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Abstract

The availability of efficient algorithms for long-range pairwise interactions is central to the success
of numerous applications, ranging in scale from atomic-level modeling of materials to astrophysics.
This report focuses on the implementation and analysis of the multilevel summation method for
approximating long-range pairwise interactions. The computational cost of the multilevel sum-
mation method is proportional to the number of particles, N, which is an improvement over FFT-
based methods who’s cost is asymptotically proportional to N logN. In addition to approximating
electrostatic forces, the multilevel summation method can be use to efficiently approximate con-
volutions with long-range kernels. As an application, we apply the multilevel summation method
to a discretized integral equation formulation of the regularized generalized Poisson equation. Nu-
merical results are presented using an implementation of the multilevel summation method in the
LAMMPS software package. Preliminary results show that the computational cost of the method
scales as expected, but there is still a need for further optimization.
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Chapter 1

Introduction

The availability of efficient algorithms for long-range pairwise interactions is central to the
success of numerous applications, ranging in scale from atomic-level modeling of materials to
astrophysics. Molecular dynamics (MD), in particular, can require months of supercomputer time,
due to the expense of the large number of force evaluations required. The challenge is to design
reliable, efficient, portable, scalable algorithms for calculating long-range interactions in large
systems. Scalability and portability are of particular concern for modern exascale supercomputers
with hybrid architectures and massive numbers of processors.

A diverse set of methods has evolved for rapid approximation of long-range interactions, in-
cluding fast-multipole methods and Fourier-based particle-mesh Ewald methods. Multipole meth-
ods excel when applied to systems with large variations in density (e.g., astrophysics), but have
generally been considered less competitive for more uniform systems (e.g., molecular dynamics).
As a result, state-of-the-art MD codes like NAMD and LAMMPS, use particle-mesh Ewald.

Due to the use of the Fast Fourier Transform (FFT), particle-mesh Ewald methods do not scale
well as the system size is increased, with a computational cost proportional to N logN, where N
is the number of atoms. The FFT also has a large communication overhead, due to the parallel
scalability problems associated with the matrix transpose.

This report focuses on the implementation and analysis of the multilevel summation method
(MSM), which is a relatively new algorithm for computing pairwise interactions. Preliminary
studies have found that it has a computational cost proportional to N, rather than N logN, and rel-
atively low communication overhead (uses nested grids instead of the FFT). Further development
and implementation of this method has the potential to dramatically improve the efficiency of MD
software used for predictive simulation of materials.

An interesting application for this method is to the solution of the Generalized Poisson Equation
(GPE), either as a stand-alone solver, or as a preconditioner for a method for solving the Poisson
Boltzmann Equation. We derive an integral formulation for the GPE, and demonstrate how the
MSM can be applied as a fast method for computing the matrix-vector products in the discrete
formulation.

The remainder of this report is organized as follows. In Chapter 2, we provide a brief overview
of long-range pairwise interaction problem, focusing on the Coulomb problem and the General-
ized Poisson Equation. In Chapter 3, we discuss popular methods for approximating long-range
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pairwise interactions, and provide a review of the multilevel summation method. At the end of
Chapter 3, we review how the multilevel summation method can be applied to an integral for-
mulation of the Generalized Poisson Equation. In Chapter 4, we present preliminary numerical
results for the multilevel summation method implemented in the LAMMPS software package. A
complete report on the application of the multilevel summation method to the Generalized Poisson
Equation is included in the appendix.
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Chapter 2

Problem formulation

Pairwise interactions

We begin by considering the general problem of computing the pairwise particle interactions
of N particles in 3-dimensional space. Let~ri be the position of the ith particle in R3. The position
of all N particles is denoted collectively by x = [~rT

1 ,~rT
2 , . . . ,~rT

N ]T. Let qi be some property of the
ith particle (e.g., charge), and q = [q1,q2, . . . ,qN ]T. In the simple case, the primary computational
task is to approximate sums and derivatives of sums of the form

E(x) =
1
2

C
N

∑
i=1

N

∑
j=1

′qiq jk(~ri,~r j), (2.1)

where C is a constant. The primed sum omits certain values of j which excludes non-interacting
particles.

(a) (b)

Figure 2.1. (a) 6 particles with the 21 non-zero interactions
(dashed lines) for a symmetric kernel with no self-interactions. (b)
The 5 interactions with the middle particle.

The function k(~r,~r ′) is the interaction kernel. For the applications considered in this report, we
assume that k is a radial function of the form f (|~r ′−~r|). For the gravitational N-body problem,
f (r) = 1/r, and qi is the mass of the ith particle. For the Coulomb problem, f (r) = 1/r, and qi is
a partial charge. The primed sum omits j = i as well as values of j corresponding to covalently
bonded atoms. Other examples of kernels include 1/r6 for van der Waals attractions and the
1/(r2 +δ 2) potential used in smoothed particle hydrodynamics.
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Figure 2.2. 6 particles with periodic boundary conditions in two
dimensions represented by an infinite lattice (only the middle 9
cells are shown). Note that the central unshaded particle interacts
with all other particles, including its self-images.

Note that the double sum can be written using a matrix formulation,

E(x) =
1
2

qTK(x)q where Ki j(x) =
{

0, i, j excluded,
f (|~r j−~ri|), otherwise. (2.2)

The computational task is essentially equivalent to computing a matrix–vector product to approxi-
mate K(x)q, and derivatives of K(x)q. Once this product is obtained, a simple dot–product with q
is used to compute the double sum.

For systems with periodic boundary conditions, the double sum must be extended to include
periodic images. This is achieved by extending the finite sum to an infinite sum on a lattice. For
example, for a periodically tiled rectangular cell with dimensions ~Lx, ~Ly, and ~Lz, the kernel is
replaced by

k(~r,~r ′) = ∑
~m∈S

f (|~r ′−~r +~m|)

where S is the set of offsets of all lattice images,

S =
{

[nxLx,nyLy,nzLz]T ∈ R3 ∣∣nx,ny,nz ∈ Z
}

. (2.3)

We should note that this sum may not converge, or may be only conditionally convergent if the
potential decays slowly, and one must be careful in defining the summation order. For example, for
Coulomb potentials, the kernel is proportional to 1/r, and the derivative (used to obtain the force)
is proportional to 1/r2. In three dimensions, the sum is conditionally convergent, and divergent if
the system is not charge neutral. To address these issues, the convention is to use the summation
order prescribed by the Ewald sum, and to use a neutralizing background charge.

12
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Figure 2.3. Ewald splitting with βe = 1

In the Ewald sum, the kernel is split into two kernels,

1
r

=
erfc(βer)

r
+

erf(βer)
r

,

where βe is a constant, erf(r) is the error function,

erf(r) =
2√
π

∫ r

0
exp
(
−x2)dx,

and erfc(r) is the complimentary error function,

erfc(r) = 1− erf(r) .

The two terms in the split kernel are called the “real space” and “reciprocal space” terms respec-
tively. The real space term is singular and decays very rapidly, and the corresponding sum is
absolutely convergent for any constant value of βe. The reciprocal space term is non-singular,
but decays slowly, asymptotically approaching 1/r for large r. However, due to the particular
functional form, the Fourier transformation of the reciprocal space term decays rapidly, the corre-
sponding sum is absolutely convergent in Fourier space.

Generalized Poisson Equation

Consider the following generalized Poisson equation (GPE) with zero-at-infinity boundary con-
ditions,

−∇ · (ε(~r)∇Φ(~r)) = ρc(~r), ~r ∈ R3,

with Φ(~r)→ 0 as ‖~r‖→∞. Here, ε is the spatially dependent electric permittivity, ρc is an explicit
charge distribution, and Φ is the unknown electrostatic potential. The GPE is a second-order
elliptic partial differential equation used to model the electrostatic potential corresponding to a
charged molecule immersed in an implicit solvent.

In this report, we assume that the fixed charge distribution is the linear combination of three-
dimensional delta distributions, corresponding to fixed point charges,

ρc(~r) =
N

∑
p=1

qc,pδ
3 (~r−~rc,p) .
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Here, qc,p is the signed magnitude of the pth point charge at position~rc,p, and δ 3(~r) is the three-
dimensional delta distribution centered at~r.

When ε(~r) = εm is a constant, the generalized Poisson equation reduces to the Poisson equation,

−εm∇ ·∇Φc(~r) =
N

∑
p=1

qc,pδ
3 (~r−~rc,p) ,

and the solution is the linear combination of free-space Green’s functions,

Φc(~r) =
1

εm

N

∑
p=1

qc,p

4π|~r−~rc,p|
.

Now, consider the case of a solute molecule immersed in an unbounded solvent. Let Ωm be the
region of the domain corresponding to the molecule, Ωs the unbounded region corresponding to the
solvent, and Ωb a narrow boundary layer separating Ωm from Ωs (see Figure 2.4). In some models,
the boundary layer is assumed to be a boundary surface, but here we assume that it has a small, but
finite volume. Note that these three subdomains partition Ω = R3, with Ω = Ωm∪Ωb∪Ωs.

Ω

Ω

s

m

Ω
b

Figure 2.4. Subdomains for a simple chain molecule

For simplicity, we will assume that ε is piecewise constant in the molecular and solvent do-
mains, with ε(~r) = εm when~r ∈ Ωm and ε(~r) = εs when~r ∈ Ωs. In the boundary layer, Ωb, we
assume that ε transitions between εm and εs, so that ε is a twice continuously differentiable on Ω.

Due to the use of a point-charge source term, the solution to the generalized Poisson equation
is singular at the locations of the fixed point charges. The standard method for regularizing the
solution is to subtract the Coulomb potential, Φc, which analytically removes the singularities.
The resulting potential is known as the “reaction potential”,

u(~r) = Φ(~r)−Φc(~r).

The reaction potential is the solution to the regularized generalized Poisson equation:

−∇ · (ε(~r)∇u(~r)) = ∇ · ((ε(~r)− εm)∇Φc(~r)) ,

14



with zero-at-infinity boundary conditions. Note that, if we assume that all the fixed charges are
located within Ωm, then the reaction potential is non-singular. If ε(~r) is smooth, then the reaction
potential is smooth, since the source is the derivative of smooth functions. Once one computes the
reaction potential, the electrostatic potential can be readily recovered as the sum of the reaction
potential and the Coulomb potential.

The Poisson-Boltzmann equation is a second-order nonlinear partial differential equation, which
can be interpreted as an extension of the generalized Poisson equation to account for mobile ions
within the solvent. For a system with Ns species of mobile ions, each with charge qi, the Poisson-
Boltzmann equation can be written as

−∇ · (ε(~r)∇Φ(~r)) = ρc(~r)+
Ns

∑
i=1

sign(qi)κ2
i (~r)exp

[
−qiΦ(~r)

kBT

]
.

Here, kB is Boltzmann’s constant, T is temperature, and κ2
i (~r) is a spatially-dependent function

which describes the accessible volume for each ionic species. This function, κ2
i , is zero within the

molecular region, and equal to a positive constant in the solvent region.
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Chapter 3

Approximation methods

Overview

There are two common approaches for approximating long-range pairwise particle interactions.
The first approach is to use a hierarchical clustering method (HCM), which subdivides the particles
into a multilevel hierarchy of clusters. The interactions between particles are computed exactly for
neighboring particles, and approximated for more distant particles. Examples of HCMs include
tree methods [19], the fast multiple method (FMM) [29], and accelerated Cartesian expansions
(ACE) [66, 3]. The second approach is to use a kernel splitting method (KSM), which splits the
kernel into short-range and long-range parts. The short-range interactions are computed exactly,
and the long-range interactions are approximated. Examples of KSMs include FFT-based methods,
such as particle–mesh Ewald (PME) [22] and particle–particle particle–mesh (P3M) [35, 7], and
multiple grid methods such as the multilevel summation method (MSM) [11, 12, 63, 70, 47].

In the prototypical hierarchical clustering method, one starts by enclosing the N particles in a
bounding box, which is then subdivided into eight rectangular cells. Each cell is then recursively
subdivided, which results in an “octtree” structure. Each node in the tree corresponds to a cluster
of particles in the hierarchy. Interactions between well-separated clusters are approximated using a
series (e.g., multipole) expansion. The fast multipole method is an O(N) algorithm, which is par-
ticularly well-suited for systems without periodic boundaries, and with a non-uniform distribution
of particles. One drawback of HCMs is that the resulting potential is not smooth, which results

Figure 3.1. An unbalanced octtree with two-levels

17



   a 2a   4a

f (r)
=

   a 2a   4a

f0(r)
+

   a 2a   4a

f1(r)
+

   a 2a   4a

f2(r)
+ · · ·

in a discontinuous force between particles. This discontinuity can be attributed to the discontin-
uous change in the clustering as particles move across cell boundaries. However, the size of the
discontinuity can be reduced by increasing the accuracy used in the series expansions.

The second approach is to use a kernel splitting method. Like HCMs, kernel splitting methods
are based on the separation of length scales. The key difference is that KSMs do not split the
particles, but instead split the kernel into a sum of short-range and long-range parts. For the
multilevel summation method, the splitting is applied recursively, resulting a series of kernels.
For FFT-based Ewald methods, a two-level splitting is used, and the long-range interactions are
approximated in Fourier space. The particle mesh Ewald method specifies the Ewald splitting
parameter, βe so that the short-range calculations are O(N). However, the overall algorithm is
O(N logN) due to the use of the FFT.

Multilevel Summation

In this report, we focus our attention on the multilevel summation method (MSM) which was
first introduced for integral transforms in 1990 [11] and later applied to compute pairwise inter-
actions for electrostatics [63, 70, 47]. In this section, we provide a brief overview of the MSM,
generally following the notation and progression presented in David Hardy’s PhD thesis [34].

In the MSM, the kernel rewritten as a sum of kernels of increasing range and reduced variation.
For example, a four-term splitting of the Coulomb potential can be written as

1
|~r−~r ′|

= f0(|~r−~r ′|)+ f1(|~r−~r ′|)+ f2(|~r−~r ′|)+ f3(|~r−~r ′|).

The short-range part, f0(r), is calculated directly. The remaining parts are approximated by inter-
polation on a nested hierarchy of three-dimensional grids of increasing coarseness. This reduces
the pairwise interaction problem to a calculation of short-range interactions between points on
grids. A splitting parameter, a, determines the range of each kernel. The first three terms of the
split kernel have a range of a, 2a, and 4a, respectively.

To construct the kernels, one starts with a sequence of smoothing functions, ga(~r,~r ′), which
have the property that

ga(~r,~r′) =
1

|~r−~r ′|
, for |~r−~r ′|> a,

but with less variation than original Coulomb potential when |~r−~r ′| < a. Using these smoothing

18



functions, the Coulomb potential, |~r−~r ′|−1, can be written as a telescoping series, e.g.,

f0(|~r−~r ′|) = |~r−~r ′|−1−ga(~r,~r ′), f1(|~r−~r ′|) = ga(~r,~r ′)−g2a(~r,~r ′),
f2(|~r−~r ′|) = g2a(~r,~r ′)−g4a(~r,~r ′), f3(|~r−~r ′|) = g4a(~r,~r ′).

By construction, f0, f1, and f2 have support [0,a], [0,2a], and [0,4a] respectively. The smoothness
of the kernels depends on the smoothness of the smoothing functions. The key is to select each ga
with minimal variation so that it can be well-represented by its interpolant on a grid. The entire
series of smoothing functions can be defined using a single master function, γ , with

ga(~r,~r ′) :=
1
a

γ

(
1
a
|~r−~r ′|

)
.

The master function has the property that γ(r) = 1/r for r > 1, but is more smoothly varying than
1/r for r < 1. Note that at this point we have not introduced any approximations, but simply
rewritten the original Coulomb kernel as a sum of kernels of increasing range.

The core approximation used by the multilevel summation method is interpolation of the slowly
varying kernels on grids. The shortest-range kernel, f0, is computed exactly. The slowly varying
kernels are approximated using compactly supported nodal basis functions on grids. For example,
the function ga(~r,~r ′) can be approximated by the double sum

ga(~r,~r ′)≈∑
n

∑
m

φ
h
n (~r)ga(~rh

n,~r
h
m)φ h

m(~r ′).

Here, ~rh
n and ~rh

m are grid points on a regular grid with spacing h. The functions φ h
n and φ h

m are
compactly supported nodal basis functions, which vanish outside of a neighborhood of~rh

n and~rh
m

respectively. Applying this approximation to the pairwise interaction problem, we have

1
2

C
N

∑
i=1

N

∑
j=1

qiq jga(~ri,~r j)≈
1
2

C
N

∑
i=1

N

∑
j=1

qiq j ∑
n

∑
m

φ
h
n (~ri)ga(~rh

n,~r
h
m)φ h

m(~r j
′),

or
1
2

C
N

∑
i=1

N

∑
j=1

qiq jga(~ri,~r j)≈
1
2

C∑
n

∑
m

qh
nqh

mga(~rh
n,~r

h
m),

where

qh
n :=

N

∑
i=1

qiφ
h
n (~ri).

Hence, through interpolation, the original pairwise kernel interactions have been approximated by
pairwise interactions on a grid. The number of nonzero terms in the gridded sum depends on the
ratio of a and h. Reducing the grid spacing, h, increases the accuracy and the number of nonzero
terms in the series.

For g2a, we repeat the interpolation process, but using a grid with twice the mesh spacing. The
resulting gridded sum,

1
2

C
N

∑
i=1

N

∑
j=1

qiq jg2a(~ri,~r j)≈
1
2

C∑
n

∑
m

q2h
n q2h

m g2a(~r2h
n ,~r2h

m ),
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will have the same number of nonzero terms, since the ratio of 2a to 2h is the same as the ratio of
a to h.

As we mentioned in the introduction, the pairwise summation problem can be written using a
matrix formulation,

E(x) =
1
2

qTK(x)q,

where the entries of the vector q are the charges, and entries of the matrix K are

Ki j(x) = C
{

0, i, j excluded,
‖~r j−~ri‖−1, otherwise.

The matrix K is dense, but using the interpolation approximation can be written as a sum of prod-
ucts of sparse matrices. Let Ih(x) be a rectangular interpolation matrix, which returns values at
particle positions interpolated from gridded values on the grid with spacing h. The transpose of
Ih(x) returns gridded values computed from values at particle positions x. Hence, the ith row of
Ih(x) is the evaluation at~ri of the nodal basis functions associated with the gridpoints of the h grid.
For the 4-level non-nested summation method, the matrix K(x) is approximated by

K(x)≈ K̂(x)+ Ih(x)K̂hIh(x)T + I2h(x)K̂2hI2h(x)T + I4h(x)K4hI4h(x)T. (3.1)

Here, K̂(x) is constructed using shortest-range kernel, f0, and does not use any interpolation. The
matrices Ka(x), K2a, and K4a are constructed using f1, f2, and f3 respectively, on grids with spacing
h, 2h, and 4h respectively. The matrices Ih(x), I2h(x), and I4h transfer the charge from values at
atomic locations to grid locations on grids with spacing h, 2h, and 4h respectively. For a particular
choice of a and h, the short-range interaction matrices K̂(x), K̂h, K̂2h have 140, 410, 410 nonzeros
per row, respectively, and interpolation matrices Ih(x), I2h(x), I4h(x) have 216 nonzeros per row.
Note with O(logN) levels, the total number of nonzeros in the expansion is O(N logN). It has
been shown that the optimal grid spacing h is nearly constant [70] with the accuracy controlled by
the ratio of a to h.

For some types of interpolation [70, 34], the complexity can be reduced further. If we replace
the coarser interpolation matrices with a product of interpolation matrices,

I2h(x) = Ih(x)Ih
2h, and I4h(x) = Ih(x)Ih

2hI2h
4h ,

we can rewrite the approximation as a nested sum,

K(x)≈ K̂(x)+ Ih(x)
(

K̂h + Ih
2h

(
K̂2h + I2h

4h K4h(I2h
4h )T

)
(Ih

2h)
T
)

Ih(x)T. (3.2)

The interpolation matrices Ih
2h and I2h

4h have the same number of nonzeros per row as before, but the
dimensions are reduced. From h to 2h, dimensions reduce by 1/8, and from 2h to 4h by another
1/8. For an sum with O(logN) levels the number of nonzeros in the expansion is only O(N).

To approximate E(x), we approximate K(x)q then compute qTK(x)q. Applying the approxi-
mation to K(x) to q we obtain

K(x)q≈ K̂(x)q+ Ih(x)
(

K̂h + Ih
2h

(
K̂2h + I2h

4h K4h(I2h
4h )T

)
(Ih

2h)
T
)

Ih(x)Tq.
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To compute forces, we differentiate the approximation, which results in

−1
2

qT ∂K(x)
∂xi

q≈−1
2

qT ∂ K̂(x)
∂xi

q−qT ∂ Ih(x)
∂x

(
K̂h + Ih

2h

(
K̂2h + I2h

4h K4h(I2h
4h )T

)
(Ih

2h)
T
)

Ih(x)Tq.

Note that only the finest level interpolation operator, Ih, and kernel, K̂, are functions of the particle
positions. The remaining interpolation operators and kernels are functions of the grid points, and
do not change when particles move. This dramatically simplifies the expression for the force, and
means that the forces are only explicitly computed on the finest level.

For the four level example, the computation proceeds as follows. On the finest level, compute

eshort = K̂(x)q, Fshort
i =−1

2
qT ∂ K̂(x)

∂xi
q

Progressing forward through the grid hierarchy, compute

qh = (Ih)Tq, eh
short = Khqh

q2h = (Ih
2h)

Tqh, e2h
short = K2hq2h

q4h = (I2h
4h )Tq2h, e4h

short = K4hq4h.

Progressing backward through the grid hierarchy, compute

e4h = e4h
short

e2h = e2h
short + I2h

4h e4h,

eh = eh
short + Ih

2he2h,

Finally, on the finest level, compute

E(x)≈ 1
2

qTeshort +
1
2

qTIheh, Fi ≈ Fshort
i −qT ∂ Ih(x)

∂xi
eh,

where i is each of the 3N components of the particle positions.

Laplacian-centered Generalized Poisson Equation

We now return our attention to the generalized Poisson equation (GPE) introduced in Chapter
2. The discussion presented in this section is intentionally brief, with a full report included in the
appendix.

Recall the regularized GPE with zero-at-infinity boundary conditions,

−∇ · (ε(~r)∇u(~r)) = ∇ · ((ε(~r)− εm)∇Φc(~r)) .

As discussed in Chapter 2, ε is the dielectric function, Φc is the Coulomb potential for a fixed point
charge distribution ρc, and u is the unknown reaction potential. The dielectric function is constant
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in the molecular interior, with value εm, and constant in the solvent region, with value εs. In a thin
boundary layer, the function smoothly switches between εm and εs. The fixed charges are restricted
to the molecular interior.

To reformulate the regularized GPE as an integral equation, let ρ(~r) be the effective charge
distribution, which is defined by

ρ(~r) =−εm∇ ·∇u(~r),

where u(~r) is the unknown reaction potential. Given an effective charge distribution, the reaction
potential can be reconstructed using Green’s second identity,

u(~r) =
1

εm

∫
ρ(~r′)

4π|~r−~r′|
d~r′.

Inserting this expression into the regularized GPE, we obtain

ε(~r)
εm

ρ(~r)−
(

∇
ε(~r)
εm

)
·
(

∇

∫
ρ(~r′)

4π|~r−~r′|
d~r′
)

= εm∇ ·
((

ε(~r)
εm
−1
)

∇Φc(~r)
)

,

or

ρ(~r)−
(

∇ ln
(

ε(~r)
εm

))
·
(

∇

∫
ρ(~r′)

4π|~r−~r′|
d~r′
)

= εm

(
∇ ln

(
ε(~r)
εm

))
·∇Φc(~r), ~r ∈Ωb,

ρ(~r) = 0, ~r /∈Ωb

where we have used the fact that ∇ ·∇Φc = 0 when ε 6= εm and that ε is constant outside of the
boundary region, Ωb. Hence, the effective charge distribution, ρ , is zero everywhere outside of a
thin boundary region, Ωb, between the molecular and solvent regions (see Figure 2.4).

To discretize ρ , we use discontinuous constant elements,

ρ(~r)≈ ρh(~r) = ∑
j

qh
jψ

h
j (~r),

on regular mesh with cubic elements of length h in each direction. The unknown coefficients are
denoted by qh

j . Inserting this expression into the integral equation, we obtain

ρh(~r)−
(

∇ ln
(

ε(~r)
εm

))
·
(

∇

∫
ρh(~r′)

4π|~r−~r′|
d~r′
)
≈ εm

(
∇ ln

(
ε(~r)
εm

))
·∇Φc(~r), ~r ∈Ωb.

Multiplying both sides by ψh
i and integrating results in a system of discrete equations for the

unknown coefficients,

qh
i h3−∑

j
qh

j

∫
Eh

i

(
∇ ln

(
ε(~r)
εm

))
·

(
∇

∫
Eh

j

1
4π|~r−~r′|

d~r′
)

d~r = εm

∫
Eh

i

(
∇ ln

(
ε(~r)
εm

))
·∇Φc(~r)d~r,

where Eh
i is the h×h×h cubic support of the discontinuous constant basis function, ψh

i . In matrix
form, the problem can be written as

h3(I−K)q = b, (3.3)
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where I is the identity matrix,

Ki j =
1
h3

∫
Eh

i

(
∇ ln

(
ε(~r)
εm

))
·

(
∇

∫
Eh

j

1
4π|~r−~r′|

d~r′
)

d~r,

and

bi = εm

∫
Eh

i

(
∇ ln

(
ε(~r)
εm

))
·∇Φc(~r)d~r.

The matrix in equation 3.3 is well-conditioned, but dense. To solve this linear system of equa-
tions, we apply the biconjugate gradient method, which requires the matrix-vector product, but
does not require explicit construction of the matrix. The matrix-vector product is approximated by
first replacing ln(ε(~r)/εm) with a trilinear interpolant, then using the multilevel summation method
to compute the convolution. The same technique is used for computing the entries in b. To recon-
struct the reaction potential, u, from the effective potential, we again use the multilevel summation
method.

The computational cost of the resulting algorithm scales linearly with the number of grid points
in the boundary region. Since the boundary region has a fixed width, the number of grid points in
the boundary region scales linearly as a function the surface area of the molecule and sublinearly as
a function of the volume of the molecule. Detailed numerical results are presented in the appendix.
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Chapter 4

Numerical results

In this section, we test the efficiency and scalability of the multilevel summation method ap-
plied to the problem of computing the long-range electrostatic forces for a periodic box of water
molecules. This is a prototypical problem for explicit solvent simulations with molecular dynam-
ics, where 90 percent of simulation box is occupied by water. Periodic boundary conditions are
used to reduce surface effects, and a large simulation box is needed to reduce spurious finite-size
effects.

0 1 2 3 4 5 6 7 8 9

x 10
6

0

50

100

150

200

250

tim
e 

(s
ec

on
ds

 p
er

 s
te

p)

N
10

4
10

5
10

6
10

7
10

−1

10
0

10
1

10
2

10
3

tim
e 

(s
ec

on
ds

 p
er

 s
te

p)

N

Figure 4.1. Per-step simulation time for 10 steps of molecular
dynamics using the multilevel summation method applied to a box
of water with N = 17496, 139968, 1119744, and 8957952 atoms.
The plot on the right is the same as the left, but with a logarithmic
scale.

All of the numerical experiments were conducted using the LAMMPS molecular simula-
tion software package. The multilevel summation method was initially released in LAMMPS in
September 2012 by Stan Moore, Stephen Bond, and Paul Crozier. Over the past year, the efficiency
and capabilities of the initial implementation has been subsequently improved by Stan Moore, Paul
Crozier, and others. We should stress that the implementation is still relatively new, compared to
more well-tested and optimized algorithms in LAMMPS. As a result, we are most concerned with
showing that the method scales, and expect that the relative speed will improve over time as the
implementation is further developed.
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To test the scalability of the algorithm, we performed 10 steps of NVE molecular dynamics with
a box of 5832, 46656, 373248, and 2985984 water molecules (or N = 17496, 139968, 1119744, and
8957952 atoms). An initial box of 5832 water molecules was used to generate the configurations
for all four simulations, successively doubling the box in all three coordinate directions. In all four
cases, the multilevel summation method was applied with eighth order interpolation and a relative
tolerance of 1 percent. The finest grid used by each simulation was proportional to the system size,
with the smallest simulation using a 32×32×32 grid and the largest using a 256×256×256 grid.
Roughly the same value of a was used in all four simulations. To further improve the efficiency, the
shortest range MSM forces were computed at the same time as the other non-bonded interactions.
In Figure 4.1, the per-step time to compute the long-range forces is shown as a function of the
number of atoms. As expected, the computational cost scales linearly with the number of atoms.

Time in seconds
MSM PME Ewald

N Loop Pair Grid Loop Pair Grid Loop
17496 4.3201 1.469 2.8294 2.0355 1.814 0.199 2.19

139968 34.554 11.83 22.526 16.319 14.51 1.611 45.3
1119744 277.76 95.88 180.21 131.67 117.2 12.76 2239
8957952 2228.7 773.4 1442.2 1052.9 930.5 107.7 -

Table 4.1. Performance comparison for 10 MD steps

In Table 4.1 we present a performance comparison of three different long-range force algo-
rithms in LAMMPS: Multilevel Summation (MSM), Particle Mesh Ewald (PME), and Ewald. Just
as in the last test, we performed 10 steps of NVE molecular dynamics with a box of 5832, 46656,
373248, and 2985984 water molecules (or N = 17496, 139968, 1119744, and 8957952 atoms).
The relative tolerance was set to one percent for all three methods. In the table, “Loop” is the
total simulation loop time, “Pair” is the time spent computing the pairwise short-range forces, and
“Grid” is the time spent computing the long range forces. The PME method is about twice as fast
as MSM in all of the tests, which we partially attribute to the fact that relatively little effort has been
devoted to optimizing the MSM implementation. In the MSM simulations, approximately 65 per-
cent of the computation time is spent computing the gridded long-range forces. In contrast, in the
PME simulations, only about 10 percent of the computation time is spent on the grid calculations.
In the PME simulations, the smallest simulation used a 9× 9× 9 grid, and the largest simulation
used a 72× 72× 72 grid. This is significantly smaller than the finest grids used by MSM which
ranged from 32× 32× 32 up to 256× 256× 256. For the same short-range splitting parameter,
the computational cost of the PME method and MSM should be nearly the same, if the limiting
step is the memory access time. Although PME is asymptotically an O(N logN) method, so little
time was spent in the grid calculations that we only observed the transient O(N) complexity. As
expected, both PME and MSM are significantly faster than Ewald for large problems, which scales
as O(N3/2).

26



Chapter 5

Conclusion

In this report, we provided an overview of the long-range pairwise interaction problem, with
a focus on the Coulomb problem, and the Generalized Poisson Equation. We discussed popular
methods for approximating long-range pairwise interactions, with an emphasis on the multilevel
summation method (MSM). As an application, we derived an integral equation formulation of the
regularized Generalized Poisson Equation, using the effective charge as the unknown field variable.
After discretization, the resulting system of equations required computation of a convolution with
a long-range kernel, which we approximated using MSM. In a sequence of numerical experiments,
we tested the implementation of MSM in the LAMMPS software package. Our preliminary testing
demonstrated that the computational cost of MSM scales linearly as expected, but the method is
still less efficient than PME for moderately sized problems. We anticipate that efficiency of MSM
will improve over time, as more effort is spent optimizing the code.
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[51] Qun Ma, Jesús Izaguirre, and Robert D. Skeel. Verlet-I/r-RESPA is limited by nonlinear
instability. SIAM J. Sci. Comput., 24(6):1951–1973, May 6, 2003.

[52] Thierry Matthey, Trevor Cickovski, Scott Hampton, Alice Ko, Qun Ma, Matthew Nyerges,
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Appendix A

Application to the Generalized Poisson
Equation

In this section, we include a copy of a report by Dmytro S. Yershov, Stephen D. Bond, and
Robert D. Skeel on a “fast Laplacian-centered method for the generalized Poisson equation”. The
method applies the multilevel summation method to an integral formulation of the generalized
Poisson equation. In the Laplacian-centered approach, one solves for an unknown effective charge
distribution, which is the Laplacian of the unknown reaction potential. The reaction potential
can be reconstructed by solving the related Poisson equation using a fast Poisson solver, like the
multilevel summation method. One benefit of using a Laplacian-centered approach is that effective
charge distribution has lower regularity, and is supported on a thin boundary region at the solute–
solvant interface. The integral equation for the effective charge distribution is inherently well-
conditioned, and can be solved with a few iterations using a standard Krylov method. A summary
of the results can be found in Chapter 3, and the complete report on this application of the multilevel
summation method is included in the remaining sections of the appendix.
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A Fast Laplacian-Centered Method for the Generalized Poisson
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1. Motivation

Solvation effects play a critical role in determining the structure and function of biomolecular
systems [1, 2, 3, 4]. Accurate calculation of solvation energetics is an essential component of
molecular dynamics (MD) [5, 6], Brownian dynamics (BD) [7], and Monte-Carlo methods [8].
Properly modeling solvent interactions with explicit water molecules is computationally expensive
due to the need to evaluate many more terms in the energy function and to sample the many
configurations of water molecules. The addition of explicit water molecules around a biomolecule
typically increases the total number of atoms in the system by a factor of eight to ten.

For large systems, one method for reducing this expense is through an implicit solvent model,
which replaces the explicit atoms with a dielectric continuum. The most popular model for im-
plicit solvent is generalized Born, which represents the biomolecule by a union of spheres and
approximates the solvation energy using an effective radial potential [9, 10]. A more accurate
implicit solvent description can be obtained from the generalized Poisson equation (GPE) or the
Poisson-Boltzmann equation (PBE), which are elliptic partial differential equations (PDEs) for
the electrostatic potential. In fact, generalized Poisson and Poisson-Boltzmann are often used for
fitting the parameters in the generalized Born model [11, 12, 13].

Historically, the use of PDE methods for electrostatics has been considered too expensive for
use in dynamics or sampling, even in comparison to explicit solvent [14]. The most popular nu-
merical methods for solving the PBE (and linearized PBE) include finite difference/volume [15,
16, 17, 18, 19, 20], boundary element [21, 22, 23, 7, 24, 25], boundary integral [26, 27], and finite

1D. S. Yershov, yershov2@illinois.edu, was supported in part by the National Science Foundation (CCF 08-
30578).

2S. D. Bond, sdbond@sandia.gov, was supported in part by the National Science Foundation (CCF 08-30578),
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Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) as part of the Collaboratory on Mathe-
matics for Mesoscopic Modeling of Materials (CM4). Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

3R. D. Skeel, skeel@cs.purdue.edu, is supported in part by the National Science Foundation (CCF 08-30582).
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element methods [28, 29, 30, 31]. For highly charged macromolecules, the mean-field approxima-
tion in the PBE is no longer valid and grand canonical Monte Carlo has been used to generate ion
distributions to sample varying solutions to the GPE [32]. A fast GPE solver is essential for this
method to be computationally feasible.

In this paper, we propose a fast method for calculating the electrostatic potential for the GPE
with a soft solvent-solute interface. The proposed method represents the solution in terms of its
Laplacian, which is proportional to an “effective” charge distribution, ρ, which is compactly sup-
ported in a boundary layer along the solvent-solute interface. The equation for ρ is a linear integral
equation with a simple kernel, which when discretized, results in a well-conditioned linear system
that can be solved iteratively. Once this effective charge distribution is found, the corresponding
electrostatic potential can be computed by convolution with the Green’s function of the Laplacian.

In the proposed approach, a new challenge arises from discretization of an integral convolu-
tion, which generically leads to dense matrices. Standard methods for computing the matrix-vector
product require O(N2) operations, where N is the number of degrees of freedom of a given dis-
cretization. To overcome this difficulty we use the Multilevel Summation Method (MSM) [33, 34].
MSM is an N-body solver which uses a series of sparse linear matrices defined on a set of nested
grids to approximate the corresponding integral convolution. The cost of computing each matrix-
vector product is proportional to the number degrees of freedom of the corresponding grid. As a
result, for a fixed tolerance, the total cost of the procedure scales as O(N).

The remainder of the paper is organized as follows. In Section 2, we discuss the generalized
Poisson equation, the regularized Poisson equation for the reaction potential, and the integral equa-
tion for the effective charge distribution. In Section 3, we discuss the projection method [35] to
solve the resulting integral equation. The iterative linear solver and running time analysis are pre-
sented in Section 4. In Section 5, we apply MSM to reduce the running time of the iterative solver.
In Section 6, the error and the running time of the algorithm are investigated through a series of
numerical experiments. Finally, we present our conclusions in Section 7.

2. Problem formulation

The generalized Poisson equation (GPE) is a second-order elliptic partial differential equation,
which can solved to obtain the electrostatic potential of a solute molecule immersed in an implicit
solvent. The equation for the unknown electrostatic potential, Φ, can be written as

−∇ · (ε(r)∇Φ(r)) = ρc(r), r ∈ R3 , (1)

in which Φ is an unknown electrostatic potential field, ε is a space-dependent dielectric permittivity
of a medium, and ρc is an explicit charge distribution. Boundary conditions for (1) are posed at
infinity, requiring Φ(r)→ 0 as ‖r‖ → ∞.

We assume that ε takes a constant value εm in the molecular region, Ωm, and a constant value
εs, in the solvent region, Ωs; see Figure 1. Let ε vary continuously in the boundary region, Ωb,
so that a soft solvent-solute interface is defined. Finally, assume the explicit charge distribution is
described as a superposition of point charges, i.e.

ρc(r) =

N∑
p=1

qc,pδ
3(r − rc,p) , (2)
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in which qc,p is the magnitude of pth point charge, rc,p is the position vector of pth point charge,
and δ3(r) = δ(x)δ(y)δ(z) is a three-dimensional delta distribution centered at r = [x, y, z].

The solution of (1) with the right-hand side (2) is singular, with |Φ(r)| → ∞ as r → rc,p for
any p, which causes difficulties for most numerical methods. To address this issue, the problem is
regularized by subtracting the singular Coulomb potential from the solution. This approach leads
to the regularized Poisson equation for the remainder potential.

To derive the regularized GPE, consider the Coulomb potential for N point charges, qc,p, cen-
tered at positions rc,p,

Φc(r) =
1
εm

∫
R3

ρc(r′)
4π|r − r′| d

3r ′ =
1
εm

N∑
p=1

qc,p

4π|r − rc,p| . (3)

This potential satisfies the Poisson equation

−∇ · (εm∇Φc(r)) = ρc(r) . (4)

Subtract (4) from (1) to obtain the regularized Poisson equation:

−∇ · (ε(r)∇u(r)) = ∇ · ((ε(r) − εm)∇Φc(r)) , (5)

in which u(r) = Φ(r)−Φc(r) is called the reaction potential. Boundary conditions for (5) are posed
at infinity, with u(r)→ 0 as ‖r‖ → ∞. Note that if ε is smooth, the right-hand side in (5) is smooth;
hence, the reaction potential is also smooth. The solution of (1) is given as a superposition of the
reaction potential and the Coulomb potential, i.e. Φ(r) = u(r) + Φc(r). A standard approach to find
an approximate solution for (1) is to find an approximate solution for (5) and to superimpose it
with the Coulomb potential given in (3).

The reaction potential is still difficult to approximate numerically, because it is nonzero every-
where in R3, and R3 is unbounded. We circumvent this difficulty by reformulating (5) in terms of
the Fredholm integral equation of the second kind for the effective charge distribution. We show
that the effective charge is trivial at every point outside of Ωb.
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Consider an expansion of (5) multiplied by εm/ε(r),

−εm∇2u(r) − εm∇ ln(ε(r)/εm) · ∇u(r) = εm∇ ln(ε(r)/εm) · ∇Φc(r) , r ∈ Ωb . (6)

Note that −εm∇2u(r) is zero for all r such that ∇ε(r) = 0, or, simply, r ∈ R3\Ωb. Define the effective
charge distribution to be ρ(r) = −εm∇2u(r). In this case the effective charge is concentrated at the
soft interface and it is a smooth function, generating a smooth reaction potential. This is in contrast
to the case of a discontinuous dielectric permittivity, in which the effective charge is concentrated
on the surface of the molecule and the reaction potential is a single layer potential.

The reaction potential is derived from the effective charge distribution using the second Green’s
identity

u(r) =
1
εm

∫
ρ(r′)

4π|r − r ′| dr′ . (7)

Substituting (7) into (6), obtain the Fredholm integral equation of the second kind for the effective
charge distribution

ρ(r) − ∇ ln(ε(r)/εm) · ∇
∫

ρ(r′)
4π|r − r ′| dr′ = εm∇ ln(ε(r)/εm) · ∇Φc(r) . (8)

In (8), the function ∇ ln(ε(r)/εm) · ∇(4π|r − r′|)−1 is called the kernel of the integral operator.

3. Numerical Discretization

In this section, we build a numerical method to approximate the solution of (8). We begin with
the discretization of Ωb using a regular Cartesian mesh. Let h be the mesh step size, and N be
the total number of cells in the discretization. The cells are indexed using a multi-index vector
notation, in which i = [ix, iy, iz] corresponds to a grid cell with integer coordinates ix, iy, and iz.
Finally, assume I is the set of all vector indices of a given discretization.

For simplicity, we use a piecewise constant approximation of the effective charge distribution.
Let ρ̂(r) =

∑
j∈I qjφj(r) be the approximate effective charge distribution, where φj(r) are piecewise

constant cell basis functions defined as follows:

φj(r) =

1 if r ∈ �h
j

0 if otherwise
. (9)

In the above �h
j = {r ∈ R3 | |r − hj|∞ ≤ h/2} and | · |∞ is the infinity-norm in R3.

Define the residual by substituting ρ̂ into (8),

ρ̂(r) − ∇ ln(ε(r)/εm) · ∇
∫

ρ̂(r′)
4π|r − r ′| dr′ − εm∇ ln(ε(r)/εm) · ∇Φc(r) . (10)

The approximate solution is found by minimizing this residual. We implement the projection
method [35], in which a system of linear equations is derived by minimizing the projection of the
residual on the linear subspace spanned by test functions.

To derive the resulting system of linear equation, we first need to define an inner product
function space in which projection takes place. Consider L2(R3), the space of all real-valued
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square-integrable functions in R3. Further, for any two functions f , g ∈ L2(R3), define the inner
product as 〈 f , g〉 =

∫
Ωb

f (r)g(r) dr . The function space L2(R3) equipped with an inner product
〈·, ·〉 is an inner product linear space.

We choose test functions to be cell basis functions, φi. Hence, to minimize the projection of the
residual, it is sufficient to require the inner product of all basis functions with the residual to vanish.
Using the inner product definition and (10), we find that the vector of coefficients q = [q1, . . . qN]
satisfies the system of linear equations

Aq = b , (11)

where A = h3(I − K), I is the identity matrix, elements of K are

Kij = h−3
∫

�h
i

∇ ln(ε(r)/εm) · ∇
∫

�h
j

1
4π|r − r ′| dr′

 dr , (12)

and components of vector b are

bi = εm

∫
�h

i

∇ ln(ε(r)/εm) · ∇Φc(r) dr . (13)

To derive fully discrete quadrature formulas for the elements of K and b, the approximation
of ∇ ln(ε(r)/εm) is necessary. We use piecewise tri-linear nodal basis functions to approximate
∇ ln(ε(r)/εm) as follows

ln(ε(r)/εm) �
∑

k=−1,1

ln(ε(ri + hk/2)/εm) ψk((r − ri)/h) , (14)

in which ψk(r) = (kxx+1/2)(kyy+1/2)(kzz+1/2), and k is a vector index taking values ±1 for each
of its component kx, ky, and kz independently. Substituting (14) into the integral in (12), we obtain

Kij =
∑

k=−1,1

ln(ε(ri +
h
2

k)/εm) Kij k , (15)

in which

Kij k =

∫
�h

i

∇ψk

(r − ri

h

)
· ∇

∫
�h

j

1
4π|r − r ′| dr′

 dr . (16)

Changing variables (r−ri)/h→ r and (r′−r′j)/h→ r′ in the integral above results in the final form,

Kij k =

∫
�1

0

∇ψk(r) · ∇
∫

�1
0

1
4π|r − r′ + i − j| dr′

 dr . (17)

Similarly, the integral in (13) becomes

bi = εm

∑
k=−1,1

ln(ε(ri +
h
2

k)/εm)
∫

�h
i

∇ψk

(r − ri

h

)
· ∇Φc(r) dr .

Note that elements Kij k are problem independent, and therefore can be precomputed in ad-
vance. The method we used to precompute Kij k lies beyond the scope of this paper. Nevertheless,
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we highlight the main ideas on how to evaluate these terms: The integral in (15) is singular if
|i − j|∞ ≤ 1, and special treatment is necessary. The singularity is removed by changing variables
x→ xα, y→ yβ, and z→ zγ, in which α, β, and γ are sufficiently large integers. After the singular-
ity is removed, a standard adaptive quadrature is applied to evaluate the integrals. We precomputed
Kij k with relative error less than 5 × 10−6 for the numerical experiments discussed in Section 6.

4. Iterative Solver

Solving (11) using direct methods, such as Gaussian elimination, would require order N3 arith-
metic operations, since the matrix is dense. To reduce the computational cost, we will use an
iterative method, and use a fast summation method to reduce the cost of each matrix-vector prod-
uct (discussed in section 5).

Since matrix A is not symmetric, and, generally, not positive definite, we apply BiCG-Stab
iterative method to solve (11). At each iteration of the algorithm a matrix-vector product involving
A is computed twice. Provided the condition number of matrix A is bounded, the number of
BiCG-Stab iterations required to achieve a given level of accuracy is bounded. Therefore, for a
well-conditioned system, the cost of applying the iterative linear solver is proportional to the cost
of the matrix-vector product. In the next section, we show how the fast Multilevel Summation
Method (MSM) can be used to reduce the complexity of the matrix-vector product to O(N), and,
hence, to reduce the overall complexity of the algorithm to the same order.

5. Fast matrix-vector product computations using Multilevel Summation Method

The fast Multilevel Summation Method was originally proposed to evaluate the electrostatic
potential and force fields of a set of point charges distributed arbitrarily in R3 [33, 34]. For a
specified tolerance level, the method computes electrostatic potential and forces in linear time with
respect to the number of charges. This is achieved by splitting the Green’s function into a series
of smooth functions and interpolating on a set of nested grids. Note that the integral kernel in (15)
contains the electrostatic Green’s function, and it exhibits similar behavior. Hence, we adopt the
ideas of MSM to approximate the matrix-vector product for a dense matrix K. We show that (for a
fixed tolerance) the matrix-vector product can be computed in linear time with respect to the vector
length, i.e. it is of order N. Moreover, the accuracy of the approximation can be adjusted with a
single tuning parameter.

The approximation of K is done in two steps. The first step is to split the integral kernel 1/|r−r′|
in (17) into rapidly varying and slowly varying components. Let G0 = 1/r for r ∈ R, and consider
a splitting G0 = (G0 − G1) + G1, such that G1 is a smooth function of argument r. Assume that
values of G1 are equal to those of G0 for r > a; see Figure 2. Parameter a is called the cutoff

radius. If we define G0,1 = G0−G1, the functions G0,1 and G1 correspond to the rapidly and slowly
varying components of G0. Using this splitting for G0, the corresponding integral kernel splitting
is as follows

1
|r − r′ + i − j| = G0(|r − r′ + i − j|) = G0,1(|r − r′ + i − j|) + G1(|r − r′ + i − j|) . (18)
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Figure 2: Radial components of the original Green’s function G0(r) and smoothed Green’s func-
tions G1(r), G2(r) and G3(r) for cutoff radius a = 0.5.

Applying the integral kernel splitting to (17) induces a splitting of K. Moreover, the matrix
splitting inherits the properties of the kernel splitting, i.e. K splits into rapidly,

(K0,1)ij k =

∫
�1

0

∇ψk(r) · ∇
∫

�1
0

1
4π

G0,1(|r − r′ + i − j|) dr′
 dr , (19)

and slowly varying components,

(K1)ij k =

∫
�1

0

∇ψk(r) · ∇
∫

�1
0

1
4π

G1(|r + i − r′ − j|) dr′
 dr . (20)

Since G0,1 vanishes for all r ≥ a, component (K0,1)ij = 0 if |i − j|2 > a + 1, in which | · |2 is the
Euclidean distance in R3. Hence, the matrix K0,1 is sparse with no more than 8(a + 1)3 nonzero
entries per row. On the other hand, the matrix K1 is dense, because G1 is nontrivial for all argument
values.

The second step is to interpolate G1 on a coarser grid, using nodal basis functions ξi′ and ξj′ ,

G1(|r + i − r′ − j|) ≈
∑
i′,j′

G1(|i′ − j′|)ξi′(r + i)ξj′(r′ + j) , (21)

in which i′ and j′ are vector indices of coarse grid points. Substitute (21) into (20) to obtain

(K1)ij k ≈
∑
i′ j′

1
4π

G1(|i′ − j′|)
∫

�1
0

∇ψk(r − i) · ∇ξi′(r + i) dr
∫

�1
0

ξj′(r′ + j) dr′ . (22)
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Figure 3: Radial components of Green’s functions G0,1, G1,2, and G2,3 for cutoff radius a = 0.5.

Hence, the matrix K1 is approximated with the product P1K′1R1, in which

(P1)ii′ =
∑

k=−1,1

ln(ε(ri +
h
2

k)/εm)
∫

�1
0

∇ψk(r − i) · ∇ξi′(r + i) dr , (23)

(K′1)i′j′ =
1

4π
G1(|i′ − j′|) , (24)

(R1)j′j =

∫
�1

0

ξj′(r + j) dr . (25)

If |i − i′|2 is greater than the ξ support set diameter, then the integral in (23) vanishes. Similarly,
if |j − j′|2 is greater than the diameter of the support set, then the integral in (23) vanishes. Hence,
matrices P1 and R1 are sparse if the support of ξ is compact. The matrix K′, on the other hand,
remains dense due to nonlocality of G1. However, the dimensionality of K′1 is reduced compared
with that of K1, because indices i′ and j′ correspond to a coarser grid.

Repeating the two steps outlined above, and we can build the two level approximation of K,

K = K0,1 + P1

(
K1,2 + P2K2R2

)
R1 , (26)

in which (K2)i′′j′′ = G2(|i′′ − j′′|)/4π and the smooth function G2 is equal to G1 for r > 2a (see
Figure 2); (K1,2)i′j′ = G1,2(|i′ − j′|)/4π and G1,2 = G1 − G2 (see Figure 3); (P2)i′i′′ = ξi′′(i′) and
(R2)j′′j′ = ξj′′(j′); and vector indices i′′ and j′′ correspond to the second level coarse grid. Applying
these two steps recursively, we derive a multilevel approximation for matrix K in the form

K ≈ K0,1 + P1

(
K1,2 + P2

(
K2,3 + . . .PM(KM)RM . . .

)
R2

)
R1 , (27)
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in which M is the level number, the matrix KM is of a fixed but small dimension, matrices Kl,l+1,
Pl, and Rl are sparse matrices defined on lth coarse grid, and the index l (1 ≤ l ≤ M) indicates the
corresponding level.

K0,1

K1,2

. . .

KM

R1

R2

. . . . . .

P2

P1

Figure 4: Multilevel summation method diagram.

Figure 4 illustrates the computation of the approximate matrix-vector product using MSM.
The computation of a matrix-vector product is carried out as follows: 1) for any given input vector,
successively compute the matrix-vector product of the restriction matrices Rl in ascending order of
l and store the resulting vectors; 2) compute matrix-vector products for matrices Kl−1,l and KM with
corresponding restricted vectors; 3) in descending order of l compute matrix-vector products for
the prolongation matrices Pl and add the prolongated vector with the current level vector at each
step.

The cost of computing MSM approximation is the cumulative cost of all matrix-vector products
in the diagram outlined above. First, we consider the vector size at each level. For 3D grids it is
typical for the coarse grid to have 1/8 of the previous level’s grid points. Hence, if the size of
the finest grid (zeroth level) is N, then the size of the grid at the first level is N/8, at the second
level N/64, and so on. Second, we consider the cost of computing the restricted and prolongated
vectors. As we have shown before, matrices Rl and Pl are sparse with at most D3 nonzeroes per
row, in which D is the diameter of the support set of ξ. Hence, the cost of computing the matrix-
vector product for either Rl or Pl is at most D3N/8l operations. Third, we consider the cost of
computing the matrix-vector product for all Kl,l+1. The number of nonzeroes per row for each Kl,l+1

does not exceed 8(a + 1)3, and that the number of grid points at level M does not exceed 8(a + 1)3.
Hence, computing the matrix-vector product for Kl,l+1 takes at most 8(a + 1)3N/8l operations for
all levels. Finally, adding all costs we derive the total cost of MSM,

2
M∑

l=1

D3N
8l +

M∑
l=0

8(a + 1)3N
8l ≤ 1

7
(2D3 + 16(a + 1)3)N . (28)

Hence, the computational complexity of MSM is of order N.
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Since interpolation of the kernel is introduced at each level, MSM is only an approximation
of the matrix-vector product involving K. To analyze the approximation error, we calculate the
interpolation error at each level. Assuming the worst case scenario, the approximation error is
the accumulation of the interpolation errors. Using pth degree polynomial basis functions ξ, the
interpolation error is proportional to the pth derivative of the smoothed kernel Gl multiplied by
the level l grid step size. Assume Gl is such that its pth derivative exists, and it is bounded by
p!(2la)−p−1 (see [34] for more details). The lth level grid step size is given by 2l. Therefore, the
kernel interpolation error at level l is proportional to 2−pla−(p+1), and the total error of MSM is
proportional to

M∑
l=1

2−pla−(p+1) ≤ 1
1 − 2−p

1
ap+1 ≤

1
ap+1 . (29)

Note that the error is reduced if a is increased. Therefore, the cutoff radius plays the role of the
error tuning parameter for MSM.

6. Results and Discussion

In this section, we analyze the convergence rate and computational complexity of the proposed
algorithm through a series of numerical experiments. The first system we consider is the Born ion,
which consists of a single point charge located at the origin of an infinite dielectric medium with
spherically symmetric permittivity coefficient, i.e. ε(r) = ε(|r|). Due to the spherical symmetry,
both the effective charge distribution and the electric potential are spherically symmetric as well.
Moreover, the Born ion problem admits an analytic solution for the effective charge distribution,

ρBorn(r) = −qεm
|∇ε(r)|
|r|2ε2(r)

. (30)

To investigate the convergence of the proposed algorithm without using MSM, we use the Born
ion problem with the following parameters: the dielectric permittivity ε(r) = εm = 1 for r < 0.5Å
and ε(r) = εs = 20 for r > 1Å; the discretization mesh is uniform with the step size varying
between 0.008Å and 0.07Å. Figure 5a shows the relative error in the 2-norm of the effective
charge distribution related to the discretization mesh step size; see “no MSM” line. Additionally,
a dashed reference line with slope 2 is shown. Note that convergence of the proposed algorithm is
of second order for the piecewise constant basis functions. The convergence result is in agreement
with the theoretical developments presented in Section 3.

Figure 5b depicts the relation between the running time of BiCG-Stab linear solver and the
number of discretization points used; see “no MSM” line. A dot-dashed line with slope 2 is shown
in Figure 5b for the reference. As we can see, computing the matrix-vector product directly takes
order N2 seconds, as expected.

Next, we study the error and running time of the proposed method for the Born ion problem
when MSM is applied. We use a 3rd degree polynomial to interpolate smoothed kernels on coarse
grids. From Figure 5b we observe that the running time for MSM is proportional to the number
of grid cells in the discretization (unit slope dashed reference line is shown). The proportionality
constant depends on the cutoff radius a, however. The observed behavior is in agreement with the
theoretical findings of Section 5.
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Figure 5: MSM with 3rd degree interpolation

The 2-norm error of the numerical solution with respect to the mesh step size h is plotted on
Figure 5a, along with a dashed reference line of slope 2. Observe that the convergence rate is of
second order if measured on coarse meshes. However, stagnation occurs on fine meshes. This is
due to MSM approximation error, which is not affected by mesh refinement, but it can be reduced
by increasing the cutoff radius. Thus, as the cutoff radius is increased, stagnation occurs at finer
meshes, and it is virtually unobservable for a = 4 in our experiments; see Figure 5a.

Finally, we analyze the effect of varying the cutoff radius on the error and running time of
the algorithm. Figure 6a demonstrates the relation between the relative error of the approximate
solution and the cutoff radius. Note that for fine meshes (h ≤ 0.027Å) the error decreases at the
rate a−3. Finally, Figure 6b shows that the computation time increase roughly at the rate a3 as the
cutoff radius increases. These results are in a good agreement with the theory as well.

To illustrate the applicability of the proposed method for real systems, we perform computa-
tions of the polar solvation free energy, which is calculated as 1

2

∑
p u(rc,p)qc,p, for small molecules

(methanol and acetate). The solver is used to calculate the reaction field u(r) at charge location
rc,i. The dielectric permittivity is taken to be εm = 1 inside the molecule region and εs = 80 in the
solvent region. We assume a linear relation between the dielectric permittivity ε(r) and the solvent
concentration. The solvent concentration is approximated as a product of spherical bump functions
centered at the explicit charge locations [20], with inner and outer radii equal to 100% and 120%
of the charge radius, correspondingly.

To estimate the true value of the solvation free energy we use the least squares method. We
assume the solution error to be proportional to the discretization error (h2) plus the error of MSM
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(a−3). Moreover, we assume that these two errors are independent. With just two computations
for different grid step sizes, we are able to reconstruct the free energy value to a greater accu-
racy using this method. The resulting solvation free energy is −10.04 kcal/mol for methanol and
−91.622 kcal/mol for acetate.

In Figure 7a and Figure 7b the relative errors for different step sizes and cutoff radii are de-
picted. A dashed reference line of slope 2 is shown. From the figures, we observe that the estimated
error in the free energy is of the same order as the computed relative error in the effective charge
distribution for a given step size h. Moreover, we conclude that a step size of ≈ 0.5Å yields rela-
tive error of less than 2%. This result can be used to compare our method with existing numerical
models.

7. Conclusion

In conclusion, we investigated a numerical procedure for the Generalized Poisson Equation
with continuously varying dielectric permittivity of the medium. Under the assumption that the
permittivity varies in a bounded region Ωb, we reformulated the GPE as a Fredholm integral equa-
tion of the second kind for the effective charge distribution. We showed, that the superposition of
uniform medium electric potential fields of the effective charge distribution and implicit molecule
charges gives the original GPE solution. Hence, by solving the integral equation, the solution to
GPE is recovered via Coulomb’s law.

The projection method, when applied to the integral equation, results in a system of linear
equations. The solution to this system is a vector of coefficients for the approximate charge dis-
tribution in the basis of the selected finite element subspace. Since the integral kernel has infinite
support, the matrix of the system is dense. Hence, solving the system with a direct solver takes
order N3 operations. Application of an iterative solver, however, reduces the cost to order N2 if the
matrix is well conditioned. Further reduction in cost using the fast Multilevel Summation Methods
was investigated.

The MSM, originally developed as a fast N-body solver, is modified to compute the matrix-
vector product of the discrete integral transform in linear time. The modification relies on the fact
that the integral kernel resembles the electrostatic Green’s function. The kernel is successively
split into rapidly and slowly varying components, with further interpolation of the slowly varying
component on a coarser grid. This way, it is possible to approximate the matrix-vector product with
a sequence of sparse matrix-vector products with ever decreasing dimensionality, and to control
the error of this approximation with the splitting cutoff radius. For a fixed accuracy, the MSM
method computes the approximate matrix-vector product in linear time.

Finally, the Born ion problem and the solvation free energy of two small molecules were studied
numerically. The experiments are in complete agreement with theoretical findings. Hence we
conclude the following about the proposed method:

• For a desired error tolerance, the method achieves optimal complexity of order N (here N is
the finite element space dimension);

• The numerical discretization error is controlled by the mesh step size (h) and is proportional
to h2 for piecewise constant basis functions;
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• MSM error is controlled by the cutoff radius (a) and is proportional to a−p;

• The algorithm can be extended to larger systems to compute physical properties of various
macromolecules.
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