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Abstract

In experiments conducted on the RITS-6 accelerator, the SMP diode exhibits sig-
nificant shot-to-shot variability. Specifically, for identical hardware operated at the
same voltage, some shots exhibit a catastrophic drop in diode impedance. A study
is underway to identify sources of shot-to-shot variations which correlate with diode
impedance collapse. To remove knob emission as a source, only data from a shot series
conducted with a 4.5-MV peak voltage are considered. The scope of this report is
limited to sources of variability which occur away from the diode, such as power flow
emission and trajectory changes, variations in pulsed power, dustbin and transmission
line alignment, and different knob shapes. We find no changes in the transmission line
hardware, alignment, or hardware preparation methods which correlate with impedance
collapse. However, in classifying good versus poor shots, we find that there is not a
continuous spectrum of diode impedance behavior but that the good and poor shots
can be grouped into two distinct impedance profiles. This result forms the basis of a
follow-on study focusing on the variability resulting from diode physics.
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1 Introduction

Radiation pulse reproducibility is critically important for the radiographic sources under
development at Sandia National Laboratories. To determine the suitability of the self-
magnetic-pinch (SMP) diode [1] as a radiographic source, an experimental campaign was
conducted on Sandia’s RITS-6 accelerator to quantify its shot-to-shot variation. The ac-
celerator operated at 4.5 MV and the SMP diode was fielded with changes only to the
anode-cathode (AK) gap and cathode needle radius (rc). We refer to a diode geometry by
the needle diameter and AK gap width, such that a 7-mm-diameter cathode fielded with a
7-mm AK gap width is a 7-7 shot.

Variations in SMP diode performance occur in spot size, pulse width, and impedance
lifetime. In normal operation, this diode has a decreasing impedance related to anode plasma
expansion [2]. Occasionally this diode experiences a more rapid impedance drop (> 0.5 Ω/ns)
resulting in a radiographically poor shot. We wish to identify sources of shot variability which
correlate with diode impedance collapse.

Possible sources of variation between shots with identical hardware and geometry include

1. power flow emission and trajectory changes,
2. variations in pulsed power,
3. dustbin and transmission line misalignment,
4. different knob shapes,
5. diode misalignment,
6. non-uniform electron emission from the cathode needle,
7. non-uniform emission from the faceplate, and
8. an unidentified plasma-induced impedance collapse mechanisms.

In this report, we examine only the sources which occur away from the diode (the first four).

To address the first two items above, we investigate the possibility of shot-to-shot vari-
ations in the electron emission along the magnetically insulated transmission line (MITL).
We simultaneously look at the dynamics of power-flow electrons in the dustbin, which are
related to variations in emission and to the load impedance. Simulations are used to de-
termine the electric field stress thresholds for electron emission for a sample of shots. The
measured forward-going voltage pulses are used as input to the simulations to enable direct
comparisons to shot data. Since the simulation of each shot takes four days on 20 processors,
the statistics of this analysis are limited. Instead, the shots are sampled from March through
August of 2013. The results, presented in Sec. 3, show a stable emission threshold and a
consistent pattern of electron flow in the dustbin from shot to shot.

The question of variations in pulsed power may be treated more statistically. In Sec. 4
anode currents in the MITL are compared for 99 shots to determine if poor diode performance
is correlated with peak injected power. Poor diode performance is indicated by an above-
average reduction in diode impedance, and subsequent rise in the cathode current. The
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results show that the anode currents for poor shots, and therefore their peak power, are
well-represented by the Gaussian distribution defined by the good shots, until the retrapping
wave arrives from downstream. The same result is obtained in a comparison of pulse-rises
determined from the anode currents.

The effects of MITL and dustbin alignment are also treated statistically. Misalignment
could cause azimuthally asymmetric currents, which might affect the diode. Asymmetries
for the MITL and dustbin B-dot probes are calculated and sorted by diode performance in
Sec. 5. No correlation is found between the level of azimuthal asymmetry and poor shots.

Of hardware correlations, we found that one of the six knobs fielded is more highly
correlated with poor shots. However, as shown in Sec. 6, poor shots are recorded for every
knob, so knob type is unlikely the primary cause of impedance collapse.

Poor shots are identified in Sec. 2 by a larger-than-average rise in their cathode currents
in the MITL which is a result of lower load impedance. The motivation that this is due to
diode impedance collapse is provided in Sec. 7. The diode impedance profiles form a bimodal
distribution for good and poor shots.

The diode currents are compared to the theoretical critical current in Sec. 8. We modify
this theory to account for a time-dependent AK gap width and calculate a gap closure
velocity of approximately vp = 1 cm/µs. The theory is well-matched to data, which exhibit
the expected scaling with cathode and AK gap size.
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2 Identifying poor radiographic shots

Poor radiographic performance of a diode is the result of the electron beam having a large or
wandering focus at the converter, a low diode voltage, or a low usable beam current. When
the SMP diode fails, it experiences an increase in local current, either due to a rapid drop
in impedance or because it is no longer obeys the standard critical-current equation (see for
example Ref.3.) The instability presumably disrupts the beam focus because the radiation
output is truncated.

The diode failure is observed upstream as a decrease in load impedance above what is
expected for the dustbin/knob and diode geometries. The SMP diode as fielded on RITS-6
is under-matched to the MITL, so some power-flow current is retrapped in the cathode for
emission in the diode. The amount of retrapping is much larger when the diode fails. This is
easily seen in the currents measured at position F, which is defined in Sec. 3. The anode and
cathode currents, OF and IF, are plotted in Figs. 1 and 2 for 76 shots. The diode geometries
are labeled in each figure. The cathode current after retrapping differs by geometry, or
baseline diode impedance, but is still noticeably larger in poor shots.
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Figure 1. The IF and OF currents for SMP diode shots
with a 7-mm diameter cathode needle and a 7-mm AK gap.
The gray dotted lines are the average OF in the first 10 ns
at peak power.
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Figure 2. The IF and OF currents for SMP diode shots
with various cathode diameters and AK gap widths. Top
left is the 5-mm diameter cathode and 5-mm AK gap. Top
right is the 6-mm diameter cathode and 6-mm AK gap. The
bottom left and right have 7-mm AK gaps with a 6-mm and
8-mm diameter cathode, respectively. The gray dotted lines
are the average OF in the first 10 ns at peak power.
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3 MITL electron emission thresholds

Simulations are performed of specific shots to determine the operating conditions of the
MITL, dustbin, and knob. For each shot considered, the forward-going voltage calculated
at position F is used as the injected voltage wave in its corresponding simulation. The
simulation parameters, such as electron emission thresholds, are adjusted to achieve the best
match to the measured B-dot currents at five locations. Variations in these model parameters
from simulation to simulation indicate shot-to-shot variations in the transmission line and
dustbin. Since measured voltages are used as input, variations in the pulse driver are not
considered.

The B-dot probe positions analyzed are

IF and OF The inner and outer currents at position F, located 1.16 m upstream from the
dustbin entrance.

IFEED The cathode current immediately upstream from the knob.

IBEAM The cathode current inside a 6.35-cm radius on the knob face plate. This includes
the beam current and a limited region of possible knob emission.

DIODB The anode current inside an 11-cm radius on the end plate.

Using a single set of emission thresholds for all simulations, the currents are all in rea-
sonable agreement with their respective shot data, shown in detail in Secs. 3.2 and 3.3. This
uniformity is significant because even a 5% change in the emission threshold in the MITL
caused a noticeable change in cathode current. Therefore, the MITL conditions (cleaning
process, application of Aerodag, alignment) appears consistent from shot to shot.

To achieve agreement between simulations and data, emission thresholds are adjusted
based on location in the transmission line (see Sec. 3.1). For example, to achieve the correct
boundary current profile at position F, the cathode must emit earlier downstream than
upstream. This is consistent with the location of pump-out ports in the cathode. The onset
of emission at position F, the electron flow trajectory in the dustbin, and the retrapping
rate on the knob are well modeled. The results from a 3.5-MV simulation are presented in
Sec. 3.2. The results from 4.5-MV simulations are presented in Sec. 3.3. One of thees shots
exhibits impedance collapse after which it no longer agrees with simulation.

3.1 Simulation details

All simulations are performed in 2D cylindrical coordinates using the fully-relativistic elec-
tromagnetic particle-in-cell code Lsp [4]. All simulations have the same geometry, covering
the dustbin region and 1.7 m of the MITL upstream of the dustbin. The common simula-
tion geometry is illustrated in Fig. 3. The accelerator cavities are omitted so that measured
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forward-going voltage pulses may be used to drive the simulations. This enables direct
comparisons between currents generated in simulations and data.

In Fig. 3, the dustbin covers 166 < z < 257 cm and the knob is located from z = 197.5 cm
to z = 222.5 cm. The sub-cell model is used for the knob to reduce the effect of field
enhancement due to the stair-stepped representation of the curved surface. Probe position
F is located at z = 50.0 cm, IFEED is at z = 197.5 cm, IBEAM is at (6.35, 222.65) and
DIODB is at (11.0, 257.0).

Figure 3. Simulation geometry of the RITS-6 accelerator
front end, including the dustbin and diode. Contours of the
power-flow electron density at peak power are also shown on
a log scale.

The diode is modeled with the actual SMP diode dimensions fielded, but with the min-
imum resolution required to provide a realistic value of the IBEAM current. The spatial
resolution in the diode region is 200 µm, which enables modeling of anode heating and bipo-
lar flow. Plasma effects are not included and, instead, a simplified model of fluid particles
is used to generate the falling diode impedance, if needed. In this model, massive electrons
are injected from the anode surface after the pulse rise in order to attract a portion of the
emitted ions. These electrons drift toward the cathode at 1 cm/µs and, with accompanying
ions, carry the anode potential into the AK gap, approximating an expanding anode plasma.
After the initial “turn-on”, the electron injection continues at the anode surface, increasing
the plasma density. The appearance of the massive electrons at the anode interferes with
the beam focus, however, so spot size and dose rate probes are not considered.

The first shot modeled was shot 1394, an 8-8 diode. To achieve the best match to this
shot, the emission threshold in the MITL is 280 kV/cm over 0 < z < 115 cm and 100 kV/cm
over 115 < z < 198.5 cm. This change in threshold approximates the effect of pump-out ports
near position G. The knob emission threshold is 950 kV/cm, although for most simulations
550 kV/cm was sufficient to prevent knob emission. Electrons are emitted from the cathode
needle above 100 kV/cm, or 40 kV/cm where silver paint is applied.
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3.2 Shots at 3.5 MV

One shot is modeled at the 3.5-MV end-point voltage. This is shot 1394 which has an 8-8
diode geometry. The simulated currents are compared to data in Fig. 4. All currents have
smoothing applied, so no conclusion should be drawn regarding the magnitude of oscillations.
The measured pulses are shifted in time so that IF and OF are aligned at the pulse rise. The
other currents use this time shift.

Figure 4. Currents in the MITL, dustbin, and diode from
a simulation of shot 1394 compared to data. The diode has
a 8-mm diameter needle and a 8-mm AK gap. The diode
impedance in the simulation is stable.

The retrapping speed on the knob is well-matched, based on IFEED. Since DIODB equals
IBEAM during the pulse rise, the power flow electrons are impacting the dustbin wall at
larger radius. The rise in beam current is faster in simulation than data, and this causes the
disagreement during the pulse rise for IBEAM and DIODB. The measured diode currents
for all shots appear to turn-on rapidly in the first 10 ns and then relax to a more gradual
rise. We do not attempt to model this effect.
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3.3 Shots at 4.5 MV

A few shots are modeled for the 4.5-MV end-point voltage (1441, 1509, 1519). Each uses the
7-7 geometry but all have different diode impedance lifetimes. The massive-fluid-electron
model is used in each simulation to achieve the falling diode impedance seen in the IBEAM
current.

The comparison to shot 1441 is shown in Fig. 5. A snapshot of the electron density in the
MITL power flow for this simulation is shown in Fig. 3. The start time and rate of injection
of massive electrons at the anode surface was adjusted to match the measured gap closure.
The comparisons to shots 1509 and 1519 are shown in Figs. 6 and 7, respectively.

Figure 5. Currents in the MITL, dustbin, and diode from
a simulation of shot 1441 compared to data. The diode has
a 7-mm diameter needle and a 7-mm AK gap.

Comparing the IBEAM currents in Figs. 5, 6 and 7, we see a rapid decrease in diode
impedance in shot 1509. This shot begins identically to the others, but at approximately
30 ns into peak power, the diode current increases more rapidly. The reproducibility of the
diode impedance profiles is examined statistically in Sec. 7. The theory of the pre-collapse
behavior is examined in Sec. 8.
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Figure 6. Currents in the MITL, dustbin, and diode from
a simulation of shot 1509 compared to data. The diode has
a 7-mm diameter needle and a 7-mm AK gap. The falling
diode impedance is modeled using massive fluid electrons at
the anode which drift away from the surface and effectively
reduce the AK gap.
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Figure 7. Currents in the MITL, dustbin, and diode from
a simulation of shot 1519 compared to data. The diode has
a 7-mm diameter needle and a 7-mm AK gap. The falling
diode impedance is modeled using massive fluid electrons at
the anode which drift away from the surface and effectively
reduce the AK gap.
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4 Pulsed power correlation to poor shots

Variations in injected power could manifest as differences in peak power or pulse rise, and
these could impact power-flow current uniformity or insulation. To determine if variations in
peak power correlate with poor performing shots, we plot the peak anode current versus shot
number for 99 shots in Fig. 8, noting which are good and poor. The peak anode current is
calculated by taking the average value at OF during the first 10 ns of peak power. (Position
F is far enough from the load that impedance feedback, in the form of a retrapping wave,
arrives during the second half of the pulse.) The average peak current is represented by a
solid gray line and the standard deviation is indicated with dotted lines.

Figure 8. The magnitude of the OF current at peak power
versus shot number. Good shots are shown in blue and poor
shots in red. The values shown are averaged over the first
10 ns at peak power.

The OF currents for poor shots, shown in red in Fig. 8, are are well-represented by a
Gaussian distribution defined by the good shots (reduced χ2 = 1.04) until the retrapping
wave arrives from downstream. There appears to be more of a correlation with shot number
and peak current than with diode impedance.

The pulse rises for poor shots, shown in red in Fig. 9, are are also well-represented by
the Gaussian distribution defined by the good shots (reduced χ2 = 1.27.)
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Figure 9. The pulse rise from OF versus shot number.
Good shots are shown in blue and poor shots in red. The
rise is calculated as the time to rise from 10% to 90% of the
mean OF current.
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5 Dustbin and MITL alignment correlation to poor

shots

If the cathode is misaligned to the anode in the transmission line or dustbin, the power-flow
current should become asymmetric around the line or knob. To determine if misalignment is
correlated with poor shots, we calculate the asymmetries in the MITL and dustbin currents
and plot these values versus shot number, noting good and poor shots.

Each current presented in this report is the average of four B-dot probes arrayed az-
imuthally at a given axial position (listed in Sec. 3). Azimuthal asymmetry is calculated as
the difference between the highest probe value at a given position and the average, normal-
ized by the average, (Imax − Ī)/Ī. This value is calculated for the IFEED and IF probes
from 80 shots and plotted versus shot number in Fig. 10. Good shots are shown in blue
and poor shots in red. There is no discernible correlation between the level of asymmetry
and shot performance. The distributions of the poor shots for IFEED and IF asymmetry
are well-represented by Gaussians defined by the good shots (reduced χ2 = 0.73 and 0.58,
respectively.)

20



Figure 10. The azimuthal asymmetry of the IFEED (top)
and IF (bottom) currents versus shot number. The asym-
metry is the difference between the highest probe value and
the average, normalized by the average, (Imax − Ī)/Ī. Good
shots are shown in blue and poor shots in red.
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6 Knob hardware correlation to poor shots

There are six knobs used with the small dustbin, each with slightly different shape. To
investigate the possibility that the structure of a subset of these contributes to shot failure,
we plot the frequency of good and poor shots for each knob in Fig. 11. While knob #6 has
a higher rate of occurrence of poor shots, they occur for every knob. We do not conclude
that the shots fail exclusively as a result of a subset of knob hardware.

Figure 11. The frequency with which one of six knobs is
used on good and poor shots. Good shots are shown in blue
and poor shots in red.
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7 Diode impedance collapse characteristics

In the compilation of cathode and anode currents (IF and OF) in Sec. 2, poor shots are
identified by a larger-than-average rise in IF after the retrapping wave has passed. This is
a result of a larger-than-average drop in the load impedance. Since the abnormal current
increase is first recorded in the IBEAM probes, the impedance change must be occurring in
the diode, and not elsewhere in the dustbin.

In normal operation, the SMP diode has a slowly decreasing impedance (< 0.5Ω/ns)
related to anode plasma expansion. This results in a steady rise in the IBEAM currents,
after the pulse rise, as shown in Figs. 12 and 13. Initially, the rate of increase is the same
for all shots and is related to rc/g, as discussed in Sec.8. For poor shots, IBEAM increases
sharply at some time during peak power. The time to impedance breakdown is different
for the shots in this series, but breakdown is never gradual. The drop in impedance is
catastrophic, causing the diode to draw the entire line current.

In average operation, the DIODB current is higher than IBEAM after pulse rise. This
indicates that some power-flow current is wrapping around the knob and connecting to the
anode within an 11-cm radius. (This is the electron density seen on the anode holder in
Fig. 3.) In this shot series, when the diode impedance drops abnormally low, IBEAM and
DIODB rise to nearly the same value and IF becomes almost equal to OF, indicating that
the power flow is recaptured in the cathode and the diode current is almost the total current
in the system. This is seen in the IBEAM and DIODB currents for the 7-7 shots in Figs. 12
and 13, and in the IF/OF currents in Figs. 1 and 2.

To quantify how much the power flow is reduced for poor shots, the ratio of DIODB to
IBEAM is plotted versus IBEAM in Fig. 14. We see that there are two distinct distributions.
For good shots, IBEAM ranges around 100 to 110 kA and DIODB is 16 to 30% larger. For
failed shots IBEAM is near 140 to 150 kA and DIODB is usually less than 10% larger. That
the distribution is bimodal instead of continuous and involves a significant reduction in power
flow strongly suggests that power-flow electrons are not contributing to this catastrophic
impedance collapse, but rather this phenomenon is a result of physics in the diode region.
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Figure 12. The IBEAM and DIODB currents from shots
1500 through 1519. All shots are 7-7.
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Figure 13. The IBEAM and DIODB currents from shots
1520 through 1539. All shots are 7-7.
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Figure 14. IBEAM versus the ratio DIODB/IBEAM from
53 7-7 shots. The peak currents are used.)
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8 Diode current comparison to theory

The SMP diode operates as a current-limited device, in which the critical current is given
by [3, 5]

Icrit = 8.5α
rC

g
(γ2 − 1)1/2 [kA], (1)

where γ = 1 + eV/mec
2, rC is the cathode radius, g is the AK gap width, and α is a scale

factor used to account for the current increase due to ion space-charge. Estimates of α range
from 1.6 to 2.8, depending on the diode geometry and the beam and ion space-charge profiles.
Therefore, Eq. 1 includes bipolar flow, but does not include the effects of evolving plasmas
as described in Ref. 2. Two plasma-related effects were identified which decrease the diode
impedance during operation. The first is an expanding anode plasma, which continually
reduces the effective g and occurs in normal diode operation. The second is an increased ion
space-charge around the cathode needle, which would rapidly increase α when it occurs.

Equation 1 indicates that diodes with the same rC/g will have the same impedance.
This should be seen in comparisons of IBEAM (Icrit) early in the pulse for shots at the same
voltage (γ). However, since the plasma expansion rate is a function of the diode voltage,
the rate of gap closure, g(t)), will be the same for all shots. Therefore the ratio rC/g(t) will
change differently. If we denote the plasma expansion velocity as vp, the gap closure rate
can be modeled simply as g(t) = g0 − vpt. Then

Icrit(t) = Icrit(0)
g0

g0 − vpt
, (2)

independent of rC , for constant γ.

To recover the equivalence of shots with identical rC/g, but different g, the diode impedance
can be plotted on a scaled time axis using

Icrit(t
′) = I0(

1

1− vpt′
), (3)

where t/g0 → t′, assuming γ is constant, or

Zdiode(t
′) = Z0(1− vpt

′), (4)

if it is not.

Simulation results for Zdiode(t
′) are plotted in Fig. 15, which compares an 8.5-mm-

diameter cathode to a 12.5-mm cathode, both with rC/g0 = 2. Expanding anode plasmas
are included in the model.
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Figure 15. The diode impedance from simulations of 8.5
and 12.5-mm diameter cathodes on a scaled time axis. (For
the 12.5-mm cathode, t → 8.5/12.5 t.) The simulations in-
clude effects of expanding anode plasmas.

Measurement results for Icrit(t
′) are shown in Fig. 16. The diode currents from three

random shots, a 6-6, 7-7, and 8-8, are compared. γ(t) is assumed to be a similar function
for each shot. Figure 16a shows IBEAM currents on an unscaled time axis, while Fig. 16b
shows the same data with t′ = t/g0.

Since the scaling of Eq. 3 holds for simulation and data, we can determine the value of
vp. In Fig. 17, Eq. 1 is plotted over IBEAM from shot 1441, using vp = 1 cm/µs, α = 1.1,
and γ(t) = 8 + 0.0625t, where t is in ns. The form of γ(t) is estimated from the simulation
in Sec. 3.3. We see that the vp used in the massive-electron-model and Eq. 1 are the same.
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Figure 16. a) The IBEAM diode currents from shots 1442,
1443, and 1460, which are 6-6, 7-7, and 8-8 configurations,
respectively. b) The same IBEAM currents with the time
axes scaled by t′ = t/g0 .
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Figure 17. Theoretical critical current and IBEAM for a
time-dependent AK gap. Equation 1 using v = 1 cm/µs,
α = 1.1, and γ(t) = 8 + 0.0625t where t is in ns. The time
axis has been shifted.
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9 Conclusion

The recent experimental campaign conducted on Sandia’s RITS-6 accelerator was used to
improve understanding of the shot-to-shot variation of the SMP diode. The accelerator was
operated at 4.5 MV which simplified the analysis by removing the variability introduced by
knob emission.

In this report, we examined sources of variability which occur away from the diode,
specifically

• power flow emission and trajectory changes,
• variations in pulsed power amplitude,
• variations in pulse rise,
• dustbin and transmission line misalignment, and
• different knob shapes.

Simulations of the transmission line, dustbin, and diode showed consistent power-flow elec-
tron emission and trajectories. Statistical analyses of peak power, pulse rise, asymmetries
in IFEED, and asymmetries in IF show no correlation with poor radiographic shots. Lastly,
one of the six knobs used has a higher occurrence of shot failure, however failures occur
for every knob. We find no sources of accelerator variation which are associated with poor
radiographic performance.

Shots which perform well radiographically are well-described by the theoretical critical
current equation in which we use a time-dependent AK gap width. The estimated gap closure
velocity is approximately vp = 1 cm/µs.

In classifying good versus poor shots, we find that there is not a continuous spectrum
of diode impedance behavior but that the good and poor shots can be grouped into two
distinct impedance profiles. This result will form the basis of a follow-on study focusing on
the variability resulting from diode parameters and beam and plasma physics.
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