are often successful for traditional scheduling
problems since once a task is processed by a machine, it impacts the objective function
and then essentially leaves the scheduling system. INDS problems are unique in the field of
scheduling since once an arc is processed and becomes operational, it interacts with other op-
erational arcs in the network to improve its performance. For example, a newly operational
arc can interact with other operational arcs in the network to allow additional flow to reach
a sink node from a source node. In other words, in the problem Pm|MF |Cumulative, the
newly operational arc can help form an augmenting path with other operational arcs in the
network to deliver more flow through the network. These interactions (e.g., opening up new
augmenting paths in a maximum flow network) will ultimately improve the performance of
the network and, therefore, our dispatching rule framework will focus on understanding these
interactions. In particular, our framework will focus on selecting the next set of arcs to be
processed by the machines based on how they interact with each other and other arcs already
in the operational network. For example, the dispatching rules for Pm|MF |Cumulative and
Pm|MF |Threshold will select sets of arcs that build new augmenting paths in the network.
These selected arcs will then be scheduled on the machines prior to determining the next set
of arcs.
The general dispatching rule framework is presented in Algorithm 1 and can be applied to
any INDS problem, including ones that are not considered in this chapter (e.g., the network
performance is measured through solving a multi-commodity flow problem or a problem
has a different machine scheduling environment). The inputs into this framework are: (i)
the network performance metric, (ii) the objective function, (iii) the network, and (iv) the
scheduling environment. The dispatching rule then alternates between a selection routine
that selects the next set of arcs to be scheduled and the scheduling routine that schedules
the set of selected arcs, until a stopping criteria is met.

We now discuss the selection and scheduling routines in more detail. The selection
routine depends on how we measure the performance of the network and how we measure the
impact of selected arcs on the machines. For the INDS problems considered in this chapter,
we discuss that these considerations can be captured by answering four questions associ-

1for a maximization problem, P (GT ) ≤ P for a minimization problem
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Algorithm 1 Integrated Network Design and Scheduling Problem Dispatching Rule Frame-
work.

1: Input: Performance metric and objective function
2: Input: Network, G0 with associated sets of operational arcs A0 and non-operational arcs
A′0

3: Input: Resources, m parallel identical machines and objective function stopping criteria
(for example, time horizon T or desired performance value P )

4: Set time t to 0
5: Calculate current performance of network and set to P (Gt)
6: while objective function stopping criteria not met (for example, t < T or (P (Gt) ≥ P )1)

do
7: Select set of arcs Āt ⊆ A′t to become operational = selection routine with input: Gt,

performance metric
8: Updated resources (time t) and network Gt = scheduling routine with input: Āt
9: Calculate current performance of the network P (Gt)

10: end while
11: Calculate and return objective function value

ated with the performance metric. The scheduling routine is customizable too; we present
a scheduling routine that attempts to minimize the ‘makespan’ of completing the selected
arcs. The remainder of this section is then dedicated to discussing how we customize the
selection routine to each network performance metric.

Selection From a greedy perspective, a set of arcs that greatly improve the performance
of the network while requiring little processing on the set of machines would be ideal to be
selected. In other words, we are interested in selecting (for a maximization problem) the set
of arcs that optimizes

max
Āt⊆A′

t

∣∣P (Nt, At ∪ Āt, A′t\Āt)− P (Gt)
∣∣

R(Āt)
(4.1)

where R(Āt) measures the machine (resource) requirements to process arcs in Āt. For ex-
ample, R(Āt) could measure the makespan of completing this set of arcs on the machines
or, for parallel identical machines, could simply measure the total processing time of the
arcs. For a set of arcs, Āt, the ratio from (4.1) essentially provides the network performance
improvement per-unit resource consumption. The problem that determines the set of arcs
that maximizes (4.1) is a combinatorial optimization problem with a fractional objective
function and can, therefore, be quite difficult to solve to optimality. For our proposed selec-
tion routines, we will solve an approximation of (4.1) where we estimate the improvement
in the network as measured through the optimality conditions of the network performance.
The machine (resource) requirements (i.e., the denominator in (4.1)) will be measured as the
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total processing time of the arcs in the set, since this provides a good approximation of the
makespan requirements for this set.

From a scheduling perspective, selecting the set of arcs that maximizes, or nearly maxi-
mizes, (4.1) is a generalization of the weighted shortest processing time (WSPT) rule. The
WSPT rule calculates a priority ranking for each task j based on its weight wj and pro-
cessing time pj. The task that is selected for processing next is the one that maximizes
its ratio of weight to processing time,

wj

pj
. This rule is often applied to a parallel machine

environment where we seek to minimize the total weighted completion time. To provide this
generalization of the WSPT rule for each performance metric, we will focus on a series of
questions: (i) What are the ‘tasks’?, (ii) What are the weights of ‘tasks’?, (iii) What are the
processing times of ‘tasks’?, and (iv) How do we find the ‘task’ that maximizes (minimizes)
wj

pj
? The answers to these questions will be based on the network optimality conditions of

the performance metric, e.g., the augmenting path optimality conditions will help answer
these questions for the maximum flow objective.

Scheduling Once the selection routine selects a set of arcs to be scheduled and become
operational, they are fed into the scheduling routine. The scheduling routine determines
how the machines in the problem will process this set of selected arcs. This routine does
not depend on the specific INDS problem and should, typically, focus on scheduling the
selected arcs so they are completed as quickly as possible. For our INDS problems, we will
implement the longest processing time (LPT) rule to schedule the selected arcs. The arcs
within the selected set are ordered from longest to shortest processing time and added to a
queue. When a machine becomes available, the next arc in the queue is assigned and time is
allocated for its processing. The LPT rule was chosen because it gives a good approximation
when we want to complete the selected arcs as quickly as possible (see Pinedo [65]).

Performance Metric Specific Details As we have described the dispatching rule frame-
work can be easily altered by answering a series of four questions. Table 4.2 presents the
answers to these questions. For detailed explanations please see Nurre and Sharkey [63].

Integer Programming Formulations

The integer programming (IP) formulation of any INDS problem includes network con-
straints, scheduling constraints, and constraints that link these two sets of decisions. Many
of the constraints are similar for the formulations of the different performance metrics. Table
4.3 displays the list of all decision variables, their corresponding definitions, and the specific
performance metrics and objectives that utilize the decision variables. For the full integer
programming formulations of the four performance metrics with the Cumulative and Thresh-
old objectives please see Nurre and Sharkey [63]. For the integer programming formulation
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Table 4.2: Summary of the answers needed to customize the selection routine by performance
metric.

Customized Selection Routine for Maximum Flow INDS Problems
(i) Tasks = augmenting paths, P
(ii) Weights = minimum residual capacity of path, min(i,j)∈P υij
(iii) Processing time =

∑
(i,j)∈P∩A′

t
pij

(iv) Task maximizes ratio
wj

pj
= Iterative algorithm using shortest path problems

Customized Selection Routine for Minimum Cost Flow and Shortest Path INDS Problems
(i) Tasks = Negative cycles, C
(ii) Weights = min residual capacity of cycle times cost, min(i,j)∈C υij ∗

∑
(i,j)∈C cij

(iii) Processing time =
∑

(i,j)∈C∩A′
t
pij

(iv) Task minimizes ratio
wj

pj
= Iterative algorithm using minimum cost to time problems

Customized Selection Routine for Minimum Spanning Tree INDS Problems
(i) Tasks = Uninstalled arcs, (i, j)
(ii) Weights = cij −max(k,l)∈Pij

ckl
(iii) Processing time = pij
(iv) Task minimizes ratio

wj

pj
= linear over all non-operational arcs, O(|N |) searches

with prioritized demand nodes and additional valid inequalities that strengthen the formu-
lation please see Nurre et al. [62]. The inclusion of release dates, flexible release dates, and
multi-function machines involves making minor adjustments to these formulations. Note,
that the integer programming formulations are exact methods for the offline versions of the
problem. There is no known method to find the exact optimal solution to an online opti-
mization problem, as information arrives throughout the horizon of the problem. Therefore,
the dispatching rule is the only solution method for online INDS problems. However, we use
the offline version of the problem where all information is known to benchmark the solution
quality.

Table 4.3: Decision variables used in the INDS IP formulations.

Decision Variable Definition Problems Used
xij, xijt Continuous, flow on arc (i, j) (at time t) MF, MCF, SP
v,vt Continuous, maximum flow (at time t) MF
x`ij, x

`
ijt Continuous, flow on arc (i, j) for commodity ` (at time t) MST

ωij,ωijt Binary, equals 1 if arc (i, j) is in the MST (at time t) MST
βijt Binary, equals 1 if arc (i, j) is operational at time t All Cumulative
αµijt Binary, equals 1 if arc (i, j) is completed by machine µ at time t All Cumulative
T̄ Integer, completion time of last processed task All Threshold
zµij Binary, equals 1 if arc (i, j) is assigned to machine µ All Threshold
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Chapter 5

Computational Results

The focus of this Chapter is on computational results testing the performance of the
dispatching rules and integer programming formulations on realistic data sets. Many exper-
iments have been conducted. For results focusing on the prioritized weighted maximum flow
objective using the infrastructure systems of coastal New Hanover County, North Carolina
and lower Manhattan, New York, please see [62]. Results demonstrating the robustness of
the dispatching rule for a wide variety of performance metrics and objective functions using
the realistic infrastructure systems of lower Manhattan, New York, we refer the reader to
[63]. We now present the results of further computational experiments for INDS problems
with release dates, flexible release dates, and multi-function machines in an offline and online
optimization environment.

We now present the case studies testing the performance of the dispatching rules and
empirically making observations based on the results. These case studies focus on the appli-
cation of infrastructure restoration. We utilize the power network of CustomizabLe ARtificial
Community (CLARC) County [50], which was created to mimic a power network in a hur-
ricane prone coastal community with a population of approximately 500,000 (see Figure
5.1). Through the application of INDS problems under the different extensions, we create
restoration plans for various degrees of network component damage, random release dates,
processing times, work group environments, and levels of release date information.

The power network of CLARC County has |N | = 838 nodes and |A0 ∪ A′0| = 849 arcs.
Fifteen random damage instances are created that damage 10%, 20%, and 30% of both the
transmission network and distribution network for a total of 45 damage instances. Table 5.1
maps this network damage percentage to the impact on the reduction in the maximum flow
in the network, showing that even a small percentage of damaged components can result in
a very dramatic impact on the services provided by the network (flow). Historical data from
NYISO [61] shows that Hurricane Sandy in October 2012 caused a decrease of approximately
70% in the peak power load for Long Island and approximately 30% for Manhattan. See
Figure 5.2 for the impact of Sandy on the power load curves. Our current network damage
percentages of 10%, 20%, and 30% result in disruption to power flow provided comparable
to the impacts seen due to Hurricane Sandy.

For each damage instance, each non-operational arc is assigned a random release date
in the range [0, T ], where T = 40 is the time horizon of the problem corresponding to 10
days, where each time period is 6 hours. The processing time to make an arc operational is
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Figure 5.1: Visualization of the CLARC County power network with transmission and dis-
tribution components.

Table 5.1: Percentage reduction in the maximum flow at the start of the restoration process
based on network component damage percentage in the CLARC County power network.

Damage Mean Min Max
10% 23.97% 11.04% 44.39%
20% 48.11% 23.10% 90.26%
30% 65.60% 51.57% 83.71%

assumed to be fixed and constant over time. The processing time, p̄ij, to move the release
date earlier in time for a non-operational arc should be based on the effects of the event
because many different situations could be contributing to the inability to work on an arc.
We set p̄ij to be a function of the release date, specifically p̄ij = dδrije, where δ = 0.1, 0.2,
and 0.3, are used to capture the different potential effects.

The offline dispatching rule, online dispatching rule, and integer program solved using
CPLEX 12.6 are run for each test instance. The metrics of information captured with each
run include: objective function value (upper and lower bounds for CPLEX, if applicable),
elapsed computational time, and utilization of each machine (time working/time horizon).
A time limit of 900 seconds is set for CPLEX. If an optimal solution is not found in this time
limit, a feasible lower bound and the current best upper bound is captured. An optimality
gap is calculated for all three solution methods by calculating the percentage difference be-
tween the best feasible solution value and the lowest upper bound on the optimal solution
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Figure 5.2: The impact of Hurricane Sandy on the power load curves for New York City and
Long Island areas.

(which equals the optimal solution, if found). We first examine the performance of the differ-
ent solution methods measured through optimality gaps and computational time and then
analyze machine composition via measures of the objective function value and utilization.

Performance analysis through Optimality Gaps and Computational
Time

In this section, we capture the performance of the offline dispatching rules, online dis-
patching rules, and integer programming formulations solved using CPLEX 12.6 as measured
through optimality gaps and elapsed computational time needed to arrive at the solution.
An empirical competitive ratio is also captured and is calculated as the maximum optimal-
ity gap for the online dispatching rules over the 15 random tests instances. In the following
tables and figures, unless otherwise noted we present the average optimality gap and compu-
tational time over the 15 random instances. We do note that for each instance the specific
components that are damaged and their respective release dates do impact the performance
measures. Figure 5.3 shows the average optimality gap for the offline and online dispatching
rules by damage percentage and random instance for INDS problems with flexible release
dates and multi-function machines. It is apparent that the dispatching rules do not per-
form as well for high damage percentages, however the average optimality gap is relatively
small. Variation is noticeable across the instances, demonstrating the impact of the random
damage and release dates. Figure 5.4 presents the average computational time for CPLEX
by damage and instance (the two dispatching rules are excluded as they are consistently
solved in seconds for each damage and instance scenario). You will notice that some of the
instances that led to larger optimality gaps in Figure 5.3 correspond to larger computational
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times in Figure 5.4, specifically instances 3 and 10 for 30% damage. This reinforces that the
specific components that are damaged and their respective release dates impact the solution
and computational time for INDS problems.
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Figure 5.3: Average optimality gap by damage and instance.
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Figure 5.4: Average computation time by damage and instance.
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Release Dates Performance We first test INDS problems with release dates for m =
1, . . . , 5 and 10%, 20%, and 30% network damage. Figure 5.5 and Table 5.2 present the
results for Pm|MF, rij|Cumulative. For the Gap (%) and Time (s) columns within the
table, the values displayed are the average over the 15 random test instances. First, we
note that all three solution methods can solve the problem in a matter of seconds. Second,
we note that both of the dispatching rules have small optimality gaps, signifying that near
optimal restoration plans are found. One anomaly here is that the offline dispatching rule is
performing worse than the online dispatching rule, even when the offline method knows the
complete set of release dates at the beginning. Upon examination of the solution, the offline
solution is selecting highly important components that provide a significant amount of flow
at the cost of waiting for their release dates. Our offline dispatching rule currently does not
fill in the gaps of any idle time on machines, and should be an avenue for future work. Lastly,
we note that even with the unbounded theoretical result for the online competitive ratio,
empirically we are seeing acceptable competitive ratios with the maximum begin 16.31% and
many others below 10%.
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Figure 5.5: Average optimality gap for Pm|MF, rij|Cumulative by solution method,
machine, and damage.
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Table 5.2: Pm|MF, rij|Cumulative computational results comparing the performance
of the offline and online dispatching rules and CPLEX 12.6.

Offline Online CPLEX Empirical
m L Mu Damage δ Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Comp. Ratio
1 0 0 10% - 1.91% 0.51 1.48% 0.41 0.00% 1.17 8.02%

20% - 3.90% 0.53 3.64% 0.44 0.00% 2.38 14.88%
30% - 7.54% 0.57 4.09% 0.51 0.00% 6.05 16.31%

2 0 0 10% - 1.68% 0.96 1.37% 0.83 0.00% 1.46 6.00%
20% - 4.56% 1.13 3.10% 0.82 0.00% 3.45 6.18%
30% - 9.06% 1.20 3.47% 1.00 0.00% 9.00 9.58%

3 0 0 10% - 1.24% 1.42 1.20% 1.23 0.00% 1.56 4.89%
20% - 3.16% 1.71 2.42% 1.22 0.00% 4.30 4.23%
30% - 8.38% 1.95 3.54% 1.36 0.00% 14.42 11.83%

4 0 0 10% - 1.19% 1.84 1.16% 1.62 0.00% 2.05 4.60%
20% - 2.46% 2.20 2.09% 1.75 0.00% 6.39 5.54%
30% - 7.40% 2.57 3.25% 1.77 0.00% 14.27 10.72%

5 0 0 10% - 1.16% 2.27 1.07% 2.05 0.00% 2.41 3.72%
20% - 2.17% 2.83 1.48% 2.47 0.00% 6.32 2.80%
30% - 5.56% 3.21 2.99% 2.28 0.00% 10.53 10.21%

Flexible Release Dates Performance We now test INDS problems with flexible release
dates, specifically Opt − FF2|MF, flex − rij|Cumulative with different machine composi-
tions, damage values, and δ values. Each combination of m = 1, . . . , 4 traditional machines
with L = 1, . . . , 4 specialized machines is tested for each damage and δ value. The optimality
gap, elapsed computational time, and empirical competitive ratio are captured by solution
method. Figures 5.6, 5.7, 5.8, and 5.9 show the test results for m = 1, 2, 3, and 4, respec-
tively and Tables 5.3, 5.4, and 5.5 show the test results for δ = 0.1, 0.2, and 0.3, respectively.
On average, both dispatching rules perform well with optimality gaps predominantly below
10%. A trend is apparent, with the dispatching rules performing better for smaller damage
percentages. The unbounded nature of the competitive ratio is empirically demonstrated in
Figure 5.6 with one competitive ratio value very high at 133.25%, but others very acceptable
in the 10% area or less. Note that the average online gap is often very reasonable indicating
that the online dispatching rule performs well even when benchmarked against the integer
programming formulation with complete information. Some of the higher optimality gaps
could also be attributed to the inability for CPLEX to find the optimal solution within the
900 second time limit. If an optimal solution is not found then the calculated optimality
gap is an overestimate on the actual optimality gap. Further, we note that CPLEX strug-
gled with the flexible release date instances, in particular when considering larger number
of work groups. Both of the dispatching rules scale well when considering larger number of
work groups, by consistently finding near optimal solutions in less than 2 seconds.
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Figure 5.6: Average optimality gap for Opt − FF2|MF, flex − rij|Cumulative with
m = 1 by solution method, machine, damage, and δ.
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Figure 5.7: Average optimality gap for Opt − FF2|MF, flex − rij|Cumulative with
m = 2 by solution method, machine, damage, and δ.
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Figure 5.8: Average optimality gap for Opt − FF2|MF, flex − rij|Cumulative with
m = 3 by solution method, machine, damage, and δ.
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Figure 5.9: Average optimality gap for Opt − FF2|MF, flex − rij|Cumulative with
m = 4 by solution method, machine, damage, and δ.
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Table 5.3: Opt − FF2|MF, flex − rij|Cumulative computational results comparing
the performance of the offline and online dispatching rules and CPLEX 12.6 when δ = 0.1.

Offline Online CPLEX Empirical
m L Mu Damage δ Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Comp. Ratio
1 1 0 10% 0.1 0.86% 0.41 0.86% 0.39 0.00% 2.39 2.37%

20% 0.1 2.59% 0.43 2.78% 0.41 0.00% 11.81 10.13%
30% 0.1 4.34% 0.37 8.09% 0.36 0.00% 41.44 55.88%

2 0 10% 0.1 0.87% 0.41 0.84% 0.40 0.00% 2.70 2.00%
20% 0.1 2.60% 0.43 3.52% 0.40 0.00% 13.28 9.30%
30% 0.1 4.35% 0.37 5.32% 0.39 0.00% 35.95 20.48%

3 0 10% 0.1 0.87% 0.41 0.84% 0.40 0.00% 2.80 2.00%
20% 0.1 2.60% 0.43 3.39% 0.41 0.00% 14.03 9.10%
30% 0.1 4.35% 0.37 3.94% 0.41 0.00% 32.33 14.98%

4 0 10% 0.1 0.87% 0.41 0.78% 0.40 0.00% 3.25 2.00%
20% 0.1 2.60% 0.43 3.24% 0.41 0.00% 16.42 8.55%
30% 0.1 4.35% 0.37 4.27% 0.40 0.00% 38.83 14.98%

2 1 0 10% 0.1 1.00% 0.82 1.16% 0.75 0.00% 35.66 4.07%
20% 0.1 2.89% 0.89 3.60% 0.81 0.00% 66.67 9.53%
30% 0.1 5.33% 0.90 7.36% 0.79 0.16% 261.83 20.35%

2 0 10% 0.1 0.86% 0.85 0.94% 0.77 0.00% 4.58 3.64%
20% 0.1 2.53% 0.89 2.74% 0.81 0.00% 34.03 7.84%
30% 0.1 4.49% 0.93 6.09% 0.82 0.00% 125.54 14.66%

3 0 10% 0.1 0.85% 0.85 0.93% 0.77 0.00% 5.00 3.64%
20% 0.1 2.53% 0.89 2.88% 0.78 0.00% 35.04 7.84%
30% 0.1 4.49% 0.93 5.48% 0.82 0.00% 124.77 16.12%

4 0 10% 0.1 0.85% 0.85 0.92% 0.77 0.00% 4.98 3.64%
20% 0.1 2.53% 0.89 3.08% 0.77 0.00% 35.30 7.83%
30% 0.1 4.49% 0.93 5.13% 0.82 0.00% 150.28 12.93%

3 1 0 10% 0.1 1.32% 1.11 1.64% 1.00 0.06% 431.22 5.38%
20% 0.1 2.93% 1.29 3.93% 1.08 0.16% 555.37 8.28%
30% 0.1 5.24% 1.46 6.94% 1.28 0.39% 707.71 21.35%

2 0 10% 0.1 1.05% 1.29 1.15% 1.12 0.00% 26.97 5.09%
20% 0.1 2.20% 1.34 2.51% 1.16 0.02% 176.70 7.01%
30% 0.1 4.50% 1.50 6.31% 1.25 0.02% 303.18 19.87%

3 0 10% 0.1 0.95% 1.30 1.01% 1.14 0.00% 8.37 4.90%
20% 0.1 1.93% 1.35 2.09% 1.16 0.00% 60.90 6.48%
30% 0.1 3.76% 1.52 5.15% 1.27 0.00% 186.88 16.75%

4 0 10% 0.1 0.95% 1.30 0.98% 1.15 0.00% 7.98 4.84%
20% 0.1 1.93% 1.36 2.23% 1.17 0.00% 68.10 6.48%
30% 0.1 3.76% 1.52 4.69% 1.29 0.00% 184.08 12.09%

4 1 0 10% 0.1 1.47% 1.39 2.03% 1.15 0.10% 738.85 5.78%
20% 0.1 3.22% 1.68 4.81% 1.34 0.42% 886.35 9.50%
30% 0.1 5.61% 1.88 7.84% 1.61 1.04% 900.00 14.15%

2 0 10% 0.1 1.25% 1.71 1.37% 1.48 0.06% 420.77 5.66%
20% 0.1 2.32% 1.91 2.72% 1.62 0.20% 521.83 6.46%
30% 0.1 4.18% 2.00 5.08% 1.75 0.38% 698.74 11.30%

3 0 10% 0.1 1.06% 1.77 1.12% 1.56 0.00% 15.86 5.54%
20% 0.1 1.74% 1.96 2.06% 1.62 0.03% 170.35 5.65%
30% 0.1 3.30% 2.07 4.51% 1.70 0.05% 427.15 13.81%

4 0 10% 0.1 0.99% 1.79 1.04% 1.58 0.00% 15.17 5.48%
20% 0.1 1.61% 1.98 1.83% 1.65 0.00% 95.69 4.96%
30% 0.1 3.03% 2.08 3.92% 1.63 0.09% 375.26 10.43%
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Table 5.4: Opt − FF2|MF, flex − rij|Cumulative computational results comparing
the performance of the offline and online dispatching rules and CPLEX 12.6 when δ = 0.2.

Offline Online CPLEX Empirical
m L Mu Damage δ Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Comp. Ratio
1 1 0 10% 0.2 1.05% 0.40 1.10% 0.38 0.00% 2.92 2.49%

20% 0.2 2.95% 0.41 3.66% 0.38 0.00% 10.47 12.84%
30% 0.2 5.65% 0.36 7.94% 0.36 0.00% 63.61 54.72%

2 0 10% 0.2 1.07% 0.40 1.08% 0.38 0.00% 2.40 2.80%
20% 0.2 2.67% 0.42 3.76% 0.37 0.00% 11.38 10.95%
30% 0.2 5.49% 0.36 8.43% 0.35 0.00% 40.69 54.72%

3 0 10% 0.2 1.07% 0.41 1.02% 0.39 0.00% 2.73 2.80%
20% 0.2 2.67% 0.42 4.07% 0.37 0.00% 10.46 14.10%
30% 0.2 5.50% 0.36 5.81% 0.37 0.00% 41.02 18.38%

4 0 10% 0.2 1.07% 0.40 1.02% 0.39 0.00% 3.06 2.80%
20% 0.2 2.67% 0.42 3.75% 0.39 0.00% 12.59 14.10%
30% 0.2 5.50% 0.36 5.50% 0.40 0.00% 35.22 18.38%

2 1 0 10% 0.2 1.08% 0.73 1.62% 0.64 0.00% 77.86 3.96%
20% 0.2 3.09% 0.85 4.45% 0.73 0.00% 156.22 10.52%
30% 0.2 5.66% 0.88 8.38% 0.77 0.32% 308.10 27.05%

2 0 10% 0.2 1.13% 0.82 1.26% 0.74 0.00% 37.42 3.73%
20% 0.2 2.55% 0.87 3.09% 0.78 0.00% 122.53 9.08%
30% 0.2 4.61% 0.90 7.04% 0.79 0.16% 288.86 25.75%

3 0 10% 0.2 1.16% 0.83 1.27% 0.74 0.00% 4.95 3.66%
20% 0.2 2.54% 0.88 3.16% 0.76 0.00% 34.87 9.08%
30% 0.2 4.54% 0.91 5.83% 0.80 0.09% 222.09 17.26%

4 0 10% 0.2 1.15% 0.85 1.25% 0.74 0.00% 4.85 3.66%
20% 0.2 2.54% 0.88 3.21% 0.76 0.00% 32.30 9.08%
30% 0.2 4.47% 0.91 5.10% 0.80 0.00% 161.28 11.83%

3 1 0 10% 0.2 1.28% 1.00 2.00% 0.85 0.01% 240.01 4.82%
20% 0.2 3.12% 1.20 4.88% 1.01 0.05% 472.07 11.27%
30% 0.2 5.81% 1.34 8.60% 1.20 0.58% 635.82 18.62%

2 0 10% 0.2 1.33% 1.11 1.55% 0.96 0.09% 547.14 4.92%
20% 0.2 2.65% 1.28 3.49% 1.10 0.17% 705.39 7.78%
30% 0.2 4.58% 1.45 6.87% 1.24 0.57% 793.86 20.19%

3 0 10% 0.2 1.25% 1.25 1.31% 1.08 0.04% 292.99 4.95%
20% 0.2 2.42% 1.34 2.71% 1.15 0.11% 336.89 6.54%
30% 0.2 4.41% 1.48 5.99% 1.21 0.20% 466.65 16.72%

4 0 10% 0.2 1.18% 1.27 1.23% 1.11 0.00% 14.19 4.85%
20% 0.2 2.43% 1.34 2.70% 1.13 0.01% 137.31 6.54%
30% 0.2 4.23% 1.47 5.14% 1.24 0.05% 333.50 11.64%

4 1 0 10% 0.2 1.30% 1.26 2.34% 0.98 0.02% 305.74 5.48%
20% 0.2 3.19% 1.53 5.35% 1.24 0.15% 714.10 12.01%
30% 0.2 6.07% 1.74 9.77% 1.48 0.88% 855.33 17.50%

2 0 10% 0.2 1.35% 1.44 1.74% 1.17 0.12% 766.95 5.22%
20% 0.2 2.87% 1.66 4.10% 1.38 0.46% 887.75 8.36%
30% 0.2 4.88% 1.87 7.38% 1.62 1.40% 900.00 12.80%

3 0 10% 0.2 1.33% 1.57 1.47% 1.37 0.15% 734.92 5.37%
20% 0.2 2.43% 1.82 2.99% 1.50 0.42% 829.68 6.88%
30% 0.2 4.74% 1.95 6.11% 1.67 1.38% 858.38 13.93%

4 0 10% 0.2 1.25% 1.70 1.33% 1.46 0.05% 446.97 5.41%
20% 0.2 2.13% 1.88 2.43% 1.64 0.19% 456.99 6.22%
30% 0.2 4.24% 2.03 5.45% 1.68 0.76% 715.73 14.72%
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Table 5.5: Opt − FF2|MF, flex − rij|Cumulative computational results comparing
the performance of the offline and online dispatching rules and CPLEX 12.6 when δ = 0.3.

Offline Online CPLEX Empirical
m L Mu Damage δ Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Comp. Ratio
1 1 0 10% 0.3 1.18% 0.38 1.46% 0.34 0.00% 4.10 3.33%

20% 0.3 3.37% 0.40 3.82% 0.37 0.00% 15.71 12.87%
30% 0.3 6.18% 0.34 14.46% 0.35 0.00% 69.61 133.25%

2 0 10% 0.3 1.25% 0.39 1.36% 0.37 0.00% 2.68 3.42%
20% 0.3 2.70% 0.41 3.15% 0.38 0.00% 14.39 10.95%
30% 0.3 6.17% 0.34 7.93% 0.34 0.00% 51.22 38.92%

3 0 10% 0.3 1.25% 0.39 1.34% 0.37 0.00% 2.52 3.42%
20% 0.3 2.73% 0.41 3.75% 0.35 0.00% 12.78 14.10%
30% 0.3 6.21% 0.34 6.21% 0.36 0.00% 44.80 15.09%

4 0 10% 0.3 1.25% 0.40 1.32% 0.38 0.00% 2.82 3.42%
20% 0.3 2.73% 0.41 3.68% 0.36 0.00% 15.53 14.10%
30% 0.3 6.21% 0.35 6.23% 0.36 0.00% 39.57 15.15%

2 1 0 10% 0.3 1.20% 0.67 2.01% 0.56 0.00% 34.46 4.57%
20% 0.3 3.08% 0.79 5.16% 0.64 0.00% 100.19 11.92%
30% 0.3 7.01% 0.79 9.33% 0.71 0.25% 244.35 20.70%

2 0 10% 0.3 1.27% 0.76 1.54% 0.66 0.00% 100.44 3.76%
20% 0.3 2.53% 0.86 3.41% 0.74 0.01% 179.34 9.93%
30% 0.3 5.51% 0.86 6.75% 0.79 0.14% 361.18 16.91%

3 0 10% 0.3 1.34% 0.80 1.50% 0.70 0.00% 22.43 3.76%
20% 0.3 2.43% 0.86 3.15% 0.76 0.00% 167.22 9.97%
30% 0.3 5.41% 0.88 6.62% 0.77 0.20% 280.08 17.55%

4 0 10% 0.3 1.36% 0.81 1.51% 0.73 0.00% 8.15 3.99%
20% 0.3 2.49% 0.87 3.24% 0.75 0.00% 56.25 9.97%
30% 0.3 5.34% 0.87 6.23% 0.76 0.06% 248.55 14.95%

3 1 0 10% 0.3 1.26% 0.94 2.38% 0.76 0.00% 50.19 5.40%
20% 0.3 3.13% 1.12 5.97% 0.90 0.00% 266.67 12.70%
30% 0.3 7.48% 1.29 10.37% 1.06 0.42% 480.76 15.87%

2 0 10% 0.3 1.27% 1.05 1.79% 0.84 0.01% 266.05 4.67%
20% 0.3 2.74% 1.22 4.26% 0.99 0.01% 570.91 8.83%
30% 0.3 5.42% 1.40 7.98% 1.17 0.45% 633.00 18.94%

3 0 10% 0.3 1.32% 1.09 1.60% 0.92 0.03% 494.64 4.72%
20% 0.3 2.52% 1.24 3.53% 1.04 0.21% 630.82 7.48%
30% 0.3 5.17% 1.42 6.66% 1.20 0.60% 772.63 17.32%

4 0 10% 0.3 1.37% 1.17 1.50% 1.02 0.07% 409.94 4.68%
20% 0.3 2.47% 1.29 3.19% 1.11 0.16% 538.60 6.79%
30% 0.3 5.10% 1.43 6.47% 1.21 0.43% 669.69 15.57%

4 1 0 10% 0.3 1.26% 1.18 2.49% 0.99 0.00% 148.18 5.69%
20% 0.3 3.08% 1.45 6.25% 1.20 0.01% 377.18 12.85%
30% 0.3 6.78% 1.70 11.63% 1.36 0.66% 796.03 17.33%

2 0 10% 0.3 1.35% 1.29 1.96% 0.98 0.00% 319.46 5.02%
20% 0.3 2.91% 1.53 4.80% 1.21 0.17% 714.94 9.26%
30% 0.3 6.05% 1.73 9.07% 1.41 1.15% 862.49 15.69%

3 0 10% 0.3 1.34% 1.39 1.67% 1.12 0.08% 743.43 5.11%
20% 0.3 2.66% 1.64 3.99% 1.26 0.37% 893.53 7.58%
30% 0.3 5.38% 1.83 7.70% 1.54 1.41% 893.00 12.87%

4 0 10% 0.3 1.29% 1.50 1.49% 1.24 0.07% 716.23 5.14%
20% 0.3 2.49% 1.74 3.28% 1.42 0.52% 850.18 6.43%
30% 0.3 5.18% 1.94 7.31% 1.56 1.40% 852.96 13.49%
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Multi-Function Machines Performance We now test INDS problems with multi-
function machines, specifically MFM − Pm|MF, flex− rij|Cumulative for Mu = 1, . . . , 5
and each damage and δ value. The results of these tests are presented in Figure 5.10 and
Table 5.6. The level of damage and δ do not appear to have a significant impact on the per-
formance of the dispatching rules, as we see only very slight upward trends as the damage
and δ values increase. The dispatching rule framework again demonstrates its robustness
by consistently arriving at high quality solutions in a matter of seconds. CPLEX continues
to struggle to find the optimal solution within the time limit, specifically when considering
a larger number of multi-function work groups. We note that the empirical competitive
ratio is again very high when considering 1 traditional work group and 30% damage. The
competitive ratio for the corresponding tests for flexible release dates, also had very high
empirical competitive ratios. However, on average the online dispatching rule is performing
only marginally worse than the offline dispatching rule, which is promising, given the mo-
tivating application and the reality of the lack of complete information. We do notice that
the empirical competitive ratio decreases, on average, as more multi-function machines are
considered. We believe that as more machines are considered the sequencing decisions be-
come easier, as 5 selected network components can be processed ‘first’ with 5 multi-function
machines. Essentially, with more machine you have a greater chance of getting things ‘right’,
particularly in the online environment.
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Figure 5.10: Average optimality gap for MFM −Pm|MF, flex− rij|Cumulative by
solution method, machine, damage, and δ.

Machine Composition and Utilization Analysis

In this section, we analyze how the composition of machines impacts the amount of
met demand (objective function value) and the utilization of the machines. The results
demonstrate the benefit of specialized work groups moving release dates earlier in time, the
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Table 5.6: MFM−Pm|MF, flex−rij|Cumulative computational results comparing
the performance of the offline and online dispatching rules and CPLEX 12.6.

Offline Online CPLEX Empirical
m L Mu Damage δ Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Comp. Ratio
0 0 1 10% 0.1 0.58% 0.38 0.61% 0.36 0.00% 3.89 1.77%

0.2 0.67% 0.37 0.92% 0.34 0.00% 3.41 2.17%
0.3 0.93% 0.36 1.03% 0.32 0.00% 2.53 2.94%

20% 0.1 2.53% 0.40 2.98% 0.36 0.00% 15.00 12.20%
0.2 2.45% 0.38 3.27% 0.32 0.00% 13.56 13.03%
0.3 2.65% 0.37 3.67% 0.27 0.00% 9.74 14.25%

30% 0.1 4.67% 0.36 9.42% 0.34 0.00% 26.25 69.56%
0.2 4.72% 0.35 12.67% 0.34 0.00% 40.48 107.18%
0.3 5.52% 0.32 13.57% 0.32 0.00% 45.45 101.76%

0 0 2 10% 0.1 0.61% 0.71 0.71% 0.64 0.00% 36.81 3.04%
0.2 0.69% 0.65 0.90% 0.56 0.00% 15.14 3.34%
0.3 0.71% 0.62 1.17% 0.49 0.00% 10.38 3.54%

20% 0.1 2.42% 0.80 2.28% 0.77 0.00% 72.79 7.04%
0.2 2.26% 0.78 2.46% 0.71 0.00% 45.61 9.08%
0.3 2.34% 0.75 2.75% 0.66 0.00% 33.59 9.41%

30% 0.1 4.27% 0.85 5.45% 0.84 0.20% 226.50 14.98%
0.2 4.44% 0.82 7.18% 0.74 0.22% 172.57 28.49%
0.3 4.98% 0.79 8.02% 0.67 0.26% 132.85 23.48%

0 0 3 10% 0.1 0.79% 1.03 0.87% 0.98 0.00% 248.76 4.20%
0.2 0.83% 0.95 1.03% 0.75 0.00% 132.79 3.83%
0.3 0.83% 0.89 1.19% 0.61 0.00% 58.22 3.85%

20% 0.1 1.83% 1.16 2.12% 1.03 0.03% 469.04 7.24%
0.2 1.79% 1.10 2.25% 0.93 0.01% 286.41 8.01%
0.3 2.04% 1.09 2.66% 0.83 0.00% 138.48 9.85%

30% 0.1 3.16% 1.38 4.43% 1.25 0.45% 546.59 18.77%
0.2 3.36% 1.31 4.88% 1.16 0.43% 402.85 18.88%
0.3 4.19% 1.28 5.92% 1.02 0.45% 306.98 17.54%

0 0 4 10% 0.1 0.91% 1.40 0.97% 1.22 0.03% 576.93 4.95%
0.2 0.87% 1.25 1.05% 0.93 0.02% 413.28 4.35%
0.3 0.92% 1.21 1.27% 0.77 0.01% 264.83 4.09%

20% 0.1 1.90% 1.56 2.46% 1.32 0.36% 863.93 9.49%
0.2 1.82% 1.45 2.59% 1.09 0.11% 618.97 8.03%
0.3 1.91% 1.40 2.97% 0.88 0.00% 377.91 7.87%

30% 0.1 3.36% 1.78 4.29% 1.53 1.16% 850.93 17.67%
0.2 3.21% 1.71 4.55% 1.43 0.77% 658.00 18.48%
0.3 3.63% 1.68 5.23% 1.35 0.54% 584.63 18.28%

0 0 5 10% 0.1 1.03% 1.83 1.08% 1.56 0.08% 707.46 5.38%
0.2 1.03% 1.61 1.12% 1.16 0.10% 701.03 4.80%
0.3 1.07% 1.44 1.30% 0.83 0.06% 600.93 4.54%

20% 0.1 1.95% 2.07 2.38% 1.69 0.64% 900.00 7.74%
0.2 1.95% 1.82 2.62% 1.25 0.50% 877.11 6.50%
0.3 1.77% 1.72 3.07% 1.05 0.20% 748.57 7.00%

30% 0.1 3.30% 2.19 3.58% 1.77 1.67% 900.00 7.93%
0.2 3.16% 2.05 4.12% 1.52 1.17% 889.87 7.90%
0.3 2.94% 2.09 4.56% 1.37 0.54% 756.60 10.59%

greater benefit of multi-function machines, and a phenomenon of diminishing return when
considering more specialized work groups.
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Machine Composition We first examine the improvement in the average objective
function value for different compositions of machines. Figure 5.11 displays every combi-
nation of 2 machines: (i) m = 2, L = 0,Mu = 0, (ii) m = 1, L = 1,Mu = 0, and (iii)
m = 0, L = 0,Mu = 2 for each of the damage values. The improvement is then calcu-
lated as the percentage improvement against m = 2, L = 0,Mu = 0, where no specialized
or multi-function machines are considered. Figures 5.12, 5.13, and 5.14 display the same
for compositions of 3, 4, and 5 machines, respectively where the improvement is calculated
against the case with only release dates i.e., L = 0 and Mu = 0. It is clear that the
multi-function machines perform best in all cases, which indicates the advantage of skilled
work groups that can perform many tasks. This is expected as the solution to each case with
release dates and flexible release dates is feasible for the multi-function machine setting. Neg-
ative improvement values do appear often times when the number of specialized machines
outnumber the traditional machines. This decrease is more apparent with higher damage
percentages and a smaller number of total machines. When the number of traditional ma-
chines equals or exceeds the number of specialized machines, we do see improvement due
to flexible release dates. This type of analysis touches upon the need for skilled labor, but
also coordination of efforts after an extreme event. We assume for flexible release dates and
multi-function machines problems that a central decision maker can plan and allocate their
resources. This is not always the case, as many tasks have jurisdiction dedicated to specific
entities and would prevent this coordination. We demonstrate that when efforts are coordi-
nated and the specialized work groups and the traditional work groups work in unison (in
either the flexible release dates or multi-function machine settings), that the services proved
improve when compared to no coordination (L = 0 and Mu = 0).
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Figure 5.11: Average objective function value for combinations of 2 machines.
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Figure 5.12: Average objective function value for combinations of 3 machines.
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Figure 5.13: Average objective function value for combinations of 4 machines.
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Figure 5.14: Average objective function value for combinations of 5 machines.
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We have demonstrated that specialized machines in the flexible release date setting im-
prove the objective function value. A decision maker now must make decisions on how many
specialized machines to hire or coordinate with. Figures 5.15 look at the benefit (change
in the objective function value) of adding extra specialized work groups for INDS problems
with flexible release dates. In these graphs we can see that there is a phenomenon of di-
minishing returns as more specialized work groups are added. An initial jump occurs with
the addition of one specialized machine and then less benefit is realized with each additional
specialized machine. It appears, that the benefit starts to plateau when the number of tra-
ditional machines equals the number of specialized machines. This makes sense because the
traditional machines need to ‘keep up’ with the specialized machines. Take the example with
4 specialized machines and 1 traditional machine. Provided the processing times are around
the same magnitude, the specialized machines are able to move the release dates of 4 arcs
earlier at one time. However, there is only 1 traditional machine able to process these arcs
once their release dates are moved earlier in time, creating a bottleneck in the operation.
Lastly, we would expect that the benefit of extra specialized work groups would be more
dramatic for the online problem, since release dates are unknown and these machines would
be expected to be utilized more frequently. This figure does not indicate that this hypothesis
is as strong as one would expect.
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Figure 5.15: Average objective function value for Opt − FF2|MF, flex −
rij|Cumulative by damage and machine profile.
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Release Dates Utilization We now examine the utilization of the traditional machines
for Pm|MF, rij|Cumulative, where the utilization is calculated as

time working
total time

. Figure
5.16 shows the average utilization across all machines by damage and machine number.
Specifically, if m = 2 the utilization for the first traditional machine and second traditional
machine are averaged and displayed. Table 5.7 shows the average utilization for each in-
dividual machine by number of machines and damage. Both the figure and table average
their respective utilization values over the 15 random test instances. We notice that as the
damage percentage increases so does the utilization. Further, it is clear that the offline
dispatching rule is not fully utilizing the machine resources, which attributes to a point
previously addressed about occupying machines while they are waiting for the release date
of an important arc. Also, we notice that even with 5 work groups we still see very high
utilization numbers for both the online dispatching rule and IP. This type of analysis would
be useful for managers when determining the proper number of work groups as they are
scenario planning for extreme events.
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Figure 5.16: Average utilization for Pm|MF, rij|Cumulative by damage and machine.

Table 5.7: Pm|MF, rij|Cumulative average utilization by machine.

Offline Online IP
m L Mu Damage δ m1 m2 m3 m4 m5 m1 m2 m3 m4 m5 m1 m2 m3 m4 m5
1 0 0 10% - 77.67% - - - - 98.50% - - - - 97.17% - - - -

20% - 82.17% - - - - 99.50% - - - - 96.67% - - - -
30% - 87.83% - - - - 100.00% - - - - 99.00% - - - -

2 0 0 10% - 69.17% 72.33% - - - 95.33% 94.33% - - - 95.33% 94.83% - - -
20% - 80.50% 79.33% - - - 94.50% 94.50% - - - 97.17% 95.67% - - -
30% - 81.00% 84.17% - - - 97.50% 97.17% - - - 97.50% 99.00% - - -

3 0 0 10% - 69.00% 64.17% 68.83% - - 94.67% 91.00% 91.33% - - 94.50% 94.00% 94.00% - -
20% - 77.50% 77.83% 81.83% - - 95.33% 93.83% 94.00% - - 96.67% 95.33% 96.83% - -
30% - 79.83% 81.50% 80.67% - - 95.33% 93.50% 94.17% - - 98.33% 98.17% 97.83% - -

4 0 0 10% - 67.83% 60.33% 62.50% 67.33% - 94.00% 90.33% 89.50% 87.17% - 93.67% 95.17% 94.67% 95.67% -
20% - 74.17% 73.17% 78.17% 80.83% - 93.67% 93.83% 92.83% 91.33% - 97.00% 96.00% 97.00% 95.67% -
30% - 80.17% 79.67% 78.00% 84.50% - 93.83% 94.83% 92.67% 92.33% - 98.67% 97.50% 97.17% 97.67% -

5 0 0 10% - 65.00% 55.50% 69.00% 65.17% 60.67% 93.33% 90.33% 89.33% 87.83% 88.33% 93.50% 94.83% 93.00% 94.00% 94.00%
20% - 75.17% 68.00% 76.67% 74.00% 76.17% 94.83% 95.00% 94.00% 93.50% 92.83% 95.17% 97.83% 95.50% 94.83% 96.00%
30% - 77.33% 78.67% 77.33% 80.83% 80.33% 94.83% 92.33% 91.00% 91.67% 91.83% 97.83% 97.67% 97.83% 98.00% 97.33%
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Flexible Release Dates Utilization We now examine the utilization of the traditional
and specialized machines for Opt− FF2|MF, flex− rij|Cumulative. Figures 5.17 and 5.18
show the average utilization by solution method and different combinations of traditional
and specialized machines for damage and δ, respectively. Tables 5.8, 5.9, and 5.10 display
the average utilization for δ = 0.1, 0.2, and 0.3, respectively. In Figures 5.17, we see that
as the number of specialized machines increases, the average utilization decreases for all
solution methods and damage percentages. The decreasing trend is more dramatic (negative
slope) for smaller numbers of traditional machines. We do not notice this downward trend
as dramatically in Figures 5.18, in particular for higher δ values. Higher δ values directly
increase the processing times, p̄ij, for specialized machines, which for the same solution would
cause higher utilization values. However, there should be a break-even point where if the
processing times for the specialized machine become too large, it will be beneficial to wait
instead of process. This demonstrates the optional nature of INDS problems with flexible
release dates. This option to wait is only available for the offline setting as in the online
setting the release dates are unknown and we determine that it is too risky to wait around
an unknown amount of time for the release date of an arc. This is reflected in the higher
utilization values for the online dispatching rule shown in Figure 5.18 that remain high even
for the largest δ value.
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Figure 5.17: Average utilization forOpt−FF2|MF, flex−rij|Cumulative by solution
method, damage, and machine profile.
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Figure 5.18: Average utilization forOpt−FF2|MF, flex−rij|Cumulative by solution
method, δ, and machine profile.
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Table 5.8: Opt− FF2|MF, flex− rij|Cumulative average utilization by machine for
δ = 0.1.

Offline Online IP
m L Mu Damage δ m1 m2 m3 m4 L1 L2 L3 L4 m1 m2 m3 m4 L1 L2 L3 L4 m1 m2 m3 m4 L1 L2 L3 L4
1 1 0 10% 0.1 96.33% - - - 18.83% - - - 96.33% - - - 44.00% - - - 97.00% - - - 51.33% - - -

20% 0.1 96.83% - - - 10.83% - - - 96.67% - - - 43.00% - - - 97.50% - - - 39.50% - - -
30% 0.1 97.33% - - - 10.50% - - - 96.17% - - - 31.33% - - - 98.17% - - - 42.83% - - -

2 0 10% 0.1 96.33% - - - 10.00% 8.83% - - 96.33% - - - 24.00% 23.17% - - 97.17% - - - 31.67% 31.17% - -
20% 0.1 96.83% - - - 5.00% 5.83% - - 96.83% - - - 21.50% 21.33% - - 97.67% - - - 24.83% 22.00% - -
30% 0.1 97.33% - - - 5.83% 4.67% - - 97.33% - - - 18.50% 17.67% - - 98.17% - - - 25.33% 24.00% - -

3 0 10% 0.1 96.33% - - - 6.67% 7.00% 5.17% - 96.33% - - - 18.17% 15.00% 14.00% - 97.17% - - - 32.33% 36.33% 34.67% -
20% 0.1 96.83% - - - 5.00% 4.67% 1.17% - 96.83% - - - 15.50% 14.67% 14.33% - 97.67% - - - 18.00% 12.50% 17.67% -
30% 0.1 97.33% - - - 4.17% 4.00% 2.33% - 97.33% - - - 12.67% 12.67% 12.67% - 98.17% - - - 22.67% 15.17% 13.83% -

4 0 10% 0.1 96.33% - - - 5.50% 5.83% 4.67% 2.83% 96.33% - - - 14.00% 12.33% 10.67% 11.17% 97.17% - - - 33.17% 32.33% 32.00% 38.00
20% 0.1 96.83% - - - 3.83% 5.00% 1.17% 0.83% 96.83% - - - 12.17% 12.17% 10.50% 9.17% 97.50% - - - 20.17% 15.00% 15.17% 15.00
30% 0.1 97.33% - - - 3.50% 4.00% 2.33% 0.67% 97.33% - - - 10.67% 8.83% 9.17% 7.50% 98.17% - - - 24.17% 14.17% 17.83% 16.33

2 1 0 10% 0.1 95.50% 91.50% - - 51.67% - - - 91.33% 89.00% - - 71.67% - - - 96.50% 96.17% - - 65.83% - - -
20% 0.1 96.67% 94.67% - - 39.33% - - - 95.67% 92.33% - - 72.00% - - - 97.83% 97.83% - - 62.67% - - -
30% 0.1 96.83% 93.00% - - 18.17% - - - 92.17% 91.33% - - 65.50% - - - 98.17% 98.00% - - 68.83% - - -

2 0 10% 0.1 96.00% 94.83% - - 29.17% 25.17% - - 94.83% 93.83% - - 46.67% 45.33% - - 96.50% 96.33% - - 41.33% 33.33% - -
20% 0.1 96.67% 96.00% - - 20.33% 19.67% - - 93.50% 93.50% - - 44.83% 41.83% - - 97.67% 97.50% - - 38.33% 37.00% - -
30% 0.1 97.33% 96.50% - - 14.33% 10.17% - - 95.50% 93.83% - - 41.33% 40.33% - - 98.00% 98.33% - - 41.83% 43.33% - -

3 0 10% 0.1 96.00% 95.33% - - 19.17% 17.83% 17.33% - 94.50% 94.17% - - 32.83% 30.83% 31.33% - 96.50% 97.00% - - 34.67% 31.00% 36.67% -
20% 0.1 96.67% 96.00% - - 14.00% 12.50% 13.50% - 91.50% 91.83% - - 30.17% 30.00% 28.00% - 97.50% 97.50% - - 28.17% 24.00% 28.67% -
30% 0.1 97.33% 96.50% - - 9.50% 8.33% 6.67% - 96.67% 95.17% - - 29.33% 27.50% 28.33% - 98.33% 98.00% - - 43.00% 36.67% 36.00% -

4 0 10% 0.1 96.00% 95.33% - - 16.17% 12.00% 12.17% 14.00% 94.00% 94.17% - - 25.67% 23.33% 23.00% 23.33% 96.33% 97.00% - - 32.67% 29.00% 23.50% 34.67
20% 0.1 96.67% 96.00% - - 12.00% 10.17% 8.67% 9.17% 91.83% 91.50% - - 22.83% 23.67% 21.17% 20.67% 97.17% 97.67% - - 27.83% 19.00% 19.50% 24.17
30% 0.1 97.33% 96.50% - - 8.17% 5.67% 4.67% 6.00% 96.33% 95.17% - - 21.83% 21.67% 22.67% 21.00% 98.17% 98.17% - - 35.67% 28.00% 29.83% 33.50

3 1 0 10% 0.1 90.67% 83.17% 77.67% - 69.50% - - - 82.50% 76.83% 73.50% - 83.17% - - - 95.50% 96.33% 95.83% - 77.33% - - -
20% 0.1 93.83% 90.50% 87.50% - 69.00% - - - 87.33% 84.83% 82.50% - 83.50% - - - 96.33% 97.17% 97.17% - 77.50% - - -
30% 0.1 96.67% 92.67% 89.33% - 58.17% - - - 92.17% 90.83% 86.33% - 85.83% - - - 97.33% 96.83% 98.33% - 76.33% - - -

2 0 10% 0.1 95.50% 95.00% 93.17% - 46.33% 44.17% - - 92.33% 89.67% 87.33% - 63.50% 61.83% - - 96.33% 97.17% 97.17% - 58.67% 53.33% - -
20% 0.1 96.50% 96.00% 95.00% - 40.50% 38.50% - - 92.83% 92.00% 90.50% - 58.67% 58.33% - - 97.00% 96.50% 98.17% - 53.50% 44.83% - -
30% 0.1 97.17% 96.50% 93.00% - 34.17% 32.33% - - 94.17% 92.83% 91.00% - 59.17% 59.00% - - 98.67% 97.67% 98.00% - 58.33% 56.67% - -

3 0 10% 0.1 96.17% 95.50% 95.17% - 31.67% 31.83% 29.00% - 90.00% 91.83% 93.33% - 47.17% 45.67% 44.83% - 95.83% 97.00% 96.83% - 44.50% 39.67% 39.50% -
20% 0.1 96.83% 96.00% 96.67% - 27.17% 27.83% 26.00% - 91.83% 92.00% 92.50% - 42.50% 42.00% 40.83% - 97.00% 96.83% 97.00% - 39.50% 35.17% 33.83% -
30% 0.1 97.33% 96.50% 96.00% - 22.00% 23.33% 20.33% - 94.33% 92.50% 92.17% - 44.00% 42.83% 42.00% - 97.83% 98.17% 98.17% - 44.67% 41.33% 42.17% -

4 0 10% 0.1 96.17% 95.50% 95.17% - 24.50% 22.83% 22.17% 23.00% 92.00% 92.17% 92.83% - 37.33% 34.67% 36.50% 33.83% 96.83% 96.67% 96.33% - 37.00% 29.50% 36.33% 32.50
20% 0.1 96.83% 96.00% 96.67% - 21.83% 20.50% 19.33% 19.33% 93.33% 91.67% 93.83% - 32.83% 32.67% 31.17% 30.83% 97.00% 96.33% 97.17% - 31.50% 23.50% 30.83% 33.17
30% 0.1 97.33% 96.50% 96.00% - 16.33% 15.67% 16.33% 17.33% 93.33% 93.00% 92.67% - 33.00% 35.00% 33.50% 33.67% 98.33% 98.17% 97.67% - 38.17% 33.33% 36.00% 41.17

4 1 0 10% 0.1 85.33% 76.17% 72.00% 71.17% 78.00% - - - 68.50% 68.50% 67.83% 63.50% 85.33% - - - 94.67% 96.67% 95.00% 95.00% 84.83% - - -
20% 0.1 87.00% 85.00% 82.67% 84.83% 78.00% - - - 80.50% 73.50% 72.83% 71.00% 87.33% - - - 95.50% 96.50% 96.50% 96.00% 85.83% - - -
30% 0.1 91.50% 89.17% 84.00% 84.67% 76.17% - - - 87.00% 85.83% 80.00% 75.00% 90.33% - - - 96.67% 96.17% 95.67% 97.83% 86.17% - - -

2 0 10% 0.1 92.67% 90.83% 89.50% 88.67% 60.33% 56.67% - - 87.33% 88.50% 84.33% 82.00% 76.50% 73.67% - - 95.17% 95.67% 96.17% 95.33% 69.00% 66.67% - -
20% 0.1 95.83% 95.33% 94.00% 91.67% 53.67% 51.83% - - 91.17% 91.33% 89.83% 87.50% 73.83% 72.17% - - 96.83% 97.00% 96.50% 97.50% 66.17% 65.50% - -
30% 0.1 96.83% 96.50% 93.17% 92.33% 55.33% 54.00% - - 94.00% 92.17% 89.83% 89.00% 76.33% 76.33% - - 97.50% 98.00% 97.50% 97.83% 69.17% 69.00% - -

3 0 10% 0.1 95.67% 94.83% 95.33% 93.50% 42.50% 41.83% 42.17% - 92.17% 92.17% 91.00% 89.33% 60.67% 59.00% 56.83% - 95.83% 96.17% 96.50% 95.50% 48.50% 50.67% 52.33% -
20% 0.1 96.33% 95.83% 96.67% 94.50% 37.17% 36.83% 38.00% - 91.17% 90.33% 93.83% 88.83% 57.17% 56.50% 56.33% - 96.67% 97.17% 97.17% 97.83% 50.50% 47.00% 51.67% -
30% 0.1 97.33% 96.50% 96.17% 93.83% 38.50% 39.33% 38.00% - 91.83% 92.17% 92.00% 89.00% 55.67% 55.17% 55.83% - 97.67% 97.83% 98.00% 98.17% 54.83% 50.50% 50.83% -

4 0 10% 0.1 95.67% 95.50% 95.50% 95.67% 33.67% 31.67% 32.00% 31.67% 92.83% 91.67% 91.67% 92.33% 48.33% 47.00% 46.50% 46.00% 95.83% 95.33% 96.33% 95.33% 40.17% 43.33% 40.00% 38.33
20% 0.1 96.83% 96.00% 96.50% 96.00% 29.17% 29.67% 27.33% 26.50% 92.00% 92.17% 92.33% 93.00% 44.83% 46.33% 44.67% 44.50% 97.50% 96.50% 96.67% 96.67% 41.33% 41.00% 37.33% 45.33
30% 0.1 97.33% 96.50% 96.17% 96.17% 29.67% 29.00% 28.33% 28.33% 91.50% 89.67% 87.83% 89.33% 42.00% 42.50% 40.50% 41.50% 98.33% 97.67% 98.00% 98.00% 49.83% 44.67% 43.17% 46.00

Table 5.9: Opt− FF2|MF, flex− rij|Cumulative average utilization by machine for
δ = 0.2.

Offline Online IP
m L Mu Damage δ m1 m2 m3 m4 L1 L2 L3 L4 m1 m2 m3 m4 L1 L2 L3 L4 m1 m2 m3 m4 L1 L2 L3 L4
1 1 0 10% 0.2 93.17% - - - 25.67% - - - 93.33% - - - 67.17% - - - 97.83% - - - 61.33% - - -

20% 0.2 94.17% - - - 16.17% - - - 94.17% - - - 57.67% - - - 97.33% - - - 54.17% - - -
30% 0.2 94.83% - - - 14.00% - - - 94.67% - - - 48.67% - - - 98.33% - - - 49.00% - - -

2 0 10% 0.2 94.33% - - - 15.67% 11.00% - - 94.00% - - - 39.67% 38.33% - - 97.67% - - - 45.17% 39.50% - -
20% 0.2 95.33% - - - 7.83% 8.33% - - 95.17% - - - 31.67% 35.67% - - 97.83% - - - 36.33% 36.33% - -
30% 0.2 95.50% - - - 8.83% 6.50% - - 95.33% - - - 26.33% 26.33% - - 98.33% - - - 34.33% 31.00% - -

3 0 10% 0.2 94.33% - - - 9.33% 9.33% 8.00% - 94.17% - - - 29.50% 28.00% 24.33% - 97.67% - - - 31.33% 27.17% 28.00% -
20% 0.2 95.33% - - - 7.33% 7.17% 1.67% - 95.17% - - - 25.17% 21.83% 22.67% - 97.83% - - - 31.50% 24.17% 27.67% -
30% 0.2 95.50% - - - 7.17% 5.17% 3.00% - 95.33% - - - 18.17% 20.17% 18.00% - 98.33% - - - 28.17% 20.83% 25.67% -

4 0 10% 0.2 94.33% - - - 7.33% 8.67% 7.83% 2.83% 94.17% - - - 19.67% 19.83% 21.50% 20.67% 97.67% - - - 32.50% 25.50% 34.17% 29.67%
20% 0.2 95.33% - - - 6.17% 7.67% 1.67% 0.67% 95.17% - - - 19.33% 19.83% 18.83% 18.67% 97.83% - - - 28.17% 17.00% 13.17% 22.00%
30% 0.2 95.50% - - - 5.83% 5.17% 3.00% 1.33% 95.33% - - - 17.17% 14.67% 13.33% 16.17% 98.33% - - - 30.83% 20.83% 18.67% 25.00%

2 1 0 10% 0.2 83.67% 83.17% - - 66.50% - - - 79.50% 72.83% - - 84.17% - - - 95.50% 96.33% - - 74.17% - - -
20% 0.2 93.33% 90.83% - - 53.50% - - - 88.50% 83.00% - - 84.33% - - - 96.83% 97.50% - - 77.33% - - -
30% 0.2 92.83% 89.00% - - 30.33% - - - 88.50% 86.33% - - 82.83% - - - 98.00% 98.00% - - 78.00% - - -

2 0 10% 0.2 93.00% 92.00% - - 49.17% 44.67% - - 91.00% 89.83% - - 73.00% 67.67% - - 96.67% 97.33% - - 61.50% 59.67% - -
20% 0.2 95.33% 94.67% - - 35.17% 31.83% - - 93.50% 92.00% - - 69.50% 68.00% - - 97.67% 98.00% - - 56.00% 56.17% - -
30% 0.2 95.17% 95.17% - - 16.17% 16.67% - - 93.00% 92.33% - - 63.50% 62.83% - - 98.33% 97.33% - - 64.00% 62.83% - -

3 0 10% 0.2 94.17% 93.50% - - 30.17% 31.83% 33.00% - 92.17% 90.67% - - 52.17% 50.83% 50.83% - 96.67% 96.83% - - 50.33% 48.00% 46.67% -
20% 0.2 95.50% 94.67% - - 22.67% 22.50% 21.50% - 93.17% 90.50% - - 51.17% 46.00% 45.33% - 98.00% 97.50% - - 49.33% 39.83% 42.50% -
30% 0.2 95.50% 95.50% - - 13.50% 11.50% 8.00% - 94.17% 93.67% - - 49.33% 46.67% 47.83% - 97.67% 98.17% - - 56.67% 49.50% 45.50% -

4 0 10% 0.2 94.33% 94.00% - - 26.33% 24.50% 22.17% 22.00% 92.33% 91.17% - - 40.67% 41.50% 37.83% 37.83% 96.83% 96.33% - - 47.33% 34.67% 33.83% 35.83%
20% 0.2 95.50% 94.67% - - 18.67% 16.83% 15.17% 16.00% 92.50% 90.33% - - 37.50% 39.00% 36.33% 35.83% 98.00% 97.67% - - 38.00% 29.83% 31.00% 33.83%
30% 0.2 95.50% 95.50% - - 9.33% 9.00% 6.83% 7.83% 94.00% 93.50% - - 39.33% 35.83% 38.17% 36.00% 98.00% 97.83% - - 44.33% 41.83% 39.17% 36.67%

3 1 0 10% 0.2 78.00% 70.67% 68.33% - 73.67% - - - 66.67% 66.00% 59.67% - 85.33% - - - 94.83% 95.67% 95.67% - 80.00% - - -
20% 0.2 85.50% 84.00% 82.17% - 76.00% - - - 74.83% 82.67% 74.67% - 89.17% - - - 96.50% 96.67% 97.83% - 81.17% - - -
30% 0.2 90.50% 87.50% 86.33% - 69.17% - - - 81.83% 85.17% 81.83% - 87.67% - - - 98.17% 98.50% 97.83% - 78.00% - - -

2 0 10% 0.2 86.67% 82.33% 82.67% - 67.67% 65.00% - - 80.33% 78.00% 70.83% - 82.50% 80.50% - - 95.50% 95.67% 94.83% - 76.50% 74.33% - -
20% 0.2 92.33% 91.17% 89.00% - 67.17% 61.67% - - 85.50% 86.67% 82.50% - 82.83% 79.83% - - 96.67% 96.50% 97.33% - 75.00% 73.67% - -
30% 0.2 94.50% 95.00% 90.33% - 52.83% 51.67% - - 90.83% 92.00% 90.00% - 81.00% 79.50% - - 97.17% 97.83% 97.83% - 74.00% 74.50% - -

3 0 10% 0.2 92.67% 89.50% 90.50% - 54.67% 52.50% 52.83% - 89.33% 86.33% 83.17% - 72.00% 70.50% 68.00% - 96.83% 96.67% 96.17% - 65.00% 58.67% 59.83% -
20% 0.2 95.50% 94.67% 93.00% - 48.17% 48.17% 45.67% - 92.00% 90.67% 89.00% - 68.00% 67.00% 68.17% - 97.17% 97.00% 97.33% - 56.33% 57.50% 62.00% -
30% 0.2 95.00% 95.33% 92.00% - 39.17% 37.67% 33.00% - 92.00% 92.33% 91.50% - 67.50% 67.17% 67.00% - 97.83% 98.33% 97.50% - 64.67% 62.83% 57.50% -

4 0 10% 0.2 94.17% 92.50% 91.67% - 42.17% 43.00% 41.83% 39.17% 90.50% 90.17% 86.17% - 62.17% 59.33% 58.33% 57.33% 96.17% 96.50% 96.50% - 59.50% 46.33% 48.00% 47.00%
20% 0.2 95.50% 94.83% 94.17% - 36.83% 36.67% 36.83% 32.83% 90.67% 90.00% 89.50% - 54.83% 55.67% 51.83% 51.33% 96.83% 97.00% 97.67% - 52.83% 46.83% 48.50% 47.17%
30% 0.2 95.50% 95.50% 92.67% - 31.50% 26.67% 26.00% 28.00% 91.33% 92.17% 90.50% - 58.50% 56.67% 56.00% 54.67% 97.83% 98.67% 97.33% - 55.67% 48.00% 48.83% 46.33%

4 1 0 10% 0.2 71.00% 70.00% 61.83% 66.33% 75.83% - - - 59.00% 60.00% 53.17% 49.00% 85.33% - - - 94.33% 95.33% 96.00% 93.33% 83.17% - - -
20% 0.2 81.00% 78.83% 74.50% 76.50% 79.83% - - - 74.00% 74.50% 62.00% 66.50% 87.33% - - - 96.33% 96.50% 96.17% 96.33% 85.17% - - -
30% 0.2 86.00% 84.00% 82.67% 81.83% 81.17% - - - 79.00% 80.33% 74.50% 70.17% 86.17% - - - 96.83% 97.00% 96.17% 97.67% 81.33% - - -

2 0 10% 0.2 79.17% 80.50% 78.33% 71.17% 76.50% 73.00% - - 72.33% 67.17% 67.50% 62.17% 83.67% 85.17% - - 94.17% 95.00% 94.17% 95.17% 82.17% 79.83% - -
20% 0.2 86.83% 85.17% 86.50% 81.50% 73.50% 74.67% - - 79.67% 76.83% 72.67% 69.50% 86.33% 85.50% - - 95.17% 95.17% 96.33% 95.50% 80.17% 75.83% - -
30% 0.2 90.67% 92.67% 86.17% 84.33% 73.00% 74.50% - - 86.33% 86.00% 81.00% 79.33% 86.33% 88.00% - - 96.33% 95.83% 97.00% 96.00% 83.00% 76.17% - -

3 0 10% 0.2 85.33% 82.33% 85.17% 84.50% 67.67% 64.67% 64.17% - 79.67% 80.83% 76.50% 77.67% 79.67% 79.33% 77.67% - 93.50% 94.67% 95.33% 96.00% 73.17% 73.17% 75.00% -
20% 0.2 91.00% 92.50% 91.33% 90.00% 61.67% 62.00% 60.33% - 83.67% 86.83% 83.00% 83.67% 81.00% 80.17% 77.83% - 97.00% 96.00% 96.00% 96.83% 78.33% 75.33% 70.17% -
30% 0.2 94.50% 94.33% 90.50% 90.00% 63.83% 62.67% 60.17% - 86.67% 89.67% 87.00% 84.33% 80.83% 82.17% 79.50% - 97.67% 97.00% 96.33% 97.00% 78.00% 74.00% 70.33% -

4 0 10% 0.2 90.50% 89.33% 90.67% 89.00% 56.83% 56.17% 52.50% 54.17% 86.17% 85.83% 85.83% 83.83% 72.00% 72.17% 75.67% 72.67% 94.83% 94.83% 95.67% 95.33% 68.50% 64.83% 61.50% 58.83%
20% 0.2 94.83% 94.00% 92.83% 93.33% 51.00% 50.50% 50.50% 47.00% 91.67% 90.33% 90.67% 90.33% 73.33% 72.50% 72.50% 70.50% 95.83% 96.33% 97.00% 96.67% 68.83% 64.00% 65.00% 59.67%
30% 0.2 95.50% 95.50% 93.17% 93.83% 52.83% 49.33% 49.33% 48.50% 91.50% 90.17% 88.83% 88.00% 71.50% 70.50% 67.83% 71.00% 97.00% 98.00% 98.17% 97.33% 67.67% 62.00% 69.17% 66.83%
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Table 5.10: Opt−FF2|MF, flex−rij|Cumulative average utilization by machine for
δ = 0.3.

Offline Online IP
m L Mu Damage δ m1 m2 m3 m4 L1 L2 L3 L4 m1 m2 m3 m4 L1 L2 L3 L4 m1 m2 m3 m4 L1 L2 L3 L4
’ 1 1 0 10% 0.3 90.00% - - - 27.67% - - - 86.50% - - - 76.67% - - - 96.83% - - - 63.00% - - -

20% 0.3 90.67% - - - 24.83% - - - 89.50% - - - 67.67% - - - 97.50% - - - 63.67% - - -
30% 0.3 93.83% - - - 19.67% - - - 93.50% - - - 57.17% - - - 97.50% - - - 58.17% - - -

2 0 10% 0.3 92.33% - - - 19.33% 14.00% - - 92.17% - - - 56.17% 56.83% - - 97.33% - - - 52.67% 50.50% - -
20% 0.3 93.83% - - - 15.00% 13.50% - - 93.83% - - - 50.17% 52.33% - - 97.67% - - - 45.67% 38.00% - -
30% 0.3 95.33% - - - 10.83% 10.83% - - 95.33% - - - 33.83% 33.17% - - 97.83% - - - 39.50% 42.67% - -

3 0 10% 0.3 92.83% - - - 13.67% 11.83% 7.83% - 92.67% - - - 39.83% 36.50% 40.67% - 97.17% - - - 44.83% 31.33% 37.33% -
20% 0.3 93.83% - - - 10.50% 10.83% 7.17% - 93.83% - - - 34.00% 31.17% 26.33% - 97.83% - - - 36.33% 34.17% 34.67% -
30% 0.3 95.33% - - - 8.17% 7.83% 5.67% - 95.33% - - - 22.67% 27.50% 28.50% - 97.83% - - - 32.83% 37.67% 36.83% -

4 0 10% 0.3 92.83% - - - 10.50% 10.83% 8.00% 4.00% 93.00% - - - 31.17% 32.33% 29.83% 27.00% 97.33% - - - 37.67% 40.50% 40.00% 35.00%
20% 0.3 93.83% - - - 7.83% 11.50% 7.17% 2.00% 93.67% - - - 25.67% 24.00% 22.50% 21.50% 97.83% - - - 35.17% 21.50% 20.83% 30.83%
30% 0.3 95.33% - - - 7.17% 7.83% 5.67% 1.00% 95.33% - - - 21.00% 17.33% 18.67% 19.17% 97.83% - - - 30.33% 22.83% 28.00% 27.00%

2 1 0 10% 0.3 77.50% 73.00% - - 67.17% - - - 70.83% 62.67% - - 85.83% - - - 96.33% 95.00% - - 74.17% - - -
20% 0.3 87.00% 84.83% - - 56.67% - - - 76.67% 76.17% - - 85.50% - - - 96.83% 97.50% - - 77.17% - - -
30% 0.3 92.17% 82.83% - - 30.00% - - - 85.83% 78.67% - - 78.00% - - - 98.00% 98.00% - - 77.50% - - -

2 0 10% 0.3 87.83% 82.67% - - 61.00% 56.17% - - 78.50% 78.67% - - 80.50% 79.17% - - 96.83% 95.33% - - 67.33% 68.00% - -
20% 0.3 92.50% 92.67% - - 45.33% 45.50% - - 86.33% 86.83% - - 80.33% 85.17% - - 97.17% 97.50% - - 61.00% 69.17% - -
30% 0.3 94.00% 91.00% - - 24.00% 18.67% - - 93.50% 89.67% - - 78.33% 72.33% - - 97.83% 99.00% - - 66.17% 71.67% - -

3 0 10% 0.3 90.17% 90.33% - - 43.00% 43.17% 46.33% - 86.00% 82.00% - - 69.67% 64.83% 69.83% - 97.00% 96.83% - - 60.00% 57.67% 52.33% -
20% 0.3 94.00% 94.17% - - 36.33% 31.00% 29.50% - 92.67% 90.83% - - 70.83% 66.50% 66.00% - 97.00% 97.50% - - 52.50% 55.17% 54.33% -
30% 0.3 95.17% 92.00% - - 16.17% 15.00% 10.67% - 93.83% 91.00% - - 60.50% 63.83% 58.17% - 98.17% 98.33% - - 63.33% 58.50% 58.50% -

4 0 10% 0.3 92.33% 90.17% - - 39.17% 33.33% 33.00% 26.83% 88.33% 86.17% - - 57.00% 57.17% 58.50% 54.33% 96.17% 97.33% - - 53.50% 46.17% 42.83% 44.33%
20% 0.3 94.00% 94.17% - - 26.17% 22.67% 25.83% 22.17% 92.00% 89.17% - - 55.00% 54.00% 51.67% 50.00% 96.67% 97.67% - - 44.83% 49.17% 43.00% 38.67%
30% 0.3 95.17% 92.17% - - 10.50% 9.67% 12.00% 9.67% 93.00% 90.50% - - 49.00% 49.33% 48.50% 49.67% 98.17% 97.83% - - 53.50% 55.50% 57.00% 47.33%

3 1 0 10% 0.3 72.17% 67.83% 60.50% - 70.50% - - - 57.00% 59.00% 56.17% - 86.83% - - - 95.67% 95.50% 95.00% - 82.17% - - -
20% 0.3 79.17% 85.00% 78.33% - 68.83% - - - 77.00% 69.00% 66.83% - 85.67% - - - 97.83% 96.67% 96.50% - 76.33% - - -
30% 0.3 89.00% 79.67% 83.00% - 69.17% - - - 76.00% 78.67% 73.33% - 80.83% - - - 97.83% 98.67% 97.00% - 79.50% - - -

2 0 10% 0.3 79.67% 75.17% 74.67% - 65.50% 72.50% - - 65.67% 65.33% 62.50% - 83.33% 79.33% - - 94.67% 94.67% 95.33% - 75.50% 72.17% - -
20% 0.3 86.83% 89.17% 82.67% - 64.17% 66.67% - - 77.83% 75.50% 71.50% - 80.00% 80.17% - - 97.00% 96.00% 96.67% - 77.17% 74.83% - -
30% 0.3 92.17% 89.83% 89.00% - 56.33% 58.33% - - 79.50% 85.33% 83.33% - 88.00% 84.00% - - 98.00% 97.17% 98.17% - 75.83% 69.00% - -

3 0 10% 0.3 83.33% 79.00% 80.83% - 68.83% 61.50% 60.00% - 75.17% 72.67% 73.00% - 81.83% 78.33% 74.33% - 96.00% 96.17% 95.17% - 64.00% 75.00% 68.33% -
20% 0.3 89.67% 91.33% 88.17% - 59.67% 60.17% 63.50% - 84.83% 81.67% 81.50% - 78.50% 76.17% 82.33% - 96.50% 97.17% 95.33% - 72.17% 65.83% 69.00% -
30% 0.3 94.50% 91.50% 90.83% - 48.83% 49.50% 46.17% - 89.17% 87.50% 88.17% - 80.17% 76.83% 84.67% - 97.50% 97.83% 97.83% - 68.50% 72.83% 67.83% -

4 0 10% 0.3 89.17% 83.17% 85.83% - 59.50% 56.83% 55.17% 54.00% 82.67% 78.83% 81.67% - 74.83% 73.00% 71.33% 69.33% 96.33% 96.33% 95.50% - 68.33% 68.33% 68.33% 58.00%
20% 0.3 93.17% 93.67% 90.83% - 49.67% 50.17% 50.00% 48.33% 88.50% 89.17% 86.33% - 68.83% 72.00% 64.00% 67.83% 97.17% 96.17% 96.83% - 70.50% 53.50% 58.00% 61.33%
30% 0.3 95.17% 92.17% 91.17% - 35.33% 38.33% 36.83% 36.50% 90.83% 90.33% 89.00% - 74.83% 73.33% 75.17% 72.17% 97.67% 97.50% 97.83% - 62.33% 62.33% 64.00% 66.33%

4 1 0 10% 0.3 66.50% 63.17% 59.17% 58.83% 73.50% - - - 60.17% 61.00% 43.50% 52.50% 84.00% - - - 93.67% 96.00% 94.00% 94.67% 80.00% - - -
20% 0.3 75.33% 73.33% 76.67% 75.17% 74.50% - - - 70.33% 68.83% 62.50% 59.83% 87.00% - - - 95.83% 97.17% 96.17% 97.00% 79.50% - - -
30% 0.3 87.83% 75.50% 81.00% 81.33% 75.17% - - - 78.83% 75.67% 70.50% 64.33% 80.50% - - - 98.00% 96.83% 96.67% 97.67% 77.83% - - -

2 0 10% 0.3 74.83% 67.17% 67.00% 65.00% 70.50% 73.67% - - 64.17% 56.33% 55.17% 49.00% 84.00% 83.67% - - 93.83% 92.50% 93.17% 96.17% 78.17% 76.17% - -
20% 0.3 85.17% 80.17% 74.67% 77.67% 70.67% 71.00% - - 70.50% 67.50% 66.17% 62.00% 81.33% 83.83% - - 97.00% 96.33% 96.17% 95.83% 81.67% 76.67% - -
30% 0.3 86.17% 86.50% 82.17% 83.50% 79.67% 77.50% - - 77.33% 76.67% 74.50% 69.17% 85.67% 83.17% - - 96.67% 98.50% 96.83% 96.83% 79.00% 77.33% - -

3 0 10% 0.3 77.00% 72.00% 76.17% 73.83% 69.00% 72.50% 71.17% - 64.33% 64.83% 63.67% 60.50% 79.83% 83.67% 80.83% - 94.17% 95.00% 95.17% 94.83% 77.33% 68.00% 77.17% -
20% 0.3 88.00% 83.00% 79.50% 85.00% 70.17% 71.67% 67.50% - 73.17% 74.17% 74.50% 67.00% 82.50% 83.83% 81.83% - 96.33% 95.00% 94.33% 95.50% 76.00% 70.33% 74.50% -
30% 0.3 91.00% 87.50% 89.00% 85.33% 71.67% 65.50% 67.00% - 81.17% 82.17% 80.67% 77.33% 84.83% 84.50% 81.00% - 95.17% 96.33% 97.17% 96.67% 77.67% 78.17% 74.83% -

4 0 10% 0.3 80.50% 78.00% 83.33% 79.67% 70.67% 66.17% 61.83% 62.67% 68.00% 73.17% 73.17% 69.50% 82.33% 82.50% 77.50% 76.67% 96.00% 94.83% 93.50% 93.33% 74.50% 72.67% 74.83% 69.83%
20% 0.3 88.83% 89.50% 87.17% 86.17% 67.83% 62.17% 58.33% 63.67% 82.00% 81.33% 83.83% 76.50% 78.67% 82.83% 79.83% 79.83% 95.33% 95.83% 96.17% 95.17% 71.50% 71.33% 74.83% 68.67%
30% 0.3 93.17% 89.83% 89.33% 89.83% 60.50% 64.17% 62.33% 63.33% 90.17% 83.67% 84.67% 81.50% 82.50% 81.17% 83.00% 82.33% 96.67% 96.17% 97.50% 96.67% 73.83% 75.00% 73.00% 68.17%
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Multi-Function Machines Utilization We now examine the utilization for MFM −
Pm|MF, flex− rij|Cumulative, INDS problems with multi-function machines. Figure 5.19
and Table 5.11 display the average utilization numbers across the 15 random test instances.
Very high utilization numbers are apparent for each machine, damage, and δ combination.
This again reinforces the desire for skilled labor, as work groups can perform two sets of
tasks instead of one, leading to a higher utilization.
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Figure 5.19: Average utilization for MFM − Pm|MF, flex − rij|Cumulative by
damage and machine.
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Table 5.11: MFM −Pm|MF, flex− rij|Cumulative average utilization by machine.

Offline Online IP
m L Mu Damage δ Mu1 Mu2 Mu3 Mu4 Mu5 Mu1 Mu2 Mu3 Mu4 Mu5 Mu1 Mu2 Mu3 Mu4 Mu5
0 0 1 10% 0.1 97.00% - - - - 96.17% - - - - 99.33% - - - -

0.2 95.67% - - - - 94.50% - - - - 98.83% - - - -
0.3 95.83% - - - - 89.33% - - - - 99.33% - - - -

20% 0.1 97.83% - - - - 96.50% - - - - 99.83% - - - -
0.2 98.67% - - - - 92.67% - - - - 99.83% - - - -
0.3 97.17% - - - - 88.50% - - - - 99.67% - - - -

30% 0.1 98.83% - - - - 96.67% - - - - 99.83% - - - -
0.2 97.83% - - - - 95.67% - - - - 100.00% - - - -
0.3 96.00% - - - - 91.83% - - - - 99.83% - - - -

0 0 2 10% 0.1 98.67% 97.50% - - - 93.50% 94.50% - - - 98.83% 99.17% - - -
0.2 93.33% 93.00% - - - 91.83% 92.00% - - - 99.00% 98.33% - - -
0.3 90.50% 93.00% - - - 89.67% 89.00% - - - 98.50% 98.67% - - -

20% 0.1 97.00% 97.33% - - - 98.17% 95.67% - - - 99.67% 99.67% - - -
0.2 96.50% 96.50% - - - 94.83% 93.83% - - - 99.67% 99.83% - - -
0.3 92.17% 92.67% - - - 91.83% 92.17% - - - 99.00% 99.83% - - -

30% 0.1 99.83% 99.00% - - - 98.33% 96.67% - - - 100.00% 99.67% - - -
0.2 98.50% 99.33% - - - 95.33% 94.67% - - - 100.00% 99.67% - - -
0.3 98.50% 98.83% - - - 93.33% 92.67% - - - 99.83% 99.83% - - -

0 0 3 10% 0.1 97.67% 97.67% 97.50% - - 98.00% 96.50% 95.83% - - 99.00% 99.00% 98.83% - -
0.2 95.83% 95.83% 95.17% - - 90.50% 87.50% 92.00% - - 98.67% 97.83% 98.83% - -
0.3 94.50% 95.83% 93.00% - - 86.17% 85.17% 84.33% - - 98.17% 98.33% 98.00% - -

20% 0.1 97.33% 98.17% 97.50% - - 97.33% 97.00% 95.83% - - 99.67% 99.33% 99.83% - -
0.2 94.67% 95.00% 95.67% - - 89.67% 91.67% 90.33% - - 99.50% 99.33% 99.17% - -
0.3 92.33% 91.33% 94.83% - - 88.50% 87.33% 89.83% - - 99.17% 98.67% 99.83% - -

30% 0.1 97.33% 97.83% 98.83% - - 97.33% 97.33% 96.33% - - 99.67% 99.83% 100.00% - -
0.2 93.83% 96.67% 98.00% - - 95.83% 95.17% 93.67% - - 99.67% 100.00% 100.00% - -
0.3 95.33% 96.00% 97.50% - - 91.33% 91.17% 90.17% - - 99.83% 99.67% 100.00% - -

0 0 4 10% 0.1 98.00% 97.67% 98.50% 98.67% - 94.83% 94.17% 93.33% 93.00% - 98.67% 98.67% 98.67% 98.50% -
0.2 96.50% 95.67% 96.83% 97.50% - 91.33% 88.00% 89.17% 89.00% - 99.00% 98.17% 98.83% 99.00% -
0.3 96.83% 96.67% 97.00% 94.17% - 86.17% 84.33% 85.67% 82.50% - 98.67% 98.33% 98.33% 97.50% -

20% 0.1 98.50% 99.00% 99.17% 98.00% - 94.33% 96.17% 93.50% 94.00% - 98.83% 99.33% 99.17% 99.67% -
0.2 96.50% 97.67% 96.17% 97.83% - 91.67% 92.83% 91.67% 90.67% - 99.83% 99.50% 98.67% 98.50% -
0.3 94.33% 94.33% 94.67% 94.00% - 87.33% 86.50% 87.17% 85.17% - 99.00% 99.17% 98.67% 99.33% -

30% 0.1 98.17% 98.67% 99.00% 98.50% - 94.50% 95.33% 93.67% 91.50% - 99.50% 99.50% 98.83% 99.50% -
0.2 96.00% 96.33% 94.33% 93.83% - 93.83% 92.67% 91.50% 91.83% - 99.17% 99.33% 99.67% 99.83% -
0.3 94.50% 95.67% 91.50% 95.67% - 92.00% 92.67% 90.83% 90.67% - 99.83% 99.17% 99.83% 99.67% -

0 0 5 10% 0.1 97.67% 97.83% 98.17% 97.50% 98.00% 96.67% 95.33% 93.17% 94.33% 91.83% 97.83% 98.67% 98.33% 98.33% 97.33%
0.2 96.67% 97.67% 98.17% 96.00% 97.50% 92.83% 88.17% 88.83% 89.33% 87.67% 98.50% 98.50% 97.50% 97.67% 98.50%
0.3 95.33% 96.67% 94.00% 96.17% 97.17% 79.67% 82.17% 74.50% 77.50% 84.83% 97.67% 98.33% 97.83% 98.00% 97.83%

20% 0.1 98.50% 99.00% 99.00% 98.00% 98.33% 94.83% 94.17% 95.33% 93.00% 94.00% 98.33% 98.67% 98.50% 99.33% 99.17%
0.2 98.00% 95.17% 97.50% 96.33% 97.17% 88.67% 87.67% 87.50% 85.17% 86.33% 98.17% 97.83% 98.83% 98.33% 99.00%
0.3 94.50% 96.83% 94.00% 97.83% 97.33% 84.83% 87.50% 86.17% 84.67% 85.50% 98.83% 98.33% 99.17% 99.00% 99.00%

30% 0.1 98.83% 98.33% 99.83% 98.17% 98.67% 92.50% 95.33% 93.50% 91.50% 92.17% 99.17% 98.17% 99.50% 99.00% 98.33%
0.2 94.00% 95.17% 95.50% 95.83% 96.50% 91.83% 90.00% 89.50% 90.00% 92.17% 98.67% 99.17% 98.67% 98.50% 98.83%
0.3 92.83% 93.33% 94.17% 90.67% 94.67% 85.00% 89.00% 87.00% 83.00% 86.83% 98.67% 99.50% 99.17% 98.83% 99.00%
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Chapter 6

Conclusions

The core of this research is the examination of integrated network design and schedul-
ing problems. We formally define this class of problems and demonstrate how they can be
used for many application areas, with a specific focus on infrastructure restoration. INDS
problems involve three main decisions: (i) the selection of arcs to make operational in the
network, (ii) the allocation of machines to process the selected arcs, and (iii) the sequencing
of the selected arcs on the machines.

We establish the complexity of many INDS problems to be NP -Hard. We create a dis-
patching rule framework that iteratively calls a selection routine and scheduling routine
which can be easily customized to any INDS problem. The basis of the selection routine is
selecting a set of tasks that interact within the network and maximizes the ratio of improve-
ment in the network performance to the objective function to time necessary for processing
the set. The specific set of tasks is determined by examining the optimality conditions of the
network performance used for the INDS problem. The scheduling routine uses combinations
of existing scheduling rules, such as the longest processing time rule and earliest release date
rule.

INDS problems are extended to incorporate specific network design and novel scheduling
considerations. Six performance metrics are used to evaluate the network performance, in
combination with two different objective functions. Extensions with regards to scheduling
are considered by incorporating arc release dates, flexible release dates, and multi-function
machines. Further, we extend the problem to incorporate an online optimization environ-
ment with regards to release dates. In this environment, we assume that not all information
is known at the start of the problem. Instead, information about when arcs are released and
available for processing arrive throughout the horizon of the problem. The dispatching rule
framework is used and customized to incorporate all of these different extensions of INDS
problems.

INDS problems are computationally tested to devise restoration plans for damaged real-
istic power networks. We determine that the dispatching rules are a robust solution method
that arrive at near optimal solutions quickly for many problem instances. Computational
tests focusing on the scheduling extensions of INDS problems and the online optimization
environment indicate that the dispatching rules arrive at high quality, near optimal solutions
in a matter of seconds. Different work group compositions are considered and we observe a
phenomenon of diminishing return with more specialized work groups. Benefit is seen when
incorporating the same number of traditional and specialized work groups. Work groups
that are multi-function lead to the greatest benefit.

53



In conclusion, we have thoroughly examined INDS problems in many avenues. Areas of
future work include considering INDS with three types of machines: traditional, specialized,
and multi-function. The online optimization environment should be extended to incorporate
lack of information about other aspects of the problem. Interdependencies between infras-
tructure systems should also be considered. For example, the availability of the road network
needed for traveling between sequential restoration tasks, should impact the sequencing of
selected restoration tasks.
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